10 Years of Native Seed Certification in Germany - a Summary.
Mainz, Ann Kareen; Wieden, Markus
2018-06-21
Many renaturation projects and compensation areas are based on the use of seeds from regional indigenous wild plants, in the following: native or regional seeds. Despite this, such seeds make up only a small proportion of the total number of seeds used for greening projects - in Germany, for example, it is only around 1% (= 200 t/yr). Although the market for regional seeds is small, it is highly competitive. High-priced native seeds compete with flower mixes of unspecified origin and can only be differentiated from them by reliable quality seals. A quality assurance system based on seed legislation (EU Directive 2010/60, preservation mixtures) has been developed in a few European countries. However, quality assurance ends with the sale of the seeds. Thus, seed use remains unmonitored and often unsuitable material, or material foreign to the region, is planted in restoration areas. Unfortunately, nature conservation has not made seed-based restoration one of its key issues, neither at the European, nor at the national level. Currently there are many different local and regional standards, methods and private certificates that are confusing for users and which provide little continuity and predictability for producers. We recommend the establishment of an EU directive or a broadly agreed recommendation to the EU member states, spearheaded by nature conservation, which would define the standards for producing and using native seeds (e.g. harmonized regions that cross national borders, quality regulations). At the same time, wild plant interest groups should combine existing structures in order to strengthen seed-based restoration through international cooperation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Csf Based Non-Ground Points Extraction from LIDAR Data
NASA Astrophysics Data System (ADS)
Shen, A.; Zhang, W.; Shi, H.
2017-09-01
Region growing is a classical method of point cloud segmentation. Based on the idea of collecting the pixels with similar properties to form regions, region growing is widely used in many fields such as medicine, forestry and remote sensing. In this algorithm, there are two core problems. One is the selection of seed points, the other is the setting of the growth constraints, in which the selection of the seed points is the foundation. In this paper, we propose a CSF (Cloth Simulation Filtering) based method to extract the non-ground seed points effectively. The experiments have shown that this method can obtain a group of seed spots compared with the traditional methods. It is a new attempt to extract seed points
NASA Astrophysics Data System (ADS)
Hu, Yu-chi; Xiong, Jian-ping; Cohan, Gilad; Zaider, Marco; Mageras, Gig; Zelefsky, Michael
2013-03-01
A fast knowledge-based radioactive seed localization method for brachytherapy was developed to automatically localize radioactive seeds in an intraoperative volumetric cone beam CT (CBCT) so that corrections, if needed, can be made during prostate implant surgery. A transrectal ultrasound (TRUS) scan is acquired for intraoperative treatment planning. Planned seed positions are transferred to intraoperative CBCT following TRUS-to-CBCT registration using a reference CBCT scan of the TRUS probe as a template, in which the probe and its external fiducial markers are pre-segmented and their positions in TRUS are known. The transferred planned seeds and probe serve as an atlas to reduce the search space in CBCT. Candidate seed voxels are identified based on image intensity. Regions are grown from candidate voxels and overlay regions are merged. Region volume and intensity variance is checked against known seed volume and intensity profile. Regions meeting the above criteria are flagged as detected seeds; otherwise they are flagged as likely seeds and sorted by a score that is based on volume, intensity profile and distance to the closest planned seed. A graphical interface allows users to review and accept or reject likely seeds. Likely seeds with approximately twice the seed volume are automatically split. Five clinical cases are tested. Without any manual correction in seed detection, the method performed the localization in 5 seconds (excluding registration time) for a CBCT scan with 512×512×192 voxels. The average precision rate per case is 99% and the recall rate is 96% for a total of 416 seeds. All false negative seeds are found with 15 in likely seeds and 1 included in a detected seed. With the new method, updating of calculations of dose distribution during the procedure is possible and thus facilitating evaluation and improvement of treatment quality.
Cynthia D. Huebner
2010-01-01
Spread of Microstegium vimineum, an invasive exotic grass, in closed-canopy forests of West Virginia, U.S. was evaluated across a local (roadside to forest interior) and regional (across two geographic provinces) environmental gradient. Seed dispersal distances from roadside populations into forest interiors based on seed rain and soil seed bank data...
NASA Astrophysics Data System (ADS)
Pokharel, Binod; Geerts, Bart; Jing, Xiaoqin; Friedrich, Katja; Ikeda, Kyoko; Rasmussen, Roy
2017-01-01
The AgI Seeding Cloud Impact Investigation (ASCII) campaign, conducted in early 2012 and 2013 over two mountain ranges in southern Wyoming, was designed to examine the impact of ground-based glaciogenic seeding on snow growth in winter orographic clouds. Part I of this study (Pokharel and Geerts, 2016) describes the project design, instrumentation, as well as the ambient atmospheric conditions and macrophysical and microphysical properties of the clouds sampled in ASCII. This paper (Part II) explores how the silver iodide (AgI) seeding affects snow growth in these orographic clouds in up to 27 intensive operation periods (IOPs), depending on the instrument used. In most cases, 2 h without seeding (NOSEED) were followed by 2 h of seeding (SEED). In situ data at flight level (2D-probes) indicate higher concentrations of small snow particles during SEED in convective clouds. The double difference of radar reflectivity Z (SEED - NOSEED in the target region, compared to the same trend in the control region) indicates an increase in Z for the composite of ASCII cases, over either mountain range, and for any of the three radar systems (WCR, MRR, and DOW), each with their own control and target regions, and for an array of snow gauges. But this double difference varies significantly from case to case, which is attributed to uncertainties related to sampling representativeness and to differences in natural trends between control and target regions. We conclude that a sample much larger than ASCII's sample is needed for clear observational evidence regarding the sensitivity of seeding efficacy to atmospheric and cloud conditions.
Parallelized seeded region growing using CUDA.
Park, Seongjin; Lee, Jeongjin; Lee, Hyunna; Shin, Juneseuk; Seo, Jinwook; Lee, Kyoung Ho; Shin, Yeong-Gil; Kim, Bohyoung
2014-01-01
This paper presents a novel method for parallelizing the seeded region growing (SRG) algorithm using Compute Unified Device Architecture (CUDA) technology, with intention to overcome the theoretical weakness of SRG algorithm of its computation time being directly proportional to the size of a segmented region. The segmentation performance of the proposed CUDA-based SRG is compared with SRG implementations on single-core CPUs, quad-core CPUs, and shader language programming, using synthetic datasets and 20 body CT scans. Based on the experimental results, the CUDA-based SRG outperforms the other three implementations, advocating that it can substantially assist the segmentation during massive CT screening tests.
Direct seeding of fine hardwood tree species
Lenny D. Farlee
2013-01-01
Direct seeding of fine hardwood trees has been practiced in the Central Hardwoods Region for decades, but results have been inconsistent. Direct seeding has been used for reforestation and afforestation based on perceived advantages over seedling planting, including cost and operational efficiencies, opportunities for rapid seedling establishment and early domination...
Gama-Arachchige, N S; Baskin, J M; Geneve, R L; Baskin, C C
2013-07-01
Physical dormancy (PY) occurs in seeds or fruits of 18 angiosperm families and is caused by a water-impermeable palisade cell layer(s) in seed or fruit coats. Prior to germination, the seed or fruit coat of species with PY must become permeable in order to imbibe water. Breaking of PY involves formation of a small opening(s) (water gap) in a morpho-anatomically specialized area in seeds or fruits known as the water-gap complex. Twelve different water-gap regions in seven families have previously been characterized. However, the water-gap regions had not been characterized in Cucurbitaceae; clade Cladrastis of Fabaceae; subfamilies Bombacoideae, Brownlowioideae and Bythnerioideae of Malvaceae; Nelumbonaceae; subfamily Sapindoideae of Sapindaceae; Rhamnaceae; or Surianaceae. The primary aims of this study were to identify and describe the water gaps of these taxa and to classify all the known water-gap regions based on their morpho-anatomical features. Physical dormancy in 15 species was broken by exposing seeds or fruits to wet or dry heat under laboratory conditions. Water-gap regions of fruits and seeds were identified and characterized by use of microtome sectioning, light microscopy, scanning electron microscopy, dye tracking and blocking experiments. Ten new water-gap regions were identified in seven different families, and two previously hypothesized regions were confirmed. Water-gap complexes consist of (1) an opening that forms after PY is broken; (2) a specialized structure that occludes the gap; and (3) associated specialized tissues. In some species, more than one opening is involved in the initial imbibition of water. Based on morpho-anatomical features, three basic water-gap complexes (Types-I, -II and -III) were identified in species with PY in 16 families. Depending on the number of openings involved in initial imbibition, the water-gap complexes were sub-divided into simple and compound. The proposed classification system enables understanding of the relationships between the water-gap complexes of taxonomically unrelated species with PY.
Parallelized Seeded Region Growing Using CUDA
Park, Seongjin; Lee, Hyunna; Seo, Jinwook; Lee, Kyoung Ho; Shin, Yeong-Gil; Kim, Bohyoung
2014-01-01
This paper presents a novel method for parallelizing the seeded region growing (SRG) algorithm using Compute Unified Device Architecture (CUDA) technology, with intention to overcome the theoretical weakness of SRG algorithm of its computation time being directly proportional to the size of a segmented region. The segmentation performance of the proposed CUDA-based SRG is compared with SRG implementations on single-core CPUs, quad-core CPUs, and shader language programming, using synthetic datasets and 20 body CT scans. Based on the experimental results, the CUDA-based SRG outperforms the other three implementations, advocating that it can substantially assist the segmentation during massive CT screening tests. PMID:25309619
Neal, Robert E; Smith, Ryan L; Kavnoudias, Helen; Rosenfeldt, Franklin; Ou, Ruchong; Mclean, Catriona A; Davalos, Rafael V; Thomson, Kenneth R
2013-12-01
Electroporation-based therapies deliver brief electric pulses into a targeted volume to destabilize cellular membranes. Nonthermal irreversible electroporation (IRE) provides focal ablation with effects dependent on the electric field distribution, which changes in heterogeneous environments. It should be determined if highly conductive metallic implants in targeted regions, such as radiotherapy brachytherapy seeds in prostate tissue, will alter treatment outcomes. Theoretical and experimental models determine the impact of prostate brachytherapy seeds on IRE treatments. This study delivered IRE pulses in nonanimal, as well as in ex vivo and in vivo tissue, with and in the absence of expired radiotherapy seeds. Electrical current was measured and lesion dimensions were examined macroscopically and with magnetic resonance imaging. Finite-element treatment simulations predicted the effects of brachytherapy seeds in the targeted region on electrical current, electric field, and temperature distributions. There was no significant difference in electrical behavior in tissue containing a grid of expired radiotherapy seeds relative to those without seeds for nonanimal, ex vivo, and in vivo experiments (all p > 0.1). Numerical simulations predict no significant alteration of electric field or thermal effects (all p > 0.1). Histology showed cellular necrosis in the region near the electrodes and seeds within the ablation region; however, there were no seeds beyond the ablation margins. This study suggests that electroporation therapies can be implemented in regions containing small metallic implants without significant changes to electrical and thermal effects relative to use in tissue without the implants. This supports the ability to use IRE as a salvage therapy option for brachytherapy.
NASA Astrophysics Data System (ADS)
Pokharel, Binod
This dissertation examines reflectivity data from three different radar systems, as well as airborne and ground-based in situ particle imaging data, to study the impact of ground-based glaciogenic seeding on orographic clouds and precipitation formed over the mountains in southern Wyoming. The data for this study come from the AgI Seeding Cloud Impact Investigation (ASCII) field campaign conducted over the Sierra Madre mountains in 2012 (ASCII-12) and over the Medicine Bow mountains in 2013 (ASCII-13) in the context of the Wyoming Weather Modification Pilot Project (WWMPP). The campaigns were supported by a network of ground-based instruments, including a microwave radiometer, two profiling Ka-band Micro Rain Radars (MRRs), a Doppler on Wheels (DOW), rawinsondes, a Cloud Particle Imager, and a Parsivel disdrometer. The University of Wyoming King Air with profiling Wyoming Cloud Radar (WCR) conducted nine successful flights in ASCII-12, and eight flights in ASCII-13. WCR profiles from these flights are combined with those from seven other flights, which followed the same geographically-fixed pattern in 2008-09 (pre-ASCII) over the Medicine Bow range. All sampled storms were relatively shallow, with low-level air forced over the target mountain, and cold enough to support ice initiation by silver iodide (AgI) nuclei in cloud. Three detailed case studies are conducted, each with different atmospheric conditions and different cloud and snow growth properties: one case (21 Feb 2012) is stratiform, with strong winds and cloud droplets too small to enable snow growth by accretion (riming). A second case (13 Feb 2012) contains shallow convective cells. Clouds in the third case study (22 Feb 2012) are stratiform but contain numerous large droplets (mode ~35 microm in diameter), large enough for ice particle growth by riming. These cases and all others, each with a treated period following an untreated period, show that a clear seeding signature is not immediately apparent in individual WCR reflectivity transects downwind of the silver iodide (AgI) generators, and that the natural trends in the precipitation over short timescales can easily overwhelm any seeding-induced change. Therefore the ASCII experimental design included a control region, upwind of the AgI generators. The three case studies generally show an increase in surface snow particle concentration in the target region during the seeding period. Frequency-by-altitude displays of all WCR reflectivity data collected during the flights show slightly higher reflectivity values during seeding near the ground, at least when compared to the control region, in all three cases. This also applies to the two other radar systems (MRR and DOW), both with their own sampling strategy and target/control regions. An examination of all ASCII cases combined (the "composite" analysis) also shows a positive trend in low-level reflectivity relative to the control region, both in convective and in stratiform cases. Also, convective cells sampled at flight level downwind of the AgI generators contain a higher concentration of small ice crystals during seeding. A word of caution is warranted: both the magnitude and the sign of the change in the target region, compared to that in the control region, varies from case to case in the composite, and amongst the three radar systems (WCR, DOW and MRR). We speculate that this variation is only partly driven by different responses of orographic clouds to glaciogenic seeding, related to factors such as cloud base and cloud top temperature, cloud liquid water content, and snow growth mechanism. Instead, most of this variation probably relates to non-homogenous natural trends across the mountain range, and/or to sample unrepresentativeness, especially for the (relative small) control region, in other words to the sampling methods. The impact of natural variability and sampling aliasing can only be overcome by a storm sample size much larger than that collected in ASCII. As such, the ASCII sample size is not adequate either to quantify the magnitude of the seeding impact on snowfall, or to identify the conditions most suitable for ground-based seeding. This study is an exploration of cloud microphysical evidence linking AgI cloud seeding to snowfall. It is not a statistical study. The preponderance of evidence from different radars and ground-based and airborne particle probes deployed in ASCII, in three case studies and in the composite analysis, points to the ability of ground-based glaciogenic seeding to increase the snowfall rate in orographic clouds..
Flood inundation extent mapping based on block compressed tracing
NASA Astrophysics Data System (ADS)
Shen, Dingtao; Rui, Yikang; Wang, Jiechen; Zhang, Yu; Cheng, Liang
2015-07-01
Flood inundation extent, depth, and duration are important factors affecting flood hazard evaluation. At present, flood inundation analysis is based mainly on a seeded region-growing algorithm, which is an inefficient process because it requires excessive recursive computations and it is incapable of processing massive datasets. To address this problem, we propose a block compressed tracing algorithm for mapping the flood inundation extent, which reads the DEM data in blocks before transferring them to raster compression storage. This allows a smaller computer memory to process a larger amount of data, which solves the problem of the regular seeded region-growing algorithm. In addition, the use of a raster boundary tracing technique allows the algorithm to avoid the time-consuming computations required by the seeded region-growing. Finally, we conduct a comparative evaluation in the Chin-sha River basin, results show that the proposed method solves the problem of flood inundation extent mapping based on massive DEM datasets with higher computational efficiency than the original method, which makes it suitable for practical applications.
A genome-wide association study of seed protein and oil content in soybean
2014-01-01
Background Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. Results A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r 2 ) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. Conclusions This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise marker-assisted allele selection and will expedite positional cloning of the causal gene(s). PMID:24382143
A genome-wide association study of seed protein and oil content in soybean.
Hwang, Eun-Young; Song, Qijian; Jia, Gaofeng; Specht, James E; Hyten, David L; Costa, Jose; Cregan, Perry B
2014-01-02
Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r2) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise marker-assisted allele selection and will expedite positional cloning of the causal gene(s).
Marteinsdóttir, Bryndís
2014-01-01
Dispersal is an important factor in plant community assembly, but assembly studies seldom include information on actual dispersal into communities, i.e. the local propagule pool. The aim of this study was to determine which factors influence plant community assembly by focusing on two phases of the assembly process: the dispersal phase and the establishment phase. At 12 study sites in grazed ex-arable fields in Sweden the local plant community was determined and in a 100-m radius around the centre of each site, the regional species pool was measured. The local seed bank and the seed rain was explored to estimate the local propagule pool. Trait-based models were then applied to investigate if species traits (height, seed mass, clonal abilities, specific leaf area and dispersal method) and regional abundance influenced which species from the regional species pool, dispersed to the local community (dispersal phase) and which established (establishment phase). Filtering of species during the dispersal phase indicates the effect of seed limitation while filtering during the establishment phase indicates microsite limitation. On average 36% of the regional species pool dispersed to the local sites and of those 78% did establish. Species with enhanced dispersal abilities, e.g. higher regional abundance, smaller seeds and dispersed by cattle, were more likely to disperse to the sites than other species. At half the sites, dispersal was influenced by species height. Species establishment was however mainly unlinked to the traits included in this study. This study underlines the importance of seed limitation in local plant community assembly. It also suggests that without information on species dispersal into a site, it is difficult to distinguish between the influence of dispersal and establishment abilities, and thus seed and microsite limitation, as both can be linked to the same trait. PMID:25057815
Emergence Shapes the Structure of the Seed Microbiota
Briand, Martial; Bonneau, Sophie; Préveaux, Anne; Valière, Sophie; Bouchez, Olivier; Hunault, Gilles; Simoneau, Philippe; Jacques, Marie-Agnès
2014-01-01
Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment of gyrB. Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention. PMID:25501471
Emergence shapes the structure of the seed microbiota.
Barret, Matthieu; Briand, Martial; Bonneau, Sophie; Préveaux, Anne; Valière, Sophie; Bouchez, Olivier; Hunault, Gilles; Simoneau, Philippe; Jacquesa, Marie-Agnès
2015-02-01
Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment of gyrB. Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neal, Robert E., E-mail: robert.neal@alfred.org.au; Smith, Ryan L., E-mail: ryan.smith@wbrc.org.au; Kavnoudias, Helen, E-mail: H.Kavnoudias@alfred.org.au
2013-12-15
Purpose: Electroporation-based therapies deliver brief electric pulses into a targeted volume to destabilize cellular membranes. Nonthermal irreversible electroporation (IRE) provides focal ablation with effects dependent on the electric field distribution, which changes in heterogeneous environments. It should be determined if highly conductive metallic implants in targeted regions, such as radiotherapy brachytherapy seeds in prostate tissue, will alter treatment outcomes. Theoretical and experimental models determine the impact of prostate brachytherapy seeds on IRE treatments. Materials and Methods: This study delivered IRE pulses in nonanimal, as well as in ex vivo and in vivo tissue, with and in the absence of expiredmore » radiotherapy seeds. Electrical current was measured and lesion dimensions were examined macroscopically and with magnetic resonance imaging. Finite-element treatment simulations predicted the effects of brachytherapy seeds in the targeted region on electrical current, electric field, and temperature distributions. Results: There was no significant difference in electrical behavior in tissue containing a grid of expired radiotherapy seeds relative to those without seeds for nonanimal, ex vivo, and in vivo experiments (all p > 0.1). Numerical simulations predict no significant alteration of electric field or thermal effects (all p > 0.1). Histology showed cellular necrosis in the region near the electrodes and seeds within the ablation region; however, there were no seeds beyond the ablation margins. Conclusion: This study suggests that electroporation therapies can be implemented in regions containing small metallic implants without significant changes to electrical and thermal effects relative to use in tissue without the implants. This supports the ability to use IRE as a salvage therapy option for brachytherapy.« less
Gama-Arachchige, N. S.; Baskin, J. M.; Geneve, R. L.; Baskin, C. C.
2013-01-01
Background and Aims Physical dormancy (PY) occurs in seeds or fruits of 18 angiosperm families and is caused by a water-impermeable palisade cell layer(s) in seed or fruit coats. Prior to germination, the seed or fruit coat of species with PY must become permeable in order to imbibe water. Breaking of PY involves formation of a small opening(s) (water gap) in a morpho-anatomically specialized area in seeds or fruits known as the water-gap complex. Twelve different water-gap regions in seven families have previously been characterized. However, the water-gap regions had not been characterized in Cucurbitaceae; clade Cladrastis of Fabaceae; subfamilies Bombacoideae, Brownlowioideae and Bythnerioideae of Malvaceae; Nelumbonaceae; subfamily Sapindoideae of Sapindaceae; Rhamnaceae; or Surianaceae. The primary aims of this study were to identify and describe the water gaps of these taxa and to classify all the known water-gap regions based on their morpho-anatomical features. Methods Physical dormancy in 15 species was broken by exposing seeds or fruits to wet or dry heat under laboratory conditions. Water-gap regions of fruits and seeds were identified and characterized by use of microtome sectioning, light microscopy, scanning electron microscopy, dye tracking and blocking experiments. Key Results Ten new water-gap regions were identified in seven different families, and two previously hypothesized regions were confirmed. Water-gap complexes consist of (1) an opening that forms after PY is broken; (2) a specialized structure that occludes the gap; and (3) associated specialized tissues. In some species, more than one opening is involved in the initial imbibition of water. Conclusions Based on morpho-anatomical features, three basic water-gap complexes (Types-I, -II and -III) were identified in species with PY in 16 families. Depending on the number of openings involved in initial imbibition, the water-gap complexes were sub-divided into simple and compound. The proposed classification system enables understanding of the relationships between the water-gap complexes of taxonomically unrelated species with PY. PMID:23649182
Stoyanova, Raliza S.; Baron-Cohen, Simon; Calder, Andrew J.
2013-01-01
Individuals with Autism Spectrum Conditions (ASC) have difficulties in social interaction and communication, which is reflected in hypoactivation of brain regions engaged in social processing, such as medial prefrontal cortex (mPFC), amygdala and insula. Resting state studies in ASC have identified reduced connectivity of the default mode network (DMN), which includes mPFC, suggesting that other resting state networks incorporating ‘social’ brain regions may also be abnormal. Using Seed-based Connectivity and Group Independent Component Analysis (ICA) approaches, we looked at resting functional connectivity in ASC between specific ‘social’ brain regions, as well as within and between whole networks incorporating these regions. We found reduced functional connectivity within the DMN in individuals with ASC, using both ICA and seed-based approaches. Two further networks identified by ICA, the salience network, incorporating the insula and a medial temporal lobe network, incorporating the amygdala, showed reduced inter-network connectivity. This was underlined by reduced seed-based connectivity between the insula and amygdala. The results demonstrate significantly reduced functional connectivity within and between resting state networks incorporating ‘social’ brain regions. This reduced connectivity may result in difficulties in communication and integration of information across these networks, which could contribute to the impaired processing of social signals in ASC. PMID:22563003
Miryeganeh, Matin; Takayama, Koji; Tateishi, Yoichi; Kajita, Tadashi
2014-01-01
Ipomoea pes-caprae (Convolvulaceae), a pantropical plant with sea-drifted seeds, is found globally in the littoral areas of tropical and subtropical regions. Unusual long-distance seed dispersal has been believed to be responsible for its extraordinarily wide distribution; however, the actual level of inter-population migration has never been studied. To clarify the level of migration among populations of I. pes-caprae across its range, we investigated nucleotide sequence variations by using seven low-copy nuclear markers and 272 samples collected from 34 populations that cover the range of the species. We applied coalescent-based approaches using Bayesian and maximum likelihood methods to assess migration rates, direction of migration, and genetic diversity among five regional populations. Our results showed a high number of migrants among the regional populations of I. pes-caprae subsp. brasiliensis, which suggests that migration among distant populations was maintained by long-distance seed dispersal across its global range. These results also provide strong evidence for recent trans-oceanic seed dispersal by ocean currents in all three oceanic regions. We also found migration crossing the American continents. Although this is an apparent land barrier for sea-dispersal, migration between populations of the East Pacific and West Atlantic regions was high, perhaps because of trans-isthmus migration via pollen dispersal. Therefore, the migration and gene flow among populations across the vast range of I. pes-caprae is maintained not only by seed dispersal by sea-drifted seeds, but also by pollen flow over the American continents. On the other hand, populations of subsp. pes-caprae that are restricted to only the northern part of the Indian Ocean region were highly differentiated from subsp. brasiliensis. Cryptic barriers that prevented migration by sea dispersal between the ranges of the two subspecies and/or historical differentiation that caused local adaptation to different environmental factors in each region could explain the genetic differentiation between the subspecies. PMID:24755614
Association Studies and Legume Synteny Reveal Haplotypes Determining Seed Size in Vigna unguiculata.
Lucas, Mitchell R; Huynh, Bao-Lam; da Silva Vinholes, Patricia; Cisse, Ndiaga; Drabo, Issa; Ehlers, Jeffrey D; Roberts, Philip A; Close, Timothy J
2013-01-01
Highly specific seed market classes for cowpea and other grain legumes exist because grain is most commonly cooked and consumed whole. Size, shape, color, and texture are critical features of these market classes and breeders target development of cultivars for market acceptance. Resistance to biotic and abiotic stresses that are absent from elite breeding material are often introgressed through crosses to landraces or wild relatives. When crosses are made between parents with different grain quality characteristics, recovery of progeny with acceptable or enhanced grain quality is problematic. Thus genetic markers for grain quality traits can help in pyramiding genes needed for specific market classes. Allelic variation dictating the inheritance of seed size can be tagged and used to assist the selection of large seeded lines. In this work we applied 1,536-plex SNP genotyping and knowledge of legume synteny to characterize regions of the cowpea genome associated with seed size. These marker-trait associations will enable breeders to use marker-based selection approaches to increase the frequency of progeny with large seed. For 804 individuals derived from eight bi-parental populations, QTL analysis was used to identify markers linked to 10 trait determinants. In addition, the population structure of 171 samples from the USDA core collection was identified and incorporated into a genome-wide association study which supported more than half of the trait-associated regions important in the bi-parental populations. Seven of the total 10 QTLs were supported based on synteny to seed size associated regions identified in the related legume soybean. In addition to delivering markers linked to major trait determinants in the context of modern breeding, we provide an analysis of the diversity of the USDA core collection of cowpea to identify genepools, migrants, admixture, and duplicates.
NASA Astrophysics Data System (ADS)
Chu, Yong; Chen, Ya-Fang; Su, Min-Ying; Nalcioglu, Orhan
2005-04-01
Image segmentation is an essential process for quantitative analysis. Segmentation of brain tissues in magnetic resonance (MR) images is very important for understanding the structural-functional relationship for various pathological conditions, such as dementia vs. normal brain aging. Different brain regions are responsible for certain functions and may have specific implication for diagnosis. Segmentation may facilitate the analysis of different brain regions to aid in early diagnosis. Region competition has been recently proposed as an effective method for image segmentation by minimizing a generalized Bayes/MDL criterion. However, it is sensitive to initial conditions - the "seeds", therefore an optimal choice of "seeds" is necessary for accurate segmentation. In this paper, we present a new skeleton-based region competition algorithm for automated gray and white matter segmentation. Skeletons can be considered as good "seed regions" since they provide the morphological a priori information, thus guarantee a correct initial condition. Intensity gradient information is also added to the global energy function to achieve a precise boundary localization. This algorithm was applied to perform gray and white matter segmentation using simulated MRI images from a realistic digital brain phantom. Nine different brain regions were manually outlined for evaluation of the performance in these separate regions. The results were compared to the gold-standard measure to calculate the true positive and true negative percentages. In general, this method worked well with a 96% accuracy, although the performance varied in different regions. We conclude that the skeleton-based region competition is an effective method for gray and white matter segmentation.
The siRNA Non-seed Region and Its Target Sequences Are Auxiliary Determinants of Off-Target Effects.
Kamola, Piotr J; Nakano, Yuko; Takahashi, Tomoko; Wilson, Paul A; Ui-Tei, Kumiko
2015-12-01
RNA interference (RNAi) is a powerful tool for post-transcriptional gene silencing. However, the siRNA guide strand may bind unintended off-target transcripts via partial sequence complementarity by a mechanism closely mirroring micro RNA (miRNA) silencing. To better understand these off-target effects, we investigated the correlation between sequence features within various subsections of siRNA guide strands, and its corresponding target sequences, with off-target activities. Our results confirm previous reports that strength of base-pairing in the siRNA seed region is the primary factor determining the efficiency of off-target silencing. However, the degree of downregulation of off-target transcripts with shared seed sequence is not necessarily similar, suggesting that there are additional auxiliary factors that influence the silencing potential. Here, we demonstrate that both the melting temperature (Tm) in a subsection of siRNA non-seed region, and the GC contents of its corresponding target sequences, are negatively correlated with the efficiency of off-target effect. Analysis of experimentally validated miRNA targets demonstrated a similar trend, indicating a putative conserved mechanistic feature of seed region-dependent targeting mechanism. These observations may prove useful as parameters for off-target prediction algorithms and improve siRNA 'specificity' design rules.
Evaluation of the multi-seeded (msd) mutant of sorghum for ethanol production
USDA-ARS?s Scientific Manuscript database
Grain sorghum [Sorghum bicolor (L.) Moench], a cost effective crop in semiarid regions, is an underestimated supplement to corn in starch based ethanol production. Twenty three multi-seeded (msd) mutant sorghums and one wild type sorghum BTx623 were evaluated for ethanol production and effect of che...
Subudhi, Badri Narayan; Thangaraj, Veerakumar; Sankaralingam, Esakkirajan; Ghosh, Ashish
2016-11-01
In this article, a statistical fusion based segmentation technique is proposed to identify different abnormality in magnetic resonance images (MRI). The proposed scheme follows seed selection, region growing-merging and fusion of multiple image segments. In this process initially, an image is divided into a number of blocks and for each block we compute the phase component of the Fourier transform. The phase component of each block reflects the gray level variation among the block but contains a large correlation among them. Hence a singular value decomposition (SVD) technique is adhered to generate a singular value of each block. Then a thresholding procedure is applied on these singular values to identify edgy and smooth regions and some seed points are selected for segmentation. By considering each seed point we perform a binary segmentation of the complete MRI and hence with all seed points we get an equal number of binary images. A parcel based statistical fusion process is used to fuse all the binary images into multiple segments. Effectiveness of the proposed scheme is tested on identifying different abnormalities: prostatic carcinoma detection, tuberculous granulomas identification and intracranial neoplasm or brain tumor detection. The proposed technique is established by comparing its results against seven state-of-the-art techniques with six performance evaluation measures. Copyright © 2016 Elsevier Inc. All rights reserved.
Iraji, Armin; Benson, Randall R.; Welch, Robert D.; O'Neil, Brian J.; Woodard, John L.; Imran Ayaz, Syed; Kulek, Andrew; Mika, Valerie; Medado, Patrick; Soltanian-Zadeh, Hamid; Liu, Tianming; Haacke, E. Mark
2015-01-01
Abstract Mild traumatic brain injury (mTBI) accounts for more than 1 million emergency visits each year. Most of the injured stay in the emergency department for a few hours and are discharged home without a specific follow-up plan because of their negative clinical structural imaging. Advanced magnetic resonance imaging (MRI), particularly functional MRI (fMRI), has been reported as being sensitive to functional disturbances after brain injury. In this study, a cohort of 12 patients with mTBI were prospectively recruited from the emergency department of our local Level-1 trauma center for an advanced MRI scan at the acute stage. Sixteen age- and sex-matched controls were also recruited for comparison. Both group-based and individual-based independent component analysis of resting-state fMRI (rsfMRI) demonstrated reduced functional connectivity in both posterior cingulate cortex (PCC) and precuneus regions in comparison with controls, which is part of the default mode network (DMN). Further seed-based analysis confirmed reduced functional connectivity in these two regions and also demonstrated increased connectivity between these regions and other regions of the brain in mTBI. Seed-based analysis using the thalamus, hippocampus, and amygdala regions further demonstrated increased functional connectivity between these regions and other regions of the brain, particularly in the frontal lobe, in mTBI. Our data demonstrate alterations of multiple brain networks at the resting state, particularly increased functional connectivity in the frontal lobe, in response to brain concussion at the acute stage. Resting-state functional connectivity of the DMN could serve as a potential biomarker for improved detection of mTBI in the acute setting. PMID:25285363
Regeneration potential of Taxodium distichum swamps and climate change
Middleton, B.A.
2009-01-01
Seed bank densities respond to factors across local to landscape scales, and therefore, knowledge of these responses may be necessary in forecasting the effects of climate change on the regeneration of species. This study relates the seed bank densities of species of Taxodium distichum swamps to local water regime and regional climate factors at five latitudes across the Mississippi River Alluvial Valley from southern Illinois to Louisiana. In an outdoor nursery setting, the seed banks of twenty-five swamps were exposed to non-flooded (freely drained) or flooded treatments, and the number and species of seeds germinating were recorded from each swamp during one growing season. Based on ANOVA analysis, the majority of dominant species had a higher rate of germination in non-flooded versus flooded treatments. Similarly, an NMS comparison, which considered the local water regime and regional climate of the swamps, found that the species of seeds germinating, almost completely shifted under non-flooded versus flooded treatments. For example, in wetter northern swamps, seeds of Taxodium distichum germinated in non-flooded conditions, but did not germinate from the same seed banks in flooded conditions. In wetter southern swamps, seeds of Eleocharis cellulosa germinated in flooded conditions, but did not germinate in non-flooded conditions. The strong relationship of seed germination and density relationships with local water regime and regional climate variables suggests that the forecasting of climate change effects on swamps and other wetlands needs to consider a variety of interrelated variables to make adequate projections of the regeneration responses of species to climate change. Because regeneration is an important aspect of species maintenance and restoration, climate drying could influence the species distribution of these swamps in the future. ?? 2008 Springer Science+Business Media B.V.
Genetic variation and seed zones of Douglas-fir in the Siskiyou National Forest.
Robert K. Campbell; Albert I. Sugano
1993-01-01
Provisional seed zones and breeding zones were developed for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) in the Siskiyou National Forest in southwestern Oregon. Zones were based on maps of genetic variation patterns obtained by evaluating genotypes of trees from 260 locations in the region. Genotypes controlling growth vigor and growth...
Zhao, Lingxiao; Pan, Ting; Guo, Dongwei; Wei, Cunxu
2018-01-01
Storage starch in starchy seed influences the seed weight and texture, and determines its applications in food and nonfood industries. Starch granules from different plant sources have significantly different shapes and sizes, and even more the difference exists in the different regions of the same tissue. Therefore, it is very important to in situ investigate the morphology and distribution of starch in the whole seed. However, a simple and rapid method is deficient to prepare the whole section of starchy seed for investigating the morphology and distribution of starch in the whole seeds for a large number of samples. A simple and rapid method was established to prepare the whole section of starchy seed, especially for floury seed, in this study. The whole seeds of translucent and chalky rice, vitreous and floury maize, and normal barley and wheat were sectioned successfully using the newly established method. The iodine-stained section clearly exhibited the shapes and size of starch granules in different regions of seed. The starch granules with different morphologies and iodine-staining colors existed regionally in the seeds of high-amylose rice and maize. The sections of lotus and kidney bean seeds also showed the feasibility of this method for starchy non-cereal seeds. The simple and rapid method was proven effective for preparing the whole sections of starchy seeds. The whole section of seed could be used to investigate the morphology and distribution of starch granules in different regions of the whole seed. The method was especially suitable for large sample numbers to investigate the starch morphology in short time.
Mapping of the genomic regions controlling seed storability in soybean (Glycine max L.).
Dargahi, Hamidreza; Tanya, Patcharin; Srinives, Peerasak
2014-08-01
Seed storability is especially important in the tropics due to high temperature and relative humidity of storage environment that cause rapid deterioration of seeds in storage. The objective of this study was to use SSR markers to identify genomic regions associated with quantitative trait loci (QTLs) controlling seed storability based on relative germination rate in the F2:3 population derived from a cross between vegetable soybean line (MJ0004-6) with poor longevity and landrace cultivar from Myanmar (R18500) with good longevity. The F2:4 seeds harvested in 2011 and 2012 were used to investigate seed storability. The F2 population was genotyped with 148 markers and the genetic map consisted of 128 SSR loci which converged into 38 linkage groups covering 1664.3 cM of soybean genome. Single marker analysis revealed that 13 markers from six linkage groups (C1, D2, E, F, J and L) were associated with seed storability. Composite interval mapping identified a total of three QTLs on linkage groups C1, F and L with phenotypic variance explained ranging from 8.79 to 13.43%. The R18500 alleles increased seed storability at all of the detected QTLs. No common QTLs were found for storability of seeds harvested in 2011 and 2012. This study agreed with previous reports in other crops that genotype by environment interaction plays an important role in expression of seed storability.
Investigating the origin of the Chinese name for alfalfa
NASA Astrophysics Data System (ADS)
Sun, Q. Z.; Xu, L. J.; Tang, X. J.; Ma, J. T.; Wang, D.; Li, D.; Liu, Q.; Tao, Y.; Li, F.
2017-02-01
It is assured that alfalfa (Medicago sativa L.) was introduced in Han dynasty. There are cognitive differences on whether Zhang Qian introduced alfalfa. Based on the previous studies, research inductive method was used. The relationship between Zhang Qian and alfalfa introduction was analyzed from the motivation, experience and influence of Zhang Qian to the Western Regions and the image generation of Zhang Qian brought back alfalfa’s seeds. Till to now, there are four opinions about Zhang Qian introducing Alfalfa seeds, including : (1) Zhang Qian introduced alfalfa seeds;(2) Zhang Qian did not introduce alfalfa seeds;(3) the information of Zhang Qian transferring alfalfa;(4)for commemoration Zhang Qian to the Western Regions. Although there are not direct historical materials to support Zhang Qian brought alfalfa seed to Han dynasty, it believes and confirms that the introducing of alfalfa is inextricably interwoven with Zhang Qian’s western travel. Zhangqian brought relative information from western regions during the introduction, which was the basis of non-native theory, and after that, Chinese began to plant alfalfa in Han dynasty., According to historical literatures, it is clear that the Chinese diplomat brought alfalfa seeds back to China. Alfalfa, as the favorite forage to Ferghana horse, have been already planted in Dawan in Han dynasty. Despite the debate, Zhangqian played an important pioneering role in introducing alfalfa.
Seed zones and breeding zones for sugar pine in southwestern Oregon.
Robert K. Campbell; Albert I. Sugano
1987-01-01
Provisional seed zones and breeding zones were developed for sugar pine (Pinus lambertiana Dougl.) in southwestern Oregon. Zones are based on a map of genetic variation patterns obtained by evaluating genotypes of trees from 142 locations in the region. Genotypes controlling growth vigor and growth rhythm were assessed in a common garden. Within...
Influence of impurity seeding on the plasma radiation in the EAST tokamak
NASA Astrophysics Data System (ADS)
Liping, DONG; Yanmin, DUAN; Kaiyun, CHEN; Xiuda, YANG; Ling, ZHANG; Feng, XU; Jingbo, CHEN; Songtao, MAO; Zhenwei, WU; Liqun, HU
2018-04-01
Plasma radiation characteristics in EAST argon (Ar) gas and neon (Ne) gas seeding experiments are studied. The radiation profiles reconstructed from the fast bolometer measurement data by tomography method are compared with the ones got from the simulation program based on corona model. And the simulation results coincide roughly with the experimental data. For Ar seeding discharges, the substantial enhanced radiations can be generally observed in the edge areas at normalized radius ρ pol∼0.7–0.9, while the enhanced regions are more outer for Ne seeding discharges. The influence of seeded Ar gas on the core radiation is related to the injected position. In discharges with LSN divertor configuration, the Ar ions can permeate into the core region more easily when being injected from the opposite upper divertor ports. In USN divertor configuration, the W impurity sputtered from the upper divertor target plates are observed to be an important contributor to the increase of the core radiation no matter impurity seeding from any ports. The maximum radiated power fractions f rad (P rad/P heat) about 60%–70% have been achieved in the recent EAST experimental campaign in 2015–2016.
Yee, Yohan; Fernandes, Darren J; French, Leon; Ellegood, Jacob; Cahill, Lindsay S; Vousden, Dulcie A; Spencer Noakes, Leigh; Scholz, Jan; van Eede, Matthijs C; Nieman, Brian J; Sled, John G; Lerch, Jason P
2018-05-18
An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the visceral area. Additionally, this pattern of explained variation differed spatially across the brain, with transcriptomic similarity playing a larger role in the cortex than subcortex, while connectivity explains structural covariance best in parts of the cortex, midbrain, and hindbrain. These results suggest that both gene expression and connectivity underlie structural volume covariance, albeit to different extents depending on brain region, and this relationship is modulated by distance. Copyright © 2018. Published by Elsevier Inc.
Resting State Synchrony in Long-Term Abstinent Alcoholics
Camchong, Jazmin; Stenger, Andy; Fein, George
2012-01-01
BACKGROUND Alcohol dependence (ALC) is a disorder with an impulsive and compulsive “drive” towards alcohol consumption and an inability to inhibit alcohol consumption. Neuroimaging studies suggest that these behavioral components correspond to an increased involvement of regions that mediate appetitive drive and reduced involvement of regions that mediate executive control within top-down networks. Little is known, however, about whether these characteristics are present after long periods of abstinence. METHODS Resting state functional magnetic resonance imaging data were collected to examine resting state synchrony (RSS) differences between 23 long-term abstinent alcoholics (LTAA; 8 females, age: M=48.46, SD=7.10), and 23 non-substance abusing controls (NSAC; 8 females, age: M=47.99, SD=6.70). Using seed-based measures, we examined resting-state synchrony with the nucleus accumbens (NAcc) and the subgenual anterior cingulate cortex (ACC). All participants were assessed with the intra/extradimensional set shift task outside of the scanner to explore the relationship between RSS and cognitive flexibility. RESULTS Compared to NSAC, LTAA showed (a) decreased synchrony of limbic reward regions (e.g., caudate and thalamus) with both the ACC seed and the NAcc seed and (b) increased synchrony of executive control regions (e.g., DLPFC) with both the NAcc seed and the subgenual ACC seed. RSS differences were significantly correlated with task performance. CONCLUSIONS The results are consistent with an interpretation of an ongoing compensatory mechanism in long-term abstinent alcoholics evident during rest, in which decision making networks show reduced synchrony with appetitive drive regions and increased synchrony with inhibitory control regions. In addition, RSS differences were associated with cognitive flexibility. These resting state findings indicate an adaptive mechanism present in long-term abstinence that may facilitate the behavioral control required for to maintain abstinence. PMID:22725701
Radioactive seed migration following parotid gland interstitial brachytherapy.
Fan, Yi; Huang, Ming-Wei; Zhao, Yi-Jiao; Gao, Hong; Zhang, Jian-Guo
To evaluate the incidence and associated factors of pulmonary seed migration after parotid brachytherapy using a novel migrated seed detection technique. Patients diagnosed with parotid cancer who underwent permanent parotid brachytherapy from January 2006 to December 2011 were reviewed retrospectively. Head and neck CT scans and chest X-rays were evaluated during routine follow-up. Mimics software and Geomagic Studio software were used for seed reconstruction and migrated seed detection from the original implanted region, respectively. Postimplant dosimetry analysis was performed after seeds migration if the seeds were still in their emitting count. Adverse clinical sequelae from seed embolization to the lung were documented. The radioactive seed implants were identified on chest X-rays in 6 patients. The incidence rate of seed migration in 321 parotid brachytherapy patients was 1.87% (6/321) and that of individual seed migration was 0.04% (6/15218 seeds). All migrated seeds were originally from the retromandibular region. No adverse dosimetric consequences were found in the target region. Pulmonary symptoms were not reported by any patient in this study. In our patient set, migration of radioactive seeds with an initial radioactivity of 0.6-0.7 mCi to the chest following parotid brachytherapy was rare. Late migration of a single seed from the central target region did not affect the dosimetry significantly, and patients did not have severe short-term complications. This study proposed a novel technique to localize the anatomical origin of the migrated seeds during brachytherapy. Our evidence suggested that placement of seeds adjacent to blood vessels was associated with an increased likelihood of seed migration to the lungs. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Cone and seed yields in white spruce seed production areas
John A. Pitcher
1966-01-01
The source of seed is an important consideration in the reforestation program on the National Forests in the North Central Region. Thirty-five seed production areas have been set up in the Region, along the lines proposed by the North Central Forest Experiment Station, to provide control of seed source. Red pine, white pine, shortleaf and loblolly pine, and white...
Habib, Sadaf; Dang, Viet-Cuong; Ickert-Bond, Stefanie M.; Zhang, Jin-Long; Lu, Li-Min; Wen, Jun; Chen, Zhi-Duan
2017-01-01
Tetrastigma (Miq.) Planch. is one of the most species-rich genera of the economically and agronomically important grape family Vitaceae. It includes ca. 95 species widely distributed in the tropics and subtropics of Asia and Australia. Species of Tetrastigma exhibit great diversity in both vegetative and reproductive characters. Here we inferred a well-supported phylogeny of Tetrastigma based on ten chloroplast DNA regions with an expanded taxon sampling of 72 species and two varieties. Our molecular results support six major clades within Tetrastigma and the relationships among these clades were well-resolved. We also documented seed morphology of 44 species covering the six major clades of the genus. Ancestral states of eight characters (seed shape, seed surface rumination pattern, chalaza length/width ratio, chalaza position, ventral infold position, ventral infold divergence, ventral infold depth in cross section, and endosperm shape) were reconstructed in Mesquite and R with four models. Character optimizations suggest that all character states have evolved multiple times except that the irregular-shaped surface rumination has derived only once in Tetrastigma. We evaluated the taxonomic importance of seed morphology and identified potential morphological evidence to support each major clade. Our comprehensive analyses of Tetrastigma shed insights into the infrageneric classification of this morphologically diverse and ecologically important genus in tropical and subtropical Asia. PMID:28491066
Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF
NASA Technical Reports Server (NTRS)
Hammond, Ernest C., Jr.; Bridgers, Kevin; Brown, Cecelia Wright
1995-01-01
The tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for nearly six years. During this time, the tomato seeds received an abundant exposure to cosmic radiation and solar wind. Upon the return of the LDEF to earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. The purpose of the experiment was to determine the long term effect of cosmic rays on living tissue. Our university analysis included germination and growth rates as well as Scanning Electron Microscopy and X-ray analysis of the control as well as Space-exposed tomato seeds. In analyzing the seeds under the Electron Microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the Space-exposed seeds than on the Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results show that the Space-exposed seeds germinate sooner than the Earth-Based seeds. Also, the Space-exposed seeds grew at a faster rate). The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with Argon/Gold Palladium Plasma, they were ready to be viewed under the Electron Microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. The Space-exposed specimens displayed a high concentration of copper and calcium in the two specimens. There was a significantly high concentration of copper in the Earth-based specimens, whereas there was no copper in the Space-exposed specimens.
Mechanical design of a light water breeder reactor
Fauth, Jr., William L.; Jones, Daniel S.; Kolsun, George J.; Erbes, John G.; Brennan, John J.; Weissburg, James A.; Sharbaugh, John E.
1976-01-01
In a light water reactor system using the thorium-232 -- uranium-233 fuel system in a seed-blanket modular core configuration having the modules arranged in a symmetrical array surrounded by a reflector blanket region, the seed regions are disposed for a longitudinal movement between the fixed or stationary blanket region which surrounds each seed region. Control of the reactor is obtained by moving the inner seed region thus changing the geometry of the reactor, and thereby changing the leakage of neutrons from the relatively small seed region into the blanket region. The mechanical design of the Light Water Breeder Reactor (LWBR) core includes means for axially positioning of movable fuel assemblies to achieve the neutron economy required of a breeder reactor, a structure necessary to adequately support the fuel modules without imposing penalties on the breeding capability, a structure necessary to support fuel rods in a closely packed array and a structure necessary to direct and control the flow of coolant to regions in the core in accordance with the heat transfer requirements.
Chen, Liang; Zheng, Yuhong; Dong, Zhimin; Meng, Fanfan; Sun, Xingmiao; Fan, Xuhong; Zhang, Yunfeng; Wang, Mingliang; Wang, Shuming
2018-04-01
Soybean is the world's most important leguminous crop producing high-quality protein and oil. Elevating oil accumulation in soybean seed is always many researchers' goal. WRINKLED1 (WRI1) encodes a transcription factor of the APETALA2/ethylene responsive element-binding protein (AP2/EREBP) family that plays important roles during plant seed oil accumulation. In this study, we isolated and characterized three distinct orthologues of WRI1 in soybean (Glycine max) that display different organ-specific expression patterns, among which GmWRI1a was highly expressed in maturing soybean seed. Electrophoretic mobility shift assays and yeast one-hybrid experiments demonstrated that the GmWRI1a protein was capable of binding to AW-box, a conserved sequence in the proximal upstream regions of many genes involved in various steps of oil biosynthesis. Transgenic soybean seeds overexpressing GmWRI1a under the control of the seed-specific napin promoter showed the increased total oil and fatty acid content and the changed fatty acid composition. Furthermore, basing on the activated expressions in transgenic soybean seeds and existence of AW-box element in the promoter regions, direct downstream genes of GmWRI1a were identified, and their products were responsible for fatty acid production, elongation, desaturation and export from plastid. We conclude that GmWRI1a transcription factor can positively regulate oil accumulation in soybean seed by a complex gene expression network related to fatty acid biosynthesis.
Seed Dispersal by Ants in the Semi-arid Caatinga of North-east Brazil
Leal, Inara R.; Wirth, Rainer; Tabarelli, Marcelo
2007-01-01
Background and Aims Myrmecochory is a conspicuous feature of several sclerophyll ecosystems around the world but it has received little attention in the semi-arid areas of South America. This study addresses the importance of seed dispersal by ants in a 2500-km2 area of the Caatinga ecosystem (north-east Brazil) and investigates ant-derived benefits to the plant through myrmecochory. Methods Seed manipulation and dispersal by ants was investigated during a 3-year period in the Xingó region. Both plant and ant assemblages involved in seed dispersal were described and ant behaviour was characterized. True myrmecochorous seeds of seven Euphorbiaceae species (i.e. elaiosome-bearing seeds) were used in experiments designed to: (1) quantify the rates of seed cleaning/removal and the influence of both seed size and elaiosome presence on seed removal; (2) identify the fate of seeds dispersed by ants; and (3) document the benefits of seed dispersal by ants in terms of seed germination and seedling growth. Key Results Seed dispersal by ants involved one-quarter of the woody flora inhabiting the Xingó region, but true myrmecochory was restricted to 12·8 % of the woody plant species. Myrmecochorous seeds manipulated by ants faced high levels of seed removal (38–84 %) and 83 % of removed seeds were discarded on ant nests. Moreover, seed removal positively correlated with the presence of elaiosome, and elaiosome removal increased germination success by at least 30 %. Finally, some Euphorbiaceae species presented both increased germination and seedling growth on ant-nest soils. Conclusions Myrmecochory is a relevant seed dispersal mode in the Caatinga ecosystem, and is particularly frequent among Euphorbiaceae trees and shrubs. The fact that seeds reach micro-sites suitable for establishment (ant nests) supports the directed dispersal hypothesis as a possible force favouring myrmecochory in this ecosystem. Ecosystems with a high frequency of myrmecochorous plants appear not to be restricted to regions of nutrient-impoverished soil or to fire-prone regions. PMID:17430980
Survey of aflatoxin concentrations in wild bird seed purchased in Texas.
Henke, S E; Gallardo, V C; Martinez, B; Balley, R
2001-10-01
The use of backyard feeders to attract avian wildlife is a common practice throughout the United States. However, feeding wildlife may create a problem due to aflatoxin, a harmful fungal metabolite, which can affect wildlife that are fed contaminated grain. Our study was initiated to determine if songbirds were being exposed to aflatoxin-contaminated feed throughout Texas. Bags of wild bird seed (n = 142) were purchased from grain cooperatives, grocery stores, and pet shops located in the panhandle, central, south, east, and west regions of Texas during spring and summer 1999. Aflatoxin concentrations in bird seed ranged from non-detectable to 2,780 micrograms/kg. Overall, 17% of samples had aflatoxin concentrations greater than 100 micrograms/kg, of which 83% contained corn as an ingredient. Retail establishment effects were noted in the southern and western regions of Texas, with average concentrations of aflatoxin greater from bags of bird seed purchased from grain cooperatives, followed by pet shops, then grocery stores. Regional differences in aflatoxin levels were not apparent from bags of seed purchased at pet shops: however, regional differences were noted in aflatoxin levels from seeds obtained at grocery stores and grain cooperatives. Average aflatoxin concentration from seed purchased at grocery stores was greatest in the panhandle region, followed by the remaining regions. Within grain cooperatives, the panhandle, south, and west regions of Texas exhibited higher levels of aflatoxin-contaminated bird seed than cooperatives within the east and central regions of Texas. Granivorous songbirds in Texas are exposed to aflatoxins at backyard feeders, which may be a significant morbidity and mortality factor.
Jirapatnakul, Artit C; Fotin, Sergei V; Reeves, Anthony P; Biancardi, Alberto M; Yankelevitz, David F; Henschke, Claudia I
2009-01-01
Estimation of nodule location and size is an important pre-processing step in some nodule segmentation algorithms to determine the size and location of the region of interest. Ideally, such estimation methods will consistently find the same nodule location regardless of where the the seed point (provided either manually or by a nodule detection algorithm) is placed relative to the "true" center of the nodule, and the size should be a reasonable estimate of the true nodule size. We developed a method that estimates nodule location and size using multi-scale Laplacian of Gaussian (LoG) filtering. Nodule candidates near a given seed point are found by searching for blob-like regions with high filter response. The candidates are then pruned according to filter response and location, and the remaining candidates are sorted by size and the largest candidate selected. This method was compared to a previously published template-based method. The methods were evaluated on the basis of stability of the estimated nodule location to changes in the initial seed point and how well the size estimates agreed with volumes determined by a semi-automated nodule segmentation method. The LoG method exhibited better stability to changes in the seed point, with 93% of nodules having the same estimated location even when the seed point was altered, compared to only 52% of nodules for the template-based method. Both methods also showed good agreement with sizes determined by a nodule segmentation method, with an average relative size difference of 5% and -5% for the LoG and template-based methods respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohli, K; Liu, F; Krishnan, K
Purpose: Multi-frequency EIT has been reported to be a potential tool in distinguishing a tissue anomaly from background. In this study, we investigate the feasibility of acquiring functional information by comparing multi-frequency EIT images in reference to the structural information from the CT image through fusion. Methods: EIT data was acquired from a slice of winter melon using sixteen electrodes around the phantom, injecting a current of 0.4mA at 100, 66, 24.8 and 9.9 kHz. Differential EIT images were generated by considering different combinations of pair frequencies, one serving as reference data and the other as test data. The experimentmore » was repeated after creating an anomaly in the form of an off-centered cavity of diameter 4.5 cm inside the melon. All EIT images were reconstructed using Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS) package in 2-D differential imaging mode using one-step Gaussian Newton minimization solver. CT image of the melon was obtained using a Phillips CT Scanner. A segmented binary mask image was generated based on the reference electrode position and the CT image to define the regions of interest. The region selected by the user was fused with the CT image through logical indexing. Results: Differential images based on the reference and test signal frequencies were reconstructed from EIT data. Result illustrated distinct structural inhomogeneity in seeded region compared to fruit flesh. The seeded region was seen as a higherimpedance region if the test frequency was lower than the base frequency in the differential EIT reconstruction. When the test frequency was higher than the base frequency, the signal experienced less electrical impedance in the seeded region during the EIT data acquisition. Conclusion: Frequency-based differential EIT imaging can be explored to provide additional functional information along with structural information from CT for identifying different tissues.« less
Kaiser, Roselinde H; Andrews-Hanna, Jessica R; Wager, Tor D; Pizzagalli, Diego A
2015-06-01
Major depressive disorder (MDD) has been linked to imbalanced communication among large-scale brain networks, as reflected by abnormal resting-state functional connectivity (rsFC). However, given variable methods and results across studies, identifying consistent patterns of network dysfunction in MDD has been elusive. To investigate network dysfunction in MDD through a meta-analysis of rsFC studies. Seed-based voxelwise rsFC studies comparing individuals with MDD with healthy controls (published before June 30, 2014) were retrieved from electronic databases (PubMed, Web of Science, and EMBASE) and authors contacted for additional data. Twenty-seven seed-based voxel-wise rsFC data sets from 25 publications (556 individuals with MDD and 518 healthy controls) were included in the meta-analysis. Coordinates of seed regions of interest and between-group effects were extracted. Seeds were categorized into seed-networks by their location within a priori functional networks. Multilevel kernel density analysis of between-group effects identified brain systems in which MDD was associated with hyperconnectivity (increased positive or reduced negative connectivity) or hypoconnectivity (increased negative or reduced positive connectivity) with each seed-network. Major depressive disorder was characterized by hypoconnectivity within the frontoparietal network, a set of regions involved in cognitive control of attention and emotion regulation, and hypoconnectivity between frontoparietal systems and parietal regions of the dorsal attention network involved in attending to the external environment. Major depressive disorder was also associated with hyperconnectivity within the default network, a network believed to support internally oriented and self-referential thought, and hyperconnectivity between frontoparietal control systems and regions of the default network. Finally, the MDD groups exhibited hypoconnectivity between neural systems involved in processing emotion or salience and midline cortical regions that may mediate top-down regulation of such functions. Reduced connectivity within frontoparietal control systems and imbalanced connectivity between control systems and networks involved in internal or external attention may reflect depressive biases toward internal thoughts at the cost of engaging with the external world. Meanwhile, altered connectivity between neural systems involved in cognitive control and those that support salience or emotion processing may relate to deficits regulating mood. These findings provide an empirical foundation for a neurocognitive model in which network dysfunction underlies core cognitive and affective abnormalities in depression.
Ayeh, Kwadwo Owusu; Lee, YeonKyeong; Ambrose, Mike J; Hvoslef-Eide, Anne Kathrine
2009-06-23
In pea seeds (Pisum sativum L.), the Def locus defines an abscission event where the seed separates from the funicle through the intervening hilum region at maturity. A spontaneous mutation at this locus results in the seed failing to abscise from the funicle as occurs in wild type peas. In this work, structural differences between wild type peas that developed a distinct abscission zone (AZ) between the funicle and the seed coat and non-abscission def mutant were characterized. A clear abscission event was observed in wild type pea seeds that were associated with a distinct double palisade layers at the junction between the seed coat and funicle. Generally, mature seeds fully developed an AZ, which was not present in young wild type seeds. The AZ was formed exactly below the counter palisade layer. In contrast, the palisade layers at the junction of the seed coat and funicle were completely absent in the def mutant pea seeds and the cells in this region were seen to be extensions of surrounding parenchymatous cells. The Def wild type developed a distinct AZ associated with palisade layer and counterpalisade layer at the junction of the seed coat and funicle while the def mutant pea seed showed non-abscission and an absence of the double palisade layers in the same region. We conclude that the presence of the double palisade layer in the hilum of the wild type pea seeds plays an important structural role in AZ formation by delimiting the specific region between the seed coat and the funicle and may play a structural role in the AZ formation and subsequent detachment of the seed from the funicle.
Computer assisted diagnostic system in tumor radiography.
Faisal, Ahmed; Parveen, Sharmin; Badsha, Shahriar; Sarwar, Hasan; Reza, Ahmed Wasif
2013-06-01
An improved and efficient method is presented in this paper to achieve a better trade-off between noise removal and edge preservation, thereby detecting the tumor region of MRI brain images automatically. Compass operator has been used in the fourth order Partial Differential Equation (PDE) based denoising technique to preserve the anatomically significant information at the edges. A new morphological technique is also introduced for stripping skull region from the brain images, which consequently leading to the process of detecting tumor accurately. Finally, automatic seeded region growing segmentation based on an improved single seed point selection algorithm is applied to detect the tumor. The method is tested on publicly available MRI brain images and it gives an average PSNR (Peak Signal to Noise Ratio) of 36.49. The obtained results also show detection accuracy of 99.46%, which is a significant improvement than that of the existing results.
Morphological rates of angiosperm seed size evolution.
Sims, Hallie J
2013-05-01
The evolution of seed size among angiosperms reflects their ecological diversification in a complex fitness landscape of life-history strategies. The lineages that have evolved seeds beyond the upper and lower boundaries that defined nonflowering seed plants since the Paleozoic are more dispersed across the angiosperm phylogeny than would be expected under a neutral model of phenotypic evolution. Morphological rates of seed size evolution estimated for 40 clades based on 17,375 species ranged from 0.001 (Garryales) to 0.207 (Malvales). Comparative phylogenetic analysis indicated that morphological rates are not associated with the clade's seed size but are negatively correlated with the clade's position in the overall distribution of angiosperm seed sizes; clades with seed sizes closer to the angiosperm mean had significantly higher morphological rates than clades with extremely small or extremely large seeds. Likewise, per-clade taxonomic diversification rates are not associated with the seed size of the clade but with where the clade falls within the angiosperm seed size distribution. These results suggest that evolutionary rates (morphological and taxonomic) are elevated in densely occupied regions of the seed morphospace relative to lineages whose ecophenotypic innovations have moved them toward the edges. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Buchy, Lisa; Barbato, Mariapaola; Makowski, Carolina; Bray, Signe; MacMaster, Frank P; Deighton, Stephanie; Addington, Jean
2017-11-01
People with psychosis show deficits recognizing facial emotions and disrupted activation in the underlying neural circuitry. We evaluated associations between facial emotion recognition and cortical thickness using a correlation-based approach to map structural covariance networks across the brain. Fifteen people with an early psychosis provided magnetic resonance scans and completed the Penn Emotion Recognition and Differentiation tasks. Fifteen historical controls provided magnetic resonance scans. Cortical thickness was computed using CIVET and analyzed with linear models. Seed-based structural covariance analysis was done using the mapping anatomical correlations across the cerebral cortex methodology. To map structural covariance networks involved in facial emotion recognition, the right somatosensory cortex and bilateral fusiform face areas were selected as seeds. Statistics were run in SurfStat. Findings showed increased cortical covariance between the right fusiform face region seed and right orbitofrontal cortex in controls than early psychosis subjects. Facial emotion recognition scores were not significantly associated with thickness in any region. A negative effect of Penn Differentiation scores on cortical covariance was seen between the left fusiform face area seed and right superior parietal lobule in early psychosis subjects. Results suggest that facial emotion recognition ability is related to covariance in a temporal-parietal network in early psychosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Zelefsky, Michael J; Cohen, Gilad N; Taggar, Amandeep S; Kollmeier, Marisa; McBride, Sean; Mageras, Gig; Zaider, Marco
Our purpose was to describe the process and outcome of performing postimplantation dosimetric assessment and intraoperative dose correction during prostate brachytherapy using a novel image fusion-based treatment-planning program. Twenty-six consecutive patients underwent intraoperative real-time corrections of their dose distributions at the end of their permanent seed interstitial procedures. After intraoperatively planned seeds were implanted and while the patient remained in the lithotomy position, a cone beam computed tomography scan was obtained to assess adequacy of the prescription dose coverage. The implanted seed positions were automatically segmented from the cone-beam images, fused onto a new set of acquired ultrasound images, reimported into the planning system, and recontoured. Dose distributions were recalculated based upon actual implanted seed coordinates and recontoured ultrasound images and were reviewed. If any dose deficiencies within the prostate target were identified, additional needles and seeds were added. Once an implant was deemed acceptable, the procedure was completed, and anesthesia was reversed. When the intraoperative ultrasound-based quality assurance assessment was performed after seed placement, the median volume receiving 100% of the dose (V100) was 93% (range, 74% to 98%). Before seed correction, 23% (6/26) of cases were noted to have V100 <90%. Based on this intraoperative assessment and replanning, additional seeds were placed into dose-deficient regions within the target to improve target dose distributions. Postcorrection, the median V100 was 97% (range, 93% to 99%). Following intraoperative dose corrections, all implants achieved V100 >90%. In these patients, postimplantation evaluation during the actual prostate seed implant procedure was successfully applied to determine the need for additional seeds to correct dose deficiencies before anesthesia reversal. When applied, this approach should significantly reduce intraoperative errors and chances for suboptimal dose delivery during prostate brachytherapy. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Saxena, Maneesha S.; Bajaj, Deepak; Das, Shouvik; Kujur, Alice; Kumar, Vinod; Singh, Mohar; Bansal, Kailash C.; Tyagi, Akhilesh K.; Parida, Swarup K.
2014-01-01
The identification and fine mapping of robust quantitative trait loci (QTLs)/genes governing important agro-morphological traits in chickpea still lacks systematic efforts at a genome-wide scale involving wild Cicer accessions. In this context, an 834 simple sequence repeat and single-nucleotide polymorphism marker-based high-density genetic linkage map between cultivated and wild parental accessions (Cicer arietinum desi cv. ICC 4958 and Cicer reticulatum wild cv. ICC 17160) was constructed. This inter-specific genetic map comprising eight linkage groups spanned a map length of 949.4 cM with an average inter-marker distance of 1.14 cM. Eleven novel major genomic regions harbouring 15 robust QTLs (15.6–39.8% R2 at 4.2–15.7 logarithm of odds) associated with four agro-morphological traits (100-seed weight, pod and branch number/plant and plant hairiness) were identified and mapped on chickpea chromosomes. Most of these QTLs showed positive additive gene effects with effective allelic contribution from ICC 4958, particularly for increasing seed weight (SW) and pod and branch number. One robust SW-influencing major QTL region (qSW4.2) has been narrowed down by combining QTL mapping with high-resolution QTL region-specific association analysis, differential expression profiling and gene haplotype-based association/LD mapping. This enabled to delineate a strong SW-regulating ABI3VP1 transcription factor (TF) gene at trait-specific QTL interval and consequently identified favourable natural allelic variants and superior high seed weight-specific haplotypes in the upstream regulatory region of this gene showing increased transcript expression during seed development. The genes (TFs) harbouring diverse trait-regulating QTLs, once validated and fine-mapped by our developed rapid integrated genomic approach and through gene/QTL map-based cloning, can be utilized as potential candidates for marker-assisted genetic enhancement of chickpea. PMID:25335477
Seed robustness of oriented relative fuzzy connectedness: core computation and its applications
NASA Astrophysics Data System (ADS)
Tavares, Anderson C. M.; Bejar, Hans H. C.; Miranda, Paulo A. V.
2017-02-01
In this work, we present a formal definition and an efficient algorithm to compute the cores of Oriented Relative Fuzzy Connectedness (ORFC), a recent seed-based segmentation technique. The core is a region where the seed can be moved without altering the segmentation, an important aspect for robust techniques and reduction of user effort. We show how ORFC cores can be used to build a powerful hybrid image segmentation approach. We also provide some new theoretical relations between ORFC and Oriented Image Foresting Transform (OIFT), as well as their cores. Experimental results among several methods show that the hybrid approach conserves high accuracy, avoids the shrinking problem and provides robustness to seed placement inside the desired object due to the cores properties.
Functional Connectivity Parcellation of the Human Thalamus by Independent Component Analysis.
Zhang, Sheng; Li, Chiang-Shan R
2017-11-01
As a key structure to relay and integrate information, the thalamus supports multiple cognitive and affective functions through the connectivity between its subnuclei and cortical and subcortical regions. Although extant studies have largely described thalamic regional functions in anatomical terms, evidence accumulates to suggest a more complex picture of subareal activities and connectivities of the thalamus. In this study, we aimed to parcellate the thalamus and examine whole-brain connectivity of its functional clusters. With resting state functional magnetic resonance imaging data from 96 adults, we used independent component analysis (ICA) to parcellate the thalamus into 10 components. On the basis of the independence assumption, ICA helps to identify how subclusters overlap spatially. Whole brain functional connectivity of each subdivision was computed for independent component's time course (ICtc), which is a unique time series to represent an IC. For comparison, we computed seed-region-based functional connectivity using the averaged time course across all voxels within a thalamic subdivision. The results showed that, at p < 10 -6 , corrected, 49% of voxels on average overlapped among subdivisions. Compared with seed-region analysis, ICtc analysis revealed patterns of connectivity that were more distinguished between thalamic clusters. ICtc analysis demonstrated thalamic connectivity to the primary motor cortex, which has eluded the analysis as well as previous studies based on averaged time series, and clarified thalamic connectivity to the hippocampus, caudate nucleus, and precuneus. The new findings elucidate functional organization of the thalamus and suggest that ICA clustering in combination with ICtc rather than seed-region analysis better distinguishes whole-brain connectivities among functional clusters of a brain region.
Manning, Joshua; Reynolds, Gretchen; Saygin, Zeynep M; Hofmann, Stefan G; Pollack, Mark; Gabrieli, John D E; Whitfield-Gabrieli, Susan
2015-01-01
We investigated differences in the intrinsic functional brain organization (functional connectivity) of the human reward system between healthy control participants and patients with social anxiety disorder. Functional connectivity was measured in the resting-state via functional magnetic resonance imaging (fMRI). 53 patients with social anxiety disorder and 33 healthy control participants underwent a 6-minute resting-state fMRI scan. Functional connectivity of the reward system was analyzed by calculating whole-brain temporal correlations with a bilateral nucleus accumbens seed and a ventromedial prefrontal cortex seed. Patients with social anxiety disorder, relative to the control group, had (1) decreased functional connectivity between the nucleus accumbens seed and other regions associated with reward, including ventromedial prefrontal cortex; (2) decreased functional connectivity between the ventromedial prefrontal cortex seed and lateral prefrontal regions, including the anterior and dorsolateral prefrontal cortices; and (3) increased functional connectivity between both the nucleus accumbens seed and the ventromedial prefrontal cortex seed with more posterior brain regions, including anterior cingulate cortex. Social anxiety disorder appears to be associated with widespread differences in the functional connectivity of the reward system, including markedly decreased functional connectivity between reward regions and between reward regions and lateral prefrontal cortices, and markedly increased functional connectivity between reward regions and posterior brain regions.
[Soil seed bank research of China mining areas: necessity and challenges].
Chang, Qing; Zhang, Da-Wei; Li, Xue; Peng, Jian; Guan, Ai-Nong; Liu, Xiao-Si
2011-05-01
Soil seed bank consists of all living seeds existed in soil and its surface litter, especially in topsoil, and can reflect the characteristics of regional biodiversity. As the base of vegetation restoration and potential greening material, topsoil and its seed bank are the limited and non-renewable resources in mining areas. The study of soil seed bank has become one of the hotspots in the research field of vegetation restoration and land reclamation in China mining areas. Owing to the special characteristics of mining industry, the soil seed bank study of mining areas should not only concern with the seed species, quantities, and their relations with ground surface vegetation, but also make use of the research results on the soil seed bank of other fragile habitats. Besides, a breakthrough should be sought in the thinking ways and research approach. This paper analyzed the particularity of mining area's soil seek bank research, summarized the research progress in the soil seed bank of mining areas and other fragile habitats, and put forward the challenges we are facing with. It was expected that this paper could help to reinforce the soil seed bank research of China mining areas, and provide scientific guidelines for taking great advantage of the significant roles of soil seed bank in land reclamation and vegetation restoration in the future.
Neutron economic reactivity control system for light water reactors
Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.; Gregurech, Steve
1989-01-01
A neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods.
Advanced Connectivity Analysis (ACA): a Large Scale Functional Connectivity Data Mining Environment.
Chen, Rong; Nixon, Erika; Herskovits, Edward
2016-04-01
Using resting-state functional magnetic resonance imaging (rs-fMRI) to study functional connectivity is of great importance to understand normal development and function as well as a host of neurological and psychiatric disorders. Seed-based analysis is one of the most widely used rs-fMRI analysis methods. Here we describe a freely available large scale functional connectivity data mining software package called Advanced Connectivity Analysis (ACA). ACA enables large-scale seed-based analysis and brain-behavior analysis. It can seamlessly examine a large number of seed regions with minimal user input. ACA has a brain-behavior analysis component to delineate associations among imaging biomarkers and one or more behavioral variables. We demonstrate applications of ACA to rs-fMRI data sets from a study of autism.
Bajaj, Deepak; Upadhyaya, Hari D.; Khan, Yusuf; Das, Shouvik; Badoni, Saurabh; Shree, Tanima; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. L.; Singh, Sube; Sharma, Shivali; Tyagi, Akhilesh K.; Chattopdhyay, Debasis; Parida, Swarup K.
2015-01-01
High experimental validation/genotyping success rate (94–96%) and intra-specific polymorphic potential (82–96%) of 1536 SNP and 472 SSR markers showing in silico polymorphism between desi ICC 4958 and kabuli ICC 12968 chickpea was obtained in a 190 mapping population (ICC 4958 × ICC 12968) and 92 diverse desi and kabuli genotypes. A high-density 2001 marker-based intra-specific genetic linkage map comprising of eight LGs constructed is comparatively much saturated (mean map-density: 0.94 cM) in contrast to existing intra-specific genetic maps in chickpea. Fifteen robust QTLs (PVE: 8.8–25.8% with LOD: 7.0–13.8) associated with pod and seed number/plant (PN and SN) and 100 seed weight (SW) were identified and mapped on 10 major genomic regions of eight LGs. One of 126.8 kb major genomic region harbouring a strong SW-associated robust QTL (Caq'SW1.1: 169.1–171.3 cM) has been delineated by integrating high-resolution QTL mapping with comprehensive marker-based comparative genome mapping and differential expression profiling. This identified one potential regulatory SNP (G/A) in the cis-acting element of candidate ERF (ethylene responsive factor) TF (transcription factor) gene governing seed weight in chickpea. The functionally relevant molecular tags identified have potential to be utilized for marker-assisted genetic improvement of chickpea. PMID:25786576
NASA Astrophysics Data System (ADS)
B. Shokouhi, Shahriar; Fooladivanda, Aida; Ahmadinejad, Nasrin
2017-12-01
A computer-aided detection (CAD) system is introduced in this paper for detection of breast lesions in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The proposed CAD system firstly compensates motion artifacts and segments the breast region. Then, the potential lesion voxels are detected and used as the initial seed points for the seeded region-growing algorithm. A new and robust region-growing algorithm incorporating with Fuzzy C-means (FCM) clustering and vesselness filter is proposed to segment any potential lesion regions. Subsequently, the false positive detections are reduced by applying a discrimination step. This is based on 3D morphological characteristics of the potential lesion regions and kinetic features which are fed to the support vector machine (SVM) classifier. The performance of the proposed CAD system is evaluated using the free-response operating characteristic (FROC) curve. We introduce our collected dataset that includes 76 DCE-MRI studies, 63 malignant and 107 benign lesions. The prepared dataset has been used to verify the accuracy of the proposed CAD system. At 5.29 false positives per case, the CAD system accurately detects 94% of the breast lesions.
Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison.
Li, Chengdao; Ni, Peixiang; Francki, Michael; Hunter, Adam; Zhang, Yong; Schibeci, David; Li, Heng; Tarr, Allen; Wang, Jun; Cakir, Mehmet; Yu, Jun; Bellgard, Matthew; Lance, Reg; Appels, Rudi
2004-05-01
Pre-harvest sprouting results in significant economic loss for the grain industry around the world. Lack of adequate seed dormancy is the major reason for pre-harvest sprouting in the field under wet weather conditions. Although this trait is governed by multiple genes it is also highly heritable. A major QTL controlling both pre-harvest sprouting and seed dormancy has been identified on the long arm of barley chromosome 5H, and it explains over 70% of the phenotypic variation. Comparative genomics approaches among barley, wheat and rice were used to identify candidate gene(s) controlling seed dormancy and hence one aspect of pre-harvest sprouting. The barley seed dormancy/pre-harvest sprouting QTL was located in a region that showed good synteny with the terminal end of the long arm of rice chromosome 3. The rice DNA sequences were annotated and a gene encoding GA20-oxidase was identified as a candidate gene controlling the seed dormancy/pre-harvest sprouting QTL on 5HL. This chromosomal region also shared synteny with the telomere region of wheat chromosome 4AL, but was located outside of the QTL reported for seed dormancy in wheat. The wheat chromosome 4AL QTL region for seed dormancy was syntenic to both rice chromosome 3 and 11. In both cases, corresponding QTLs for seed dormancy have been mapped in rice.
Gay, Charles W; Robinson, Michael E; Lai, Song; O'Shea, Andrew; Craggs, Jason G; Price, Donald D; Staud, Roland
2016-02-01
Although altered resting-state functional connectivity (FC) is a characteristic of many chronic pain conditions, it has not yet been evaluated in patients with chronic fatigue. Our objective was to investigate the association between fatigue and altered resting-state FC in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Thirty-six female subjects, 19 ME/CFS and 17 healthy controls, completed a fatigue inventory before undergoing functional magnetic resonance imaging. Two methods, (1) data driven and (2) model based, were used to estimate and compare the intraregional FC between both groups during the resting state (RS). The first approach using independent component analysis was applied to investigate five RS networks: the default mode network, salience network (SN), left frontoparietal networks (LFPN) and right frontoparietal networks, and the sensory motor network (SMN). The second approach used a priori selected seed regions demonstrating abnormal regional cerebral blood flow (rCBF) in ME/CFS patients at rest. In ME/CFS patients, Method-1 identified decreased intrinsic connectivity among regions within the LFPN. Furthermore, the FC of the left anterior midcingulate with the SMN and the connectivity of the left posterior cingulate cortex with the SN were significantly decreased. For Method-2, five distinct clusters within the right parahippocampus and occipital lobes, demonstrating significant rCBF reductions in ME/CFS patients, were used as seeds. The parahippocampal seed and three occipital lobe seeds showed altered FC with other brain regions. The degree of abnormal connectivity correlated with the level of self-reported fatigue. Our results confirm altered RS FC in patients with ME/CFS, which was significantly correlated with the severity of their chronic fatigue.
Gay, Charles W.; Robinson, Michael E.; Lai, Song; O'Shea, Andrew; Craggs, Jason G.; Price, Donald D.
2016-01-01
Abstract Although altered resting-state functional connectivity (FC) is a characteristic of many chronic pain conditions, it has not yet been evaluated in patients with chronic fatigue. Our objective was to investigate the association between fatigue and altered resting-state FC in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Thirty-six female subjects, 19 ME/CFS and 17 healthy controls, completed a fatigue inventory before undergoing functional magnetic resonance imaging. Two methods, (1) data driven and (2) model based, were used to estimate and compare the intraregional FC between both groups during the resting state (RS). The first approach using independent component analysis was applied to investigate five RS networks: the default mode network, salience network (SN), left frontoparietal networks (LFPN) and right frontoparietal networks, and the sensory motor network (SMN). The second approach used a priori selected seed regions demonstrating abnormal regional cerebral blood flow (rCBF) in ME/CFS patients at rest. In ME/CFS patients, Method-1 identified decreased intrinsic connectivity among regions within the LFPN. Furthermore, the FC of the left anterior midcingulate with the SMN and the connectivity of the left posterior cingulate cortex with the SN were significantly decreased. For Method-2, five distinct clusters within the right parahippocampus and occipital lobes, demonstrating significant rCBF reductions in ME/CFS patients, were used as seeds. The parahippocampal seed and three occipital lobe seeds showed altered FC with other brain regions. The degree of abnormal connectivity correlated with the level of self-reported fatigue. Our results confirm altered RS FC in patients with ME/CFS, which was significantly correlated with the severity of their chronic fatigue. PMID:26449441
NASA Astrophysics Data System (ADS)
Mursiti, S.; Supartono
2017-02-01
Flavonoid is one of the secondary metabolites compounds in mahogany seeds. Mahogany seeds can be used as an antimicrobial. This study aims to determine the antimicrobial activity of flavonoid compounds from mahogany seeds against Escherichia coli (E.coli) and Bacillus cereus (B.cereus). Isolation of flavonoid compounds done step by step. First, the maceration using n-hexane, then with methanol. The methanol extract was dissolved in ethyl acetate and aquadest, then separated. Ethyl acetate extract evaporated Flavonoid compounds were. The testing of antimicrobial activity of flavonoid compounds using the absorption method. The results showed that the antimicrobial activity of flavonoid compounds from mahogany seeds shows the inhibitory activity and provide clear zone against bacteria E.coli with value Inhibitory Regional Diameter 18.50 mm respectively, and 14.50 mm to the bacteria. Based on the results of the study, it can be concluded that flavonoid compounds from mahogany seeds have antimicrobial activity against E.coli and B.cereus.
Seed population dynamics on abandoned slopes in the hill and gully Loess Plateau region of China
NASA Astrophysics Data System (ADS)
Yu, Weijie; Jiao, Juying
2017-04-01
Recovery of natural vegetation is an effective but slow approach to control the soil erosion in the Chinese hill and gully Loess Plateau region. As seed stage is particularly vulnerable to environmental conditions, characteristics of seed population should be needed to study for determining whether the recovery of natural vegetation is limited during this stage on the abandoned slopes in this region. The study was performed on three abandoned slopes in a watershed with an area of 8.27 km2in the Shaanxi province of China. The differences in soil seed banks were investigated in two different points in time, late March2011 and early April 2013. Main factors of seed population dynamics, such as seed yield of dominant species, seed inputs by seed rain as well as seed outputs through seed loss by overland flow and seedling emergence, were monitored from late March 2011 to early April 2013. In this study, seed rain densities of the main later successional species, i.e., Lespedeza davurica, Stipa bungeana and Artemisia gmelinii accounted for 51.5-71.6% of their own seed yields. The soil seed bank density in early April 2013 was larger than that in late March 2011. The density of seed inputs by seed rain was 10186 seeds•m-2, and the total seed bank, including seed rain and seeds present in the soil seed bank in late March 2011, reached a density of 15018 seeds•m-2 during the study period. Seed densities of loss due to overland flow and seedling emergence were 79 seeds•m-2 from 20 species and 938 seedlings•m-2 that belonged to 38 species during a study period, and the seed output through them accounted for 0.5% and 6.3% of the total seed bank, respectively. The study concluded that overland flow could not result in large numbers of seeds loss and seeds were accumulating in the soil seed bank due to seed rain, and vegetation succession might be limited by curbed spatial seed dispersal and seedling establishment.
Li, Man-Wah; Muñoz, Nacira B; Wong, Chi-Fai; Wong, Fuk-Ling; Wong, Kwong-Sen; Wong, Johanna Wing-Hang; Qi, Xinpeng; Li, Kwan-Pok; Ng, Ming-Sin; Lam, Hon-Ming
2016-01-01
Soybean seeds are a rich source of phenolic compounds, especially isoflavonoids, which are important nutraceuticals. Our study using 14 wild- and 16 cultivated-soybean accessions shows that seeds from cultivated soybeans generally contain lower total antioxidants compared to their wild counterparts, likely an unintended consequence of domestication or human selection. Using a recombinant inbred population resulting from a wild and a cultivated soybean parent and a bin map approach, we have identified an overlapping genomic region containing major quantitative trait loci (QTLs) that regulate the seed contents of total antioxidants, phenolics, and flavonoids. The QTL for seed antioxidant content contains 14 annotated genes based on the Williams 82 reference genome (Gmax1.01). None of these genes encodes functions that are related to the phenylpropanoid pathway of soybean. However, we found three putative Multidrug And Toxic Compound Extrusion (MATE) transporter genes within this QTL and one adjacent to it (GmMATE1-4). Moreover, we have identified non-synonymous changes between GmMATE1 and GmMATE2, and that GmMATE3 encodes an antisense transcript that expresses in pods. Whether the polymorphisms in GmMATE proteins are major determinants of the antioxidant contents, or whether the antisense transcripts of GmMATE3 play important regulatory roles, awaits further functional investigations.
Water uptake mechanism and germination of Erythrina velutina seeds treated with atmospheric plasma
NASA Astrophysics Data System (ADS)
Alves Junior, Clodomiro; de Oliveira Vitoriano, Jussier; da Silva, Dinnara Layza Souza; de Lima Farias, Mikelly; de Lima Dantas, Nadjamara Bandeira
2016-09-01
The effect of plasma applied to mulungu (Erythrina velutina) seeds was studied to verify its influence on the germination, water absorption, wettability and structure of the seeds. The plasma jet used in this study was produced by dielectric barrier discharge (DBD) in a helium gas flow of 0.03 L/s at a distance of 13 mm for 60 s. The plasma treatment significantly affected the seed germination rate, which was approximately 5% higher than that of the untreated group. Micropyle and hilum contributed a greater proportion to uptake. When sealed in the hilar or micropyle regions the amount of water absorbed into the seed decreased approximately 75% compared to the unsealed seed. This difference suggests that these two regions together act cooperatively in the water absorption. However, when plasma treated seed was blocked in the micropyle region, water absorption was higher higher than in seeds blocked hilum. This difference suggests that the plasma treatment changed the wettability of the hilum more effectively than it changed the micropyle. These results indicate that plasma can significantly change the hydrophilicity, water absorption and percentage of seed germination in E. velutina.
Wilkus, Erin L.; Berny Mier y Teran, Jorge C.; Mukankusi, Clare M.; Gepts, Paul
2018-01-01
Widespread adoption of new varieties can be valuable, especially where improved agricultural production technologies are hard to access. However, as farmers adopt new varieties, in situ population structure and genetic diversity of their seed holdings can change drastically. Consequences of adoption are still poorly understood due to a lack of crop genetic diversity assessments and detailed surveys of farmers' seed management practices. Common bean (Phaseolus vulgaris) is an excellent model for these types of studies, as it has a long history of cultivation among smallholder farmers, exhibits eco-geographic patterns of diversity (e.g., Andean vs. Mesoamerican gene-pools), and has been subjected to post-Columbian dispersal and recent introduction of improved cultivars. The Hoima district of western Uganda additionally provides an excellent social setting for evaluating consequences of adoption because access to improved varieties has varied across farmer groups in this production region. This study establishes a baseline understanding of the common bean diversity found among household producers in Uganda and compares the crop population structure, diversity and consequences of adoption of household producers with different adoption practices. Molecular diversity analysis, based on 4,955 single nucleotide polymorphism (SNP) markers, evaluated a total of 1,156 seed samples that included 196 household samples collected from household producers in the Hoima district, 19 breeder-selected varieties used in participatory breeding activities that had taken place prior to the study in the region, and a global bean germplasm collection. Households that had participated in regional participatory breeding efforts were more likely to adopt new varieties and, consequently, diversify their seed stocks than those that had not participated. Of the three farmer groups that participated in breeding efforts, households from the farmer group with the longest history of bean production were more likely to conserve “Seed Engufu”, a local “Calima”-type variety of the Andean bean gene pool, and, at the same time, introduce rare Mesoamerican gene pool varieties into household seed stocks. PMID:29868053
Wilkus, Erin L; Berny Mier Y Teran, Jorge C; Mukankusi, Clare M; Gepts, Paul
2018-01-01
Widespread adoption of new varieties can be valuable, especially where improved agricultural production technologies are hard to access. However, as farmers adopt new varieties, in situ population structure and genetic diversity of their seed holdings can change drastically. Consequences of adoption are still poorly understood due to a lack of crop genetic diversity assessments and detailed surveys of farmers' seed management practices. Common bean ( Phaseolus vulgaris ) is an excellent model for these types of studies, as it has a long history of cultivation among smallholder farmers, exhibits eco-geographic patterns of diversity (e.g., Andean vs. Mesoamerican gene-pools), and has been subjected to post-Columbian dispersal and recent introduction of improved cultivars. The Hoima district of western Uganda additionally provides an excellent social setting for evaluating consequences of adoption because access to improved varieties has varied across farmer groups in this production region. This study establishes a baseline understanding of the common bean diversity found among household producers in Uganda and compares the crop population structure, diversity and consequences of adoption of household producers with different adoption practices. Molecular diversity analysis, based on 4,955 single nucleotide polymorphism (SNP) markers, evaluated a total of 1,156 seed samples that included 196 household samples collected from household producers in the Hoima district, 19 breeder-selected varieties used in participatory breeding activities that had taken place prior to the study in the region, and a global bean germplasm collection. Households that had participated in regional participatory breeding efforts were more likely to adopt new varieties and, consequently, diversify their seed stocks than those that had not participated. Of the three farmer groups that participated in breeding efforts, households from the farmer group with the longest history of bean production were more likely to conserve "Seed Engufu", a local "Calima"-type variety of the Andean bean gene pool, and, at the same time, introduce rare Mesoamerican gene pool varieties into household seed stocks.
Pi, Erxu; Mantri, Nitin; Ngai, Sai Ming; Lu, Hongfei; Du, Liqun
2013-01-01
Temperature is one of the most significant environmental factors that affects germination of grass seeds. Reliable prediction of the optimal temperature for seed germination is crucial for determining the suitable regions and favorable sowing timing for turf grass cultivation. In this study, a back-propagation-artificial-neural-network-aided dual quintic equation (BP-ANN-QE) model was developed to improve the prediction of the optimal temperature for seed germination. This BP-ANN-QE model was used to determine optimal sowing times and suitable regions for three Cynodon dactylon cultivars (C. dactylon, ‘Savannah’ and ‘Princess VII’). Prediction of the optimal temperature for these seeds was based on comprehensive germination tests using 36 day/night (high/low) temperature regimes (both ranging from 5/5 to 40/40°C with 5°C increments). Seed germination data from these temperature regimes were used to construct temperature-germination correlation models for estimating germination percentage with confidence intervals. Our tests revealed that the optimal high/low temperature regimes required for all the three bermudagrass cultivars are 30/5, 30/10, 35/5, 35/10, 35/15, 35/20, 40/15 and 40/20°C; constant temperatures ranging from 5 to 40°C inhibited the germination of all three cultivars. While comparing different simulating methods, including DQEM, Bisquare ANN-QE, and BP-ANN-QE in establishing temperature based germination percentage rules, we found that the R2 values of germination prediction function could be significantly improved from about 0.6940–0.8177 (DQEM approach) to 0.9439–0.9813 (BP-ANN-QE). These results indicated that our BP-ANN-QE model has better performance than the rests of the compared models. Furthermore, data of the national temperature grids generated from monthly-average temperature for 25 years were fit into these functions and we were able to map the germination percentage of these C. dactylon cultivars in the national scale of China, and suggested the optimum sowing regions and times for them. PMID:24349278
Complex Building Detection Through Integrating LIDAR and Aerial Photos
NASA Astrophysics Data System (ADS)
Zhai, R.
2015-02-01
This paper proposes a new approach on digital building detection through the integration of LiDAR data and aerial imagery. It is known that most building rooftops are represented by different regions from different seed pixels. Considering the principals of image segmentation, this paper employs a new region based technique to segment images, combining both the advantages of LiDAR and aerial images together. First, multiple seed points are selected by taking several constraints into consideration in an automated way. Then, the region growing procedures proceed by combining the elevation attribute from LiDAR data, visibility attribute from DEM (Digital Elevation Model), and radiometric attribute from warped images in the segmentation. Through this combination, the pixels with similar height, visibility, and spectral attributes are merged into one region, which are believed to represent the whole building area. The proposed methodology was implemented on real data and competitive results were achieved.
Zhang, Miao; Chen, Fangqing; Chen, Shaohua; Wang, Yajin; Wang, Jianzhu
2016-01-01
The water-level fluctuation in the Three Gorges Reservoir Region has changed dramatically as a result of the hydroelectric project for flood control and power generation. The riparian seasonal hydrological environment also has changed from summer flooding with winter drought to summer drought with winter flooding. The changes of riparian seed bank and vegetation were investigated to determine the effects of the seasonal flooding on the composition and spatial distribution of riparian soil seed bank and the similarity of seed bank to standing vegetation. We conducted intensive riparian soil sampling (525 samples) along altitude gradient in the Shanmu River, a tributary of the Yangzi River in the reservoir region of China. Seed bank density, species richness and composition of soil seed bank were examined using the seedling-emergence method. The seasonal hydrological conditions resulted in a decrease in species diversity and an increase in the distribution heterogeneity of the soil seed bank. The soil seed bank was composed of 48 species from 22 families and 40 genera. Most species were annual and perennial herbaceous Polygonaceae, Asteraceae, and Poaceae. Rumex dentatus was the predominant species accounting for 27.0 % of the total seeds. Diversity and composition of the seed bank changed along an altitude gradient and soil depth. Maximum species richness was found in the top soil layer at 165 m and 175 m above sea level. The mean overall seed density of the soil seed bank was 13,475.3 ind m(-2). Density and the number of seeds increased initially and then decreased with increased altitude. Maximum seed density (22,500.2 ind m(-2)) was found at 165 m above sea level in the intermediately flooded riverbank, with the seed number accounting for 27.8 % of the total soil seed bank. Average seed density declined significantly with soil depth. The similarity of seed bank to standing vegetation was relatively high. The environmental heterogeneity created by the wide range and seasonal flooding led to the changes in biodiversity and seed density along altitude gradient. The seasonal flooding also led to the increase in the similarity of seed bank to standing vegetation as their composition both degraded. The seasonal flooding due to the dam reshape the composition and spatial distribution of riparian soil seed bank and limit the vegetation to a grassland dominated by a few annuals and perennials in the Three Gorges Reservoir Region.
Straub, J; Metzger, C D; Plener, P L; Koelch, M G; Groen, G; Abler, B
2017-02-01
Current resting state imaging findings support suggestions that the neural signature of depression and therefore also its therapy should be conceptualized as a network disorder rather than a dysfunction of specific brain regions. In this study, we compared neural connectivity of adolescent patients with depression (PAT) and matched healthy controls (HC) and analysed pre-to-post changes of seed-based network connectivities in PAT after participation in a cognitive behavioral group psychotherapy (CBT). 38 adolescents (30 female; 19 patients; 13-18 years) underwent an eyes-closed resting-state scan. PAT were scanned before (pre) and after (post) five sessions of CBT. Resting-state functional connectivity was analysed in a seed-based approach for right-sided amygdala and subgenual anterior cingulate cortex (sgACC). Symptom severity was assessed using the Beck Depression Inventory Revision (BDI-II). Prior to group CBT, between groups amygdala and sgACC connectivity with regions of the default mode network was stronger in the patients group relative to controls. Within the PAT group, a similar pattern significantly decreased after successful CBT. Conversely, seed-based connectivity with affective regions and regions processing cognition and salient stimuli was stronger in HC relative to PAT before CBT. Within the PAT group, a similar pattern changed with CBT. Changes in connectivity correlated with the significant pre-to-post symptom improvement, and pre-treatment amygdala connectivity predicted treatment response in depressed adolescents. Sample size and missing long-term follow-up limit the interpretability. Successful group psychotherapy of depression in adolescents involved connectivity changes in resting state networks to that of healthy controls. Copyright © 2016 Elsevier B.V. All rights reserved.
Michael A. Blazier; A. Gordon Holley
2015-01-01
Eastern seed sources of loblolly pine (Pinus taeda L.) have been planted in the Western Gulf region for nearly three decades because they often have higher growth rates than local seed sources. However, productivity gains for eastern families are sometimes offset by poorer survival rates relative to local families.
USDA-ARS?s Scientific Manuscript database
Larval seed beetles are common seed predators that feed within individual seeds, and legume plants are especially plagued by seed beetles. This can be problematic for seed growers who raise seeds of North American legumes native to the Intermountain Region of the western U.S. for use in the reveget...
Fourquin, Chloé; del Cerro, Carolina; Victoria, Filipe C.; Vialette-Guiraud, Aurélie; de Oliveira, Antonio C.; Ferrándiz, Cristina
2013-01-01
Angiosperms are the most diverse and numerous group of plants, and it is generally accepted that this evolutionary success owes in part to the diversity found in fruits, key for protecting the developing seeds and ensuring seed dispersal. Although studies on the molecular basis of morphological innovations are few, they all illustrate the central role played by transcription factors acting as developmental regulators. Here, we show that a small change in the protein sequence of a MADS-box transcription factor correlates with the origin of a highly modified fruit morphology and the change in seed dispersal strategies that occurred in Medicago, a genus belonging to the large legume family. This protein sequence modification alters the functional properties of the protein, affecting the affinities for other protein partners involved in high-order complexes. Our work illustrates that variation in coding regions can generate evolutionary novelties not based on gene duplication/subfunctionalization but by interactions in complex networks, contributing also to the current debate on the relative importance of changes in regulatory or coding regions of master regulators in generating morphological novelties. PMID:23640757
Xin, Hangshu; Yu, Peiqiang
2014-12-10
In this experiment, brown- and yellow-seeded Brassica carinata were selected to use as a model to investigate whether there were any changes in lipid-related structure make-up (including CH3 and CH2 asymmetric and symmetric stretching bands ca. 3010-2765cm(-1), unsaturated lipid band ca. 3043-2987cm(-1) and carbonyl CO ester band ca. 1789-1701cm(-1)) of oilseed tissue during rumen in situ incubation using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FT/IR). Correlations of lipid spectral characteristics with basic chemical profile and multivariate analyses for clarifying structural differences within lipid regions between two carinata seeds were also measured. The results showed that most spectral parameters in both carinata seeds were reduced as incubation time increased. However, the extent of changes in peak intensity of carbonyl CO ester group of brown-seeded carinata was not in fully accordance with that of yellow-seeded carinata. Additionally, these lipid structure features were highly correlated with the concentrations of OM (positively), CP (positively), NDF (negatively) and EE (positively) in carinata seeds after 0, 12, 24 and 48h of incubation. Based on the results from multivariate analyses, neither AHCA nor PCA could produce any distinctions in rumen residues between brown- and yellow-seeded carinata in spectra at lipid regions. It was concluded that besides for original feed samples, spectroscopic technique of ATR-FT/IR could also be used for rumen degradation residues in detecting changes in lipid-related molecular structure make-up. Further studies are needed to explore more details in lipid metabolism during ruminal fermentation with the combined consideration on both metabolic basis and molecular structural basis. Copyright © 2014 Elsevier B.V. All rights reserved.
Seed mycoflora of Ephedra aphylla and amino acid profile of seed-borne Aspergillus flavus.
Al-Qarawi, Abdulaziz A; Hashem, Abeer; Abd-Allah, Elsayed F
2012-09-01
Twenty-seven seed samples of Ephedra aphylla were collected from different rangelands in Riyadh region, Saudi Arabia during seed production season of 2010. They were assessed to determine the incidence of seedborne fungal flora using both agar plate and blotter paper methods. The investigation of the seeds yielded thirty four fungal species belonging to twelve genera, which are new record to seed-brone mycoflora of E. aphylla in Saudi Arabia. The agar plate method was found superior over blotter methods. The genus Aspergillus was the most prevalent one followed by Fusarium, Penicillium, Alternaria, and Chaetomium. Only eighteen isolates of A. flavus (∼ 28.6% of total isolates) were able to produce aflatoxins. Mycelial amino acids profile of selected aflatoxigenic isolates of A. flavus was investigated and five amino acids, namely cystein, lysine, praline, tryptophan and valine were common in mycelia and all of them were aflatoxins producers. Based on the dissimilarity coefficient between the isolates and their amino acids patterns, high diversity among the population of A. flavus has been recorded.
NASA Astrophysics Data System (ADS)
Seeley, Kaelyn; Cunha, J. Adam; Hong, Tae Min
2017-01-01
We discuss an improvement in brachytherapy--a prostate cancer treatment method that directly places radioactive seeds inside target cancerous regions--by optimizing the current standard for delivering dose. Currently, the seeds' spatiotemporal placement is determined by optimizing the dose based on a set of physical, user-defined constraints. One particular approach is the ``inverse planning'' algorithms that allow for tightly fit isodose lines around the target volumes in order to reduce dose to the patient's organs at risk. However, these dose distributions are typically computed assuming the same biological response to radiation for different types of tissues. In our work, we consider radiobiological parameters to account for the differences in the individual sensitivities and responses to radiation for tissues surrounding the target. Among the benefits are a more accurate toxicity rate and more coverage to target regions for planning high-dose-rate treatments as well as permanent implants.
Chao, Hongbo; Wang, Hao; Wang, Xiaodong; Guo, Liangxing; Gu, Jianwei; Zhao, Weiguo; Li, Baojun; Chen, Dengyan; Raboanatahiry, Nadia; Li, Maoteng
2017-04-10
High-density linkage maps can improve the precision of QTL localization. A high-density SNP-based linkage map containing 3207 markers covering 3072.7 cM of the Brassica napus genome was constructed in the KenC-8 × N53-2 (KNDH) population. A total of 67 and 38 QTLs for seed oil and protein content were identified with an average confidence interval of 5.26 and 4.38 cM, which could explain up to 22.24% and 27.48% of the phenotypic variation, respectively. Thirty-eight associated genomic regions from BSA overlapped with and/or narrowed the SOC-QTLs, further confirming the QTL mapping results based on the high-density linkage map. Potential candidates related to acyl-lipid and seed storage underlying SOC and SPC, respectively, were identified and analyzed, among which six were checked and showed expression differences between the two parents during different embryonic developmental periods. A large primary carbohydrate pathway based on potential candidates underlying SOC- and SPC-QTLs, and interaction networks based on potential candidates underlying SOC-QTLs, was constructed to dissect the complex mechanism based on metabolic and gene regulatory features, respectively. Accurate QTL mapping and potential candidates identified based on high-density linkage map and BSA analyses provide new insights into the complex genetic mechanism of oil and protein accumulation in the seeds of rapeseed.
Lee, Seul; Polimeni, Jonathan R; Price, Collin M; Edlow, Brian L; McNab, Jennifer A
2018-06-01
Resting-state functional magnetic resonance imaging (RS-FMRI) has been widely used to map brain functional connectivity, but it is unclear how to probe connectivity within and around lesions. In this study, we characterize RS-FMRI signal time course properties and evaluate different seed placements within and around hemorrhagic traumatic axonal injury (hTAI) lesions. RS-FMRI was performed on a 7 Tesla scanner in a patient who recovered consciousness after traumatic coma and in three healthy controls. Eleven lesions in the patient were characterized in terms of (1) temporal signal-to-noise ratio (tSNR); (2) physiological noise, through comparison of noise regressors derived from the white matter (WM), cerebrospinal fluid (CSF), and gray matter (GM); and (3) seed-based functional connectivity. Temporal SNR at the center of the lesions was 38.3% and 74.1% lower compared with the same region in the contralesional hemisphere of the patient and in the ipsilesional hemispheres of the controls, respectively. Within the lesions, WM noise was more prominent than CSF and GM noise. Lesional seeds did not produce discernable networks, but seeds in the contralesional hemisphere revealed networks whose nodes appeared to be shifted or obscured due to overlapping or nearby lesions. Single-voxel seed analysis demonstrated that placing a seed within a lesion's periphery was necessary to identify networks associated with the lesion region. These findings provide evidence of resting-state network changes in the human brain after recovery from traumatic coma. Furthermore, we show that seed placement within a lesion's periphery or in the contralesional hemisphere may be necessary for network identification in patients with hTAI.
Jin, Chenwang; Zhang, Ting; Cai, Chenxi; Bi, Yanzhi; Li, Yangding; Yu, Dahua; Zhang, Ming; Yuan, Kai
2016-09-01
Internet Gaming Disorder (IGD) among adolescents has become an important public concern and gained more and more attention internationally. Recent studies focused on IGD and revealed brain abnormalities in the IGD group, especially the prefrontal cortex (PFC). However, the role of PFC-striatal circuits in pathology of IGD remains unknown. Twenty-five adolescents with IGD and 21 age- and gender-matched healthy controls were recruited in our study. Voxel-based morphometric (VBM) and functional connectivity analysis were employed to investigate the abnormal structural and resting-state properties of several frontal regions in individuals with online gaming addiction. Relative to healthy comparison subjects, IGD subjects showed significant decreased gray matter volume in PFC regions including the bilateral dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and the right supplementary motor area (SMA) after controlling for age and gender effects. We chose these regions as the seeding areas for the resting-state analysis and found that IGD subjects showed decreased functional connectivity between several cortical regions and our seeds, including the insula, and temporal and occipital cortices. Moreover, significant decreased functional connectivity between some important subcortical regions, i.e., dorsal striatum, pallidum, and thalamus, and our seeds were found in the IGD group and some of those changes were associated with the severity of IGD. Our results revealed the involvement of several PFC regions and related PFC-striatal circuits in the process of IGD and suggested IGD may share similar neural mechanisms with substance dependence at the circuit level.
Proposed seed collection zones for the central states
Gustaf A. Limstrom
1963-01-01
Seed collection zones have been established in several regions and countries to insure that the sources of seed used in tree planting are properly selected. Use of such zones has undoubtedly improved the survival and growth of trees in plantations and has also facilitated the establishment of specifications for seed procurement and seed certification.
Horacek, Micha; Hansel-Hohl, Karin; Burg, Kornel; Soja, Gerhard; Okello-Anyanga, Walter; Fluch, Silvia
2015-01-01
The indication of origin of sesame seeds and sesame oil is one of the important factors influencing its price, as it is produced in many regions worldwide and certain provenances are especially sought after. We joined stable carbon and hydrogen isotope analysis with DNA based molecular marker analysis to study their combined potential for the discrimination of different origins of sesame seeds. For the stable carbon and hydrogen isotope data a positive correlation between both isotope parameters was observed, indicating a dominant combined influence of climate and water availability. This enabled discrimination between sesame samples from tropical and subtropical/moderate climatic provenances. Carbon isotope values also showed differences between oil from black and white sesame seeds from identical locations, indicating higher water use efficiency of plants producing black seeds. DNA based markers gave independent evidence for geographic variation as well as provided information on the genetic relatedness of the investigated samples. Depending on the differences in ambient environmental conditions and in the genotypic fingerprint, a combination of both analytical methods is a very powerful tool to assess the declared geographic origin. To our knowledge this is the first paper on food authenticity combining the stable isotope analysis of bio-elements with DNA based markers and their combined statistical analysis. PMID:25831054
Horacek, Micha; Hansel-Hohl, Karin; Burg, Kornel; Soja, Gerhard; Okello-Anyanga, Walter; Fluch, Silvia
2015-01-01
The indication of origin of sesame seeds and sesame oil is one of the important factors influencing its price, as it is produced in many regions worldwide and certain provenances are especially sought after. We joined stable carbon and hydrogen isotope analysis with DNA based molecular marker analysis to study their combined potential for the discrimination of different origins of sesame seeds. For the stable carbon and hydrogen isotope data a positive correlation between both isotope parameters was observed, indicating a dominant combined influence of climate and water availability. This enabled discrimination between sesame samples from tropical and subtropical/moderate climatic provenances. Carbon isotope values also showed differences between oil from black and white sesame seeds from identical locations, indicating higher water use efficiency of plants producing black seeds. DNA based markers gave independent evidence for geographic variation as well as provided information on the genetic relatedness of the investigated samples. Depending on the differences in ambient environmental conditions and in the genotypic fingerprint, a combination of both analytical methods is a very powerful tool to assess the declared geographic origin. To our knowledge this is the first paper on food authenticity combining the stable isotope analysis of bio-elements with DNA based markers and their combined statistical analysis.
Kujur, Alice; Bajaj, Deepak; Saxena, Maneesha S.; Tripathi, Shailesh; Upadhyaya, Hari D.; Gowda, C.L.L.; Singh, Sube; Jain, Mukesh; Tyagi, Akhilesh K.; Parida, Swarup K.
2013-01-01
We developed 1108 transcription factor gene-derived microsatellite (TFGMS) and 161 transcription factor functional domain-associated microsatellite (TFFDMS) markers from 707 TFs of chickpea. The robust amplification efficiency (96.5%) and high intra-specific polymorphic potential (34%) detected by markers suggest their immense utilities in efficient large-scale genotyping applications, including construction of both physical and functional transcript maps and understanding population structure. Candidate gene-based association analysis revealed strong genetic association of TFFDMS markers with three major seed and pod traits. Further, TFGMS markers in the 5′ untranslated regions of TF genes showing differential expression during seed development had higher trait association potential. The significance of TFFDMS markers was demonstrated by correlating their allelic variation with amino acid sequence expansion/contraction in the functional domain and alteration of secondary protein structure encoded by genes. The seed weight-associated markers were validated through traditional bi-parental genetic mapping. The determination of gene-specific linkage disequilibrium (LD) patterns in desi and kabuli based on single nucleotide polymorphism-microsatellite marker haplotypes revealed extended LD decay, enhanced LD resolution and trait association potential of genes. The evolutionary history of a strong seed-size/weight-associated TF based on natural variation and haplotype sharing among desi, kabuli and wild unravelled useful information having implication for seed-size trait evolution during chickpea domestication. PMID:23633531
Hibio, Naoki; Hino, Kimihiro; Shimizu, Eigo; Nagata, Yoshiro; Ui-Tei, Kumiko
2012-01-01
MicroRNAs (miRNAs) are key regulators of sequence-specific gene silencing. However, crucial factors that determine the efficacy of miRNA-mediated target gene silencing are poorly understood. Here we mathematized base-pairing stability and showed that miRNAs with an unstable 5′ terminal duplex and stable seed-target duplex exhibit strong silencing activity. The results are consistent with the previous findings that an RNA strand with unstable 5′ terminal in miRNA duplex easily loads onto the RNA-induced silencing complex (RISC), and miRNA recognizes target mRNAs with seed-complementary sequences to direct posttranscriptional repression. Our results suggested that both the unwinding and target recognition processes of miRNAs could be proficiently controlled by the thermodynamics of base-pairing in protein-free condition. Interestingly, such thermodynamic parameters might be evolutionarily well adapted to the body temperatures of various species. PMID:23251782
2010-01-01
Background The nutritional and economic value of many crops is effectively a function of seed protein and oil content. Insight into the genetic and molecular control mechanisms involved in the deposition of these constituents in the developing seed is needed to guide crop improvement. A quantitative trait locus (QTL) on Linkage Group I (LG I) of soybean (Glycine max (L.) Merrill) has a striking effect on seed protein content. Results A soybean near-isogenic line (NIL) pair contrasting in seed protein and differing in an introgressed genomic segment containing the LG I protein QTL was used as a resource to demarcate the QTL region and to study variation in transcript abundance in developing seed. The LG I QTL region was delineated to less than 8.4 Mbp of genomic sequence on chromosome 20. Using Affymetrix® Soy GeneChip and high-throughput Illumina® whole transcriptome sequencing platforms, 13 genes displaying significant seed transcript accumulation differences between NILs were identified that mapped to the 8.4 Mbp LG I protein QTL region. Conclusions This study identifies gene candidates at the LG I protein QTL for potential involvement in the regulation of protein content in the soybean seed. The results demonstrate the power of complementary approaches to characterize contrasting NILs and provide genome-wide transcriptome insight towards understanding seed biology and the soybean genome. PMID:20199683
Rajtmajer, Sarah M; Roy, Arnab; Albert, Reka; Molenaar, Peter C M; Hillary, Frank G
2015-01-01
Despite exciting advances in the functional imaging of the brain, it remains a challenge to define regions of interest (ROIs) that do not require investigator supervision and permit examination of change in networks over time (or plasticity). Plasticity is most readily examined by maintaining ROIs constant via seed-based and anatomical-atlas based techniques, but these approaches are not data-driven, requiring definition based on prior experience (e.g., choice of seed-region, anatomical landmarks). These approaches are limiting especially when functional connectivity may evolve over time in areas that are finer than known anatomical landmarks or in areas outside predetermined seeded regions. An ideal method would permit investigators to study network plasticity due to learning, maturation effects, or clinical recovery via multiple time point data that can be compared to one another in the same ROI while also preserving the voxel-level data in those ROIs at each time point. Data-driven approaches (e.g., whole-brain voxelwise approaches) ameliorate concerns regarding investigator bias, but the fundamental problem of comparing the results between distinct data sets remains. In this paper we propose an approach, aggregate-initialized label propagation (AILP), which allows for data at separate time points to be compared for examining developmental processes resulting in network change (plasticity). To do so, we use a whole-brain modularity approach to parcellate the brain into anatomically constrained functional modules at separate time points and then apply the AILP algorithm to form a consensus set of ROIs for examining change over time. To demonstrate its utility, we make use of a known dataset of individuals with traumatic brain injury sampled at two time points during the first year of recovery and show how the AILP procedure can be applied to select regions of interest to be used in a graph theoretical analysis of plasticity.
Fan, Yi; Huang, Ming-Wei; Zheng, Lei; Zhao, Yi-Jiao; Zhang, Jian-Guo
2015-11-24
To evaluate seed stability after permanent implantation in the parotid gland and periparotid region via a three-dimensional reconstruction of CT data. Fifteen patients treated from June 2008 to June 2012 at Peking University School and Hospital of Stomatology for parotid gland tumors with postoperative adjunctive (125)I interstitial brachytherapy were retrospectively reviewed in this study. Serial CT data were obtained during follow-up. Mimics and Geomagic Studio software were used for seed reconstruction and stability analysis, respectively. Seed loss and/or migration outside of the treated area were absent in all patients during follow-up (23-71 months). Total seed cluster volume was maximized on day 1 post-implantation due to edema and decreased significantly by an average of 13.5 % (SD = 9.80 %; 95 % CI, 6.82-17.68 %) during the first two months and an average of 4.5 % (SD = 3.60 %; 95 % CI, 2.29-6.29 %) during the next four months. Volume stabilized over the subsequent six months. (125)I seed number and location were stable with a general volumetric shrinkage tendency in the parotid gland and periparotid region. Three-dimensional seed reconstruction of CT images is feasible for visualization and verification of implanted seeds in parotid brachytherapy.
Seed dormancy and germination of Halophila ovalis mediated by simulated seasonal temperature changes
NASA Astrophysics Data System (ADS)
Statton, John; Sellers, Robert; Dixon, Kingsley W.; Kilminster, Kieryn; Merritt, David J.; Kendrick, Gary A.
2017-11-01
The seagrass, Halophila ovalis plays an important ecological and sediment stability role in estuarine systems in Australia with the species in decline in many sites. Halophila ovalis is a facultative annual, relying mainly on recruitment from the sediment seed bank for the annual regeneration of meadows. Despite this, there is little understanding of seed dormancy releasing mechanisms and germination cues. Using H. ovalis seed from the warm temperate Swan River Estuary in Western Australia, the germination ecology of H. ovalis was investigated by simulating the natural seasonal variation in water temperatures. The proportion of germinating seeds was found to be significantly different among temperature treatments (p < 0.001). The treatment with the longest period of cold exposure at 15 °C followed by an increase in temperature to 20-25 °C (i.e. cold stratification) had the highest final mean germination of 32% and the fastest germination rate. Seeds exposed to constant mean winter temperatures of 15 °C had the slowest germination rate with less than two seeds germinating over 118 days. Thus temperature is a key germination cue for H. ovalis seeds and these data infer that cold stratification is an important dormancy releasing mechanism. This finding has implications for recruitment in facultative annual species like H. ovalis under global warming since the trend for increasing water temperatures in the region may limit seed-based recruitment in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogucz, Edward A.
This project was part of a regional initiative in the five counties of Central New York (CNY) that received funding from the U.S. Department of Energy (DOE) and four other federal agencies through the 2012 Advanced Manufacturing Jobs and Innovation Accelerator Challenge (AMJIAC). The CNY initiative was focused on cultivating the emergent regional cluster in “Advanced Manufacturing for Thermal and Environmental Control (AM-TEC).” As one component of the CNY AM-TEC initiative, the DOE-funded project supported five research & development seed projects that strategically targeted: 1) needs and opportunities of CNY AM-TEC companies, and 2) the goal of DOE’s Advanced Manufacturingmore » Office (AMO) to reduce energy consumption by 50% across product life-cycles over 10 years. The project also sought to fulfill the AMO mission of developing and demonstrating new, energy-efficient processing and materials technologies at a scale adequate to prove their value to manufacturers and spur investment. The five seed projects demonstrated technologies and processes that can reduce energy intensity and improve production as well as use less energy throughout their lifecycles. The project was conducted over three years in two 18-month budget periods. During the first budget period, two projects proposed in the original AMJAIC application were successfully completed: Seed Project 1 focused on saving energy in heat transfer processes via development of nano structured surfaces to significantly increase heat flux; Seed Project 2 addressed saving energy in data centers via subzero cooling of the computing processors. Also during the first budget period, a process was developed and executed to select a second round of seed projects via a competitive request for proposals from regional companies and university collaborators. Applicants were encouraged to form industry-academic partnerships to leverage experience and resources of public and private sectors in the CNY region. Proposals were evaluated by a national panel of experts. Three projects were selected for awards and were completed successfully during the second budget period: Seed Project 3 focused on enabling self-powered furnaces to permit residents to shelter in place during power outages; Seed Project 4 addressed development of a novel method of controlling air conditioning systems that could enable flexible load matching in market segments not possible with existing technologies; and Seed Project 5 focused on the creation of smarter occupancy sensors to enable effective highly localized demand based ventilation.« less
2011-01-01
Background Stenospermocarpy is a mechanism through which certain genotypes of Vitis vinifera L. such as Sultanina produce berries with seeds reduced in size. Stenospermocarpy has not yet been characterized at the molecular level. Results Genetic and physical maps were integrated with the public genomic sequence of Vitis vinifera L. to improve QTL analysis for seedlessness and berry size in experimental progeny derived from a cross of two seedless genotypes. Major QTLs co-positioning for both traits on chromosome 18 defined a 92-kb confidence interval. Functional information from model species including Vitis suggested that VvAGL11, included in this confidence interval, might be the main positional candidate gene responsible for seed and berry development. Characterization of VvAGL11 at the sequence level in the experimental progeny identified several SNPs and INDELs in both regulatory and coding regions. In association analyses performed over three seasons, these SNPs and INDELs explained up to 78% and 44% of the phenotypic variation in seed and berry weight, respectively. Moreover, genetic experiments indicated that the regulatory region has a larger effect on the phenotype than the coding region. Transcriptional analysis lent additional support to the putative role of VvAGL11's regulatory region, as its expression is abolished in seedless genotypes at key stages of seed development. These results transform VvAGL11 into a functional candidate gene for further analyses based on genetic transformation. For breeding purposes, intragenic markers were tested individually for marker assisted selection, and the best markers were those closest to the transcription start site. Conclusion We propose that VvAGL11 is the major functional candidate gene for seedlessness, and we provide experimental evidence suggesting that the seedless phenotype might be caused by variations in its promoter region. Current knowledge of the function of its orthologous genes, its expression profile in Vitis varieties and the strong association between its sequence variation and the degree of seedlessness together indicate that the D-lineage MADS-box gene VvAGL11 corresponds to the Seed Development Inhibitor locus described earlier as a major locus for seedlessness. These results provide new hypotheses for further investigations of the molecular mechanisms involved in seed and berry development. PMID:21447172
Seed crops of forest trees in the pine region of California
H.A Fowells; G.H. Schubert
1956-01-01
To provide a better basis for silvicultural practices in the pine region of California, we are reporting the results of 28 years of study of seed crops. The study covered the development of cones, periodicity of cone crops, types of trees bearing cones, climatic and biotic factors affecting cone crops, and the dispersal of seed. The findings reported here should help...
Jamie L. Schuler; Shawn Grushecky; Jingxin Wang
2014-01-01
Renewable energy has been at the forefront of the United States' energy policies. Cellulosic feedstocks have received considerable interest in the Appalachian region because of their abundance and availability, but cost competition from other energy sectors has limited their use in the region. Some other bioenergy feedstocks, such as corn and soybeans, are not a...
NASA Technical Reports Server (NTRS)
Rodgers, R. J.; Latham, T. S.; Krascella, N. L.
1971-01-01
Calculation results are reviewed of the radiant heat transfer characteristics in the fuel and buffer gas regions of a nuclear light bulb engine based on the transfer of energy by thermal radiation from gaseous uranium fuel in a neon vortex, through an internally cooled transparent wall, to seeded hydrogen propellant. The results indicate that the fraction of UV energy incident on the transparent walls increases with increasing power level. For the reference engine power level of 4600 megw, it is necessary to employ space radiators to reject the UV radiated energy absorbed by the transparent walls. This UV energy can be blocked by employing nitric oxide and oxygen seed gases in the fuel and buffer gas regions. However, this results in increased UV absorption in the buffer gas which also requires space radiators to reject the heat load.
Murphy, Kevin M
2017-01-13
The transverse harvest knife, also commonly called the finger or finger-bladed knife, has been utilized by rice farmers in southeast Asia for many centuries. The finger knife persisted in many traditional cultures long after the introduction of the sickle, a tool which provided farmers with the means to execute a much faster harvest. Several theories in interpretative archaeology have attempted to account for this rejection of more modern technological innovations. These theories, which include community-based social organization ideas and practical reasons for the continued use of the finger knife, are presented in this paper. Here I suggest an alternate theory based on a re-interpretation of existing research and fusion of existing theories: the primary reason for the historical and continued use of the finger knife is for seed selection through a centuries old tradition of plant breeding. Though I accept the accuracy of the practical and community-based, socio-cultural reasons for the use of the finger knife put forth by other authors, I suggest that seed selection and genetic improvement was the driving factor in the use of the finger knife. Indeed, intricate planting and harvesting rituals, which both ensured and encouraged varietal conservation and improvement co-evolved with the use of the finger knife as the primary harvest tool due to its unique ability to aid the farmer in the art and science of seed selection. When combined with previous ideas, this interpretative theory, based on the connection between ethnoagronomy and material culture, may provide a more complete picture of the story around the persistence of the finger knife in traditional rice-growing cultures in southeast Asia. I focus my theory on the terrace-building Ifugao people in the mountainous Cordillera region of northcentral Philippines; however, to put the use of the finger into a wider regional context, I draw from examples of the use of the finger knife in other traditional cultures throughout the region of southeast Asia.
Parallel seed-based approach to multiple protein structure similarities detection
Chapuis, Guillaume; Le Boudic-Jamin, Mathilde; Andonov, Rumen; ...
2015-01-01
Finding similarities between protein structures is a crucial task in molecular biology. Most of the existing tools require proteins to be aligned in order-preserving way and only find single alignments even when multiple similar regions exist. We propose a new seed-based approach that discovers multiple pairs of similar regions. Its computational complexity is polynomial and it comes with a quality guarantee—the returned alignments have both root mean squared deviations (coordinate-based as well as internal-distances based) lower than a given threshold, if such exist. We do not require the alignments to be order preserving (i.e., we consider nonsequential alignments), which makesmore » our algorithm suitable for detecting similar domains when comparing multidomain proteins as well as to detect structural repetitions within a single protein. Because the search space for nonsequential alignments is much larger than for sequential ones, the computational burden is addressed by extensive use of parallel computing techniques: a coarse-grain level parallelism making use of available CPU cores for computation and a fine-grain level parallelism exploiting bit-level concurrency as well as vector instructions.« less
NASA Astrophysics Data System (ADS)
Zhang, Hongmao; Zhang, Zhibin
2008-11-01
Seed traits are important factors affecting seed predation by rodents and thereby the success of recruitment. Seeds of many tree species have hard hulls. These are thought to confer mechanical protection, but the effect of endocarp thickness on seed predation by rodents has not been well investigated. Wild apricot ( Prunus armeniaca), wild peach ( Amygdalus davidiana), cultivated walnut ( Juglans regia), wild walnut ( Juglans mandshurica Maxim) and Liaodong oak ( Quercus liaotungensis) are very common tree species in northwestern Beijing city, China. Their seeds vary greatly in size, endocarp thickness, caloric value and tannin content. This paper aims to study the effects of seed traits on seed removal speed of these five tree species by small rodents in a temperate deciduous forest, with emphasis on the effect of endocarp thickness. The results indicated that speed of removal of seeds released at stations in the field decreased significantly with increasing endocarp thickness. We found no significant correlations between seed removal speed and other seed traits such as seed size, caloric value and tannin content. In seed selection experiments in small cages, Père David's rock squirrel ( Sciurotamias davidianus), a large-bodied, strong-jawed rodent, selected all of the five seed species, and the selection order among the five seed species was determined by endocarp thickness and the ratio of endocarp mass/seed mass. In contrast, the Korean field mouse ( Apodemus peninsulae) and Chinese white-bellied rat ( Niviventer confucianus), with relatively small bodies and weak jaws, preferred to select small seeds like acorns of Q. liaotungensis and seeds of P. armeniaca, indicating that rodent body size is also an important factor affecting food selection based on seed size. These results suggest endocarp thickness significantly reduces seed removal speed by rodents and then negatively affects dispersal fitness of seeds before seed removal of tree species in the study region. However, effect of endocarp thickness on final dispersal fitness needs further investigation because it may increase seed caching and survival after seed removal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, D; Usmani, N; Sloboda, R
Purpose: To characterize the movement of implanted brachytherapy seeds due to transrectal ultrasound probe-induced prostate deformation and to estimate the effects on prostate dosimetry. Methods: Implanted probe-in and probe-removed seed distributions were reconstructed for 10 patients using C-arm fluoroscopy imaging. The prostate was delineated on ultrasound and registered to the fluoroscopy seeds using a visible subset of seeds and residual needle tracks. A linear tensor and shearing model correlated the seed movement with position. The seed movement model was used to infer the underlying prostate deformation and to simulate the prostate contour without probe compression. Changes in prostate and surrogatemore » urethra dosimetry were calculated. Results: Seed movement patterns reflecting elastic decompression, lateral shearing, and rectal bending were observed. Elastic decompression was characterized by anterior-posterior expansion and superior-inferior and lateral contractions. For lateral shearing, anterior movement up to 6 mm was observed for extraprostatic seeds in the lateral peripheral region. The average intra-prostatic seed movement was 1.3 mm, and the residual after linear modeling was 0.6 mm. Prostate D90 increased by 4 Gy on average (8 Gy max) and was correlated with elastic decompression. For selected patients, lateral shearing resulted in differential change in D90 of 7 Gy between anterior and posterior quadrants, and increase in whole prostate D90 of 4 Gy. Urethra D10 increased by 4 Gy. Conclusion: Seed movement upon probe removal was characterized. The proposed model captured the linear correlation between seed movement and position. Whole prostate dose coverage increased slightly, due to the small but systematic seed movement associated with elastic decompression. Lateral shearing movement increased dose coverage in the anterior-lateral region, at the expense of the posterior-lateral region. The effect on whole prostate D90 was smaller due to the subset of peripheral seeds involved, but lateral shearing movement can have greater consequences for local dose coverage.« less
Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Shi, Shaohua; Niu, Hangang; Lin, Feng; Zhang, Yeyi
2016-01-01
Salix variegata Franch, a prominent plant applied in riparian shelter vegetation in Three Gorges reservoir region of China, produces many seeds every year but generates only a few or no seedlings. Whether the low seedling production of S. variegata is caused by seed sterility or by rapid loss of seed viability remains unknown. We investigated the sojourn time of mature seeds in capsules produced in early, mid, and late reproductive season and the germinability of mature seeds fresh or stored after different period of time. The sojourn time of seeds in capsules was 2.89, 3.95, and 4.72 days in early, mid, and late reproductive season, respectively. The maximal germination percentage of non-stored fresh seeds produced in early, mid, and late reproductive season was 93.33%, 78.67%, and 40%, respectively, which indicates mature seeds were not sterile. The longest viability-retaining time of seeds produced in early, mid, and late reproductive season was only 8, 16, 16 days, respectively, indicating that mature seeds of S. variegata lost viability very rapidly. Mature seeds possessed good viability, but their rapid viability loss caused the low seedling production and hampered the population growth of S. variegata in the riparian area of Three Gorges reservoir region. PMID:27881868
Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Shi, Shaohua; Niu, Hangang; Lin, Feng; Zhang, Yeyi
2016-11-24
Salix variegata Franch, a prominent plant applied in riparian shelter vegetation in Three Gorges reservoir region of China, produces many seeds every year but generates only a few or no seedlings. Whether the low seedling production of S. variegata is caused by seed sterility or by rapid loss of seed viability remains unknown. We investigated the sojourn time of mature seeds in capsules produced in early, mid, and late reproductive season and the germinability of mature seeds fresh or stored after different period of time. The sojourn time of seeds in capsules was 2.89, 3.95, and 4.72 days in early, mid, and late reproductive season, respectively. The maximal germination percentage of non-stored fresh seeds produced in early, mid, and late reproductive season was 93.33%, 78.67%, and 40%, respectively, which indicates mature seeds were not sterile. The longest viability-retaining time of seeds produced in early, mid, and late reproductive season was only 8, 16, 16 days, respectively, indicating that mature seeds of S. variegata lost viability very rapidly. Mature seeds possessed good viability, but their rapid viability loss caused the low seedling production and hampered the population growth of S. variegata in the riparian area of Three Gorges reservoir region.
Lung Epithelial Healing: A Modified Seed and Soil Concept
Brechbuhl, Heather M.; Smith, Mary Kathryn; Smith, Russell W.; Ghosh, Moumita
2012-01-01
Airway epithelial healing is defined as restoration of health or soundness; to cure. Our research indicates that two types of progenitor cells participate in this process: the tissue-specific stem cell (TSC) and the facultative basal progenitor (FBP). The TSC restores the epithelium to its normal structure and function. Thus, the TSC regenerates the epithelium. In contrast, the FBP-derived epithelium is characterized by regions of cellular hyperplasia and hypoplasia. Since the FBP-derived epithelium deviates from normal, we term the FBP-mediated process repair. Our work indicates that the TSC responds to signals from other epithelial cells, including the FBP. These signals instruct the TSC to proliferate or to select one of several differentiation pathways. We interpret these data in the context of Stephen Padget’s “seed and soil” paradigm. Therein, Padget explained that metastasis of a tumor, the seed, to a specific site, the soil, was determined by the growth and differentiation requirements of the tumor cell. By extending the seed and soil paradigm to airway epithelial healing, we suggest that proliferation and differentiation of the TSC, the seed, is determined by its interactions with other cell types, the soil. Based on this concept, we provide a set of suggestions for development of cell-based therapies that are directed toward chronic airways disease. PMID:22550238
Benedict, John C.; Smith, Selena Y.; Specht, Chelsea D.; Collinson, Margaret E.; Leong-Škorničková, Jana; Parkinson, Dilworth Y.; Marone, Federica
2016-01-01
Phenotypic variation can be attributed to genetic heritability as well as biotic and abiotic factors. Across Zingiberales, there is a high variation in the number of species per clade and in phenotypic diversity. Factors contributing to this phenotypic variation have never been studied in a phylogenetic or ecological context. Seeds of 166 species from all eight families in Zingiberales were analyzed for 51 characters using synchrotron based 3D X-ray tomographic microscopy to determine phylogenetically informative characters and to understand the distribution of morphological disparity within the order. All families are distinguishable based on seed characters. Non-metric multidimensional scaling analyses show Zingiberaceae occupy the largest seed morphospace relative to the other families, and environmental analyses demonstrate that Zingiberaceae inhabit both temperate and tropical regions, while other Zingiberales are almost exclusively tropical. Temperate species do not cluster in morphospace nor do they share a common suite of character states. This suggests that the diversity seen is not driven by adaptation to temperate niches; rather, the morphological disparity seen likely reflects an underlying genetic plasticity that allowed Zingiberaceae to repeatedly colonize temperate environments. The notable morphoanatomical variety in Zingiberaceae seeds may account for their extraordinary ecological success and high species diversity as compared to other Zingiberales. PMID:27594701
Sexual reproduction, seeds, and seedlings
Walter T. McDonough
1985-01-01
Natural genetic interchange and extensive colonization of aspen by seed strongly depends upon favorable climatic and microclimatic conditions and upon human intervention. At times, in regions with the right combination of environmental conditions, there is significant L, reproduction by seed; elsewhere such establishment is rare. Seed production generally is profuse;...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asib, N. A. M., E-mail: amierahasib@yahoo.com; Afaah, A. N.; Aadila, A.
Titanium dioxide (TiO{sub 2}) seed layer was prepared by using sol-gel spin-coating technique, followed by growth of 0.01 M of Zinc oxide (ZnO) nanostructures by solution-immersion. The molarities of TiO{sub 2} seed layer were varied from 1.1 M to 0.100 M on glass substrates. The nanostructures thin films were characterized by Field Emission Scanning Electrons Microscope (FESEM), Photoluminescence (PL) spectroscopy and Ultraviolet-Visible (UV-Vis) spectroscopy. FESEM images demonstrate that needle-like ZnO nanostructures are formed on all TiO{sub 2} seed layer. The smallest diameter of needle-like ZnO nanostructures (90.3 nm) were deposited on TiO{sub 2} seed layer of 0.100 M. PL spectramore » of the TiO{sub 2}: ZnO nanostructures thin films show the blue shifted emissions in the UV regions compared to the ZnO thin film. Meanwhile, UV-vis spectra of films display high absorption in the UV region and high trasparency in the visible region. The highest absorbance at UV region was recorded for sample which has 0.100 M of TiO{sub 2} seed layer.« less
NASA Technical Reports Server (NTRS)
Brooks, C. A.; Mitchell, C. A.
1988-01-01
Salicylhydroxamic acid (SHAM) stimulated germination of photosensitive lettuce (Lactuca sativa L. cv Waldmann's Green) seeds in darkness. To determine whether SHAM acts on the embryo or the endosperm, we investigated separately effects of SHAM on growth potential of isolated embryos as well as on endosperm strength. Embryo growth potential was quantified by incubating decoated embryos in various concentrations of osmoticum and measuring subsequent radicle elongation. Growth potential of embryos isolated from seeds pretreated with 4 millimolar SHAM was equal to that of untreated controls. Rupture strength of endosperm tissue excised from seeds pretreated with SHAM was 33% less than that of controls in the micropylar region. To determine if the embryo must be in contact with the endosperm of SHAM to weaken the endosperm, some endosperms were incubated with SHAM only after dissection from seeds. Rupture strength of SHAM-treated, isolated endosperms in the micropylar region was 25% less than that of untreated controls. There was no difference in rupture strength in the cotyledonary region of endosperm isolated from seeds treated with SHAM in buffer or buffer alone. SHAM therefore stimulates germination not by enhancing embryo growth potential, but by weakening the micropylar region of the endosperm enclosing the embryo.
Orozco-Segovia, A.; Márquez-Guzmán, J.; Sánchez-Coronado, M. E.; Gamboa de Buen, A.; Baskin, J. M.; Baskin, C. C.
2007-01-01
Background and Aims There is considerable confusion in the literature concerning impermeability of seeds with ‘hard’ seed coats, because the ability to take up (imbibe) water has not been tested in most of them. Seeds of Opuntia tomentosa were reported recently to have a water-impermeable seed coat sensu lato (i.e. physical dormancy), in combination with physiological dormancy. However, physical dormancy is not known to occur in Cactaceae. Therefore, the aim of this study was to determine if seeds of O. tomentosa are water-permeable or water-impermeable, i.e. if they have physical dormancy. Methods The micromorphology of the seed coat and associated structures were characterized by SEM and light microscopy. Permeability of the seed-covering layers was assessed by an increase in mass of seeds on a wet substrate and by dye-tracking and uptake of tritiated water by intact versus scarified seeds. Key Results A germination valve and a water channel are formed in the hilum–micropyle region during dehydration and ageing in seeds of O. tomentosa. The funicular envelope undoubtedly plays a role in germination of Opuntia seeds via restriction of water uptake and mechanical resistance to expansion of the embryo. However, seeds do not exhibit any of three features characteristic of those with physical dormancy. Thus, they do not have a water-impermeable layer(s) of palisade cells (macrosclereids) or a water gap sensu stricto and they imbibe water without the seed coat being disrupted. Conclusions Although dormancy in seeds of this species can be broken by scarification, they have physiological dormancy only. Further, based on information in the literature, it is concluded that it is unlikely that any species of Opuntia has physical dormancy. This is the first integrative study of the anatomy, dynamics of water uptake and dormancy in seeds of Cactaceae subfamily Opuntioideae. PMID:17298989
Strong early seed-specific gene regulatory region
Broun, Pierre; Somerville, Chris
1999-01-01
Nucleic acid sequences and methods for their use are described which provide for early seed-specific transcription, in order to modulate or modify expression of foreign or endogenous genes in seeds, particularly embryo cells. The method finds particular use in conjunction with modifying fatty acid production in seed tissue.
Strong early seed-specific gene regulatory region
Broun, Pierre; Somerville, Chris
2002-01-01
Nucleic acid sequences and methods for their use are described which provide for early seed-specific transcription, in order to modulate or modify expression of foreign or endogenous genes in seeds, particularly embryo cells. The method finds particular use in conjunction with modifying fatty acid production in seed tissue.
Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan
2013-07-01
Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil concentration with no significant impact on seed protein concentration.
Chao, Hongbo; Wang, Hao; Wang, Xiaodong; Guo, Liangxing; Gu, Jianwei; Zhao, Weiguo; Li, Baojun; Chen, Dengyan; Raboanatahiry, Nadia; Li, Maoteng
2017-01-01
High-density linkage maps can improve the precision of QTL localization. A high-density SNP-based linkage map containing 3207 markers covering 3072.7 cM of the Brassica napus genome was constructed in the KenC-8 × N53-2 (KNDH) population. A total of 67 and 38 QTLs for seed oil and protein content were identified with an average confidence interval of 5.26 and 4.38 cM, which could explain up to 22.24% and 27.48% of the phenotypic variation, respectively. Thirty-eight associated genomic regions from BSA overlapped with and/or narrowed the SOC-QTLs, further confirming the QTL mapping results based on the high-density linkage map. Potential candidates related to acyl-lipid and seed storage underlying SOC and SPC, respectively, were identified and analyzed, among which six were checked and showed expression differences between the two parents during different embryonic developmental periods. A large primary carbohydrate pathway based on potential candidates underlying SOC- and SPC-QTLs, and interaction networks based on potential candidates underlying SOC-QTLs, was constructed to dissect the complex mechanism based on metabolic and gene regulatory features, respectively. Accurate QTL mapping and potential candidates identified based on high-density linkage map and BSA analyses provide new insights into the complex genetic mechanism of oil and protein accumulation in the seeds of rapeseed. PMID:28393910
Dispersal and Germination Patterns of Monterey Spineflower at Fort Ord Natural Reserve.
NASA Astrophysics Data System (ADS)
Chaudhry, Z.
2014-12-01
Some species are rare because they are restricted to certain habitats and/or have small population sizes. Monterey spineflower, a federally listed threatened annual plant, is found in open sandy regions of the California coast, in chaparral vegetation around the Monterey Bay. A model based on previous research suggests that the Monterey spineflower population at Fort Ord Natural Reserve should be rapidly increasing, but it is not. This suggests that the model may be using data that overestimates the percentage of spineflower seeds that successfully germinate. I tested three hypotheses to determine the cause of the difference in population sizes between the predicted model and the field results. First, I predicted that the spineflower seeds are blown by the wind into shrubs such as manzanita, and are unable to germinate due to the lack of a suitable environment. I tested this in two ways. A field experiment showed that seeds are easily blow by wind. Next, I took soil cores and found spineflower seeds within the manzanita shrubs. Secondly, I predicted that the germination rate used by the model (90%) was too high. However, my germination experiments did not support this hypothesis because 91% of new seeds successfully germinated. Lastly, I predicted that the newer seeds are more viable than older seeds and therefore have a higher chance of successfully germinating. After germinating seeds in a controlled environment I observed that the seeds from 2014 had a higher number of successfully germinated seeds compared to the number of successfully germinated seeds from 1995 (91% vs 33%). I conclude that the loss of seeds due to wind decreases germination expectancies and older seeds are less viable than new seeds. Therefore, Monterey spineflower is a rare plant because environmental barriers hinder seeds from dispersing to a suitable habitat and successfully germinating while seeds lose viability as they age.
Jin, Ying-Hua; Zhou, Dao-Wei; Qin, Li-Jie
2012-10-01
Under the background of global climate change, the climate in semiarid region of west Jilin Province changed greatly, producing a profound impact on the corn production in this region. In this study, the corn seeds were under three treatments (accelerating germination at 10 and 25 degrees C, and dry seeds), and a field experiment with early sowing and traditional sowing was conducted in 2008 to investigate the effects of early sowing these seeds on the seedling emergence, growth, and yield, and compare the effects of early sowing and traditional sowing dates on the corn production and yield. In 1961-2010, the first day of the growth season of corn in semiarid region of west Jilin Province was advanced, the air temperature increased significantly, and the precipitation displayed a decreasing trend. At present, the corn sowing date in this region could be advanced to 11th, April. Accelerating germination at 10 degrees C, directly sowing dry seeds, and bed-irrigation sowing all benefited the seedling emergence and cold resistance of early-sown seeds, and the corn plant height and leaf area under early sowing were significantly higher, with the yield increased by 35% - 48%, compared with those under traditional sowing.
Frugivory by the fish Brycon hilarii (Characidae) in western Brazil
NASA Astrophysics Data System (ADS)
Reys, Paula; Sabino, José; Galetti, Mauro
2009-01-01
Frugivory and seed dispersal have been poorly studied in Neotropical freshwater fishes. We studied frugivory and seed dispersal by the piraputanga fish ( Brycon hilarii, Characidae) in the Formoso River, Bonito, western Brazil. We examined the stomach contents of 87 fish and found the diet of piraputanga consisted of 24% animal prey (arthropods, snails, and vertebrates), 31% seeds/fruits and 45% other plant material (algae/macrophytes/leaves/flowers). The piraputangas fed on 12 fruit species, and were considered as seed dispersers of eight species. Fruits with soft seeds larger than 10 mm were triturated, but all species with small seeds (e.g. Ficus, Psidium) and one species with large hard seed ( Chrysophyllum gonocarpum) were dispersed. Piraputangas eat more fruits in the dry season just before the migration, but not during the spawning season. Fish length had a positive relation with the presence of fruits in their guts. The gallery forest of the Formoso River apparently does not have any plant species that depend exclusively on B. hilarii for seed dispersal because all fruit species are also dispersed by birds and mammals. Based on seed size and husk hardness of the riparian plant community of Formoso River, however, the piraputangas may potentially disperse at least 50% of the riparian fleshy fruit species and may be particularly important for long-distance dispersal. Therefore, overfishing or other anthropogenic disturbances to the populations of piraputanga may have negative consequences for the riparian forests in this region.
Regional and seasonal analyses of weights in growing Angus cattle.
Bradford, H L; Fragomeni, B O; Bertrand, J K; Lourenco, D A L; Misztal, I
2016-10-01
This study evaluated the impact of region and season on growth in Angus seed stock. To assess geographic differences, the United States was partitioned into 9 regions based on similar climate and topography related to cow-calf production. Seasonal effects were associated with the month that animals were weighed. The American Angus Association provided growth data, and records were assigned to regions based on the owner's zip code. Most Angus cattle were in the Cornbelt, Lower Plains, Rocky Mountain, Upper Plains, and Upper South regions, with proportionally fewer Angus in Texas compared with the national cow herd. Most calves were born in the spring, especially February and March. Weaning weights (WW; = 49,886) and yearling weights (YW; = 45,168) were modeled with fixed effects of age-of-dam class (WW only), weigh month, region, month-region interaction, and linear covariate of age. Random effects included contemporary group nested within month-region combination and residual. The significant month-region interaction ( < 0.0001) was expected because of the diverse production environments across the country and cyclical fluctuations in forage availability. Additionally, significant seasonal contrasts existed for several regions. Fall-born calves were heavier ( < 0.01) than spring-born calves in the hot and humid Lower South region coinciding with fall being the primary calving season. The North and Upper Plains regions had heavier, spring-born calves ( < 0.01), more than 90% spring calving, and colder climates. Interestingly, no seasonal WW or YW differences existed between spring- and fall-born calves in the upper South region despite challenging environmental conditions. Angus seed stock producers have used calving seasons to adapt to the specific environmental conditions in their regions and to optimize growth in young animals.
Selinger, David A.; Chandler, Vicki L.
2001-01-01
The maize (Zea mays) b1 gene encodes a transcription factor that regulates the anthocyanin pigment pathway. Of the b1 alleles with distinct tissue-specific expression, B-Peru and B-Bolivia are the only alleles that confer seed pigmentation. B-Bolivia produces variable and weaker seed expression but darker, more regular plant expression relative to B-Peru. Our experiments demonstrated that B-Bolivia is not expressed in the seed when transmitted through the male. When transmitted through the female the proportion of kernels pigmented and the intensity of pigment varied. Molecular characterization of B-Bolivia demonstrated that it shares the first 530 bp of the upstream region with B-Peru, a region sufficient for seed expression. Immediately upstream of 530 bp, B-Bolivia is completely divergent from B-Peru. These sequences share sequence similarity to retrotransposons. Transient expression assays of various promoter constructs identified a 33-bp region in B-Bolivia that can account for the reduced aleurone pigment amounts (40%) observed with B-Bolivia relative to B-Peru. Transgenic plants carrying the B-Bolivia promoter proximal region produced pigmented seeds. Similar to native B-Bolivia, some transgene loci are variably expressed in seeds. In contrast to native B-Bolivia, the transgene loci are expressed in seeds when transmitted through both the male and female. Some transgenic lines produced pigment in vegetative tissues, but the tissue-specificity was different from B-Bolivia, suggesting the introduced sequences do not contain the B-Bolivia plant-specific regulatory sequences. We hypothesize that the chromatin context of the B-Bolivia allele controls its epigenetic seed expression properties, which could be influenced by the adjacent highly repeated retrotransposon sequence. PMID:11244116
Current seed orchard techniques and innovations
Lawrence K. Miller; Jeffrey DeBell
2013-01-01
As applied forest tree improvement programs in the US Northwest move forward into the third cycle, seed orchards remain as the primary source of genetically improved forest tree seed used for reforestation. The vast majority of seed orchards in this region are coastal Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), consistent with the high economic importance of...
Soil seed-bank composition reveals the land-use history of calcareous grasslands
NASA Astrophysics Data System (ADS)
Karlík, Petr; Poschlod, Peter
2014-07-01
We compared soil seed banks and vegetation of recent (established on abandoned arable fields) and ancient (continuously managed as pastures at least since 1830) calcareous grasslands if there is any impact of former arable field use. The study was carried out in two regions of Southern Germany with well-preserved dry grassland vegetation: the western Jurassic mountains (Kaltes Feld) and the climatically drier eastern part of Southern Germany (Kallmünz). Total number of species in the seed bank was similar in both regions, but species composition partly differed, reflecting phytogeographical differences between the regions. The total number of emerged seedlings showed a large disparity (5457 compared to 2523 seedlings/m2 in Kaltes Feld and Kallmünz, respectively). Though there were differences in seed bank composition and size, we found a uniform pattern of plant traits (affiliation to phytosociological groups, Raunkiaer plant life-forms and seed longevity), which depended on the age of the grassland. The main conclusion is that seed banks in contemporary calcareous grasslands still reflect the history of former land use - in this case arable cultivation, even though it occurred a long time ago (up to 150 years). Indicators of former arable fields are germinable seeds of weeds which have persisted in the soil to the present. By contrast, weedy species are completely absent from the seed banks of ancient grasslands. Soil seed banks of recent grasslands may be of substantial conservation importance because they may store seeds of rare and endangered weed species such as Kickxia spuria, Silene noctiflora and Stachys annua, the majority of which have already gone extinct from the current vegetation of the study sites.
NASA Astrophysics Data System (ADS)
Jiao, Juying; Han, Luyan; Jia, Yanfeng; Wang, Ning; Lei, Dong; Li, Linyu
2011-09-01
Seed removal by water erosion may explain the sparse vegetation cover in systems like the Chinese Loess Plateau, which is characterized by severe soil erosion. The seeds from 16 species found on the plateau were examined in relation to the likelihood of their removal by erosion, as tested by rainfall simulation experiments. The experiments were performed over 1-m 2 plots with slopes of 10°, 15°, 20° and 25° for 60 min at intensities of 50 mm h -1, 100 mm h -1 and 150 mm h -1, respectively. Seed loss occurred at simulated rainfall intensities of 100 mm h -1 and 150 mm h -1, with total seed loss rates of 26-33% and 59-67%, respectively. Most seeds were displaced, even at 50 mm h -1. The degrees of seed loss and displacement varied among species. These data, in combination with data from our former research on propagule, seedling and population development in these species, indicate that the species with high seed loss rates either compensate by having a soil seed bank that produces seedlings during the growing season or reproduce by vegetative propagation; the species with no seed loss are still sparsely distributed. Seed germination and seedling survival seem to be more important than seed loss in determining establishment in these regions of the Loess Plateau. Seed translocation by water erosion, however, contributes to the observed distribution of vegetation in this geographic region.
Nonequilibrium free diffusion in seed leachate
NASA Astrophysics Data System (ADS)
Ortiz G., Luis; Riquelme P., Pablo; Guzmán, R.
2013-11-01
In this work, we use a Schlieren-like Near Field Scattering (SNFS) setup to study nonequilibrium free diffusion behavior of a colloidal solution obtained from seeds leachate. The main objective is to compare the temporal behavior of the diffusion coefficient of seed leachate with an electric conductivity based vigor test. SNFS sizing measurements, based on Mie theory, were carried out to ensure its reliability and sensitivity. Then, we performed a typical nonequilibrium free diffusion experiment of a glycerol-water mixture. In this way, we confirmed that SNFS setup is sensitive to giant concentration fluctuations of nanocolloidal solutions. The results obtained in this stage reproduce properly the data reported elsewhere in literature. Moreover, seed leachate diffuse, in water, in a similar way that glycerol does. In both cases we used the same method (dynamic structure factor) to determine thermo-physical properties. We show that time evolution of diffusion coefficient of Lupinus Albus leachate exhibits three defined regimes as electric conductivity measurements. The results also exhibit a correspondence between the behavior of the diffusion coefficient and electric conductivity values of the two regions in the temporal range studied. Finally, we discuss biological processes involved in germination that could modulate this dependence, and the role played by the electrolytic nature of solutes.
Rzepa, Ewelina; Tudge, Luke; McCabe, Ciara
2015-09-10
The cannabinoid cannabinoid type 1 (CB1) neutral antagonist tetrahydrocannabivarin (THCv) has been suggested as a possible treatment for obesity, but without the depressogenic side-effects of inverse antagonists such as Rimonabant. However, how THCv might affect the resting state functional connectivity of the human brain is as yet unknown. We examined the effects of a single 10mg oral dose of THCv and placebo in 20 healthy volunteers in a randomized, within-subject, double-blind design. Using resting state functional magnetic resonance imaging and seed-based connectivity analyses, we selected the amygdala, insula, orbitofrontal cortex, and dorsal medial prefrontal cortex (dmPFC) as regions of interest. Mood and subjective experience were also measured before and after drug administration using self-report scales. Our results revealed, as expected, no significant differences in the subjective experience with a single dose of THCv. However, we found reduced resting state functional connectivity between the amygdala seed region and the default mode network and increased resting state functional connectivity between the amygdala seed region and the dorsal anterior cingulate cortex and between the dmPFC seed region and the inferior frontal gyrus/medial frontal gyrus. We also found a positive correlation under placebo for the amygdala-precuneus connectivity with the body mass index, although this correlation was not apparent under THCv. Our findings are the first to show that treatment with the CB1 neutral antagonist THCv decreases resting state functional connectivity in the default mode network and increases connectivity in the cognitive control network and dorsal visual stream network. This effect profile suggests possible therapeutic activity of THCv for obesity, where functional connectivity has been found to be altered in these regions. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Processing of Brassica seeds for feedstock in biofuels production
USDA-ARS?s Scientific Manuscript database
Several Brassica species are currently being evaluated to develop regionalized production systems based on their suitability to the environment and with the prevailing practices of growing commodity food crops like wheat, corn, and soybeans. This integrated approach to farming will provide high qual...
NASA Astrophysics Data System (ADS)
Ceccarelli, C.; Caselli, P.; Fontani, F.; Neri, R.; López-Sepulcre, A.; Codella, C.; Feng, S.; Jiménez-Serra, I.; Lefloch, B.; Pineda, J. E.; Vastel, C.; Alves, F.; Bachiller, R.; Balucani, N.; Bianchi, E.; Bizzocchi, L.; Bottinelli, S.; Caux, E.; Chacón-Tanarro, A.; Choudhury, R.; Coutens, A.; Dulieu, F.; Favre, C.; Hily-Blant, P.; Holdship, J.; Kahane, C.; Jaber Al-Edhari, A.; Laas, J.; Ospina, J.; Oya, Y.; Podio, L.; Pon, A.; Punanova, A.; Quenard, D.; Rimola, A.; Sakai, N.; Sims, I. R.; Spezzano, S.; Taquet, V.; Testi, L.; Theulé, P.; Ugliengo, P.; Vasyunin, A. I.; Viti, S.; Wiesenfeld, L.; Yamamoto, S.
2017-12-01
Complex organic molecules have been observed for decades in the interstellar medium. Some of them might be considered as small bricks of the macromolecules at the base of terrestrial life. It is hence particularly important to understand organic chemistry in Solar-like star-forming regions. In this article, we present a new observational project: Seeds Of Life In Space (SOLIS). This is a Large Project using the IRAM-NOEMA interferometer, and its scope is to image the emission of several crucial organic molecules in a sample of Solar-like star-forming regions in different evolutionary stages and environments. Here we report the first SOLIS results, obtained from analyzing the spectra of different regions of the Class 0 source NGC 1333-IRAS4A, the protocluster OMC-2 FIR4, and the shock site L1157-B1. The different regions were identified based on the images of formamide (NH2CHO) and cyanodiacetylene (HC5N) lines. We discuss the observed large diversity in the molecular and organic content, both on large (3000-10,000 au) and relatively small (300-1000 au) scales. Finally, we derive upper limits to the methoxy fractional abundance in the three observed regions of the same order of magnitude of that measured in a few cold prestellar objects, namely ˜ {10}-12-10-11 with respect to H2 molecules. Based on observations carried out under project number L15AA with the IRAM-NOEMA interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).
Bai, Yuguang; Liu, Huifang; Niu, Xueli; Wang, Zhiwei; Wang, Qian
2016-01-01
The success of a biological invasion relies on the environment and is closely linked to factors such as water and temperature. Invasive plant species display different seed characteristics, including shape. Field sandbur (Cenchrus pauciflorus) is a globally widespread invasive species capable of adapting to broad environmental conditions. However, its germination response to water and temperature still remains unclear. C. pauciflorus contains two seeds in the same bur that differ in size: big seeds (M) and small seeds (P). Separate greenhouse experiments were conducted under different temperature regimes (0/10°C, 5/15°C, 10/20°C, 15/25°C, 18/28°C, 20/30°C and 25/35°C) and water potentials (-1.50Mpa, -1.00Mpa, -0.75Mpa, -0.50Mpa, -0.25Mpa and 0Mpa) for M and P seeds. The results support the hypothesis that germination of C. pauciflorus is significantly influenced by seed type, temperature and water potential. M and P seeds responded differently to varied alternative temperatures and water potentials. However, M and P seeds were more sensitive to water potential than to temperature. Optimal conditions for M and P seed germination were measured at 25/35°C (night temperature/day temperature) and 20/30°C, respectively. In contrast, the highest germination rate was observed for the 0Mpa of the water potential treatment. Additionally, base temperature (Tbase) and base water potential (Wbase) were lower for M (7.7°C, -1.11Mpa at 10/20°C, and -1.07Mpa at 20/30°C) than for P (9.4°C, -0.92Mpa at 10/20°C, and -0.52Mpa at 20/30°C). These different germination strategies of M and P seeds with respect to temperature and water potential increased overall plant propagation. These results indicate that tropical and subtropical regions water potentials beyond -0.50Mpa (10/20°C) or -1.00Mpa (20/30°C) face a potential risk of C. pauciflorus invasion. PMID:27992496
Zhang, Zhixin; Tian, Xun; Bai, Yuguang; Liu, Huifang; Niu, Xueli; Wang, Zhiwei; Wang, Qian
2016-01-01
The success of a biological invasion relies on the environment and is closely linked to factors such as water and temperature. Invasive plant species display different seed characteristics, including shape. Field sandbur (Cenchrus pauciflorus) is a globally widespread invasive species capable of adapting to broad environmental conditions. However, its germination response to water and temperature still remains unclear. C. pauciflorus contains two seeds in the same bur that differ in size: big seeds (M) and small seeds (P). Separate greenhouse experiments were conducted under different temperature regimes (0/10°C, 5/15°C, 10/20°C, 15/25°C, 18/28°C, 20/30°C and 25/35°C) and water potentials (-1.50Mpa, -1.00Mpa, -0.75Mpa, -0.50Mpa, -0.25Mpa and 0Mpa) for M and P seeds. The results support the hypothesis that germination of C. pauciflorus is significantly influenced by seed type, temperature and water potential. M and P seeds responded differently to varied alternative temperatures and water potentials. However, M and P seeds were more sensitive to water potential than to temperature. Optimal conditions for M and P seed germination were measured at 25/35°C (night temperature/day temperature) and 20/30°C, respectively. In contrast, the highest germination rate was observed for the 0Mpa of the water potential treatment. Additionally, base temperature (Tbase) and base water potential (Wbase) were lower for M (7.7°C, -1.11Mpa at 10/20°C, and -1.07Mpa at 20/30°C) than for P (9.4°C, -0.92Mpa at 10/20°C, and -0.52Mpa at 20/30°C). These different germination strategies of M and P seeds with respect to temperature and water potential increased overall plant propagation. These results indicate that tropical and subtropical regions water potentials beyond -0.50Mpa (10/20°C) or -1.00Mpa (20/30°C) face a potential risk of C. pauciflorus invasion.
Using rare earth elements for the identification of the geographic origin of food
NASA Astrophysics Data System (ADS)
Meisel, T.; Bandoniene, D.; Joebstl, D.
2009-04-01
The European Union defined regimes within the Protected Geographical Status (PGS) framework to protect names of regional food specialities. Thus only food produced in a specific geographical area with a specific way of production or quality can be protected by a protected geographical indication (PGI) label. As such Styrian Pumpkin Seed Oil has been approved with this label, but as with many other high priced regional specialities, fraud cannot be excluded or nor identified. Thus the aim of this work is, to develop an analytical method for the control of the geographic origin of pumpkin seed oil and also to test the method for other protected products. The development of such a method is not only of interest for scientists, but also of importance for the consumer wanting to know the origin of the food products and the assurance of the purity and quality. The group of rare earth elements (REE) in plants also have a characteristic distribution pattern similar to upper crustal REE distributions. Since the REE concentrations are extremely low in pumpkin seed oil (ppt to low ppb), ICP-MS was the only sensitive tool able to produce validated results. The carrier of the REE are most likely small particles distributed within the pumpkin seed oil. Unlike, e.g., olive oil, pumpkin seed oil is bottled and sold unfiltered, which makes this Styrian speciality an interesting sampling target. As pumpkin seed oils from different geographic origin show variable trace element and rare earth distribution patterns, is should possible to trace the origin of these oils. In the current project pumpkin seeds from different regions in Austria and from abroad were sampled. The trace element patterns in the extracted oil of these seeds were determined and a preliminary classification with discriminate analysis was successfully done on a statistical basis. In addition to the study of the geographic origin it was demonstrated that REE distribution patterns can also be used for the identification of adulteration of high priced pumpkin seed oil with cheap neutral tasting refined oils. Interestingly enough, the variations of the REE patterns between oils from different regions are much more pronounced than their host soils. Thus we assume that microbiological processes in the rhizosphere are in control of the REE uptake into the plant. Regional variations of the microbiological composition of the soils and probably not only a priori the bulk soil composition of the minerals in the soil are the cause of the regional variations making it possible to identify the geographic origin of pumpkin seeds and as a consequence the pumpkin seed oil.
Simmons, H.E.; Dunham, J.P.; Zinn, K. E.; Munkvold, G.P.; Holmes, E.C.; Stephenson, A.G.
2013-01-01
The role played by seed transmission in the evolution and epidemiology of viral crop pathogens remains unclear. We determined the seed infection and vertical transmission rates of zucchini yellow mosaic virus (ZYMV), in addition to undertaking Illumina sequencing of nine vertically transmitted ZYMV populations. We previously determined the seed-to-seedling transmission rate of ZYMV in Cucurbita pepo ssp. texana (a wild gourd) to be 1.6%, and herein observed a similar rate (1.8%) in the subsequent generation. We also observed that the seed infection rate is substantially higher (21.9%) than the seed-to-seedling transmission rate, suggesting that a major population bottleneck occurs during seed germination and seedling growth. In contrast, that two thirds of the variants present in the horizontally transmitted inoculant population were also present in the vertically transmitted populations implies that the bottleneck at vertical transmission may not be particularly severe. Strikingly, all of the vertically infected plants were symptomless in contrast to those infected horizontally, suggesting that vertical infection may be cryptic. Although no known virulence determining mutations were observed in the vertically infected samples, the 5’ untranslated region was highly variable, with at least 26 different major haplotypes in this region compared to the two major haplotypes observed in the horizontally transmitted population. That the regions necessary for vector transmission are retained in the vertically infected populations, combined with the cryptic nature of vertical infection, suggests that seed transmission may be a significant contributor to the spread of ZYMV. PMID:23845301
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesperance, Marielle; Martinov, M.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca
Purpose: To investigate dosimetry for ocular brachytherapy for a range of eye plaque models containing{sup 103}Pd, {sup 125}I, or {sup 131}Cs seeds with model-based dose calculations. Methods: Five representative plaque models are developed based on a literature review and are compared to the standardized COMS plaque, including plaques consisting of a stainless steel backing and acrylic insert, and gold alloy backings with: short collimating lips and acrylic insert, no lips and silicone polymer insert, no lips and a thin acrylic layer, and individual collimating slots for each seed within the backing and no insert. Monte Carlo simulations are performed usingmore » the EGSnrc user-code BrachyDose for single and multiple seed configurations for the plaques in water and within an eye model (including nonwater media). Simulations under TG-43 assumptions are also performed, i.e., with the same seed configurations in water, neglecting interseed and plaque effects. Maximum and average doses to ocular structures as well as isodose contours are compared for simulations of each radionuclide within the plaque models. Results: The presence of the plaque affects the dose distribution substantially along the plaque axis for both single seed and multiseed simulations of each plaque design in water. Of all the plaque models, the COMS plaque generally has the largest effect on the dose distribution in water along the plaque axis. Differences between doses for single and multiple seed configurations vary between plaque models and radionuclides. Collimation is most substantial for the plaque with individual collimating slots. For plaques in the full eye model, average dose in the tumor region differs from those for the TG-43 simulations by up to 10% for{sup 125}I and {sup 131}Cs, and up to 17% for {sup 103}Pd, and in the lens region by up to 29% for {sup 125}I, 34% for {sup 103}Pd, and 28% for {sup 131}Cs. For the same prescription dose to the tumor apex, the lowest doses to critical ocular structures are generally delivered with plaques containing {sup 103}Pd seeds. Conclusions: The combined effects of ocular and plaque media on dose are significant and vary with plaque model and radionuclide, suggesting the importance of model-based dose calculations employing accurate ocular and plaque media and geometries for eye plaque brachytherapy.« less
Provisional tree seed zones and transfer guidelines for Alaska.
John N. Alden
1991-01-01
Four hundred and eighty-six provisional tree seed zones were delineated within 24 physiographic and climatic regions of Alaska and western Yukon Territory Estimated forest and potential forest land within altitudinal limits of tree species in Alaska was 51,853,000 hectares (128,130,000 acres) Seed transfer guidelines and standard labeling of seed collections are...
USDA-ARS?s Scientific Manuscript database
Dry bean (Phaseolus vulgaris L.) seeds are a major protein, carbohydrate, and mineral source for human diets in multiple regions of the world. Seed mineral biofortification is an going objective to improve this important food source. The objective of this research was to assess the seed mineral co...
Flower production on clonal orchards at Oconto River Seed Orchard in Wisconsin
J.G. Murphy; R.G. Miller
1977-01-01
The Eastern Region, USDA Forest Service has been establishing and managing seed orchards to produce improved seed for the National Forests in the Lake States since 1969. This paper presents a review of the female flower production for the past 4 years in the white pine, white spruce, and black spruce clonal seed orchards.
Mammogram segmentation using maximal cell strength updation in cellular automata.
Anitha, J; Peter, J Dinesh
2015-08-01
Breast cancer is the most frequently diagnosed type of cancer among women. Mammogram is one of the most effective tools for early detection of the breast cancer. Various computer-aided systems have been introduced to detect the breast cancer from mammogram images. In a computer-aided diagnosis system, detection and segmentation of breast masses from the background tissues is an important issue. In this paper, an automatic segmentation method is proposed to identify and segment the suspicious mass regions of mammogram using a modified transition rule named maximal cell strength updation in cellular automata (CA). In coarse-level segmentation, the proposed method performs an adaptive global thresholding based on the histogram peak analysis to obtain the rough region of interest. An automatic seed point selection is proposed using gray-level co-occurrence matrix-based sum average feature in the coarse segmented image. Finally, the method utilizes CA with the identified initial seed point and the modified transition rule to segment the mass region. The proposed approach is evaluated over the dataset of 70 mammograms with mass from mini-MIAS database. Experimental results show that the proposed approach yields promising results to segment the mass region in the mammograms with the sensitivity of 92.25% and accuracy of 93.48%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N Liu; P Yu
2011-12-31
The objective of this study was to use molecular spectral analyses with the diffuse reflectance Fourier transform infrared spectroscopy (DRIFT) bioanlytical technique to study carbohydrate conformation features, molecular clustering and interrelationships in hull and seed among six barley cultivars (AC Metcalfe, CDC Dolly, McLeod, CDC Helgason, CDC Trey, CDC Cowboy), which had different degradation kinetics in rumen. The molecular structure spectral analyses in both hull and seed involved the fingerprint regions of ca. 1536-1484 cm{sup -1} (attributed mainly to aromatic lignin semicircle ring stretch), ca. 1293-1212 cm{sup -1} (attributed mainly to cellulosic compounds in the hull), ca. 1269-1217 cm{sup -1}more » (attributed mainly to cellulosic compound in the seeds), and ca. 1180-800 cm{sup -1} (attributed mainly to total CHO C-O stretching vibrations) together with an agglomerative hierarchical cluster (AHCA) and principal component spectral analyses (PCA). The results showed that the DRIFT technique plus AHCA and PCA molecular analyses were able to reveal carbohydrate conformation features and identify carbohydrate molecular structure differences in both hull and seeds among the barley varieties. The carbohydrate molecular spectral analyses at the region of ca. 1185-800 cm{sup -1} together with the AHCA and PCA were able to show that the barley seed inherent structures exhibited distinguishable differences among the barley varieties. CDC Helgason had differences from AC Metcalfe, MeLeod, CDC Cowboy and CDC Dolly in carbohydrate conformation in the seed. Clear molecular cluster classes could be distinguished and identified in AHCA analysis and the separate ellipses could be grouped in PCA analysis. But CDC Helgason had no distinguished differences from CDC Trey in carbohydrate conformation. These carbohydrate conformation/structure difference could partially explain why the varieties were different in digestive behaviors in animals. The molecular spectroscopy technique used in this study could also be used for other plant-based feed and food structure studies.« less
Benedict, John C; Smith, Selena Y; Specht, Chelsea D; Collinson, Margaret E; Leong-Škorničková, Jana; Parkinson, Dilworth Y; Marone, Federica
2016-01-01
Phenotypic variation can be attributed to genetic heritability as well as biotic and abiotic factors. Across Zingiberales, there is a high variation in the number of species per clade and in phenotypic diversity. Factors contributing to this phenotypic variation have never been studied in a phylogenetic or ecological context. Seeds of 166 species from all eight families in Zingiberales were analyzed for 51 characters using synchrotron based 3D X-ray tomographic microscopy to determine phylogenetically informative characters and to understand the distribution of morphological disparity within the order. All families are distinguishable based on seed characters. Non-metric multidimensional scaling analyses show Zingiberaceae occupy the largest seed morphospace relative to the other families, and environmental analyses demonstrate that Zingiberaceae inhabit both temperate and tropical regions, while other Zingiberales are almost exclusively tropical. Temperate species do not cluster in morphospace nor do they share a common suite of character states. This suggests that the diversity seen is not driven by adaptation to temperate niches; rather, the morphological disparity seen likely reflects an underlying genetic plasticity that allowed Zingiberaceae to repeatedly colonize temperate environments. The notable morphoanatomical variety in Zingiberaceae seeds may account for their extraordinary ecological success and high species diversity as compared to other Zingiberales. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.
A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea
Kujur, Alice; Bajaj, Deepak; Upadhyaya, Hari D.; Das, Shouvik; Ranjan, Rajeev; Shree, Tanima; Saxena, Maneesha S.; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C.L.L.; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.
2015-01-01
We identified 44844 high-quality SNPs by sequencing 92 diverse chickpea accessions belonging to a seed and pod trait-specific association panel using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays. A GWAS (genome-wide association study) in an association panel of 211, including the 92 sequenced accessions, identified 22 major genomic loci showing significant association (explaining 23–47% phenotypic variation) with pod and seed number/plant and 100-seed weight. Eighteen trait-regulatory major genomic loci underlying 13 robust QTLs were validated and mapped on an intra-specific genetic linkage map by QTL mapping. A combinatorial approach of GWAS, QTL mapping and gene haplotype-specific LD mapping and transcript profiling uncovered one superior haplotype and favourable natural allelic variants in the upstream regulatory region of a CesA-type cellulose synthase (Ca_Kabuli_CesA3) gene regulating high pod and seed number/plant (explaining 47% phenotypic variation) in chickpea. The up-regulation of this superior gene haplotype correlated with increased transcript expression of Ca_Kabuli_CesA3 gene in the pollen and pod of high pod/seed number accession, resulting in higher cellulose accumulation for normal pollen and pollen tube growth. A rapid combinatorial genome-wide SNP genotyping-based approach has potential to dissect complex quantitative agronomic traits and delineate trait-regulatory genomic loci (candidate genes) for genetic enhancement in crop plants, including chickpea. PMID:26058368
Walsh, Erin; Carl, Hannah; Eisenlohr-Moul, Tory; Minkel, Jared; Crowther, Andrew; Moore, Tyler; Gibbs, Devin; Petty, Chris; Bizzell, Josh; Smoski, Moria J; Dichter, Gabriel S
2017-03-01
There are few reliable predictors of response to antidepressant treatments. In the present investigation, we examined pretreatment functional brain connectivity during reward processing as a potential predictor of response to Behavioral Activation Treatment for Depression (BATD), a validated psychotherapy that promotes engagement with rewarding stimuli and reduces avoidance behaviors. Thirty-three outpatients with major depressive disorder (MDD) and 20 matched controls completed two runs of the monetary incentive delay task during functional magnetic resonance imaging after which participants with MDD received up to 15 sessions of BATD. Seed-based generalized psychophysiological interaction analyses focused on task-based connectivity across task runs, as well as the attenuation of connectivity from the first to the second run of the task. The average change in Beck Depression Inventory-II scores due to treatment was 10.54 points, a clinically meaningful response. Groups differed in seed-based functional connectivity among multiple frontostriatal regions. Hierarchical linear modeling revealed that improved treatment response to BATD was predicted by greater connectivity between the left putamen and paracingulate gyrus during reward anticipation. In addition, MDD participants with greater attenuation of connectivity between several frontostriatal seeds, and midline subcallosal cortex and left paracingulate gyrus demonstrated improved response to BATD. These findings indicate that pretreatment frontostriatal functional connectivity during reward processing is predictive of response to a psychotherapy modality that promotes improving approach-related behaviors in MDD. Furthermore, connectivity attenuation among reward-processing regions may be a particularly powerful endophenotypic predictor of response to BATD in MDD.
Seed morphology and variation in the genus Pachycereus (Cactaceae).
Arias, Salvador; Terrazas, Teresa
2004-08-01
Seeds of 13 Pachycereus species and two Stenocereus species that have been suggested as closely related were examined with the scanning electron microscope. Quantitative features were evaluated using multivariate analysis in order to identify characters that distinguish them. Several species groups were recognized on the basis of 16 qualitative characters. All species studied are keeled. Stenocereus aragonii and S. eichlamii share with most Pachycereus species large size, glossy appearance, and a flat relief on periclinal cells in the lateral region. Pachycereus gatesii and P. schottii are unique in having the smallest seeds and a deeply impressed hilum-micropylar region. P. hollianus does not exhibit micro-relief on periclinal walls in the lateral region, and P. fulviceps has no expanded testa border. Multivariate analysis showed that four characters, length, breadth, hilum-micropylar region length, and angle, made the greatest contribution to distinguishing among species groups. More than 80% of P. fulviceps, P. hollianus, P. tepamo, P. weberi, and S. eichlamii seeds could be classified correctly using four seed features and the percentage was even higher using just two or three features for P. gatesii, P. grandis, P. militaris, P. pringlei, and P. schottii. Testa appearance, testa cell-pattern, and position relative to the rim of the hilum-micropylar region were found to be potentially informative and should be combined with other sources of data in future phylogenetic analyses.
Nevill, Paul G; Wallace, Mark J; Miller, Joseph T; Krauss, Siegfried L
2013-11-01
We used DNA barcoding to address an important conservation issue in the Midwest of Western Australia, working on Australia's largest genus of flowering plant. We tested whether or not currently recommended plant DNA barcoding regions (matK and rbcL) were able to discriminate Acacia taxa of varying phylogenetic distances, and ultimately identify an ambiguously labelled seed collection from a mine-site restoration project. Although matK successfully identified the unknown seed as the rare and conservation priority listed A. karina, and was able to resolve six of the eleven study species, this region was difficult to amplify and sequence. In contrast, rbcL was straightforward to recover and align, but could not determine the origin of the seed and only resolved 3 of the 11 species. Other chloroplast regions (rpl32-trnL, psbA-trnH, trnL-F and trnK) had mixed success resolving the studied taxa. In general, species were better resolved in multilocus data sets compared to single-locus data sets. We recommend using the formal barcoding regions supplemented with data from other plastid regions, particularly rpl32-trnL, for barcoding in Acacia. Our study demonstrates the novel use of DNA barcoding for seed identification and illustrates the practical potential of DNA barcoding for the growing discipline of restoration ecology. © 2013 John Wiley & Sons Ltd.
Song, Jie; Feng, Gu; Tian, Changyan; Zhang, Fusuo
2005-09-01
Germination is very important for plant establishment in arid regions. The strategies taken by halophytes during the seed germination stage to adapt to saline environments in an arid zone were investigated in Suaeda physophora (euhalophyte), Haloxylon ammodendron (xero-halophyte) and Haloxylon persicum (xerophyte). Seeds of S. physophora, H. ammodendron and H. persicum were exposed to a range of iso-osmotic NaCl and PEG solutions. Seed germination in, and recovery germination from, high NaCl were recorded. The effects of iso-osmotic NaCl and PEG on seed water uptake and changes in ion content were measured. In addition, the structure of seeds and Na+ distribution in the seed coat and embryos of dry seeds were investigated. The relative increase in fresh weight of germinating seeds was markedly reduced in -2.24 MPa PEG compared with that in -2.24 MPa NaCl, while the opposite trend was found in concentration of K+ during the initial 9 h for all species. Haloxylon ammodendron and S. physophora had a higher recovery germination from -3.13 MPa NaCl compared with H. persicum. Seeds of all species had no endosperm. More Na+ was compartmentalized in the seed coats of the two halophytic species compared with that in the xerophyte H. persicum. The effect of NaCl on seed germination was due to both osmotic stress and ion toxicity for the three species. High soil salinity and a high content of Na+ in seeds may induce more seeds to remain ungerminated in S. physophora and H. ammodendron. Morphological structure and adaptation to salinity during seed germination may determine the geographical distribution of H. ammodendron and S. physophora in certain saline regions.
Species-level phylogeny, fruit evolution and diversification history of Geranium (Geraniaceae).
Marcussen, Thomas; Meseguer, Andrea S
2017-05-01
The cosmopolitan genus Geranium L. (Geraniaceae) consists of c. 350 species distributed in temperate habitats worldwide, with most of its diversity concentrated in the Mediterranean region. Unlike other genera in Geraniaceae, the species of Geranium present contrasting seed discharge syndromes, i.e. the 'Erodium-type' (ET), the 'carpel-projection type' (CP), the 'seed-ejection type' (SE), and the 'inoperative type' (IT), which have been used to delimit major groups within the genus. However, phylogenetic relationships within Geranium are unknown and so is the evolution of the different seed discharge mechanisms. Here, we used a calibrated multispecies coalescent approach to infer the species-level phylogeny and divergence times of the genus based on chloroplast (rbcL, trnL-trnF) and nuclear (ITS) DNA sequences. Our sampling represents most of the morphological variation described in the genus. We reconstruct the evolution of the seed discharge mechanism using ancestral state reconstruction (ASR) techniques on the multispecies coalescent tree, and assess the association between fruit type evolution and species diversification using stochastic birth-death and trait-dependent diversification models. Finally, we reconstruct the early biogeographic history of the genus using discrete and continuous biogeographic analyses of species distribution centroids, including fossil evidence and tip dates. Our results show that fruit type is homoplasious and that the classification based on fruit type in Geranium is artificial. The taxonomy and putative apomorphic characters for Geranium are discussed. ASR of the fruit characters suggests that ET may represent the ancestral state in Geranium and from which CP originated twice, IT presumably once, and SE twice. The independent appearance of the SE syndrome is in both cases associated with increases in diversification rates in the genus. The biogeographic analysis centers the origin and early 10Ma diversification of Geranium on the Mediterranean region. The evolution of seed discharge mechanism about 5Ma might have allowed the species of Geranium to increase in geographic range and to ultimately, diversify. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions.
Huang, Jian; Ji, Feng
2015-07-01
Understanding the effects of climatic change on phenological phases of cotton (Gossypium hirsutum L.) in oasis of arid regions may help optimize management schemes to increase productivity. This study assessed the impacts of climatic changes on the phenological phases and productivity of spring cotton. The results showed that climatic warming led the dates of sowing seed, seeding emergence, three-leaf, five-leaf, budding, anthesis, full bloom, cleft boll, boll-opening, boll-opening filling, and stop-growing become earlier by 24.42, 26.19, 24.75, 23.28, 22.62, 15.75, 14.58, 5.37, 2.85, 8.04, and 2.16 days during the period of 1981-2010, respectively. The growth period lengths from sowing seed to seeding emergence and from boll-opening to boll-opening filling were shortened by 1.76 and 5.19 days, respectively. The other growth period lengths were prolonged by 2-9.71 days. The whole growth period length was prolonged by 22.26 days. The stop-growing date was delayed by 2.49-3.46 days for every 1 °C rise in minimum, maximum, and mean temperatures; however, other development dates emerged earlier by 2.17-4.76 days. Rising temperatures during the stage from seeding emergence to three-leaf reduced seed cotton yields. However, rising temperatures increased seed cotton yields in the two stages from anthesis to cleft boll and from boll-opening filling to the stop-growing. Increasing accumulated temperatures (AT) had different impacts on different development stages. During the vegetative phase, rising AT led to reduced seed cotton yields, but rising AT during reproductive stage increased seed cotton yields. In conclusion, climatic warming helpfully obtained more seed cotton yields in oasis of arid regions in northwest China. Changing the sowing date is another way to enhance yields for climate change in the future.
Ma, Yansong; Tian, Long; Li, Xinxiu; Li, Ying-Hui; Guan, Rongxia; Guo, Yong; Qiu, Li-Juan
2016-01-01
Soybean seed coat exists in a range of colors from yellow, green, brown, black, to bicolor. Classical genetic analysis suggested that soybean seed color was a moderately complex trait controlled by multi-loci. However, only a couple of loci could be detected using a single biparental segregating population. In this study, a combination of association mapping and bulk segregation analysis was employed to identify genes/loci governing this trait in soybean. A total of 14 loci, including nine novel and five previously reported ones, were identified using 176,065 coding SNPs selected from entire SNP dataset among 56 soybean accessions. Four of these loci were confirmed and further mapped using a biparental population developed from the cross between ZP95-5383 (yellow seed color) and NY279 (brown seed color), in which different seed coat colors were further dissected into simple trait pairs (green/yellow, green/black, green/brown, yellow/black, yellow/brown, and black/brown) by continuously developing residual heterozygous lines. By genotyping entire F2 population using flanking markers located in fine-mapping regions, the genetic basis of seed coat color was fully dissected and these four loci could explain all variations of seed colors in this population. These findings will be useful for map-based cloning of genes as well as marker-assisted breeding in soybean. This work also provides an alternative strategy for systematically isolating genes controlling relative complex trait by association analysis followed by biparental mapping. PMID:27404272
Terral, Jean-Frédéric; Tabard, Elidie; Bouby, Laurent; Ivorra, Sarah; Pastor, Thierry; Figueiral, Isabel; Picq, Sandrine; Chevance, Jean-Baptiste; Jung, Cécile; Fabre, Laurent; Tardy, Christophe; Compan, Michel; Bacilieri, Roberto; Lacombe, Thierry; This, Patrice
2010-01-01
Background and Aims In spite of the abundance of archaeological, bio-archaeological, historical and genetic data, the origins, historical biogeography, identity of ancient grapevine cultivars and mechanisms of domestication are still largely unknown. Here, analysis of variation in seed morphology aims to provide accurate criteria for the discrimination between wild grapes and modern cultivars and to understand changes in functional traits in relation to the domestication process. This approach is also used to quantify the phenotypic diversity in the wild and cultivated compartments and to provide a starting point for comparing well-preserved archaeological material, in order to elucidate the history of grapevine varieties. Methods Geometrical analysis (elliptic Fourier transform method) was applied to grapevine seed outlines from modern wild individuals, cultivars and well-preserved archaeological material from southern France, dating back to the first to second centuries. Key Results and Conclusions Significant relationships between seed shape and taxonomic status, geographical origin (country or region) of accessions and parentage of varieties are highlighted, as previously noted based on genetic approaches. The combination of the analysis of modern reference material and well-preserved archaeological seeds provides original data about the history of ancient cultivated forms, some of them morphologically close to the current ‘Clairette’ and ‘Mondeuse blanche’ cultivars. Archaeobiological records seem to confirm the complexity of human contact, exchanges and migrations which spread grapevine cultivation in Europe and in Mediterranean areas, and argue in favour of the existence of local domestication in the Languedoc (southern France) region during Antiquity. PMID:20034966
Wade, Natasha E; Padula, Claudia B; Anthenelli, Robert M; Nelson, Erik; Eliassen, James; Lisdahl, Krista M
2017-12-01
Scant research has been conducted on neural mechanisms underlying stress processing in individuals with alcohol dependence (AD). We examined neural substrates of stress in AD individuals compared with controls using an fMRI task previously shown to induce stress, assessing amygdala functional connectivity to medial prefrontal cortex (mPFC). For this novel pilot study, 10 abstinent AD individuals and 11 controls completed a modified Trier stress task while undergoing fMRI acquisition. The amygdala was used as a seed region for whole-brain seed-based functional connectivity analysis. After controlling for family-wise error (p = 0.05), there was significantly decreased left and right amygdala connectivity with frontal (specifically mPFC), temporal, parietal, and cerebellar regions. Subjective stress, but not craving, increased from pre-to post-task. This study demonstrated decreased connectivity between the amygdala and regions important for stress and emotional processing in long-term abstinent individuals with AD. These results suggest aberrant stress processing in individuals with AD even after lengthy periods of abstinence.
Regulatory sequence of cupin family gene
Hood, Elizabeth; Teoh, Thomas
2017-07-25
This invention is in the field of plant biology and agriculture and relates to novel seed specific promoter regions. The present invention further provide methods of producing proteins and other products of interest and methods of controlling expression of nucleic acid sequences of interest using the seed specific promoter regions.
White pine provenances for Christmas trees in eastern Kentucky and Ohio
Russell S. Walters; Russell S. Walters
1971-01-01
In a study of trees grown from seed obtained from 16 regions throughout the natural range of white pine (Pinus strobus L.), the best Christmas tree qualities were found in trees grown from seed that came from the Appalachian Mountain regions and from lower Michigan.
The USDA Forest Service National Seed Laboratory
Robert P. Karrfalt
2006-01-01
The USDA Forest Service National Seed Laboratory has provided seed technology services to the forest and conservation seed and nursery industry for more than 50 years. This paper briefly traces the labâs evolution from a regional facility concerned principally with southern pines to its newest mission as a national facility working with all native U.S. plants and...
Flowering and seed production in seven hardwood species
Ted J. Grisez
1975-01-01
As forest management has grown more intensive in the cherry-maple and oak forests of the Allegheny region, the need for additional knowledge of the seeding habits of important tree species has become apparent. Reproduction of new stands after cutting depends, to a large extent, on an adequate seed supply. And seeds and friuts represent an important source of food for...
Paleoactaea gen. nov. (Ranunculaceae) fruits from the Paleogene of North Dakota and the London Clay.
Pigg, Kathleen B; Devore, Melanie L
2005-10-01
Paleoactea nagelii Pigg & DeVore gen. et sp. nov. is described for a small, ovoid ranunculaceous fossil fruit from the Late Paleocene Almont and Beicegel Creek floras of North Dakota, USA. Fruits are 5-7 mm wide, 4.5-6 mm high, 10-13 mm long, and bilaterally symmetrical, containing 10-17 seeds attached on the upper margin in 2-3 rows. A distinctive honeycomb pattern is formed where adjacent seeds with prominent palisade outer cell layers abut. Seeds are flattened, ovoid, and triangular. To the inside of the palisade cells, the seed coat has a region of isodiametric cells that become more tangentially elongate toward the center. The embryo cavity is replaced by an opaline cast. This fruit bears a striking resemblance to extant Actaea, the baneberry (Ranunculaceae), an herbaceous spring wildflower of North Temperate regions. A second species, Paleoactaea bowerbanki (Reid & Chandler) Pigg & DeVore nov. comb., is recognized from the Early Eocene London Clay flora, based on a single fruit. This fruit shares most of the organization and structure of P. nagelii but is larger and has a thicker pericarp. This study documents a rare Paleocene occurrence of a member of the buttercup family, a family that is today primarily herbaceous, and demonstrates a North Atlantic connection for an Actaea-like genus in the Paleogene.
NASA Astrophysics Data System (ADS)
Meier-Augenstein, Wolfram; Kemp, Helen; Midwood, Andy
2013-04-01
Styrian Pumpkin Seed Oil is a premium single seed vegetable oil that is uniquely linked to the geographic region of Styria where it is grown and produced. In 1996, the strong regional ties of this typical Styrian speciality were recognised by the EU-Commission who declared "Styrian Pumpkin Seed Oil P.G.I." as a Protected Geographical Indication (article 5 VO(EWG) Nr. 2081/92). In 1998, more than 2,000 domestic pumpkin seed producers and 30 oil mills formed an association of Styrian pumpkin seed oil producers, which is now called the "Gemeinschaft Steirisches Kürbiskernöl g.g.A.". This producers' association was formed in order to protect the regionality and the high quality of Styrian Pumpkin Seed Oil P.G.I. Procedures implemented by this producers' association document every step in the process from pumpkin seeds to seed crushing in oil mills and finally bottling of Styrian Pumpkin Seed Oil P.G.I., keeping a contiguous record of all production steps including annual harvest amounts. This permits full traceability of every bottle of Styrian Pumpkin Seed Oil P.G.I from harvest to the finished, bottled products found on the shelf of delis and even supermarkets. Despite these efforts of the producers' association, there have been repeated claims of g.g.A. (P.G.I.) certified bottles of Styrian Pumpkin Seed Oil (PSO) having been analysed independently and shown to contain either mixtures of Styrian and non-Styrian PSO or no Styrian PSO at all. Since keeping records of annual harvest amounts of pumpkin seeds would make it very difficult for an "over-production" by mixing or substitution of alien PSO's to go unnoticed, we formed the hypothesis that the red-flagged bottles could have been counterfeits containing alien PSO with bottles sporting fake g.g.A. seals and fake serial numbers. An alternative hypothesis was that the chosen method of detection of allegedly misrepresented g.g.A. Styrian PSO resulted in a high number of false negatives thus incorrectly rejecting genuine Styrian PSO as alien PSO and mixtures of Styrian PSO with alien PSO. To investigate the potential of multivariate stable isotope analysis as a means to correctly distinguish between genuine Syrian PSOs and other PSOs, we purchased 13 + 1 PSOs (13 different brands) from high-street and on-line shops. Samples were given alpha-numerical sample IDs and were analysed in a single-blinded fashion. Based on 2H, 13C and 18O abundance values alone sensitivity and specificity were 0.75 (1 false negative; 3 true positives) and 0.86 (1 false positive; 6 true negatives), respectively. However, when combining stable isotope data with trace element data, sensitivity and specificity both improved with no false negatives or false positives being detected. Chemometric statistical analysis clearly separated the 3 g.g.A. certified Styrian PSOs from all but one other PSO, which was also a genuine Styrian PSO in as much as it was pressed from genuine Styrian pumpkin seeds though not by a Styrian oil mill and thus not qualifying for the g.g.A. mark.
Plan and Some Results of "Advanced Study on Precipitation Enhancement in Arid and Semi-Arid Regions"
NASA Astrophysics Data System (ADS)
Murakami, M.
2016-12-01
There are several technologies to secure water resources, including the desalination of seawater, recycling of industrial water and reuse of wastewater. However precipitation enhancement is the only way we can create a large amount of water for industrial use, for example, water for irrigation, provided we find clouds suitable for cloud seeding and apply appropriate and effective methods to increase precipitation. Therefore, rain enhancement research is critical in the quest for new water security options and innovative solutions in the UAE and other arid and semi-arid regions. The main objective of our project is to better evaluate, and ultimately improve, the effectiveness of rain enhancement in the UAE and other arid and semi-arid regions using hygroscopic and glaciogenic seeding techniques. One of the major questions regarding rain enhancement today is the effectiveness of hygroscopic seeding for warm and supercooled convective clouds. Our research will investigate the microphysical processes in seeded and unseeded clouds using a combination of laboratory experiments, numerical simulations and in-situ aircraft measurements in order to decipher the mechanism responsible for precipitation augmentation due to hygroscopic seeding. In our research, major elements of cloud seeding, e.g., assessment of seedability, development of optimal seeding methods and evaluation of seeding effects, will be investigated in the most efficient and realistic way, within three years, using mainly the numerical models with the sophisticated seeding scheme, which is developed on a basis of laboratory experiments and then validated against in-situ and remote sensing observations. In addition to the research plan, the outcomes of the research projects, which will be made available to the public at the end of the project and benefit the broader society, is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, D; Usmani, N; Sloboda, R
The study investigated the movement of implanted brachytherapy seeds upon transrectal US probe removal, providing insight into the underlying prostate deformation and an estimate of the impact on prostate dosimetry. Implanted seed distributions, one obtained with the prostate under probe compression and another with the probe removed, were reconstructed using C-arm fluoroscopy imaging. The prostate, delineated on ultrasound images, was registered to the fluoroscopy images using seeds and needle tracks identified on ultrasound. A deformation tensor and shearing model was developed to correlate probe-induced seed movement with position. Changes in prostate TG-43 dosimetry were calculated. The model was used tomore » infer the underlying prostate deformation and to estimate the location of the prostate surface in the absence of probe compression. Seed movement patterns upon probe removal reflected elastic decompression, lateral shearing, and rectal bending. Elastic decompression was characterized by expansion in the anterior-posterior direction and contraction in the superior-inferior and lateral directions. Lateral shearing resulted in large anterior movement for extra-prostatic seeds in the lateral peripheral region. Whole prostate D90 increased up to 8 Gy, mainly due to the small but systematic seed movement associated with elastic decompression. For selected patients, lateral shearing movement increased prostate D90 by 4 Gy, due to increased dose coverage in the anterior-lateral region at the expense of the posterior-lateral region. The effect of shearing movement on whole prostate D90 was small compared to elastic decompression due to the subset of peripheral seeds involved, but is expected to have greater consequences for local dose coverage.« less
King, Anthony P; Block, Stefanie R; Sripada, Rebecca K; Rauch, Sheila; Giardino, Nicholas; Favorite, Todd; Angstadt, Michael; Kessler, Daniel; Welsh, Robert; Liberzon, Israel
2016-04-01
Recent studies suggest that mindfulness may be an effective component for posttraumatic stress disorder (PTSD) treatment. Mindfulness involves practice in volitional shifting of attention from "mind wandering" to present-moment attention to sensations, and cultivating acceptance. We examined potential neural correlates of mindfulness training using a novel group therapy (mindfulness-based exposure therapy (MBET)) in combat veterans with PTSD deployed to Afghanistan (OEF) and/or Iraq (OIF). Twenty-three male OEF/OIF combat veterans with PTSD were treated with a mindfulness-based intervention (N = 14) or an active control group therapy (present-centered group therapy (PCGT), N = 9). Pre-post therapy functional magnetic resonance imaging (fMRI, 3 T) examined resting-state functional connectivity (rsFC) in default mode network (DMN) using posterior cingulate cortex (PCC) and ventral medial prefrontal cortex (vmPFC) seeds, and salience network (SN) with anatomical amygdala seeds. PTSD symptoms were assessed at pre- and posttherapy with Clinician Administered PTSD Scale (CAPS). Patients treated with MBET had reduced PTSD symptoms (effect size d = 0.92) but effect was not significantly different from PCGT (d = 0.46). Increased DMN rsFC (PCC seed) with dorsolateral dorsolateral prefrontal cortex (DLPFC) regions and dorsal anterior cingulate cortex (ACC) regions associated with executive control was seen following MBET. A group × time interaction found MBET showed increased connectivity with DLPFC and dorsal ACC following therapy; PCC-DLPFC connectivity was correlated with improvement in PTSD avoidant and hyperarousal symptoms. Increased connectivity between DMN and executive control regions following mindfulness training could underlie increased capacity for volitional shifting of attention. The increased PCC-DLPFC rsFC following MBET was related to PTSD symptom improvement, pointing to a potential therapeutic mechanism of mindfulness-based therapies. © 2016 Wiley Periodicals, Inc.
Wu, Tao; Yang, Chunyan; Ding, Baoxu; Feng, Zhiming; Wang, Qian; He, Jun; Tong, Jianhua; Xiao, Langtao; Jiang, Ling; Wan, Jianmin
2016-02-01
Seed dormancy in rice is an important trait related to the pre-harvest sprouting resistance. In order to understand the molecular mechanisms of seed dormancy, gene expression was investigated by transcriptome analysis using seeds of the strongly dormant cultivar N22 and its less dormant mutants Q4359 and Q4646 at 24 days after heading (DAH). Microarray data revealed more differentially expressed genes in Q4359 than in Q4646 compared to N22. Most genes differing between Q4646 and N22 also differed between Q4359 and N22. GO analysis of genes differentially expressed in both Q4359 and Q4646 revealed that some genes such as those for starch biosynthesis were repressed, whereas metabolic genes such as those for carbohydrate metabolism were enhanced in Q4359 and Q4646 seeds relative to N22. Expression of some genes involved in cell redox homeostasis and chromatin remodeling differed significantly only between Q4359 and N22. The results suggested a close correlation between cell redox homeostasis, chromatin remodeling and seed dormancy. In addition, some genes involved in ABA signaling were down-regulated, and several genes involved in GA biosynthesis and signaling were up-regulated. These observations suggest that reduced seed dormancy in Q4359 was regulated by ABA-GA antagonism. A few differentially expressed genes were located in the regions containing qSdn-1 and qSdn-5 suggesting that they could be candidate genes underlying seed dormancy. Our work provides useful leads to further determine the underling mechanisms of seed dormancy and for cloning seed dormancy genes from N22. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Kaiser, Roselinde H.; Andrews-Hanna, Jessica R.; Wager, Tor D.; Pizzagalli, Diego A.
2015-01-01
IMPORTANCE Major depressive disorder (MDD) has been linked to imbalanced communication among large-scale brain networks, as reflected by abnormal resting-state functional connectivity (rsFC). However, given variable methods and results across studies, identifying consistent patterns of network dysfunction in MDD has been elusive. OBJECTIVE To investigate network dysfunction in MDD through the first meta-analysis of rsFC studies. DATA SOURCES Seed-based voxel-wise rsFC studies comparing MDD with healthy individuals (published before June 30, 2014) were retrieved from electronic databases (PubMed, Web-of-Science, EMBASE), and authors contacted for additional data. STUDY SELECTION Twenty-seven datasets from 25 publications (556 MDD adults/teens; 518 controls) were included in the meta-analysis. DATA EXTRACTION AND SYNTHESIS Coordinates of seed regions-of-interest and between-group effects were extracted. Seeds were categorized into “seed-networks” by their location within a priori functional networks. Multilevel kernel density analysis of between-group effects identified brain systems in which MDD was associated with hyperconnectivity (increased positive, or reduced negative, connectivity) or hypoconnectivity (increased negative, or reduced positive, connectivity) with each seed-network. RESULTS MDD was characterized by hypoconnectivity within the frontoparietal network (FN), a set of regions involved in cognitive control of attention and emotion regulation, and hypoconnectivity between frontoparietal systems and parietal regions of the dorsal attention network (DAN) involved in attending to the external environment. MDD was also associated with hyperconnectivity within the default network (DN), a network believed to support internally-oriented and self-referential thought, and hyperconnectivity between FN control systems and regions of DN. Finally, MDD groups exhibited hypoconnectivity between neural systems involved in processing emotion or salience and midline cortical regions that may mediate top-down regulation of such functions. CONCLUSIONS AND RELEVANCE Reduced connectivity within frontoparietal control systems, and imbalanced connectivity between control systems and networks involved in internal- or external-attention, may reflect depressive biases towards internal thoughts at the cost of engaging with the external world. Meanwhile, altered connectivity between neural systems involved in cognitive control and those that support salience or emotion processing may relate to deficits regulating mood. These findings provide an empirical foundation for a neurocognitive model in which network dysfunction underlies core cognitive and affective abnormalities in depression. PMID:25785575
Simmons, H E; Dunham, J P; Zinn, K E; Munkvold, G P; Holmes, E C; Stephenson, A G
2013-09-01
The role played by seed transmission in the evolution and epidemiology of viral crop pathogens remains unclear. We determined the seed infection and vertical transmission rates of zucchini yellow mosaic virus (ZYMV), in addition to undertaking Illumina sequencing of nine vertically transmitted ZYMV populations. We previously determined the seed-to-seedling transmission rate of ZYMV in Cucurbita pepo ssp. texana (a wild gourd) to be 1.6%, and herein observed a similar rate (1.8%) in the subsequent generation. We also observed that the seed infection rate is substantially higher (21.9%) than the seed-to-seedling transmission rate, suggesting that a major population bottleneck occurs during seed germination and seedling growth. In contrast, that two thirds of the variants present in the horizontally transmitted inoculant population were also present in the vertically transmitted populations implies that the bottleneck at vertical transmission may not be particularly severe. Strikingly, all of the vertically infected plants were symptomless in contrast to those infected horizontally, suggesting that vertical infection may be cryptic. Although no known virulence determining mutations were observed in the vertically infected samples, the 5' untranslated region was highly variable, with at least 26 different major haplotypes in this region compared to the two major haplotypes observed in the horizontally transmitted population. That the regions necessary for vector transmission are retained in the vertically infected populations, combined with the cryptic nature of vertical infection, suggests that seed transmission may be a significant contributor to the spread of ZYMV. Copyright © 2013 Elsevier B.V. All rights reserved.
Knutson, Kevin C.; Pyke, David A.; Wirth, Troy A.; Pilliod, David S.; Brooks, Matthew L.; Chambers, Jeanne C.
2009-01-01
Department of the Interior (DOI) bureaus have invested heavily (for example, the U.S. Bureau of Land Management (BLM) spent more than $60 million in fiscal year 2007) in seeding vegetation for emergency stabilization and burned area rehabilitation of non-forested arid lands over the past 10 years. The primary objectives of these seedings commonly are to (1) reduce the post-fire dominance of non-native annual grasses, such as cheatgrass (Bromus tectorum) and red brome (Bromus rubens); (2) minimize the probability of recurrent fire; and (3) ultimately produce desirable vegetation characteristics (for example, ability to recover following disturbance [resilience], resistance to invasive species, and a capacity to support a diverse flora and fauna). Although these projects historically have been monitored to varying extents, land managers currently lack scientific evidence to verify whether seeding arid and semiarid lands achieves desired objectives. Given the amount of resources dedicated to post-fire seeding projects, a synthesis of information determining the factors that result in successful treatments is critically needed. Although results of recently established experiments and monitoring projects eventually will provide useful insights for the future direction of emergency stabilization and burned area rehabilitation programs, a chronosequence approach evaluating emergency stabilization and burned area rehabilitation treatments (both referenced hereafter as ESR treatments) over the past 30 years could provide a comprehensive assessment of treatment success across a range of regional environmental gradients. By randomly selecting a statistically robust sample from the population of historic ESR treatments in the Intermountain West, this chronosequence approach would have inference for most ecological sites in this region. The goal of this feasibility study was to compile and examine historic ESR records from BLM field offices across the Intermountain West to determine whether sufficient documentation existed for a future field-based chronosequence project. We collected ESR records and data at nine BLM field offices in four States (Oregon, Idaho, Nevada, and Utah) and examined the utility of these data for the development of a chronosequence study of post-fire seeding treatments from multiple sites and different ages (since seeding) throughout the Intermountain West. We collected records from 730 post-fire seeding projects with 1,238 individual seeding treatments. Records from each project ranged from minimal reporting of the project's occurrence to detailed documentation of planning, implementation, and monitoring. Of these 1,238 projects, we identified 468 (38 percent) that could potentially be used to implement a field-based chronosequence study. There were 206 ground-seeding treatments and 262 aerial-seeding treatments within this initial population, not including hand plantings. We also located a considerable number of additional records from other potential field offices that would be available for the chronosequence study but have yet to be compiled for this feasibility report. There are a number of potential challenges involved in going forward with a field-based chronosequence study derived from data collected at these nine BLM offices. One challenge is that not all seed mixtures in ESR project files have on-the-ground confirmation about what was sown or rates of application. Most projects, particularly records before 2000, just list the planned or purchased seed mixtures. Although this could potentially bias assessments of factors influencing establishment rates of individual species for treatments conducted before 2000, a chronosequence study would not be intended to assess success solely at the species-level. Treatment success would be evaluated based on the establishment of healthy vegetation communities, such as the abundance and density of perennial species, regardless of their lifeforms (grasses, fo
John L. Maron; Dean E. Pearson; Teal Potter; Yvette K. Ortega
2012-01-01
Local plant community assembly is influenced by a series of filters that affect the recruitment and establishment of species. These filters include regional factors that limit seeds of any given species from reaching a local site as well as local interactions such as post-dispersal seed predation and disturbance, which dictate what species actually establish. How these...
USDA-ARS?s Scientific Manuscript database
Seed-borne pathogens pose a serious threat to modern agricultural cropping systems as they can be disseminated to many geographical regions around the world. With trends of increasing global seed production and trade, seed-health testing is an important quality control step to prevent the introduct...
Baiano, Antonietta; Terracone, Carmela
2011-09-28
Seven table grape cultivars grown in Apulia region were considered: Italia, Baresana, Pizzutello, Red Globe, Michele Palieri, Crimson Seedless, and Thompson Seedless. Seeds, skins and pulps were extracted and analyzed for their phenolic profiles and antioxidant activities. The hierarchy in the phenolic contents was seeds, skins, and pulps. These results indicate that the intake of the whole berries (seeds included) must be strongly recommended. The highest phenolic contents were detected on Italia and Michele Palieri cv., respectively within the white and the red/black table grapes. Seeds gave a high contribution to the berry antioxidant activity, as they had higher phenolic content than skins and contained high quantities of proanthocyanidines, but the strongest antioxidant activity was shown by the pulp juices due to their content in hydroxycinnamyl acids. The principal component analysis applied to the phenolic composition and antioxidant activity of skins, pulps, and seeds allowed a good separation of Italia and Michele Palieri cultivars. According to the cluster analysis, cultivars were grouped into two clusters, one including Michele Palieri and the other one including Italia, Baresana, Pizzutello, and Thompson Seedless.
A summary of image segmentation techniques
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly
1993-01-01
Machine vision systems are often considered to be composed of two subsystems: low-level vision and high-level vision. Low level vision consists primarily of image processing operations performed on the input image to produce another image with more favorable characteristics. These operations may yield images with reduced noise or cause certain features of the image to be emphasized (such as edges). High-level vision includes object recognition and, at the highest level, scene interpretation. The bridge between these two subsystems is the segmentation system. Through segmentation, the enhanced input image is mapped into a description involving regions with common features which can be used by the higher level vision tasks. There is no theory on image segmentation. Instead, image segmentation techniques are basically ad hoc and differ mostly in the way they emphasize one or more of the desired properties of an ideal segmenter and in the way they balance and compromise one desired property against another. These techniques can be categorized in a number of different groups including local vs. global, parallel vs. sequential, contextual vs. noncontextual, interactive vs. automatic. In this paper, we categorize the schemes into three main groups: pixel-based, edge-based, and region-based. Pixel-based segmentation schemes classify pixels based solely on their gray levels. Edge-based schemes first detect local discontinuities (edges) and then use that information to separate the image into regions. Finally, region-based schemes start with a seed pixel (or group of pixels) and then grow or split the seed until the original image is composed of only homogeneous regions. Because there are a number of survey papers available, we will not discuss all segmentation schemes. Rather than a survey, we take the approach of a detailed overview. We focus only on the more common approaches in order to give the reader a flavor for the variety of techniques available yet present enough details to facilitate implementation and experimentation.
Intra-Operative Dosimetry in Prostate Brachytherapy
2008-04-01
labels in the ith la - beled seed-only image. The seed region with label k in ith image is covered by ||Ωik|| seeds where ||Ω i k|| is the cardinal of...using acetol. The phantom consists of twelve slabs with thickness of 5 mm and each slab has at least a hundred holes with 5 mm spacing where seeds can be...fiducial & the needle insertion template can be pre-calibrated using a rigid mount.(a) A CAD model of the FTRAC fiducial mounted on the seed-insertion needle
DOT National Transportation Integrated Search
2009-08-30
This is a seed grant study to perform a preliminary investigation of the system components and : generalized costs of the magnetic levitation type of high speed rail system that is proposed for the : Southern California Region, TGVbased high speed...
Precipitation formation from orographic cloud seeding.
French, Jeffrey R; Friedrich, Katja; Tessendorf, Sarah A; Rauber, Robert M; Geerts, Bart; Rasmussen, Roy M; Xue, Lulin; Kunkel, Melvin L; Blestrud, Derek R
2018-02-06
Throughout the western United States and other semiarid mountainous regions across the globe, water supplies are fed primarily through the melting of snowpack. Growing populations place higher demands on water, while warmer winters and earlier springs reduce its supply. Water managers are tantalized by the prospect of cloud seeding as a way to increase winter snowfall, thereby shifting the balance between water supply and demand. Little direct scientific evidence exists that confirms even the basic physical hypothesis upon which cloud seeding relies. The intent of glaciogenic seeding of orographic clouds is to introduce aerosol into a cloud to alter the natural development of cloud particles and enhance wintertime precipitation in a targeted region. The hypothesized chain of events begins with the introduction of silver iodide aerosol into cloud regions containing supercooled liquid water, leading to the nucleation of ice crystals, followed by ice particle growth to sizes sufficiently large such that snow falls to the ground. Despite numerous experiments spanning several decades, no direct observations of this process exist. Here, measurements from radars and aircraft-mounted cloud physics probes are presented that together show the initiation, growth, and fallout to the mountain surface of ice crystals resulting from glaciogenic seeding. These data, by themselves, do not address the question of cloud seeding efficacy, but rather form a critical set of observations necessary for such investigations. These observations are unambiguous and provide details of the physical chain of events following the introduction of glaciogenic cloud seeding aerosol into supercooled liquid orographic clouds.
Roques, Alain; Copeland, Robert S.; Soldati, Laurent; Denux, Olivier; Auger-Rozenberg, Marie-Anne
2016-01-01
Abstract A survey of seed chalcids from woody plants in Kenya revealed 12 species belonging to the genus Megastigmus Dalman, 1820, and has increased to 16 the number of Megastigmus species presently recorded from the Afrotropical Region, of which at least 13 are seed feeders. A key to female Megastigmus of the Afrotropical Region is provided. Eight new species are described from morphological evidence: Megastigmus lanneae Roques & Copeland, Megastigmus laventhali Roques & Copeland, Megastigmus ozoroae Roques & Copeland, and Megastigmus smithi Roques & Copeland in seeds of species of the family Anacardiaceae, Megastigmus copelandi Roques & Copeland and Megastigmus grewianae Roques & Copeland in seeds of Malvaceae, Megastigmus helinae Roques & Copeland in seeds of Rhamnaceae, and Megastigmus icipeensis Roques & Copeland for which no host is known. These collections include the first records of Malvaceae and Rhamnaceae as hosts of Megastigmus seed chalcids, which appear to have radiated in Angiosperms much more than previously considered. Analyses of the mitochondrial (cytochrome oxidase subunit one – COI) and nuclear DNA (28S ribosomal region) could be carried out on 8 of the 16 African species of which 5 were newly described ones. The species associated with Anacardiaceae always clustered together in phylogenies, confirming the existence of a strong and ancestral monophyletic clade, unlike the ones associated with Malvaceae and Rhamnaceae, whose position remains unclear. All holotypes are deposited in the National Museums of Kenya. PMID:27199604
Rejuvenation of antioxidant system in central nervous system of aged rats by grape seed extract.
Balu, Muthaiya; Sangeetha, Purushotham; Haripriya, Dayalan; Panneerselvam, Chinnakannu
2005-08-05
Oxidative stress is considered as a major risk factor that contributes to age-related increase in lipid peroxidation and declined antioxidants in the central nervous system during aging. Grape seed extract, one of the bioflavonoid, is widely used for its medicinal properties. In the present study, we evaluated the role of grape seed extract on lipid peroxidation and antioxidant status in discrete regions of the central nervous system of young and aged rats. Male albino rats of Wistar strain were divided into four groups: Group I-control young rats, Group II-young rats treated with grape seed extract (100 mg/kg body weight) for 30 days, Group III-aged control rats and Group IV-aged rats supplemented with grape seed extract (100 mg/kg body weight) for 30 days. Age-associated increase in lipid peroxidation was observed in the spinal cord, cerebral cortex, striatum and the hippocampus regions of aged rats (Group III). Activities of antioxidant enzymes like superoxide dismutase, catalase, glutathione peroxidase and levels of non-enzymic antioxidants like reduced glutathione, Vitamin C and Vitamin E were found to be significantly decreased in all the brain regions studied in aged rats when compared to young rats. However, normalized lipid peroxidation and antioxidant defenses were reported in the grape seed extract-supplemented aged rats. These findings demonstrated that grape seed extract enhanced the antioxidant status and decreased the incidence of free radical-induced lipid peroxidation in the central nervous system of aged rats.
A small RNA activates CFA synthase by isoform-specific mRNA stabilization
Fröhlich, Kathrin Sophie; Papenfort, Kai; Fekete, Agnes; Vogel, Jörg
2013-01-01
Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5′ end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5′ untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability. PMID:24141880
A small RNA activates CFA synthase by isoform-specific mRNA stabilization.
Fröhlich, Kathrin Sophie; Papenfort, Kai; Fekete, Agnes; Vogel, Jörg
2013-11-13
Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5' end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5' untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability.
Ozaslan, Cumali; Farooq, Shahid; Onen, Huseyin; Ozcan, Selcuk; Bukun, Bekir; Gunal, Hikmet
2017-12-05
Two Solanaceae invasive plant species (Physalis angulata L. and P. philadelphica Lam. var. immaculata Waterfall) infest several arable crops and natural habitats in Southeastern Anatolia region, Turkey. However, almost no information is available regarding germination biology of both species. We performed several experiments to infer the effects of environmental factors on seed germination and seedling emergence of different populations of both species collected from various locations with different elevations and habitat characteristics. Seed dormancy level of all populations was decreased with increasing age of the seeds. Seed dormancy of freshly harvested and aged seeds of all populations was effectively released by running tap water. Germination was slightly affected by photoperiods, which suggests that seeds are slightly photoblastic. All seeds germinated under wide range of temperature (15-40 °C), pH (4-10), osmotic potential (0 to -1.2 MPa) and salinity (0-400 mM sodium chloride) levels. The germination ability of both plant species under wide range of environmental conditions suggests further invasion potential towards non-infested areas in the country. Increasing seed burial depth significantly reduced the seedling emergence, and seeds buried below 4 cm of soil surface were unable to emerge. In arable lands, soil inversion to maximum depth of emergence (i.e., 6 cm) followed by conservational tillage could be utilized as a viable management option.
J.J. Turgeon; K. Kamijo; G. DeBarr
1997-01-01
A new species, Megastigmus thyoides Kamijo (Hymenoptera: Torymidae), which emerged from seeds of Atlantic white cedar, Chamaecyparis thyoides (L.) B.S.P., collected in eastern United States is described and illustrated. This is the first record of this genus exploiting seeds of Cupressaceae in the Nearctic region. An average of 7% of the seeds collected from five sites...
Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells
Baek, Jihye; Sovani, Sujata; Glembotski, Nicholas E.; Du, Jiang; Jin, Sungho; Grogan, Shawn P.
2016-01-01
The self-healing capacity of an injured meniscus is limited to the vascularized regions and is especially challenging in the inner avascular regions. As such, we investigated the use of human meniscus cell-seeded electrospun (ES) collagen type I scaffolds to produce meniscal tissue and explored whether these cell-seeded scaffolds can be implanted to repair defects created in meniscal avascular tissue explants. Human meniscal cells (derived from vascular and avascular meniscal tissue) were seeded on ES scaffolds and cultured. Constructs were evaluated for cell viability, gene expression, and mechanical properties. To determine potential for repair of meniscal defects, human meniscus avascular cells were seeded and cultured on aligned ES collagen scaffolds for 4 weeks before implantation. Surgical defects resembling “longitudinal tears” were created in the avascular zone of bovine meniscus and implanted with cell-seeded collagen scaffolds and cultured for 3 weeks. Tissue regeneration and integration were evaluated by histology, immunohistochemistry, mechanical testing, and magentic resonance imaging. Ex vivo implantation with cell-seeded collagen scaffolds resulted in neotissue that was significantly better integrated with the native tissue than acellular collagen scaffolds or untreated defects. Human meniscal cell-seeded ES collagen scaffolds may therefore be useful in facilitating meniscal repair of avascular meniscus tears. PMID:26842062
Analysis of Stress Indicators During Cryopreservation of Seeds of Landrace Maize (Zea mays).
Pez, J; Araya-Valverde, E; Carro, G; Abdelnour-Esquivel, A
Maize breeding programs focus on the development of hybrid varieties and the cultivation of landrace materials is discouraged; however, they are a valuable source of genes and their conservation is advisable. Analyzing some stress indicators during cryopreservation of maize landrace seeds. Seeds of 35 accessions of landrace maize were collected in two regions of Costa Rica and cryopreserved by direct immersion in liquid nitrogen (LN). Membrane integrity, germination of seeds and DNA methylation in tissues were analyzed 5, 7 and 9 days after rewarming. Germination of landrace maize seeds was near 100 % for most accessions. No statistically significant differences in germination were observed between non-cryopreserved controls and seeds stored in LN for 1 h or 1 year. Membrane integrity, number of leaves and root and shoot length of plantlets were similar after cryostorage of seeds for 1 h and 1 year. A short delay in growth of cryostored seed compared to non-frozen controls was observed. Changes in the proportion of DNA methylation were noted from 0 to day 9 in the organs studied depending on the germination stage and cryopreservation treatment. It may be inferred that many of the methylated genes were related to growth and development. In addition, a cryobank of maize landraces from two regions of Costa Rica was established.
Qiu, Xianjin; Gong, Rong; Tan, Youbin; Yu, Sibin
2012-12-01
Seed shape in rice (Oryza sativa) is an important factor that determines grain appearance, cooking quality and grain yield. Here, we report a major quantitative trait locus qSS7 on the long arm of chromosome 7 for seed length, seed width and the ratio of seed length to width, identified using a segregating population derived from a cross between an indica variety Zhenshan97 and a chromosomal segment substitution line of a japonica variety Cypress within the genetic background of Zhenshan97. The Cypress allele at qSS7 contributes to an increase in seed length and the ratio of length to width, but a decrease in seed width, without significantly changing seed weight, plant height, heading date or number of spikelets per panicle. Using a large F(2) population generated from a substitution line that carries only a heterozygous single segment surrounding qSS7, we delimited the QTL to a 23-kb region containing two annotated genes. Progeny testing of the informative recombinants suggested that this qSS7 region is a composite QTL in which at least two genes contribute to seed length and width. Sequence comparison and expression analysis of two probable candidate genes revealed differences between the parental lines. These results will facilitate cloning of the gene(s) underlying qSS7 as well as marker-assisted transfer of desirable genes for seed shape in rice improvement.
Genetic Analysis of Seed-Soluble Oligosaccharides in Relation to Seed Storability of Arabidopsis1
Bentsink, Leónie; Alonso-Blanco, Carlos; Vreugdenhil, Dick; Tesnier, Karine; Groot, Steven P.C.; Koornneef, Maarten
2000-01-01
Seed oligosaccharides (OSs) and especially raffinose series OSs (RSOs) are hypothesized to play an important role in the acquisition of desiccation tolerance and consequently in seed storability. In the present work we analyzed the seed-soluble OS (sucrose, raffinose, and stachyose) content of several Arabidopsis accessions and thus identified the genotype Cape Verde Islands having a very low RSO content. By performing quantitative trait loci (QTL) mapping in a recombinant inbred line population, we found one major QTL responsible for the practically monogenic segregation of seed stachyose content. This locus also affected the content of the two other OSs, sucrose, and raffinose. Two candidate genes encoding respectively for galactinol synthase and raffinose synthase were located within the genomic region around this major QTL. In addition, three smaller-effect QTL were identified, each one specifically affecting the content of an individual OS. Seed storability was analyzed in the same recombinant inbred line population by measuring viability (germination) under two different seed aging assays: after natural aging during 4 years of dry storage at room temperature and after artificial aging induced by a controlled deterioration test. Thus, four QTL responsible for the variation of this trait were mapped. Comparison of the QTL genetic positions showed that the genomic region containing the major OS locus did not significantly affect the seed storability. We concluded that in the studied material neither RSOs nor sucrose content had a specific effect on seed storability. PMID:11115877
Gu, Xing-You; Zhang, Jinfeng; Ye, Heng; Zhang, Lihua; Feng, Jiuhuan
2014-01-01
Seed dormancy is imposed by one or more of the embryo, endosperm, and maternal tissues that belong to two generations and represent two ploidy levels. Many quantitative trait loci (QTL) have been identified for seed dormancy as measured by gross effects on reduced germination rate or delayed germination in crop or model plants. This research developed an endosperm genotype−based genetic approach to determine specific tissues through which a mapped QTL regulates germination using rice as a model. This approach involves testing germination velocity for partially after-ripened seeds harvested from single plants heterozygous for a tested QTL and genotyping endosperms from individual germinated and nongerminated seeds with a codominant DNA marker located on the QTL peak region. Information collected about the QTL includes genotypic frequencies in germinated and/or nongerminated subpopulations; allelic frequency distributions during a germination period; endosperm or embryo genotypic differences in germination velocity; and genotypic frequencies for gametes involved in the double fertilization to form the sampled seeds. Using this approach, the seed dormancy loci SD12, SD1-2, and SD7-1 were determined to regulate germination through the embryo, endosperm, and maternal tissues, respectively; SD12 and SD1-2 acted additively on germination velocity in the offspring tissues; and SD12 also was associated with the preferential fertilization of male gametes in rice. This new genetic approach can be used to characterize mapped genes/QTL for tissue-specific functions in endospermic seeds and for marker-assisted selection of QTL alleles before or immediately after germination in crop breeding. PMID:25480961
Are Local Filters Blind to Provenance? Ant Seed Predation Suppresses Exotic Plants More than Natives
Pearson, Dean E.; Icasatti, Nadia S.; Hierro, Jose L.; Bird, Benjamin J.
2014-01-01
The question of whether species’ origins influence invasion outcomes has been a point of substantial debate in invasion ecology. Theoretically, colonization outcomes can be predicted based on how species’ traits interact with community filters, a process presumably blind to species’ origins. Yet, exotic plant introductions commonly result in monospecific plant densities not commonly seen in native assemblages, suggesting that exotic species may respond to community filters differently than natives. Here, we tested whether exotic and native species differed in their responses to a local community filter by examining how ant seed predation affected recruitment of eighteen native and exotic plant species in central Argentina. Ant seed predation proved to be an important local filter that strongly suppressed plant recruitment, but ants suppressed exotic recruitment far more than natives (89% of exotic species vs. 22% of natives). Seed size predicted ant impacts on recruitment independent of origins, with ant preference for smaller seeds resulting in smaller seeded plant species being heavily suppressed. The disproportionate effects of provenance arose because exotics had generally smaller seeds than natives. Exotics also exhibited greater emergence and earlier peak emergence than natives in the absence of ants. However, when ants had access to seeds, these potential advantages of exotics were negated due to the filtering bias against exotics. The differences in traits we observed between exotics and natives suggest that higher-order introduction filters or regional processes preselected for certain exotic traits that then interacted with the local seed predation filter. Our results suggest that the interactions between local filters and species traits can predict invasion outcomes, but understanding the role of provenance will require quantifying filtering processes at multiple hierarchical scales and evaluating interactions between filters. PMID:25099535
Distributed seeding for narrow-line width hard x-ray free-electron lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Dinh Cong; Anisimov, Petr Mikhaylovich; Buechler, Cynthia Eileen
2015-09-09
We describe a new FEL line-narrowing technique called distributed seeding (DS), using Si(111) Bragg crystal monochromators to enhance the spectral brightness of the MaRIE hard X-ray freeelectron laser. DS differs from self-seeding in three important aspects. First, DS relies on spectral filtering of the radiation at multiple locations along the undulator, with a monochromator located every few power gain lengths. Second, DS performs filtering early in the exponential gain region before SASE spikes start to appear in the radiation longitudinal profile. Third, DS provides the option to select a wavelength longer than the peak of the SASE gain curve, whichmore » leads to improved spectral contrast of the seeded FEL over the SASE background. Timedependent Genesis simulations show the power-vs-z growth curves for DS exhibit behaviors of a seeded FEL amplifier, such as exponential growth region immediately after the filters. Of the seeding approaches considered, the two-stage DS spectra produce the highest contrast of seeded FEL over the SASE background and that the three-stage DS provides the narrowest linewidth with a relative spectral FWHM of 8 X 10 -5 .« less
Gene interaction at seed-awning loci in the genetic background of wild rice.
Ikemoto, Mai; Otsuka, Mitsuharu; Thanh, Pham Thien; Phan, Phuong Dang Thai; Ishikawa, Ryo; Ishii, Takashige
2017-09-12
Seed awning is one of the important traits for successful propagation in wild rice. During the domestication of rice by ancient humans, plants with awnless seeds may have been selected because long awns hindered collection and handling activities. To investigate domestication of awnless rice, QTL analysis for seed awning was first carried out using backcross recombinant inbred lines between Oryza sativa Nipponbare (recurrent parent) and O. rufipogon W630 (donor parent). Two strong QTLs were detected in the same regions as known major seed-awning loci, An-1 and RAE2. Subsequent causal mutation surveying and fine mapping confirmed that O. rufipogon W630 has functional alleles at both loci. The gene effects and interactions at these loci were examined using two backcross populations with reciprocal genetic backgrounds of O. sativa Nipponbare and O. rufipogon W630. As awn length in wild rice varied among seeds even in the same plant, awn length was measured based on spikelet position. In the genetic background of cultivated rice, the wild alleles at An-1 and RAE2 had awning effects, and plants having both wild homozygous alleles produced awns whose length was about 70% of those of the wild parent. On the other hand, in the genetic background of wild rice, the substitution of cultivated alleles at An-1 and RAE2 contributed little to awn length reduction. These results indicate that the domestication process of awnless seeds was complicated because many genes are involved in awn formation in wild rice.
Registration of TN09-008 soybean cyst nematode resistant cultivar
USDA-ARS?s Scientific Manuscript database
The conventional soybean line TN09-008 (Reg. No. CV- , PI ) was released by University of Tennessee Agricultural Research in 2017 as a cultivar, based on high seed yield potential in Tennessee and the southern region. Soybean cultivar TN09-008 is resistant to HG types 1.2.5.7, 5.7, a...
NASA Astrophysics Data System (ADS)
Othman, Khairulnizam; Ahmad, Afandi
2016-11-01
In this research we explore the application of normalize denoted new techniques in advance fast c-mean in to the problem of finding the segment of different breast tissue regions in mammograms. The goal of the segmentation algorithm is to see if new denotes fuzzy c- mean algorithm could separate different densities for the different breast patterns. The new density segmentation is applied with multi-selection of seeds label to provide the hard constraint, whereas the seeds labels are selected based on user defined. New denotes fuzzy c- mean have been explored on images of various imaging modalities but not on huge format digital mammograms just yet. Therefore, this project is mainly focused on using normalize denoted new techniques employed in fuzzy c-mean to perform segmentation to increase visibility of different breast densities in mammography images. Segmentation of the mammogram into different mammographic densities is useful for risk assessment and quantitative evaluation of density changes. Our proposed methodology for the segmentation of mammograms on the basis of their region into different densities based categories has been tested on MIAS database and Trueta Database.
Nakagawa, Kouichi; Maeda, Hayato
2017-02-01
We investigated the location and distribution of paramagnetic species in dry black, brown, and yellow (normal) soybean seeds using electron paramagnetic resonance (EPR), X-band (9 GHz) EPR imaging (EPRI), and HPLC. EPR primarily detected two paramagnetic species in black soybean. These two different radical species were assigned as stable organic radical and Mn 2+ species based on the g values and hyperfine structures. The signal from the stable radical was noted at g ≈ 2.00 and was relatively strong and stable. Subsequent noninvasive two-dimensional (2D) EPRI of the radical present in black soybean revealed that the stable radical was primarily located in the pigmented region of the soybean coat, with very few radicals observed in the soybean cotyledon (interior). Pigments extracted from black soybean were analyzed using HPLC. The major compound was found to be cyanidin-3-glucoside. Multi-EPR and HPLC results indicate that the stable radical was only found within the pigmented region of the soybean coat, and it could be cyanidin-3-glucoside or an oxidative decomposition product.
Establishment of seeded grasslands for wildlife habitat in the prairie pothole region
Duebbert, Harold F.; Jacobson, Erling T.; Higgins, Kenneth F.; Podoll, Erling B.
1981-01-01
Techniques are described for establishment of seeded grasslands on cultivated soils to provide wildlife habitat within the glaciated prairie pothole region in the north-central United States. Management of grassland habitats on a sound ecological basis is an important wildlife management activity in the region. The primary purpose of the guidelines in this publication is to help managers establish and maintain good stands of seeded cover for waterfowl nesting and use by other prairie wildlife. Several options are available for selecting a type of cover to be established. The following seeded grassland types are described: (1) introduced cool-season grasses and legumes; (2) tall, warm-season native grasses; and (3) mixed-grass prairie grasses. Major vegetative species recommended for (1) are tall wheatgrass (Agropyron elongatum), intermediate wheatgrass (A. intermedium), alfalfa (Medicago sativa), and sweetclover (Melilotus spp.); for (2) are big bluestem (Andropogon gerardi), indiangrass (Sorghastrum nutans), and switchgrass (Panicum virgatum); for (3) are green needlegrass (Stipa viridula), little bluestem (Andropogon scoparius), western wheatgrass (Agropyron smithii), and sideoats grama (Bouteloua curtipendula). Important factors that affect the success of establishment of seeded grasslands include site adaptability, site preparation, seedbed preparation, planting equipment and methods, rates and dates of seeding, and seed sources. A management goal for seeded grasslands intended to provide optimum habitat for dabbling duck nesting should be to maintain vigorous stands of vegetation with the tallest, most dense cover form that is possible under prevailing soil and climatic conditions. Grassland management is a never-ending job and seeded grasslands require periodic rejuvenation to maintain them in an optimum condition. Prescribed burning and planned grazing systems are acceptable methods for periodically rejuvenating seeded native grasses. Stands of introduced grasses and legumes are best maintained by mechanical tillages; reseeding is often necessary after 1 or 2 years of grain farming. The need for good management of all areas dedicated to wildlife habitat is emphasized by the rate of destruction and degradation of grassland habitats. Desirable wildlife populations can be benefited by establishment and maintenance of high-quality stands of seeded grasslands.
NASA Astrophysics Data System (ADS)
Ambrico, Paolo F.; Šimek, Milan; Morano, Massimo; De Miccolis Angelini, Rita M.; Minafra, Angelantonio; Trotti, Pasquale; Ambrico, Marianna; Prukner, Václav; Faretra, Francesco
2017-08-01
Naturally contaminated basil seeds were treated by a surface dielectric barrier discharge driven in the humid air by an amplitude modulated AC high voltage to avoid heat shock. In order to avoid direct contact of seeds with microdischarge filaments, the seeds to be treated were placed at sufficient distance from the surface discharge. After treatment, the seeds were analyzed in comparison with control samples for their microbial contamination as well as for the capability of germination and seedling growth. Moreover, chemical modification of seed surface was observed through the elemental energy dispersive x-ray analysis and wettability tests. We found that treatment applied at 20% duty cycle (effective discharge duration up to 20 s) significantly decreases microbial load without reducing the viability of the seeds. On the other side, seedling growth was considerably accelerated after the treatment, and biometric growth parameters of seedlings (total length, weight, leaf extension) considerably increased compared to the controls. Interestingly, scanning electron microscopy images taken for the different duration of treatment revealed that seed radicle micropylar regions underwent significant morphological changes while the coat was substantially undamaged. Inside the seed, the embryo seemed to be well preserved while the endosperm body was detached from the epithelial tegument. A total of 9 different genera of fungi were recovered from the analyzed seeds. Scanning electron microscopy images revealed that conidia were localized especially in the micropylar region, and after plasma treatment, most of them showed substantial damages. Therefore, the overall effect of the treatment of naturally contaminated seeds by reactive oxygen and nitrogen species produced by plasma and the consequent changes in surface chemistry and microbial load can significantly improve seed vigor.
Three-Dimensions Segmentation of Pulmonary Vascular Trees for Low Dose CT Scans
NASA Astrophysics Data System (ADS)
Lai, Jun; Huang, Ying; Wang, Ying; Wang, Jun
2016-12-01
Due to the low contrast and the partial volume effects, providing an accurate and in vivo analysis for pulmonary vascular trees from low dose CT scans is a challenging task. This paper proposes an automatic integration segmentation approach for the vascular trees in low dose CT scans. It consists of the following steps: firstly, lung volumes are acquired by the knowledge based method from the CT scans, and then the data are smoothed by the 3D Gaussian filter; secondly, two or three seeds are gotten by the adaptive 2D segmentation and the maximum area selecting from different position scans; thirdly, each seed as the start voxel is inputted for a quick multi-seeds 3D region growing to get vascular trees; finally, the trees are refined by the smooth filter. Through skeleton analyzing for the vascular trees, the results show that the proposed method can provide much better and lower level vascular branches.
Saucedo-Hernández, Yanelis; Lerma-García, María Jesús; Herrero-Martínez, José Manuel; Ramis-Ramos, Guillermo; Jorge-Rodríguez, Elisa; Simí-Alfonso, Ernesto F
2011-04-27
Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), followed by multivariate treatment of the spectral data, was used to classify seed oils of the genus Cucurbita (pumpkins) according to their species as C. maxima, C. pepo, and C. moschata. Also, C. moschata seed oils were classified according to their genetic variety as RG, Inivit C-88, and Inivit C-2000. Up to 23 wavelength regions were selected on the spectra, each region corresponding to a peak or shoulder. The normalized absorbance peak areas within these regions were used as predictors. Using linear discriminant analysis (LDA), an excellent resolution among all categories concerning both Cucurbita species and C. moschata varieties was achieved. The proposed method was straightforward and quick and can be easily implemented. Quality control of pumpkin seed oils is important because Cucurbita species and genetic variety are both related to the pharmaceutical properties of the oils.
Kujur, Alice; Upadhyaya, Hari D.; Shree, Tanima; Bajaj, Deepak; Das, Shouvik; Saxena, Maneesha S.; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. L.; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.
2015-01-01
We discovered 26785 and 16573 high-quality SNPs differentiating two parental genotypes of a RIL mapping population using reference desi and kabuli genome-based GBS assay. Of these, 3625 and 2177 SNPs have been integrated into eight desi and kabuli chromosomes, respectively in order to construct ultra-high density (0.20–0.37 cM) intra-specific chickpea genetic linkage maps. One of these constructed high-resolution genetic map has potential to identify 33 major genomic regions harbouring 35 robust QTLs (PVE: 17.9–39.7%) associated with three agronomic traits, which were mapped within <1 cM mean marker intervals on desi chromosomes. The extended LD (linkage disequilibrium) decay (~15 cM) in chromosomes of genetic maps have encouraged us to use a rapid integrated approach (comparative QTL mapping, QTL-region specific haplotype/LD-based trait association analysis, expression profiling and gene haplotype-based association mapping) rather than a traditional QTL map-based cloning method to narrow-down one major seed weight (SW) robust QTL region. It delineated favourable natural allelic variants and superior haplotype-containing one seed-specific candidate embryo defective gene regulating SW in chickpea. The ultra-high-resolution genetic maps, QTLs/genes and alleles/haplotypes-related genomic information generated and integrated strategy for rapid QTL/gene identification developed have potential to expedite genomics-assisted breeding applications in crop plants, including chickpea for their genetic enhancement. PMID:25942004
Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui
2017-01-01
Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed. PMID:28009983
Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui
2017-01-24
Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed.
Segmentation of suspicious objects in an x-ray image using automated region filling approach
NASA Astrophysics Data System (ADS)
Fu, Kenneth; Guest, Clark; Das, Pankaj
2009-08-01
To accommodate the flow of commerce, cargo inspection systems require a high probability of detection and low false alarm rate while still maintaining a minimum scan speed. Since objects of interest (high atomic-number metals) will often be heavily shielded to avoid detection, any detection algorithm must be able to identify such objects despite the shielding. Since pixels of a shielded object have a greater opacity than the shielding, we use a clustering method to classify objects in the image by pixel intensity levels. We then look within each intensity level region for sub-clusters of pixels with greater opacity than the surrounding region. A region containing an object has an enclosed-contour region (a hole) inside of it. We apply a region filling technique to fill in the hole, which represents a shielded object of potential interest. One method for region filling is seed-growing, which puts a "seed" starting point in the hole area and uses a selected structural element to fill out that region. However, automatic seed point selection is a hard problem; it requires additional information to decide if a pixel is within an enclosed region. Here, we propose a simple, robust method for region filling that avoids the problem of seed point selection. In our approach, we calculate the gradient Gx and Gy at each pixel in a binary image, and fill in 1s between a pair of x1 Gx(x1,y)=-1 and x2 Gx(x2,y)=1, and do the same thing in y-direction. The intersection of the two results will be filled region. We give a detailed discussion of our algorithm, discuss the strengths this method has over other methods, and show results of using our method.
USDA-ARS?s Scientific Manuscript database
Determination of environmental influence on seed traits is critical for genetic improvement of seed quality in Upland cotton (Gossypium hirsutum L.). The objective of this study was to analyze the relative contribution of environment and genotype (G) for seed oil, nitrogen (N), and gossypol content...
IN VITRO RUMINAL PROTEIN DEGRADATION AND MICROBIAL PROTEIN FORMATION OF SEED LEGUMES
USDA-ARS?s Scientific Manuscript database
Seed legumes such as peas, lupins, and faba beans are important feeds for dairy cows in Europe and other regions. Ruminal protein degradability was quantified using the inhibitor in vitro (IIV) system for samples of 5 seed legumes: 2 peas (cv. Alembo and Helena), 1 white lupin (Lupinus albus, cv. Mu...
A. F. Hough
1952-01-01
In 1928 the Lake States Forest Experiment Station of the U. S. Forest Service began studies of various races or strains of red pine (Pinus resinosa Ait.), to find out how well red pine is adapted to climatic regions distant from its natural seed sources.
Wei, Lijuan; Qu, Cunmin; Xu, Xinfu; Lu, Kun; Qian, Wei; Li, Jiana; Li, Maoteng; Liu, Liezhao
2015-01-01
A stable yellow-seeded variety is the breeding goal for obtaining the ideal rapeseed (Brassica napus L.) plant, and the amount of acid detergent lignin (ADL) in the seeds and the hull content (HC) are often used as yellow-seeded rapeseed screening indices. In this study, a genome-wide association analysis of 520 accessions was performed using the Q + K model with a total of 31,839 single-nucleotide polymorphism (SNP) sites. As a result, three significant associations on the B. napus chromosomes A05, A09, and C05 were detected for seed ADL content. The peak SNPs were within 9.27, 14.22, and 20.86 kb of the key genes BnaA.PAL4, BnaA.CAD2/BnaA.CAD3, and BnaC.CCR1, respectively. Further analyses were performed on the major locus of A05, which was also detected in the seed HC examination. A comparison of our genome-wide association study (GWAS) results and previous linkage mappings revealed a common chromosomal region on A09, which indicates that GWAS can be used as a powerful complementary strategy for dissecting complex traits in B. napus. Genomic selection (GS) utilizing the significant SNP markers based on the GWAS results exhibited increased predictive ability, indicating that the predictive ability of a given model can be substantially improved by using GWAS and GS. PMID:26673885
Newton, Paul K.; Mason, Jeremy; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Norton, Larry; Kuhn, Peter
2013-01-01
The classic view of metastatic cancer progression is that it is a unidirectional process initiated at the primary tumor site, progressing to variably distant metastatic sites in a fairly predictable, though not perfectly understood, fashion. A Markov chain Monte Carlo mathematical approach can determine a pathway diagram that classifies metastatic tumors as ‘spreaders’ or ‘sponges’ and orders the timescales of progression from site to site. In light of recent experimental evidence highlighting the potential significance of self-seeding of primary tumors, we use a Markov chain Monte Carlo (MCMC) approach, based on large autopsy data sets, to quantify the stochastic, systemic, and often multi-directional aspects of cancer progression. We quantify three types of multi-directional mechanisms of progression: (i) self-seeding of the primary tumor; (ii) re-seeding of the primary tumor from a metastatic site (primary re-seeding); and (iii) re-seeding of metastatic tumors (metastasis re-seeding). The model shows that the combined characteristics of the primary and the first metastatic site to which it spreads largely determine the future pathways and timescales of systemic disease. For lung cancer, the main ‘spreaders’ of systemic disease are the adrenal gland and kidney, whereas the main ‘sponges’ are regional lymph nodes, liver, and bone. Lung is a significant self-seeder, although it is a ‘sponge’ site with respect to progression characteristics. PMID:23447576
Nuclear reactor for breeding U.sup.233
Bohanan, Charles S.; Jones, David H.; Raab, Jr., Harry F.; Radkowsky, Alvin
1976-01-01
A light-water-cooled nuclear reactor capable of breeding U.sup.233 for use in a light-water breeder reactor includes physically separated regions containing U.sup.235 fissile material and U.sup.238 fertile material and Th.sup.232 fertile material and Pu.sup.239 fissile material, if available. Preferably the U.sup.235 fissile material and U.sup.238 fertile material are contained in longitudinally movable seed regions and the Pu.sup.239 fissile material and Th.sup.232 fertile material are contained in blanket regions surrounding the seed regions.
Image-processing algorithms for inspecting characteristics of hybrid rice seed
NASA Astrophysics Data System (ADS)
Cheng, Fang; Ying, Yibin
2004-03-01
Incompletely closed glumes, germ and disease are three characteristics of hybrid rice seed. Image-processing algorithms developed to detect these seed characteristics were presented in this paper. The rice seed used for this study involved five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and IIyou. The algorithms were implemented with a 5*600 images set, a 4*400 images set and the other 5*600 images set respectively. The image sets included black background images, white background images and both sides images of rice seed. Results show that the algorithm for inspecting seeds with incompletely closed glumes based on Radon Transform achieved an accuracy of 96% for normal seeds, 92% for seeds with fine fissure and 87% for seeds with unclosed glumes, the algorithm for inspecting germinated seeds on panicle based on PCA and ANN achieved n average accuracy of 98% for normal seeds, 88% for germinated seeds on panicle and the algorithm for inspecting diseased seeds based on color features achieved an accuracy of 92% for normal and healthy seeds, 95% for spot diseased seeds and 83% for severe diseased seeds.
Intensity-based masking: A tool to improve functional connectivity results of resting-state fMRI.
Peer, Michael; Abboud, Sami; Hertz, Uri; Amedi, Amir; Arzy, Shahar
2016-07-01
Seed-based functional connectivity (FC) of resting-state functional MRI data is a widely used methodology, enabling the identification of functional brain networks in health and disease. Based on signal correlations across the brain, FC measures are highly sensitive to noise. A somewhat neglected source of noise is the fMRI signal attenuation found in cortical regions in close vicinity to sinuses and air cavities, mainly in the orbitofrontal, anterior frontal and inferior temporal cortices. BOLD signal recorded at these regions suffers from dropout due to susceptibility artifacts, resulting in an attenuated signal with reduced signal-to-noise ratio in as many as 10% of cortical voxels. Nevertheless, signal attenuation is largely overlooked during FC analysis. Here we first demonstrate that signal attenuation can significantly influence FC measures by introducing false functional correlations and diminishing existing correlations between brain regions. We then propose a method for the detection and removal of the attenuated signal ("intensity-based masking") by fitting a Gaussian-based model to the signal intensity distribution and calculating an intensity threshold tailored per subject. Finally, we apply our method on real-world data, showing that it diminishes false correlations caused by signal dropout, and significantly improves the ability to detect functional networks in single subjects. Furthermore, we show that our method increases inter-subject similarity in FC, enabling reliable distinction of different functional networks. We propose to include the intensity-based masking method as a common practice in the pre-processing of seed-based functional connectivity analysis, and provide software tools for the computation of intensity-based masks on fMRI data. Hum Brain Mapp 37:2407-2418, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Zhang, Shu-Jie; Li, Ling; Zhang, Chun-Lei
2012-05-01
A field experiment was conducted to investigate the effects of different sowing date and planting density on the seed yield and seed oil content of winter oilseed rape (Brassica napus). Sowing date mainly affected the seed yield of branch raceme, while planting density affected the seed yields of both branch raceme and main raceme. The seed oil content was less affected by sowing date. The proportion of the seed yield of main raceme to the seed yield per plant increased with increasing planting density, and the seed oil content of main raceme was about 1% higher than that of branch raceme. Consequently, the seed oil production per plot increased significantly with increasing planting density. In the experimental region, the sowing date of winter oilseed rape should be earlier than mid-October. When sowing in late October, the seed yield would be decreased significantly. A planting density of 36-48 plants x m(-2) could improve the seed yield and oil content of winter oilseed rape.
A computational method for predicting regulation of human microRNAs on the influenza virus genome
2013-01-01
Background While it has been suggested that host microRNAs (miRNAs) may downregulate viral gene expression as an antiviral defense mechanism, such a mechanism has not been explored in the influenza virus for human flu studies. As it is difficult to conduct related experiments on humans, computational studies can provide some insight. Although many computational tools have been designed for miRNA target prediction, there is a need for cross-species prediction, especially for predicting viral targets of human miRNAs. However, finding putative human miRNAs targeting influenza virus genome is still challenging. Results We developed machine-learning features and conducted comprehensive data training for predicting interactions between H1N1 genome segments and host miRNA. We defined our seed region as the first ten nucleotides from the 5' end of the miRNA to the 3' end of the miRNA and integrated various features including the number of consecutive matching bases in the seed region of 10 bases, a triplet feature in seed regions, thermodynamic energy, penalty of bulges and wobbles at binding sites, and the secondary structure of viral RNA for the prediction. Conclusions Compared to general predictive models, our model fully takes into account the conservation patterns and features of viral RNA secondary structures, and greatly improves the prediction accuracy. Our model identified some key miRNAs including hsa-miR-489, hsa-miR-325, hsa-miR-876-3p and hsa-miR-2117, which target HA, PB2, MP and NS of H1N1, respectively. Our study provided an interesting hypothesis concerning the miRNA-based antiviral defense mechanism against influenza virus in human, i.e., the binding between human miRNA and viral RNAs may not result in gene silencing but rather may block the viral RNA replication. PMID:24565017
Meier, Timothy B.; Desphande, Alok S.; Vergun, Svyatoslav; Nair, Veena A.; Song, Jie; Biswal, Bharat B.; Meyerand, Mary E.; Birn, Rasmus M.; Prabhakaran, Vivek
2012-01-01
Most of what is known about the reorganization of functional brain networks that accompanies normal aging is based on neuroimaging studies in which participants perform specific tasks. In these studies, reorganization is defined by the differences in task activation between young and old adults. However, task activation differences could be the result of differences in task performance, strategy, or motivation, and not necessarily reflect reorganization. Resting-state fMRI provides a method of investigating functional brain networks without such confounds. Here, a support vector machine (SVM) classifier was used in an attempt to differentiate older adults from younger adults based on their resting-state functional connectivity. In addition, the information used by the SVM was investigated to see what functional connections best differentiated younger adult brains from older adult brains. Three separate resting-state scans from 26 younger adults (18-35 yrs) and 26 older adults (55-85) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available in the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 100 seed-regions from four functional networks with 5 mm3 radius were defined based on a recent study using machine learning classifiers on adolescent brains. Time-series for every seed-region were averaged and three matrices of z-transformed correlation coefficients were created for each subject corresponding to each individual’s three resting-state scans. SVM was then applied using leave-one-out cross-validation. The SVM classifier was 84% accurate in classifying older and younger adult brains. The majority of the connections used by the classifier to distinguish subjects by age came from seed-regions belonging to the sensorimotor and cingulo-opercular networks. These results suggest that age-related decreases in positive correlations within the cingulo-opercular and default networks, and decreases in negative correlations between the default and sensorimotor networks, are the distinguishing characteristics of age-related reorganization. PMID:22227886
Meier, Timothy B; Desphande, Alok S; Vergun, Svyatoslav; Nair, Veena A; Song, Jie; Biswal, Bharat B; Meyerand, Mary E; Birn, Rasmus M; Prabhakaran, Vivek
2012-03-01
Most of what is known about the reorganization of functional brain networks that accompanies normal aging is based on neuroimaging studies in which participants perform specific tasks. In these studies, reorganization is defined by the differences in task activation between young and old adults. However, task activation differences could be the result of differences in task performance, strategy, or motivation, and not necessarily reflect reorganization. Resting-state fMRI provides a method of investigating functional brain networks without such confounds. Here, a support vector machine (SVM) classifier was used in an attempt to differentiate older adults from younger adults based on their resting-state functional connectivity. In addition, the information used by the SVM was investigated to see what functional connections best differentiated younger adult brains from older adult brains. Three separate resting-state scans from 26 younger adults (18-35 yrs) and 26 older adults (55-85) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available in the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 100 seed-regions from four functional networks with 5mm(3) radius were defined based on a recent study using machine learning classifiers on adolescent brains. Time-series for every seed-region were averaged and three matrices of z-transformed correlation coefficients were created for each subject corresponding to each individual's three resting-state scans. SVM was then applied using leave-one-out cross-validation. The SVM classifier was 84% accurate in classifying older and younger adult brains. The majority of the connections used by the classifier to distinguish subjects by age came from seed-regions belonging to the sensorimotor and cingulo-opercular networks. These results suggest that age-related decreases in positive correlations within the cingulo-opercular and default networks, and decreases in negative correlations between the default and sensorimotor networks, are the distinguishing characteristics of age-related reorganization. Copyright © 2011 Elsevier Inc. All rights reserved.
Anatomy guided automated SPECT renal seed point estimation
NASA Astrophysics Data System (ADS)
Dwivedi, Shekhar; Kumar, Sailendra
2010-04-01
Quantification of SPECT(Single Photon Emission Computed Tomography) images can be more accurate if correct segmentation of region of interest (ROI) is achieved. Segmenting ROI from SPECT images is challenging due to poor image resolution. SPECT is utilized to study the kidney function, though the challenge involved is to accurately locate the kidneys and bladder for analysis. This paper presents an automated method for generating seed point location of both kidneys using anatomical location of kidneys and bladder. The motivation for this work is based on the premise that the anatomical location of the bladder relative to the kidneys will not differ much. A model is generated based on manual segmentation of the bladder and both the kidneys on 10 patient datasets (including sum and max images). Centroid is estimated for manually segmented bladder and kidneys. Relatively easier bladder segmentation is followed by feeding bladder centroid coordinates into the model to generate seed point for kidneys. Percentage error observed in centroid coordinates of organs from ground truth to estimated values from our approach are acceptable. Percentage error of approximately 1%, 6% and 2% is observed in X coordinates and approximately 2%, 5% and 8% is observed in Y coordinates of bladder, left kidney and right kidney respectively. Using a regression model and the location of the bladder, the ROI generation for kidneys is facilitated. The model based seed point estimation will enhance the robustness of kidney ROI estimation for noisy cases.
Deris, Nadja; Montag, Christian; Reuter, Martin; Weber, Bernd; Markett, Sebastian
2017-02-15
According to Jaak Panksepp's Affective Neuroscience Theory and the derived self-report measure, the Affective Neuroscience Personality Scales (ANPS), differences in the responsiveness of primary emotional systems form the basis of human personality. In order to investigate neuronal correlates of personality, the underlying neuronal circuits of the primary emotional systems were analyzed in the present fMRI-study by associating the ANPS to functional connectivity in the resting brain. N=120 healthy participants were invited for the present study. The results were reinvestigated in an independent, smaller sample of N=52 participants. A seed-based whole brain approach was conducted with seed-regions bilaterally in the basolateral and superficial amygdalae. The selection of seed-regions was based on meta-analytic data on affective processing and the Juelich histological atlas. Multiple regression analyses on the functional connectivity maps revealed associations with the SADNESS-scale in both samples. Functional resting-state connectivity between the left basolateral amygdala and a cluster in the postcentral gyrus, and between the right basolateral amygdala and clusters in the superior parietal lobe and subgyral in the parietal lobe was associated with SADNESS. No other ANPS-scale revealed replicable results. The present findings give first insights into the neuronal basis of the SADNESS-scale of the ANPS and support the idea of underlying neuronal circuits. In combination with previous research on genetic associations of the ANPS functional resting-state connectivity is discussed as a possible endophenotype of personality. Copyright © 2016 Elsevier Inc. All rights reserved.
Decreased cerebellar-cerebral connectivity contributes to complex task performance
Knops, André
2016-01-01
The cerebellum's role in nonmotor processes is now well accepted, but cerebellar interaction with cerebral targets is not well understood. Complex cognitive tasks activate cerebellar, parietal, and frontal regions, but the effective connectivity between these regions has never been tested. To this end, we used psycho-physiological interactions (PPI) analysis to test connectivity changes of cerebellar and parietal seed regions in complex (2-digit by 1-digit multiplication, e.g., 12 × 3) vs. simple (1-digit by 1-digit multiplication, e.g., 4 × 3) task conditions (“complex − simple”). For cerebellar seed regions (lobule VI, hemisphere and vermis), we found significantly decreased cerebellar-parietal, cerebellar-cingulate, and cerebellar-frontal connectivity in complex multiplication. For parietal seed regions (PFcm, PFop, PFm) we found significantly increased parietal-parietal and parietal-frontal connectivity in complex multiplication. These results suggest that decreased cerebellar-cerebral connectivity contributes to complex task performance. Interestingly, BOLD activity contrasts revealed partially overlapping parietal areas of increased BOLD activity but decreased cerebellar-parietal PPI connectivity. PMID:27334957
Gruwez, R; De Frenne, P; Vander Mijnsbrugge, K; Vangansbeke, P; Verheyen, K
2016-05-01
With a distribution range that covers most of the Northern hemisphere, common juniper (Juniperus communis) has one of the largest ranges of all vascular plant species. In several regions in Europe, however, populations are decreasing in size and number due to failing recruitment. One of the main causes for this failure is low seed viability. Observational evidence suggests that this is partly induced by climate warming, but our mechanistic understanding of this effect remains incomplete. Here, we experimentally assess the influence of temperature on two key developmental phases during sexual reproduction, i.e. gametogenesis and fertilisation (seed phase two, SP2) and embryo development (seed phase three, SP3). Along a latitudinal gradient from southern France to central Sweden, we installed a transplant experiment with shrubs originating from Belgium, a region with unusually low juniper seed viability. Seeds of both seed phases were sampled during three consecutive years, and seed viability assessed. Warming temperatures negatively affected the seed viability of both SP2 and SP3 seeds along the latitudinal gradient. Interestingly, the effect on embryo development (SP3) only occurred in the third year, i.e. when the gametogenesis and fertilisation also took place in warmer conditions. We found strong indications that this negative influence mostly acts via disrupting growth of the pollen tube, the development of the female gametophyte and fertilisation (SP2). This, in turn, can lead to failing embryo development, for example, due to nutritional problems. Our results confirm that climate warming can negatively affect seed viability of juniper. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Uav and GIS Based Tool for Collection and Propagation of Seeds Material - First Results
NASA Astrophysics Data System (ADS)
Stereńczak, K.; Mroczek, P.; Jastrzębowski, S.; Krok, G.; Lisańczuk, M.; Klisz, M.; Kantorowicz, W.
2016-06-01
Seed management carried out by The State Forests National Forest Holding is an integral part of rational forest management. Seed collection takes place mainly from stands belonging to first category of forest reproductive material, which is the largest seed base in Poland. In smaller amount, seeds are collected in selective objects of highest forest reproductive material category (selected seed stands, seed orchards). The previous estimation methods of seed crop were based on visual assessment of cones in the stands for their harvest. Following the rules of FRM transfer is additional difficulty of rational seed management which limits the possibility of the use of planting material in Poland. Statements concerning forecast of seed crop and monitoring of seed quality is based on annual reports from the State Forest Service. Forest Research Institute is responsible for preparing and publishing above-mentioned statements. A small extent of its automatization and optimization is a large disadvantage of this procedure. In order to make this process more effective web-based GIS application was designed. Its main performance will give a possibility to upload present-day information on seed efficiency, their spatial pattern and availability. Currently this system is under preparation. As a result, the project team will get a possibility to increase participation of seed material collected from selected seed base and to share good practices on this issue in more efficient way. In the future this will make it possible to obtain greater genetic gain of selection strategy. Additionally, first results presented in literature showed possible use of unmanned aerial system/vehicle (UAS/V) for supporting of seed crop forecast procedure.
Cheng, Zhi Juan; Zhao, Xiang Yu; Shao, Xing Xing; Wang, Fei; Zhou, Chao; Liu, Ying Gao; Zhang, Yan; Zhang, Xian Sheng
2014-01-01
Seed development includes an early stage of endosperm proliferation and a late stage of embryo growth at the expense of the endosperm in Arabidopsis thaliana. Abscisic acid (ABA) has known functions during late seed development, but its roles in early seed development remain elusive. In this study, we report that ABA-deficient mutants produced seeds with increased size, mass, and embryo cell number but delayed endosperm cellularization. ABSCISIC ACID DEFICIENT2 (ABA2) encodes a unique short-chain dehydrogenase/reductase that functions in ABA biosynthesis, and its expression pattern overlaps that of SHORT HYPOCOTYL UNDER BLUE1 (SHB1) during seed development. SHB1 RNA accumulation was significantly upregulated in the aba2-1 mutant and was downregulated by the application of exogenous ABA. Furthermore, RNA accumulation of the basic/region leucine zipper transcription factor ABSCISIC ACID-INSENSITIVE5 (ABI5), involved in ABA signaling, was decreased in aba2-1. Consistent with this, seed size was also increased in abi5. We further show that ABI5 directly binds to two discrete regions in the SHB1 promoter. Our results suggest that ABA negatively regulates SHB1 expression, at least in part, through the action of its downstream signaling component ABI5. Our findings provide insights into the molecular mechanisms by which ABA regulates early seed development. PMID:24619610
Axially staggered seed-blanket reactor-fuel-module construction. [LWBR
Cowell, G.K.; DiGuiseppe, C.P.
1982-10-28
A heterogeneous nuclear reactor of the seed-blanket type is provided wherein the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements.
Recent direct seeding trials in the pine region
H.A. Fowells; G.H. Schubert
1951-01-01
Direct seeding is a highly desirable method of regeneration. It is more economical and more flexible in both time and place than the planting of trees. In California, however, direct seeding generally has been an ineffective method of regeneration. Early trials by the Forest Service with broadcast sowing and spot sowing invariably failed to produce an adequate stand of...
USDA-ARS?s Scientific Manuscript database
Soybean Phomopsis seed decay (PSD), primarily caused by Phomopsis longicolla, is a major cause of poor seed quality in the United States, especially in the mid-southern region. To identify new sources of soybean lines resistant to PSD, 16 commercial soybean varieties (MG IV and MGV) were planted on ...
USDA-ARS?s Scientific Manuscript database
Soybean Phomopsis seed decay (PSD) is the major cause of poor seed quality in the United States, especially in the mid-south region. The disease is primarily caused by Phomopsis longicolla along with other Phomopsis and Diaporthe spp. There are few management strategies for this disease, and these s...
USDA-ARS?s Scientific Manuscript database
Phomopsis seed decay (PSD) of soybean is a major cause of poor seed quality in most soybean production areas, especially in the mid-southern region of the United States. Breeding for PSD-resistance is the most effective long-term strategy to control this disease. To breed soybean lines with resistan...
J.M. Wunderle Jr.
1997-01-01
this paper reviews the characteristicas of animal seed dispersal. relevant to tropical forest restoration efforts and discusses their managment implication. In many tropical regions seed dispersal by animals is the predominant form of dissemination of propagules and has a potential to facilitate recolonization of native vegetation on degraded sites.
A mast-seeding desert shrub regulates population dynamics and behavior of its heteromyid dispersers
Janene Auger; Susan E. Meyer; Stephen H. Jenkins
2016-01-01
Granivorous rodent populations in deserts are primarily regulated through precipitation-driven resource pulses rather than pulses associated with mast-seeding, a pattern more common in mesic habitats. We studied heteromyid responses to mast-seeding in the desert shrub blackbrush (Coleogyne ramosissima), a regionally dominant species in the MojaveâGreat Basin...
Investigation of pump-to-seed beam matching on output features of Rb and Cs vapor laser amplifiers
NASA Astrophysics Data System (ADS)
Shen, Binglin; Huang, Jinghua; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang
2018-05-01
Taking into account the beam radii of pump light and seed laser along the entire length of the cell and their intensities in the cross section, a physical model with ordinary differential equation methods for alkali vapor amplifiers is established. Applied to the reported optically pumped Rb and diode-pumped Cs vapor amplifiers, the model shows good agreement between the calculated and measured dependence of amplified power on the seed power. A larger width of the spontaneous emission region as compared to the widths of pump absorption and laser emission regions, which will result in very high energy losses, is observed in the cell. Influence of pump and seed beam waists on output performance is calculated, showing that the pump and seed beam should match each other not only in shape but also in size, thus an optimal combination of beam radii is very important for efficient operation of alkali vapor amplifiers.
Xia, Yuan; Du, LiFang; Cheng, XueWu; Li, FaQuan; Wang, JiHong; Wang, ZeLong; Yang, Yong; Lin, Xin; Xun, YuChang; Gong, ShunSheng; Yang, GuoTao
2017-03-06
A solid-state sodium (Na) Doppler lidar developed at YanQing Station, Beijing, China (40°N, 116°E) aiming to simultaneous wind and temperature measurement of mesopause region was reported. The 589 nm pulse laser was produced by two injection seeded 1064 nm and 1319 nm Nd:YAG pulse lasers using the sum-frequency generation (SFG) technique. A fiber amplifier is implemented to boost the seed power at 1064 nm, enabling a robust, all-fiber-coupled design for seeding laser unit, absolute laser frequency locking, and cyclic three-frequency switching necessary for simultaneous temperature and wind measurements. The all-fiber-coupled injection seeding configuration together with the solid-state Nd:YAG lasers make the Na Doppler lidar more compact and greatly reduce the system maintenance, which is conducive to transportable and unattended operation. A preliminary observational result obtained with this solid-state sodium Doppler lidar was also reported in this paper.
Peterbauer, T; Mucha, J; Mayer, U; Popp, M; Glössl, J; Richter, A
1999-12-01
Stachyose is the major soluble carbohydrate in seeds of a number of important crop species. It is synthesized from raffinose and galactinol by the action of stachyose synthase (EC 2.4.1.67). We report here on the identification of a cDNA encoding stachyose synthase from seeds of adzuki bean (Vigna angularis Ohwi et Ohashi). Based on internal amino acid sequences of the enzyme purified from adzuki bean, oligonucleotides were designed and used to amplify corresponding sequences from adzuki bean cDNA by RT-PCR, followed by rapid amplification of cDNA ends (RACE-PCR). The complete cDNA sequence comprised 3046 nucleotides and included an open reading frame which encoded a polypeptide of 857 amino acid residues. The entire coding region was amplified by PCR, engineered into the baculovirus expression vector pVL1393 and introduced into Spodoptera frugiperda (Sf21) insect cells for heterologous expression. The recombinant protein was immunologically reactive with polyclonal antibodies raised against stachyose synthase purified from adzuki bean and was shown to be a functional stachyose synthase with the same catalytic properties as its native counterpart. High levels of stachyose synthase mRNA were transiently accumulated midway through seed development, and the enzyme was also present in mature seeds and during germination.
de Almeida Barros, Beatriz; da Silva, Wiliane Garcia; Moreira, Maurilio Alves; de Barros, Everaldo Gonçalves
2012-01-01
The Bowman-Birk (BBI) protease inhibitors can be used as source of sulfur amino acids, can regulate endogenous protease activity during seed germination and during the defense response of plants to pathogens. In soybean this family has not been fully described. The goal of this work was to characterize in silico and analyze the expression of the members of this family in soybean. We identified 11 potential BBI genes in the soybean genome. In each one of them at least a characteristic BBI conserved domain was detected in addition to a potential signal peptide. The sequences have been positioned in the soybean physical map and the promoter regions were analyzed with respect to known regulatory elements. Elements related to seed-specific expression and also to response to biotic and abiotic stresses have been identified. Based on the in silico analysis and also on quantitative RT-PCR data it was concluded that BBI-A, BBI-CII and BBI-DII are expressed specifically in the seed. The expression profiles of these three genes are similar along seed development. Their expressions reach a maximum in the intermediate stages and decrease as the seed matures. The BBI-DII transcripts are the most abundant ones followed by those of BBI-A and BBI-CII.
Zhang, Xiaolei; Liu, Fei; He, Yong; Li, Xiaoli
2012-01-01
Hyperspectral imaging in the visible and near infrared (VIS-NIR) region was used to develop a novel method for discriminating different varieties of commodity maize seeds. Firstly, hyperspectral images of 330 samples of six varieties of maize seeds were acquired using a hyperspectral imaging system in the 380–1,030 nm wavelength range. Secondly, principal component analysis (PCA) and kernel principal component analysis (KPCA) were used to explore the internal structure of the spectral data. Thirdly, three optimal wavelengths (523, 579 and 863 nm) were selected by implementing PCA directly on each image. Then four textural variables including contrast, homogeneity, energy and correlation were extracted from gray level co-occurrence matrix (GLCM) of each monochromatic image based on the optimal wavelengths. Finally, several models for maize seeds identification were established by least squares-support vector machine (LS-SVM) and back propagation neural network (BPNN) using four different combinations of principal components (PCs), kernel principal components (KPCs) and textural features as input variables, respectively. The recognition accuracy achieved in the PCA-GLCM-LS-SVM model (98.89%) was the most satisfactory one. We conclude that hyperspectral imaging combined with texture analysis can be implemented for fast classification of different varieties of maize seeds. PMID:23235456
Investigation of radical locations in various sesame seeds by CW EPR and 9-GHz EPR imaging.
Nakagawa, K; Hara, H
2015-01-01
We investigated the location of radical in various sesame seeds using continuous-wave (CW) electron paramagnetic resonance (EPR) and 9-GHz EPR imaging. CW EPR detected persistent radicals (single line) for various sesame seeds. The EPR linewidth of black sesame seeds was narrower than that of the irradiated white sesame seeds. A very small signal was detected for the white sesame seeds. Two-dimensional (2D) imaging using a 9-GHz EPR imager showed that radical locations vary for various sesame seeds. The paramagnetic species in black sesame seeds were located on the seed coat (skin) and in the hilum region. The signal with the highest intensity was obtained from the hilum part. A very low-intensity image was observed for the white sesame seeds. In addition, the 2D imaging of the irradiated white sesame seeds showed that free radicals were located throughout the entire seed. For the first time, CW EPR and 9-GHz EPR imaging showed the exact location of radical species in various sesame seeds.
Das, Shouvik; Upadhyaya, Hari D.; Bajaj, Deepak; Kujur, Alice; Badoni, Saurabh; Laxmi; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. Laxmipathi; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.
2015-01-01
A rapid high-resolution genome-wide strategy for molecular mapping of major QTL(s)/gene(s) regulating important agronomic traits is vital for in-depth dissection of complex quantitative traits and genetic enhancement in chickpea. The present study for the first time employed a NGS-based whole-genome QTL-seq strategy to identify one major genomic region harbouring a robust 100-seed weight QTL using an intra-specific 221 chickpea mapping population (desi cv. ICC 7184 × desi cv. ICC 15061). The QTL-seq-derived major SW QTL (CaqSW1.1) was further validated by single-nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker-based traditional QTL mapping (47.6% R2 at higher LOD >19). This reflects the reliability and efficacy of QTL-seq as a strategy for rapid genome-wide scanning and fine mapping of major trait regulatory QTLs in chickpea. The use of QTL-seq and classical QTL mapping in combination narrowed down the 1.37 Mb (comprising 177 genes) major SW QTL (CaqSW1.1) region into a 35 kb genomic interval on desi chickpea chromosome 1 containing six genes. One coding SNP (G/A)-carrying constitutive photomorphogenic9 (COP9) signalosome complex subunit 8 (CSN8) gene of these exhibited seed-specific expression, including pronounced differential up-/down-regulation in low and high seed weight mapping parents and homozygous individuals during seed development. The coding SNP mined in this potential seed weight-governing candidate CSN8 gene was found to be present exclusively in all cultivated species/genotypes, but not in any wild species/genotypes of primary, secondary and tertiary gene pools. This indicates the effect of strong artificial and/or natural selection pressure on target SW locus during chickpea domestication. The proposed QTL-seq-driven integrated genome-wide strategy has potential to delineate major candidate gene(s) harbouring a robust trait regulatory QTL rapidly with optimal use of resources. This will further assist us to extrapolate the molecular mechanism underlying complex quantitative traits at a genome-wide scale leading to fast-paced marker-assisted genetic improvement in diverse crop plants, including chickpea. PMID:25922536
Bourgeois, Michael; Jacquin, Françoise; Cassecuelle, Florence; Savois, Vincent; Belghazi, Maya; Aubert, Grégoire; Quillien, Laurence; Huart, Myriam; Marget, Pascal; Burstin, Judith
2011-05-01
Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Seed dispersal by fishes in tropical and temperate fresh waters: The growing evidence
NASA Astrophysics Data System (ADS)
Horn, Michael H.; Correa, Sandra Bibiana; Parolin, Pia; Pollux, B. J. A.; Anderson, Jill T.; Lucas, Christine; Widmann, Peter; Tjiu, Albertus; Galetti, Mauro; Goulding, Michael
2011-11-01
Fruit-eating by fishes represents an ancient (perhaps Paleozoic) interaction increasingly regarded as important for seed dispersal (ichthyochory) in tropical and temperate ecosystems. Most of the more than 275 known frugivorous species belong to the mainly Neotropical Characiformes (pacus, piranhas) and Siluriformes (catfishes), but cypriniforms (carps, minnows) are more important in the Holarctic and Indomalayan regions. Frugivores are among the most abundant fishes in Neotropical floodplains where they eat the fruits of a wide variety of trees and shrubs. By consuming fruits, fishes gain access to rich sources of carbohydrates, lipids and proteins and act as either seed predators or seed dispersers. With their often high mobility, large size, and great longevity, fruit-eating fishes can play important roles as seed dispersers and exert strong influences on local plant-recruitment dynamics and regional biodiversity. Recent feeding experiments focused on seed traits after gut passage support the idea that fishes are major seed dispersers in floodplain and riparian forests. Overfishing, damming, deforestation and logging potentially diminish ichthyochory and require immediate attention to ameliorate their effects. Much exciting work remains in terms of fish and plant adaptations to ichthyochory, dispersal regimes involving fishes in different ecosystems, and increased use of nondestructive methods such as stomach lavage, stable isotopes, genetic analyses and radio transmitters to determine fish diets and movements.
Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S.; Cao, Zhuanqin; Beighley, Donn H.; Yang, Jianchang; Gu, Xing-You
2015-01-01
Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. PMID:26373662
Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S; Cao, Zhuanqin; Beighley, Donn H; Yang, Jianchang; Gu, Xing-You
2015-11-01
Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. © 2015 American Society of Plant Biologists. All Rights Reserved.
Diversity and relatedness in a black walnut seed orchard
Keith Woeste; Doug Mersman
2003-01-01
Geneticists and silviculturists have selected over 450 black walnut clones for inclusion in the black walnut breeding program at Purdue University over the past 35 years. Most of the selections were from Indiana; a few were from other states in the Central Hardwoods Region. Selection of second and third generation clones out of this founder population was based...
Sleep and meal-time misalignment alters functional connectivity: a pilot resting-state study.
Yoncheva, Y N; Castellanos, F X; Pizinger, T; Kovtun, K; St-Onge, M-P
2016-11-01
Delayed sleep and meal times promote metabolic dysregulation and obesity. Altered coordination of sleeping and eating times may impact food-reward valuation and interoception in the brain, yet the independent and collective contributions of sleep and meal times are unknown. This randomized, in-patient crossover study experimentally manipulates sleep and meal times while preserving sleep duration (7.05±0.44 h for 5 nights). Resting-state functional magnetic resonance imaging scans (2 × 5-minute runs) were obtained for four participants (three males; 25.3±4.6 years), each completing all study phases (normal sleep/normal meal; late sleep/normal meal; normal sleep/late meal; and late sleep/late meal). Normal mealtimes were 1, 5, 11 and 12.5 h after awakening; late mealtimes were 4.5, 8.5, 14.5 and 16 h after awakening. Seed-based resting-state functional connectivity (RSFC) was computed for a priori regions-of-interest (seeds) and contrasted across conditions. Statistically significant (P<0.05, whole-brain corrected) regionally specific effects were found for multiple seeds. The strongest effects were linked to the amygdala: increased RSFC for late versus normal mealtimes (equivalent to skipping breakfast). A main effect of sleep and interaction with meal time were also observed. Preliminary findings support the feasibility of examining the effects of sleep and meal-time misalignment, independent of sleep duration, on RSFC in regions relevant to food reward and interoception.
NASA Astrophysics Data System (ADS)
Sapozhnikova, Veronika V.; Kutis, Irina S.; Kutis, Sergey D.; Kuranov, Roman V.; Gelikonov, Grigory V.; Shabanov, Dmitry V.; Kamensky, Vladislav A.
2004-07-01
First experimental results on OCT imaging of internal structure of plant tissues and in situ OCT monitoring of plant tissue regeneration at different water supply are reported. Experiments for evaluating OCT capabilities were performed on Tradescantia. The investigation of seeds swelling was performed on wheat seeds (Triticum L.), barley seeds (Hordeum L.), long-fibred flax seeds (Linum usitatissimum L.) and cucumber seeds (Cucumis sativus L.). These OCT images correlate with standard microscopy data from the same tissue regions. Seeds were exposed to a low-intensity physical factor-the pulsed gradient magnetic field (GMF) with pulse duration 0.1 s and maximum amplitude 5 mT (4 successive pulses during 0.4 s). OCT and OCM enable effective monitoring of fast reactions in plants and seeds at different water supply.
NASA Astrophysics Data System (ADS)
Park, Bumwoo; Furlan, Alessandro; Patil, Amol; Bae, Kyongtae T.
2010-03-01
Pulmonary embolism (PE) is a medical condition defined as the obstruction of pulmonary arteries by a blood clot, usually originating in the deep veins of the lower limbs. PE is a common but elusive illness that can cause significant disability and death if not promptly diagnosed and effectively treated. CT Pulmonary Angiography (CTPA) is the first line imaging study for the diagnosis of PE. While clinical prediction rules have been recently developed to associate short-term risks and stratify patients with acute PE, there is a dearth of objective biomarkers associated with the long-term prognosis of the disease. Clot (embolus) burden is a promising biomarker for the prognosis and recurrence of PE and can be quantified from CTPA images. However, to our knowledge, no study has reported a method for segmentation and measurement of clot from CTPA images. Thus, the purpose of this study was to develop a semi-automated method for segmentation and measurement of clot from CTPA images. Our method was based on Modified Seeded Region Growing (MSRG) algorithm which consisted of two steps: (1) the observer identifies a clot of interest on CTPA images and places a spherical seed over the clot; and (2) a region grows around the seed on the basis of a rolling-ball process that clusters the neighboring voxels whose CT attenuation values are within the range of the mean +/- two standard deviations of the initial seed voxels. The rollingball propagates iteratively until the clot is completely clustered and segmented. Our experimental results revealed that the performance of the MSRG was superior to that of the conventional SRG for segmenting clots, as evidenced by reduced degrees of over- or under-segmentation from adjacent anatomical structures. To assess the clinical value of clot burden for the prognosis of PE, we are currently applying the MSRG for the segmentation and volume measurement of clots from CTPA images that are acquired in a large cohort of patients with PE in an on-going NIH-sponsored clinical trial.
Constraints on the production of primordial magnetic seeds in pre-big bang cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasperini, M., E-mail: gasperini@ba.infn.it
We study the amplification of the electromagnetic fluctuations, and the production of 'seeds' for the cosmic magnetic fields, in a class of string cosmology models whose scalar and tensor perturbations reproduce current observations and satisfy known phenomenological constraints. We find that the condition of efficient seeds production can be satisfied and compatible with all constraints only in a restricted region of parameter space, but we show that such a region has significant intersections with the portions of parameter space where the produced background of relic gravitational waves is strong enough to be detectable by aLIGO/Virgo and/or by eLISA.
Constraints on the production of primordial magnetic seeds in pre-big bang cosmology
NASA Astrophysics Data System (ADS)
Gasperini, M.
2017-06-01
We study the amplification of the electromagnetic fluctuations, and the production of "seeds" for the cosmic magnetic fields, in a class of string cosmology models whose scalar and tensor perturbations reproduce current observations and satisfy known phenomenological constraints. We find that the condition of efficient seeds production can be satisfied and compatible with all constraints only in a restricted region of parameter space, but we show that such a region has significant intersections with the portions of parameter space where the produced background of relic gravitational waves is strong enough to be detectable by aLIGO/Virgo and/or by eLISA.
He, Yong; Wang, Hong; Qian, Budong; McConkey, Brian; DePauw, Ron
2012-01-01
Shorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints. This paper explores early seeding dates of spring wheat on the Canadian Prairies under current and projected future climate. To achieve this, (i) weather records from 1961 to 1990 were gathered at three sites with different soil and climate conditions in Saskatchewan, Canada; (ii) four climate databases that included a baseline (treated as historic weather climate during the period of 1961-1990) and three climate change scenarios (2040-2069) developed by the Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) emission scenarios (A2, A1B and B1); (iii) seeding dates of spring wheat (Triticum aestivum L.) under baseline and projected future climate were predicted. Compared with the historical record of seeding dates, the predicted seeding dates were advanced under baseline climate for all sites using our seeding date model. Driven by the predicted temperature increase of the scenarios compared with baseline climate, all climate change scenarios projected significantly earlier seeding dates than those currently used. Compared to the baseline conditions, there is no reduction in grain yield because precipitation increases during sensitive growth stages of wheat, suggesting that there is potential to shift seeding to an earlier date. The average advancement of seeding dates varied among sites and chosen scenarios. The Swift Current (south-west) site has the highest potential for earlier seeding (7 to 11 days) whereas such advancement was small in the Melfort (north-east, 2 to 4 days) region. The extent of projected climate change in Saskatchewan indicates that growers in this region have the potential of earlier seeding. The results obtained in this study may be used for adaptation assessments of seeding dates under possible climate change to mitigate the impact of potential warming.
An, Tae Jin; Shin, Kyu Seop; Paul, Narayan Chandra; Kim, Young Guk; Cha, Seon Woo; Moon, Yuseok; Yu, Seung Hun; Oh, Sang-Keun
2016-01-01
Adlay seed samples were collected from three adlay growing regions (Yeoncheon, Hwasun, and Eumseong region) in Korea during 2012. Among all the samples collected, 400 seeds were tested for fungal occurrence by standard blotter and test tube agar methods and different taxonomic groups of fungal genera were detected. The most predominant fungal genera encountered were Fusarium, Phoma, Alternaria, Cladosporium, Curvularia, Cochliobolus and Leptosphaerulina. Fusarium species accounted for 45.6% of all species found; and, with phylogenetic analysis based on the combined sequences of two protein coding genes (EF-1α and β-tubulin), 10 Fusarium species were characterized namely, F. incarnatum (11.67%), F. kyushuense (10.33%), F. fujikuroi (8.67%), F. concentricum (6.00%), F. asiaticum (5.67%), F. graminearum (1.67%), F. miscanthi (0.67%), F. polyphialidicum (0.33%), F. armeniacum (0.33%), and F. thapsinum (0.33%). The Fusarium species were then examined for their morphological characteristics to confirm their identity. Morphological observations of the species correlated well with and confirmed their molecular identification. The ability of these isolates to produce the mycotoxins fumonisin (FUM) and zearalenone (ZEN) was tested by the ELISA quantitative analysis method. The result revealed that FUM was produced only by F. fujikuroi and that ZEN was produced by F. asiaticum and F. graminearum. PMID:27801779
An, Tae Jin; Shin, Kyu Seop; Paul, Narayan Chandra; Kim, Young Guk; Cha, Seon Woo; Moon, Yuseok; Yu, Seung Hun; Oh, Sang-Keun
2016-10-27
Adlay seed samples were collected from three adlay growing regions (Yeoncheon, Hwasun, and Eumseong region) in Korea during 2012. Among all the samples collected, 400 seeds were tested for fungal occurrence by standard blotter and test tube agar methods and different taxonomic groups of fungal genera were detected. The most predominant fungal genera encountered were Fusarium , Phoma , Alternaria , Cladosporium , Curvularia , Cochliobolus and Leptosphaerulina . Fusarium species accounted for 45.6% of all species found; and, with phylogenetic analysis based on the combined sequences of two protein coding genes (EF-1α and β-tubulin), 10 Fusarium species were characterized namely, F. incarnatum (11.67%), F. kyushuense (10.33%), F. fujikuroi (8.67%), F. concentricum (6.00%), F. asiaticum (5.67%), F. graminearum (1.67%), F. miscanthi (0.67%), F. polyphialidicum (0.33%), F. armeniacum (0.33%), and F. thapsinum (0.33%). The Fusarium species were then examined for their morphological characteristics to confirm their identity. Morphological observations of the species correlated well with and confirmed their molecular identification. The ability of these isolates to produce the mycotoxins fumonisin (FUM) and zearalenone (ZEN) was tested by the ELISA quantitative analysis method. The result revealed that FUM was produced only by F. fujikuroi and that ZEN was produced by F. asiaticum and F. graminearum .
Scavuzzo-Duggan, Tess R; Chaves, Arielle M; Singh, Abhishek; Sethaphong, Latsavongsakda; Slabaugh, Erin; Yingling, Yaroslava G; Haigler, Candace H; Roberts, Alison W
2018-06-01
Cellulose synthases (CESAs) are glycosyltransferases that catalyze formation of cellulose microfibrils in plant cell walls. Seed plant CESA isoforms cluster in six phylogenetic clades, whose non-interchangeable members play distinct roles within cellulose synthesis complexes (CSCs). A 'class specific region' (CSR), with higher sequence similarity within versus between functional CESA classes, has been suggested to contribute to specific activities or interactions of different isoforms. We investigated CESA isoform specificity in the moss, Physcomitrella patens (Hedw.) B. S. G. to gain evolutionary insights into CESA structure/function relationships. Like seed plants, P. patens has oligomeric rosette-type CSCs, but the PpCESAs diverged independently and form a separate CESA clade. We showed that P. patens has two functionally distinct CESAs classes, based on the ability to complement the gametophore-negative phenotype of a ppcesa5 knockout line. Thus, non-interchangeable CESA classes evolved separately in mosses and seed plants. However, testing of chimeric moss CESA genes for complementation demonstrated that functional class-specificity is not determined by the CSR. Sequence analysis and computational modeling showed that the CSR is intrinsically disordered and contains predicted molecular recognition features, consistent with a possible role in CESA oligomerization and explaining the evolution of class-specific sequences without selection for class-specific function. © 2018 Institute of Botany, Chinese Academy of Sciences.
Chen, Jun; Wang, Bo; Zhang, Yueli; Yue, Xiaopeng; Li, Zhaohong; Liu, Kede
2017-06-01
Rapeseed ( Brassica napus L.) is one of the most important oil crops almost all over the world. Seed-related traits, including oil content (OC), silique length (SL), seeds per silique (SS), and seed weight (SW), are primary targets for oil yield improvement. To dissect the genetic basis of these traits, 192 recombinant inbred lines (RILs) were derived from two parents with distinct oil content and silique length. High-density linkage map with a total length of 1610.4 cM were constructed using 1,329 double-digestion restriction site associated DNA (ddRAD) markers, 107 insertion/deletions (INDELs), and 90 well-distributed simple sequence repeats (SSRs) markers. A total of 37 consensus quantitative trait loci (QTLs) were detected for the four traits, with individual QTL explained 3.1-12.8% of the phenotypic variations. Interestingly, one OC consensus QTL ( cqOCA10b ) on chromosome A10 was consistently detected in all three environments, and explained 9.8% to 12.8% of the OC variation. The locus was further delimited into an approximately 614 kb genomic region, in which the flanking markers could be further evaluated for marker-assisted selection in rapeseed OC improvement and the candidate genes targeted for map-based cloning and genetic manipulation.
Spatial variation in reproductive effort of a southern Australian seagrass.
Smith, Timothy M; York, Paul H; Macreadie, Peter I; Keough, Michael J; Ross, D Jeff; Sherman, Craig D H
2016-09-01
In marine environments characterised by habitat-forming plants, the relative allocation of resources into vegetative growth and flowering is an important indicator of plant condition and hence ecosystem health. In addition, the production and abundance of seeds can give clues to local resilience. Flowering density, seed bank, biomass and epiphyte levels were recorded for the temperate seagrass Zostera nigricaulis in Port Phillip Bay, south east Australia at 14 sites chosen to represent several regions with different physicochemical conditions. Strong regional differences were found within the large bay. Spathe and seed density were very low in the north of the bay (3 sites), low in the centre of the bay (2 sites) intermediate in the Outer Geelong Arm (2 sites), high in Swan Bay (2 sites) and very high in the Inner Geelong Arm (3 sites). In the south (2 sites) seed density was low and spathe density was high. These regional patterns were largely consistent for the 5 sites sampled over the three year period. Timing of flowering was consistent across sites, occurring from August until December with peak production in October, except during the third year of monitoring when overall densities were lower and peaked in November. Seagrass biomass, epiphyte load, canopy height and stem density showed few consistent spatial and temporal patterns. Variation in spathe and seed density and morphology across Port Phillip Bay reflects varying environmental conditions and suggests that northern sites may be restricted in their ability to recover from disturbance through sexual reproduction. In contrast, sites in the west and south of the bay have greater potential to recover from disturbances due to a larger seed bank and these sites could act as source populations for sites where seed production is low. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ellerström, M; Stålberg, K; Ezcurra, I; Rask, L
1996-12-01
The promoter region (-309 to +44) of the Brassica napus storage protein gene napA was studied in transgenic tobacco by successive 5' as well as internal deletions fused to the reporter gene GUS (beta-glucuronidase). The expression in the two main tissues of the seed, the endosperm and the embryo, was shown to be differentially regulated. This tissue-specific regulation within the seed was found to affect the developmental expression during seed development. The region between -309 to -152, which has a large effect on quantitative expression, was shown to harbour four elements regulating embryo and one regulating endosperm expression. This region also displayed enhancer activity. Deletion of eight bp from position -152 to position -144 totally abolished the activity of the napA promoter. This deletion disrupted a cis element with similarity to an ABA-responsive element (ABRE) overlapping with an E-box, demonstrating its crucial importance for quantitative expression. An internal deletion of the region -133 to -120, resulted in increased activity in both leaves and endosperm and a decreased activity in the embryo. Within this region, a cis element similar to the (CA)n element, found in other storage protein promoters, was identified. This suggest that the (CA)n element is important for conferring seed specificity by serving both as an activator and a repressor element.
USDA-ARS?s Scientific Manuscript database
Thlaspi arvense L. is a common weed found in most temperate regions throughout the world that also shows excellent potential for domestication as an oilseed crop. The complexity of T. arvense seed dormancy presently makes it difficult to manage as a weed or oilseed crop. Therefore, a better understa...
USDA-ARS?s Scientific Manuscript database
Low potato yield in Peru and other countries in the region are attributed to the use of low quality seeds and tuber recycling. Therefore, there is consensus on the need of incorporating seed production technologies that are effective and efficient but also consistent with the reality of potato in La...
Automatic Generation of Indoor Navigable Space Using a Point Cloud and its Scanner Trajectory
NASA Astrophysics Data System (ADS)
Staats, B. R.; Diakité, A. A.; Voûte, R. L.; Zlatanova, S.
2017-09-01
Automatic generation of indoor navigable models is mostly based on 2D floor plans. However, in many cases the floor plans are out of date. Buildings are not always built according to their blue prints, interiors might change after a few years because of modified walls and doors, and furniture may be repositioned to the user's preferences. Therefore, new approaches for the quick recording of indoor environments should be investigated. This paper concentrates on laser scanning with a Mobile Laser Scanner (MLS) device. The MLS device stores a point cloud and its trajectory. If the MLS device is operated by a human, the trajectory contains information which can be used to distinguish different surfaces. In this paper a method is presented for the identification of walkable surfaces based on the analysis of the point cloud and the trajectory of the MLS scanner. This method consists of several steps. First, the point cloud is voxelized. Second, the trajectory is analysing and projecting to acquire seed voxels. Third, these seed voxels are generated into floor regions by the use of a region growing process. By identifying dynamic objects, doors and furniture, these floor regions can be modified so that each region represents a specific navigable space inside a building as a free navigable voxel space. By combining the point cloud and its corresponding trajectory, the walkable space can be identified for any type of building even if the interior is scanned during business hours.
NASA Astrophysics Data System (ADS)
Oka, T.; Miyazaki, T.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Langer, M.
2016-02-01
Melt-textured Y-Ba-Cu-O high temperature superconducting bulk magnets were fabricated by the cold seeding method with using single or twin-seed crystals composed of Nd-Ba-Cu-O thin films on MgO substrates. The behavior of the magnetic flux penetration into anisotropic-grown bulk magnets thus fabricated was precisely evaluated during and after the pulsed field magnetization operated at 35 K. These seed crystals were put on the top surfaces of the precursors to grow large grains during the melt-processes. Although we know the magnetic flux motion is restricted by the enhanced pinning effect in temperature ranges lower than 77 K, we observed that flux invasion occurred at applied fields of 3.3 T when the twin seeds were used. This is definitely lower than those of 3.7 T when the single-seeds were employed. This means that the magnetic fluxes are capable of invading into twin-seeded bulk magnets more easily than single-seeded ones. The twin seeds form the different grain growth regions, the narrow-GSR (growth sector region) and wide-GSR, according to the different grain growth directions which are parallel and normal to the rows of seed crystals, respectively. The invading flux measurements revealed that the magnetic flux invades the sample from the wide-GSR prior to the narrow-GSR. It suggests that such anisotropic grain growth leads to different distributions of pinning centers, variations of J c values, and the formation of preferential paths for the invading magnetic fluxes. Using lower applied fields definitely contributed to lowering the heat generation during the PFM process, which, in turn, led to enhanced trapped magnetic fluxes.
Münnich, Timo; Klein, Jan; Hattingen, Elke; Noack, Anika; Herrmann, Eva; Seifert, Volker; Senft, Christian; Forster, Marie-Therese
2018-04-14
Tractography is a popular tool for visualizing the corticospinal tract (CST). However, results may be influenced by numerous variables, eg, the selection of seeding regions of interests (ROIs) or the chosen tracking algorithm. To compare different variable sets by correlating tractography results with intraoperative subcortical stimulation of the CST, correcting intraoperative brain shift by the use of intraoperative MRI. Seeding ROIs were created by means of motor cortex segmentation, functional MRI (fMRI), and navigated transcranial magnetic stimulation (nTMS). Based on these ROIs, tractography was run for each patient using a deterministic and a probabilistic algorithm. Tractographies were processed on pre- and postoperatively acquired data. Using a linear mixed effects statistical model, best correlation between subcortical stimulation intensity and the distance between tractography and stimulation sites was achieved by using the segmented motor cortex as seeding ROI and applying the probabilistic algorithm on preoperatively acquired imaging sequences. Tractographies based on fMRI or nTMS results differed very little, but with enlargement of positive nTMS sites the stimulation-distance correlation of nTMS-based tractography improved. Our results underline that the use of tractography demands for careful interpretation of its virtual results by considering all influencing variables.
Marine cloud brightening: regional applications.
Latham, John; Gadian, Alan; Fournier, Jim; Parkes, Ben; Wadhams, Peter; Chen, Jack
2014-12-28
The general principle behind the marine cloud brightening (MCB) climate engineering technique is that seeding marine stratocumulus clouds with substantial concentrations of roughly monodisperse sub-micrometre-sized seawater particles might significantly enhance cloud albedo and longevity, thereby producing a cooling effect. This paper is concerned with preliminary studies of the possible beneficial application of MCB to three regional issues: (1) recovery of polar ice loss, (2) weakening of developing hurricanes and (3) elimination or reduction of coral bleaching. The primary focus is on Item 1. We focus discussion herein on advantages associated with engaging in limited-area seeding, regional effects rather than global; and the levels of seeding that may be required to address changing current and near-term conditions in the Arctic. We also mention the possibility that MCB might be capable of producing a localized cooling to help stabilize the West Antarctic Ice Sheet.
WE-DE-201-12: Thermal and Dosimetric Properties of a Ferrite-Based Thermo-Brachytherapy Seed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warrell, G; Shvydka, D; Parsai, E I
Purpose: The novel thermo-brachytherapy (TB) seed provides a simple means of adding hyperthermia to LDR prostate permanent implant brachytherapy. The high blood perfusion rate (BPR) within the prostate motivates the use of the ferrite and conductive outer layer design for the seed cores. We describe the results of computational analyses of the thermal properties of this ferrite-based TB seed in modelled patient-specific anatomy, as well as studies of the interseed and scatter (ISA) effect. Methods: The anatomies (including the thermophysical properties of the main tissue types) and seed distributions of 6 prostate patients who had been treated with LDR brachytherapymore » seeds were modelled in the finite element analysis software COMSOL, using ferrite-based TB and additional hyperthermia-only (HT-only) seeds. The resulting temperature distributions were compared to those computed for patient-specific seed distributions, but in uniform anatomy with a constant blood perfusion rate. The ISA effect was quantified in the Monte Carlo software package MCNP5. Results: Compared with temperature distributions calculated in modelled uniform tissue, temperature distributions in the patient-specific anatomy were higher and more heterogeneous. Moreover, the maximum temperature to the rectal wall was typically ∼1 °C greater for patient-specific anatomy than for uniform anatomy. The ISA effect of the TB and HT-only seeds caused a reduction in D90 similar to that found for previously-investigated NiCu-based seeds, but of a slightly smaller magnitude. Conclusion: The differences between temperature distributions computed for uniform and patient-specific anatomy for ferrite-based seeds are significant enough that heterogeneous anatomy should be considered. Both types of modelling indicate that ferrite-based seeds provide sufficiently high and uniform hyperthermia to the prostate, without excessively heating surrounding tissues. The ISA effect of these seeds is slightly less than that for the previously-presented NiCu-based seeds.« less
Worth, J R P; Holland, B R; Beeton, N J; Schönfeld, B; Rossetto, M; Vaillancourt, R E; Jordan, G J
2017-10-17
Investigating species distributions across geographic barriers is a commonly utilized method in biogeography to help understand the functional traits that allow plants to disperse successfully. Here the biogeographic pattern analysis approach is extended by using chloroplast DNA whole-genome 'mining' to examine the functional traits that have impacted the dispersal of widespread temperate forest species across an intermittent seaway, the 200 km wide Bass Strait of south-eastern Australia. Multiple, co-distributed species of both dry and wet forests were sampled from five regions on either side of the Strait to obtain insights into past dispersal of these biomes via seed. Using a next-generation sequencing-based pool-seq method, the sharing of single nucleotide polymorphisms (SNPs) was estimated between all five regions in the chloroplast genome. A total of 3335 SNPs were detected in 20 species. SNP sharing patterns between regions provided evidence for significant seed-mediated gene flow across the study area, including across Bass Strait. A higher proportion of shared SNPs in dry forest species, especially those dispersed by birds, compared with wet forest species suggests that dry forest species have undergone greater seed-mediated gene flow across the study region during past climatic oscillations and sea level changes associated with the interglacial/glacial cycles. This finding is consistent with a greater propensity for long-distance dispersal for species of open habitats and proxy evidence that expansive areas of dry vegetation occurred during times of exposure of Bass Strait during glacials. Overall, this study provides novel genetic evidence that habitat type and its interaction with dispersal traits are major influences on dispersal of plants. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Chen, Feng; Li, Hai-Long; Tan, Yin-Feng; Guan, Wei-Wei; Zhang, Jun-Qing; Li, Yong-Hui; Zhao, Yuan-Sheng; Qin, Zhen-Miao
2014-04-10
Plant secondary metabolites are known to not only play a key role in the adaptation of plants to their environment, but also represent an important source of active pharmaceuticals. Alpinia oxyphylla capsular fruits, made up of seeds and pericarps, are commonly used in traditional East Asian medicines. In clinical utilization of these capsular fruits, inconsistent processing approaches (i.e., hulling pericarps or not) are employed, with the potential of leading to differential pharmacological effects. Therefore, an important question arises whether the content levels of pharmacologically active chemicals between the seeds and pericarps of A. oxyphylla are comparable. Nine secondary metabolites present in A. oxyphylla capsular fruits, including flavonoids (e.g., tectochrysin, izalpinin, chrysin, apigenin-4',7-dimethylether and kaempferide), diarylheptanoids (e.g., yakuchinone A and B and oxyphyllacinol) and sesquiterpenes (e.g., nootkatone), were regarded as representative constituents with putative pharmacological activities. This work aimed to investigate the abundance of the nine constituents in the seeds and pericarps of A. oxyphylla. Thirteen batches of A. oxyphylla capsular fruits were gathered from different production regions. Accordingly, an ultra-fast high performance liquid chromatography/quadrupole tandem mass spectrometry (UFLC-MS/MS) method was developed and validated. We found that: (1) the nine secondary metabolites were differentially concentrated in seeds and fruit capsules; (2) nootkatone is predominantly distributed in the seeds; in contrast, the flavonoids and diarylheptanoids are mainly deposited in the capsules; and (3) the content levels of the nine secondary metabolites occurring in the capsules varied greatly among different production regions, although the nootkatone levels in the seeds were comparable among production regions. These results are helpful to evaluating and elucidating pharmacological activities of A. oxyphylla capsular fruits. Additionally, it may be of interest to elucidate the mechanisms involved in the distinct accumulation profiles of these secondary metabolites between seeds and pericarps.
Zeng, Yan-Fei; Zhang, Jian-Guo; Abuduhamiti, Bawerjan; Wang, Wen-Ting; Jia, Zhi-Qing
2018-05-25
The effects of historical geology and climatic events on the evolution of plants around the Qinghai-Tibetan Plateau region have been at the center of debate for years. To identify the influence of the uplift of the Tianshan Mountains and/or climatic oscillations on the evolution of plants in arid northwest China, we investigated the phylogeography of the Euphrates poplar (Populus euphratica) using chloroplast DNA (cpDNA) sequences and nuclear microsatellites, and estimated its historical distribution using Ecological Niche Modeling (ENM). We found that the Euphrates poplar differed from another desert poplar, P. pruinosa, in both nuclear and chloroplast DNA. The low clonal diversity in both populations reflected the low regeneration rate by seed/seedlings in many locations. Both cpDNA and nuclear markers demonstrated a clear divergence between the Euphrates poplar populations from northern and southern Xinjiang regions. The divergence time was estimated to be early Pleistocene based on cpDNA, and late Pleistocene using an Approximate Bayesian Computation analysis based on microsatellites. Estimated gene flow was low between these two regions, and the limited gene flow occurred mainly via dispersal from eastern regions. ENM analysis supported a wider distribution of the Euphrates poplar at 3 Ma, but a more constricted distribution during both the glacial period and the interglacial period. These results indicate that the deformation of the Tianshan Mountains has impeded gene flow of the Euphrates poplar populations from northern and southern Xinjiang, and the distribution constriction due to climatic oscillations further accelerated the divergence of populations from these regions. To protect the desert poplars, more effort is needed to encourage seed germination and seedling establishment, and to conserve endemic gene resources in the northern Xinjiang region.
He, Zhuoxian; Jiang, Xiaoqi; Ratnasekera, Disna; Grassi, Fabrizio; Perera, Udugahapattuwage; Lu, Bao-Rong
2014-01-01
Increased infestation of weedy rice-a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka.
NASA Astrophysics Data System (ADS)
Shim, Hackjoon; Kwoh, C. Kent; Yun, Il Dong; Lee, Sang Uk; Bae, Kyongtae
2009-02-01
Osteoarthritis (OA) is associated with degradation of cartilage and related changes in the underlying bone. Quantitative measurement of those changes from MR images is an important biomarker to study the progression of OA and it requires a reliable segmentation of knee bone and cartilage. As the most popular method, manual segmentation of knee joint structures by boundary delineation is highly laborious and subject to user-variation. To overcome these difficulties, we have developed a semi-automated method for segmentation of knee bones, which consisted of two steps: placement of seeds and computation of segmentation. In the first step, seeds were placed by the user on a number of slices and then were propagated automatically to neighboring images. The seed placement could be performed on any of sagittal, coronal, and axial planes. The second step, computation of segmentation, was based on a graph-cuts algorithm where the optimal segmentation is the one that minimizes a cost function, which integrated the seeds specified by the user and both the regional and boundary properties of the regions to be segmented. The algorithm also allows simultaneous segmentation of three compartments of the knee bone (femur, tibia, patella). Our method was tested on the knee MR images of six subjects from the osteoarthritis initiative (OAI). The segmentation processing time (mean+/-SD) was (22+/-4)min, which is much shorter than that by the manual boundary delineation method (typically several hours). With this improved efficiency, our segmentation method will facilitate the quantitative morphologic analysis of changes in knee bones associated with osteoarthritis.
Vacuolar H+-ATPase Is Expressed in Response to Gibberellin during Tomato Seed Germination1
Cooley, Michael B.; Yang, Hong; Dahal, Peetambar; Mella, R. Alejandra; Downie, A. Bruce; Haigh, Anthony M.; Bradford, Kent J.
1999-01-01
Completion of germination (radicle emergence) by gibberellin (GA)-deficient (gib-1) mutant tomato (Lycopersicon esculentum Mill.) seeds is dependent upon exogenous GA, because weakening of the endosperm tissue enclosing the radicle tip requires GA. To investigate genes that may be involved in endosperm weakening or embryo growth, differential cDNA display was used to identify mRNAs differentially expressed in gib-1 seeds imbibed in the presence or absence of GA4+7. Among these was a GA-responsive mRNA encoding the 16-kD hydrophobic subunit c of the V0 membrane sector of vacuolar H+-translocating ATPases (V-ATPase), which we termed LVA-P1. LVA-P1 mRNA expression in gib-1 seeds was dependent on GA and was particularly abundant in the micropylar region prior to radicle emergence. Both GA dependence and tissue localization of LVA-P1 mRNA expression were confirmed directly in individual gib-1 seeds using tissue printing. LVA-P1 mRNA was also expressed in wild-type seeds during development and germination, independent of exogenous GA. Specific antisera detected protein subunits A and B of the cytoplasmic V1 sector of the V-ATPase holoenzyme complex in gib-1 seeds only in the presence of GA, and expression was localized to the micropylar region. The results suggest that V-ATPase plays a role in GA-regulated germination of tomato seeds. PMID:10594121
Are gastropods, rather than ants, important dispersers of seeds of myrmecochorous forest herbs?
Türke, Manfred; Andreas, Kerstin; Gossner, Martin M; Kowalski, Esther; Lange, Markus; Boch, Steffen; Socher, Stephanie A; Müller, Jörg; Prati, Daniel; Fischer, Markus; Meyhöfer, Rainer; Weisser, Wolfgang W
2012-01-01
Seed dispersal by ants (myrmecochory) is widespread, and seed adaptations to myrmecochory are common, especially in the form of fatty appendices (elaiosomes). In a recent study, slugs were identified as seed dispersers of myrmecochores in a central European beech forest. Here we used 105 beech forest sites to test whether myrmecochore presence and abundance is related to ant or gastropod abundance and whether experimentally exposed seeds are removed by gastropods. Myrmecochorous plant cover was positively related to gastropod abundance but was negatively related to ant abundance. Gastropods were responsible for most seed removal and elaiosome damage, whereas insects (and rodents) played minor roles. These gastropod effects on seeds were independent of region or forest management. We suggest that terrestrial gastropods can generally act as seed dispersers of myrmecochorous plants and even substitute myrmecochory, especially where ants are absent or uncommon. © 2011 by The University of Chicago.
Fuzzy pulmonary vessel segmentation in contrast enhanced CT data
NASA Astrophysics Data System (ADS)
Kaftan, Jens N.; Kiraly, Atilla P.; Bakai, Annemarie; Das, Marco; Novak, Carol L.; Aach, Til
2008-03-01
Pulmonary vascular tree segmentation has numerous applications in medical imaging and computer-aided diagnosis (CAD), including detection and visualization of pulmonary emboli (PE), improved lung nodule detection, and quantitative vessel analysis. We present a novel approach to pulmonary vessel segmentation based on a fuzzy segmentation concept, combining the strengths of both threshold and seed point based methods. The lungs of the original image are first segmented and a threshold-based approach identifies core vessel components with a high specificity. These components are then used to automatically identify reliable seed points for a fuzzy seed point based segmentation method, namely fuzzy connectedness. The output of the method consists of the probability of each voxel belonging to the vascular tree. Hence, our method provides the possibility to adjust the sensitivity/specificity of the segmentation result a posteriori according to application-specific requirements, through definition of a minimum vessel-probability required to classify a voxel as belonging to the vascular tree. The method has been evaluated on contrast-enhanced thoracic CT scans from clinical PE cases and demonstrates overall promising results. For quantitative validation we compare the segmentation results to randomly selected, semi-automatically segmented sub-volumes and present the resulting receiver operating characteristic (ROC) curves. Although we focus on contrast enhanced chest CT data, the method can be generalized to other regions of the body as well as to different imaging modalities.
Axially staggered seed-blanket reactor fuel module construction
Cowell, Gary K.; DiGuiseppe, Carl P.
1985-01-01
A heterogeneous nuclear reactor of the seed-blanket type is provided wher the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements. The arrangements of the fissile and fertile regions in an alternating axial manner minimizes the radial power peaking factors and provides a more optional thermal-hydraulic design than is afforded by radial arrangements.
Nageswara-Rao, Madhugiri; Kwit, Charles; Agarwal, Sujata; Patton, Mariah T; Skeen, Jordan A; Yuan, Joshua S; Manshardt, Richard M; Stewart, C Neal
2013-09-01
Genetically engineered (GE) ringspot virus-resistant papaya cultivars 'Rainbow' and 'SunUp' have been grown in Hawai'i for over 10 years. In Hawai'i, the introduction of GE papayas into regions where non-GE cultivars are grown and where feral non-GE papayas exist have been accompanied with concerns associated with transgene flow. Of particular concern is the possibility of transgenic seeds being found in non-GE papaya fruits via cross-pollination. Development of high-throughput methods to reliably detect the adventitious presence of such transgenic material would benefit both the scientific and regulatory communities. We assessed the accuracy of using conventional qualitative polymerase chain reaction (PCR) as well as real-time PCR-based assays to quantify the presence of transgenic DNA from bulk samples of non-GE papaya seeds. In this study, an optimized method of extracting high quality DNA from dry seeds of papaya was standardized. A reliable, sensitive real-time PCR method for detecting and quantifying viral coat protein (cp) transgenes in bulk seed samples utilizing the endogenous papain gene is presented. Quantification range was from 0.01 to 100 ng/μl of GE-papaya DNA template with a detection limit as low as 0.01% (10 pg). To test this system, we simulated transgene flow using known quantities of GE and non-GE DNA and determined that 0.038% (38 pg) GE papaya DNA could be detected using real-time PCR. We also validated this system by extracting DNA from known ratios of GE seeds to non-GE seeds of papaya followed by real-time PCR detection and observed a reliable detection limit of 0.4%. This method for the quick and sensitive detection of transgenes in bulked papaya seed lots using conventional as well as real-time PCR-based methods will benefit numerous stakeholders. In particular, this method could be utilized to screen selected fruits from maternal non-GE papaya trees in Hawai'i for the presence of transgenic seed at typical regulatory threshold levels. Incorporation of subtle differences in primers and probes for variations in cp worldwide should allow this method to be utilized elsewhere when and if deregulation of transgenic papaya occurs.
Jaiswal, Alok; Peddinti, Gopal; Akimov, Yevhen; Wennerberg, Krister; Kuznetsov, Sergey; Tang, Jing; Aittokallio, Tero
2017-06-01
Genome-wide loss-of-function profiling is widely used for systematic identification of genetic dependencies in cancer cells; however, the poor reproducibility of RNA interference (RNAi) screens has been a major concern due to frequent off-target effects. Currently, a detailed understanding of the key factors contributing to the sub-optimal consistency is still a lacking, especially on how to improve the reliability of future RNAi screens by controlling for factors that determine their off-target propensity. We performed a systematic, quantitative analysis of the consistency between two genome-wide shRNA screens conducted on a compendium of cancer cell lines, and also compared several gene summarization methods for inferring gene essentiality from shRNA level data. We then devised novel concepts of seed essentiality and shRNA family, based on seed region sequences of shRNAs, to study in-depth the contribution of seed-mediated off-target effects to the consistency of the two screens. We further investigated two seed-sequence properties, seed pairing stability, and target abundance in terms of their capability to minimize the off-target effects in post-screening data analysis. Finally, we applied this novel methodology to identify genetic interactions and synthetic lethal partners of cancer drivers, and confirmed differential essentiality phenotypes by detailed CRISPR/Cas9 experiments. Using the novel concepts of seed essentiality and shRNA family, we demonstrate how genome-wide loss-of-function profiling of a common set of cancer cell lines can be actually made fairly reproducible when considering seed-mediated off-target effects. Importantly, by excluding shRNAs having higher propensity for off-target effects, based on their seed-sequence properties, one can remove noise from the genome-wide shRNA datasets. As a translational application case, we demonstrate enhanced reproducibility of genetic interaction partners of common cancer drivers, as well as identify novel synthetic lethal partners of a major oncogenic driver, PIK3CA, supported by a complementary CRISPR/Cas9 experiment. We provide practical guidelines for improved design and analysis of genome-wide loss-of-function profiling and demonstrate how this novel strategy can be applied towards improved mapping of genetic dependencies of cancer cells to aid development of targeted anticancer treatments.
2013-01-01
Background Genetically engineered (GE) ringspot virus-resistant papaya cultivars ‘Rainbow’ and ‘SunUp’ have been grown in Hawai’i for over 10 years. In Hawai’i, the introduction of GE papayas into regions where non-GE cultivars are grown and where feral non-GE papayas exist have been accompanied with concerns associated with transgene flow. Of particular concern is the possibility of transgenic seeds being found in non-GE papaya fruits via cross-pollination. Development of high-throughput methods to reliably detect the adventitious presence of such transgenic material would benefit both the scientific and regulatory communities. Results We assessed the accuracy of using conventional qualitative polymerase chain reaction (PCR) as well as real-time PCR-based assays to quantify the presence of transgenic DNA from bulk samples of non-GE papaya seeds. In this study, an optimized method of extracting high quality DNA from dry seeds of papaya was standardized. A reliable, sensitive real-time PCR method for detecting and quantifying viral coat protein (cp) transgenes in bulk seed samples utilizing the endogenous papain gene is presented. Quantification range was from 0.01 to 100 ng/μl of GE-papaya DNA template with a detection limit as low as 0.01% (10 pg). To test this system, we simulated transgene flow using known quantities of GE and non-GE DNA and determined that 0.038% (38 pg) GE papaya DNA could be detected using real-time PCR. We also validated this system by extracting DNA from known ratios of GE seeds to non-GE seeds of papaya followed by real-time PCR detection and observed a reliable detection limit of 0.4%. Conclusions This method for the quick and sensitive detection of transgenes in bulked papaya seed lots using conventional as well as real-time PCR-based methods will benefit numerous stakeholders. In particular, this method could be utilized to screen selected fruits from maternal non-GE papaya trees in Hawai’i for the presence of transgenic seed at typical regulatory threshold levels. Incorporation of subtle differences in primers and probes for variations in cp worldwide should allow this method to be utilized elsewhere when and if deregulation of transgenic papaya occurs. PMID:24004548
Tewari, S; Arora, K
2014-12-24
Stress tolerating strain of Pseudomonas aeruginosa PF07 possessing plant growth promoting activity was screened for the production of exopolysaccharides (EPS). EPS production was monitored in the cell free culture supernatant (CFCS) and extracted EPS was further purified by thin layer chromatography. EPS producing cells were taken to design talc based formulation and its efficacy was checked on oilseed crop sunflower (Hellianthus annuus), under in vivo saline conditions (soil irrigated with 125 mM of saline water). Application of bioformulation significantly enhanced the yield and growth attributes of the plant in comparison to control (untreated seeds) under stress and non—stress conditions. Germination rate, plant length, dry weight and seed weight increased remarkably. The above findings suggest the application and benefits of utilizing EPS formulation in boosting early seedling emergence, enhancing plant growth parameters, increasing seed weight and mitigating stress in saline affected regions. Such bioformulation may enhance RAS/RT (Root Adhering Soil to Root Tissue ratio), texture of the soil, increase porosity, improve uptake of nutrients, and hence may be considered as commercially important formulation for renovation of stressed sites and enhancing plant growth.
Rusterholz, Hans-Peter; Verhoustraeten, Christine; Baur, Bruno
2011-11-01
Exposed limestone cliffs in central Europe harbor a highly divers flora with many rare and endangered species. During the past few decades, there has been increasing recreational use of these cliffs, which has caused local environmental disturbances. Successful restoration strategies hinge on identifying critical limitations. We examined the composition of aboveground forest vegetation and density and species composition of seeds in the soil seed bank at the base of four limestone cliffs in mixed deciduous forests that are intensively disturbed by human trampling and at four undisturbed cliffs in the Jura Mountains in northwestern Switzerland. We found that long-term human trampling reduced total aboveground vegetation cover at the base of cliffs and caused a significant shift in the plant-species composition. Compared with undisturbed cliffs, total seed density was lower in disturbed cliffs. Human trampling also altered the species composition of seeds in the soil seed bank. Seeds of unintentionally introduced, stress-tolerant, and ruderal species dominated the soil seed bank at the base of disturbed cliffs. Our findings indicate that a restoration of degraded cliff bases from the existing soil seed bank would result in a substantial change of the original unique plant composition. Active seed transfer, or seed flux from adjacent undisturbed forest areas, is essential for restoration success.
Seed origin and size of ponderosa pine planting stock grown at several California nurseries
Frank J. Baron; Gilbert H. Schubert
1963-01-01
Ponderosa pine planting stock (1-0 and 2-0) grown from five different seed collection zones in the California pine region differed noticeably in size. On the west side of the Sierra Nevada, seeds from zones above 4,000 feet yielded smaller seedlings than those from lower zones, but larger seedlings than those from east-side sources. Average dimensions (seedling weight...
In Vitro Propagation and Conservation of Bacopa monnieri L.
Sharma, Neelam; Singh, Rakesh; Pandey, Ruchira
2016-01-01
Bacopa monnieri L. (common name brahmi) is a traditional and renowned Indian medicinal plant with high commercial value for its memory revitalizer potential. Demand for this herb has further escalated due to popularization of various brahmi-based drugs coupled with reported anticancer property. Insufficient seed availability and problems associated with seed propagation including short seed viability are the major constraints of seed conservation in the gene banks. In vitro clonal propagation, a prerequisite for in vitro conservation by enhanced axillary branching was standardized. We have developed a simple, single step protocol for in vitro establishment, propagation and medium-term conservation of B. monnieri. Single node explants, cultured on Murashige and Skoog's medium supplemented with BA (0.2 mg/L), exhibited shoot proliferation without callus formation. Rooting was achieved on the same medium. The in vitro raised plants were successfully transferred to soil with ~80 % survival. On the same medium, shoots could also be conserved for 12 months with high survival and genetic stability was maintained as revealed by molecular markers. The protocol optimized in the present study has been applied for culture establishment, shoot multiplication and medium-term conservation of several Bacopa germplasm, procured from different agro-ecological regions of India.
Subbaraj, Arvind K; Barrett, Brent A; Wakelin, Steve A; Fraser, Karl
2015-10-01
Forage seeds are a highly traded agricultural commodity, and therefore, quality control and assurance is high priority. In this study, we have used direct analysis in real time-mass spectrometry (DART-MS) as a tool to discriminate forage seeds based on their non-targeted chemical profiles. In the first experiment, two lots of perennial ryegrass (Lolium perenne L.) seed were discriminated based on exogenous residues of N-(3, 4-dichlorophenyl)-N,N-dimethylurea (Diuron(TM)), a herbicide. In a separate experiment, washed and unwashed seeds of the forage legumes white clover (Trifolium repens L.) and alfalfa (Medicago sativa L.) were discriminated based on the presence or absence of oxylipins, a class of endogenous antimicrobial compounds. Unwashed seeds confer toxicity towards symbiotic, nitrogen-fixing rhizobia which are routinely coated on legume seeds before planting, resulting in reduced rhizobial count. This is the first report of automatic introduction of intact seeds in the DART ion source and detecting oxylipins using DART-MS. Apart from providing scope to investigate legume-rhizobia symbiosis further in the context of oxylipins, the results presented here will enable future studies aimed at classification of seeds based on chemicals bound to the seed coat, thereby offering an efficient screening device for industry.
Meddeb, Wiem; Rezig, Leila; Abderrabba, Manef; Lizard, Gérard; Mejri, Mondher
2017-12-02
In this study, milk thistle seeds growing in different areas in Tunisia were cold pressed and the extracted oils were examined for their chemical and antioxidant properties. The major fatty acids were linoleic acid (C18:2) (57.0%, 60.0%, and 60.3% for the milk thistle seed oils native to Bizerte, Zaghouan and Sousse, respectively) and oleic acid (C18:1) (15.5%, 21.5%, and 22.4% for the milk thistle seed oils originating from Bizerte, Zaghouan and Sousse, respectively). High performance liquid chromatography (HPLC) analysis showed the richness of the milk thistle seed oils (MTSO) in α-tocopherol. The highest content was recorded for that of the region of Zaghouan (286.22 mg/kg). The total phenolic contents (TPC) of Zaghouan, Bizerte, and Sousse were 1.59, 8.12, and 4.73 Gallic Acid Equivalent (GAE) mg/g, respectively. Three phenolic acids were also identified (vanillic, p -coumaric, and silybine), with a predominance of the vanillic acid. The highest value was recorded for the Zaghouan milk thistle seed oil (83 mg/100 g). Differences in outcomes between regions may be due to climatic differences in areas. Zaghouan's cold-pressed milk thistle seed oil had a better quality than those of Bizerte and Sousse, and can be considered as a valuable source for new multi-purpose products or by-products for industrial, cosmetic, and pharmaceutical utilization.
Reid, Lee B; Pagnozzi, Alex M; Fiori, Simona; Boyd, Roslyn N; Dowson, Nicholas; Rose, Stephen E
2017-05-01
Researchers in the field of child neurology are increasingly looking to supplement clinical trials of motor rehabilitation with neuroimaging in order to better understand the relationship between behavioural training, brain changes, and clinical improvements. Randomised controlled trials are typically accompanied by sample size calculations to detect clinical improvements but, despite the large cost of neuroimaging, not equivalent calculations for concurrently acquired imaging neuroimaging measures of changes in response to intervention. To aid in this regard, a power analysis was conducted for two measures of brain changes that may be indexed in a trial of rehabilitative therapy for cerebral palsy: cortical thickness of the impaired primary sensorimotor cortex, and fractional anisotropy of the impaired, delineated corticospinal tract. Power for measuring fractional anisotropy was assessed for both region-of-interest-seeded and fMRI-seeded diffusion tractography. Taking into account practical limitations, as well as data loss due to behavioural and image-processing issues, estimated required participant numbers were 101, 128 and 59 for cortical thickness, region-of-interest-based tractography, and fMRI-seeded tractography, respectively. These numbers are not adjusted for study attrition. Although these participant numbers may be out of reach of many trials, several options are available to improve statistical power, including careful preparation of participants for scanning using mock simulators, careful consideration of image processing options, and enrolment of as homogeneous a cohort as possible. This work suggests that smaller and moderate sized studies give genuine consideration to harmonising scanning protocols between groups to allow the pooling of data. Copyright © 2017 ISDN. All rights reserved.
Wu, Ai-Ping; Li, Zi-Li; He, Fei-Fei; Wang, Yan-Hong; Dong, Ming
2015-01-01
To screen allelochemical-resistant species of the alien invasive weed Mikania micrantha, we studied the allelopathic inhibition effects of the leaf aqueous extract (LAE) of Mikania on seed germination and seedling growth of the 26 species native or naturalized in the invaded region in South China. Seed germination was more strongly negatively affected by LAE than seedling growth. Responses of seed germination and seed growth to LAE differed differently among the target species. LAE more strongly negatively affected seed germination, but less strongly negatively affected seedling growth, in non-legume species than in legume species. LAE more strongly negatively affected seed germination and seedling growth in native species than naturalized exotic species. Therefore, naturalized exotic non-legume seedlings are more suitable than seeds of native legume species for restoration of Mikania-invaded habitats. PMID:26177031
Wu, Ai-Ping; Li, Zi-Li; He, Fei-Fei; Wang, Yan-Hong; Dong, Ming
2015-01-01
To screen allelochemical-resistant species of the alien invasive weed Mikania micrantha, we studied the allelopathic inhibition effects of the leaf aqueous extract (LAE) of Mikania on seed germination and seedling growth of the 26 species native or naturalized in the invaded region in South China. Seed germination was more strongly negatively affected by LAE than seedling growth. Responses of seed germination and seed growth to LAE differed differently among the target species. LAE more strongly negatively affected seed germination, but less strongly negatively affected seedling growth, in non-legume species than in legume species. LAE more strongly negatively affected seed germination and seedling growth in native species than naturalized exotic species. Therefore, naturalized exotic non-legume seedlings are more suitable than seeds of native legume species for restoration of Mikania-invaded habitats.
NASA Astrophysics Data System (ADS)
Ouyang, Minhui; Jeon, Tina; Mishra, Virendra; Du, Haixiao; Wang, Yu; Peng, Yun; Huang, Hao
2016-03-01
From early childhood to adulthood, synaptogenesis and synaptic pruning continuously reshape the structural architecture and neural connection in developmental human brains. Disturbance of the precisely balanced strengthening of certain axons and pruning of others may cause mental disorders such as autism and schizophrenia. To characterize this balance, we proposed a novel measurement based on cortical parcellation and diffusion MRI (dMRI) tractography, a cortical connectivity maturation index (CCMI). To evaluate the spatiotemporal sensitivity of CCMI as a potential biomarker, dMRI and T1 weighted datasets of 21 healthy subjects 2-25 years were acquired. Brain cortex was parcellated into 68 gyral labels using T1 weighted images, then transformed into dMRI space to serve as the seed region of interest for dMRI-based tractography. Cortico-cortical association fibers initiated from each gyrus were categorized into long- and short-range ones, based on the other end of fiber terminating in non-adjacent or adjacent gyri of the seed gyrus, respectively. The regional CCMI was defined as the ratio between number of short-range association tracts and that of all association tracts traced from one of 68 parcellated gyri. The developmental trajectory of the whole brain CCMI follows a quadratic model with initial decreases from 2 to 16 years followed by later increases after 16 years. Regional CCMI is heterogeneous among different cortical gyri with CCMI dropping to the lowest value earlier in primary somatosensory cortex and visual cortex while later in the prefrontal cortex. The proposed CCMI may serve as sensitive biomarker for brain development under normal or pathological conditions.
Personality Is Reflected in the Brain's Intrinsic Functional Architecture
Adelstein, Jonathan S.; Shehzad, Zarrar; Mennes, Maarten; DeYoung, Colin G.; Zuo, Xi-Nian; Kelly, Clare; Margulies, Daniel S.; Bloomfield, Aaron; Gray, Jeremy R.; Castellanos, F. Xavier; Milham, Michael P.
2011-01-01
Personality describes persistent human behavioral responses to broad classes of environmental stimuli. Investigating how personality traits are reflected in the brain's functional architecture is challenging, in part due to the difficulty of designing appropriate task probes. Resting-state functional connectivity (RSFC) can detect intrinsic activation patterns without relying on any specific task. Here we use RSFC to investigate the neural correlates of the five-factor personality domains. Based on seed regions placed within two cognitive and affective ‘hubs’ in the brain—the anterior cingulate and precuneus—each domain of personality predicted RSFC with a unique pattern of brain regions. These patterns corresponded with functional subdivisions responsible for cognitive and affective processing such as motivation, empathy and future-oriented thinking. Neuroticism and Extraversion, the two most widely studied of the five constructs, predicted connectivity between seed regions and the dorsomedial prefrontal cortex and lateral paralimbic regions, respectively. These areas are associated with emotional regulation, self-evaluation and reward, consistent with the trait qualities. Personality traits were mostly associated with functional connections that were inconsistently present across participants. This suggests that although a fundamental, core functional architecture is preserved across individuals, variable connections outside of that core encompass the inter-individual differences in personality that motivate diverse responses. PMID:22140453
Weed seeds on clothing: a global review.
Ansong, Michael; Pickering, Catherine
2014-11-01
Weeds are a major threat to biodiversity including in areas of high conservation value. Unfortunately, people may be unintentionally introducing and dispersing weed seeds on their clothing when they visit these areas. To inform the management of these areas, we conducted a systematic quantitative literature review to determine the diversity and characteristics of species with seeds that can attach and be dispersed from clothing. Across 21 studies identified from systematic literature searches on this topic, seeds from 449 species have been recorded on clothing, more than double the diversity found in a previous review. Nearly all of them, 391 species, are listed weeds in one or more countries, with 58 classified as internationally-recognised environmental weeds. When our database was compared with weed lists from different countries and continents we found that clothing can carry the seeds of important regional weeds. A total of 287 of the species are listed as aliens in one or more countries in Europe, 156 are invasive species/noxious weeds in North America, 211 are naturalized alien plants in Australia, 97 are alien species in India, 33 are invasive species in China and 5 are declared weeds/invaders in South Africa. Seeds on the clothing of hikers can be carried to an average distance of 13 km, and where people travel in cars, trains, planes and boats, the seeds on their clothing can be carried much further. Factors that affect this type of seed dispersal include the type of clothing, the type of material the clothing is made from, the number and location of the seeds on plants, and seed traits such as adhesive and attachment structures. With increasing use of protected areas by tourists, including in remote regions, popular protected areas may be at great risk of biological invasions by weeds with seeds carried on clothing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Restovic, Franko; Espinoza-Corral, Roberto; Gómez, Isabel; Vicente-Carbajosa, Jesús; Jordana, Xavier
2017-01-01
Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana , its iron-sulfur subunit (SDH2) is encoded by three genes, one of them ( SDH2.3 ) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (-114 to +49) possessing all the cis -elements necessary and sufficient for high expression in seeds. This region includes between -114 and -32 three ABRE (ABA-responsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5' untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron-sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy.
Patient-specific connectivity pattern of epileptic network in frontal lobe epilepsy
Luo, Cheng; An, Dongmei; Yao, Dezhong; Gotman, Jean
2014-01-01
There is evidence that focal epilepsy may involve the dysfunction of a brain network in addition to the focal region. To delineate the characteristics of this epileptic network, we collected EEG/fMRI data from 23 patients with frontal lobe epilepsy. For each patient, EEG/fMRI analysis was first performed to determine the BOLD response to epileptic spikes. The maximum activation cluster in the frontal lobe was then chosen as the seed to identify the epileptic network in fMRI data. Functional connectivity analysis seeded at the same region was also performed in 63 healthy control subjects. Nine features were used to evaluate the differences of epileptic network patterns in three connection levels between patients and controls. Compared with control subjects, patients showed overall more functional connections between the epileptogenic region and the rest of the brain and higher laterality. However, the significantly increased connections were located in the neighborhood of the seed, but the connections between the seed and remote regions actually decreased. Comparing fMRI runs with interictal epileptic discharges (IEDs) and without IEDs, the patient-specific connectivity pattern was not changed significantly. These findings regarding patient-specific connectivity patterns of epileptic networks in FLE reflect local high connectivity and connections with distant regions differing from those of healthy controls. Moreover, the difference between the two groups in most features was observed in the strictest of the three connection levels. The abnormally high connectivity might reflect a predominant attribute of the epileptic network, which may facilitate propagation of epileptic activity among regions in the network. PMID:24936418
Valois-Cuesta, Hamleth; Martínez-Ruiz, Carolina; Urrutia-Rivas, Yorley
2017-03-01
Mining is one of the main economic activities in many tropical regions and is the cause of devastation of large areas of natural tropical forests. The knowledge of the regenerative potential of mining disturbed areas provides valuable information for their ecological restoration. The aim of this study was to evaluate the effect of age of abandonment of mines and their distance from the adjacent forest, on the formation of soil seed bank in abandoned mines in the San Juan, Chocó, Colombia. To do this, we determined the abundance and species composition of the soil seed bank, and the dynamics of seed rain in mines of different cessation period of mining activity (6 and 15 years), and at different distances from the adjacent forest matrix (50 and 100 m). Seed rain was composed by five species of plants with anemocorous dispersion, and was more abundant in the mine of 6 years than in the mine of 15 years. There were no significant differences in the number of seeds collected at 50 m and 100 m from the adjacent forest. The soil seed bank was represented by eight species: two with anemocorous dispersion (common among the seed rain species) and the rest with zoochorous dispersion. The abundance of seeds in the soil did not vary with the age of the mine, but was higher at close distances to the forest edge than far away. During the early revegetation, the formation of the soil seed bank in the mines seems to be related to their proximity to other disturbed areas, rather than their proximity to the adjacent forest or the cessation activity period of mines. Therefore, the establishment of artificial perches or the maintenance of isolated trees in the abandoned mines could favour the arrival of bird-dispersed seeds at mines. However, since the soil seed bank can be significantly affected by the high rainfall in the study area, more studies are needed to evaluate management actions to encourage soil seed bank formation in mines of high-rainfall environments in the Chocó region.
NASA Astrophysics Data System (ADS)
Heumann, B. W.; Guichard, F.; Seaquist, J. W.
2005-05-01
The HABSEED model uses remote sensing derived NPP as a surrogate for habitat quality as the driving mechanism for population growth and local seed dispersal. The model has been applied to the Sahel region of Africa. Results show that the functional response of plants to habitat quality alters population distribution. Plants more tolerant of medium quality habitat have greater distributions to the North while plants requiring only the best habitat are limited to the South. For all functional response types, increased seed production results in diminishing returns. Functional response types have been related to life history tradeoffs and r-K strategies based on the results. Results are compared to remote sensing derived vegetation land cover.
Zhu, Yana; Cao, Zhengying; Xu, Fei; Huang, Yi; Chen, Mingxun; Guo, Wanli; Zhou, Weijun; Zhu, Jun; Meng, Jinling; Zou, Jitao; Jiang, Lixi
2012-02-01
Seed oil production in oilseed rape is greatly affected by the temperature during seed maturation. However, the molecular mechanism of the interaction between genotype and temperature in seed maturation remains largely unknown. We developed two near-isogenic lines (NIL-9 and NIL-1), differing mainly at a QTL region influencing oil content on Brassica napus chromosome C2 (qOC.C2.2) under high temperature during seed maturation. The NILs were treated under different temperatures in a growth chamber after flowering. RNA from developing seeds was extracted on the 25th day after flowering (DAF), and transcriptomes were determined by microarray analysis. Statistical analysis indicated that genotype, temperature, and the interaction between genotype and temperature (G × T) all significantly affected the expression of the genes in the 25 DAF seeds, resulting in 4,982, 19,111, and 839 differentially expressed unisequences, respectively. NIL-9 had higher seed oil content than NIL-1 under all of the temperatures in the experiments, especially at high temperatures. A total of 39 genes, among which six are located at qOC.C2.2, were differentially expressed among the NILs regardless of temperature, indicating the core genetic divergence that was unaffected by temperature. Increasing the temperature caused a reduction in seed oil content that was accompanied by the downregulation of a number of genes associated with red light response, photosynthesis, response to gibberellic acid stimulus, and translational elongation, as well as several genes of importance in the lipid metabolism pathway. These results contribute to our knowledge of the molecular nature of QTLs and the interaction between genotype and temperature.
Pesticidal seed coats based on azadirachtin-A: release kinetics, storage life and performance.
Nisar, Keyath; Kumar, Jitendra; Arun Kumar, M B; Walia, Suresh; Shakil, Najam A; Parsad, Rajender; Parmar, Balraj S
2009-02-01
Infestation of seeds by pests during storage leads to deterioration in quality. Seed coating is an effective option to overcome the menace. Unlike synthetic fungicidal seed coats, little is known of those based on botanicals. This study aims at developing azadirachtin-A-based pesticidal seed coats to maintain seed quality during storage. Polymer- and clay-based coats containing azadirachtin-A were prepared and evaluated for quality maintenance of soybean seed during storage. Gum acacia, gum tragacanth, rosin, ethyl cellulose, hydroxyethyl cellulose, polyethyl methacrylate, methyl cellulose, polyethylene glycol, polyvinyl chloride, polyvinyl acetate, polyvinyl pyrrolidone and Agrimer VA 6 polymers and the clay bentonite were used as carriers. The time for 50% release (t(1/2)) of azadirachtin-A into water from the seeds coated with the different coats ranged from 8.02 to 21.36 h. The half-life (T(1/2)) of azadirachtin-A in the coats on seed ranged from 4.37 to 11.22 months, as compared with 3.45 months in azadirachtin-A WP, showing an increase by a factor of nearly 1.3-3.3 over the latter. The coats apparently acted as a barrier to moisture to reduce azadirachtin-A degradation and prevented proliferation of storage fungi. Polyethyl methacrylate, polyvinyl acetate and polyvinyl pyrrolidone were significantly superior to the other polymers. Azadirachtin-A showed a significant positive correlation with seed germination and vigour, and negative correlation with moisture content. Effective polymeric carriers for seed coats based on azadirachtin-A are reported. These checked seed deterioration during storage by acting as a barrier to moisture and reduced the degradation of azadirachtin-A.
Cannabinoid Modulation of Functional Connectivity within Regions Processing Attentional Salience
Bhattacharyya, Sagnik; Falkenberg, Irina; Martin-Santos, Rocio; Atakan, Zerrin; Crippa, Jose A; Giampietro, Vincent; Brammer, Mick; McGuire, Philip
2015-01-01
There is now considerable evidence to support the hypothesis that psychotic symptoms are the result of abnormal salience attribution, and that the attribution of salience is largely mediated through the prefrontal cortex, the striatum, and the hippocampus. Although these areas show differential activation under the influence of delta-9-tetrahydrocannabinol (delta-9-THC) and cannabidiol (CBD), the two major derivatives of cannabis sativa, little is known about the effects of these cannabinoids on the functional connectivity between these regions. We investigated this in healthy occasional cannabis users by employing event-related functional magnetic resonance imaging (fMRI) following oral administration of delta-9-THC, CBD, or a placebo capsule. Employing a seed cluster-based functional connectivity analysis that involved using the average time series from each seed cluster for a whole-brain correlational analysis, we investigated the effect of drug condition on functional connectivity between the seed clusters and the rest of the brain during an oddball salience processing task. Relative to the placebo condition, delta-9-THC and CBD had opposite effects on the functional connectivity between the dorsal striatum, the prefrontal cortex, and the hippocampus. Delta-9-THC reduced fronto-striatal connectivity, which was related to its effect on task performance, whereas this connection was enhanced by CBD. Conversely, mediotemporal-prefrontal connectivity was enhanced by delta-9-THC and reduced by CBD. Our results suggest that the functional integration of brain regions involved in salience processing is differentially modulated by single doses of delta-9-THC and CBD and that this relates to the processing of salient stimuli. PMID:25249057
Cannabinoid modulation of functional connectivity within regions processing attentional salience.
Bhattacharyya, Sagnik; Falkenberg, Irina; Martin-Santos, Rocio; Atakan, Zerrin; Crippa, Jose A; Giampietro, Vincent; Brammer, Mick; McGuire, Philip
2015-05-01
There is now considerable evidence to support the hypothesis that psychotic symptoms are the result of abnormal salience attribution, and that the attribution of salience is largely mediated through the prefrontal cortex, the striatum, and the hippocampus. Although these areas show differential activation under the influence of delta-9-tetrahydrocannabinol (delta-9-THC) and cannabidiol (CBD), the two major derivatives of cannabis sativa, little is known about the effects of these cannabinoids on the functional connectivity between these regions. We investigated this in healthy occasional cannabis users by employing event-related functional magnetic resonance imaging (fMRI) following oral administration of delta-9-THC, CBD, or a placebo capsule. Employing a seed cluster-based functional connectivity analysis that involved using the average time series from each seed cluster for a whole-brain correlational analysis, we investigated the effect of drug condition on functional connectivity between the seed clusters and the rest of the brain during an oddball salience processing task. Relative to the placebo condition, delta-9-THC and CBD had opposite effects on the functional connectivity between the dorsal striatum, the prefrontal cortex, and the hippocampus. Delta-9-THC reduced fronto-striatal connectivity, which was related to its effect on task performance, whereas this connection was enhanced by CBD. Conversely, mediotemporal-prefrontal connectivity was enhanced by delta-9-THC and reduced by CBD. Our results suggest that the functional integration of brain regions involved in salience processing is differentially modulated by single doses of delta-9-THC and CBD and that this relates to the processing of salient stimuli.
Seed morphology and anatomy and its utility in recognizing subfamilies and tribes of Zingiberaceae.
Benedict, John C; Smith, Selena Y; Collinson, Margaret E; Leong-Škorničková, Jana; Specht, Chelsea D; Marone, Federica; Xiao, Xianghui; Parkinson, Dilworth Y
2015-11-01
Recent phylogenetic analyses based on molecular data suggested that the monocot family Zingiberaceae be separated into four subfamilies and four tribes. Robust morphological characters to support these clades are lacking. Seeds were analyzed in a phylogenetic context to test independently the circumscription of clades and to better understand evolution of seed characters within Zingiberaceae. Seventy-five species from three of the four subfamilies were analyzed using synchrotron based x-ray tomographic microscopy (SRXTM) and scored for 39 morphoanatomical characters. Zingiberaceae seeds are some of the most structurally complex seeds in angiosperms. No single seed character was found to distinguish each subfamily, but combinations of characters were found to differentiate between the subfamilies. Recognition of the tribes based on seeds was possible for Globbeae, but not for Alpinieae, Riedelieae, or Zingibereae, due to considerable variation. SRXTM is an excellent, nondestructive tool to capture morphoanatomical variation of seeds and allows for the study of taxa with limited material available. Alpinioideae, Siphonochiloideae, Tamijioideae, and Zingiberoideae are well supported based on both molecular and morphological data, including multiple seed characters. Globbeae are well supported as a distinctive tribe within the Zingiberoideae, but no other tribe could be differentiated using seeds due to considerable homoplasy when compared with currently accepted relationships based on molecular data. Novel seed characters suggest tribal affinities for two currently unplaced Zingiberaceae taxa: Siliquamomum may be related to Riedelieae and Monolophus to Zingibereae, but further work is needed before formal revision of the family. © 2015 Botanical Society of America.
Highway extraction from high resolution aerial photography using a geometric active contour model
NASA Astrophysics Data System (ADS)
Niu, Xutong
Highway extraction and vehicle detection are two of the most important steps in traffic-flow analysis from multi-frame aerial photographs. The traditional method of deriving traffic flow trajectories relies on manual vehicle counting from a sequence of aerial photographs, which is tedious and time-consuming. This research presents a new framework for semi-automatic highway extraction. The basis of the new framework is an improved geometric active contour (GAC) model. This novel model seeks to minimize an objective function that transforms a problem of propagation of regular curves into an optimization problem. The implementation of curve propagation is based on level set theory. By using an implicit representation of a two-dimensional curve, a level set approach can be used to deal with topological changes naturally, and the output is unaffected by different initial positions of the curve. However, the original GAC model, on which the new model is based, only incorporates boundary information into the curve propagation process. An error-producing phenomenon called leakage is inevitable wherever there is an uncertain weak edge. In this research, region-based information is added as a constraint into the original GAC model, thereby, giving this proposed method the ability of integrating both boundary and region-based information during the curve propagation. Adding the region-based constraint eliminates the leakage problem. This dissertation applies the proposed augmented GAC model to the problem of highway extraction from high-resolution aerial photography. First, an optimized stopping criterion is designed and used in the implementation of the GAC model. It effectively saves processing time and computations. Second, a seed point propagation framework is designed and implemented. This framework incorporates highway extraction, tracking, and linking into one procedure. A seed point is usually placed at an end node of highway segments close to the boundary of the image or at a position where possible blocking may occur, such as at an overpass bridge or near vehicle crowds. These seed points can be automatically propagated throughout the entire highway network. During the process, road center points are also extracted, which introduces a search direction for solving possible blocking problems. This new framework has been successfully applied to highway network extraction from a large orthophoto mosaic. In the process, vehicles on the highway extracted from mosaic were detected with an 83% success rate.
Lo, Sassoum; Muñoz-Amatriaín, María; Boukar, Ousmane; Herniter, Ira; Cisse, Ndiaga; Guo, Yi-Ning; Roberts, Philip A; Xu, Shizhong; Fatokun, Christian; Close, Timothy J
2018-04-19
Cowpea (Vigna unguiculata L. Walp) is a warm-season legume with a genetically diverse gene-pool composed of wild and cultivated forms. Cowpea domestication involved considerable phenotypic changes from the wild progenitor, including reduction of pod shattering, increased organ size, and changes in flowering time. Little is known about the genetic basis underlying these changes. In this study, 215 recombinant inbred lines derived from a cross between a cultivated and a wild cowpea accession were used to evaluate nine domestication-related traits (pod shattering, peduncle length, flower color, days to flowering, 100-seed weight, pod length, leaf length, leaf width and seed number per pod). A high-density genetic map containing 17,739 single nucleotide polymorphisms was constructed and used to identify 16 quantitative trait loci (QTL) for these nine traits. Based on annotations of the cowpea reference genome, genes within these regions are reported. Four regions with clusters of QTL were identified, including one on chromosome 8 related to increased organ size. This study provides new knowledge of the genomic regions controlling domestication-related traits in cowpea as well as candidate genes underlying those QTL. This information can help to exploit wild relatives in cowpea breeding programs.
Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue
2016-01-01
Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean. PMID:26856884
Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue
2016-02-09
Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean.
Hu, Xiaojia; Roberts, Daniel P; Xie, Lihua; Maul, Jude E; Yu, Changbing; Li, Yinshui; Zhang, Shujie; Liao, Xing
2013-04-01
Sustainable methods with diminished impact on the environment need to be developed for the production of oilseed rape in China and other regions of the world. A biological fertilizer consisting of Bacillus megaterium A6 cultured on oilseed rape meal improved oilseed rape seed yield (P < 0.0001) relative to the nontreated control in 2 greenhouse pot experiments using natural soil. This treatment resulted in slightly greater yield than oilseed rape meal without strain A6 in 1 of 2 experiments, suggesting a role for strain A6 in improving yield. Strain A6 was capable of solubilizing phosphorus from rock phosphate in liquid culture and produced enzymes capable of mineralizing organic phosphorus (acid phosphatase, phytase) in liquid culture and in the biological fertilizer. The biologically based fertilizer, containing strain A6, improved plant phosphorus nutrition in greenhouse pot experiments resulting in significantly greater available phosphorus in natural soil and in significantly greater plant phosphorus content relative to the nontreated control. Seed yield and available phosphorus in natural soil were significantly greater with a synthetic chemical fertilizer treatment, reduced in phosphorus content, than the biological fertilizer treatment, but a treatment containing the biological fertilizer combined with the synthetic fertilizer provided the significantly greatest seed yield, available phosphorus in natural soil, and plant phosphorus content. These results suggest that the biological fertilizer was capable of improving oilseed rape seed yield, at least in part, through the phosphorus-solubilizing activity of B. megaterium A6.
Early life stages contribute strongly to local adaptation in Arabidopsis thaliana.
Postma, Froukje M; Ågren, Jon
2016-07-05
The magnitude and genetic basis of local adaptation is of fundamental interest in evolutionary biology. However, field experiments usually do not consider early life stages, and therefore may underestimate local adaptation and miss genetically based tradeoffs. We examined the contribution of differences in seedling establishment to adaptive differentiation and the genetic architecture of local adaptation using recombinant inbred lines (RIL) derived from a cross between two locally adapted populations (Italy and Sweden) of the annual plant Arabidopsis thaliana We planted freshly matured, dormant seeds (>180 000) representing >200 RILs at the native field sites of the parental genotypes, estimated the strength of selection during different life stages, mapped quantitative trait loci (QTL) for fitness and its components, and quantified selection on seed dormancy. We found that selection during the seedling establishment phase contributed strongly to the fitness advantage of the local genotype at both sites. With one exception, local alleles of the eight distinct establishment QTL were favored. The major QTL for establishment and total fitness showed evidence of a fitness tradeoff and was located in the same region as the major seed dormancy QTL and the dormancy gene DELAY OF GERMINATION 1 (DOG1). RIL seed dormancy could explain variation in seedling establishment and fitness across the life cycle. Our results demonstrate that genetically based differences in traits affecting performance during early life stages can contribute strongly to adaptive differentiation and genetic tradeoffs, and should be considered for a full understanding of the ecology and genetics of local adaptation.
Control of Brillouin short-pulse seed amplification by chirping the pump pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmann, G.; Spatschek, K. H.
Seed amplification via Brillouin backscattering of a long pump pulse is considered. Similar to Raman amplification, several obstructive effects may occur during short-pulse Brillouin amplification. One is the spontaneous Raman backscattering of the pump before interacting with the seed. Preforming the plasma and/or chirping the pump will reduce unwanted pump backscattering. Optimized regions for low-loss pump propagation were proposed already in conjunction with Raman seed amplification. Hence, the influence of the chirp of the pump during Brillouin interaction with the seed becomes important and will be considered here. Both, the linear as well as the nonlinear evolution phases of themore » seed caused by Brillouin amplification under the action of a chirped pump are investigated. The amplification rate as well as the seed profiles are presented as function of the chirping rate. Also the dependence of superradiant scaling rates on the chirp parameter is discussed.« less
Evaluation of the fatty acid composition of the seeds of Mangifera indica L. and their application.
Wu, Shuhsien; Tokuda, Megumi; Kashiwagi, Ayaka; Henmi, Atsushi; Okada, Yoshiharu; Tachibana, Shinya; Nomura, Masato
2015-01-01
Mango (Mangifera indica L.), an edible fruit, is one of the main agricultural products in many tropical regions. Mango varieties differ in not only fruit shape but also aroma, which is an important characteristic. Although the fruit has many uses, the seeds are discarded as waste. Therefore, this study aimed to estimate the fatty acid content of seed oil of mangoes from different cultivation areas (Miyazaki, Japan, and Taiwan), and to evaluate their application in cosmetics. Five fatty acids were identified in the mango seed oil. Oleic acid and stearic acid were the principal components of mango seed oil obtained from Miyazaki (46.1% and 39.8%, respectively) and Taiwan (43.7% and 40.1%, respectively). As a cosmetic ingredient, mango seed oil showed good deodorizing effect on both 2-nonenal and isovaleric acid. The results indicated the potential applications of mango seed oil in the cosmetic industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safigholi, H; Soliman, A; Song, W
Purpose: Brachytherapy treatment planning systems based on TG-43 protocol calculate the dose in water and neglects the heterogeneity effect of seeds in multi-seed implant brachytherapy. In this research, the accuracy of a novel analytical model that we propose for the inter-seed attenuation effect (ISA) for 103-Pd seed model is evaluated. Methods: In the analytical model, dose perturbation due to the ISA effect for each seed in an LDR multi-seed implant for 103-Pd is calculated by assuming that the seed of interest is active and the other surrounding seeds are inactive. The cumulative dosimetric effect of all seeds is then summedmore » using the superposition principle. The model is based on pre Monte Carlo (MC) simulated 3D kernels of the dose perturbations caused by the ISA effect. The cumulative ISA effect due to multiple surrounding seeds is obtained by a simple multiplication of the individual ISA effect by each seed, the effect of which is determined by the distance from the seed of interest. This novel algorithm is then compared with full MC water-based simulations (FMCW). Results: The results show that the dose perturbation model we propose is in excellent agreement with the FMCW values for a case with three seeds separated by 1 cm. The average difference of the model and the FMCW simulations was less than 8%±2%. Conclusion: Using the proposed novel analytical ISA effect model, one could expedite the corrections due to the ISA dose perturbation effects during permanent seed 103-Pd brachytherapy planning with minimal increase in time since the model is based on multiplications and superposition. This model can be applied, in principle, to any other brachytherapy seeds. Further work is necessary to validate this model on a more complicated geometry as well.« less
Dante Castellanos-Acuña; Kenneth W. Vance-Borland; J. Bradley St. Clair; Andreas Hamann; Javier López-Upton; Erika Gómez-Pineda; Juan Manuel Ortega-Rodríguez; Cuauhtémoc Sáenz-Romero
2018-01-01
Seed zones for forest tree species are a widely used tool in reforestation programs to ensure that seedlings are well adapted to their planting environments. Here, we propose a climate-based seed zone system for Mexico to address observed and projected climate change. The proposed seed zone classification is based on bands of climate variables often related to genetic...
NASA Astrophysics Data System (ADS)
Farid, M.; Iswoyo, H.; Ridwan, I.; Nasaruddin; Dermawan, R.
2018-05-01
Use of certified seeds is necessary in rice farming system to ensure high production and productivity. In South Sulawesi, as one of the main center of Rice in Indonesia, increase in the regional harvest areas and land productivity was not followed by significant increase in rice productivity. Seeds policy implemented by the government not only covers the technology applied in the seeds production but also quality insurance, availability and its distribution system. Despite these efforts, use of certified seeds in the field by farmers are still limited, therefore a survey was conducted to study the use and availability of rice certified seeds in Bone regency. Farmer groups in 9 districts were sampled to obtained data concerned to the use and availability of rice seeds including type, planting season, cropping pattern and availability at planting. Results show that the use of certified seeds in Bone regency were relatively high, however level of seeds supply was low or delayed at time of planting. To overcome the problem of seed supply, most farmers used its own seeds from previous harvest. Some suggestions to resolve this condition are discussed.
Li, Xin; Islam, Shahidul; Yang, Huaan; Ma, Wujun; Yan, Guijun
2013-05-01
Narrow-leafed lupin (Lupinus angustifolius L.) is a valuable legume crop for animal feed and human health food because of its high proteins content. However, the genetics of seed storage proteins is unclear, limiting further improvement of protein quantity and quality. In this study, matrix-assisted laser desorption/ionization time of flight mass spectrometry was used for the first time to analyze lupin seed storage proteins and the spectra generated was treated as markers to investigate the chromosome locations controlling seed storage proteins in the narrow-leafed lupin. In a recombinant inbred line population of 89 individuals, 48 polymorphic protein peaks were identified and seven of which were successfully mapped onto four existing linkage groups: two on NLL-04, three on NLL-05, one on NLL-07 and one on NLL-14, with LOD values ranging from 2.6 to 7.7 confirming a significant linkage. Most protein-based markers showed distorted segregation and were failed to be integrated into the reference map. Among them, 31 were grouped into six clusters and the other ten were totally unlinked. This study provides a significant clue to study the comparative genomics/proteomics among legumes as well as for protein marker-assisted breeding. The distribution pattern of genes controlling seed storage protein revealed in this study probably exists universally among legumes or even all plants and animals. Whether genes controlling seed storage protein share the same gene expression pattern controlling other enzymes and what is the mechanism behind it are the questions which remain to be answered in the future.
Wang, Ning; Jiao, Juying; Jia, Yanfeng; Wang, Dongli
2017-10-24
The Chinese Loess Plateau region has long been suffering from serious soil erosion. Thus, large-scale afforestation has continued during the past decades in order to control soil erosion. Afforestation can dramatically alter nutrient cycles, affect soil-carbon storage, and change hydrology. However, it is unknown how afforestation influences species diversity of the soil seed bank and understory vegetation compared with spontaneous restoration of abandoned land. Forest land with trees planted 30 years ago, abandoned slope land restored spontaneously for 30 years, and the corresponding slopes with remnant natural vegetation were selected as sampling sites. The species richness both in the soil seed bank and vegetation was significantly higher on the afforested slope compared to the spontaneously restored abandoned land. The species similarity between the afforested slope and the remnant slope land was high both in the soil seed bank and standing vegetation compared to the abandoned land. The soil seed bank density varied from 1778 ± 187 to 3896 ± 221 seeds/m², and more than half of it was constituted by annual and biennial species, with no significant difference among sampling habitats. However, the afforested slope had higher seed density of grass and shrub/subshrubs compared to the abandoned slope. The present study indicates that in the study region, characterized by serious soil erosion, afforestation can better facilitate vegetation succession compared to spontaneously restoration of abandoned slope land.
Wang, Ning; Jiao, Juying; Jia, Yanfeng; Wang, Dongli
2017-01-01
The Chinese Loess Plateau region has long been suffering from serious soil erosion. Thus, large-scale afforestation has continued during the past decades in order to control soil erosion. Afforestation can dramatically alter nutrient cycles, affect soil-carbon storage, and change hydrology. However, it is unknown how afforestation influences species diversity of the soil seed bank and understory vegetation compared with spontaneous restoration of abandoned land. Forest land with trees planted 30 years ago, abandoned slope land restored spontaneously for 30 years, and the corresponding slopes with remnant natural vegetation were selected as sampling sites. The species richness both in the soil seed bank and vegetation was significantly higher on the afforested slope compared to the spontaneously restored abandoned land. The species similarity between the afforested slope and the remnant slope land was high both in the soil seed bank and standing vegetation compared to the abandoned land. The soil seed bank density varied from 1778 ± 187 to 3896 ± 221 seeds/m2, and more than half of it was constituted by annual and biennial species, with no significant difference among sampling habitats. However, the afforested slope had higher seed density of grass and shrub/subshrubs compared to the abandoned slope. The present study indicates that in the study region, characterized by serious soil erosion, afforestation can better facilitate vegetation succession compared to spontaneously restoration of abandoned slope land. PMID:29064405
Meddeb, Wiem; Rezig, Leila; Abderrabba, Manef
2017-01-01
In this study, milk thistle seeds growing in different areas in Tunisia were cold pressed and the extracted oils were examined for their chemical and antioxidant properties. The major fatty acids were linoleic acid (C18:2) (57.0%, 60.0%, and 60.3% for the milk thistle seed oils native to Bizerte, Zaghouan and Sousse, respectively) and oleic acid (C18:1) (15.5%, 21.5%, and 22.4% for the milk thistle seed oils originating from Bizerte, Zaghouan and Sousse, respectively). High performance liquid chromatography (HPLC) analysis showed the richness of the milk thistle seed oils (MTSO) in α-tocopherol. The highest content was recorded for that of the region of Zaghouan (286.22 mg/kg). The total phenolic contents (TPC) of Zaghouan, Bizerte, and Sousse were 1.59, 8.12, and 4.73 Gallic Acid Equivalent (GAE) mg/g, respectively. Three phenolic acids were also identified (vanillic, p-coumaric, and silybine), with a predominance of the vanillic acid. The highest value was recorded for the Zaghouan milk thistle seed oil (83 mg/100 g). Differences in outcomes between regions may be due to climatic differences in areas. Zaghouan’s cold-pressed milk thistle seed oil had a better quality than those of Bizerte and Sousse, and can be considered as a valuable source for new multi-purpose products or by-products for industrial, cosmetic, and pharmaceutical utilization. PMID:29207484
Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol
2016-01-01
Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.
Functional connectivity mapping of regions associated with self- and other-processing.
Murray, Ryan J; Debbané, Martin; Fox, Peter T; Bzdok, Danilo; Eickhoff, Simon B
2015-04-01
Neuroscience literature increasingly suggests a conceptual self composed of interacting neural regions, rather than independent local activations, yet such claims have yet to be investigated. We, thus, combined task-dependent meta-analytic connectivity modeling (MACM) with task-independent resting-state (RS) connectivity analysis to delineate the neural network of the self, across both states. Given psychological evidence implicating the self's interdependence on social information, we also delineated the neural network underlying conceptual other-processing. To elucidate the relation between the self-/other-networks and their function, we mined the MACM metadata to generate a cognitive-behavioral profile for an empirically identified region specific to conceptual self, the pregenual anterior cingulate (pACC), and conceptual other, posterior cingulate/precuneus (PCC/PC). Mining of 7,200 published, task-dependent, neuroimaging studies, using healthy human subjects, yielded 193 studies activating the self-related seed and were conjoined with RS connectivity analysis to delineate a differentiated self-network composed of the pACC (seed) and anterior insula, relative to other functional connectivity. Additionally, 106 studies activating the other-related seed were conjoined with RS connectivity analysis to delineate a differentiated other-network of PCC/PC (seed) and angular gyrus/temporoparietal junction, relative to self-functional connectivity. The self-network seed related to emotional conflict resolution and motivational processing, whereas the other-network seed related to socially oriented processing and contextual information integration. Notably, our findings revealed shared RS connectivity between ensuing self-/other-networks within the ventromedial prefrontal cortex and medial orbitofrontal cortex, suggesting self-updating via integration of self-relevant social information. We, therefore, present initial neurobiological evidence corroborating the increasing claims of an intricate self-network, the architecture of which may promote social value processing. © 2014 Wiley Periodicals, Inc.
Fire season and intensity affect shrub recruitment in temperate sclerophyllous woodlands.
Knox, K J E; Clarke, P J
2006-10-01
The season in which a fire occurs may regulate plant seedling recruitment because of: (1) the interaction of season and intensity of fire and the temperature requirements for seed release, germination and growth; (2) post-fire rainfall and temperature patterns affecting germination; (3) the interaction of post-fire germination conditions and competition from surrounding vegetation; and (4) the interaction of post-fire germination conditions and seed predators and/or seedling herbivores. This study examined the effects of different fire intensities and fire seasons on the emergence and survival of shrubs representing a range of fire response syndromes from a summer rainfall cool climate region. Replicated experimental burns were conducted in two seasons (spring and autumn) in 2 consecutive years and fuel loads were increased to examine the effects of fire intensity (low intensity and moderate intensity). Post-fire watering treatments partitioned the effects of seasonal temperature from soil moisture. Higher intensity fires resulted in enhanced seedling emergence for hard-seeded species but rarely influenced survival. Spring fires enhanced seedling emergence across all functional groups. Reduced autumn recruitment was related to seasonal temperature inhibiting germination rather than a lack of soil moisture or competition. In Mediterranean-type climate regions, seedling emergence has been related to post-fire rainfall and exposure of seeds to seed predators. We think a similar model may operate in temperate summer rainfall regions where cold-induced dormancy over winter exposes seeds to predators for a longer time and subsequently results in recruitment failure. Our results support the theory that the effect of fire season is more predictable where there are strong seasonal patterns in climate. In this study seasonal temperature rather than rainfall appears to be more influential.
Gomaa, Nasr H; Picó, F Xavier
2011-06-01
Water-limited hot environments are good examples of hyper-aridity. Trees are scarce in these environments but some manage to survive, such as the tree Moringa peregrina. Understanding how trees maintain viable populations in extremely arid environments may provide insight into the adaptive mechanisms by which trees cope with extremely arid weather conditions. This understanding is relevant to the current increasing aridity in several regions of the world. Seed germination experiments were conducted to assess variation in seed mass, seed germination, and seedling traits of Moringa peregrina plants and the correlations among these traits. A seed burial experiment was also designed to study the fate of M. peregrina seeds buried at two depths in the soil for two time periods. On average, seeds germinated in three days and seedling shoots grew 0.7 cm per day over three weeks. Larger seeds decreased germination time and increased seedling growth rates relative to smaller seeds. Seeds remained quiescent in the soil and germination was very high at both depths and burial times. The after-ripening time of Moringa peregrina seeds is short and seeds germinate quickly after imbibition. Plants of M. peregrina may increase in hyper-arid environments from seeds with larger mass, shorter germination times, and faster seedling growth rates. The results also illustrate the adjustment in allocation to seed biomass and correlations among seed and seedling traits that allows M. peregrina to be successful in coping with aridity in its environment.
Seed gum of Stryphnodendron barbatiman (Barbatimao)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reicher, F.; Leitner, S.C.S.; Fontana, J.D.
1991-12-31
Stryphnodendron barbatiman (barbatimao) is a native tree that is found throughout the {open_quotes}Cerrados,{close_quotes} a region of Central Brazil. Plant seeds, on water extraction, furnished 28 g% galactomannan (dry-weight basis), the monosaccharide composition of which (galactose to mannose ratio, 1.0:1.5) fits in the legume heteromannan group. This seed gum, after Sevag deproteinization, still retained 6 g% of associated protein and had a molecular weight of about 1.8 MD on gel filtration. A high intrinsic viscosity (1300 cP) was observed for the polysaccharide sample obtained after reflux of the crushed seeds in 80% aqueous methanol.
He, Zhuoxian; Jiang, Xiaoqi; Ratnasekera, Disna; Grassi, Fabrizio; Perera, Udugahapattuwage; Lu, Bao-Rong
2014-01-01
Increased infestation of weedy rice—a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka. PMID:25436611
Webb, Benjamin A.; Hildreth, Sherry; Helm, Richard F.
2014-01-01
Bacterial chemotaxis is an important attribute that aids in establishing symbiosis between rhizobia and their legume hosts. Plant roots and seeds exude a spectrum of molecules into the soil to attract their bacterial symbionts. The alfalfa symbiont Sinorhizobium meliloti possesses eight chemoreceptors to sense its environment and mediate chemotaxis toward its host. The methyl accepting chemotaxis protein McpU is one of the more abundant S. meliloti chemoreceptors and an important sensor for the potent attractant proline. We established a dominant role of McpU in sensing molecules exuded by alfalfa seeds. Mass spectrometry analysis determined that a single germinating seed exudes 3.72 nmol of proline, producing a millimolar concentration near the seed surface which can be detected by the chemosensory system of S. meliloti. Complementation analysis of the mcpU deletion strain verified McpU as the key proline sensor. A structure-based homology search identified tandem Cache (calcium channels and chemotaxis receptors) domains in the periplasmic region of McpU. Conserved residues Asp-155 and Asp-182 of the N-terminal Cache domain were determined to be important for proline sensing by evaluating mutant strains in capillary and swim plate assays. Differential scanning fluorimetry revealed interaction of the isolated periplasmic region of McpU (McpU40-284) with proline and the importance of Asp-182 in this interaction. Using isothermal titration calorimetry, we determined that proline binds with a Kd (dissociation constant) of 104 μM to McpU40-284, while binding was abolished when Asp-182 was substituted by Glu. Our results show that McpU is mediating chemotaxis toward host plants by direct proline sensing. PMID:24657863
Rey, Pedro J; Cancio, Inmaculada; Manzaneda, Antonio J; González-Robles, Ana; Valera, Francisco; Salido, Teresa; Alcántara, Julio M
2018-06-22
Global change drivers are currently affecting semiarid ecosystems. Because these ecosystems differ from others in biotic and abiotic filters, cues for plant regeneration and management derived from elsewhere may not be applicable to semiarid ecosystems. We sought to determine the extent to which regional variation in regeneration prospects of a long-lived semiarid keystone shrub depends on anthropogenic habitat degradation, plant-animal interactions and climate determinants. We investigated the regeneration ability (via population size structure, juvenile density and juvenile/adult ratio), fruit set and seed dispersal of Ziziphus lotus in 25 localities spanning the range of its threatened habitats in Spain. We dissected the relative contribution of different regeneration determinants using multiple regression and structural equation modelling. Population regeneration was extremely poor, and size structures were biased towards large classes and low juvenile densities and juvenile/adult ratios. Poor regeneration was often coincident with seed dispersal collapse. However, the positive effect of seed dispersal on population regeneration disappeared after considering its relationship with habitat degradation. Protected areas did have juveniles. Together, these data suggest that habitat degradation directly impacts juvenile establishment. Our results provide insights into habitat and species management at the regional level. Z. lotus populations are currently driven by persistence-based dynamics through the longevity of the species. Nonetheless, collapsed seed dispersal, poor regeneration and the removal of adults from their habitats forecast extinction of Z. lotus in many remnants. The extreme longevity of Z. lotus grants opportunities for the recovery of its populations and habitats through effective enforcement of regulations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Directed Panspermia. 3. strategies and Motivation for Seeding Star-Forming Clouds
NASA Astrophysics Data System (ADS)
Mautner, Michael N.
1997-11-01
Microbial swarms aimed at star-forming regions of interstellar clouds can seed stellar associations of 10 - 100 young planetary systems. Swarms of millimeter size, milligram packets can be launched by 35 cm solar sails at 5E-4 c, to penetrate interstellar clouds. Selective capture in high-density planetary accretion zones of densities > 1E-17 kg m-3 is achieved by viscous drag. Strategies are evaluated to seed dense cloud cores, or individual protostellar condensations, accretion disks or young planets therein. Targeting the Ophiuchus cloud is described as a model system. The biological content, dispersed in 30 μm, 1E-10 kg capsules of 1E6 freeze-dried microorganisms each, may be captured by new planets or delivered to planets after incorporation first into carbonaceous asteroids and comets. These objects, as modeled by meteorite materials, contain biologically available organic and mineral nutrients that are shown to sustain microbial growth. The program may be driven by panbiotic ethics, predicated on: 1. The unique position of complex organic life amongst the structures of Nature; 2. Self-propagation as the basic propensity of the living pattern; 3. The biophysical unity humans with of the organic, DNA/protein family of life; and 4. Consequently, the primary human purpose to safeguard and propagate our organic life form. To promote this purpose, panspermia missions with diverse biological payloads will maximize survival at the targets and induce evolutionary pressures. In particular, eukaryotes and simple multicellular organisms in the payload will accelerate higher evolution. Based on the geometries and masses of star-forming regions, the 1E24 kg carbon resources of one solar system, applied during its 5E9 yr lifespan, can seed all newly forming planetary systems in the galaxy.
Seed morphology and anatomy and its utility in recognizing subfamilies and tribes of Zingiberaceae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedict, John C.; Smith, Selena Y.; Collinson, Margaret E.
PREMISE OF THE STUDY: Recent phylogenetic analyses based on molecular data suggested that the monocot family Zingiberaceae be separated into four subfamilies and four tribes. Robust morphological characters to support these clades are lacking. Seeds were analyzed in a phylogenetic context to test independently the circumscription of clades and to better understand evolution of seed characters within Zingiberaceae. METHODS: Seventy-five species from three of the four subfamilies were analyzed using synchrotron based x-ray tomographic microscopy (SRXTM) and scored for 39 morphoanatomical characters. KEY RESULTS: Zingiberaceae seeds are some of the most structurally complex seeds in angiosperms. No single seed charactermore » was found to distinguish each subfamily, but combinations of characters were found to differentiate between the subfamilies. Recognition of the tribes based on seeds was possible for Globbeae, but not for Alpinieae, Riedelieae, or Zingibereae, due to considerable variation. CONCLUSIONS: SRXTM is an excellent, nondestructive tool to capture morphoanatomical variation of seeds and allows for the study of taxa with limited material available. Alpinioideae, Siphonochiloideae, Tamijioideae, and Zingiberoideae are well supported based on both molecular and morphological data, including multiple seed characters. Globbeae are well supported as a distinctive tribe within the Zingiberoideae, but no other tribe could be differentiated using seeds due to considerable homoplasy when compared with currently accepted relationships based on molecular data. Novel seed characters suggest tribal affinities for two currently unplaced Zingiberaceae taxa: Siliquamomum may be related to Riedelieae and Monolophus to Zingibereae, but further work is needed before formal revision of the family.« less
Query-based biclustering of gene expression data using Probabilistic Relational Models.
Zhao, Hui; Cloots, Lore; Van den Bulcke, Tim; Wu, Yan; De Smet, Riet; Storms, Valerie; Meysman, Pieter; Engelen, Kristof; Marchal, Kathleen
2011-02-15
With the availability of large scale expression compendia it is now possible to view own findings in the light of what is already available and retrieve genes with an expression profile similar to a set of genes of interest (i.e., a query or seed set) for a subset of conditions. To that end, a query-based strategy is needed that maximally exploits the coexpression behaviour of the seed genes to guide the biclustering, but that at the same time is robust against the presence of noisy genes in the seed set as seed genes are often assumed, but not guaranteed to be coexpressed in the queried compendium. Therefore, we developed ProBic, a query-based biclustering strategy based on Probabilistic Relational Models (PRMs) that exploits the use of prior distributions to extract the information contained within the seed set. We applied ProBic on a large scale Escherichia coli compendium to extend partially described regulons with potentially novel members. We compared ProBic's performance with previously published query-based biclustering algorithms, namely ISA and QDB, from the perspective of bicluster expression quality, robustness of the outcome against noisy seed sets and biological relevance.This comparison learns that ProBic is able to retrieve biologically relevant, high quality biclusters that retain their seed genes and that it is particularly strong in handling noisy seeds. ProBic is a query-based biclustering algorithm developed in a flexible framework, designed to detect biologically relevant, high quality biclusters that retain relevant seed genes even in the presence of noise or when dealing with low quality seed sets.
Lee, Hoonsoo; Kim, Moon S; Song, Yu-Rim; Oh, Chang-Sik; Lim, Hyoun-Sub; Lee, Wang-Hee; Kang, Jum-Soon; Cho, Byoung-Kwan
2017-03-01
There is a need to minimize economic damage by sorting infected seeds from healthy seeds before seeding. However, current methods of detecting infected seeds, such as seedling grow-out, enzyme-linked immunosorbent assays, the polymerase chain reaction (PCR) and the real-time PCR have a critical drawbacks in that they are time-consuming, labor-intensive and destructive procedures. The present study aimed to evaluate the potential of visible/near-infrared (Vis/NIR) hyperspectral imaging system for detecting bacteria-infected watermelon seeds. A hyperspectral Vis/NIR reflectance imaging system (spectral region of 400-1000 nm) was constructed to obtain hyperspectral reflectance images for 336 bacteria-infected watermelon seeds, which were then subjected to partial least square discriminant analysis (PLS-DA) and a least-squares support vector machine (LS-SVM) to classify bacteria-infected watermelon seeds from healthy watermelon seeds. The developed system detected bacteria-infected watermelon seeds with an accuracy > 90% (PLS-DA: 91.7%, LS-SVM: 90.5%), suggesting that the Vis/NIR hyperspectral imaging system is effective for quarantining bacteria-infected watermelon seeds. The results of the present study show that it is possible to use the Vis/NIR hyperspectral imaging system for detecting bacteria-infected watermelon seeds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Shearin, Zackery R. C.; Filipek, Matthew; Desai, Rushvi; Bickford, Wesley A.; Kowalski, Kurt P.; Clay, Keith
2018-01-01
Background and aimsWe characterized fungal endophytes of seeds of invasive, non-native Phragmites from three sites in the Great Lakes region to determine if fungal symbiosis could contribute to invasiveness through their effects on seed germination and seedling growth.MethodsField-collected seeds were surface sterilized and plated on agar to culture endophytes for ITS sequencing. Prevalence of specific endophytes from germinated and non-germinated seeds, and from seedlings, was compared.ResultsOne-third of 740 seeds yielded endophyte isolates. Fifteen taxa were identified with Alternaria sp. representing 54% of all isolates followed by Phoma sp. (21%) and Penicillium corylophilum (12%). Overall germination of seeds producing an isolate (36%) was significantly higher than seeds not producing an isolate (20%). Penicillium in particular was strongly associated with increased germination of seeds from one site. Sixty-three isolates and 11 taxa were also obtained from 30 seedlings where Phoma, Penicillium and Alternaria respectively were most prevalent. There was a significant effect of isolating an endophyte from the seed on seedling growth.ConclusionsThese results suggest that many endophyte taxa are transmitted in seeds and can increase seed germination and seedling growth of invasive Phragmites. The role of fungal endophytes in host establishment, growth and invasiveness in nature requires further research.
Ferrandis, Pablo; Bonilla, Marta; Osorio, Licet del Carmen
2011-09-01
Podocarpus angustifolius is an endangered recalcitrant-seeded small tree, endemic to mountain rain forests in the central and Pinar del Río regions in Cuba. In this study, the germination patterns of P. angustifolius seeds were evaluated and the nature of the soil seed bank was determined. Using a weighted two-factor design, we analyzed the combined germination response to seed source (i.e. freshly matured seeds directly collected from trees versus seeds extracted from soil samples) and pretreatment (i.e. seed water-immersion for 48h at room temperature). Germination was delayed for four weeks (= 30 days) in all cases, regardless of both factors analyzed. Moreover, nine additional days were necessary to achieve high germination values (in the case of fresh, pretreated seeds). These results overall may indicate the existence of a non-deep simple morphophysiological dormancy in P. angustifolius seeds. The water-immersion significantly enhanced seed germination, probably as a result of the hydration of recalcitrant seeds. Although germination of seeds extracted from soil samples was low, probably due to aging and pathogen effects throughout the time of burial, the study revealed the existence of a persistent soil seed bank (at least short-termed) of approximately 42 viable seeds per m2 in the upper 10cm of soil. Such a record is noteworthy since references to persistent soil seed banks in recalcitrant-seeded species are scarce in the literature. The population consequences derived from the formation of persistent soil seed banks in this endangered species are discussed.
USDA-ARS?s Scientific Manuscript database
Although recently introduced, film-coating of agronomic seeds is now widely accepted in modern agriculture as an effective technology for protecting germinating seeds and seedlings. These experiments explored the possibility of using a bioplastic-based formulation to film-coat corn (maize) and cano...
Choi, Doug-Hwan; Ban, Ho-Young; Seo, Beom-Seok; Lee, Kyu-Jong; Lee, Byun-Woo
2016-01-01
Increased temperature means and fluctuations associated with climate change are predicted to exert profound effects on the seed yield of soybean. We conducted an experiment to evaluate the impacts of global warming on the phenology and yield of two determinate soybean cultivars in a temperate region (37.27°N, 126.99°E; Suwon, South Korea). These two soybean cultivars, Sinpaldalkong [maturity group (MG) IV] and Daewonkong (MG VI), were cultured on various sowing dates within a four-year period, under no water-stress conditions. Soybeans were kept in greenhouses controlled at the current ambient temperature (AT), AT+1.5°C, AT+3.0°C, and AT+5.0°C throughout the growth periods. Growth periods (VE-R7) were significantly prolonged by the elevated temperatures, especially the R1-R5 period. Cultivars exhibited no significant differences in seed yield at the AT+1.5°C and AT+3.0°C treatments, compared to AT, while a significant yield reduction was observed at the AT+5.0°C treatment. Yield reductions resulted from limited seed number, which was due to an overall low numbers of pods and seeds per pod. Heat stress conditions induced a decrease in pod number to a greater degree than in seed number per pod. Individual seed weight exhibited no significant variation among temperature elevation treatments; thus, seed weight likely had negligible impacts on overall seed yield. A boundary line analysis (using quantile regression) estimated optimum temperatures for seed number at 26.4 to 26.8°C (VE-R5) for both cultivars; the optimum temperatures (R5-R7) for single seed weight were estimated at 25.2°C for the Sinpaldalkong smaller-seeded cultivar, and at 22.3°C for the Daewonkong larger-seeded cultivar. The optimum growing season (VE-R7) temperatures for seed yield, which were estimated by combining the two boundary lines for seed number and seed weight, were 26.4 and 25.0°C for the Sinpaldalkong and Daewonkong cultivars, respectively. Considering the current soybean growing season temperature, which ranges from 21.7 (in the north) to 24.6°C (in the south) in South Korea, and the temperature response of potential soybean yields, further warming of less than approximately 1°C would not become a critical limiting factor for soybean production in South Korea.
Ringsted, Tine; Dupont, Sune; Ramsay, Jacob; Jespersen, Birthe Møller; Sørensen, Klavs Martin; Keiding, Søren Rud; Engelsen, Søren Balling
2016-07-01
The supercontinuum laser is a new type of light source, which combines the collimation and intensity of a laser with the broad spectral region of a lamp. Using such a source therefore makes it possible to focus the light onto small sample areas without losing intensity and thus facilitate either rapid or high-intensity measurements. Single seed transmission analysis in the long wavelength (LW) near-infrared (NIR) region is one area that might benefit from a brighter light source such as the supercontinuum laser. This study is aimed at building an experimental spectrometer consisting of a supercontinuum laser source and a dispersive monochromator in order to investigate its capability to measure the barley endosperm using transmission experiments in the LW NIR region. So far, barley and wheat seeds have only been studied using NIR transmission in the short wavelength region up to 1100 nm. However, the region in the range of 2260-2380 nm has previously shown to be particularly useful in differentiating barley phenotypes using NIR spectroscopy in reflectance mode. In the present study, 350 seeds (consisting of 70 seeds from each of five barley genotypes) in 1 mm slices were measured by NIR transmission in the range of 2235-2381 nm and oils from the same five barley genotypes were measured in a cuvette with a 1 mm path length in the range of 2003-2497 nm. The spectra of the barley seeds could be classified according to genotypes by principal component analysis; and spectral covariances with reference analysis of moisture, β-glucan, starch, protein and lipid were established. The spectral variations of the barley oils were compared to the fatty acid compositions as measured using gas chromotography-mass spectrometry (GC-MS). © The Author(s) 2016.
Life-history traits predict perennial species response to fire in a desert ecosystem
Shryock, Daniel F.; DeFalco, Lesley A.; Esque, Todd C.
2014-01-01
The Mojave Desert of North America has become fire-prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post-fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life-history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life-history traits and evaluated whether these groups exhibited a consistent fire-response. Six life-history traits varied significantly between burned and unburned areas in short (up to 4 years) or long-term (up to 52 years) post-fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life-history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind-dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non-wind dispersed seeds, and taller heights. Our results show that PFTs based on life-history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long-lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life-history strategies.
Climate as a driver of continent-wide irruptions in boreal seed-eating birds (Invited)
NASA Astrophysics Data System (ADS)
Strong, C.; Zuckerberg, B.; Betancourt, J. L.
2013-12-01
Boreal seed-eating birds regularly breed and overwinter throughout Canada and Alaska, but every few years these species demonstrate impressive irruptive migrations out of the boreal forest and into more southerly regions. It is thought that irruptive migrations are inversely dependent on a circumboreally synchronized pattern of seed crop fluctuations in boreal trees; seed-eating boreal birds stay in the north when food is plentiful, but sojourn south when food is scarce. Because both seed production and bird irruptions are characterized by periodicity ranging from biennial to decadal cycles, there is a strong possibility that these ecological phenomena are driven by climate variability. Using over twenty years of data from Project FeederWatch (a national citizen science project), we found that 'super irruptions' are correlated with continent-wide irruptive events in pine siskin population, and that these irruptions are associated with multi-decadal climate variability of Pacific origin. We also investigate how climate variability may influence the distribution of boreal bird species across different regions of North America during winter, and evaluate results in the context of limited banding data to assess possible geographic pathways of irruptions.
Ogawa, Takeshi; Aihara, Takatsugu; Shimokawa, Takeaki; Yamashita, Okito
2018-04-24
Creative insight occurs with an "Aha!" experience when solving a difficult problem. Here, we investigated large-scale networks associated with insight problem solving. We recruited 232 healthy participants aged 21-69 years old. Participants completed a magnetic resonance imaging study (MRI; structural imaging and a 10 min resting-state functional MRI) and an insight test battery (ITB) consisting of written questionnaires (matchstick arithmetic task, remote associates test, and insight problem solving task). To identify the resting-state functional connectivity (RSFC) associated with individual creative insight, we conducted an exploratory voxel-based morphometry (VBM)-constrained RSFC analysis. We identified positive correlations between ITB score and grey matter volume (GMV) in the right insula and middle cingulate cortex/precuneus, and a negative correlation between ITB score and GMV in the left cerebellum crus 1 and right supplementary motor area. We applied seed-based RSFC analysis to whole brain voxels using the seeds obtained from the VBM and identified insight-positive/negative connections, i.e. a positive/negative correlation between the ITB score and individual RSFCs between two brain regions. Insight-specific connections included motor-related regions whereas creative-common connections included a default mode network. Our results indicate that creative insight requires a coupling of multiple networks, such as the default mode, semantic and cerebral-cerebellum networks.
Ali, Atif; Akhtar, Naveed
2015-07-01
Escalated sebum fabrication is seen with an unattractive look and adds to the growth of acne. We aimed to investigate the efficacy and safety of 3% Cannabis seeds extract cream on human cheek skin sebum and erythema content. For this purpose, base plus 3% Cannabis seeds extract and base (control) were prepared for single blinded and comparative study. Healthy males were instructed to apply the base plus 3% Cannabis seeds extract and base twice a day to their cheeks for 12 weeks. Adverse events were observed to determine skin irritation. Measurements for sebum and erythema content were recorded at baseline, 2nd, 4th, 6th, 8th, 10th and 12th week in a control room with Sebumeter and Mexameter. Base plus 3% Cannabis seeds extract was found to be safe in volunteers. Measurements demonstrated that skin sebum and erythema content of base plus 3% Cannabis seeds extract treated side showed significant decrease (p<0.05) compared with base treated side. Base plus 3% Cannabis seeds extract showed safety. It was well tolerated for the reduction of skin sebum and erythema content. Its improved efficacy could be suggested for treatment of acne vulgaris, seborrhea, papules and pustules to get attractive facial appearance.
Spatio-temporal variation in a seed bank of a semi-arid region in northeastern Brazil
NASA Astrophysics Data System (ADS)
da Silva, Kleber A.; dos Santos, Danielle M.; dos Santos, Josiene M. F. F.; de Albuquerque, Ulysses P.; Ferraz, Elba M. N.; Araújo, Elcida de L.
2013-01-01
This study aimed to evaluate variations in the seed bank within a 3-year temporal series in order to answer the following questions: 1) Does the seed bank's species richness and seed density differ among climatic seasons and between years? 2) Are there differences in the richness and density of seed banks between the litter and mineral soil? 3) Can the seed bank's species richness and seed density be explained by characteristics such as the previous year's precipitation and soil depth (litter or mineral soil)? The samples were collected from litter and mineral soil (0-5 cm), in 210 sub-plots, during the dry and rainy seasons of each year (August 2005 through February 2008). Overall, 79 species were recorded. On average, 1 168, 304 and 302 seeds.m-2 were recorded in the seed bank during years I, II and III, respectively. This study showed that the Caatinga's seed bank is rich in herbaceous species, yet species' density and richness are low in the litter. Furthermore, about 43% of the variation in species richness and density was explained by soil depth (litter and mineral soil) and previous years' rainfall.
Seed crop size variation in the dominant South American conifer Araucaria angustifolia
NASA Astrophysics Data System (ADS)
Souza, Alexandre F.; Uarte de Matos, Daniele; Forgiarini, Cristiane; Martinez, Jaime
2010-01-01
Temporal variation in seed crop size of the long-lived pioneer conifer Araucaria angustifolia was studied in subtropical South America. We evaluated the expectations that: 1) A. angustifolia presents highly variable seed production (mast seeding behavior); 2) A. angustifolia has endogenous cycles of reproduction of two or three years; 3) There is a tendency for a high seed production year to be followed by an unusually low production year; 4) populations show synchrony in seed production at a geographical scale; 5) seed crop size is influenced by distinct climatic factors occurring during "key" reproductive stages and 6) as an expression of plant productivity, seed crop size should depend on integrated resource availability during the reproductive cycle. We obtained data from two distinct sources: 1) seed harvesting records from a private forest (14 years), and 2) commercial data from 22 municipalities in the Rio Grande do Sul State. Expectations 1, 2, 3 and 5 were not met, while expectations 4 and 6 were supported by the data. A. angustifolia showed environmentally triggered, continuous, moderately fluctuating, and regionally synchronous reproduction. Seed set seems to track variations in resource abundance as well as respond continuously to improved opportunities for successful regeneration.
Beaudoin, B. R.; Cohen, J. D.; Jones, D. H.; Marier, Jr, L. J.; Raab, H. F.
1972-06-20
Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)
Germination, genetics, and growth of an ancient date seed.
Sallon, Sarah; Solowey, Elaine; Cohen, Yuval; Korchinsky, Raia; Egli, Markus; Woodhatch, Ivan; Simchoni, Orit; Kislev, Mordechai
2008-06-13
An ancient date seed (Phoenix dactylifera L.) excavated from Masada and radiocarbon-dated to the first century Common Era was germinated. Climatic conditions at the Dead Sea may have contributed to the longevity of this oldest, directly dated, viable seed. Growth and development of the seedling over 26 months was compatible with normal date seedlings propagated from modern seeds. Preliminary molecular characterization demonstrated high levels of genetic variation in comparison to modern, elite date cultivars currently growing in Israel. As a representative of an extinct date palm population, this seedling can provide insights into the historic date culture of the Dead Sea region. It also has importance for seed banking and conservation and may be of relevance to modern date palm cultivation.
Light-water breeder reactor (LWBR Development Program)
Beaudoin, B.R.; Cohen, J.D.; Jones, D.H.; Marier, L.J. Jr.; Raab, H.F.
1972-06-20
Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)
Gao, Yan; Li, Peng
2013-01-01
In this study, we introduced a novel and convenient approach to culture multiple cells in localized arrays of microfluidic chambers using one-step vacuum actuation. In one device, we integrated 8 individually addressable regions of culture chambers, each only requiring one simple vacuum operation to seed cells lines. Four cell lines were seeded in designated regions in one device via sequential injection with high purity (99.9%-100%) and cultured for long-term. The on-chip simultaneous culture of HuT 78, Ramos, PC-3 and C166-GFP cells for 48 h was demonstrated with viabilities of 92%+/−2%, 94%+/−4%, 96%+/−2% and 97%+/−2%, respectively. The longest culture period for C166-GFP cells in this study was 168 h with a viability of 96%+/−10%. Cell proliferation in each individual side channel can be tracked. Mass transport between the main channel and side channels was achieved through diffusion and studied using fluorescein solution. The main advantage of this device is the capability to perform multiple cell-based assays on the same device for better comparative studies. After treating cells with staurosporine or anti-human CD95 for 16 h, the apoptotic cell percentage of HuT 78, CCRF-CEM, PC-3 and Ramos cells were 36%+/−3%, 24%+/−4%, 12%+/−2%, 18%+/−4% for staurosporine, and 63%+/−2%, 45%+/−1%, 3%+/−3%, 27%+/−12% for anti-human CD95, respectively. With the advantages of enhanced integration, ease of use and fabrication, and flexibility, this device will be suitable for long-term multiple cell monitoring and cell based assays. PMID:23813077
Munson, Seth M.; Long, A. Lexine; Decker, Cheryl E.; Johnson, Katie A.; Walsh, Kathleen; Miller, Mark E.
2015-01-01
Invasive non-native species pose a large threat to restoration efforts following large-scale disturbances. Bromus tectorum (cheatgrass) is a non-native annual grass in the western U.S. that both spreads quickly following fire and accelerates the fire cycle. Herbicide and seeding applications are common restoration practices to break the positive fire-invasion feedback loop and recover native perennial species, but their interactive effects have infrequently been tested at the landscape-scale and repeated in time to encourage long-lasting effects. We determined the efficacy of repeated post-fire application of the herbicide imazapic and seeding treatments to suppressBromus abundance and promote perennial vegetation recovery. We found that the selective herbicide reduced Bromus cover by ~30 % and density by >50 % across our study sites, but had a strong initial negative effect on seeded species. The most effective treatment to promote perennial seeded species cover was seeding them alone followed by herbicide application 3 years later when the seeded species had established. The efficacy of the treatments was strongly influenced by water availability, as precipitation positively affected the density and cover of Bromus; soil texture and aspect secondarily influenced Bromus abundance and seeded species cover by modifying water retention in this semi-arid region. Warmer temperatures positively affected the non-native annual grass in the cool-season, but negatively affected seeded perennial species in the warm-season, suggesting an important role of seasonality in a region projected to experience large increases in warming in the future. Our results highlight the importance of environmental interactions and repeated treatments in influencing restoration outcomes at the landscape-scale.
Stabilized diode seed laser for flight and space-based remote lidar sensing applications
NASA Astrophysics Data System (ADS)
McNeil, Shirley; Pandit, Pushkar; Battle, Philip; Rudd, Joe; Hovis, Floyd
2017-08-01
AdvR, through support of the NASA SBIR program, has developed fiber-based components and sub-systems that are routinely used on NASA's airborne missions, and is now developing an environmentally hardened, diode-based, locked wavelength, seed laser for future space-based high spectral resolution lidar applications. The seed laser source utilizes a fiber-coupled diode laser, a fiber-coupled, calibrated iodine reference module to provide an absolute wavelength reference, and an integrated, dual-element, nonlinear optical waveguide component for second harmonic generation, spectral formatting and wavelength locking. The diode laser operates over a range close to 1064.5 nm, provides for stabilization of the seed to the desired iodine transition and allows for a highly-efficient, fully-integrated seed source that is well-suited for use in airborne and space-based environments. A summary of component level environmental testing and spectral purity measurements with a seeded Nd:YAG laser will be presented. A direct-diode, wavelength-locked seed laser will reduce the overall size weight and power (SWaP) requirements of the laser transmitter, thus directly addressing the need for developing compact, efficient, lidar component technologies for use in airborne and space-based environments.
Wei, Zheng; Luo, Jianming; Huang, Yu; Guo, Wenfeng; Zhang, Yali; Guan, Huan; Xu, Changmou; Lu, Jiang
2017-01-01
Polyphenol compositions and concentrations in skins and seeds of five muscadine grapes (cv. “Noble”, “Alachua”, “Carlos”, “Fry”, and “Granny Val”) cultivated in the United States (Tallahassee-Florida, TA-FL) and South China (Nanning-Guangxi, NN-GX and Pu’er-Yunnan, PE-YN) were investigated, using ultra performance liquid chromatography tandem triple quadrupole time-of-flight mass spectrometry (UPLC Triple TOF MS/MS). Fourteen ellagitannins were newly identified in these muscadine grapes. The grapes grown in NN-GX accumulated higher levels of ellagic acid, methyl brevifolin carboxylate, and ellagic acid glucoside in skins, and penta-O-galloyl-glucose in seeds. In PE-YN, more flavonols were detected in skins, and higher contents of flavan-3-ols, ellagic acid, and methyl gallate were identified in seeds. Abundant seed gallic acid and flavonols were found among the grapes grown in TA-FL. Based on principal component analysis (PCA) of 54 evaluation parameters, various cultivars grown in different locations could be grouped together and vice versa for the same cultivar cultivated in different regions. This is the result of the interaction between genotype and environmental conditions, which apparently influences the polyphenol synthesis and accumulation. PMID:28335440
NIR spectroscopic measurement of moisture content in Scots pine seeds.
Lestander, Torbjörn A; Geladi, Paul
2003-04-01
When tree seeds are used for seedling production it is important that they are of high quality in order to be viable. One of the factors influencing viability is moisture content and an ideal quality control system should be able to measure this factor quickly for each seed. Seed moisture content within the range 3-34% was determined by near-infrared (NIR) spectroscopy on Scots pine (Pinus sylvestris L.) single seeds and on bulk seed samples consisting of 40-50 seeds. The models for predicting water content from the spectra were made by partial least squares (PLS) and ordinary least squares (OLS) regression. Different conditions were simulated involving both using less wavelengths and going from samples to single seeds. Reflectance and transmission measurements were used. Different spectral pretreatment methods were tested on the spectra. Including bias, the lowest prediction errors for PLS models based on reflectance within 780-2280 nm from bulk samples and single seeds were 0.8% and 1.9%, respectively. Reduction of the single seed reflectance spectrum to 850-1048 nm gave higher biases and prediction errors in the test set. In transmission (850-1048 nm) the prediction error was 2.7% for single seeds. OLS models based on simulated 4-sensor single seed system consisting of optical filters with Gaussian transmission indicated more than 3.4% error in prediction. A practical F-test based on test sets to differentiate models is introduced.
NASA Astrophysics Data System (ADS)
Brunner, D.; Burke, W.; Kuang, A. Q.; LaBombard, B.; Lipschultz, B.; Wolfe, S.
2016-02-01
Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux.
Brunner, D; Burke, W; Kuang, A Q; LaBombard, B; Lipschultz, B; Wolfe, S
2016-02-01
Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux.
Gupta, Arpana; Mayer, Emeran A; Labus, Jennifer S; Bhatt, Ravi R; Ju, Tiffany; Love, Aubrey; Bal, Amanat; Tillisch, Kirsten; Naliboff, Bruce; Sanmiguel, Claudia P; Kilpatrick, Lisa A
2018-02-01
This study aimed to characterize obesity-related sex differences in the intrinsic activity and connectivity of the brain's reward networks. Eighty-six women (n = 43) and men (n = 43) completed a 10-minute resting functional magnetic resonance imaging scan. Sex differences and commonalities in BMI-related frequency power distribution and reward seed-based connectivity were investigated by using partial least squares analysis. For whole-brain activity in both men and women, increased BMI was associated with increased slow-5 activity in the left globus pallidus (GP) and substantia nigra. In women only, increased BMI was associated with increased slow-4 activity in the right GP and bilateral putamen. For seed-based connectivity in women, increased BMI was associated with reduced slow-5 connectivity between the left GP and putamen and the emotion and cortical regulation regions, but in men, increased BMI was associated with increased connectivity with the medial frontal cortex. In both men and women, increased BMI was associated with increased slow-4 connectivity between the right GP and bilateral putamen and the emotion regulation and sensorimotor-related regions. The stronger relationship between increased BMI and decreased connectivity of core reward network components with cortical and emotion regulation regions in women may be related to the greater prevalence of emotional eating. The present findings suggest the importance of personalized treatments for obesity that consider the sex of the affected individual. © 2017 The Obesity Society.
Image-Based Rapid Phenotyping Method of Chickpeas Seed Size Characterization
USDA-ARS?s Scientific Manuscript database
The value of a chickpea crop is influenced by both total seed yield and also by the size of the harvested seed. Larger seeds are used for canning, salads, and fresh markets and have a higher value than smaller seeds, which are typically processed into hummus. The standard method for determining seed...
Space Exposed Experiment Developed for Students (SEEDS) (P0004-2)
NASA Technical Reports Server (NTRS)
Grigsby, Doris K.; Ehrlich, Nelson J.
1992-01-01
SEEDS, a cooperative endeavor of NASA Headquarters, the NASA Langley Research Center, and the George W. Park Seed Company, resulted in the distribution of approximately 132,000 SEEDS kits to 3.3 million students. Kits contained Rutger's tomato seeds that had flown on the Long Duration Exposure Facility (LDEF), as well as seeds that had been stored in a climate controlled warehouse for the same time period. Preliminary data indicates the germination rate for space exposed seeds was 73.8 percent while Earth based seeds germinated at a rate of 70.3 percent. Tests conducted within the first six months after retrieval indicated space exposed seeds germinated in an average of 8.0 days, while Earth based seeds' average germination time was 8.3 days. Some mutations (assumed to be radiation induced) include plants that added a leaf instead of the usual flower at the end of the flower frond. Also, fruit produced from a flower with a variegated calyx bore seeds producing albino plants, while fruit from a flower with a green calyx from the same plant bore seeds producing green plants.
Alterations in Anatomical Covariance in the Prematurely Born
Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Vohr, Betty R.; Schneider, Karen C.; Papademetris, Xenophon; Constable, R. Todd; Ment, Laura R.
2017-01-01
Abstract Preterm (PT) birth results in long-term alterations in functional and structural connectivity, but the related changes in anatomical covariance are just beginning to be explored. To test the hypothesis that PT birth alters patterns of anatomical covariance, we investigated brain volumes of 25 PTs and 22 terms at young adulthood using magnetic resonance imaging. Using regional volumetrics, seed-based analyses, and whole brain graphs, we show that PT birth is associated with reduced volume in bilateral temporal and inferior frontal lobes, left caudate, left fusiform, and posterior cingulate for prematurely born subjects at young adulthood. Seed-based analyses demonstrate altered patterns of anatomical covariance for PTs compared with terms. PTs exhibit reduced covariance with R Brodmann area (BA) 47, Broca's area, and L BA 21, Wernicke's area, and white matter volume in the left prefrontal lobe, but increased covariance with R BA 47 and left cerebellum. Graph theory analyses demonstrate that measures of network complexity are significantly less robust in PTs compared with term controls. Volumes in regions showing group differences are significantly correlated with phonological awareness, the fundamental basis for reading acquisition, for the PTs. These data suggest both long-lasting and clinically significant alterations in the covariance in the PTs at young adulthood. PMID:26494796
NASA Astrophysics Data System (ADS)
Li, Qing; Lin, Haibo; Xiu, Yu-Feng; Wang, Ruixue; Yi, Chuijie
The test platform of wheat precision seeding based on image processing techniques is designed to develop the wheat precision seed metering device with high efficiency and precision. Using image processing techniques, this platform gathers images of seeds (wheat) on the conveyer belt which are falling from seed metering device. Then these data are processed and analyzed to calculate the qualified rate, reseeding rate and leakage sowing rate, etc. This paper introduces the whole structure, design parameters of the platform and hardware & software of the image acquisition system were introduced, as well as the method of seed identification and seed-space measurement using image's threshold and counting the seed's center. By analyzing the experimental result, the measurement error is less than ± 1mm.
Oertel-Knöchel, Viola; Reinke, Britta; Matura, Silke; Prvulovic, David; Linden, David E J; van de Ven, Vincent
2015-02-28
In this study, we sought to examine the intrinsic functional organization of the episodic memory network during rest in bipolar disorder (BD). The previous work suggests that deficits in intrinsic functional connectivity may account for impaired memory performance. We hypothesized that regions involved in episodic memory processing would reveal aberrant functional connectivity in patients with bipolar disorder. We examined 21 patients with BD and 21 healthy matched controls who underwent functional magnetic resonance imaging (fMRI) during a resting condition. We did a seed-based functional connectivity analysis (SBA), using the regions of the episodic memory network that showed a significantly different activation pattern during task-related fMRI as seeds. The functional connectivity scores (FC) were further correlated with episodic memory task performance. Our results revealed decreased FC scores within frontal areas and between frontal and temporal/hippocampal/limbic regions in BD patients in comparison with controls. We observed higher FC in BD patients compared with controls between frontal and limbic regions. The decrease in fronto-frontal functional connectivity in BD patients showed a significant positive association with episodic memory performance. The association between task-independent dysfunctional frontal-limbic FC and episodic memory performance may be relevant for current pathophysiological models of the disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
van Duijvenvoorde, A C K; Achterberg, M; Braams, B R; Peters, S; Crone, E A
2016-01-01
The current study aimed to test a dual-systems model of adolescent brain development by studying changes in intrinsic functional connectivity within and across networks typically associated with cognitive-control and affective-motivational processes. To this end, resting-state and task-related fMRI data were collected of 269 participants (ages 8-25). Resting-state analyses focused on seeds derived from task-related neural activation in the same participants: the dorsal lateral prefrontal cortex (dlPFC) from a cognitive rule-learning paradigm and the nucleus accumbens (NAcc) from a reward-paradigm. Whole-brain seed-based resting-state analyses showed an age-related increase in dlPFC connectivity with the caudate and thalamus, and an age-related decrease in connectivity with the (pre)motor cortex. nAcc connectivity showed a strengthening of connectivity with the dorsal anterior cingulate cortex (ACC) and subcortical structures such as the hippocampus, and a specific age-related decrease in connectivity with the ventral medial PFC (vmPFC). Behavioral measures from both functional paradigms correlated with resting-state connectivity strength with their respective seed. That is, age-related change in learning performance was mediated by connectivity between the dlPFC and thalamus, and age-related change in winning pleasure was mediated by connectivity between the nAcc and vmPFC. These patterns indicate (i) strengthening of connectivity between regions that support control and learning, (ii) more independent functioning of regions that support motor and control networks, and (iii) more independent functioning of regions that support motivation and valuation networks with age. These results are interpreted vis-à-vis a dual-systems model of adolescent brain development. Copyright © 2015. Published by Elsevier Inc.
USDA-ARS?s Scientific Manuscript database
Dietary Supplements based on extract from Irvingia gabonensis (African Mango, or AM) seeds are one of the popular herbal weight loss dietary supplements in the US market. The extract from the AM seeds is believed to be a natural and healthy way to lose weight and improve overall health. However, the...
Mo, Changyeun; Kim, Giyoung; Lee, Kangjin; Kim, Moon S.; Cho, Byoung-Kwan; Lim, Jongguk; Kang, Sukwon
2014-01-01
In this study, we developed a viability evaluation method for pepper (Capsicum annuum L.) seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares–discriminant analysis (PLS-DA) model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB), which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400–700 nm) yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600–700 nm) yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting. PMID:24763251
A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra
Gasso-Tortajada, Vicent; Ward, Alastair J.; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G.; Green, Ole
2010-01-01
A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455
Mo, Changyeun; Kim, Giyoung; Lee, Kangjin; Kim, Moon S; Cho, Byoung-Kwan; Lim, Jongguk; Kang, Sukwon
2014-04-24
In this study, we developed a viability evaluation method for pepper (Capsicum annuum L.) seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400-700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares-discriminant analysis (PLS-DA) model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB), which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400-700 nm) yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600-700 nm) yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting.
A Sustainable Substitute for Ivory: the Jarina Seed from the Amazon
NASA Astrophysics Data System (ADS)
Chu, Yinghao; Meyers A, Marc A.; Wang, Bin; Yang, Wen; Jung, Jae-Young; Coimbra, Carlos F. M.
2015-09-01
The dried endosperm of the seed of Phytelephas sp is widely used for artisanal work in the Amazon region due to its favorable mechanical properties and pleasant appearance that resemble elephant ivory. While the seeds have enjoyed popularity and limited use by selected industries (e.g., military uniform buttons and piano keys) and handicraft applications, little is known about the mechanical properties and structure of this sustainable material. This work is the first to characterize the dried Jarina endosperm and to investigate its functionality as a viable substitute for elephant ivory. Structural analysis of typical seeds reveals the prevalence of tubules that align in rings and radiate from the (usually hollow) core of the seed. This seed, in the absence of a reinforcement structure or mineral phase, possesses mechanical properties slightly inferior to elephant ivory and selected plastics, while retaining the visual appeal of a naturally occurring material. A synthetic structure inspired on the seed is created and suggestions for further development are discussed.
A Sustainable Substitute for Ivory: the Jarina Seed from the Amazon
Chu, Yinghao; Meyers A, Marc A.; Wang, Bin; Yang, Wen; Jung, Jae-Young; Coimbra, Carlos F. M.
2015-01-01
The dried endosperm of the seed of Phytelephas sp is widely used for artisanal work in the Amazon region due to its favorable mechanical properties and pleasant appearance that resemble elephant ivory. While the seeds have enjoyed popularity and limited use by selected industries (e.g., military uniform buttons and piano keys) and handicraft applications, little is known about the mechanical properties and structure of this sustainable material. This work is the first to characterize the dried Jarina endosperm and to investigate its functionality as a viable substitute for elephant ivory. Structural analysis of typical seeds reveals the prevalence of tubules that align in rings and radiate from the (usually hollow) core of the seed. This seed, in the absence of a reinforcement structure or mineral phase, possesses mechanical properties slightly inferior to elephant ivory and selected plastics, while retaining the visual appeal of a naturally occurring material. A synthetic structure inspired on the seed is created and suggestions for further development are discussed. PMID:26399626
Reusability of contaminated seed crystal for cast quasi-single crystalline silicon ingots
NASA Astrophysics Data System (ADS)
Li, Zaoyang; Liu, Lijun; Zhou, Genshu
2015-04-01
Reusing seed crystal is beneficial for reducing the production costs for cast quasi-single crystalline (QSC) silicon ingots. We numerically investigate the reusability of seed crystal in the casting processes with quartz crucible and silicon feedstock of different purities. The reused seed crystal is recycled from the standard QSC ingot and has been highly contaminated by iron impurity. Transient simulations of iron transport are carried out and special attention is paid to the diffusion and distribution characteristics of iron impurity at the ingot bottom. The heights of the bottom iron contaminated region are compared for silicon ingots grown from normal and recycled seed crystals. The results show that the purity of quartz crucible can influence the reusability of seed crystal more significantly than that of the feedstock. The recycled seed crystal with high iron concentration can be reused for casting processes with standard crucible, whereas it is not recommended for reusing for processes with pure crucible.
Natural variation of fecundity components in a widespread plant with dimorphic seeds
NASA Astrophysics Data System (ADS)
Braza, Rita; Arroyo, J.; García, M. B.
2010-09-01
The number and size of seeds are the basis of the quantity and quality components of female reproductive fitness in plants, playing a central role in the evolutionary ecology of life history diversification. In this study we show and analyze the natural variability of several fecundity variables (fruit set, seed production per fruit, seed size, total seed production per plant, and proportion of small seeds) in Plantago coronopus, a widespread, short-lived herb with dimorphic seeds. The structure of such variability was examined at the individual, population (eight locations with different environments within the same region), and life history levels (annual vs perennial), and correlated to soil fertility. There was no divergence associated to the life history for any of the variables studied. Total seed production (the quantity component of female fitness) was correlated with maternal resources, while the size of the large mucilaginous, basal seeds, and the proportion of the small apical seeds (quality component) were more associated to environmental resources. Thus, internal and external resources shape different fitness components, maximizing seed production, and fitting the size and proportion of different kind of seeds to local conditions irrespective of life history. P. coronopus illustrates the versatility of short-lived widespread plants to combine fecundity traits in a flexible manner, in order to increase fitness at each of the many possible habitats they occupy over heterogeneous environments.
Darwin's wind hypothesis: does it work for plant dispersal in fragmented habitats?
Riba, Miquel; Mayol, Maria; Giles, Barbara E; Ronce, Ophélie; Imbert, Eric; van der Velde, Marco; Chauvet, Stéphanie; Ericson, Lars; Bijlsma, R; Vosman, Ben; Smulders, M J M; Olivieri, Isabelle
2009-08-01
Using the wind-dispersed plant Mycelis muralis, we examined how landscape fragmentation affects variation in seed traits contributing to dispersal. Inverse terminal velocity (Vt(-1)) of field-collected achenes was used as a proxy for individual seed dispersal ability. We related this measure to different metrics of landscape connectivity, at two spatial scales: in a detailed analysis of eight landscapes in Spain and along a latitudinal gradient using 29 landscapes across three European regions. In the highly patchy Spanish landscapes, seed Vt(-1)increased significantly with increasing connectivity. A common garden experiment suggested that differences in Vt(-1) may be in part genetically based. The Vt(-1) was also found to increase with landscape occupancy, a coarser measure of connectivity, on a much broader (European) scale. Finally, Vt(-1)was found to increase along a south-north latitudinal gradient. Our results for M. muralis are consistent with 'Darwin's wind dispersal hypothesis' that high cost of dispersal may select for lower dispersal ability in fragmented landscapes, as well as with the 'leading edge hypothesis' that most recently colonized populations harbour more dispersive phenotypes.
A multidisciplinary study of archaeological grape seeds
NASA Astrophysics Data System (ADS)
Cappellini, Enrico; Gilbert, M. Thomas P.; Geuna, Filippo; Fiorentino, Girolamo; Hall, Allan; Thomas-Oates, Jane; Ashton, Peter D.; Ashford, David A.; Arthur, Paul; Campos, Paula F.; Kool, Johan; Willerslev, Eske; Collins, Matthew J.
2010-02-01
We report here the first integrated investigation of both ancient DNA and proteins in archaeobotanical samples: medieval grape ( Vitis vinifera L.) seeds, preserved by anoxic waterlogging, from an early medieval (seventh-eighth century A.D.) Byzantine rural settlement in the Salento area (Lecce, Italy) and a late (fourteenth-fifteenth century A.D.) medieval site in York (England). Pyrolysis gas chromatography mass spectrometry documented good carbohydrate preservation, whilst amino acid analysis revealed approximately 90% loss of the original protein content. In the York sample, mass spectrometry-based sequencing identified several degraded ancient peptides. Nuclear microsatellite locus (VVS2, VVMD5, VVMD7, ZAG62 and ZAG79) analysis permitted a tentative comparison of the genetic profiles of both the ancient samples with the modern varieties. The ability to recover microsatellite DNA has potential to improve biomolecular analysis on ancient grape seeds from archaeological contexts. Although the investigation of five microsatellite loci cannot assign the ancient samples to any geographic region or modern cultivar, the results allow speculation that the material from York was not grown locally, whilst the remains from Supersano could represent a trace of contacts with the eastern Mediterranean.
QTL Mapping of Genome Regions Controlling Manganese Uptake in Lentil Seed.
Ates, Duygu; Aldemir, Secil; Yagmur, Bulent; Kahraman, Abdullah; Ozkan, Hakan; Vandenberg, Albert; Tanyolac, Muhammed Bahattin
2018-05-04
This study evaluated Mn concentration in the seeds of 120 RILs of lentil developed from the cross "CDC Redberry" × "ILL7502". Micronutrient analysis using atomic absorption spectrometry indicated mean seed manganese (Mn) concentrations ranging from 8.5 to 26.8 mg/kg, based on replicated field trials grown at three locations in Turkey in 2012 and 2013. A linkage map of lentil was constructed and consisted of seven linkage groups with 5,385 DNA markers. The total map length was 973.1 cM, with an average distance between markers of 0.18 cM. A total of 6 QTL for Mn concentration were identified using composite interval mapping (CIM). All QTL were statistically significant and explained 15.3-24.1% of the phenotypic variation, with LOD scores ranging from 3.00 to 4.42. The high-density genetic map reported in this study will increase fundamental knowledge of the genome structure of lentil, and will be the basis for the development of micronutrient-enriched lentil genotypes to support biofortification efforts. Copyright © 2018 Ates et al.
An OPO-Based Lidar System for Differential Absorption Measurements of Methane in the 3 micron region
NASA Technical Reports Server (NTRS)
Lee, S. W.; Zenker, T.; Chyba, T. H.
1998-01-01
A ground-based lidar system in the wavelength region of 1.45-4 microns for the remote measurement of methane is described. The laser transmitter consists of an injection-seeded Nd:YAG laser which pumps an OPO (optical parametric oscillator). The OPO output is tunable from 1.45-4 microns, with a bandwidth less than 500 MHz, and a pulse energy of 1 to 3 mJ at 3.29 microns. The receiver is cart-mounted and consists of a 14" telescope with 1.57 and 3.29 micron detector channels. A fast oscilloscope is used for data acquisition. The system performance will be tested through measurements of sources of atmospheric methane.
Wang, Xiaoqin; Zeng, Qiumei; Del Mar Contreras, María; Wang, Lijuan
2017-12-01
In Asia, tea seed oils (seed oils from Camellia oleifera, C. chekiangoleosa, and C. sinensis) are used in edible, medicinal, and cosmetic applications. However, these oils differ in their fatty acid contents, and there is little known about their phenolic compounds. Here we analyzed the phenolic compounds of seed oils from three species gathered from 15 regions of China. Twenty-four phenolic compounds were characterized by HPLC-Q-TOF-MS, including benzoic acids (6), cinnamic acids (6), a hydroxyphenylacetic acid, flavanols (4), flavonols (3), flavones (2), and dihydroflavonoids (2). Some of these phenolic compounds had not previously been reported from C. sinensis (20), C. oleifera (15), and C. chekiangoleosa (24) seed oils. Quantification was done by HPLC-QqQ-MS using 24 chemical standards. The total concentrations in the studied samples ranged from 20.56 to 88.56μg/g. Phenolic acids were the most abundant class, accounting for 76.2-90.4%, with benzoic acid, found at up to 18.87μg/g. The concentration of catechins, typical of tea polyphenols, ranged between 2.1% and 9.7%, while the other flavonoids varied from 4.2% to 17.8%. Although the cultivation region affected the phenolic composition of the Camellia seed oils, in our hierarchical clustering analysis, the samples clustered according to species. The phenolic composition of the seed oils from C. oleifera and C. chekiangoelosa were similar. We found that the phenolic categories in Camellia seed oils were similar to tea polyphenols, thereby identifying a source of liposoluble tea polyphenols and potentially accounting for some of the reported activities of these oils. In addition, this work provides basic data that allows distinction of various Camellia seed oils, as well as improvements to be made in their quality standards. Copyright © 2017 Elsevier Ltd. All rights reserved.
Network-Guided GWAS Improves Identification of Genes Affecting Free Amino Acids.
Angelovici, Ruthie; Batushansky, Albert; Deason, Nicholas; Gonzalez-Jorge, Sabrina; Gore, Michael A; Fait, Aaron; DellaPenna, Dean
2017-01-01
Amino acids are essential for proper growth and development in plants. Amino acids serve as building blocks for proteins but also are important for responses to stress and the biosynthesis of numerous essential compounds. In seed, the pool of free amino acids (FAAs) also contributes to alternative energy, desiccation, and seed vigor; thus, manipulating FAA levels can significantly impact a seed's nutritional qualities. While genome-wide association studies (GWAS) on branched-chain amino acids have identified some regulatory genes controlling seed FAAs, the genetic regulation of FAA levels, composition, and homeostasis in seeds remains mostly unresolved. Hence, we performed GWAS on 18 FAAs from a 313-ecotype Arabidopsis (Arabidopsis thaliana) association panel. Specifically, GWAS was performed on 98 traits derived from known amino acid metabolic pathways (approach 1) and then on 92 traits generated from an unbiased correlation-based metabolic network analysis (approach 2), and the results were compared. The latter approach facilitated the discovery of additional novel metabolic interactions and single-nucleotide polymorphism-trait associations not identified by the former approach. The most prominent network-guided GWAS signal was for a histidine (His)-related trait in a region containing two genes: a cationic amino acid transporter (CAT4) and a polynucleotide phosphorylase resistant to inhibition with fosmidomycin. A reverse genetics approach confirmed CAT4 to be responsible for the natural variation of His-related traits across the association panel. Given that His is a semiessential amino acid and a potent metal chelator, CAT4 orthologs could be considered as candidate genes for seed quality biofortification in crop plants. © 2017 American Society of Plant Biologists. All Rights Reserved.
University of Maryland MRSEC - Research: Seed 2
Administration Committees Directory Research IRG 1 IRG 2 Seed 1 Seed 2 Seed 3 Highlights Publications Facilities MRSEC Templates Opportunities Search Home » Research » Seed 2 Seed 2: Synthesis and Exploration of Topological Insulators Figure 1 High quality single crystals of bismuth-based topological insulator grown at
Code of Federal Regulations, 2011 CFR
2011-01-01
... GUIDES FOR THE JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.20 Misuse of terms such as “cultured pearl,” “seed pearl,” “Oriental pearl,” “natura,” “kultured,” “real,” “gem,” “synthetic,” and regional... unfair or deceptive to use the term “seed pearl” or any word, term, or phrase of like meaning to describe...
Code of Federal Regulations, 2010 CFR
2010-01-01
... GUIDES FOR THE JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.20 Misuse of terms such as “cultured pearl,” “seed pearl,” “Oriental pearl,” “natura,” “kultured,” “real,” “gem,” “synthetic,” and regional... unfair or deceptive to use the term “seed pearl” or any word, term, or phrase of like meaning to describe...
Zhang, Huibin; Artiles, Karen L.; Fire, Andrew Z.
2015-01-01
The founding heterochronic microRNAs, lin-4 and let-7, together with their validated targets and well-characterized phenotypes in C. elegans, offer an opportunity to test functionality of microRNAs in a developmental context. In this study, we defined sequence requirements at the microRNA level for these two microRNAs, evaluating lin-4 and let-7 mutant microRNAs for their ability to support temporal development under conditions where the wild-type lin-4 and let-7 gene products are absent. For lin-4, we found a strong requirement for seed sequences, with function drastically affected by several central mutations in the seed sequence, while rescue was retained by a set of mutations peripheral to the seed. let-7 rescuing activity was retained to a surprising degree by a variety of central seed mutations, while several non-seed mutant effects support potential noncanonical contributions to let-7 function. Taken together, this work illustrates both the functional partnership between seed and non-seed sequences in mediating C. elegans temporal development and a diversity among microRNA effectors in the contributions of seed and non-seed regions to activity. PMID:26385508
Ye, Nenghui; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Shi, Lu; Jia, Liguo; Zhang, Jianhua
2012-01-01
The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to an inhibition of ASC production. GA accumulation was also suppressed by a reduced ROS and ASC level, which was indicated by the inhibited expression of GA biosynthesis genes, amylase genes, and enzyme activity. Application of exogenous ASC can partially rescue seed germination from ABA treatment. Production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. It can be concluded that ABA regulates seed germination in multiple dimensions. ROS and ASC are involved in its inhibition of GA biosynthesis. PMID:22200664
Lv, Han; Zhao, Pengfei; Liu, Zhaohui; Li, Rui; Zhang, Ling; Wang, Peng; Yan, Fei; Liu, Liheng; Wang, Guopeng; Zeng, Rong; Li, Ting; Dong, Cheng; Gong, Shusheng; Wang, Zhenchang
2017-03-01
Abnormal neural activities can be revealed by resting-state functional magnetic resonance imaging (rs-fMRI) using analyses of the regional activity and functional connectivity (FC) of the networks in the brain. This study was designed to demonstrate the functional network alterations in the patients with pulsatile tinnitus (PT). In this study, we recruited 45 patients with unilateral PT in the early stage of disease (less than 48 months of disease duration) and 45 normal controls. We used regional homogeneity (ReHo) and seed-based FC computational methods to reveal resting-state brain activity features associated with pulsatile tinnitus. Compared with healthy controls, PT patients showed regional abnormalities mainly in the left middle occipital gyrus (MOG), posterior cingulate gyrus (PCC), precuneus and right anterior insula (AI). When these regions were defined as seeds, we demonstrated widespread modification of interaction between the auditory and non-auditory networks. The auditory network was positively connected with the cognitive control network (CCN), which may associate with tinnitus related distress. Both altered regional activity and changed FC were found in the visual network. The modification of interactions of higher order networks were mainly found in the DMN, CCN and limbic networks. Functional connectivity between the left MOG and left parahippocampal gyrus could also be an index to reflect the disease duration. This study helped us gain a better understanding of the characteristics of neural network modifications in patients with pulsatile tinnitus. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yaguchi, Atsushi; Okazaki, Tomoya; Takeguchi, Tomoyuki; Matsumoto, Sumiaki; Ohno, Yoshiharu; Aoyagi, Kota; Yamagata, Hitoshi
2015-03-01
Reflecting global interest in lung cancer screening, considerable attention has been paid to automatic segmentation and volumetric measurement of lung nodules on CT. Ground glass opacity (GGO) nodules deserve special consideration in this context, since it has been reported that they are more likely to be malignant than solid nodules. However, due to relatively low contrast and indistinct boundaries of GGO nodules, segmentation is more difficult for GGO nodules compared with solid nodules. To overcome this difficulty, we propose a method for accurately segmenting not only solid nodules but also GGO nodules without prior information about nodule types. First, the histogram of CT values in pre-extracted lung regions is modeled by a Gaussian mixture model and a threshold value for including high-attenuation regions is computed. Second, after setting up a region of interest around the nodule seed point, foreground regions are extracted by using the threshold and quick-shift-based mode seeking. Finally, for separating vessels from the nodule, a vessel-likelihood map derived from elongatedness of foreground regions is computed, and a region growing scheme starting from the seed point is applied to the map with the aid of fast marching method. Experimental results using an anthropomorphic chest phantom showed that our method yielded generally lower volumetric measurement errors for both solid and GGO nodules compared with other methods reported in preceding studies conducted using similar technical settings. Also, our method allowed reasonable segmentation of GGO nodules in low-dose images and could be applied to clinical CT images including part-solid nodules.
Hierarchical multivariate covariance analysis of metabolic connectivity.
Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J
2014-12-01
Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, N.; Yu, P
2010-01-01
Barley varieties have similar chemical composition but exhibit different rumen degradation kinetics and nutrient availability. These biological differences may be related to molecular, structural, and chemical makeup among the seed endosperm tissue. No detailed study was carried out. The objectives of this study were: (1) to use a molecular spectroscopy technique, synchrotron-based Fourier transform infrared microspectroscopy (SFTIRM), to determine the microchemical-structural features in seed endosperm tissue of six developed barley varieties; (2) to study the relationship among molecular-structural characteristics, degradation kinetics, and nutrient availability in six genotypes of barley. The results showed that inherent microchemical-structural differences in the endosperm amongmore » the six barley varieties were detected by the synchrotron-based analytical technique, SFTIRM, with the univariate molecular spectral analysis. The SFTIRM spectral profiles differed (P < 0.05) among the barley samples in terms of the peak ratio and peak area and height intensities of amides I (ca. 1650 cm{sup -1}) and II (ca. 1550 cm{sup -1}), cellulosic compounds (ca. 1240 cm{sup -1}), CHO component peaks (the first peak at the region ca. 1184-1132 cm{sup -1}, the second peak at ca. 1132-1066 cm{sup -1}, and the third peak at ca. 1066-950 cm{sup -1}). With the SFTIRM technique, the structural characteristics of the cereal seeds were illuminated among different cultivars at an ultraspatial resolution. The structural differences of barley seeds may be one reason for the various digestive behaviors and nutritive values in ruminants. The results show weak correlations between the functional groups spectral data (peak area, height intensities, and ratios) and rumen biodegradation kinetics (rate and extent of nutrient degradation). Weak correlations may indicate that limited variations of these six barley varieties might not be sufficient to interpret the relationship between spectroscopic information and the nutrient value of barley grain, although significant differences in biodegradation kinetics were observed. In conclusion, the studies demonstrated the potential of ultraspatially resolved synchrotron based technology (SFTIRM) to reveal the structural and chemical makeup within cellular and subcellular dimensions without destruction of the inherent structure of cereal grain tissue.« less
Verly, Marjolein; Verhoeven, Judith; Zink, Inge; Mantini, Dante; Peeters, Ronald; Deprez, Sabine; Emsell, Louise; Boets, Bart; Noens, Ilse; Steyaert, Jean; Lagae, Lieven; De Cock, Paul; Rommel, Nathalie; Sunaert, Stefan
2014-01-01
The development of language, social interaction and communicative skills is remarkably different in the child with autism spectrum disorder (ASD). Atypical brain connectivity has frequently been reported in this patient population. However, the neural correlates underlying their disrupted language development and functioning are still poorly understood. Using resting state fMRI, we investigated the functional connectivity properties of the language network in a group of ASD patients with clear comorbid language impairment (ASD-LI; N = 19) and compared them to the language related connectivity properties of 23 age-matched typically developing children. A verb generation task was used to determine language components commonly active in both groups. Eight joint language components were identified and subsequently used as seeds in a resting state analysis. Interestingly, both the interregional and the seed-based whole brain connectivity analysis showed preserved connectivity between the classical intrahemispheric language centers, Wernicke's and Broca's areas. In contrast however, a marked loss of functional connectivity was found between the right cerebellar region and the supratentorial regulatory language areas. Also, the connectivity between the interhemispheric Broca regions and modulatory control dorsolateral prefrontal region was found to be decreased. This disruption of normal modulatory control and automation function by the cerebellum may underlie the abnormal language function in children with ASD-LI. PMID:24567909
Fingerprinting Soybean Germplasm and Its Utility in Genomic Research
Song, Qijian; Hyten, David L.; Jia, Gaofeng; Quigley, Charles V.; Fickus, Edward W.; Nelson, Randall L.; Cregan, Perry B.
2015-01-01
The United States Department of Agriculture, Soybean Germplasm Collection includes 18,480 domesticated soybean and 1168 wild soybean accessions introduced from 84 countries or developed in the United States. This collection was genotyped with the SoySNP50K BeadChip containing greater than 50K single-nucleotide polymorphisms. Redundant accessions were identified in the collection, and distinct genetic backgrounds of soybean from different geographic origins were observed that could be a unique resource for soybean genetic improvement. We detected a dramatic reduction of genetic diversity based on linkage disequilibrium and haplotype structure analyses of the wild, landrace, and North American cultivar populations and identified candidate regions associated with domestication and selection imposed by North American breeding. We constructed the first soybean haplotype block maps in the wild, landrace, and North American cultivar populations and observed that most recombination events occurred in the regions between haplotype blocks. These haplotype maps are crucial for association mapping aimed at the identification of genes controlling traits of economic importance. A case-control association test delimited potential genomic regions along seven chromosomes that most likely contain genes controlling seed weight in domesticated soybean. The resulting dataset will facilitate germplasm utilization, identification of genes controlling important traits, and will accelerate the creation of soybean varieties with improved seed yield and quality. PMID:26224783
What do results from coordinate-based meta-analyses tell us?
Albajes-Eizagirre, Anton; Radua, Joaquim
2018-08-01
Coordinate-based meta-analyses (CBMA) methods, such as Activation Likelihood Estimation (ALE) and Seed-based d Mapping (SDM), have become an invaluable tool for summarizing the findings of voxel-based neuroimaging studies. However, the progressive sophistication of these methods may have concealed two particularities of their statistical tests. Common univariate voxelwise tests (such as the t/z-tests used in SPM and FSL) detect voxels that activate, or voxels that show differences between groups. Conversely, the tests conducted in CBMA test for "spatial convergence" of findings, i.e., they detect regions where studies report "more peaks than in most regions", regions that activate "more than most regions do", or regions that show "larger differences between groups than most regions do". The first particularity is that these tests rely on two spatial assumptions (voxels are independent and have the same probability to have a "false" peak), whose violation may make their results either conservative or liberal, though fortunately current versions of ALE, SDM and some other methods consider these assumptions. The second particularity is that the use of these tests involves an important paradox: the statistical power to detect a given effect is higher if there are no other effects in the brain, whereas lower in presence of multiple effects. Copyright © 2018 Elsevier Inc. All rights reserved.
Muhammad, N O; Oloyede, O B
2010-05-01
Effects of Aspergillus niger-fermented Terminalia catappa seed meal-based diet on the activities of alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST) and gamma-glutamate transferase (gamma-GT) in the crop, small intestine, gizzard, heart, liver and serum of broiler chicks were investigated. Milled T. catappa seed was inoculated with spores of A.niger (2.21 x 10(4) spores per ml) for 3 weeks. Forty-five day-old broiler chicks weighing between 27.62 and 36.21 g, were divided into three groups. The first group was fed soybean-based (control) diet; the second on raw T. catappa seed meal-based diet; and the third on A. niger-fermented T. catappa seed meal-based diet for 7 weeks. The results revealed a significantly increased (p<0.05) activity of ALP in the tissues. Contrarily, there were significant reductions (p<0.05) in the activities of ALP, ALT, AST and gamma-GT in the liver and heart of the broilers fed the raw T. catappa seed meal-based diet while there were significant increase (p<0.05) in the activities of these enzymes in the serum of the broilers in this group. The data obtained showed that A. niger-fermented T. catappa seed meal reduced the toxic effects of the raw seed meal on the tissues of broiler chicks. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Brunet-Benkhoucha, M; Verhaegen, F; Lassalle, S; Béliveau-Nadeau, D; Reniers, B; Donath, D; Taussky, D; Carrier, J-F
2008-07-01
To develop a tomosynthesis-based dose assessment procedure that can be performed after an I-125 prostate seed implantation, while the patient is still under anaesthesia on the treatment table. Our seed detection procedure involves the reconstruction of a volume of interest based on the backprojection of 7 seed-only binary images acquired over an angle of 60° with an isocentric imaging system. A binary seed-only volume is generated by a simple thresholding of the volume of interest. Seeds positions are extracted from this volume with a 3D connected component analysis and a statistical classifier that determines the number of seeds in each cluster of connected voxels. A graphical user interface (GUI) allows to visualize the result and to introduce corrections, if needed. A phantom and a clinical study (24 patients) were carried out to validate the technique. A phantom study demonstrated a very good localization accuracy of (0.4+/-0.4) mm when compared to CT-based reconstruction. This leads to dosimetric error on D90 and V100 of respectively 0.5% and 0.1%. In a patient study with an average of 56 seeds per implant, the automatic tomosynthesis-based reconstruction yields a detection rate of 96% of the seeds and less than 1.5% of false-positives. With the help of the GUI, the user can achieve a 100% detection rate in an average of 3 minutes. This technique would allow to identify possible underdosage and to correct it by potentially reimplanting additional seeds. A more uniform dose coverage could then be achieved in LDR prostate brachytherapy. © 2008 American Association of Physicists in Medicine.
The role of seed bank in the dynamics of understorey in an oak forest in Hungary.
Koncz, G; Papp, Mária; Török, P; Kotroczó, Zs; Krakomperger, Zs; Matus, G; Tóthmérész, B
2010-01-01
We studied the potential role of seed bank in the dynamics of the understorey in a turkey oak-sessile oak forest (Querceteum petraeae-cerris) in Hungary. We used long-term records of the herb layer (1973-2006) and the seed bank composition of 2006 to assess the role of seed bank in the regeneration of herb layer. The total cover of herb layer decreased from 22% (1973) to 6% (1988), and remained low (<10%) till 2006; coinciding with the increasing cover of secondary canopy dominated by Acer campestre. We found a low density seed bank (ca. 1300 seeds/m2). Altogether 33 species were germinated from the soil samples. A few generalist weed species composed the majority of seed bank. It was possible to assign a seed bank type for 19 species; 14 species out of 19 was long-term persistent. We found that the characteristic perennial forest herbs and grasses had only sparse seed bank. The Jaccard similarity between vegetation and seed bank was low (<30%). Our results suggest that the continuous establishment of forest herbs are not based on local persistent seed bank; it should be based on vegetative spreading and/or seed rain.
2007-04-01
We report our progress in developing Magnetically Induced Motion Imaging (MIMI) for unambiguous identification and localization brachytherapy seeds ...tail artifacts in segmented seed images. The second is a method for joining ends of seeds in segmented seed images based on the phase of the detected
PIV measurements in near-wake turbulent regions
NASA Astrophysics Data System (ADS)
Chen, Wei-Cheng; Chang, Keh-Chin
2018-05-01
Particle image velocimetry (PIV) is a non-intrusive optical diagnostic and must be made of the seedings (foreign particles) instead of the fluid itself. However, reliable PIV measurement of turbulence requires sufficient numbers of seeding falling in each interrogation window of image. A gray-level criterion is developed in this work to check the attainment of statistically stationary status of turbulent flow properties. It is suggested that the gray level of no less than 0.66 is used as the threshold for reliable PIV measurements in the present near-wake turbulent regions.
Yamasaki, Tomohito; Voshall, Adam; Kim, Eun-Jeong; Moriyama, Etsuko; Cerutti, Heriberto; Ohama, Takeshi
2013-12-01
MicroRNAs (miRNAs) are 20-24 nt non-coding RNAs that play important regulatory roles in a broad range of eukaryotes by pairing with mRNAs to direct post-transcriptional repression. The mechanistic details of miRNA-mediated post-transcriptional regulation have been well documented in multicellular model organisms. However, this process remains poorly studied in algae such as Chlamydomonas reinhardtii, and specific features of miRNA biogenesis, target mRNA recognition and subsequent silencing are not well understood. In this study, we report on the characterization of a Chlamydomonas miRNA, cre-miR1174.2, which is processed from a near-perfect hairpin RNA. Using Gaussia luciferase (gluc) reporter genes, we have demonstrated that cre-miR1174.2 is functional in Chlamydomonas and capable of triggering site-specific cleavage at the center of a perfectly complementary target sequence. A mismatch tolerance test assay, based on pools of transgenic strains, revealed that target hybridization to nucleotides of the seed region, at the 5' end of an miRNA, was sufficient to induce moderate repression of expression. In contrast, pairing to the 3' region of the miRNA was not critical for silencing. Our results suggest that the base-pairing requirements for small RNA-mediated repression in C. reinhardtii are more similar to those of metazoans compared with the extensive complementarity that is typical of land plants. Individual Chlamydomonas miRNAs may potentially modulate the expression of numerous endogenous targets as a result of these relaxed base-pairing requirements. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity
Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Liang, Zhu-Yuan; Chen, Xiao-Ping; Zheng, Dang; Tan, Cheng; Tian, Zhi-Qiang; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu
2014-01-01
Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI) to study whether the functional architecture of the brain is altered after 45 days of −6° head-down tilt (HDT) bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of −6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC), to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC) analysis. We found decreased DC in two regions, the left anterior insula (aINS) and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies), in the male volunteers after 45 days of −6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function, and central neural activity. PMID:24926242
Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica
Chown, Steven L.; Huiskes, Ad H. L.; Gremmen, Niek J. M.; Lee, Jennifer E.; Terauds, Aleks; Crosbie, Kim; Frenot, Yves; Hughes, Kevin A.; Imura, Satoshi; Kiefer, Kate; Lebouvier, Marc; Raymond, Ben; Tsujimoto, Megumu; Ware, Chris; Van de Vijver, Bart; Bergstrom, Dana Michelle
2012-01-01
Invasive alien species are among the primary causes of biodiversity change globally, with the risks thereof broadly understood for most regions of the world. They are similarly thought to be among the most significant conservation threats to Antarctica, especially as climate change proceeds in the region. However, no comprehensive, continent-wide evaluation of the risks to Antarctica posed by such species has been undertaken. Here we do so by sampling, identifying, and mapping the vascular plant propagules carried by all categories of visitors to Antarctica during the International Polar Year's first season (2007–2008) and assessing propagule establishment likelihood based on their identity and origins and on spatial variation in Antarctica's climate. For an evaluation of the situation in 2100, we use modeled climates based on the Intergovernmental Panel on Climate Change's Special Report on Emissions Scenarios Scenario A1B [Nakićenović N, Swart R, eds (2000) Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK)]. Visitors carrying seeds average 9.5 seeds per person, although as vectors, scientists carry greater propagule loads than tourists. Annual tourist numbers (∼33,054) are higher than those of scientists (∼7,085), thus tempering these differences in propagule load. Alien species establishment is currently most likely for the Western Antarctic Peninsula. Recent founder populations of several alien species in this area corroborate these findings. With climate change, risks will grow in the Antarctic Peninsula, Ross Sea, and East Antarctic coastal regions. Our evidence-based assessment demonstrates which parts of Antarctica are at growing risk from alien species that may become invasive and provides the means to mitigate this threat now and into the future as the continent's climate changes. PMID:22393003
Opportunities and challenges for harvest weed seed control in global cropping systems.
Walsh, Michael J; Broster, John C; Schwartz-Lazaro, Lauren M; Norsworthy, Jason K; Davis, Adam S; Tidemann, Breanne D; Beckie, Hugh J; Lyon, Drew J; Soni, Neeta; Neve, Paul; Bagavathiannan, Muthukumar V
2017-11-28
The opportunity to target weed seeds during grain harvest was established many decades ago following the introduction of mechanical harvesting and the recognition of high weed-seed retention levels at crop maturity; however, this opportunity remained largely neglected until more recently. The introduction and adoption of harvest weed seed control (HWSC) systems in Australia has been in response to widespread occurrence of herbicide-resistant weed populations. With diminishing herbicide resources and the need to maintain highly productive reduced tillage and stubble-retention practices, growers began to develop systems that targeted weed seeds during crop harvest. Research and development efforts over the past two decades have established the efficacy of HWSC systems in Australian cropping systems, where widespread adoption is now occurring. With similarly dramatic herbicide resistance issues now present across many of the world's cropping regions, it is timely for HWSC systems to be considered for inclusion in weed-management programs in these areas. This review describes HWSC systems and establishing the potential for this approach to weed control in several cropping regions. As observed in Australia, the inclusion of HWSC systems can reduce weed populations substantially reducing the potential for weed adaptation and resistance evolution. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Francki, Michael G; Whitaker, Peta; Smith, Penelope M; Atkins, Craig A
2002-11-01
Seed triacylglycerols (TAGs) are stored as energy reserves and extracted for various end-product uses. In lupins, seed oil content varies from 16% in Lupinus mutabilisto 8% in L. angustifolius. We have shown that TAGs rapidly accumulate during mid-stages of seed development in L. mutabilis compared to the lower seed oil species, L. angustifolius. In this study, we have targeted the key enzymes of the lipid biosynthetic pathway, acetyl-CoA carboxylase (ACCase) and diacylglycerol acyltransferase (DAGAT), to determine factors regulating TAG accumulation between two lupin species. A twofold increase in ACCase activity was observed in L. mutabilis relative to L. angustifolius and correlated with rapid TAG accumulation. No difference in DAGAT activity was detected. We have identified, cloned and partially characterised a novel gene differentially expressed during TAG accumulation between L. angustifolius and L. mutabilis. The gene has some identity to the glucose dehydrogenase family previously described in barley and bacteria and the significance of its expression levels during seed development in relation to TAG accumulation is discussed. DNA sequence analysis of the promoter in both L. angustifolius and L. mutabilis identified putative matrix attachment regions and recognition sequences for transcription binding sites similar to those found in the Adh1 gene from Arabidopsis. The identical promoter regions between species indicate that differential gene expression is controlled by alternative transcription factors, accessibility to binding sites or a combination of both.
Feitosa, Thais Ferreira; Vilela, Vinícius Longo Ribeiro; Athayde, Ana Célia Rodrigues; Braga, Fábio Ribeiro; Dantas, Elaine Silva; Vieira, Vanessa Diniz; de Melo, Lídio Ricardo Bezerra
2013-01-01
The aim of this study was to verify the in vivo effectiveness of pumpkin seed (Curcubita pepo Linnaeus, 1753) in naturally infected ostriches in the Cariri zone, semiarid region of Paraíba State, Brazil. Forty-eight ostriches were used, African Black breed, of 14 to 36 months old, naturally infected by gastrointestinal nematodes. These animals were divided into four groups of 12 ostriches. Group 1 consists of animals treated with 0.5 g/kg live weight (l. w.) of pumpkin seed meal; group 2 received 1 g/kg l. w. of pumpkin seed meal; group 3 was treated with Albendazole 5 %, at the dosage of 1 mL/10 kg l. w.; and Group 4 was the control group and do not received treatment. Groups 1 and 2 received the treatment for three consecutive days, orally, at intervals of 7 days, totaling nine administrations. The Albendazole 5 % was administered one time, at the beginning of the experiment, according to the manufacturer's recommendations. The groups treated with pumpkin seed showed a significant decrease in egg counts per gram of feces (EPG), wherein group 2 (1 g/kg l. w.) was the most effective. The control and drug groups showed no reduction in EPG. The results of the present study demonstrate that the administration of pumpkin seed was effective in controlling gastrointestinal helminths in naturally infected ostriches.
Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript.
Fedak, Halina; Palusinska, Malgorzata; Krzyczmonik, Katarzyna; Brzezniak, Lien; Yatusevich, Ruslan; Pietras, Zbigniew; Kaczanowski, Szymon; Swiezewski, Szymon
2016-11-29
Seed dormancy is one of the most crucial process transitions in a plant's life cycle. Its timing is tightly controlled by the expression level of the Delay of Germination 1 gene (DOG1). DOG1 is the major quantitative trait locus for seed dormancy in Arabidopsis and has been shown to control dormancy in many other plant species. This is reflected by the evolutionary conservation of the functional short alternatively polyadenylated form of the DOG1 mRNA. Notably, the 3' region of DOG1, including the last exon that is not included in this transcript isoform, shows a high level of conservation at the DNA level, but the encoded polypeptide is poorly conserved. Here, we demonstrate that this region of DOG1 contains a promoter for the transcription of a noncoding antisense RNA, asDOG1, that is 5' capped, polyadenylated, and relatively stable. This promoter is autonomous and asDOG1 has an expression profile that is different from known DOG1 transcripts. Using several approaches we show that asDOG1 strongly suppresses DOG1 expression during seed maturation in cis, but is unable to do so in trans Therefore, the negative regulation of seed dormancy by asDOG1 in cis results in allele-specific suppression of DOG1 expression and promotes germination. Given the evolutionary conservation of the asDOG1 promoter, we propose that this cis-constrained noncoding RNA-mediated mechanism limiting the duration of seed dormancy functions across the Brassicaceae.
Planting yellow-poplar, white ash, black cherry, and black locust
Robert D. Williams; Calvin F. Bey
1989-01-01
Hardwood plantations that include yellow-poplar, white ash, black cherry, and black locust can be established on upland sites in the central hardwoods region (see Note 3.06 Seeding and Planting Upland Oaks, and Note 3.08 Seeding and Planting Walnut). Even though hardwoods are more difficult to establish than conifers, there are...
Oil content in seeds of the NPGS jojoba (Simmondsia chinensis) germplasm collection
USDA-ARS?s Scientific Manuscript database
Jojoba, Simmondsia chinensis, (Link) Schneider is a shrub native to warm and arid land regions of North and Latin America. Its seeds contain vegetable oil composed of long (C20-22), straight-chain liquid wax of non-glyceride esters. Minute amounts of triglycerides in its composition make the oil a l...
Mechanisms for maintenance of dominance in a nonclonal desert shrub
Stanley G. Kitchen; Susan E. Meyer; Stephanie L. Carlson
2015-01-01
Blackbrush (Coleogyne ramosissima: Rosaceae) is a slow-growing, non-clonal shrub that is regionally dominant on xeric, shallow soils in the North American Mojave Desert-Great Basin transition zone and southern Colorado Plateau. Blackbrush seed production is concentrated in mast years, and most seeds are cached and later consumed by heteromyid rodents....
James H. Cane
2008-01-01
The summer-blooming annual forbs Cleome lutea and Cleome serrulata (Cleomaceae) are native across the US Intermountain West and Rocky Mountains, respectively. Their farmed seed is sought to help rehabilitate western rangelands in those regions. This study of the reproductive biologies and pollinator faunas of C. lutea...
Methods and devices for generation of broadband pulsed radiation
Borguet, Eric; Isaienko, Oleksandr
2013-05-14
Methods and apparatus for non-collinear optical parametric ampliffication (NOPA) are provided. Broadband phase matching is achieved with a non-collinear geometry and a divergent signal seed to provide bandwidth gain. A chirp may be introduced into the pump pulse such that the white light seed is amplified in a broad spectral region.
USDA-ARS?s Scientific Manuscript database
The genotype (G), environment (E), and the relationship between G and E on soybean seed anti-nutritional factors (ANFs) were examined under three different agro-climatic conditions. The field trials were conducted at Maryland, South Carolina, and South Dakota using nine region specific genotypes. At...
Neonicotinoid Seed Treatments and Foliar Sprays on Sugarbeet for Control of Severe Curly Top
USDA-ARS?s Scientific Manuscript database
Sugarbeet production in semiarid regions is hindered by yield loss caused with Beet severe curly top virus and other closely related species vectored by the beet leafhopper. In 2010, a study was established to investigate the level of control from seed treatments and supplemental foliar insecticide...
Miernyk, Ján A; Hajduch, Martin
2011-04-01
Seeds comprise a protective covering, a small embryonic plant, and a nutrient-storage organ. Seeds are protein-rich, and have been the subject of many mass spectrometry-based analyses. Seed storage proteins (SSP), which are transient depots for reduced nitrogen, have been studied for decades by cell biologists, and many of the complicated aspects of their processing, assembly, and compartmentation are now well understood. Unfortunately, the abundance and complexity of the SSP requires that they be avoided or removed prior to gel-based analysis of non-SSP. While much of the extant data from MS-based proteomic analysis of seeds is descriptive, it has nevertheless provided a preliminary metabolic picture explaining much of their biology. Contemporary studies are moving more toward analysis of protein interactions and posttranslational modifications, and functions of metabolic networks. Many aspects of the biology of seeds make then an attractive platform for heterologous protein expression. Herein we present a broad review of the results from the proteomic studies of seeds, and speculate on a potential future research directions. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Guotao; Xia, Yuan; Cheng, Xuewu; Du, Lifang; Wang, Jihong; Xun, Yuchang
2017-04-01
We present a solid-state sodium (Na) Doppler lidar developed at YanQing Station, Beijing, China (40°N, 116°E) to achieve simultaneous wind and temperature measurements of mesopause region. The 589nm pulse laser is produced by two injection seeded 1064nm and 1319nm Nd:YAG pulse lasers using the sum-frequency generation (SFG) technique. An all-fiber-coupled seeding laser unit was designed to enable absolute laser frequency locking and cycling the measurements among three different operating frequencies. Experimental observations were carried out using this Na lidar system and the preliminary results were described and compared with the temperature of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and the horizontal wind of the meteor Radar, demonstrating the reliability and good performance of this lidar system. The all-fiber-coupled injection seeding configuration together with the solid-state Nd:YAG lasers make the Na Doppler lidar more compact and greatly reduce the system maintenance, which is conducive to transportable and unattended operation.
Hu, Xiao Wen; Fan, Yan; Baskin, Carol C; Baskin, Jerry M; Wang, Yan Rong
2015-05-01
Temperature and water potential for germination based on the thermal and hydrotime models have been successfully applied in predicting germination requirements of physiologically dormant seeds as well as nondormant seeds. However, comparative studies of the germination requirements of physically dormant seeds from different ecosystems have not been done. Germination of scarified seeds of four legume species collected from the Qing-Tibetan Plateau and of four collected in the Alax Desert in China was compared over a range of temperatures and water potentials based on thermal time and hydrotime models. Seeds of species from the Qing-Tibetan Plateau had a lower base temperature (T b) and optimal temperature (T o) for germination than those from the Alax Desert. Seeds of the four species from the Qing-Tibetan Plateau germinated to high percentages at 5°C, whereas none of the four desert species did so. Seeds of species from the Alax Desert germinated to a high percentage at 35°C or 40°C, while no seeds of species from the Qing-Tibetan Plateau germinated at 35°C or 40°C. The base median water potential [Ψ b(50)] differed among species but not between the two habitats. The thermal time and hydrotime models accurately predicted the germination time course of scarified seeds of most of the eight species in response to temperature and water potential; thus, they can be useful tools in comparative studies on germination of seeds with physical dormancy. Habitat temperatures but not rainfall is closely related to germination requirements of these species. © 2015 Botanical Society of America, Inc.
Zhang, Yanzhen; Mei, Wei; Zhang, John X; Wu, Qiulin; Zhang, Wei
2016-09-01
The insula is a region that integrates interoception and drug urges, but little is known about its role in behavioral addiction such as internet addiction. We investigated insula-based functional connectivity in participants with internet gaming disorder (IGD) and healthy controls (HC) using resting-state functional MRI. The right and left insula subregions (posterior, ventroanterior, and dorsoanterior) were used as seed regions in a connectivity analysis. Compared with the HC group, the IGD group showed decreased functional connectivity between left posterior insula and bilateral supplementary motor area and middle cingulated cortex, between right posterior insula and right superior frontal gyrus, and decreased functional integration between insular subregions. The finding of reduced functional connectivity between the interoception and the motor/executive control regions is interpreted to reflect reduced ability to inhibit motor responses to internet gaming or diminished executive control over craving for internet gaming in IGD. The results support the hypothesis that IGD is associated with altered insula-based network, similar to substance addiction such as smoking.
[Status of traditional Chinese medicine materials seed and seedling breeding bases].
Li, Ying; Huang, Lu-Qi; Zhang, Xiao-Bo; Wang, Hui; Cheng, Meng; Zhang, Tian; Yang, Guang
2017-11-01
Seeds and seedlings are the material basis of traditional Chinese medicine materials production, and the construction of traditional Chinese medicine materials seed and seedling breeding bases is beneficial to the production of high-quality traditional Chinese medicine materials. The construction of traditional Chinese medicine materials seed and seedling breeding bases is one of the major topics of Chinese medica resources census pilot. Targets, tasks of traditional Chinese medicine materials seed and seedling breeding bases based on Chinese medica resources census pilot were expounded.Construction progress including hardware construction, germplasm conservation and breeding, procedures and standardsestablishment, social servicesare presented. Development counter measures were proposed for the next step: perfect the standard and system, maintain and strengthen the breeding function, strengthen the cultivation of multi-level talents, explore market development model, joint efforts to deepen services and development. Copyright© by the Chinese Pharmaceutical Association.
Functional Connectivity of Human Chewing
Quintero, A.; Ichesco, E.; Schutt, R.; Myers, C.; Peltier, S.; Gerstner, G.E.
2013-01-01
Mastication is one of the most important orofacial functions. The neurobiological mechanisms of masticatory control have been investigated in animal models, but less so in humans. This project used functional connectivity magnetic resonance imaging (fcMRI) to assess the positive temporal correlations among activated brain areas during a gum-chewing task. Twenty-nine healthy young-adults underwent an fcMRI scanning protocol while they chewed gum. Seed-based fcMRI analyses were performed with the motor cortex and cerebellum as regions of interest. Both left and right motor cortices were reciprocally functionally connected and functionally connected with the post-central gyrus, cerebellum, cingulate cortex, and precuneus. The cerebellar seeds showed functional connections with the contralateral cerebellar hemispheres, bilateral sensorimotor cortices, left superior temporal gyrus, and left cingulate cortex. These results are the first to identify functional central networks engaged during mastication. PMID:23355525
Contemporary pollen and seed dispersal in natural populations of Bertholletia excelsa (Bonpl.).
Baldoni, A B; Wadt, L H O; Campos, T; Silva, V S; Azevedo, V C R; Mata, L R; Botin, A A; Mendes, N O; Tardin, F D; Tonini, H; Hoogerheide, E S S; Sebbenn, A M
2017-09-21
Due to the nutritional content and commercial value of its seeds, Bertholletia excelsa is one of the most important species exploited in the Amazon region. The species is hermaphroditic, insect pollinated, and its seeds are dispersed by barochory and animals. Because the fruit set is dependent on natural pollinator activity, gene flow plays a key role in fruit production. However, to date, there have been no studies on pollen and seed flow in natural populations of B. excelsa. Herein, we used microsatellite loci and parentage analysis to investigate the spatial genetic structure (SGS), realized pollen and seed dispersal, and effective pollen dispersal for two B. excelsa populations in the Brazilian Amazon forest. Two plots were established in natural forests from which adults, juveniles, and seeds were sampled. Realized and effective pollen flow was greater than realized seed flow. The distance of realized pollen dispersal ranged from 36 to 2060 m, and the distance of realized seed dispersal ranged from 30 to 1742 m. Both pollen and seeds showed a dispersal pattern of isolation by distance, indicating a high frequency of mating among near-neighbor trees and seed dispersal near to mother trees. Both populations present SGS up to 175 m, which can be explained by isolation by distance pollen and seed dispersal patterns. Our results suggested that fragmentation of these forest populations may result in a significant decrease in gene flow, due to the isolation by distance pollen and seed dispersal patterns.
Seed reserves diluted during surface soil reclamation in eastern Mojave Desert
Scoles-Sciulla, S. J.; DeFalco, L.A.
2009-01-01
Surface soil reclamation is used to increase the re-establishment of native vegetation following disturbance through preservation and eventual replacement of the indigenous seed reserves. Employed widely in the mining industry, soil reclamation has had variable success in re-establishing native vegetation in arid and semi-arid regions. We tested whether variable success could be due in part to a decrease of seed reserves during the reclamation process by measuring the change in abundance of germinable seed when surface soil was mechanically collected, stored in a soil pile for 4 months, and reapplied upon completion of a roadway. Overall seed reserve declines amounted to 86% of the original germinable seed in the soil. The greatest decrease in seed reserves occurred during soil collection (79% of original reserves), compared to the storage and reapplication stages. At nearby sites where stored surface soil had been reapplied, no perennial plant cover occurred from 0.5 to 5 years after application and <1% cover after 7 years compared to 5% cover in nearby undisturbed areas. The reduction in abundance of germinable seed during reclamation was primarily due to dilution of seed reserves when deeper soil fractions without seed were mixed with the surface soil during collection. Unless more precise techniques of surface soil collection are utilized, soil reclamation alone as a means for preserving native seed reserves is a method ill-suited for revegetating disturbed soils with a shallow seed bank, such as those found in the Mojave Desert. Copyright ?? Taylor & Francis Group, LLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soliman, A; Elzibak, A; Fatemi, A
Purpose: To propose a novel framework for accurate model-based dose calculations using only MR images for LDR prostate and breast seed implant brachytherapy. Methods: Model-based dose calculation methodologies recommended by TG-186 require further knowledge about specific tissue composition, which is challenging with MRI. However, relying on MRI-only for implant dosimetry would reduce the soft tissue delineation uncertainty, costs, and uncertainties associated with multi-modality registration and fusion processes. We propose a novel framework to address this problem using quantitative MRI acquisitions and reconstruction techniques. The framework includes three steps: (1) Identify the locations of seeds(2) Identify the presence (or absence) ofmore » calcification(s)(3) Quantify the water and fat content in the underlying tissueSteps (1) and (2) consider the sources that limit patient dosimetry, particularly the inter-seed attenuation and the calcified regions; while step (3) targets the quantification of the tissue composition to consider the heterogeneities in the medium. Our preliminary work has shown that the seeds and the calcifications can be identified with MRI using both the magnitude and the phase images. By employing susceptibility-weighted imaging with specific post-processing techniques, the phase images can be further explored to distinguish the seeds from the calcifications. Absolute quantification of tissue, water, and fat content is feasible and was previously demonstrated in phantoms and in-vivo applications, particularly for brain diseases. The approach relies on the proportionality of the MR signal to the number of protons in an image volume. By employing appropriate correction algorithms for T1 - and T2*-related biases, B1 transmit and receive field inhomogeneities, absolute water/fat content can be determined. Results: By considering calcification and interseed attenuation, and through the knowledge of water and fat mass density, accurate patient-specific implant dosimetry can be achieved with MRI-only. Conclusion: The proposed framework showed that model-based dose calculation is feasible using MRI-only state-of-the-art techniques.« less
NASA Astrophysics Data System (ADS)
Bochet, Esther; García-Fayos, Patricio
2017-04-01
In the context of ecological restoration, one of the greatest challenges for practitioners and scientists is to select suitable species for revegetation purposes. In semiarid environments where restoration projects often fail, little attention has been paid so far to the contribution of plant traits to species success. The objective of this study was to (1) identify plant traits associated with species success on four roadside situations along an erosion-productivity gradient, and (2) to provide an ecological framework for selecting suitable species on the basis of their morphological and functional traits, applied to semiarid environments. We analyzed the association of 10 different plant traits with species success of 296 species surveyed on the four roadside situations in a semiarid region (Valencia, Spain). Plant traits included general plant traits (longevity, woodiness) and more specific root-, seed- and leaf-related traits (root type, sprouting ability, seed mucilage, seed mass, seed susceptibility to removal, specific leaf area and leaf dry matter content). All of them were selected according to the prevailing limiting ecogeomorphological processes acting along the erosion-productivity gradient. We observed strong shifts along the erosion-productivity gradient in the traits associated to species success. At the harshest end of the gradient, the most intensely eroded and driest one, species success was mainly associated to seed resistance to removal by runoff and to resistance to drought. At the opposite end of the gradient, the most productive one, species success was associated to a competitive-ruderal plant strategy (herbaceous successful species with high specific leaf area and low leaf dry matter content). Our study provides an ecologically-based approach for selecting suitable native species on the basis or their morphological and functional traits and supports a differential trait-based selection of species as regards roadslope type and aspect. In conclusion, these new insights from basic ecology and practical management guidance represent a great opportunity for practitioners to move forward with the success of roadslope restoration in semiarid environments.
Ant Abundance along a Productivity Gradient: Addressing Two Conflicting Hypotheses
Segev, Udi; Kigel, Jaime; Lubin, Yael; Tielbörger, Katja
2015-01-01
The number of individuals within a population or community and their body size can be associated with changes in resource supply. While these relationships may provide a key to better understand the role of abiotic vs. biotic constraints in animal communities, little is known about the way size and abundance of organisms change along resource gradients. Here, we studied this interplay in ants, addressing two hypotheses with opposite predictions regarding variation in population densities along resource gradients- the ‘productivity hypothesis’ and the ‘productivity-based thinning hypothesis’. The hypotheses were tested in two functional groups of ground-dwelling ants that are directly primary consumers feeding on seeds: specialized seed-eaters and generalist species. We examined variations in colony density and foraging activity (a size measurement of the forager caste) in six ant assemblages along a steep productivity gradient in a semi-arid region, where precipitation and plant biomass vary 6-fold over a distance of 250km. An increase in the density or foraging activity of ant colonies along productivity gradients is also likely to affect competitive interactions among colonies, and consequently clinal changes in competition intensity were also examined. Ant foraging activity increased with productivity for both functional groups. However, colony density revealed opposing patterns: it increased with productivity for the specialized seed-eaters, but decreased for the generalist species. Competition intensity, evaluated by spatial partitioning of species at food baits and distribution of colonies, was uncorrelated with productivity in the specialized seed-eaters, but decreased with increasing productivity in the generalists. Our results provide support for two contrasting hypotheses regarding the effect of resource availability on the abundance of colonial organisms- the ‘productivity hypothesis’ for specialized seed-eaters and the ‘productivity-based thinning hypothesis’ for generalist species. These results also stress the importance of considering the role of functional groups in studies of community structure. PMID:26176853
Bailleul, Diane; Ollier, Sébastien; Huet, Sylvie; Gardarin, Antoine; Lecomte, Jane
2012-01-01
Anthropogenic vectors enhance the natural dispersal capacity of plant seeds significantly in terms of quantity and distance. Human-mediated seed dispersal (i.e. anthropochory) greatly increases the dispersal of crop species across agroecosystems. In the case of oilseed rape (OSR), spillage of seeds from grain trailers during harvest has never been quantified. Our experimental approach involved establishing 85 seed trap-sites on the road verges of an agricultural area around the grain silo of Selommes (Loir-et-Cher, France). We recorded OSR spillage during harvest and applied a linear model to the data. The amount of seed spilled was related positively to the area of the OSR fields served by the road, whereas the amount of seed spilled decreased with other variables, such as distance from the trap-site to the verge of the road and to the nearest field. The distance to the grain silo, through local and regional effects, affected seed loss. Local effects from fields adjacent to the road resulted in a cumulative spillage on one-lane roads. On two-lane roads, spillage was nearly constant whatever the distance to the silo due to a mixture of these local effects and of grain trailers that joined the road from more distant fields. From the data, we predicted the number of seeds lost from grain trailers on one road verge in the study area. We predicted a total spillage of 2.05 × 10(6) seeds (± 4.76 × 10(5)) along the road length, which represented a mean of 404 ± 94 seeds per m(2). Containment of OSR seeds will always be challenging. However, seed spillage could be reduced if grain trailers were covered and filled with less seed. Reducing distances travelled between fields and silos could also limit seed loss.
TRANSPARENT TESTA GLABRA1 Regulates the Accumulation of Seed Storage Reserves in Arabidopsis1[OPEN
Chen, Mingxun; Zhang, Bin; Li, Chengxiang; Kulaveerasingam, Harikrishna; Chew, Fook Tim; Yu, Hao
2015-01-01
Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process. PMID:26152712
TRANSPARENT TESTA GLABRA1 Regulates the Accumulation of Seed Storage Reserves in Arabidopsis.
Chen, Mingxun; Zhang, Bin; Li, Chengxiang; Kulaveerasingam, Harikrishna; Chew, Fook Tim; Yu, Hao
2015-09-01
Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process. © 2015 American Society of Plant Biologists. All Rights Reserved.
Cao, Lin; Xiao, Zhishu; Guo, Cong; Chen, Jin
2011-09-01
Local extinction or population decline of large frugivorous vertebrates as primary seed dispersers, caused by human disturbance and habitat change, might lead to dispersal limitation of many large-seeded fruit trees. However, it is not known whether or not scatter-hoarding rodents as secondary seed dispersers can help maintain natural regeneration (e.g. seed dispersal) of these frugivore-dispersed trees in the face of the functional reduction or loss of primary seed dispersers. In the present study, we investigated how scatter-hoarding rodents affect the fate of tagged seeds of a large-seeded fruit tree (Scleropyrum wallichianum Arnott, 1838, Santalaceae) from seed fall to seedling establishment in a heavily defaunated tropical forest in the Xishuangbanna region of Yunnan Province, in southwest China, in 2007 and 2008. Our results show that: (i) rodents removed nearly all S. wallichianum seeds in both years; (ii) a large proportion (2007, 75%; 2008, 67.5%) of the tagged seeds were cached individually in the surface soil or under leaf litters; (iii) dispersal distance of primary caches was further in 2007 (19.6 ± 14.6 m) than that in 2008 (14.1 ± 11.6 m), and distance increased as rodents recovered and moved seeds from primary caches into subsequent caching sites; and (iv) part of the cached seeds (2007, 3.2%; 2008, 2%) survived to the seedling stage each year. Our study suggests that by taking roles of both primary and secondary seed dispersers, scatter-hoarding rodents can play a significant role in maintaining seedling establishment of S. wallichianum, and are able to at least partly compensate for the loss of large frugivorous vertebrates in seed dispersal. © 2011 ISZS, Blackwell Publishing and IOZ/CAS.
Jaganathan, G K; Wu, G-R; Han, Y-Y; Liu, B L
2017-01-01
Physical dormancy occurs in all three subfamilies of Fabaceae, namely Mimosoideae, Papilionoideae and Caesalpinioideae, making it one of the largest plant families in terms of number of species with physical dormancy. However, little is known about the water gap structure and germination ecology of species in Caesalpinioideae. Freshly collected seeds of Delonix regia (Caesalpinioideae) did not imbibe water, thus they had physical dormancy. Both dry heat and wet heat were effective in breaking dormancy, however, longer duration was required at 80 °C and shorter duration at 90 °C. Seeds buried in the field for 2 years germinated to 21% and 42% after the first and second summer, respectively, compared with 3% germination in seeds at the time of maturity. Seeds incubated at 15/60 °C in the laboratory (mimicking summer conditions) for 3 months supported this conclusion, as dormancy was relieved in 18% and 24% of seeds stored dry and watered intermediately, respectively. All the dormancy breaking treatments resulted in lifting of palisade layers in the lens region to form a circular lid-like opening, i.e. water gap (Type II simple). Blocking experiments confirmed that water entered only through the lens and no secondary water entry point was observed. No apparent changes in morphology/anatomy of the hilum region were noted in dormant and non-dormant (water permeable) seeds. These results suggest that summer temperatures could open the lens in a proportion of seeds every year and that germination occurs during the subsequent wet season in the tropics. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Catalog of MicroRNA Seed Polymorphisms in Vertebrates
Calin, George Adrian; Horvat, Simon; Jiang, Zhihua; Dovc, Peter; Kunej, Tanja
2012-01-01
MicroRNAs (miRNAs) are a class of non-coding RNA that plays an important role in posttranscriptional regulation of mRNA. Evidence has shown that miRNA gene variability might interfere with its function resulting in phenotypic variation and disease susceptibility. A major role in miRNA target recognition is ascribed to complementarity with the miRNA seed region that can be affected by polymorphisms. In the present study, we developed an online tool for the detection of miRNA polymorphisms (miRNA SNiPer) in vertebrates (http://www.integratomics-time.com/miRNA-SNiPer) and generated a catalog of miRNA seed region polymorphisms (miR-seed-SNPs) consisting of 149 SNPs in six species. Although a majority of detected polymorphisms were due to point mutations, two consecutive nucleotide substitutions (double nucleotide polymorphisms, DNPs) were also identified in nine miRNAs. We determined that miR-SNPs are frequently located within the quantitative trait loci (QTL), chromosome fragile sites, and cancer susceptibility loci, indicating their potential role in the genetic control of various complex traits. To test this further, we performed an association analysis between the mmu-miR-717 seed SNP rs30372501, which is polymorphic in a large number of standard inbred strains, and all phenotypic traits in these strains deposited in the Mouse Phenome Database. Analysis showed a significant association between the mmu-miR-717 seed SNP and a diverse array of traits including behavior, blood-clinical chemistry, body weight size and growth, and immune system suggesting that seed SNPs can indeed have major pleiotropic effects. The bioinformatics analyses, data and tools developed in the present study can serve researchers as a starting point in testing more targeted hypotheses and designing experiments using optimal species or strains for further mechanistic studies. PMID:22303453
Hybrid Viability and Fertility in Co-occuring Plant Species
NASA Astrophysics Data System (ADS)
Hernandez, E.; Garcia, C.; Yost, J.
2012-12-01
Similar species of plants can co-exist due to reproductive barriers that keep them from hybridizing. In the case of Lasthenia gracilis and L. californica, certain reproductive barriers allow them to co-exist at Jasper Ridge without hybridization. The two species are locally adapted to different regions of the same hillside, and have slight differences in flowering time but hybrids can be created at low rate in the green house. We tested the viability and fertility of green house produced hybrids to quantify post-zygotic reproductive isolation at Jasper Ridge. We planted 10 hybrid seeds and 10 control seeds from 11 different families. We measured the percent germination, survival to flowering and pollen fertility of the seeds. We expect lower germination, lower survival to flowering, and lower pollen viability of hybrid seeds as compared to control seeds.
Cao, Zhengying; Tian, Fang; Wang, Nian; Jiang, Congcong; Lin, Bing; Xia, Wei; Shi, Jiaqin; Long, Yan; Zhang, Chunyu; Meng, Jinling
2010-04-01
The history of canola breeding began with the discovery of germplasm with low erucic acid content in seeds of spring forage cultivar in the 1950's. FAE1 mutations led to a dramatic decrease of the seed erucic acid content in Arabidopsis thaliana. The products of the two FAE1 loci, BnA8.FAE1 and BnC3.FAE1, showed additive effects to the level of erucic acid content in oilseed rape. Previous research believed that the pleiotropy of FAE1 was responsible for the decrease in seed oil content along with the reduction of seed erucic acid content in the modern cultivars. TN DH population was developed from a canola cultivar Tapidor and a Chinese traditional cultivar Ningyou7. The population had been tested in 10 and 11 environments to map QTLs for the erucic acid content and oil content in seeds. As the map resolution increased, a novel QTL for seed erucic acid content was revealed, after Meta-analysis, 7 cM away from the most significant seed erucic acid content QTL where BnA8.FAE1 is located. Seven independent QTLs for seed oil content (qOC) were detected around the two seed erucic acid content QTLs (qEA) across 39.20 cM on linkage group A8. Two of the qOCs co-localized with the two qEAs, respectively, and were detected in a single environment. The other five qOCs were detected in 10 of 11 environments independent of qEAs. Alleles from Tapidor in all the QTLs at the 0-39.20 cM region contributed negative effects to either erucic acid content or oil content in seeds. Parallel, genotyping showed that on 5 of the 7 QTLs regions, Tapidor alleles had the same genotypes with that in 'Liho', the original low seed erucic acid content source. Through rounds of crossbreeding with oil-cropped cultivars and intensive selection for multi generations, Tapidor still had the inferior alleles for low seed oil content from 'Liho', the forage rape. This showed a strong linkage drag of low seed oil content, which was controlled by the five qEA-independent qOCs, with low seed erucic acid content. Ninety cultivars of B. napus from 8 countries were used to analyze the genetic drag with 9 molecular markers located in the QTL confidence intervals (24.04 cM) on linkage group A8. It was noticed that more than 46% of the cultivars with low seed erucic acid content trait remained the genotype of low seed oil content at least in one locus. Backcross and marker-assisted selection could break the genetic drag between the low oil content and erucic acid in seeds in the process for breeding modern high seed oil content canola cultivars. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Efe, Lale; Killi, Fatih; Mustafayev, Sefer A
2009-10-15
In the study carried out in 2002-2003 in the East Mediterranean region of Turkey (in Kahramanmaras Province), four different naturally coloured cotton (Gossypium hirsutum L.) (dark brown, light brown, cream and green) lines from Azerbaijan and two white linted cotton varieties (Maras-92 and Sayar-314 (G. hirsutum L.)) of the region were used as material. The aim of this study was to determine seed cotton yield and yield components and major lint quality traits of investigated coloured cotton lines comprising white linted local standard cotton varieties. Field trials were established in randomized block design with four blocks. According to two year's results, it was determined that naturally coloured cottons were found similar to both white linted standard cotton varieties for sympodia number and seed cotton yield. For boll number per plant, except green cotton line all coloured cotton lines were similar to standard varieties or even some of them were better than standards. For ginning outturn, dark brown, cream and green cotton lines were found statistically similar to standard Maras-92. But all naturally coloured cotton lines had lower seed cotton weight per boll and generally lower fiber quality than white linted standard varieties. For fiber length and fiber strength cream cotton line was the best coloured cotton. And for fiber fineness only green cotton line was better than both standards. It can be said that naturally coloured cotton lines need to be improved especially for fiber quality characters in the East Mediterranean region of Turkey.
Wang, Rong; Compton, Stephen G; Shi, Yi-Su; Chen, Xiao-Yong
2012-09-01
Gene flow strongly influences the regional genetic structuring of plant populations. Seed and pollen dispersal patterns can respond differently to the increased isolation resulting from habitat fragmentation, with unpredictable consequences for gene flow and population structuring. In a recently fragmented landscape we compared the pre- and post-fragmentation genetic structure of populations of a tree species where pollen and seed dispersal respond differentially to forest fragmentation generated by flooding. Castanopsis sclerophylla is wind-pollinated, with seeds that are dispersed by gravity and rodents. Using microsatellites, we found no significant difference in genetic diversity between pre- and post-fragmentation cohorts. Significant genetic structure was observed in pre-fragmentation cohorts, due to an unknown genetic barrier that had isolated one small population. Among post-fragmentation cohorts this genetic barrier had disappeared and genetic structure was significantly weakened. The strengths of genetic structuring were at a similar level in both cohorts, suggesting that overall gene flow of C. sclerophylla has been unchanged by fragmentation at the regional scale. Fragmentation has blocked seed dispersal among habitats, but this appears to have been compensated for by enhanced pollen dispersal, as indicated by the disappearance of a genetic barrier, probably as a result of increased wind speeds and easier pollen movement over water. Extensive pollen flow can counteract some negative effects of fragmentation and assist the long-term persistence of small remnant populations.
Yoder, Keith J.; Porges, Eric C.; Decety, Jean
2016-01-01
Atypical amygdala function and connectivity have reliably been associated with psychopathy. However, the amygdala is not a unitary structure. To examine how psychopathic traits in a non-forensic sample are linked to amygdala response to violence, the current study used probabilistic tractography to classify amygdala subnuclei based on anatomical projections to and from amygdala subnuclei in a group of 43 male participants. The segmentation identified the basolateral complex (BLA; lateral, basal, and accessory basal subnuclei) and the central subnucleus (CE), which were used as seeds in a functional connectivity analysis to identify differences in neuronal coupling specific to observed violence. While a full amygdala seed showed significant connectivity only to right middle occipital gyrus, subnuclei seeds revealed unique connectivity patterns. BLA showed enhanced coupling with anterior cingulate and prefrontal regions, while CE showed increased connectivity with the brainstem, but reduced connectivity with superior parietal and precentral gyrus. Further, psychopathic personality factors were related to specific patterns of connectivity. Fearless Dominance scores on the psychopathic personality inventory predicted increased coupling between the BLA seed and sensory integration cortices, and increased connectivity between the CE seed and posterior insula. Conversely, Self-Centered Impulsivity scores were negatively correlated with coupling between BLA and ventrolateral prefrontal cortex, and Coldheartedness scores predicted increased functional connectivity between BLA and dorsal anterior cingulate cortex. Taken together, these findings demonstrate how subnuclei segmentations reveal important functional connectivity differences that are otherwise inaccessible. Such an approach yields a better understanding of amygdala dysfunction in psychopathy. PMID:25557777
Goel, Anshita; Gaur, Vikram S.; Arora, Sandeep; Gupta, Sanjay
2012-01-01
Abstract The calcium (Ca2+) transporters, like Ca2+ channels, Ca2+ ATPases, and Ca2+ exchangers, are instrumental for signaling and transport. However, the mechanism by which they orchestrate the accumulation of Ca2+ in grain filling has not yet been investigated. Hence the present study was designed to identify the potential calcium transporter genes that may be responsible for the spatial accumulation of calcium during grain filling. In silico expression analyses were performed to identify Ca2+ transporters that predominantly express during the different developmental stages of Oryza sativa. A total of 13 unique calcium transporters (7 from massively parallel signature sequencing [MPSS] data analysis, and 9 from microarray analysis) were identified. Analysis of variance (ANOVA) revealed differential expression of the transporters across tissues, and principal component analysis (PCA) exhibited their seed-specific distinctive expression profile. Interestingly, Ca2+ exchanger genes are highly expressed in the initial stages, whereas some Ca2+ ATPase genes are highly expressed throughout seed development. Furthermore, analysis of the cis-elements located in the promoter region of the subset of 13 genes suggested that Dof proteins play essential roles in regulating the expression of Ca2+ transporter genes during rice seed development. Based on these results, we developed a hypothetical model explaining the transport and tissue specific distribution of calcium in developing cereal seeds. The model may be extrapolated to understand the mechanism behind the exceptionally high level of calcium accumulation seen in grains like finger millet. PMID:22734689
Yoder, Keith J; Porges, Eric C; Decety, Jean
2015-04-01
Atypical amygdala function and connectivity have reliably been associated with psychopathy. However, the amygdala is not a unitary structure. To examine how psychopathic traits in a nonforensic sample are linked to amygdala response to violence, this study used probabilistic tractography to classify amygdala subnuclei based on anatomical projections to and from amygdala subnuclei in a group of 43 male participants. The segmentation identified the basolateral complex (BLA; lateral, basal, and accessory basal subnuclei) and the central subnucleus (CE), which were used as seeds in a functional connectivity analysis to identify differences in neuronal coupling specific to observed violence. While a full amygdala seed showed significant connectivity only to right middle occipital gyrus, subnuclei seeds revealed unique connectivity patterns. BLA showed enhanced coupling with anterior cingulate and prefrontal regions, while CE showed increased connectivity with the brainstem, but reduced connectivity with superior parietal and precentral gyrus. Further, psychopathic personality factors were related to specific patterns of connectivity. Fearless Dominance scores on the psychopathic personality inventory predicted increased coupling between the BLA seed and sensory integration cortices, and increased connectivity between the CE seed and posterior insula. Conversely, Self-Centered Impulsivity scores were negatively correlated with coupling between BLA and ventrolateral prefrontal cortex, and Coldheartedness scores predicted increased functional connectivity between BLA and dorsal anterior cingulate cortex. Taken together, these findings demonstrate how subnuclei segmentations reveal important functional connectivity differences that are otherwise inaccessible. Such an approach yields a better understanding of amygdala dysfunction in psychopathy. © 2014 Wiley Periodicals, Inc.
Pereira, C M; Moura, M O; Da-Silva, P R
2014-06-01
Seed predation by insects exerts negative effects on plant reproduction by limiting the supply of seeds and preventing germination. Seed predators of the family Fabaceae are usually generalists, which increases the rate of predation. One strategy to minimize seed predation, developed by plants from temperate regions, is "escape in time," i.e., flowering before or after the peak of predation. For tropical species, few studies have investigated the strategies used by plants to minimize seed predation. Here, using Erythrina falcata, a tropical species of Fabaceae, we test three main hypotheses: (i) escape in time is a mechanism used by E. falcata to minimize seed predation, (ii) the predators of E. falcata seeds are generalists, and (iii) the biometric variables of the pods can influence seed predation. In order to test these hypotheses, we determined the flowering time of E. falcata, rate of seed predation, the predators insects, and biometric variables of the pods. The analyzed trees were grouped into three classes: "early," "peak," and "late" flowering. The average seed predation rates on trees in the early and late classes were 65% and 50%, respectively, and in the peak class, 80%; thus, our first hypothesis can be accepted. Three species of Lepidoptera and two of Coleoptera were found preying on E. falcata seeds. These species were observed to be generalist predators; thus, our second hypothesis can be accepted. The biometric variables of the pods cannot influence seed predation rate. The ecological consequences of asynchronous flowering on plants and insects are discussed.
Konarzewski, Tara K.; Murray, Brad R.; Godfree, Robert C.
2012-01-01
We examined adaptive clinal variation in seed mass among populations of an invasive annual species, Echium plantagineum, in response to climatic selection. We collected seeds from 34 field populations from a 1,000 km long temperature and rainfall gradient across the species' introduced range in south-eastern Australia. Seeds were germinated, grown to reproductive age under common glasshouse conditions, and progeny seeds were harvested and weighed. Analyses showed that seed mass was significantly related to climatic factors, with populations sourced from hotter, more arid sites producing heavier seeds than populations from cooler and wetter sites. Seed mass was not related to edaphic factors. We also found that seed mass was significantly related to both longitude and latitude with each degree of longitude west and latitude north increasing seed mass by around 2.5% and 4% on average. There was little evidence that within-population or between-population variation in seed mass varied in a systematic manner across the study region. Our findings provide compelling evidence for development of a strong cline in seed mass across the geographic range of a widespread and highly successful invasive annual forb. Since large seed mass is known to provide reproductive assurance for plants in arid environments, our results support the hypothesis that the fitness and range potential of invasive species can increase as a result of genetic divergence of populations along broad climatic gradients. In E. plantagineum population-level differentiation has occurred in 150 years or less, indicating that the adaptation process can be rapid. PMID:23284621
Seed Placement in Permanent Breast Seed Implant Brachytherapy: Are Concerns Over Accuracy Valid?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, Daniel, E-mail: dmorton@bccancer.bc.ca; Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia; Hilts, Michelle
Purpose: To evaluate seed placement accuracy in permanent breast seed implant brachytherapy (PBSI), to identify any systematic errors and evaluate their effect on dosimetry. Methods and Materials: Treatment plans and postimplant computed tomography scans for 20 PBSI patients were spatially registered and used to evaluate differences between planned and implanted seed positions, termed seed displacements. For each patient, the mean total and directional seed displacements were determined in both standard room coordinates and in needle coordinates relative to needle insertion angle. Seeds were labeled according to their proximity to the anatomy within the breast, to evaluate the influence of anatomicmore » regions on seed placement. Dosimetry within an evaluative target volume (seroma + 5 mm), skin, breast, and ribs was evaluated to determine the impact of seed placement on the treatment. Results: The overall mean (±SD) difference between implanted and planned positions was 9 ± 5 mm for the aggregate seed population. No significant systematic directional displacements were observed for this whole population. However, for individual patients, systematic displacements were observed, implying that intrapatient offsets occur during the procedure. Mean displacements for seeds in the different anatomic areas were not found to be significantly different from the mean for the entire seed population. However, small directional trends were observed within the anatomy, potentially indicating some bias in the delivery. Despite observed differences between the planned and implanted seed positions, the median (range) V{sub 90} for the 20 patients was 97% (66%-100%), and acceptable dosimetry was achieved for critical structures. Conclusions: No significant trends or systematic errors were observed in the placement of seeds in PBSI, including seeds implanted directly into the seroma. Recorded seed displacements may be related to intrapatient setup adjustments. Despite observed seed displacements, acceptable postimplant dosimetry was achieved.« less
Dispersal of Transgenes through Maize Seed Systems in Mexico
Dyer, George A.; Serratos-Hernández, J. Antonio; Perales, Hugo R.; Gepts, Paul; Piñeyro-Nelson, Alma; Chávez, Angeles; Salinas-Arreortua, Noé; Yúnez-Naude, Antonio; Taylor, J. Edward; Alvarez-Buylla, Elena R.
2009-01-01
Objectives Current models of transgene dispersal focus on gene flow via pollen while neglecting seed, a vital vehicle for gene flow in centers of crop origin and diversity. We analyze the dispersal of maize transgenes via seeds in Mexico, the crop's cradle. Methods We use immunoassays (ELISA) to screen for the activity of recombinant proteins in a nationwide sample of farmer seed stocks. We estimate critical parameters of seed population dynamics using household survey data and combine these estimates with analytical results to examine presumed sources and mechanisms of dispersal. Results Recombinant proteins Cry1Ab/Ac and CP4/EPSPS were found in 3.1% and 1.8% of samples, respectively. They are most abundant in southeast Mexico but also present in the west-central region. Diffusion of seed and grain imported from the United States might explain the frequency and distribution of transgenes in west-central Mexico but not in the southeast. Conclusions Understanding the potential for transgene survival and dispersal should help design methods to regulate the diffusion of germplasm into local seed stocks. Further research is needed on the interactions between formal and informal seed systems and grain markets in centers of crop origin and diversification. PMID:19503610
Multilayer checkpoints for microRNA authenticity during RISC assembly.
Kawamata, Tomoko; Yoda, Mayuko; Tomari, Yukihide
2011-09-01
MicroRNAs (miRNAs) function through the RNA-induced silencing complex (RISC), which contains an Argonaute (Ago) protein at the core. RISC assembly follows a two-step pathway: miRNA/miRNA* duplex loading into Ago, and separation of the two strands within Ago. Here we show that the 5' phosphate of the miRNA strand is essential for duplex loading into Ago, whereas the preferred 5' nucleotide of the miRNA strand and the base-pairing status in the seed region and the middle of the 3' region function as additive anchors to Ago. Consequently, the miRNA authenticity is inspected at multiple steps during RISC assembly.
Arfin-Khan, M A S; Vetter, V M S; Reshi, Z A; Dar, P A; Jentsch, A
2018-05-01
Successful germination and seedling emergence in new environments are crucial first steps in the life history of global plant invaders and thus play a key role in processes of range expansion. We examined the germination and seedling emergence success of three global plant invaders - Lupinus polyphyllus, Senecio inaequidens and Verbascum thapsus - in greenhouses and climate chambers under climate regimes corresponding to seven eco-regions. Seed materials were collected from one non-native population for L. polyphyllus and S. inaequidens, and from 12 populations for V. thapsus (six natives and six non-natives). Experimental climates had significant effects on species responses. No species germinated in the dry (humidity ≤ 50%) and cool (≤ 5 °C) experimental climates. But all species germinated and emerged in two moderately cool (12-19 °C) and in three warm (24-27 °C) experimental climates. In general, V. thapsus showed higher fitness than S. inaequidens and L. polyphyllus. The climate of the seed source region influenced responses of native and non-native populations of V. thapsus. Non-native populations of V. thapsus, originating from the warmer seed source, showed higher performance in warm experimental climates and lower performance in moderately cool experimental climates compared to native populations. Responses of V. thapsus populations were also related to precipitation of the seed source region in moderately dry experimental climates. The warm, semi-arid and humid experimental climates are suitable for the crucial first steps of invasion success for L. polyphyllus, S. inaequidens and V. thapsus. The species adaptation to its source region modified the responses of our studied plants under different experimental climates representing major eco-regions of the world. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Lu, Lingli; Tian, Shengke; Liao, Haibing; Zhang, Jie; Yang, Xiaoe; Labavitch, John M.; Chen, Wenrong
2013-01-01
Knowledge of mineral localization within rice grains is important for understanding the role of different elements in seed development, as well as for facilitating biofortification of seed micronutrients in order to enhance seeds’ values in human diets. In this study, the concentrations of minerals in whole rice grains, hulls, brown rice, bran and polished rice were quantified by inductively coupled plasma mass spectroscopy. The in vivo mineral distribution patterns in rice grains and shifts in those distribution patterns during progressive stages of germination were analyzed by synchrotron X-ray microfluorescence. The results showed that half of the total Zn, two thirds of the total Fe, and most of the total K, Ca and Mn were removed by the milling process if the hull and bran were thoroughly polished. Concentrations of all elements were high in the embryo regions even though the local distributions within the embryo varied between elements. Mobilization of the minerals from specific seed locations during germination was also element-specific. High mobilization of K and Ca from grains to growing roots and leaf primordia was observed; the flux of Zn to these expanding tissues was somewhat less than that of K and Ca; the mobilization of Mn or Fe was relatively low, at least during the first few days of germination. PMID:23451212
Abbott, Angela E; Linke, Annika C; Nair, Aarti; Jahedi, Afrooz; Alba, Laura A; Keown, Christopher L; Fishman, Inna; Müller, Ralph-Axel
2018-01-01
The neural underpinnings of repetitive behaviors (RBs) in autism spectrum disorders (ASDs), ranging from cognitive to motor characteristics, remain unknown. We assessed RB symptomatology in 50 ASD and 52 typically developing (TD) children and adolescents (ages 8-17 years), examining intrinsic functional connectivity (iFC) of corticostriatal circuitry, which is important for reward-based learning and integration of emotional, cognitive and motor processing, and considered impaired in ASDs. Connectivity analyses were performed for three functionally distinct striatal seeds (limbic, frontoparietal and motor). Functional connectivity with cortical regions of interest was assessed for corticostriatal circuit connectivity indices and ratios, testing the balance of connectivity between circuits. Results showed corticostriatal overconnectivity of limbic and frontoparietal seeds, but underconnectivity of motor seeds. Correlations with RBs were found for connectivity between the striatal motor seeds and cortical motor clusters from the whole-brain analysis, and for frontoparietal/limbic and motor/limbic connectivity ratios. Division of ASD participants into high (n = 17) and low RB subgroups (n = 19) showed reduced frontoparietal/limbic and motor/limbic circuit ratios for high RB compared to low RB and TD groups in the right hemisphere. Results suggest an association between RBs and an imbalance of corticostriatal iFC in ASD, being increased for limbic, but reduced for frontoparietal and motor circuits. © The Author (2017). Published by Oxford University Press.
Abbott, Angela E; Linke, Annika C; Nair, Aarti; Jahedi, Afrooz; Alba, Laura A; Keown, Christopher L; Fishman, Inna
2018-01-01
Abstract The neural underpinnings of repetitive behaviors (RBs) in autism spectrum disorders (ASDs), ranging from cognitive to motor characteristics, remain unknown. We assessed RB symptomatology in 50 ASD and 52 typically developing (TD) children and adolescents (ages 8–17 years), examining intrinsic functional connectivity (iFC) of corticostriatal circuitry, which is important for reward-based learning and integration of emotional, cognitive and motor processing, and considered impaired in ASDs. Connectivity analyses were performed for three functionally distinct striatal seeds (limbic, frontoparietal and motor). Functional connectivity with cortical regions of interest was assessed for corticostriatal circuit connectivity indices and ratios, testing the balance of connectivity between circuits. Results showed corticostriatal overconnectivity of limbic and frontoparietal seeds, but underconnectivity of motor seeds. Correlations with RBs were found for connectivity between the striatal motor seeds and cortical motor clusters from the whole-brain analysis, and for frontoparietal/limbic and motor/limbic connectivity ratios. Division of ASD participants into high (n = 17) and low RB subgroups (n = 19) showed reduced frontoparietal/limbic and motor/limbic circuit ratios for high RB compared to low RB and TD groups in the right hemisphere. Results suggest an association between RBs and an imbalance of corticostriatal iFC in ASD, being increased for limbic, but reduced for frontoparietal and motor circuits. PMID:29177509
Proteomic Dissection of Seed Germination and Seedling Establishment in Brassica napus
Gu, Jianwei; Chao, Hongbo; Gan, Lu; Guo, Liangxing; Zhang, Kai; Li, Yonghong; Wang, Hao; Raboanatahiry, Nadia; Li, Maoteng
2016-01-01
The success of seed germination and establishment of a normal seedling are key determinants of plant species propagation. At present, only a few studies have focused on the genetic control of seed germination by using a proteomic approach in Brassica napus. In the present study, the protein expression pattern of seed germination was investigated using differential fluorescence two-dimensional gel electrophoresis in B. napus. One hundred and thirteen differentially expressed proteins (DEPs) that were mainly involved in storage (23.4%), energy metabolism (18.9%), protein metabolism (16.2%), defense/disease (12.6%), seed maturation (11.7%), carbohydrate metabolism (4.5%), lipid metabolism (4.5%), amino acids metabolism (3.6%), cell growth/division (3.6%), and some unclear functions (2.7%) were observed by proteomic analysis. Seventeen genes corresponding to 11 DEPs were identified within or near the associated linkage disequilibrium regions related to seed germination and vigor quantitative traits reported in B. napus in previous studies. The expression pattern of proteins showed that heterotrophic metabolism could be activated in the process of seed germination and that the onset of defense mechanisms might start during seed germination. These findings will help generate a more in-depth understanding of the mobilization of seed storage reserves and regulation mechanisms of the germination process in B. napus. PMID:27822216
Prostate implant nomograms for the North American scientific {sup 103}Pd seed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jay J.; Stevens, Ritchie N
Palladium-103-({sup 103}Pd) seed has been increasingly used in prostate implantation as either definitive or boost therapy because of its shorter half-life and higher initial dose rate. Because a growing number of radiation oncologists prefer real-time implantation in the operating room, it will be helpful if the total activity of the seeds can be determined based on the gland size before the patient is taken to the operating room. Based on our clinic data, nomograms have therefore been developed for one of the widely used {sup 103}Pd seeds, the MED3633 seed, which is produced by North American Scientific, Inc. (NASI). Themore » total activities for implant volume ranging from 15 cc to 55 cc are provided for both seed 'monotherapy' and seed boost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Andrew K. H.; Basran, Parminder S.; Thomas, Steven D.
Purpose: To investigate the effects of brachytherapy seed size on the quality of x-ray computed tomography (CT), ultrasound (US), and magnetic resonance (MR) images and seed localization through comparison of the 6711 and 9011 {sup 125}I sources. Methods: For CT images, an acrylic phantom mimicking a clinical implantation plan and embedded with low contrast regions of interest (ROIs) was designed for both the 0.774 mm diameter 6711 (standard) and the 0.508 mm diameter 9011 (thin) seed models (Oncura, Inc., and GE Healthcare, Arlington Heights, IL). Image quality metrics were assessed using the standard deviation of ROIs between the seeds andmore » the contrast to noise ratio (CNR) within the low contrast ROIs. For US images, water phantoms with both single and multiseed arrangements were constructed for both seed sizes. For MR images, both seeds were implanted into a porcine gel and imaged with pelvic imaging protocols. The standard deviation of ROIs and CNR values were used as metrics of artifact quantification. Seed localization within the CT images was assessed using the automated seed finder in a commercial brachytherapy treatment planning system. The number of erroneous seed placements and the average and maximum error in seed placements were recorded as metrics of the localization accuracy. Results: With the thin seeds, CT image noise was reduced from 48.5 {+-} 0.2 to 32.0 {+-} 0.2 HU and CNR improved by a median value of 74% when compared with the standard seeds. Ultrasound image noise was measured at 50.3 {+-} 17.1 dB for the thin seed images and 50.0 {+-} 19.8 dB for the standard seed images, and artifacts directly behind the seeds were smaller and less prominent with the thin seed model. For MR images, CNR of the standard seeds reduced on average 17% when using the thin seeds for all different imaging sequences and seed orientations, but these differences are not appreciable. Automated seed localization required an average ({+-}SD) of 7.0 {+-} 3.5 manual corrections in seed positions for the thin seed scans and 3.0 {+-} 1.2 manual corrections in seed positions for the standard seed scans. The average error in seed placement was 1.2 mm for both seed types and the maximum error in seed placement was 2.1 mm for the thin seed scans and 1.8 mm for the standard seed scans. Conclusions: The 9011 thin seeds yielded significantly improved image quality for CT and US images but no significant differences in MR image quality.« less
Chen, Zhiye; Chen, Xiaoyan; Liu, Mengqi; Dong, Zhao; Ma, Lin; Yu, Shengyuan
2017-12-01
Functional connectivity density (FCD) could identify the abnormal intrinsic and spontaneous activity over the whole brain, and a seed-based resting-state functional connectivity (RSFC) could further reveal the altered functional network with the identified brain regions. This may be an effective assessment strategy for headache research. This study is to investigate the RSFC architecture changes of the brain in the patients with medication overuse headache (MOH) using FCD and RSFC methods. 3D structure images and resting-state functional MRI data were obtained from 37 MOH patients, 18 episodic migraine (EM) patients and 32 normal controls (NCs). FCD was calculated to detect the brain regions with abnormal functional activity over the whole brain, and the seed-based RSFC was performed to explore the functional network changes in MOH and EM. The decreased FCD located in right parahippocampal gyrus, and the increased FCD located in left inferior parietal gyrus and right supramarginal gyrus in MOH compared with NC, and in right caudate and left insula in MOH compared with EM. RSFC revealed that decreased functional connectivity of the brain regions with decreased FCD anchored in the right dorsal-lateral prefrontal cortex, right frontopolar cortex in MOH, and in left temporopolar cortex and bilateral visual cortices in EM compared with NC, and in frontal-temporal-parietal pattern in MOH compared with EM. These results provided evidence that MOH and EM suffered from altered intrinsic functional connectivity architecture, and the current study presented a new perspective for understanding the neuromechanism of MOH and EM pathogenesis.
Ban, Yajing; L Prates, Luciana; Yu, Peiqiang
2017-10-18
This study was conducted to (1) determine protein and carbohydrate molecular structure profiles and (2) quantify the relationship between structural features and protein bioavailability of newly developed carinata and canola seeds for dairy cows by using Fourier transform infrared molecular spectroscopy. Results showed similarity in protein structural makeup within the entire protein structural region between carinata and canola seeds. The highest area ratios related to structural CHO, total CHO, and cellulosic compounds were obtained for carinata seeds. Carinata and canola seeds showed similar carbohydrate and protein molecular structures by multivariate analyses. Carbohydrate molecular structure profiles were highly correlated to protein rumen degradation and intestinal digestion characteristics. In conclusion, the molecular spectroscopy can detect inherent structural characteristics in carinata and canola seeds in which carbohydrate-relative structural features are related to protein metabolism and utilization. Protein and carbohydrate spectral profiles could be used as predictors of rumen protein bioavailability in cows.
Bandoniene, Donata; Zettl, Daniela; Meisel, Thomas; Maneiko, Marija
2013-02-15
An analytical method was developed and validated for the classification of the geographical origin of pumpkin seeds and oil from Austria, China and Russia. The distribution of element traces in pumpkin seed and pumpkin seed oils in relation to the geographical origin of soils of several agricultural farms in Austria was studied in detail. Samples from several geographic origins were taken from parts of the pumpkin, pumpkin flesh, seeds, the oil extracted from the seeds and the oil-extraction cake as well as the topsoil on which the plants were grown. Plants from different geographical origin show variations of the elemental patterns that are significantly large, reproducible over the years and ripeness period and show no significant influence of oil production procedure, to allow to a discrimination of geographical origin. A successful differentiation of oils from different regions in Austria, China and Russia classified with multivariate data analysis is demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.
Genome-Wide Association Study of Genetic Control of Seed Fatty Acid Biosynthesis in Brassica napus
Gacek, Katarzyna; Bayer, Philipp E.; Bartkowiak-Broda, Iwona; Szala, Laurencja; Bocianowski, Jan; Edwards, David; Batley, Jacqueline
2017-01-01
Fatty acids and their composition in seeds determine oil value for nutritional or industrial purposes and also affect seed germination as well as seedling establishment. To better understand the genetic basis of seed fatty acid biosynthesis in oilseed rape (Brassica napus L.) we applied a genome-wide association study, using 91,205 single nucleotide polymorphisms (SNPs) characterized across a mapping population with high-resolution skim genotyping by sequencing (SkimGBS). We identified a cluster of loci on chromosome A05 associated with oleic and linoleic seed fatty acids. The delineated genomic region contained orthologs of the Arabidopsis thaliana genes known to play a role in regulation of seed fatty acid biosynthesis such as Fatty acyl-ACP thioesterase B (FATB) and Fatty Acid Desaturase (FAD5). This approach allowed us to identify potential functional genes regulating fatty acid composition in this important oil producing crop and demonstrates that this approach can be used as a powerful tool for dissecting complex traits for B. napus improvement programs. PMID:28163710
NASA Astrophysics Data System (ADS)
Yamamoto, Takuya; Okano, Yasunori; Ujihara, Toru; Dost, Sadik
2017-07-01
A global numerical simulation was performed for the induction heating Top-Seeded Solution Growth (TSSG) process of SiC. Analysis included the furnace and growth melt. The effects of interfacial force due to free surface tension gradient, the RF coil-induced electromagnetic body force, buoyancy, melt free surface deformation, and seed rotation were examined. The simulation results showed that the contributions of free surface tension gradient and the electromagnetic body force to the melt flow are significant. Marangoni convection affects the growth process adversely by making the melt flow downward in the region under the seed crystal. This downward flow reduces carbon flux into the seed and consequently lowers growth rate. The effects of free surface deformation and seed rotation, although positive, are not so significant compared with those of free surface tension gradient and the electromagnetic body force. Due to the small size of the melt the contribution of buoyancy is also small.
[Determination of Hard Rate of Alfalfa (Medicago sativa L.) Seeds with Near Infrared Spectroscopy].
Wang, Xin-xun; Chen, Ling-ling; Zhang, Yun-wei; Mao, Pei-sheng
2016-03-01
Alfalfa (Medicago sativa L.) is the most commonly grown forage crop due to its better quality characteristics and high adaptability in China. However, there was 20%-80% hard seeds in alfalfa which could not be identified easily from non hard seeds which would cause the loss of seed utilization value and plant production. This experiment was designed for 121 samples of alfalfa. Seeds were collected according to different regions, harvested year and varieties. 31 samples were artificial matched as hard rates ranging from 20% to 80% to establish a model for hard seed rate by near infrared spectroscopy (NIRS) with Partial Least Square (PLS). The objective of this study was to establish a model and to estimate the efficiency of NIRS for determining hard rate of alfalfa seeds. The results showed that the correlation coefficient (R2(cal)) of calibration model was 0.981 6, root mean square error of cross validation (RMSECV) was 5.32, and the ratio of prediction to deviation (RPD) was 3.58. The forecast model in this experiment presented the satisfied precision. The proposed method using NIRS technology is feasible for identification and classification of hard seed in alfalfa. A new method, as nondestructive testing of hard seed rate, was provided to theoretical basis for fast nondestructive detection of hard seed rates in alfalfa.
Froese, Carol D; Nowack, Linda; Cholewa, Ewa; Thompson, John E
2003-03-01
Lipid particles have been isolated from seeds of wax bean (Phaseolus vulgaris), a species in which starch and protein rather than lipid are the major seed storage reserves. These lipid particles resemble oil bodies present in oil-rich seeds in that > 90% of their lipid is triacylglycerol. Moreover, this triacylglycerol is rapidly metabolized during seed germination indicating that it is a storage reserve. The phospholipid surfaces of oil bodies are known to be completely coated with oleosin which prevents their coalescence, particularly during desiccation of the developing seed. This would appear to be necessary since lipid is the major storage reserve in oil seeds, and there are very few alternate types of storage particles in the cytoplasm of oil seed endosperm to provide a buffer against coalescence of oil bodies by isolating them from one another. The present study indicates that the surfaces of lipid particles from wax bean are not completely coated with oleosin and feature regions of naked phospholipid. This finding has been interpreted as reflecting the fact that lipid particles in wax been seeds are less prone to coalescence than oil bodies of oil-rich seeds. This arises because the individual lipid particles are interspersed in situ among highly abundant protein bodies and starch grains and hence less likely to come in contact with one another, even during desiccation of the developing seed.
A Supersonic Tunnel for Laser and Flow-Seeding Techniques
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.; Lepicovsky, Jan
1994-01-01
A supersonic wind tunnel with flow conditions of 3 lbm/s (1.5 kg/s) at a free-stream Mach number of 2.5 was designed and tested to provide an arena for future development work on laser measurement and flow-seeding techniques. The hybrid supersonic nozzle design that was used incorporated the rapid expansion method of propulsive nozzles while it maintained the uniform, disturbance-free flow required in supersonic wind tunnels. A viscous analysis was performed on the tunnel to determine the boundary layer growth characteristics along the flowpath. Appropriate corrections were then made to the contour of the nozzle. Axial pressure distributions were measured and Mach number distributions were calculated based on three independent data reduction methods. A complete uncertainty analysis was performed on the precision error of each method. Complex shock-wave patterns were generated in the flow field by wedges mounted near the roof and floor of the tunnel. The most stable shock structure was determined experimentally by the use of a focusing schlieren system and a novel, laser based dynamic shock position sensor. Three potential measurement regions for future laser and flow-seeding studies were created in the shock structure: deceleration through an oblique shock wave of 50 degrees, strong deceleration through a normal shock wave, and acceleration through a supersonic expansion fan containing 25 degrees of flow turning.
Local Higher-Order Graph Clustering
Yin, Hao; Benson, Austin R.; Leskovec, Jure; Gleich, David F.
2018-01-01
Local graph clustering methods aim to find a cluster of nodes by exploring a small region of the graph. These methods are attractive because they enable targeted clustering around a given seed node and are faster than traditional global graph clustering methods because their runtime does not depend on the size of the input graph. However, current local graph partitioning methods are not designed to account for the higher-order structures crucial to the network, nor can they effectively handle directed networks. Here we introduce a new class of local graph clustering methods that address these issues by incorporating higher-order network information captured by small subgraphs, also called network motifs. We develop the Motif-based Approximate Personalized PageRank (MAPPR) algorithm that finds clusters containing a seed node with minimal motif conductance, a generalization of the conductance metric for network motifs. We generalize existing theory to prove the fast running time (independent of the size of the graph) and obtain theoretical guarantees on the cluster quality (in terms of motif conductance). We also develop a theory of node neighborhoods for finding sets that have small motif conductance, and apply these results to the case of finding good seed nodes to use as input to the MAPPR algorithm. Experimental validation on community detection tasks in both synthetic and real-world networks, shows that our new framework MAPPR outperforms the current edge-based personalized PageRank methodology. PMID:29770258
Temporal reliability and lateralization of the resting-state language network.
Zhu, Linlin; Fan, Yang; Zou, Qihong; Wang, Jue; Gao, Jia-Hong; Niu, Zhendong
2014-01-01
The neural processing loop of language is complex but highly associated with Broca's and Wernicke's areas. The left dominance of these two areas was the earliest observation of brain asymmetry. It was demonstrated that the language network and its functional asymmetry during resting state were reproducible across institutions. However, the temporal reliability of resting-state language network and its functional asymmetry are still short of knowledge. In this study, we established a seed-based resting-state functional connectivity analysis of language network with seed regions located at Broca's and Wernicke's areas, and investigated temporal reliability of language network and its functional asymmetry. The language network was found to be temporally reliable in both short- and long-term. In the aspect of functional asymmetry, the Broca's area was found to be left lateralized, while the Wernicke's area is mainly right lateralized. Functional asymmetry of these two areas revealed high short- and long-term reliability as well. In addition, the impact of global signal regression (GSR) on reliability of the resting-state language network was investigated, and our results demonstrated that GSR had negligible effect on the temporal reliability of the resting-state language network. Our study provided methodology basis for future cross-culture and clinical researches of resting-state language network and suggested priority of adopting seed-based functional connectivity for its high reliability.
Temporal Reliability and Lateralization of the Resting-State Language Network
Zou, Qihong; Wang, Jue; Gao, Jia-Hong; Niu, Zhendong
2014-01-01
The neural processing loop of language is complex but highly associated with Broca's and Wernicke's areas. The left dominance of these two areas was the earliest observation of brain asymmetry. It was demonstrated that the language network and its functional asymmetry during resting state were reproducible across institutions. However, the temporal reliability of resting-state language network and its functional asymmetry are still short of knowledge. In this study, we established a seed-based resting-state functional connectivity analysis of language network with seed regions located at Broca's and Wernicke's areas, and investigated temporal reliability of language network and its functional asymmetry. The language network was found to be temporally reliable in both short- and long-term. In the aspect of functional asymmetry, the Broca's area was found to be left lateralized, while the Wernicke's area is mainly right lateralized. Functional asymmetry of these two areas revealed high short- and long-term reliability as well. In addition, the impact of global signal regression (GSR) on reliability of the resting-state language network was investigated, and our results demonstrated that GSR had negligible effect on the temporal reliability of the resting-state language network. Our study provided methodology basis for future cross-culture and clinical researches of resting-state language network and suggested priority of adopting seed-based functional connectivity for its high reliability. PMID:24475058
Effects of beneficial microorganisms on lowland rice development.
Nascente, Adriano Stephan; de Filippi, Marta Cristina Corsi; Lanna, Anna Cristina; de Sousa, Thatyane Pereira; de Souza, Alan Carlos Alves; da Silva Lobo, Valácia Lemes; da Silva, Gisele Barata
2017-11-01
Microorganisms can promote plant growth by increasing phytomass production, nutrient uptake, photosynthesis rates, and grain yield, which can result in higher profits for farmers. However, there is limited information available about the physiological characteristics of lowland rice after treatment with beneficial microorganisms in the tropical region. This study aimed to determine the effects of different beneficial microorganisms and various application forms on phytomass production, gas exchange, and nutrient contents in the lowland rice cultivar 'BRS Catiana' in a tropical region. The experiment was performed under greenhouse conditions utilizing a completely randomized design and a 7 × 3 + 1 factorial scheme with four replications. The treatments consisted of seven microorganisms, including the rhizobacterial isolates BRM 32113, BRM 32111, BRM 32114, BRM 32112, BRM 32109, and BRM 32110 and Trichoderma asperellum pooled isolates UFRA-06, UFRA-09, UFRA-12, and UFRA-52, which were applied using three different methods (microbiolized seed, microbiolized seed + soil drenched with a microorganism suspension at 7 and 15 days after sowing (DAS), and microbiolized seed + plant spraying with a microorganism suspension at 7 and 15 DAS) with a control (water). The use of microorganisms can provide numerous benefits for rice in terms of crop growth and development. The microorganism types and methods of application positively and differentially affected the physiological characteristics evaluated in the experimental lowland rice plants. Notably, the plants treated with the bioagent BRM 32109 on the seeds and on seeds + soil produced plants with the highest dry matter biomass, gas exchange rate, and N, P, Fe, and Mg uptake. Therefore, our findings indicate strong potential for the use of microorganisms in lowland rice cultivation systems in tropical regions. Currently, an additional field experiment is in its second year to validate the beneficial result reported here and the novel input sustainability.
Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water.
Ma, Fengshan; Cholewa, Ewa; Mohamed, Tasneem; Peterson, Carol A; Gijzen, Mark
2004-08-01
Soybean (Glycine max) is among the many legumes that are well known for 'hardseededness'. This feature can be beneficial for long-term seed survival, but is undesirable for the food processing industry. There is substantial disagreement concerning the mechanisms and related structures that control the permeability properties of soybean seed coats. In this work, the structural component that controls water entry into the seed is identified. Six soybean cultivars were tested for their seed coat permeabilities to water. To identify the structural feature(s) that may contribute to the determination of these permeabilities, fluorescent tracer dyes, and light and electron microscopic techniques were used. The cultivar 'Tachanagaha' has the most permeable seed coat, 'OX 951' the least permeable seed coat, and the permeabilities of the rest ('Harovinton', 'Williams', 'Clark L 67-3469', and 'Harosoy 63') are intermediate. All seeds have surface deposits, depressions, a light line, and a cuticle about 0.2 microm thick overlaying the palisade layer. In permeable cultivars the cuticle tends to break, whereas in impermeable seeds of 'OX 951' it remains intact. In the case of permeable seed coats, the majority of the cracks are from 1 to 5 micro m wide and from 20 to 200 micro m long, and occur more frequently on the dorsal side than in other regions of the seed coat, a position that correlates with the site of initial water uptake. The cuticle of the palisade layer is the key factor that determines the permeability property of a soybean seed coat. The cuticle of a permeable seed coat is mechanically weak and develops small cracks through which water can pass. The cuticle of an impermeable seed coat is mechanically strong and does not crack under normal circumstances.
Nancy Rappaport; Alain Roques
1991-01-01
The within-cone distribution of Megastigmus spermotrophus Wachtl (Hymenoptera: Torymidae), the Douglas-fir seed chalcid, infesting Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] cones from north-central France was compared with that in samples from California. Results indicate that the mid-region of cones was more intensively...
Direct seeding of pitch pine in southern New Jersey
S. Little; C. B. Cranmer; H. A. Somes
1958-01-01
There is not enough pine reproduction in the woodlands of southern New Jersey. This increasingly important problem, which plagues the state's Pine Region, is especially severe where seed sources for natural regeneration are poor. In some of these areas, pulpwood cuttings have removed all pines large enough to bear many cones. In other areas, wildfires have killed...
Seed production and field establishment of hoary tansyaster (Machaeranthera canescens)
Derek J. Tilley
2015-01-01
The USDA NRCS Aberdeen Plant Materials Center (PMC) produces certified early generation seed of hoary tansyaster (Machaeranthera canescens (Pursh) A. Gray [Asteraceae]), a late summer and fall blooming forb native to the Intermountain West region. Hoary tansyaster is an excellent forb candidate for restoration efforts in arid to semiarid sites. It is relatively easy to...
Risk Analysis of Loblolly Pine Controlled Mass Pollination Program
T.D. Byram; F.E. Bridgwater
1999-01-01
The economic success of controlled mass pollination (CMP) depends both upon the value of the genetic gain obtained and the cost per seed. Crossing the best six loblolly pine (Pinus taeda) parents currently available in each deployment region of the Western Gulf Forest Tree Improvement Program will produce seed with an average additional gain in mean...
Bryce A. Richardson; Hector G. Ortiz; Stephanie L. Carlson; Deidre M. Jaeger; Nancy L. Shaw
2015-01-01
The sagebrush steppe is a patchwork of species and subspecies occupying distinct environmental niches across the intermountain regions of western North America. These ecosystems face degradation from disturbances and exotic weeds. Using sagebrush seed that is matched to its appropriate niche is a critical component to successful restoration, improving habitat for the...
USDA-ARS?s Scientific Manuscript database
While seed harvested from remnant stands of grass can be used for restoration in temperate regions, seed recovery in semi-arid and arid environments is often unreliable and of low yield and quality. In addition, ongoing harvest of indigenous populations can be unsustainable, especially for those th...
USDA-ARS?s Scientific Manuscript database
Soybean seeds are major sources of essential amino acids, protein, and fatty acids. Limited information is available on the genetic analysis of amino acid composition in soybean. Therefore, the objective of this study was to identify genomic regions containing quantitative trait loci (QTL) controlli...
ERIC Educational Resources Information Center
Seboka, B.; Deressa, A.
2000-01-01
Indigenous social networks of Ethiopian farmers participate in seed exchange based on mutual interdependence and trust. A government-imposed extension program must validate the role of local seed systems in developing a national seed industry. (SK)
DWDM-PON at 25 GHz channel spacing based on ASE injection seeding.
Kim, Joon-Young; Moon, Sang-Rok; Yoo, Sang-Hwa; Lee, Chang-Hee
2012-12-10
We demonstrate a 25 GHz-channel-spaced DWDM-PON based on ASE injection seeding. A 60 km transmission at 1.25 Gb/s per channel is available with a 2nd generation FEC. The major limiting factor is the optical back reflection induced penalty. Thus a high gain reflective modulator and/or relocation of the seed light increase the transmission length. We demonstrated 90 km transmission with relocated seed light to remote node.
Multiple seeding for the growth of bulk GdBCO-Ag superconductors with single grain behaviour
NASA Astrophysics Data System (ADS)
Shi, Y.; Durrell, J. H.; Dennis, A. R.; Huang, K.; Namburi, D. K.; Zhou, D.; Cardwell, D. A.
2017-01-01
Rare earth-barium-copper oxide bulk superconductors fabricated in large or complicated geometries are required for a variety of engineering applications. Initiating crystal growth from multiple seeds reduces the time taken to melt-process individual samples and can reduce the problem of poor crystal texture away from the seed. Grain boundaries between regions of independent crystal growth can reduce significantly the flow of current due to crystallographic misalignment and the agglomeration of impurity phases. Enhanced supercurrent flow at such boundaries has been achieved by minimising the depth of the boundary between A growth sectors generated during the melt growth process by reducing second phase agglomerations and by a new technique for initiating crystal growth that minimises the misalignment between different growth regions. The trapped magnetic fields measured for the resulting samples exhibit a single trapped field peak indicating they are equivalent to conventional single grains.
Reduced availability of large seeds constrains Atlantic forest regeneration
NASA Astrophysics Data System (ADS)
Costa, Janaina B. P.; Melo, Felipe P. L.; Santos, Bráulio A.; Tabarelli, Marcelo
2012-02-01
Secondary forests are expanding in defaunated fragmented tropical landscapes, but their resilience potential remains poorly understood. In this study we used a chronosequence of advancing (19-62-yr old) Atlantic forest regeneration following slash-and-burn agriculture to infer successional shifts in seed rain in terms of seed density, species richness, taxonomic and functional composition, and local spatial distribution. After monitoring seed rain during 12 months in 60 1-m2 seed traps, we recorded over 400,000 seeds belonging to 180 morphospecies. From early to late-successional stage, seed rain decreased in density, increased in per capita species richness, gradually changed in species composition, and became less aggregated spatially. Regardless the age of forest stand, vertebrate-dispersed seeds accounted for 67-75% of all species recorded. Large-seeded species typical of old-growth forests, on the other hand, accounted for only 5-8% of the species recorded in the seed rain, a proportion around five times smaller than that reported for the old-growth forests of the same study site (31%). Our results suggest that the secondary forests considered, which are embedded in one of the largest (3500 ha) and best preserved remnant of the severely fragmented Atlantic forest of Northeast Brazil, may fail attaining older successional stages due to the reduced availability of large-seeded late-successional species. This regeneration constraint may be even stronger in smaller, more isolated forest remnants of the region, potentially reducing their ability to provide ecosystem services.
Spielman, David J; Kennedy, Adam
2016-09-01
Since the 1980s, many developing countries have introduced policies to promote seed industry growth and improve the delivery of modern science to farmers, often with a long-term goal of increasing agricultural productivity in smallholder farming systems. Public, private, and civil society actors involved in shaping policy designs have, in turn, developed competing narratives around how best to build an innovative and sustainable seed system, each with varying goals, values, and levels of influence. Efforts to strike a balance between these narratives have often played out in passionate discourses surrounding seed rules and regulations. As a result, however, policymakers in many countries have expressed impatience with the slow progress on enhancing the contribution of a modern seed industry to the overarching goal of increasing agricultural productivity growth. One reason for this slow progress may be that policymakers are insufficiently cognizant of the trade-offs associated with rules and regulations required to effectively govern a modern seed industry. This suggests the need for new data and analysis to improve the understanding of how seed systems function. This paper explores these issues in the context of Asia's rapidly growing seed industry, with illustrations from seed markets for maize and several other crops, to highlight current gaps in the metrics used to analyze performance, competition, and innovation. The paper provides a finite set of indicators to inform policymaking on seed system design and monitoring, and explores how these indicators can be used to inform current policy debates in the region.
Patterson, Dianne K.; Van Petten, Cyma; Beeson, Pélagie M.; Rapcsak, Steven Z.; Plante, Elena
2014-01-01
This paper introduces a Bidirectional Iterative Parcellation (BIP) procedure designed to identify the location and size of connected cortical regions (parcellations) at both ends of a white matter tract in diffusion weighted images. The procedure applies the FSL option “probabilistic tracking with classification targets” in a bidirectional and iterative manner. To assess the utility of BIP, we applied the procedure to the problem of parcellating a limited set of well-established gray matter seed regions associated with the dorsal (arcuate fasciculus/superior longitudinal fasciculus) and ventral (extreme capsule fiber system) white matter tracts in the language networks of 97 participants. These left hemisphere seed regions and the two white matter tracts, along with their right hemisphere homologues, provided an excellent test case for BIP because the resulting parcellations overlap and their connectivity via the arcuate fasciculi and extreme capsule fiber systems are well studied. The procedure yielded both confirmatory and novel findings. Specifically, BIP confirmed that each tract connects within the seed regions in unique, but expected ways. Novel findings included increasingly left-lateralized parcellations associated with the arcuate fasciculus/superior longitudinal fasciculus as a function of age and education. These results demonstrate that BIP is an easily implemented technique that successfully confirmed cortical connectivity patterns predicted in the literature, and has the potential to provide new insights regarding the architecture of the brain. PMID:25173414
7 CFR 201.77 - Length of stand requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... through which a given variety may be multiplied both inside and outside its region of adaptation shall be specified by the originator or his designee. Certified seed production outside the region of adaptation...
7 CFR 201.77 - Length of stand requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... through which a given variety may be multiplied both inside and outside its region of adaptation shall be specified by the originator or his designee. Certified seed production outside the region of adaptation...
7 CFR 201.77 - Length of stand requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... through which a given variety may be multiplied both inside and outside its region of adaptation shall be specified by the originator or his designee. Certified seed production outside the region of adaptation...
7 CFR 201.77 - Length of stand requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... through which a given variety may be multiplied both inside and outside its region of adaptation shall be specified by the originator or his designee. Certified seed production outside the region of adaptation...
Alterations in Anatomical Covariance in the Prematurely Born.
Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Vohr, Betty R; Schneider, Karen C; Papademetris, Xenophon; Constable, R Todd; Ment, Laura R
2017-01-01
Preterm (PT) birth results in long-term alterations in functional and structural connectivity, but the related changes in anatomical covariance are just beginning to be explored. To test the hypothesis that PT birth alters patterns of anatomical covariance, we investigated brain volumes of 25 PTs and 22 terms at young adulthood using magnetic resonance imaging. Using regional volumetrics, seed-based analyses, and whole brain graphs, we show that PT birth is associated with reduced volume in bilateral temporal and inferior frontal lobes, left caudate, left fusiform, and posterior cingulate for prematurely born subjects at young adulthood. Seed-based analyses demonstrate altered patterns of anatomical covariance for PTs compared with terms. PTs exhibit reduced covariance with R Brodmann area (BA) 47, Broca's area, and L BA 21, Wernicke's area, and white matter volume in the left prefrontal lobe, but increased covariance with R BA 47 and left cerebellum. Graph theory analyses demonstrate that measures of network complexity are significantly less robust in PTs compared with term controls. Volumes in regions showing group differences are significantly correlated with phonological awareness, the fundamental basis for reading acquisition, for the PTs. These data suggest both long-lasting and clinically significant alterations in the covariance in the PTs at young adulthood. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Automated seed manipulation and planting
NASA Technical Reports Server (NTRS)
Garcia, Ray; Herrera, Javier; Holcomb, Scott; Kelly, Paul; Myers, Scott; Rosendo, Manny; Sivitz, Herbert; Wolsefer, Dave
1988-01-01
Activities for the Fall Semester, 1987 focused on investigating the mechanical/electrical properties of wheat seeds and forming various Seed Planting System (SPS) concepts based on those properties. The Electrical Division of the design group was formed to devise an SPS using electrostatic charge fields for seeding operations. Experiments concerning seed separation using electrical induction (rearranging of the charges within the seed) were conducted with promising results. The seeds, when exposed to the high voltage and low current field produced by a Van de Graff generator, were observed to move back and forth between two electrodes. An SPS concept has been developed based on this phenomena, and will be developed throughout the Spring Semester, 1988. The Mechanical Division centered on SPS concepts involving valves, pumps, and fluids to separate and deliver seeds. An SPS idea utilizing the pressure difference caused by air as it rushes out of holes drilled in the wall of a closed container has been formulated and will be considered for future development. Also, a system of seed separation and delivery employing a combination of centrifugal force, friction, and air flow was considered.
Age-related changes in brain structural covariance networks.
Li, Xinwei; Pu, Fang; Fan, Yubo; Niu, Haijun; Li, Shuyu; Li, Deyu
2013-01-01
Previous neuroimaging studies have suggested that cerebral changes over normal aging are not simply characterized by regional alterations, but rather by the reorganization of cortical connectivity patterns. The investigation of structural covariance networks (SCNs) using voxel-based morphometry is an advanced approach to examining the pattern of covariance in gray matter (GM) volumes among different regions of the human cortex. To date, how the organization of critical SCNs change during normal aging remains largely unknown. In this study, we used an SCN mapping approach to investigate eight large-scale networks in 240 healthy participants aged 18-89 years. These participants were subdivided into young (18-23 years), middle aged (30-58 years), and older (61-89 years) subjects. Eight seed regions were chosen from widely reported functional intrinsic connectivity networks. The voxels showing significant positive associations with these seed regions were used to describe the topological organization of an SCN. All of these networks exhibited non-linear patterns in their spatial extent that were associated with normal aging. These networks, except the primary motor network, had a distributed topology in young participants, a sharply localized topology in middle aged participants, and were relatively stable in older participants. The structural covariance derived using the primary motor cortex was limited to the ipsilateral motor regions in the young and older participants, but included contralateral homologous regions in the middle aged participants. In addition, there were significant between-group differences in the structural networks associated with language-related speech and semantics processing, executive control, and the default-mode network (DMN). Taken together, the results of this study demonstrate age-related changes in the topological organization of SCNs, and provide insights into normal aging of the human brain.
Using hyperspectral imaging to determine germination of native Australian plant seeds.
Nansen, Christian; Zhao, Genpin; Dakin, Nicole; Zhao, Chunhui; Turner, Shane R
2015-04-01
We investigated the ability to accurately and non-destructively determine the germination of three native Australian tree species, Acacia cowleana Tate (Fabaceae), Banksia prionotes L.F. (Proteaceae), and Corymbia calophylla (Lindl.) K.D. Hill & L.A.S. Johnson (Myrtaceae) based on hyperspectral imaging data. While similar studies have been conducted on agricultural and horticultural seeds, we are unaware of any published studies involving reflectance-based assessments of the germination of tree seeds. Hyperspectral imaging data (110 narrow spectral bands from 423.6nm to 878.9nm) were acquired of individual seeds after 0, 1, 2, 5, 10, 20, 30, and 50days of standardized rapid ageing. At each time point, seeds were subjected to hyperspectral imaging to obtain reflectance profiles from individual seeds. A standard germination test was performed, and we predicted that loss of germination was associated with a significant change in seed coat reflectance profiles. Forward linear discriminant analysis (LDA) was used to select the 10 spectral bands with the highest contribution to classifications of the three species. In all species, germination decreased from over 90% to below 20% in about 10-30days of experimental ageing. P50 values (equal to 50% germination) for each species were 19.3 (A. cowleana), 7.0 (B. prionotes) and 22.9 (C. calophylla) days. Based on independent validation of classifications of hyperspectral imaging data, we found that germination of Acacia and Corymbia seeds could be classified with over 85% accuracy, while it was about 80% for Banksia seeds. The selected spectral bands in each LDA-based classification were located near known pigment peaks involved in photosynthesis and/or near spectral bands used in published indices to predict chlorophyll or nitrogen content in leaves. The results suggested that seed germination may be successfully classified (predicted) based on reflectance in narrow spectral bands associated with the primary metabolism function and performance of plants. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Lei Tai; Sun, Ai Qing; Yang, Min; Chen, Lu Lu; Ma, Xue Li; Li, Mei Ling; Yin, Yan Ping
2016-09-01
A total of 16 wheat cultivars were selected to detect seed vigor of different genotypes using standard germination test, seed germination test under stress conditions and field emergence test. The adversity resistance indices of seed vigor indices and field emergence percentage under different germination conditions were used as the indices to evaluate adversity resistance. Principal component analysis and cluster analysis were used for the comprehensive evaluation of seed vigor. Results showed that drought stress, artificial aging and cold soaking treatments affected seed vigor to some extent. The adversity resistance indices of the artificial aging and cold soaking tests were significantly positively correlated with the field emergence percentage, while the adversity resistance index of drought stress test had no significant correlation with the field emergence percentage. 16 wheat cultivars were classified as three groups based on the principal component analysis and cluster analysis. Yunong 949, Yumai 49-198, Luyuan 502, Zhengyumai 9987, Shimai 21, Shannong 23, and Shixin 828 belonged to high vigor seeds. Xunong 5, Yunong 982, Tangmai 8, Jimai 20, Jimai 22, Jinan 17, and Shannong 20 belonged to medium vigor seeds. The other two cultivars, Chang 4738 and Lunxuan 061, belonged to low vigor seeds.
Space Exposed Experiment Developed for Students (SEEDS) P-0004-2
NASA Technical Reports Server (NTRS)
Grigsby, Doris K.
1991-01-01
This cooperative endeavor of NASA Headquarters, the NASA Langley Research Center, and the George W. Park Seed Company, resulted in the distribution, by the end of March, 1990, of approximately 132,000 space exposed experiment developed for students (SEEDS) kits to 64,000 teachers representing 40,000 classrooms and 3.3 million kindergarden through university students. Kits were sent to every state, as well as to 30 foreign countries. Preliminary radiation data indicates that layer A received 725 rads, while layer D received 350 rads. Germination rate was reported to be 73.8 percent for space exposed seeds and 70.3 percent for earth based control seeds. Tests conducted within the first six months after retrieval indicated space exposed seeds germinated in an average of 8.0 days, while earth based control seeds' average germination rate was 8.3 days. Some mutations (assumed to be radiation induced) reported by students and Park Seed include plants that added a leaf instead of the usual flower at the end of the flower front and fruit produced from a flower with a variegated calyx bore seeds producing albino plants, while fruit from a flower with a green calyx from the same plant bore seeds produced green plants.
Cunnington, Ross; Boyd, Roslyn N.; Rose, Stephen E.
2016-01-01
Diffusion MRI (dMRI) tractography analyses are difficult to perform in the presence of brain pathology. Automated methods that rely on cortical parcellation for structural connectivity studies often fail, while manually defining regions is extremely time consuming and can introduce human error. Both methods also make assumptions about structure-function relationships that may not hold after cortical reorganisation. Seeding tractography with functional-MRI (fMRI) activation is an emerging method that reduces these confounds, but inherent smoothing of fMRI signal may result in the inclusion of irrelevant pathways. This paper describes a novel fMRI-seeded dMRI-analysis pipeline based on surface-meshes that reduces these issues and utilises machine-learning to generate task specific white matter pathways, minimising the requirement for manually-drawn ROIs. We directly compared this new strategy to a standard voxelwise fMRI-dMRI approach, by investigating correlations between clinical scores and dMRI metrics of thalamocortical and corticomotor tracts in 31 children with unilateral cerebral palsy. The surface-based approach successfully processed more participants (87%) than the voxel-based approach (65%), and provided significantly more-coherent tractography. Significant correlations between dMRI metrics and five clinical scores of function were found for the more superior regions of these tracts. These significant correlations were stronger and more frequently found with the surface-based method (15/20 investigated were significant; R2 = 0.43–0.73) than the voxelwise analysis (2 sig. correlations; 0.38 & 0.49). More restricted fMRI signal, better-constrained tractography, and the novel track-classification method all appeared to contribute toward these differences. PMID:27487011
Kathage, Jonas; Castañera, Pedro; Alonso-Prados, José Luis; Gómez-Barbero, Manuel; Rodríguez-Cerezo, Emilio
2018-01-01
In 2013, the European Commission restricted the use of three neonicotinoids (clothianidin, imidacloprid and thiamethoxam) and the pyrazole fipronil, which are widely used to control early-season pests. Here, we used original farm survey data to examine the impact of the restrictions on pest management practices in eight regional case studies including maize, oilseed rape and sunflower in seven European Union (EU) countries. In four case studies, farmers switched to using untreated seeds as no alternative seed treatments were available. In three case studies, farmers switched to using unrestricted neonicotinoid- or pyrethroid-treated seeds. In five case studies, farmers increased the use of soil or foliar treatments, with pyrethroids as the principal insecticide class. Other changes in pest management practices ranged from increased sowing density to more frequent scouting for pests. Many farmers perceived that the time, cost and amount of insecticides required to protect crops increased, along with pest pressure. Alternative seed treatments were mostly perceived as being less effective than the restricted seed treatments. Farmers generally relied on alternative seed treatments or more soil/foliar treatments in the first growing season after the restrictions took effect. Further study is required to assess the effectiveness and sustainability of these alternatives compared with the restricted insecticides. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Growth of silicon carbide crystals on a seed while pulling silicon crystals from a melt
NASA Technical Reports Server (NTRS)
Ciszek, T. F.; Schwuttke, G. H. (Inventor)
1979-01-01
A saturated solution of silicon and an element such as carbon having a segregation coefficient less than unity is formed by placing a solid piece of carbon in a body of molten silicon having a temperature differential decreasing toward the surface. A silicon carbide seed crystal is disposed on a holder beneath the surface of the molten silicon. As a rod or ribbon of silicon is slowly pulled from the melt, a supersaturated solution of carbon in silicon is formed in the vicinity of the seed crystal. Excess carbon is emitted from the solution in the form of silicon carbide which crystallizes on the seed crystal held in the cool region of the melt.
NASA Astrophysics Data System (ADS)
Chapman, Alexander T.; Rivens, Ian H.; Thompson, Alan C.; ter Haar, Gail R.
2007-05-01
HIFU may be an effective salvage treatment for patients who develop local recurrence after permanent low-dose brachytherapy. It has been suggested that the presence of seeds in the prostate may obstruct the HIFU beam or alter the heating characteristics of the prostate tissue. Acoustic field measurements were made using a membrane hydrophone and lesioning experiments were carried out in ex vivo bovine liver. These revealed a significant effect of the seeds on the HIFU focal region as well as a reduction in lesion length when seeds were placed in a pre-focal position. Further work is needed to evaluate the full effects of implanted brachytherapy seeds on the clinical delivery of HIFU.
He, Yuehui; Gan, Susheng
2004-01-01
Seed dormancy is an important developmental process that prevents pre-harvest sprouting in many grains and other seeds. Abscisic acid (ABA), a plant hormone, plays a crucial role in regulating dormancy but the underlying molecular regulatory mechanisms are not fully understood. An Arabidopsis zinc-finger gene, MEDIATOR OF ABA-REGULATED DORMANCY 1 ( MARD1 ) was identified and functionally analyzed. MARD1 expression is up-regulated by ABA. A T-DNA insertion in the promoter region downstream of two ABA-responsive elements (ABREs) renders MARD1 unable to respond to ABA. The mard1 seeds are less dormant and germinate in total darkness; their germination is resistant to external ABA at the stage of radicle protrusion. These results suggest that this novel zinc-finger protein with a proline-rich N-terminus is an important downstream component of the ABA signaling pathway that mediates ABA-regulated seed dormancy in Arabidopsis.
Dunham, Amy E.; Duncan, Richard P.; Rogers, Haldre S.
2017-01-01
Dispersal is thought to be a key process underlying the high spatial diversity of tropical forests. Just how important dispersal is in structuring plant communities is nevertheless an open question because it is very difficult to isolate dispersal from other processes, and thereby measure its effect. Using a unique situation, the loss of vertebrate seed dispersers on the island of Guam and their presence on the neighboring islands of Saipan and Rota, we quantify the contribution of vertebrate seed dispersal to spatial patterns of diversity of tree seedlings in treefall gaps. The presence of vertebrate seed dispersers approximately doubled seedling species richness within canopy gaps and halved species turnover among gaps. Our study demonstrates that dispersal plays a key role in maintaining local and regional patterns of diversity, and highlights the potential for ongoing declines in vertebrate seed dispersers to profoundly alter tropical forest composition. PMID:28847937
Wandrag, Elizabeth M; Dunham, Amy E; Duncan, Richard P; Rogers, Haldre S
2017-10-03
Dispersal is thought to be a key process underlying the high spatial diversity of tropical forests. Just how important dispersal is in structuring plant communities is nevertheless an open question because it is very difficult to isolate dispersal from other processes, and thereby measure its effect. Using a unique situation, the loss of vertebrate seed dispersers on the island of Guam and their presence on the neighboring islands of Saipan and Rota, we quantify the contribution of vertebrate seed dispersal to spatial patterns of diversity of tree seedlings in treefall gaps. The presence of vertebrate seed dispersers approximately doubled seedling species richness within canopy gaps and halved species turnover among gaps. Our study demonstrates that dispersal plays a key role in maintaining local and regional patterns of diversity, and highlights the potential for ongoing declines in vertebrate seed dispersers to profoundly alter tropical forest composition.
Zeng, Shaoxiao; Chen, Bingyan; Zeng, Hongliang; Guo, Zebin; Lu, Xu; Zhang, Yi; Zheng, Baodong
2016-03-30
The objective of this study is to investigate the effect of microwave irradiation on the physicochemical and digestive properties of lotus seed starch. The physicochemical properties of lotus seed starch were characterized by light microscopy, (1)H NMR, FT-IR spectroscopy, and HPSEC-MALLS-RI. The starch-water interaction and crystalline region increased due to the changed water distribution of starch granules and the increase of the double-helix structure. The swelling power, amylose leaching, molecular properties, and radius of gyration reduced with the increasing microwave power, which further affected the sensitivity of lotus seed starch to enzymatic degradation. Furthermore, the resistant starch and slowly digestible starch increased with the increasing microwave irradiation, which further resulted in their decreasing hydrolysis index and glycemic index. The digestive properties of lotus seed starch were mainly influenced by the reduced branching degree of amylopectin and the strong amylose-amylose interaction.
Huang, Jihong; Ma, Keping; Huang, Jianhua
2017-01-01
Based on a great number of literatures, we established the database about the Chinese endemic seed plants and analyzed the compositions, growth form, distribution and angiosperm original families of them within three big natural areas and seven natural regions. The results indicate that the above characters of Chinese endemic plants take on relative rule at the different geographical scales. Among the three big natural areas, Eastern Monsoon area has the highest endemic plants richness, whereas Northwest Dryness area is the lowest. For life forms, herbs dominate. In contrast, the proportion of herbs of Eastern Monsoon area is remarkable under other two areas. Correspondingly the proportions of trees and shrubs are substantially higher than other two. For angiosperm original families, the number is the highest in Eastern Monsoon area, and lowest in Northwest Dryness area. On the other hand, among the seven natural regions, the humid and subtropical zone in Central and Southern China has the highest endemic plants richness, whereas the humid, hemi-humid region and temperate zone in Northeast China has the lowest. For life forms, the proportion of herbs tends to decrease from humid, hemi-humid region and temperate zone in Northeast China to humid and tropical zone in Southern China. Comparably, trees, shrubs and vines or lianas increase with the same directions. This fully represents these characters of Chinese endemic plants vary with latitudinal gradients. Furthermore, as to the number of endemic plants belonging to angiosperm original families, the number is the most in humid and subtropical zone in Center and Southern China, and tropical zone in Southern China in the next place. In contrast, the endemic plant of these two regions relatively is richer than that of The Qinghai-Tibet alpine and cold region. All above results sufficiently reflect that the Chinese endemic plants mainly distribute in Eastern Monsoon area, especially humid and subtropical zone in Center and Southern China and tropical zone in Southern China. Furthermore, the flora of Eastern Monsoon area, in particular humid and subtropical zone in Center and Southern China and tropical zone in Southern China, is more ancient and original than that of Northwest Dryness area and Qinghai-Tibet alpine and cold area.
Life-history traits predict perennial species response to fire in a desert ecosystem
Shryock, Daniel F; DeFalco, Lesley A; Esque, Todd C
2014-01-01
The Mojave Desert of North America has become fire-prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post-fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life-history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life-history traits and evaluated whether these groups exhibited a consistent fire-response. Six life-history traits varied significantly between burned and unburned areas in short (up to 4 years) or long-term (up to 52 years) post-fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life-history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind-dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non-wind dispersed seeds, and taller heights. Our results show that PFTs based on life-history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long-lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life-history strategies. PMID:25247062
Lee, Yung-I; Chung, Mei-Chu; Yeung, Edward C.; Lee, Nean
2015-01-01
Background and Aims Although abscisic acid (ABA) is commonly recognized as a primary cause of seed dormancy, there is a lack of information on the role of ABA during orchid seed development. In order to address this issue, the localization and quantification of ABA were determined in developing seeds of Cypripedium formosanum. Methods The endogenous ABA profile of seeds was measured by enzyme-linked immunosorbent assay (ELISA). Temporal and spatial distributions of ABA in developing seeds were visualized by immunohistochemical staining with monoclonal ABA antibodies. Fluoridone was applied to test the causal relationship between ABA content and seed germinability. Key Results ABA content was low at the proembryo stage, then increased rapidly from 120 to 150 days after pollination (DAP), accompanied by a progressive decrease in water content and seed germination. Immunofluorescence signals indicated an increase in fluorescence over time from the proembryo stage to seed maturation. From immunogold labelling, gold particles could be seen within the cytoplasm of embryo-proper cells during the early stages of seed development. As seeds approached maturity, increased localization of gold particles was observed in the periplasmic space, the plasmalemma between embryo-proper cells, the surface wall of the embryo proper, and the inner walls of inner seed-coat cells. At maturity, gold particles were found mainly in the apoplast, such as the surface wall of the embryo proper, and the shrivelled inner and outer seed coats. Injection of fluoridone into capsules resulted in enhanced germination of mature seeds. Conclusions The results indicate that ABA is the key inhibitor of germination in C. formosanum. The distinct accumulation pattern of ABA suggests that it is synthesized in the cytosol of embryo cells during the early stages of seed development, and then exported to the apoplastic region of the cells for subsequent regulatory processes as seeds approach maturity. PMID:26105185
NASA Astrophysics Data System (ADS)
Warrell, Gregory R.
Hyperthermia has long been known as a radiation therapy sensitizer of high potential; however successful delivery of this modality and integrating it with radiation have often proved technically difficult. We present the dual-modality thermobrachytherapy (TB) seed, based on the ubiquitous low dose-rate (LDR) brachytherapy permanent implant, as a simple and effective combination of hyperthermia and radiation therapy. Heat is generated from a ferromagnetic or ferrimagnetic core within the seed, which produces Joule heating by eddy currents. A strategically-selected Curie temperature provides thermal self-regulation. In order to obtain a uniform and sufficiently high temperature distribution, additional hyperthermia-only (HT-only) seeds are proposed to be used in vacant spots within the needles used to implant the TB seeds; this permits a high seed density without the use of additional needles. Experimental and computational studies were done both to optimize the design of the TB and HT-only seeds and to quantitatively assess their ability to heat and irradiate defined, patient-specific targets. Experiments were performed with seed-sized ferromagnetic samples in tissue-mimicking phantoms heated by an industrial induction heater. The magnetic and thermal properties of the seeds were studied computationally in the finite element analysis (FEA) solver COMSOL Multiphysics, modelling realistic patient-specific seed distributions. These distributions were derived from LDR permanent prostate implants previously conducted at our institution; various modifications of the seeds' design were studied. The calculated temperature distributions were analyzed by generating temperature-volume histograms, which were used to quantify coverage and temperature homogeneity for a range of blood perfusion rates, as well as for a range of seed Curie temperatures and thermal power production rates. The impact of the interseed attenuation and scatter (ISA) effect on radiation dose distributions of this seed was also quantified by Monte Carlo studies in the software package MCNP5. Experimental and computational analyses agree that the proposed seeds may heat a defined target with safe and attainable seed spacing and magnetic field parameters. These studies also point to the use of a ferrite-based ferrimagnetic core within the seeds, a design that would deliver hyperthermia of acceptable quality even for the high rate of blood perfusion in prostate tissue. The loss of radiation coverage due to the ISA effect of distributions of TB and HT-only seeds may be rectified by slightly increasing the prescribed dose in standard dose superposition-based treatment planning software. A systematic approach of combining LDR prostate brachytherapy with hyperthermia is thus described, and its ability to provide sufficient and uniform temperature distributions in realistic patient-specific implants evaluated. Potential improvements to the previously reported TB seed design are discussed based on quantitative evaluation of its operation and performance.
A Survey of MIKC Type MADS-Box Genes in Non-seed Plants: Algae, Bryophytes, Lycophytes and Ferns
Thangavel, Gokilavani; Nayar, Saraswati
2018-01-01
MADS box transcription factors have been studied extensively in flowering plants but remain less studied in non-seed plants. MADS box is one such example of a gene which is prevalent across many classes of plants ranging from chlorophyta to embryophyta as well as fungi and animals. MADS box transcription factors are of two types, Type I and Type II. Type II transcription factors (TF) that consist of a MADS domain, I region, K domain, and C terminal domain are discussed in this review. The Type II/ MIKC class is widespread across charophytes and all major lineages of land plants but unknown in green and red algae. These transcription factors have been implicated in floral development in seed plants and thus the question arises, “What is their role in non-seed plants?” From the studies reviewed here it can be gathered that unlike seed plants, MIKCC genes in non-seed plants have roles in both gametophytic and sporophytic generations and contribute to the development of both vegetative and reproductive structures. On the other hand as previously observed in seed plants, MIKC* genes of non-seed plants have a conserved role during gametophyte development. With respect to evolution of MIKC genes in non-seed plants, the number of common ancestors is probably very few at each branch. The expansion of this gene family in seed plants and increased plant complexity seem to be correlated. As gradually the genomes of non-seed plants are becoming available it is worthwhile to gather the existing information about MADS box genes in non-seed plants. This review highlights various MIKC MADS box genes discovered so far in non-seed plants, their possible roles and an insight into their evolution. PMID:29720991
A Survey of MIKC Type MADS-Box Genes in Non-seed Plants: Algae, Bryophytes, Lycophytes and Ferns.
Thangavel, Gokilavani; Nayar, Saraswati
2018-01-01
MADS box transcription factors have been studied extensively in flowering plants but remain less studied in non-seed plants. MADS box is one such example of a gene which is prevalent across many classes of plants ranging from chlorophyta to embryophyta as well as fungi and animals. MADS box transcription factors are of two types, Type I and Type II. Type II transcription factors (TF) that consist of a MADS domain, I region, K domain, and C terminal domain are discussed in this review. The Type II/ MIKC class is widespread across charophytes and all major lineages of land plants but unknown in green and red algae. These transcription factors have been implicated in floral development in seed plants and thus the question arises, "What is their role in non-seed plants?" From the studies reviewed here it can be gathered that unlike seed plants, MIKC C genes in non-seed plants have roles in both gametophytic and sporophytic generations and contribute to the development of both vegetative and reproductive structures. On the other hand as previously observed in seed plants, MIKC * genes of non-seed plants have a conserved role during gametophyte development. With respect to evolution of MIKC genes in non-seed plants, the number of common ancestors is probably very few at each branch. The expansion of this gene family in seed plants and increased plant complexity seem to be correlated. As gradually the genomes of non-seed plants are becoming available it is worthwhile to gather the existing information about MADS box genes in non-seed plants. This review highlights various MIKC MADS box genes discovered so far in non-seed plants, their possible roles and an insight into their evolution.
Growing a Forest for the Trees.
ERIC Educational Resources Information Center
Growing Ideas, 2001
2001-01-01
Describes a tree studies program in a fourth-grade classroom. Students collected local tree seeds and seeds from supermarket fruits, researched growing conditions, and grew seeds under various conditions. Students kept journals on local trees, observing seed dispersal mechanisms and examining rings on trunk slices. Inquiry-based tree studies…
Zhang, Danfeng; Wu, Suowei; An, Xueli; Xie, Ke; Dong, Zhenying; Zhou, Yan; Xu, Liwen; Fang, Wen; Liu, Shensi; Liu, Shuangshuang; Zhu, Taotao; Li, Jinping; Rao, Liqun; Zhao, Jiuran; Wan, Xiangyuan
2018-02-01
Although hundreds of genetic male sterility (GMS) mutants have been identified in maize, few are commercially used due to a lack of effective methods to produce large quantities of pure male-sterile seeds. Here, we develop a multicontrol sterility (MCS) system based on the maize male sterility 7 (ms7) mutant and its wild-type Zea mays Male sterility 7 (ZmMs7) gene via a transgenic strategy, leading to the utilization of GMS in hybrid seed production. ZmMs7 is isolated by a map-based cloning approach and encodes a PHD-finger transcription factor orthologous to rice PTC1 and Arabidopsis MS1. The MCS transgenic maintainer lines are developed based on the ms7-6007 mutant transformed with MCS constructs containing the (i) ZmMs7 gene to restore fertility, (ii) α-amylase gene ZmAA and/or (iii) DNA adenine methylase gene Dam to devitalize transgenic pollen, (iv) red fluorescence protein gene DsRed2 or mCherry to mark transgenic seeds and (v) herbicide-resistant gene Bar for transgenic seed selection. Self-pollination of the MCS transgenic maintainer line produces transgenic red fluorescent seeds and nontransgenic normal colour seeds at a 1:1 ratio. Among them, all the fluorescent seeds are male fertile, but the seeds with a normal colour are male sterile. Cross-pollination of the transgenic plants to male-sterile plants propagates male-sterile seeds with high purity. Moreover, the transgene transmission rate through pollen of transgenic plants harbouring two pollen-disrupted genes is lower than that containing one pollen-disrupted gene. The MCS system has great potential to enhance the efficiency of maize male-sterile line propagation and commercial hybrid seed production. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Tomato seeds maturity detection system based on chlorophyll fluorescence
NASA Astrophysics Data System (ADS)
Li, Cuiling; Wang, Xiu; Meng, Zhijun
2016-10-01
Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.
Fabric pilling measurement using three-dimensional image
NASA Astrophysics Data System (ADS)
Ouyang, Wenbin; Wang, Rongwu; Xu, Bugao
2013-10-01
We introduce a stereovision system and the three-dimensional (3-D) image analysis algorithms for fabric pilling measurement. Based on the depth information available in the 3-D image, the pilling detection process starts from the seed searching at local depth maxima to the region growing around the selected seeds using both depth and distance criteria. After the pilling detection, the density, height, and area of individual pills in the image can be extracted to describe the pilling appearance. According to the multivariate regression analysis on the 3-D images of 30 cotton fabrics treated by the random-tumble and home-laundering machines, the pilling grade is highly correlated with the pilling density (R=0.923) but does not consistently change with the pilling height and area. The pilling densities measured from the 3-D images also correlate well with those counted manually from the samples (R=0.985).
Regeneration of Douglas-fir in the Klamath Mountains region, California and Oregon
R. O. Strothmann; Douglass F. Roy
1984-01-01
Information on the regeneration of Douglas-fir, one of the most valuable timber species in the United States, is summarized, from seed production to care of young stands. General recommendations are given to guide the practitioner. Seed production can be increased by applying fertilizer and by stem girdling. To prepare sites for planting, mechanical, burning, chemical...
Fall sowing and delayed germination of western white pine seed
W. G. Wahlenberg
1924-01-01
Experiments to determine the best time to sow seed of western white pine (Pinus monticola) have been under way in the northern Rocky Mountain region since 1912, partly in northern Idaho at the Priest River Forest Experiment Station, but mainly at the Savenac nursery on the Lolo National Forest in western Montana. Climate and soil combine to make the problem essentially...
Growing Sandalwood in Nepal—Potential silvicultural methods and research priorities
Peter E. Neil
1990-01-01
Interest in sandalwood has increased recently in Nepal as a result of a royal directive to plant it in the Eastern Development Region. The most suitable seed sources, seed acquisition, nursery techniques, direct sowing and plantation establishment methods are discussed here on the basis of results from elsewhere. Suggestions are made as to what research is most needed...
Natural reproduction in certain cutover pine-fir stands in California
H.A. Fowells; G.H. Schubert
1951-01-01
Natural reproduction must provide future crops of timber on most of the forest land being placed under management in California. Relatively few acres will be planted or seeded in the near future because planting costs are high, facilities for undertaking large-scale planting are inadequate, and direct seeding has not yet proved satisfactory. In the pine region it is...
David Boose; Steven Harrison; Suzette Clement; Susan E. Meyer
2011-01-01
We examined genetic variation in the ascomycete pathogen Pyrenophora semeniperda cultured from seeds of the invasive grass Bromus tectorum in the Intermountain West of North America. We sequenced the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA genome in 417 monoconidial cultures collected from 20 sites in Washington, Idaho, Utah and Colorado,...
James Grogan; Jurandir Galvao
2006-01-01
Post-logging seedling regeneration density by big-leaf mahogany (Swietenia macrophylla), a nonpioneer light-demanding timber species, is generally reported to be low to nonexistent. To investigate factors limiting seedling density following logging within the study region, we quantified seed production rates, germinability, dispersal patterns, and seed fates on the...
[Procedure of seed quality testing and seed grading standard of Prunus humilis].
Wen, Hao; Ren, Guang-Xi; Gao, Ya; Luo, Jun; Liu, Chun-Sheng; Li, Wei-Dong
2014-11-01
So far there exists no corresponding quality test procedures and grading standards for the seed of Prunus humilis, which is one of the important source of base of semen pruni. Therefor we set up test procedures that are adapt to characteristics of the P. humilis seed through the study of the test of sampling, seed purity, thousand-grain weight, seed moisture, seed viability and germination percentage. 50 cases of seed specimens of P. humilis tested. The related data were analyzed by cluster analysis. Through this research, the seed quality test procedure was developed, and the seed quality grading standard was formulated. The seed quality of each grade should meet the following requirements: for first grade seeds, germination percentage ≥ 68%, thousand-grain weight 383 g, purity ≥ 93%, seed moisture ≤ 5%; for second grade seeds, germination percentage ≥ 26%, thousand-grain weight ≥ 266 g, purity ≥ 73%, seed moisture ≤9%; for third grade seeds, germination percentage ≥ 10%, purity ≥ 50%, thousand-grain weight ≥ 08 g, seed moisture ≤ 13%.
Majeed, Wafa; Aslam, Bilal; Javed, Ijaz; Khaliq, Tanweer; Muhammad, Faqir; Ali, Asghar; Raza, Ahmed
2015-11-01
The present study was carried out to investigate the antiulcer activity of Berberis vulgaris (Zereshk) seeds in albino mice. After acclimatization, animals were divided into six equal groups. Aspirin 150 mg/kg was used to induce gastric ulcer in all groups except normal control. Omeprazole 20mg/kg was used as synthetic anti ulcer drug in study. Three dose levels of B. vulgaris seed powder 300 mg/kg, 600 mg/kg and 900 mg/kg were used respectively orally. Histopathological analysis was carried out to evaluate the gastroprotective activity of B. vulgaris seed powder. Results of the study showed that in case of aspirin treated mice gastric luminal mucosa villi were decreased in height or were absent. In the glandular region there was connective tissue proliferation and also infiltration of cells. Similar infiltration of cells was present on muscularis mucosa. In esophageal region tumor cells were present. However three dose levels of B. vulgaris significantly reduced the tissue proliferation, infiltration of cells and sloughing induced by aspirin. Highest dose of B. vulgaris (900 mg/kg) showed similar results as synthetic antiulcer drug omeprazole.
Doucet, Gaëlle E.; Pustina, Dorian; Skidmore, Christopher; Sharan, Ashwini; Sperling, Michael R.; Tracy, Joseph I.
2015-01-01
In temporal lobe epilepsy (TLE), determining the hemispheric specialization for language before surgery is critical to preserving a patient's cognitive abilities post-surgery. To date, the major techniques utilized are limited by the capacity of patients to efficiently realize the task. We determined whether resting-state functional connectivity (rsFC) is a reliable predictor of language hemispheric dominance in right and left TLE patients, relative to controls. We chose three subregions of the inferior frontal cortex (pars orbitalis, pars triangularis and pars opercularis) as the seed regions. All participants performed both a verb generation task and a resting-state fMRI procedure. Based on the language task, we computed a laterality index (LI) for the resulting network. This revealed that 96% of the participants were left-hemisphere dominant, although there remained a large degree of variability in the strength of left lateralization. We tested whether LI correlated with rsFC values emerging from each seed. We revealed a set of regions that was specific to each group. Unique correlations involving the epileptic mesial temporal lobe were revealed for the right and left TLE patients, but not for the controls. Importantly, for both TLE groups, the rsFC emerging from a contralateral seed was the most predictive of LI. Overall, our data depict the broad patterns of rsFC that support strong versus weak left hemisphere language laterality. This project provides the first evidence that rsFC data may potentially be used on its own to verify the strength of hemispheric dominance for language in impaired or pathologic populations. PMID:25187327
7 CFR 361.6 - Noxious weed seeds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Noxious weed seeds. 361.6 Section 361.6 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE... measured from the base of the rachilla. (3) Seeds of legumes (Fabaceae) with the seed coats entirely...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT... percentages and germination percentages provided for in §§ 201.60 and 201.63 shall be determined from the mean...-live seed and fluorescence, and tolerances for purity based on 10 to 1,000 seeds, seedlings, or plants...
The development of regional functional connectivity in preterm infants into early childhood.
Lee, Wayne; Morgan, Benjamin R; Shroff, Manohar M; Sled, John G; Taylor, Margot J
2013-09-01
Resting state networks are proposed to reflect the neuronal connectivity that underlies cognitive processes. Consequently, abnormal behaviour of these networks due to disease or altered development may predict poor cognitive outcome. To understand how very preterm birth may affect the development of resting state connectivity, we followed a cohort of very preterm-born infants from birth through to 4 years of age using resting state functional MRI. From a larger longitudinal cohort of infants born very preterm (<32 weeks gestational age), 36 at birth, 30 at term, 21 two-year and 22 four-year resting state fMRI datasets were acquired. Using seed-based connectivity analyses with seeds in the anterior cingulate cortex, posterior cingulate cortex, left and right motor-hand regions and left and right temporal lobes, we investigated local and inter-region connectivity as a function of group and age. We found strong local connectivity during the preterm period, which matured into inter-hemispheric and preliminary default-mode network correlations by 4 years of age. This development is comparable to the resting state networks found in term-born infants of equivalent age. The results of this study suggest that differences in developmental trajectory between preterm-born and term-born infants are small and, if present, would require a large sample from both populations to be detected.
Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime
NASA Astrophysics Data System (ADS)
Lehmann, G.; Spatschek, K. H.
2013-07-01
Parametric plasma processes received renewed interest in the context of generating ultra-intense and ultra-short laser pulses up to the exawatt-zetawatt regime. Both Raman as well as Brillouin amplifications of seed pulses were proposed. Here, we investigate Brillouin processes in the one-dimensional (1D) backscattering geometry with the help of numerical simulations. For optimal seed amplification, Brillouin scattering is considered in the so called strong coupling (sc) regime. Special emphasis lies on the dependence of the amplification process on the finite duration of the initial seed pulses. First, the standard plane-wave instability predictions are generalized to pulse models, and the changes of initial seed pulse forms due to parametric instabilities are investigated. Three-wave-interaction results are compared to predictions by a new (kinetic) Vlasov code. The calculations are then extended to the nonlinear region with pump depletion. Generation of different seed layers is interpreted by self-similar solutions of the three-wave interaction model. Similar to Raman amplification, shadowing of the rear layers by the leading layers of the seed occurs. The shadowing is more pronounced for initially broad seed pulses. The effect is quantified for Brillouin amplification. Kinetic Vlasov simulations agree with the three-wave interaction predictions and thereby affirm the universal validity of self-similar layer formation during Brillouin seed amplification in the strong coupling regime.
Asikin, Yonathan; Kusumiyati; Taira, Eizo; Wada, Koji
2018-04-01
Petai seeds are one of the well-known strong-smelling foods of the Southeast Asian region that have been harvested and commercially offered in different ripening forms. The current study focused on alterations in the size, color, sugar composition, and volatile flavor properties of petai seeds in the four ripening stages (unripe, mid ripe, ripe, and over-ripe). The ripening process was mainly indicated by the increase in size and weight as seed color turned paler and less greenish. The total sugar content gradually increased during ripening, and then elevated from 1.60 g/100 g (ripe seed) to the level of 2.82 g/100 g in the over-ripe seed. Ripening also altered the volatile flavor composition of petai seed, wherein the predominant aldehydes (hexanal and acetaldehyde) were decreased, and the sulfuric compounds (hydrogen sulfide, methanethiol, and 1,2,4-trithiolane) tended to increase. Additionally, gas chromatography-olfactometry (GC-O) analysis revealed alterations in the perceived odor strength and sensation of each volatile compound and demonstrated volatile flavor profiles, viz. detection percentages of volatile group odor strengths and descriptive odors, of petai seed. These results provide valuable information for monitoring alterations in the physical appearance, sugar composition, and aroma that represent the flavor quality in seasonal petai seed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Galland, Marc; Huguet, Romain; Arc, Erwann; Cueff, Gwendal; Job, Dominique; Rajjou, Loïc
2014-01-01
During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [(35)S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment.
Galland, Marc; Huguet, Romain; Arc, Erwann; Cueff, Gwendal; Job, Dominique; Rajjou, Loïc
2014-01-01
During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [35S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment. PMID:24198433
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansley, R.J. Jr.
1983-01-01
Gardner saltbush (Atriplex gardneri (Moq.) D. Dietr.) provides valuable winter browse and is an important soil stabilizer in arid, alkaline, and saline areas of the intermountain region. However, seed dormancy and poor seedling vigor inhibit its potential for revegetation by direct seeding on disturbed lands. The objectives of this study were to 1) develop seed treatments which would overcome dormancy in Gardner saltbush seeds, 2) evaluate field establishment by direct seeding of Gardner saltbush, and 3) characterize seed dormancy, seedling vigor and some aspects of the ecology of germination in Gardner saltbush. In the laboratory, single and combined pretreatments removedmore » dormancy to varying degrees. Dormancy was completely alleviated with 15 months dry after-ripening + scarification + 24 hours washing + 4 weeks stratification. Dry after-ripening and scarification appeared to facilitate effects of washing and stratification. Physiologically, indirect evidence was obtained suggesting both embryo and seedcoat mediated dormancy occur in Gardner saltbush. Ecologically, the various levels of germination response to simulated environmental pretreatments appeared to be an adaptation of Gardner saltbush seeds to ensure a temporal dispersal of release from dormancy. This increases the probability that under natural conditions some seedlings will emerge during times when the environment is amenable to seedling survival.« less
Micro-PIXE studies of Lupinus angustifolius L. after treatment of seeds with molybdenum
NASA Astrophysics Data System (ADS)
Przybylowicz, W. J.; Mesjasz-Przybylowicz, J.; Wouters, K.; Vlassak, K.; Combrink, N. J. J.
1997-02-01
An example of nuclear microprobe application in agriculture is presented. The NAC nuclear microprobe was used to determine quantitative elemental distribution of major, minor and trace elements in Lupinus angustifolius L. (Leguminosae) after treatment of seeds with molybdenum. Experiments were performed in order to establish safe concentration levels and sources of Mo in seed treatments. Elemental distributions in Mo-treated plants and in the non-treated control plants were studied in order to explain how Mo causes toxicity. Some specific regions of Mo and other main and trace elements enrichment were identified.
Follicle Detection on the USG Images to Support Determination of Polycystic Ovary Syndrome
NASA Astrophysics Data System (ADS)
Adiwijaya; Purnama, B.; Hasyim, A.; Septiani, M. D.; Wisesty, U. N.; Astuti, W.
2015-06-01
Polycystic Ovary Syndrome(PCOS) is the most common endocrine disorders affected to female in their reproductive cycle. This has gained the attention from married couple which affected by infertility. One of the diagnostic criteria considereded by the doctor is analysing manually the ovary USG image to detect the number and size of ovary's follicle. This analysis may affect low varibilites, reproducibility, and efficiency. To overcome this problems. automatic scheme is suggested to detect the follicle on USG image in supporting PCOS diagnosis. The first scheme is determining the initial homogeneous region which will be segmented into real follicle form The next scheme is selecting the appropriate regions to follicle criteria. then measuring the segmented region attribute as the follicle. The measurement remains the number and size that aimed at categorizing the image into the PCOS or non-PCOS. The method used is region growing which includes region-based and seed-based. To measure the follicle diameter. there will be the different method including stereology and euclidean distance. The most optimum system plan to detect PCO is by using region growing and by using euclidean distance on quantification of follicle.
Gu, Dachuan; Chen, Chia-Yang; Zhao, Minglei; Zhao, Linmao; Duan, Xuewu; Duan, Jun; Wu, Keqiang; Liu, Xuncheng
2017-07-07
Light is a major external factor in regulating seed germination. Photoreceptor phytochrome B (PHYB) plays a predominant role in promoting seed germination in the initial phase after imbibition, partially by repressing phytochrome-interacting factor1 (PIF1). However, the mechanism underlying the PHYB-PIF1-mediated transcription regulation remains largely unclear. Here, we identified that histone deacetylase15 (HDA15) is a negative component of PHYB-dependent seed germination. Overexpression of HDA15 in Arabidopsis inhibits PHYB-dependent seed germination, whereas loss of function of HDA15 increases PHYB-dependent seed germination. Genetic evidence indicated that HDA15 acts downstream of PHYB and represses seed germination dependent on PIF1. Furthermore, HDA15 interacts with PIF1 both in vitro and in vivo. Genome-wide transcriptome analysis revealed that HDA15 and PIF1 co-regulate the transcription of the light-responsive genes involved in multiple hormonal signaling pathways and cellular processes in germinating seeds in the dark. In addition, PIF1 recruits HDA15 to the promoter regions of target genes and represses their expression by decreasing the histone H3 acetylation levels in the dark. Taken together, our analysis uncovered the role of histone deacetylation in the light-regulated seed germination process and identified that HDA15-PIF1 acts as a key repression module directing the transcription network of seed germination. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Gu, Dachuan; Chen, Chia-Yang; Zhao, Minglei; Zhao, Linmao; Duan, Xuewu
2017-01-01
Abstract Light is a major external factor in regulating seed germination. Photoreceptor phytochrome B (PHYB) plays a predominant role in promoting seed germination in the initial phase after imbibition, partially by repressing phytochrome-interacting factor1 (PIF1). However, the mechanism underlying the PHYB-PIF1-mediated transcription regulation remains largely unclear. Here, we identified that histone deacetylase15 (HDA15) is a negative component of PHYB-dependent seed germination. Overexpression of HDA15 in Arabidopsis inhibits PHYB-dependent seed germination, whereas loss of function of HDA15 increases PHYB-dependent seed germination. Genetic evidence indicated that HDA15 acts downstream of PHYB and represses seed germination dependent on PIF1. Furthermore, HDA15 interacts with PIF1 both in vitro and in vivo. Genome-wide transcriptome analysis revealed that HDA15 and PIF1 co-regulate the transcription of the light-responsive genes involved in multiple hormonal signaling pathways and cellular processes in germinating seeds in the dark. In addition, PIF1 recruits HDA15 to the promoter regions of target genes and represses their expression by decreasing the histone H3 acetylation levels in the dark. Taken together, our analysis uncovered the role of histone deacetylation in the light-regulated seed germination process and identified that HDA15-PIF1 acts as a key repression module directing the transcription network of seed germination. PMID:28444370
NASA Astrophysics Data System (ADS)
Zhang, Yu-Jin; Lu, Chun-Ming; Biswal, Bharat B.; Zang, Yu-Feng; Peng, Dan-Lin; Zhu, Chao-Zhe
2010-07-01
Functional connectivity has become one of the important approaches to understanding the functional organization of the human brain. Recently, functional near-infrared spectroscopy (fNIRS) was demonstrated as a feasible method to study resting-state functional connectivity (RSFC) in the sensory and motor systems. However, whether such fNIRS-based RSFC can be revealed in high-level and complex functional systems remains unknown. In the present study, the feasibility of such an approach is tested on the language system, of which the neural substrates have been well documented in the literature. After determination of a seed channel by a language localizer task, the correlation strength between the low frequency fluctuations of the fNIRS signal at the seed channel and those at all other channels is used to evaluate the language system RSFC. Our results show a significant RSFC between the left inferior frontal cortex and superior temporal cortex, components both associated with dominant language regions. Moreover, the RSFC map demonstrates left lateralization of the language system. In conclusion, the present study successfully utilized fNIRS-based RSFC to study a complex and high-level neural system, and provides further evidence for the validity of the fNIRS-based RSFC approach.
Piergiovanni, Angela R; Sparvoli, Francesca; Zaccardelli, Massimo
2012-08-30
An ecotype of the lima bean, named 'fagiolo a Formella', which, to the best of our knowledge, is the only example of an Italian lima bean (Phaseolus lunatus L.) ecotype, is cultivated in the Campania region of southern Italy. Physical, nutritional and processing traits of dry seeds were evaluated for two consecutive growing seasons (2009 and 2010). The canning quality was also investigated, but only for the harvest of 2010. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total seed proteins allowed the attribution of 'fagiolo a Formella' to the Mesoamerican gene pool and Sieva morphotype. Seeds have a trapezoid shape, white coat and 100-seed weight greater than 42 g. Yield, protein, trypsin inhibitor and phytic acid values were found comparable with those reported for lima bean varieties cultivated in sub-tropical areas. Moreover, we found that this ecotype is devoid of lectin. The good adaptation to growing environment is indicated by the fact that 'fagiolo a Formella' seed quality is comparable to that of lima beans grown in America. Overall the canning quality was found satisfactory and canning significantly destroys the main anti-nutritional compounds present in dry seeds. Copyright © 2012 Society of Chemical Industry.
Neotropical fish-fruit interactions: eco-evolutionary dynamics and conservation.
Correa, Sandra Bibiana; Costa-Pereira, Raul; Fleming, Theodore; Goulding, Michael; Anderson, Jill T
2015-11-01
Frugivorous fish play a prominent role in seed dispersal and reproductive dynamics of plant communities in riparian and floodplain habitats of tropical regions worldwide. In Neotropical wetlands, many plant species have fleshy fruits and synchronize their fruiting with the flood season, when fruit-eating fish forage in forest and savannahs for periods of up to 7 months. We conducted a comprehensive analysis to examine the evolutionary origin of fish-fruit interactions, describe fruit traits associated with seed dispersal and seed predation, and assess the influence of fish size on the effectiveness of seed dispersal by fish (ichthyochory). To date, 62 studies have documented 566 species of fruits and seeds from 82 plant families in the diets of 69 Neotropical fish species. Fish interactions with flowering plants are likely to be as old as 70 million years in the Neotropics, pre-dating most modern bird-fruit and mammal-fruit interactions, and contributing to long-distance seed dispersal and possibly the radiation of early angiosperms. Ichthyochory occurs across the angiosperm phylogeny, and is more frequent among advanced eudicots. Numerous fish species are capable of dispersing small seeds, but only a limited number of species can disperse large seeds. The size of dispersed seeds and the probability of seed dispersal both increase with fish size. Large-bodied species are the most effective seed dispersal agents and remain the primary target of fishing activities in the Neotropics. Thus, conservation efforts should focus on these species to ensure continuity of plant recruitment dynamics and maintenance of plant diversity in riparian and floodplain ecosystems. © 2015 Cambridge Philosophical Society.
High speed measurement of corn seed viability using hyperspectral imaging
NASA Astrophysics Data System (ADS)
Ambrose, Ashabahebwa; Kandpal, Lalit Mohan; Kim, Moon S.; Lee, Wang-Hee; Cho, Byoung-Kwan
2016-03-01
Corn is one of the most cultivated crops all over world as food for humans as well as animals. Optimized agronomic practices and improved technological interventions during planting, harvesting and post-harvest handling are critical to improving the quantity and quality of corn production. Seed germination and vigor are the primary determinants of high yield notwithstanding any other factors that may play during the growth period. Seed viability may be lost during storage due to unfavorable conditions e.g. moisture content and temperatures, or physical damage during mechanical processing e.g. shelling, or over heating during drying. It is therefore vital for seed companies and farmers to test and ascertain seed viability to avoid losses of any kind. This study aimed at investigating the possibility of using hyperspectral imaging (HSI) technique to discriminate viable and nonviable corn seeds. A group of corn samples were heat treated by using microwave process while a group of seeds were kept as control group (untreated). The hyperspectral images of corn seeds of both groups were captured between 400 and 2500 nm wave range. Partial least squares discriminant analysis (PLS-DA) was built for the classification of aged (heat treated) and normal (untreated) corn seeds. The model showed highest classification accuracy of 97.6% (calibration) and 95.6% (prediction) in the SWIR region of the HSI. Furthermore, the PLS-DA and binary images were capable to provide the visual information of treated and untreated corn seeds. The overall results suggest that HSI technique is accurate for classification of viable and non-viable seeds with non-destructive manner.
Hierarchical multivariate covariance analysis of metabolic connectivity
Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J
2014-01-01
Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI). PMID:25294129
An online x-ray based position validation system for prostate hypofractionated radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, Sankar, E-mail: Sankar.Arumugam@sswahs.nsw.gov.au; Xing, Aitang; Sidhom, Mark
Purpose: Accurate positioning of the target volume during treatment is paramount for stereotactic body radiation therapy (SBRT). In this work, the authors present the development of an in-house software tool to verify target position with an Elekta-Synergy linear accelerator using kV planar images acquired during treatment delivery. Methods: In-house software, SeedTracker, was developed in MATLAB to perform the following three functions: 1. predict intended seed positions in a planar view perpendicular to any gantry angle, simulating a portal imaging device, from the 3D seed co-ordinates derived from the treatment planning system; 2. autosegment seed positions in kV planar images; andmore » 3. report the position shift based on the seed positions in the projection images. The performance of SeedTracker was verified using a CIRS humanoid phantom (CIRS, VA, USA) implanted with three Civco gold seed markers (Civco, IA, USA) in the prostate. The true positive rate of autosegmentation (TPR{sub seg}) and the accuracy of the software in alerting the user when the isocenter position was outside the tolerance (TPR{sub trig}) were studied. Two-dimensional and 3D static position offsets introduced to the humanoid phantom and 3D dynamic offsets introduced to a gel phantom containing gold seeds were used for evaluation of the system. Results: SeedTracker showed a TPR{sub seg} of 100% in the humanoid phantom for projection images acquired at all angles except in the ranges of 80°–100° and 260°–280° where seeds are obscured by anatomy. This resulted in a TPR{sub trig} of 88% over the entire treatment range for considered 3D static offsets introduced to the phantom. For 2D static offsets where the position offsets were only introduced in the anterior–posterior and lateral directions, the TPR{sub trig} of SeedTracker was limited by both seed detectability and positional offset. SeedTracker showed a false positive trigger in the projection angle range between 130°–170° and 310°–350° (a maximum of 24% of treatment time) due to limited information that can be derived from monoscopic images. The system accurately determined the dynamic trajectory of the isocenter position in the superior and inferior direction for the studied dynamic offset scenarios based on the seed position in monoscopic images. Conclusions: The developed software has been shown to accurately autosegment the seed positions in kV planar images except for two 20° arcs where seeds are obscured by anatomical structures. The isocenter trajectories determined by the system, based on the monoscopic images, provide useful information for monitoring the prostate position. The developed system has potential application for monitoring prostate position during treatment delivery in linear accelerator based SBRT.« less
Annular core liquid-salt cooled reactor with multiple fuel and blanket zones
Peterson, Per F.
2013-05-14
A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.
About miRNAs, miRNA seeds, target genes and target pathways.
Kehl, Tim; Backes, Christina; Kern, Fabian; Fehlmann, Tobias; Ludwig, Nicole; Meese, Eckart; Lenhof, Hans-Peter; Keller, Andreas
2017-12-05
miRNAs are typically repressing gene expression by binding to the 3' UTR, leading to degradation of the mRNA. This process is dominated by the eight-base seed region of the miRNA. Further, miRNAs are known not only to target genes but also to target significant parts of pathways. A logical line of thoughts is: miRNAs with similar (seed) sequence target similar sets of genes and thus similar sets of pathways. By calculating similarity scores for all 3.25 million pairs of 2,550 human miRNAs, we found that this pattern frequently holds, while we also observed exceptions. Respective results were obtained for both, predicted target genes as well as experimentally validated targets. We note that miRNAs target gene set similarity follows a bimodal distribution, pointing at a set of 282 miRNAs that seems to target genes with very high specificity. Further, we discuss miRNAs with different (seed) sequences that nonetheless regulate similar gene sets or pathways. Most intriguingly, we found miRNA pairs that regulate different gene sets but similar pathways such as miR-6886-5p and miR-3529-5p. These are jointly targeting different parts of the MAPK signaling cascade. The main goal of this study is to provide a general overview on the results, to highlight a selection of relevant results on miRNAs, miRNA seeds, target genes and target pathways and to raise awareness for artifacts in respective comparisons. The full set of information that allows to infer detailed results on each miRNA has been included in miRPathDB, the miRNA target pathway database (https://mpd.bioinf.uni-sb.de).
Jin, Ye; Ni, Di-An; Ruan, Yong-Ling
2009-07-01
Invertase plays multiple pivotal roles in plant development. Thus, its activity must be tightly regulated in vivo. Emerging evidence suggests that a group of small proteins that inhibit invertase activity in vitro appears to exist in a wide variety of plants. However, little is known regarding their roles in planta. Here, we examined the function of INVINH1, a putative invertase inhibitor, in tomato (Solanum lycopersicum). Expression of a INVINH1:green fluorescent protein fusion revealed its apoplasmic localization. Ectopic overexpression of INVINH1 in Arabidopsis thaliana specifically reduced cell wall invertase activity. By contrast, silencing its expression in tomato significantly increased the activity of cell wall invertase without altering activities of cytoplasmic and vacuolar invertases. Elevation of cell wall invertase activity in RNA interference transgenic tomato led to (1) a prolonged leaf life span involving in a blockage of abscisic acid-induced senescence and (2) an increase in seed weight and fruit hexose level, which is likely achieved through enhanced sucrose hydrolysis in the apoplasm of the fruit vasculature. This assertion is based on (1) coexpression of INVINH1 and a fruit-specific cell wall invertase Lin5 in phloem parenchyma cells of young fruit, including the placenta regions connecting developing seeds; (2) a physical interaction between INVINH1 and Lin5 in vivo; and (3) a symplasmic discontinuity at the interface between placenta and seeds. Together, the results demonstrate that INVINH1 encodes a protein that specifically inhibits the activity of cell wall invertase and regulates leaf senescence and seed and fruit development in tomato by limiting the invertase activity in planta.