Sample records for based simulation methods

  1. Error simulation of paired-comparison-based scaling methods

    NASA Astrophysics Data System (ADS)

    Cui, Chengwu

    2000-12-01

    Subjective image quality measurement usually resorts to psycho physical scaling. However, it is difficult to evaluate the inherent precision of these scaling methods. Without knowing the potential errors of the measurement, subsequent use of the data can be misleading. In this paper, the errors on scaled values derived form paired comparison based scaling methods are simulated with randomly introduced proportion of choice errors that follow the binomial distribution. Simulation results are given for various combinations of the number of stimuli and the sampling size. The errors are presented in the form of average standard deviation of the scaled values and can be fitted reasonably well with an empirical equation that can be sued for scaling error estimation and measurement design. The simulation proves paired comparison based scaling methods can have large errors on the derived scaled values when the sampling size and the number of stimuli are small. Examples are also given to show the potential errors on actually scaled values of color image prints as measured by the method of paired comparison.

  2. Hybrid statistics-simulations based method for atom-counting from ADF STEM images.

    PubMed

    De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra

    2017-06-01

    A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Human swallowing simulation based on videofluorography images using Hamiltonian MPS method

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takahiro; Michiwaki, Yukihiro; Kamiya, Tetsu; Toyama, Yoshio; Tamai, Tasuku; Koshizuka, Seiichi

    2015-09-01

    In developed nations, swallowing disorders and aspiration pneumonia have become serious problems. We developed a method to simulate the behavior of the organs involved in swallowing to clarify the mechanisms of swallowing and aspiration. The shape model is based on anatomically realistic geometry, and the motion model utilizes forced displacements based on realistic dynamic images to reflect the mechanisms of human swallowing. The soft tissue organs are modeled as nonlinear elastic material using the Hamiltonian MPS method. This method allows for stable simulation of the complex swallowing movement. A penalty method using metaballs is employed to simulate contact between organ walls and smooth sliding along the walls. We performed four numerical simulations under different analysis conditions to represent four cases of swallowing, including a healthy volunteer and a patient with a swallowing disorder. The simulation results were compared to examine the epiglottic downfolding mechanism, which strongly influences the risk of aspiration.

  4. Utility of Combining a Simulation-Based Method With a Lecture-Based Method for Fundoscopy Training in Neurology Residency.

    PubMed

    Gupta, Deepak K; Khandker, Namir; Stacy, Kristin; Tatsuoka, Curtis M; Preston, David C

    2017-10-01

    Fundoscopic examination is an essential component of the neurologic examination. Competence in its performance is mandated as a required clinical skill for neurology residents by the American Council of Graduate Medical Education. Government and private insurance agencies require its performance and documentation for moderate- and high-level neurologic evaluations. Traditionally, assessment and teaching of this key clinical examination technique have been difficult in neurology residency training. To evaluate the utility of a simulation-based method and the traditional lecture-based method for assessment and teaching of fundoscopy to neurology residents. This study was a prospective, single-blinded, education research study of 48 neurology residents recruited from July 1, 2015, through June 30, 2016, at a large neurology residency training program. Participants were equally divided into control and intervention groups after stratification by training year. Baseline and postintervention assessments were performed using questionnaire, survey, and fundoscopy simulators. After baseline assessment, both groups initially received lecture-based training, which covered fundamental knowledge on the components of fundoscopy and key neurologic findings observed on fundoscopic examination. The intervention group additionally received simulation-based training, which consisted of an instructor-led, hands-on workshop that covered practical skills of performing fundoscopic examination and identifying neurologically relevant findings on another fundoscopy simulator. The primary outcome measures were the postintervention changes in fundoscopy knowledge, skills, and total scores. A total of 30 men and 18 women were equally distributed between the 2 groups. The intervention group had significantly higher mean (SD) increases in skills (2.5 [2.3] vs 0.8 [1.8], P = .01) and total (9.3 [4.3] vs 5.3 [5.8], P = .02) scores compared with the control group. Knowledge scores (6.8 [3

  5. Methods for simulation-based analysis of fluid-structure interaction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barone, Matthew Franklin; Payne, Jeffrey L.

    2005-10-01

    Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonalmore » decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.« less

  6. A novel method for energy harvesting simulation based on scenario generation

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Li, Taoshen; Xiao, Nan; Ye, Jin; Wu, Min

    2018-06-01

    Energy harvesting network (EHN) is a new form of computer networks. It converts ambient energy into usable electric energy and supply the electrical energy as a primary or secondary power source to the communication devices. However, most of the EHN uses the analytical probability distribution function to describe the energy harvesting process, which cannot accurately identify the actual situation for the lack of authenticity. We propose an EHN simulation method based on scenario generation in this paper. Firstly, instead of setting a probability distribution in advance, it uses optimal scenario reduction technology to generate representative scenarios in single period based on the historical data of the harvested energy. Secondly, it uses homogeneous simulated annealing algorithm to generate optimal daily energy harvesting scenario sequences to get a more accurate simulation of the random characteristics of the energy harvesting network. Then taking the actual wind power data as an example, the accuracy and stability of the method are verified by comparing with the real data. Finally, we cite an instance to optimize the network throughput, which indicate the feasibility and effectiveness of the method we proposed from the optimal solution and data analysis in energy harvesting simulation.

  7. Radial-based tail methods for Monte Carlo simulations of cylindrical interfaces

    NASA Astrophysics Data System (ADS)

    Goujon, Florent; Bêche, Bruno; Malfreyt, Patrice; Ghoufi, Aziz

    2018-03-01

    In this work, we implement for the first time the radial-based tail methods for Monte Carlo simulations of cylindrical interfaces. The efficiency of this method is then evaluated through the calculation of surface tension and coexisting properties. We show that the inclusion of tail corrections during the course of the Monte Carlo simulation impacts the coexisting and the interfacial properties. We establish that the long range corrections to the surface tension are the same order of magnitude as those obtained from planar interface. We show that the slab-based tail method does not amend the localization of the Gibbs equimolar dividing surface. Additionally, a non-monotonic behavior of surface tension is exhibited as a function of the radius of the equimolar dividing surface.

  8. Comparison of meaningful learning characteristics in simulated nursing practice after traditional versus computer-based simulation method: a qualitative videography study.

    PubMed

    Poikela, Paula; Ruokamo, Heli; Teräs, Marianne

    2015-02-01

    Nursing educators must ensure that nursing students acquire the necessary competencies; finding the most purposeful teaching methods and encouraging learning through meaningful learning opportunities is necessary to meet this goal. We investigated student learning in a simulated nursing practice using videography. The purpose of this paper is to examine how two different teaching methods presented students' meaningful learning in a simulated nursing experience. The 6-hour study was divided into three parts: part I, general information; part II, training; and part III, simulated nursing practice. Part II was delivered by two different methods: a computer-based simulation and a lecture. The study was carried out in the simulated nursing practice in two universities of applied sciences, in Northern Finland. The participants in parts II and I were 40 first year nursing students; 12 student volunteers continued to part III. Qualitative analysis method was used. The data were collected using video recordings and analyzed by videography. The students who used a computer-based simulation program were more likely to report meaningful learning themes than those who were first exposed to lecture method. Educators should be encouraged to use computer-based simulation teaching in conjunction with other teaching methods to ensure that nursing students are able to receive the greatest educational benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The Simulation of the Recharging Method Based on Solar Radiation for an Implantable Biosensor.

    PubMed

    Li, Yun; Song, Yong; Kong, Xianyue; Li, Maoyuan; Zhao, Yufei; Hao, Qun; Gao, Tianxin

    2016-09-10

    A method of recharging implantable biosensors based on solar radiation is proposed. Firstly, the models of the proposed method are developed. Secondly, the recharging processes based on solar radiation are simulated using Monte Carlo (MC) method and the energy distributions of sunlight within the different layers of human skin have been achieved and discussed. Finally, the simulation results are verified experimentally, which indicates that the proposed method will contribute to achieve a low-cost, convenient and safe method for recharging implantable biosensors.

  10. Application of State Quantization-Based Methods in HEP Particle Transport Simulation

    NASA Astrophysics Data System (ADS)

    Santi, Lucio; Ponieman, Nicolás; Jun, Soon Yung; Genser, Krzysztof; Elvira, Daniel; Castro, Rodrigo

    2017-10-01

    Simulation of particle-matter interactions in complex geometries is one of the main tasks in high energy physics (HEP) research. An essential aspect of it is an accurate and efficient particle transportation in a non-uniform magnetic field, which includes the handling of volume crossings within a predefined 3D geometry. Quantized State Systems (QSS) is a family of numerical methods that provides attractive features for particle transportation processes, such as dense output (sequences of polynomial segments changing only according to accuracy-driven discrete events) and lightweight detection and handling of volume crossings (based on simple root-finding of polynomial functions). In this work we present a proof-of-concept performance comparison between a QSS-based standalone numerical solver and an application based on the Geant4 simulation toolkit, with its default Runge-Kutta based adaptive step method. In a case study with a charged particle circulating in a vacuum (with interactions with matter turned off), in a uniform magnetic field, and crossing up to 200 volume boundaries twice per turn, simulation results showed speedups of up to 6 times in favor of QSS while it being 10 times slower in the case with zero volume boundaries.

  11. The Simulation of the Recharging Method Based on Solar Radiation for an Implantable Biosensor

    PubMed Central

    Li, Yun; Song, Yong; Kong, Xianyue; Li, Maoyuan; Zhao, Yufei; Hao, Qun; Gao, Tianxin

    2016-01-01

    A method of recharging implantable biosensors based on solar radiation is proposed. Firstly, the models of the proposed method are developed. Secondly, the recharging processes based on solar radiation are simulated using Monte Carlo (MC) method and the energy distributions of sunlight within the different layers of human skin have been achieved and discussed. Finally, the simulation results are verified experimentally, which indicates that the proposed method will contribute to achieve a low-cost, convenient and safe method for recharging implantable biosensors. PMID:27626422

  12. Method matters: impact of in-scenario instruction on simulation-based teamwork training.

    PubMed

    Escher, Cecilia; Rystedt, Hans; Creutzfeldt, Johan; Meurling, Lisbet; Nyström, Sofia; Dahlberg, Johanna; Edelbring, Samuel; Nordahl Amorøe, Torben; Hult, Håkan; Felländer-Tsai, Li; Abrandt-Dahlgren, Madeleine

    2017-01-01

    The rationale for introducing full-scale patient simulators in training to improve patient safety is to recreate clinical situations in a realistic setting. Although high-fidelity simulators mimic a wide range of human features, simulators differ from the body of a sick patient. The gap between the simulator and the human body implies a need for facilitators to provide information to help participants understand scenarios. The authors aimed at describing different methods that facilitators in our dataset used to provide such extra scenario information and how the different methods to convey information affected how scenarios played out. A descriptive qualitative study was conducted to examine the variation of methods to deliver extra scenario information to participants. A multistage approach was employed. The authors selected film clips from a shared database of 31 scenarios from three participating simulation centers. A multidisciplinary research team performed a collaborative analysis of representative film clips focusing on the interplay between participants, facilitators, and the physical environment. After that, the entire material was revisited to further examine and elaborate the initial findings. The material displayed four distinct methods for facilitators to convey information to participants in simulation-based teamwork training. The choice of method had impact on the participating teams regarding flow of work, pace, and team communication. Facilitators' close access to the teams' activities when present in the simulation suite, either embodied or disembodied in the simulation, facilitated the timing for providing information, which was critical for maintaining the flow of activities in the scenario. The mediation of information by a loudspeaker or an earpiece from the adjacent operator room could be disturbing for team communication. In-scenario instruction is an essential component of simulation-based teamwork training that has been largely overlooked

  13. A Wigner-based ray-tracing method for imaging simulations

    NASA Astrophysics Data System (ADS)

    Mout, B. M.; Wick, M.; Bociort, F.; Urbach, H. P.

    2015-09-01

    The Wigner Distribution Function (WDF) forms an alternative representation of the optical field. It can be a valuable tool for understanding and classifying optical systems. Furthermore, it possesses properties that make it suitable for optical simulations: both the intensity and the angular spectrum can be easily obtained from the WDF and the WDF remains constant along the paths of paraxial geometrical rays. In this study we use these properties by implementing a numerical Wigner-Based Ray-Tracing method (WBRT) to simulate diffraction effects at apertures in free-space and in imaging systems. Both paraxial and non-paraxial systems are considered and the results are compared with numerical implementations of the Rayleigh-Sommerfeld and Fresnel diffraction integrals to investigate the limits of the applicability of this approach. The results of the different methods are in good agreement when simulating free-space diffraction or calculating point spread functions (PSFs) for aberration-free imaging systems, even at numerical apertures exceeding the paraxial regime. For imaging systems with aberrations, the PSFs of WBRT diverge from the results using diffraction integrals. For larger aberrations WBRT predicts negative intensities, suggesting that this model is unable to deal with aberrations.

  14. Implementation of Simulation Based-Concept Attainment Method to Increase Interest Learning of Engineering Mechanics Topic

    NASA Astrophysics Data System (ADS)

    Sultan, A. Z.; Hamzah, N.; Rusdi, M.

    2018-01-01

    The implementation of concept attainment method based on simulation was used to increase student’s interest in the subjects Engineering of Mechanics in second semester of academic year 2016/2017 in Manufacturing Engineering Program, Department of Mechanical PNUP. The result of the implementation of this learning method shows that there is an increase in the students’ learning interest towards the lecture material which is summarized in the form of interactive simulation CDs and teaching materials in the form of printed books and electronic books. From the implementation of achievement method of this simulation based concept, it is noted that the increase of student participation in the presentation and discussion as well as the deposit of individual assignment of significant student. With the implementation of this method of learning the average student participation reached 89%, which before the application of this learning method only reaches an average of 76%. And also with previous learning method, for exam achievement of A-grade under 5% and D-grade above 8%. After the implementation of the new learning method (simulation based-concept attainment method) the achievement of Agrade has reached more than 30% and D-grade below 1%.

  15. A novel energy conversion based method for velocity correction in molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Hanhui; Collaborative Innovation Center of Advanced Aero-Engine, Hangzhou 310027; Liu, Ningning

    2017-05-01

    Molecular dynamics (MD) simulation has become an important tool for studying micro- or nano-scale dynamics and the statistical properties of fluids and solids. In MD simulations, there are mainly two approaches: equilibrium and non-equilibrium molecular dynamics (EMD and NEMD). In this paper, a new energy conversion based correction (ECBC) method for MD is developed. Unlike the traditional systematic correction based on macroscopic parameters, the ECBC method is developed strictly based on the physical interaction processes between the pair of molecules or atoms. The developed ECBC method can apply to EMD and NEMD directly. While using MD with this method, themore » difference between the EMD and NEMD is eliminated, and no macroscopic parameters such as external imposed potentials or coefficients are needed. With this method, many limits of using MD are lifted. The application scope of MD is greatly extended.« less

  16. Physics-based statistical model and simulation method of RF propagation in urban environments

    DOEpatents

    Pao, Hsueh-Yuan; Dvorak, Steven L.

    2010-09-14

    A physics-based statistical model and simulation/modeling method and system of electromagnetic wave propagation (wireless communication) in urban environments. In particular, the model is a computationally efficient close-formed parametric model of RF propagation in an urban environment which is extracted from a physics-based statistical wireless channel simulation method and system. The simulation divides the complex urban environment into a network of interconnected urban canyon waveguides which can be analyzed individually; calculates spectral coefficients of modal fields in the waveguides excited by the propagation using a database of statistical impedance boundary conditions which incorporates the complexity of building walls in the propagation model; determines statistical parameters of the calculated modal fields; and determines a parametric propagation model based on the statistical parameters of the calculated modal fields from which predictions of communications capability may be made.

  17. An Improved SoC Test Scheduling Method Based on Simulated Annealing Algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing; Shen, Zhihang; Gao, Huaien; Chen, Bianna; Zheng, Weida; Xiong, Xiaoming

    2017-02-01

    In this paper, we propose an improved SoC test scheduling method based on simulated annealing algorithm (SA). It is our first to disorganize IP core assignment for each TAM to produce a new solution for SA, allocate TAM width for each TAM using greedy algorithm and calculate corresponding testing time. And accepting the core assignment according to the principle of simulated annealing algorithm and finally attain the optimum solution. Simultaneously, we run the test scheduling experiment with the international reference circuits provided by International Test Conference 2002(ITC’02) and the result shows that our algorithm is superior to the conventional integer linear programming algorithm (ILP), simulated annealing algorithm (SA) and genetic algorithm(GA). When TAM width reaches to 48,56 and 64, the testing time based on our algorithm is lesser than the classic methods and the optimization rates are 30.74%, 3.32%, 16.13% respectively. Moreover, the testing time based on our algorithm is very close to that of improved genetic algorithm (IGA), which is state-of-the-art at present.

  18. A propagation method with adaptive mesh grid based on wave characteristics for wave optics simulation

    NASA Astrophysics Data System (ADS)

    Tang, Qiuyan; Wang, Jing; Lv, Pin; Sun, Quan

    2015-10-01

    Propagation simulation method and choosing mesh grid are both very important to get the correct propagation results in wave optics simulation. A new angular spectrum propagation method with alterable mesh grid based on the traditional angular spectrum method and the direct FFT method is introduced. With this method, the sampling space after propagation is not limited to propagation methods no more, but freely alterable. However, choosing mesh grid on target board influences the validity of simulation results directly. So an adaptive mesh choosing method based on wave characteristics is proposed with the introduced propagation method. We can calculate appropriate mesh grids on target board to get satisfying results. And for complex initial wave field or propagation through inhomogeneous media, we can also calculate and set the mesh grid rationally according to above method. Finally, though comparing with theoretical results, it's shown that the simulation result with the proposed method coinciding with theory. And by comparing with the traditional angular spectrum method and the direct FFT method, it's known that the proposed method is able to adapt to a wider range of Fresnel number conditions. That is to say, the method can simulate propagation results efficiently and correctly with propagation distance of almost zero to infinity. So it can provide better support for more wave propagation applications such as atmospheric optics, laser propagation and so on.

  19. 3D simulation of friction stir welding based on movable cellular automaton method

    NASA Astrophysics Data System (ADS)

    Eremina, Galina M.

    2017-12-01

    The paper is devoted to a 3D computer simulation of the peculiarities of material flow taking place in friction stir welding (FSW). The simulation was performed by the movable cellular automaton (MCA) method, which is a representative of particle methods in mechanics. Commonly, the flow of material in FSW is simulated based on computational fluid mechanics, assuming the material as continuum and ignoring its structure. The MCA method considers a material as an ensemble of bonded particles. The rupture of interparticle bonds and the formation of new bonds enable simulations of crack nucleation and healing as well as mas mixing and microwelding. The simulation results showed that using pins of simple shape (cylinder, cone, and pyramid) without a shoulder results in small displacements of plasticized material in workpiece thickness directions. Nevertheless, the optimal ratio of longitudinal velocity to rotational speed makes it possible to transport the welded material around the pin several times and to produce a joint of good quality.

  20. An efficient surrogate-based simulation-optimization method for calibrating a regional MODFLOW model

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.

    2017-01-01

    Simulation-optimization method entails a large number of model simulations, which is computationally intensive or even prohibitive if the model simulation is extremely time-consuming. Statistical models have been examined as a surrogate of the high-fidelity physical model during simulation-optimization process to tackle this problem. Among them, Multivariate Adaptive Regression Splines (MARS), a non-parametric adaptive regression method, is superior in overcoming problems of high-dimensions and discontinuities of the data. Furthermore, the stability and accuracy of MARS model can be improved by bootstrap aggregating methods, namely, bagging. In this paper, Bagging MARS (BMARS) method is integrated to a surrogate-based simulation-optimization framework to calibrate a three-dimensional MODFLOW model, which is developed to simulate the groundwater flow in an arid hardrock-alluvium region in northwestern Oman. The physical MODFLOW model is surrogated by the statistical model developed using BMARS algorithm. The surrogate model, which is fitted and validated using training dataset generated by the physical model, can approximate solutions rapidly. An efficient Sobol' method is employed to calculate global sensitivities of head outputs to input parameters, which are used to analyze their importance for the model outputs spatiotemporally. Only sensitive parameters are included in the calibration process to further improve the computational efficiency. Normalized root mean square error (NRMSE) between measured and simulated heads at observation wells is used as the objective function to be minimized during optimization. The reasonable history match between the simulated and observed heads demonstrated feasibility of this high-efficient calibration framework.

  1. Agent-based modeling: Methods and techniques for simulating human systems

    PubMed Central

    Bonabeau, Eric

    2002-01-01

    Agent-based modeling is a powerful simulation modeling technique that has seen a number of applications in the last few years, including applications to real-world business problems. After the basic principles of agent-based simulation are briefly introduced, its four areas of application are discussed by using real-world applications: flow simulation, organizational simulation, market simulation, and diffusion simulation. For each category, one or several business applications are described and analyzed. PMID:12011407

  2. Real-time simulation of ultrasound refraction phenomena using ray-trace based wavefront construction method.

    PubMed

    Szostek, Kamil; Piórkowski, Adam

    2016-10-01

    Ultrasound (US) imaging is one of the most popular techniques used in clinical diagnosis, mainly due to lack of adverse effects on patients and the simplicity of US equipment. However, the characteristics of the medium cause US imaging to imprecisely reconstruct examined tissues. The artifacts are the results of wave phenomena, i.e. diffraction or refraction, and should be recognized during examination to avoid misinterpretation of an US image. Currently, US training is based on teaching materials and simulators and ultrasound simulation has become an active research area in medical computer science. Many US simulators are limited by the complexity of the wave phenomena, leading to intensive sophisticated computation that makes it difficult for systems to operate in real time. To achieve the required frame rate, the vast majority of simulators reduce the problem of wave diffraction and refraction. The following paper proposes a solution for an ultrasound simulator based on methods known in geophysics. To improve simulation quality, a wavefront construction method was adapted which takes into account the refraction phenomena. This technique uses ray tracing and velocity averaging to construct wavefronts in the simulation. Instead of a geological medium, real CT scans are applied. This approach can produce more realistic projections of pathological findings and is also capable of providing real-time simulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Simulation Research on Vehicle Active Suspension Controller Based on G1 Method

    NASA Astrophysics Data System (ADS)

    Li, Gen; Li, Hang; Zhang, Shuaiyang; Luo, Qiuhui

    2017-09-01

    Based on the order relation analysis method (G1 method), the optimal linear controller of vehicle active suspension is designed. The system of the main and passive suspension of the single wheel vehicle is modeled and the system input signal model is determined. Secondly, the system motion state space equation is established by the kinetic knowledge and the optimal linear controller design is completed with the optimal control theory. The weighting coefficient of the performance index coefficients of the main passive suspension is determined by the relational analysis method. Finally, the model is simulated in Simulink. The simulation results show that: the optimal weight value is determined by using the sequence relation analysis method under the condition of given road conditions, and the vehicle acceleration, suspension stroke and tire motion displacement are optimized to improve the comprehensive performance of the vehicle, and the active control is controlled within the requirements.

  4. A Monte Carlo simulation based inverse propagation method for stochastic model updating

    NASA Astrophysics Data System (ADS)

    Bao, Nuo; Wang, Chunjie

    2015-08-01

    This paper presents an efficient stochastic model updating method based on statistical theory. Significant parameters have been selected implementing the F-test evaluation and design of experiments, and then the incomplete fourth-order polynomial response surface model (RSM) has been developed. Exploiting of the RSM combined with Monte Carlo simulation (MCS), reduces the calculation amount and the rapid random sampling becomes possible. The inverse uncertainty propagation is given by the equally weighted sum of mean and covariance matrix objective functions. The mean and covariance of parameters are estimated synchronously by minimizing the weighted objective function through hybrid of particle-swarm and Nelder-Mead simplex optimization method, thus the better correlation between simulation and test is achieved. Numerical examples of a three degree-of-freedom mass-spring system under different conditions and GARTEUR assembly structure validated the feasibility and effectiveness of the proposed method.

  5. Diffusion approximation-based simulation of stochastic ion channels: which method to use?

    PubMed Central

    Pezo, Danilo; Soudry, Daniel; Orio, Patricio

    2014-01-01

    To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie's method for Markov Chains (MC) simulation is highly accurate, yet it becomes computationally intensive in the regime of a high number of channels. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA). Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties—such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Goldwyn et al., 2011; Linaro et al., 2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Schmandt and Galán, 2012; Güler, 2013; Huang et al., 2013a), comparing all of them in a set of numerical simulations that assess numerical accuracy and computational efficiency on three different models: (1) the original Hodgkin and Huxley model, (2) a model with faster sodium channels, and (3) a multi-compartmental model inspired in granular cells. We conclude that for a low number of channels (usually below 1000 per simulated compartment) one should use MC—which is the fastest and most accurate method. For a high number of channels, we recommend using the method by Orio and Soudry (2012), possibly combined with the method by Schmandt and Galán (2012) for increased speed and slightly reduced accuracy. Consequently, MC modeling may be the best method for detailed multicompartment neuron models—in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels. PMID:25404914

  6. Face-based smoothed finite element method for real-time simulation of soft tissue

    NASA Astrophysics Data System (ADS)

    Mendizabal, Andrea; Bessard Duparc, Rémi; Bui, Huu Phuoc; Paulus, Christoph J.; Peterlik, Igor; Cotin, Stéphane

    2017-03-01

    In soft tissue surgery, a tumor and other anatomical structures are usually located using the preoperative CT or MR images. However, due to the deformation of the concerned tissues, this information suffers from inaccuracy when employed directly during the surgery. In order to account for these deformations in the planning process, the use of a bio-mechanical model of the tissues is needed. Such models are often designed using the finite element method (FEM), which is, however, computationally expensive, in particular when a high accuracy of the simulation is required. In our work, we propose to use a smoothed finite element method (S-FEM) in the context of modeling of the soft tissue deformation. This numerical technique has been introduced recently to overcome the overly stiff behavior of the standard FEM and to improve the solution accuracy and the convergence rate in solid mechanics problems. In this paper, a face-based smoothed finite element method (FS-FEM) using 4-node tetrahedral elements is presented. We show that in some cases, the method allows for reducing the number of degrees of freedom, while preserving the accuracy of the discretization. The method is evaluated on a simulation of a cantilever beam loaded at the free end and on a simulation of a 3D cube under traction and compression forces. Further, it is applied to the simulation of the brain shift and of the kidney's deformation. The results demonstrate that the method outperforms the standard FEM in a bending scenario and that has similar accuracy as the standard FEM in the simulations of the brain-shift and of the kidney's deformation.

  7. Pharmacovigilance data mining with methods based on false discovery rates: a comparative simulation study.

    PubMed

    Ahmed, I; Thiessard, F; Miremont-Salamé, G; Bégaud, B; Tubert-Bitter, P

    2010-10-01

    The early detection of adverse reactions caused by drugs that are already on the market is the prime concern of pharmacovigilance efforts; the methods in use for postmarketing surveillance are aimed at detecting signals pointing to potential safety concerns, on the basis of reports from health-care providers and from information available in various databases. Signal detection methods based on the estimation of false discovery rate (FDR) have recently been proposed. They address the limitation of arbitrary detection thresholds of the automatic methods in current use, including those last updated by the US Food and Drug Administration and the World Health Organization's Uppsala Monitoring Centre. We used two simulation procedures to compare the false-positive performances for three current methods: the reporting odds ratio (ROR), the information component (IC), the gamma Poisson shrinkage (GPS), and also for two FDR-based methods derived from the GPS model and Fisher's test. Large differences in FDR rates were associated with the signal-detection methods currently in use. These differences ranged from 0.01 to 12% in an analysis that was restricted to signals with at least three reports. The numbers of signals generated were also highly variable. Among fixed-size lists of signals, the FDR was lowered when the FDR-based approaches were used. Overall, the outcomes in both simulation studies suggest that improvement in effectiveness can be expected from use of the FDR-based GPS method.

  8. Collaborative simulation method with spatiotemporal synchronization process control

    NASA Astrophysics Data System (ADS)

    Zou, Yisheng; Ding, Guofu; Zhang, Weihua; Zhang, Jian; Qin, Shengfeng; Tan, John Kian

    2016-10-01

    When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently,a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.

  9. A simulation-based probabilistic design method for arctic sea transport systems

    NASA Astrophysics Data System (ADS)

    Martin, Bergström; Ove, Erikstad Stein; Sören, Ehlers

    2016-12-01

    When designing an arctic cargo ship, it is necessary to consider multiple stochastic factors. This paper evaluates the merits of a simulation-based probabilistic design method specifically developed to deal with this challenge. The outcome of the paper indicates that the incorporation of simulations and probabilistic design parameters into the design process enables more informed design decisions. For instance, it enables the assessment of the stochastic transport capacity of an arctic ship, as well as of its long-term ice exposure that can be used to determine an appropriate level of ice-strengthening. The outcome of the paper also indicates that significant gains in transport system cost-efficiency can be obtained by extending the boundaries of the design task beyond the individual vessel. In the case of industrial shipping, this allows for instance the consideration of port-based cargo storage facilities allowing for temporary shortages in transport capacity and thus a reduction in the required fleet size / ship capacity.

  10. Proposal of Classification Method of Time Series Data in International Emissions Trading Market Using Agent-based Simulation

    NASA Astrophysics Data System (ADS)

    Nakada, Tomohiro; Takadama, Keiki; Watanabe, Shigeyoshi

    This paper proposes the classification method using Bayesian analytical method to classify the time series data in the international emissions trading market depend on the agent-based simulation and compares the case with Discrete Fourier transform analytical method. The purpose demonstrates the analytical methods mapping time series data such as market price. These analytical methods have revealed the following results: (1) the classification methods indicate the distance of mapping from the time series data, it is easier the understanding and inference than time series data; (2) these methods can analyze the uncertain time series data using the distance via agent-based simulation including stationary process and non-stationary process; and (3) Bayesian analytical method can show the 1% difference description of the emission reduction targets of agent.

  11. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks

    PubMed Central

    2014-01-01

    Background Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity. Methods In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters. Results The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers. Conclusions The algorithm of probability graph isomorphism

  12. An interior-point method-based solver for simulation of aircraft parts riveting

    NASA Astrophysics Data System (ADS)

    Stefanova, Maria; Yakunin, Sergey; Petukhova, Margarita; Lupuleac, Sergey; Kokkolaras, Michael

    2018-05-01

    The particularities of the aircraft parts riveting process simulation necessitate the solution of a large amount of contact problems. A primal-dual interior-point method-based solver is proposed for solving such problems efficiently. The proposed method features a worst case polynomial complexity bound ? on the number of iterations, where n is the dimension of the problem and ε is a threshold related to desired accuracy. In practice, the convergence is often faster than this worst case bound, which makes the method applicable to large-scale problems. The computational challenge is solving the system of linear equations because the associated matrix is ill conditioned. To that end, the authors introduce a preconditioner and a strategy for determining effective initial guesses based on the physics of the problem. Numerical results are compared with ones obtained using the Goldfarb-Idnani algorithm. The results demonstrate the efficiency of the proposed method.

  13. Simulation Methods for Poisson Processes in Nonstationary Systems.

    DTIC Science & Technology

    1978-08-01

    for simulation of nonhomogeneous Poisson processes is stated with log-linear rate function. The method is based on an identity relating the...and relatively efficient new method for simulation of one-dimensional and two-dimensional nonhomogeneous Poisson processes is described. The method is

  14. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks.

    PubMed

    He, Jieyue; Wang, Chunyan; Qiu, Kunpu; Zhong, Wei

    2014-01-01

    Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity. In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters. The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers. The algorithm of probability graph isomorphism evaluation based on circuit simulation

  15. Misclassification Errors in Unsupervised Classification Methods. Comparison Based on the Simulation of Targeted Proteomics Data

    PubMed Central

    Andreev, Victor P; Gillespie, Brenda W; Helfand, Brian T; Merion, Robert M

    2016-01-01

    Unsupervised classification methods are gaining acceptance in omics studies of complex common diseases, which are often vaguely defined and are likely the collections of disease subtypes. Unsupervised classification based on the molecular signatures identified in omics studies have the potential to reflect molecular mechanisms of the subtypes of the disease and to lead to more targeted and successful interventions for the identified subtypes. Multiple classification algorithms exist but none is ideal for all types of data. Importantly, there are no established methods to estimate sample size in unsupervised classification (unlike power analysis in hypothesis testing). Therefore, we developed a simulation approach allowing comparison of misclassification errors and estimating the required sample size for a given effect size, number, and correlation matrix of the differentially abundant proteins in targeted proteomics studies. All the experiments were performed in silico. The simulated data imitated the expected one from the study of the plasma of patients with lower urinary tract dysfunction with the aptamer proteomics assay Somascan (SomaLogic Inc, Boulder, CO), which targeted 1129 proteins, including 330 involved in inflammation, 180 in stress response, 80 in aging, etc. Three popular clustering methods (hierarchical, k-means, and k-medoids) were compared. K-means clustering performed much better for the simulated data than the other two methods and enabled classification with misclassification error below 5% in the simulated cohort of 100 patients based on the molecular signatures of 40 differentially abundant proteins (effect size 1.5) from among the 1129-protein panel. PMID:27524871

  16. Simulation of tunneling construction methods of the Cisumdawu toll road

    NASA Astrophysics Data System (ADS)

    Abduh, Muhamad; Sukardi, Sapto Nugroho; Ola, Muhammad Rusdian La; Ariesty, Anita; Wirahadikusumah, Reini D.

    2017-11-01

    Simulation can be used as a tool for planning and analysis of a construction method. Using simulation technique, a contractor could design optimally resources associated with a construction method and compare to other methods based on several criteria, such as productivity, waste, and cost. This paper discusses the use of simulation using Norwegian Method of Tunneling (NMT) for a 472-meter tunneling work in the Cisumdawu Toll Road project. Primary and secondary data were collected to provide useful information for simulation as well as problems that may be faced by the contractor. The method was modelled using the CYCLONE and then simulated using the WebCYCLONE. The simulation could show the duration of the project from the duration model of each work tasks which based on literature review, machine productivity, and several assumptions. The results of simulation could also show the total cost of the project that was modeled based on journal construction & building unit cost and online websites of local and international suppliers. The analysis of the advantages and disadvantages of the method was conducted based on its, wastes, and cost. The simulation concluded the total cost of this operation is about Rp. 900,437,004,599 and the total duration of the tunneling operation is 653 days. The results of the simulation will be used for a recommendation to the contractor before the implementation of the already selected tunneling operation.

  17. Study on method to simulate light propagation on tissue with characteristics of radial-beam LED based on Monte-Carlo method.

    PubMed

    Song, Sangha; Elgezua, Inko; Kobayashi, Yo; Fujie, Masakatsu G

    2013-01-01

    In biomedical, Monte-carlo simulation is commonly used for simulation of light diffusion in tissue. But, most of previous studies did not consider a radial beam LED as light source. Therefore, we considered characteristics of a radial beam LED and applied them on MC simulation as light source. In this paper, we consider 3 characteristics of radial beam LED. The first is an initial launch area of photons. The second is an incident angle of a photon at an initial photon launching area. The third is the refraction effect according to contact area between LED and a turbid medium. For the verification of the MC simulation, we compared simulation and experimental results. The average of the correlation coefficient between simulation and experimental results is 0.9954. Through this study, we show an effective method to simulate light diffusion on tissue with characteristics for radial beam LED based on MC simulation.

  18. An agent-based method for simulating porous fluid-saturated structures with indistinguishable components

    NASA Astrophysics Data System (ADS)

    Kashani, Jamal; Pettet, Graeme John; Gu, YuanTong; Zhang, Lihai; Oloyede, Adekunle

    2017-10-01

    Single-phase porous materials contain multiple components that intermingle up to the ultramicroscopic level. Although the structures of the porous materials have been simulated with agent-based methods, the results of the available methods continue to provide patterns of distinguishable solid and fluid agents which do not represent materials with indistinguishable phases. This paper introduces a new agent (hybrid agent) and category of rules (intra-agent rule) that can be used to create emergent structures that would more accurately represent single-phase structures and materials. The novel hybrid agent carries the characteristics of system's elements and it is capable of changing within itself, while also responding to its neighbours as they also change. As an example, the hybrid agent under one-dimensional cellular automata formalism in a two-dimensional domain is used to generate patterns that demonstrate the striking morphological and characteristic similarities with the porous saturated single-phase structures where each agent of the ;structure; carries semi-permeability property and consists of both fluid and solid in space and at all times. We conclude that the ability of the hybrid agent to change locally provides an enhanced protocol to simulate complex porous structures such as biological tissues which could facilitate models for agent-based techniques and numerical methods.

  19. Simulations of Ground Motion in Southern California based upon the Spectral-Element Method

    NASA Astrophysics Data System (ADS)

    Tromp, J.; Komatitsch, D.; Liu, Q.

    2003-12-01

    We use the spectral-element method to simulate ground motion generated by recent well-recorded small earthquakes in Southern California. Simulations are performed using a new sedimentary basin model that is constrained by hundreds of petroleum industry well logs and more than twenty thousand kilometers of seismic reflection profiles. The numerical simulations account for 3D variations of seismic wave speeds and density, topography and bathymetry, and attenuation. Simulations for several small recent events demonstrate that the combination of a detailed sedimentary basin model and an accurate numerical technique facilitates the simulation of ground motion at periods of 2 seconds and longer inside the Los Angeles basin and 6 seconds and longer elsewhere. Peak ground displacement, velocity and acceleration maps illustrate that significant amplification occurs in the basin. Centroid-Moment Tensor mechanisms are obtained based upon Pnl and surface waveforms and numerically calculated 3D Frechet derivatives. We use a combination of waveform and waveform-envelope misfit criteria, and facilitate pure double-couple or zero-trace moment-tensor inversions.

  20. Canopy BRF simulation of forest with different crown shape and height in larger scale based on Radiosity method

    NASA Astrophysics Data System (ADS)

    Song, Jinling; Qu, Yonghua; Wang, Jindi; Wan, Huawei; Liu, Xiaoqing

    2007-06-01

    Radiosity method is based on the computer simulation of 3D real structures of vegetations, such as leaves, branches and stems, which are composed by many facets. Using this method we can simulate the canopy reflectance and its bidirectional distribution of the vegetation canopy in visible and NIR regions. But with vegetations are more complex, more facets to compose them, so large memory and lots of time to calculate view factors are required, which are the choke points of using Radiosity method to calculate canopy BRF of lager scale vegetation scenes. We derived a new method to solve the problem, and the main idea is to abstract vegetation crown shapes and to simplify their structures, which can lessen the number of facets. The facets are given optical properties according to the reflectance, transmission and absorption of the real structure canopy. Based on the above work, we can simulate the canopy BRF of the mix scenes with different species vegetation in the large scale. In this study, taking broadleaf trees as an example, based on their structure characteristics, we abstracted their crowns as ellipsoid shells, and simulated the canopy BRF in visible and NIR regions of the large scale scene with different crown shape and different height ellipsoids. Form this study, we can conclude: LAI, LAD the probability gap, the sunlit and shaded surfaces are more important parameter to simulate the simplified vegetation canopy BRF. And the Radiosity method can apply us canopy BRF data in any conditions for our research.

  1. Simulation-Based Valuation of Transactive Energy Systems

    DOE PAGES

    Huang, Qiuhua; McDermott, Tom; Tang, Yingying; ...

    2018-05-18

    Transactive Energy (TE) has been recognized as a promising technique for integrating responsive loads and distributed energy resources as well as advancing grid modernization. To help the industry better understand the value of TE and compare different TE schemes in a systematic and transparent manner, a comprehensive simulation-based TE valuation method is developed. The method has the following salient features: 1) it formally defines the valuation scenarios, use cases, baseline and valuation metrics; 2) an open-source simulation platform for transactive energy systems has been developed by integrating transmission, distribution and building simulators, and plugin TE and non-TE agents through themore » Framework for Network Co-Simulation (FNCS); 3) transparency and flexibility of the valuation is enhanced through separation of simulation and valuation, base valuation metrics and final valuation metrics. In conclusion, a valuation example based on the Smart Grid Interoperability Panel (SGIP) Use Case 1 is provided to demonstrate the developed TE simulation program and the valuation method.« less

  2. Simulation-Based Valuation of Transactive Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qiuhua; McDermott, Tom; Tang, Yingying

    Transactive Energy (TE) has been recognized as a promising technique for integrating responsive loads and distributed energy resources as well as advancing grid modernization. To help the industry better understand the value of TE and compare different TE schemes in a systematic and transparent manner, a comprehensive simulation-based TE valuation method is developed. The method has the following salient features: 1) it formally defines the valuation scenarios, use cases, baseline and valuation metrics; 2) an open-source simulation platform for transactive energy systems has been developed by integrating transmission, distribution and building simulators, and plugin TE and non-TE agents through themore » Framework for Network Co-Simulation (FNCS); 3) transparency and flexibility of the valuation is enhanced through separation of simulation and valuation, base valuation metrics and final valuation metrics. In conclusion, a valuation example based on the Smart Grid Interoperability Panel (SGIP) Use Case 1 is provided to demonstrate the developed TE simulation program and the valuation method.« less

  3. A Fatigue Crack Size Evaluation Method Based on Lamb Wave Simulation and Limited Experimental Data

    PubMed Central

    He, Jingjing; Ran, Yunmeng; Liu, Bin; Yang, Jinsong; Guan, Xuefei

    2017-01-01

    This paper presents a systematic and general method for Lamb wave-based crack size quantification using finite element simulations and Bayesian updating. The method consists of construction of a baseline quantification model using finite element simulation data and Bayesian updating with limited Lamb wave data from target structure. The baseline model correlates two proposed damage sensitive features, namely the normalized amplitude and phase change, with the crack length through a response surface model. The two damage sensitive features are extracted from the first received S0 mode wave package. The model parameters of the baseline model are estimated using finite element simulation data. To account for uncertainties from numerical modeling, geometry, material and manufacturing between the baseline model and the target model, Bayesian method is employed to update the baseline model with a few measurements acquired from the actual target structure. A rigorous validation is made using in-situ fatigue testing and Lamb wave data from coupon specimens and realistic lap-joint components. The effectiveness and accuracy of the proposed method is demonstrated under different loading and damage conditions. PMID:28902148

  4. Apparatus and method for interaction phenomena with world modules in data-flow-based simulation

    DOEpatents

    Xavier, Patrick G [Albuquerque, NM; Gottlieb, Eric J [Corrales, NM; McDonald, Michael J [Albuquerque, NM; Oppel, III, Fred J.

    2006-08-01

    A method and apparatus accommodate interaction phenomenon in a data-flow-based simulation of a system of elements, by establishing meta-modules to simulate system elements and by establishing world modules associated with interaction phenomena. World modules are associated with proxy modules from a group of meta-modules associated with one of the interaction phenomenon. The world modules include a communication world, a sensor world, a mobility world, and a contact world. World modules can be further associated with other world modules if necessary. Interaction phenomenon are simulated in corresponding world modules by accessing member functions in the associated group of proxy modules. Proxy modules can be dynamically allocated at a desired point in the simulation to accommodate the addition of elements in the system of elements such as a system of robots, a system of communication terminals, or a system of vehicles, being simulated.

  5. Wang-Landau Reaction Ensemble Method: Simulation of Weak Polyelectrolytes and General Acid-Base Reactions.

    PubMed

    Landsgesell, Jonas; Holm, Christian; Smiatek, Jens

    2017-02-14

    We present a novel method for the study of weak polyelectrolytes and general acid-base reactions in molecular dynamics and Monte Carlo simulations. The approach combines the advantages of the reaction ensemble and the Wang-Landau sampling method. Deprotonation and protonation reactions are simulated explicitly with the help of the reaction ensemble method, while the accurate sampling of the corresponding phase space is achieved by the Wang-Landau approach. The combination of both techniques provides a sufficient statistical accuracy such that meaningful estimates for the density of states and the partition sum can be obtained. With regard to these estimates, several thermodynamic observables like the heat capacity or reaction free energies can be calculated. We demonstrate that the computation times for the calculation of titration curves with a high statistical accuracy can be significantly decreased when compared to the original reaction ensemble method. The applicability of our approach is validated by the study of weak polyelectrolytes and their thermodynamic properties.

  6. Simulation-Based Bronchoscopy Training

    PubMed Central

    Kennedy, Cassie C.; Maldonado, Fabien

    2013-01-01

    Background: Simulation-based bronchoscopy training is increasingly used, but effectiveness remains uncertain. We sought to perform a comprehensive synthesis of published work on simulation-based bronchoscopy training. Methods: We searched MEDLINE, EMBASE, CINAHL, PsycINFO, ERIC, Web of Science, and Scopus for eligible articles through May 11, 2011. We included all original studies involving health professionals that evaluated, in comparison with no intervention or an alternative instructional approach, simulation-based training for flexible or rigid bronchoscopy. Study selection and data abstraction were performed independently and in duplicate. We pooled results using random effects meta-analysis. Results: From an initial pool of 10,903 articles, we identified 17 studies evaluating simulation-based bronchoscopy training. In comparison with no intervention, simulation training was associated with large benefits on skills and behaviors (pooled effect size, 1.21 [95% CI, 0.82-1.60]; n = 8 studies) and moderate benefits on time (0.62 [95% CI, 0.12-1.13]; n = 7). In comparison with clinical instruction, behaviors with real patients showed nonsignificant effects favoring simulation for time (0.61 [95% CI, −1.47 to 2.69]) and process (0.33 [95% CI, −1.46 to 2.11]) outcomes (n = 2 studies each), although variation in training time might account for these differences. Four studies compared alternate simulation-based training approaches. Inductive analysis to inform instructional design suggested that longer or more structured training is more effective, authentic clinical context adds value, and animal models and plastic part-task models may be superior to more costly virtual-reality simulators. Conclusions: Simulation-based bronchoscopy training is effective in comparison with no intervention. Comparative effectiveness studies are few. PMID:23370487

  7. Simulation and Feedback in Health Education: A Mixed Methods Study Comparing Three Simulation Modalities.

    PubMed

    Tait, Lauren; Lee, Kenneth; Rasiah, Rohan; Cooper, Joyce M; Ling, Tristan; Geelan, Benjamin; Bindoff, Ivan

    2018-05-03

    Background . There are numerous approaches to simulating a patient encounter in pharmacy education. However, little direct comparison between these approaches has been undertaken. Our objective was to investigate student experiences, satisfaction, and feedback preferences between three scenario simulation modalities (paper-, actor-, and computer-based). Methods . We conducted a mixed methods study with randomized cross-over of simulation modalities on final-year Australian graduate-entry Master of Pharmacy students. Participants completed case-based scenarios within each of three simulation modalities, with feedback provided at the completion of each scenario in a format corresponding to each simulation modality. A post-simulation questionnaire collected qualitative and quantitative responses pertaining to participant satisfaction, experiences, and feedback preferences. Results . Participants reported similar levels satisfaction across all three modalities. However, each modality resulted in unique positive and negative experiences, such as student disengagement with paper-based scenarios. Conclusion . Importantly, the themes of guidance and opportunity for peer discussion underlie the best forms of feedback for students. The provision of feedback following simulation should be carefully considered and delivered, with all three simulation modalities producing both positive and negative experiences in regard to their feedback format.

  8. A positional misalignment correction method for Fourier ptychographic microscopy based on simulated annealing

    NASA Astrophysics Data System (ADS)

    Sun, Jiasong; Zhang, Yuzhen; Chen, Qian; Zuo, Chao

    2017-02-01

    Fourier ptychographic microscopy (FPM) is a newly developed super-resolution technique, which employs angularly varying illuminations and a phase retrieval algorithm to surpass the diffraction limit of a low numerical aperture (NA) objective lens. In current FPM imaging platforms, accurate knowledge of LED matrix's position is critical to achieve good recovery quality. Furthermore, considering such a wide field-of-view (FOV) in FPM, different regions in the FOV have different sensitivity of LED positional misalignment. In this work, we introduce an iterative method to correct position errors based on the simulated annealing (SA) algorithm. To improve the efficiency of this correcting process, large number of iterations for several images with low illumination NAs are firstly implemented to estimate the initial values of the global positional misalignment model through non-linear regression. Simulation and experimental results are presented to evaluate the performance of the proposed method and it is demonstrated that this method can both improve the quality of the recovered object image and relax the LED elements' position accuracy requirement while aligning the FPM imaging platforms.

  9. A Novel Antibody Humanization Method Based on Epitopes Scanning and Molecular Dynamics Simulation

    PubMed Central

    Zhao, Bin-Bin; Gong, Lu-Lu; Jin, Wen-Jing; Liu, Jing-Jun; Wang, Jing-Fei; Wang, Tian-Tian; Yuan, Xiao-Hui; He, You-Wen

    2013-01-01

    1-17-2 is a rat anti-human DEC-205 monoclonal antibody that induces internalization and delivers antigen to dendritic cells (DCs). The potentially clinical application of this antibody is limited by its murine origin. Traditional humanization method such as complementarity determining regions (CDRs) graft often leads to a decreased or even lost affinity. Here we have developed a novel antibody humanization method based on computer modeling and bioinformatics analysis. First, we used homology modeling technology to build the precise model of Fab. A novel epitope scanning algorithm was designed to identify antigenic residues in the framework regions (FRs) that need to be mutated to human counterpart in the humanization process. Then virtual mutation and molecular dynamics (MD) simulation were used to assess the conformational impact imposed by all the mutations. By comparing the root-mean-square deviations (RMSDs) of CDRs, we found five key residues whose mutations would destroy the original conformation of CDRs. These residues need to be back-mutated to rescue the antibody binding affinity. Finally we constructed the antibodies in vitro and compared their binding affinity by flow cytometry and surface plasmon resonance (SPR) assay. The binding affinity of the refined humanized antibody was similar to that of the original rat antibody. Our results have established a novel method based on epitopes scanning and MD simulation for antibody humanization. PMID:24278299

  10. Study on numerical simulation of asymmetric structure aluminum profile extrusion based on ALE method

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Qu, Yuan; Ding, Siyi; Liu, Changhui; Yang, Fuyong

    2018-05-01

    Using the HyperXtrude module based on the Arbitrary Lagrangian-Eulerian (ALE) finite element method, the paper simulates the steady extrusion process of the asymmetric structure aluminum die successfully. A verification experiment is carried out to verify the simulation results. Having obtained and analyzed the stress-strain field, temperature field and extruded velocity of the metal, it confirms that the simulation prediction results and the experimental schemes are consistent. The scheme of the die correction and optimization are discussed at last. By adjusting the bearing length and core thickness, adopting the structure of feeder plate protection, short shunt bridge in the upper die and three-level bonding container in the lower die to control the metal flowing, the qualified aluminum profile can be obtained.

  11. Study of Flapping Flight Using Discrete Vortex Method Based Simulations

    NASA Astrophysics Data System (ADS)

    Devranjan, S.; Jalikop, Shreyas V.; Sreenivas, K. R.

    2013-12-01

    In recent times, research in the area of flapping flight has attracted renewed interest with an endeavor to use this mechanism in Micro Air vehicles (MAVs). For a sustained and high-endurance flight, having larger payload carrying capacity we need to identify a simple and efficient flapping-kinematics. In this paper, we have used flow visualizations and Discrete Vortex Method (DVM) based simulations for the study of flapping flight. Our results highlight that simple flapping kinematics with down-stroke period (tD) shorter than the upstroke period (tU) would produce a sustained lift. We have identified optimal asymmetry ratio (Ar = tD/tU), for which flapping-wings will produce maximum lift and find that introducing optimal wing flexibility will further enhances the lift.

  12. Constraint methods that accelerate free-energy simulations of biomolecules.

    PubMed

    Perez, Alberto; MacCallum, Justin L; Coutsias, Evangelos A; Dill, Ken A

    2015-12-28

    Atomistic molecular dynamics simulations of biomolecules are critical for generating narratives about biological mechanisms. The power of atomistic simulations is that these are physics-based methods that satisfy Boltzmann's law, so they can be used to compute populations, dynamics, and mechanisms. But physical simulations are computationally intensive and do not scale well to the sizes of many important biomolecules. One way to speed up physical simulations is by coarse-graining the potential function. Another way is to harness structural knowledge, often by imposing spring-like restraints. But harnessing external knowledge in physical simulations is problematic because knowledge, data, or hunches have errors, noise, and combinatoric uncertainties. Here, we review recent principled methods for imposing restraints to speed up physics-based molecular simulations that promise to scale to larger biomolecules and motions.

  13. RuleMonkey: software for stochastic simulation of rule-based models

    PubMed Central

    2010-01-01

    Background The system-level dynamics of many molecular interactions, particularly protein-protein interactions, can be conveniently represented using reaction rules, which can be specified using model-specification languages, such as the BioNetGen language (BNGL). A set of rules implicitly defines a (bio)chemical reaction network. The reaction network implied by a set of rules is often very large, and as a result, generation of the network implied by rules tends to be computationally expensive. Moreover, the cost of many commonly used methods for simulating network dynamics is a function of network size. Together these factors have limited application of the rule-based modeling approach. Recently, several methods for simulating rule-based models have been developed that avoid the expensive step of network generation. The cost of these "network-free" simulation methods is independent of the number of reactions implied by rules. Software implementing such methods is now needed for the simulation and analysis of rule-based models of biochemical systems. Results Here, we present a software tool called RuleMonkey, which implements a network-free method for simulation of rule-based models that is similar to Gillespie's method. The method is suitable for rule-based models that can be encoded in BNGL, including models with rules that have global application conditions, such as rules for intramolecular association reactions. In addition, the method is rejection free, unlike other network-free methods that introduce null events, i.e., steps in the simulation procedure that do not change the state of the reaction system being simulated. We verify that RuleMonkey produces correct simulation results, and we compare its performance against DYNSTOC, another BNGL-compliant tool for network-free simulation of rule-based models. We also compare RuleMonkey against problem-specific codes implementing network-free simulation methods. Conclusions RuleMonkey enables the simulation of

  14. Mass Conservation of the Unified Continuous and Discontinuous Element-Based Galerkin Methods on Dynamically Adaptive Grids with Application to Atmospheric Simulations

    DTIC Science & Technology

    2015-09-01

    Discontinuous Element-Based Galerkin Methods on Dynamically Adaptive Grids with Application to Atmospheric Simulations 5a. CONTRACT NUMBER 5b. GRANT NUMBER...Discontinuous Element-Based Galerkin Methods on Dynamically Adaptive Grids with Application to Atmospheric Simulations. Michal A. Koperaa,∗, Francis X...mass conservation, as it is an important feature for many atmospheric applications . We believe this is a good metric because, for smooth solutions

  15. Method for distributed agent-based non-expert simulation of manufacturing process behavior

    DOEpatents

    Ivezic, Nenad; Potok, Thomas E.

    2004-11-30

    A method for distributed agent based non-expert simulation of manufacturing process behavior on a single-processor computer comprises the steps of: object modeling a manufacturing technique having a plurality of processes; associating a distributed agent with each the process; and, programming each the agent to respond to discrete events corresponding to the manufacturing technique, wherein each discrete event triggers a programmed response. The method can further comprise the step of transmitting the discrete events to each agent in a message loop. In addition, the programming step comprises the step of conditioning each agent to respond to a discrete event selected from the group consisting of a clock tick message, a resources received message, and a request for output production message.

  16. Template-Based Geometric Simulation of Flexible Frameworks

    PubMed Central

    Wells, Stephen A.; Sartbaeva, Asel

    2012-01-01

    Specialised modelling and simulation methods implementing simplified physical models are valuable generators of insight. Template-based geometric simulation is a specialised method for modelling flexible framework structures made up of rigid units. We review the background, development and implementation of the method, and its applications to the study of framework materials such as zeolites and perovskites. The “flexibility window” property of zeolite frameworks is a particularly significant discovery made using geometric simulation. Software implementing geometric simulation of framework materials, “GASP”, is freely available to researchers. PMID:28817055

  17. Generalizing Gillespie’s Direct Method to Enable Network-Free Simulations

    DOE PAGES

    Suderman, Ryan T.; Mitra, Eshan David; Lin, Yen Ting; ...

    2018-03-28

    Gillespie’s direct method for stochastic simulation of chemical kinetics is a staple of computational systems biology research. However, the algorithm requires explicit enumeration of all reactions and all chemical species that may arise in the system. In many cases, this is not feasible due to the combinatorial explosion of reactions and species in biological networks. Rule-based modeling frameworks provide a way to exactly represent networks containing such combinatorial complexity, and generalizations of Gillespie’s direct method have been developed as simulation engines for rule-based modeling languages. Here, we provide both a high-level description of the algorithms underlying the simulation engines, termedmore » network-free simulation algorithms, and how they have been applied in systems biology research. We also define a generic rule-based modeling framework and describe a number of technical details required for adapting Gillespie’s direct method for network-free simulation. Lastly, we briefly discuss potential avenues for advancing network-free simulation and the role they continue to play in modeling dynamical systems in biology.« less

  18. Generalizing Gillespie’s Direct Method to Enable Network-Free Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suderman, Ryan T.; Mitra, Eshan David; Lin, Yen Ting

    Gillespie’s direct method for stochastic simulation of chemical kinetics is a staple of computational systems biology research. However, the algorithm requires explicit enumeration of all reactions and all chemical species that may arise in the system. In many cases, this is not feasible due to the combinatorial explosion of reactions and species in biological networks. Rule-based modeling frameworks provide a way to exactly represent networks containing such combinatorial complexity, and generalizations of Gillespie’s direct method have been developed as simulation engines for rule-based modeling languages. Here, we provide both a high-level description of the algorithms underlying the simulation engines, termedmore » network-free simulation algorithms, and how they have been applied in systems biology research. We also define a generic rule-based modeling framework and describe a number of technical details required for adapting Gillespie’s direct method for network-free simulation. Lastly, we briefly discuss potential avenues for advancing network-free simulation and the role they continue to play in modeling dynamical systems in biology.« less

  19. Interval sampling methods and measurement error: a computer simulation.

    PubMed

    Wirth, Oliver; Slaven, James; Taylor, Matthew A

    2014-01-01

    A simulation study was conducted to provide a more thorough account of measurement error associated with interval sampling methods. A computer program simulated the application of momentary time sampling, partial-interval recording, and whole-interval recording methods on target events randomly distributed across an observation period. The simulation yielded measures of error for multiple combinations of observation period, interval duration, event duration, and cumulative event duration. The simulations were conducted up to 100 times to yield measures of error variability. Although the present simulation confirmed some previously reported characteristics of interval sampling methods, it also revealed many new findings that pertain to each method's inherent strengths and weaknesses. The analysis and resulting error tables can help guide the selection of the most appropriate sampling method for observation-based behavioral assessments. © Society for the Experimental Analysis of Behavior.

  20. Simulation-Based Training for Colonoscopy

    PubMed Central

    Preisler, Louise; Svendsen, Morten Bo Søndergaard; Nerup, Nikolaj; Svendsen, Lars Bo; Konge, Lars

    2015-01-01

    Abstract The aim of this study was to create simulation-based tests with credible pass/fail standards for 2 different fidelities of colonoscopy models. Only competent practitioners should perform colonoscopy. Reliable and valid simulation-based tests could be used to establish basic competency in colonoscopy before practicing on patients. Twenty-five physicians (10 consultants with endoscopic experience and 15 fellows with very little endoscopic experience) were tested on 2 different simulator models: a virtual-reality simulator and a physical model. Tests were repeated twice on each simulator model. Metrics with discriminatory ability were identified for both modalities and reliability was determined. The contrasting-groups method was used to create pass/fail standards and the consequences of these were explored. The consultants significantly performed faster and scored higher than the fellows on both the models (P < 0.001). Reliability analysis showed Cronbach α = 0.80 and 0.87 for the virtual-reality and the physical model, respectively. The established pass/fail standards failed one of the consultants (virtual-reality simulator) and allowed one fellow to pass (physical model). The 2 tested simulations-based modalities provided reliable and valid assessments of competence in colonoscopy and credible pass/fail standards were established for both the tests. We propose to use these standards in simulation-based training programs before proceeding to supervised training on patients. PMID:25634177

  1. Matrix method for acoustic levitation simulation.

    PubMed

    Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C

    2011-08-01

    A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.

  2. The Seepage Simulation of Single Hole and Composite Gas Drainage Based on LB Method

    NASA Astrophysics Data System (ADS)

    Chen, Yanhao; Zhong, Qiu; Gong, Zhenzhao

    2018-01-01

    Gas drainage is the most effective method to prevent and solve coal mine gas power disasters. It is very important to study the seepage flow law of gas in fissure coal gas. The LB method is a simplified computational model based on micro-scale, especially for the study of seepage problem. Based on fracture seepage mathematical model on the basis of single coal gas drainage, using the LB method during coal gas drainage of gas flow numerical simulation, this paper maps the single-hole drainage gas, symmetric slot and asymmetric slot, the different width of the slot combined drainage area gas flow under working condition of gas cloud of gas pressure, flow path diagram and flow velocity vector diagram, and analyses the influence on gas seepage field under various working conditions, and also discusses effective drainage method of the center hole slot on both sides, and preliminary exploration that is related to the combination of gas drainage has been carried on as well.

  3. Reliability-based design optimization using a generalized subset simulation method and posterior approximation

    NASA Astrophysics Data System (ADS)

    Ma, Yuan-Zhuo; Li, Hong-Shuang; Yao, Wei-Xing

    2018-05-01

    The evaluation of the probabilistic constraints in reliability-based design optimization (RBDO) problems has always been significant and challenging work, which strongly affects the performance of RBDO methods. This article deals with RBDO problems using a recently developed generalized subset simulation (GSS) method and a posterior approximation approach. The posterior approximation approach is used to transform all the probabilistic constraints into ordinary constraints as in deterministic optimization. The assessment of multiple failure probabilities required by the posterior approximation approach is achieved by GSS in a single run at all supporting points, which are selected by a proper experimental design scheme combining Sobol' sequences and Bucher's design. Sequentially, the transformed deterministic design optimization problem can be solved by optimization algorithms, for example, the sequential quadratic programming method. Three optimization problems are used to demonstrate the efficiency and accuracy of the proposed method.

  4. A reduced basis method for molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Vincent-Finley, Rachel Elisabeth

    In this dissertation, we develop a method for molecular simulation based on principal component analysis (PCA) of a molecular dynamics trajectory and least squares approximation of a potential energy function. Molecular dynamics (MD) simulation is a computational tool used to study molecular systems as they evolve through time. With respect to protein dynamics, local motions, such as bond stretching, occur within femtoseconds, while rigid body and large-scale motions, occur within a range of nanoseconds to seconds. To capture motion at all levels, time steps on the order of a femtosecond are employed when solving the equations of motion and simulations must continue long enough to capture the desired large-scale motion. To date, simulations of solvated proteins on the order of nanoseconds have been reported. It is typically the case that simulations of a few nanoseconds do not provide adequate information for the study of large-scale motions. Thus, the development of techniques that allow longer simulation times can advance the study of protein function and dynamics. In this dissertation we use principal component analysis (PCA) to identify the dominant characteristics of an MD trajectory and to represent the coordinates with respect to these characteristics. We augment PCA with an updating scheme based on a reduced representation of a molecule and consider equations of motion with respect to the reduced representation. We apply our method to butane and BPTI and compare the results to standard MD simulations of these molecules. Our results indicate that the molecular activity with respect to our simulation method is analogous to that observed in the standard MD simulation with simulations on the order of picoseconds.

  5. Detached eddy simulation for turbulent fluid-structure interaction of moving bodies using the constraint-based immersed boundary method

    NASA Astrophysics Data System (ADS)

    Nangia, Nishant; Bhalla, Amneet P. S.; Griffith, Boyce E.; Patankar, Neelesh A.

    2016-11-01

    Flows over bodies of industrial importance often contain both an attached boundary layer region near the structure and a region of massively separated flow near its trailing edge. When simulating these flows with turbulence modeling, the Reynolds-averaged Navier-Stokes (RANS) approach is more efficient in the former, whereas large-eddy simulation (LES) is more accurate in the latter. Detached-eddy simulation (DES), based on the Spalart-Allmaras model, is a hybrid method that switches from RANS mode of solution in attached boundary layers to LES in detached flow regions. Simulations of turbulent flows over moving structures on a body-fitted mesh incur an enormous remeshing cost every time step. The constraint-based immersed boundary (cIB) method eliminates this operation by placing the structure on a Cartesian mesh and enforcing a rigidity constraint as an additional forcing in the Navier-Stokes momentum equation. We outline the formulation and development of a parallel DES-cIB method using adaptive mesh refinement. We show preliminary validation results for flows past stationary bodies with both attached and separated boundary layers along with results for turbulent flows past moving bodies. This work is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1324585.

  6. National Clinical Skills Competition: an effective simulation-based method to improve undergraduate medical education in China.

    PubMed

    Jiang, Guanchao; Chen, Hong; Wang, Qiming; Chi, Baorong; He, Qingnan; Xiao, Haipeng; Zhou, Qinghuan; Liu, Jing; Wang, Shan

    2016-01-01

    Background The National Clinical Skills Competition has been held in China for 5 consecutive years since 2010 to promote undergraduate education reform and improve the teaching quality. The effects of the simulation-based competition will be analyzed in this study. Methods Participation in the competitions and the compilation of the questions used in the competition finals are summarized, and the influence and guidance quality are further analyzed. Through the nationwide distribution of questionnaires in medical colleges, the effects of the simulation-based competition on promoting undergraduate medical education reform were evaluated. Results The results show that approximately 450 students from more than 110 colleges (accounting for 81% of colleges providing undergraduate clinical medical education in China) participated in the competition each year. The knowledge, skills, and attitudes were comprehensively evaluated by simulation-based assessment. Eight hundred and eighty copies of the questionnaires were distributed to 110 participating medical schools in 2015. In total, 752 valid responses were received across 95 schools. The majority of the interviewees agreed or strongly agreed that competition promoted the adoption of advanced educational principles (76.8%), updated the curriculum model and instructional methods (79.8%), strengthened faculty development (84.0%), improved educational resources (82.1%), and benefited all students (53.4%). Conclusions The National Clinical Skills Competition is widely accepted in China. It has effectively promoted the reform and development of undergraduate medical education in China.

  7. Observing system simulation experiments with multiple methods

    NASA Astrophysics Data System (ADS)

    Ishibashi, Toshiyuki

    2014-11-01

    An observing System Simulation Experiment (OSSE) is a method to evaluate impacts of hypothetical observing systems on analysis and forecast accuracy in numerical weather prediction (NWP) systems. Since OSSE requires simulations of hypothetical observations, uncertainty of OSSE results is generally larger than that of observing system experiments (OSEs). To reduce such uncertainty, OSSEs for existing observing systems are often carried out as calibration of the OSSE system. The purpose of this study is to achieve reliable OSSE results based on results of OSSEs with multiple methods. There are three types of OSSE methods. The first one is the sensitivity observing system experiment (SOSE) based OSSE (SOSEOSSE). The second one is the ensemble of data assimilation cycles (ENDA) based OSSE (ENDA-OSSE). The third one is the nature-run (NR) based OSSE (NR-OSSE). These three OSSE methods have very different properties. The NROSSE evaluates hypothetical observations in a virtual (hypothetical) world, NR. The ENDA-OSSE is very simple method but has a sampling error problem due to a small size ensemble. The SOSE-OSSE requires a very highly accurate analysis field as a pseudo truth of the real atmosphere. We construct these three types of OSSE methods in the Japan meteorological Agency (JMA) global 4D-Var experimental system. In the conference, we will present initial results of these OSSE systems and their comparisons.

  8. Algorithms and architecture for multiprocessor based circuit simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, J.T.

    Accurate electrical simulation is critical to the design of high performance integrated circuits. Logic simulators can verify function and give first-order timing information. Switch level simulators are more effective at dealing with charge sharing than standard logic simulators, but cannot provide accurate timing information or discover DC problems. Delay estimation techniques and cell level simulation can be used in constrained design methods, but must be tuned for each application, and circuit simulation must still be used to generate the cell models. None of these methods has the guaranteed accuracy that many circuit designers desire, and none can provide detailed waveformmore » information. Detailed electrical-level simulation can predict circuit performance if devices and parasitics are modeled accurately. However, the computational requirements of conventional circuit simulators make it impractical to simulate current large circuits. In this dissertation, the implementation of Iterated Timing Analysis (ITA), a relaxation-based technique for accurate circuit simulation, on a special-purpose multiprocessor is presented. The ITA method is an SOR-Newton, relaxation-based method which uses event-driven analysis and selective trace to exploit the temporal sparsity of the electrical network. Because event-driven selective trace techniques are employed, this algorithm lends itself to implementation on a data-driven computer.« less

  9. On-orbit servicing system assessment and optimization methods based on lifecycle simulation under mixed aleatory and epistemic uncertainties

    NASA Astrophysics Data System (ADS)

    Yao, Wen; Chen, Xiaoqian; Huang, Yiyong; van Tooren, Michel

    2013-06-01

    To assess the on-orbit servicing (OOS) paradigm and optimize its utilities by taking advantage of its inherent flexibility and responsiveness, the OOS system assessment and optimization methods based on lifecycle simulation under uncertainties are studied. The uncertainty sources considered in this paper include both the aleatory (random launch/OOS operation failure and on-orbit component failure) and the epistemic (the unknown trend of the end-used market price) types. Firstly, the lifecycle simulation under uncertainties is discussed. The chronological flowchart is presented. The cost and benefit models are established, and the uncertainties thereof are modeled. The dynamic programming method to make optimal decision in face of the uncertain events is introduced. Secondly, the method to analyze the propagation effects of the uncertainties on the OOS utilities is studied. With combined probability and evidence theory, a Monte Carlo lifecycle Simulation based Unified Uncertainty Analysis (MCS-UUA) approach is proposed, based on which the OOS utility assessment tool under mixed uncertainties is developed. Thirdly, to further optimize the OOS system under mixed uncertainties, the reliability-based optimization (RBO) method is studied. To alleviate the computational burden of the traditional RBO method which involves nested optimum search and uncertainty analysis, the framework of Sequential Optimization and Mixed Uncertainty Analysis (SOMUA) is employed to integrate MCS-UUA, and the RBO algorithm SOMUA-MCS is developed. Fourthly, a case study on the OOS system for a hypothetical GEO commercial communication satellite is investigated with the proposed assessment tool. Furthermore, the OOS system is optimized with SOMUA-MCS. Lastly, some conclusions are given and future research prospects are highlighted.

  10. Mock ECHO: A Simulation-Based Medical Education Method.

    PubMed

    Fowler, Rebecca C; Katzman, Joanna G; Comerci, George D; Shelley, Brian M; Duhigg, Daniel; Olivas, Cynthia; Arnold, Thomas; Kalishman, Summers; Monnette, Rebecca; Arora, Sanjeev

    2018-04-16

    This study was designed to develop a deeper understanding of the learning and social processes that take place during the simulation-based medical education for practicing providers as part of the Project ECHO® model, known as Mock ECHO training. The ECHO model is utilized to expand access to care of common and complex diseases by supporting the education of primary care providers with an interprofessional team of specialists via videoconferencing networks. Mock ECHO trainings are conducted through a train the trainer model targeted at leaders replicating the ECHO model at their organizations. Trainers conduct simulated teleECHO clinics while participants gain skills to improve communication and self-efficacy. Three focus groups, conducted between May 2015 and January 2016 with a total of 26 participants, were deductively analyzed to identify common themes related to simulation-based medical education and interdisciplinary education. Principal themes generated from the analysis included (a) the role of empathy in community development, (b) the value of training tools as guides for learning, (c) Mock ECHO design components to optimize learning, (d) the role of interdisciplinary education to build community and improve care delivery, (e) improving care integration through collaboration, and (f) development of soft skills to facilitate learning. Mock ECHO trainings offer clinicians the freedom to learn in a noncritical environment while emphasizing real-time multidirectional feedback and encouraging knowledge and skill transfer. The success of the ECHO model depends on training interprofessional healthcare providers in behaviors needed to lead a teleECHO clinic and to collaborate in the educational process. While building a community of practice, Mock ECHO provides a safe opportunity for a diverse group of clinician experts to practice learned skills and receive feedback from coparticipants and facilitators.

  11. Minimizing the Discrepancy between Simulated and Historical Failures in Turbine Engines: A Simulation-Based Optimization Method (Postprint)

    DTIC Science & Technology

    2015-01-01

    Procedure. The simulated annealing (SA) algorithm is a well-known local search metaheuristic used to address discrete, continuous, and multiobjective...design of experiments (DOE) to tune the parameters of the optimiza- tion algorithm . Section 5 shows the results of the case study. Finally, concluding... metaheuristic . The proposed method is broken down into two phases. Phase I consists of a Monte Carlo simulation to obtain the simulated percentage of failure

  12. Knowledge-based simulation for aerospace systems

    NASA Technical Reports Server (NTRS)

    Will, Ralph W.; Sliwa, Nancy E.; Harrison, F. Wallace, Jr.

    1988-01-01

    Knowledge-based techniques, which offer many features that are desirable in the simulation and development of aerospace vehicle operations, exhibit many similarities to traditional simulation packages. The eventual solution of these systems' current symbolic processing/numeric processing interface problem will lead to continuous and discrete-event simulation capabilities in a single language, such as TS-PROLOG. Qualitative, totally-symbolic simulation methods are noted to possess several intrinsic characteristics that are especially revelatory of the system being simulated, and capable of insuring that all possible behaviors are considered.

  13. A method for simulating a flux-locked DC SQUID

    NASA Technical Reports Server (NTRS)

    Gutt, G. M.; Kasdin, N. J.; Condron, M. R., II; Muhlfelder, B.; Lockhart, J. M.; Cromar, M. W.

    1993-01-01

    The authors describe a computationally efficient and accurate method for simulating a dc SQUID's V-Phi (voltage-flux) and I-V characteristics which has proven valuable in evaluating and improving various SQUID readout methods. The simulation of the SQUID is based on fitting of previously acquired data from either a real or a modeled device using the Fourier transform of the V-Phi curve. This method does not predict SQUID behavior, but rather is a way of replicating a known behavior efficiently with portability into various simulation programs such as SPICE. The authors discuss the methods used to simulate the SQUID and the flux-locking control electronics, and present specific examples of this approach. Results include an estimate of the slew rate and linearity of a simple flux-locked loop using a characterized dc SQUID.

  14. Bootstrapping Methods Applied for Simulating Laboratory Works

    ERIC Educational Resources Information Center

    Prodan, Augustin; Campean, Remus

    2005-01-01

    Purpose: The aim of this work is to implement bootstrapping methods into software tools, based on Java. Design/methodology/approach: This paper presents a category of software e-tools aimed at simulating laboratory works and experiments. Findings: Both students and teaching staff use traditional statistical methods to infer the truth from sample…

  15. Computer-based simulation training to improve learning outcomes in mannequin-based simulation exercises.

    PubMed

    Curtin, Lindsay B; Finn, Laura A; Czosnowski, Quinn A; Whitman, Craig B; Cawley, Michael J

    2011-08-10

    To assess the impact of computer-based simulation on the achievement of student learning outcomes during mannequin-based simulation. Participants were randomly assigned to rapid response teams of 5-6 students and then teams were randomly assigned to either a group that completed either computer-based or mannequin-based simulation cases first. In both simulations, students used their critical thinking skills and selected interventions independent of facilitator input. A predetermined rubric was used to record and assess students' performance in the mannequin-based simulations. Feedback and student performance scores were generated by the software in the computer-based simulations. More of the teams in the group that completed the computer-based simulation before completing the mannequin-based simulation achieved the primary outcome for the exercise, which was survival of the simulated patient (41.2% vs. 5.6%). The majority of students (>90%) recommended the continuation of simulation exercises in the course. Students in both groups felt the computer-based simulation should be completed prior to the mannequin-based simulation. The use of computer-based simulation prior to mannequin-based simulation improved the achievement of learning goals and outcomes. In addition to improving participants' skills, completing the computer-based simulation first may improve participants' confidence during the more real-life setting achieved in the mannequin-based simulation.

  16. National Clinical Skills Competition: an effective simulation-based method to improve undergraduate medical education in China

    PubMed Central

    Jiang, Guanchao; Chen, Hong; Wang, Qiming; Chi, Baorong; He, Qingnan; Xiao, Haipeng; Zhou, Qinghuan; Liu, Jing; Wang, Shan

    2016-01-01

    Background The National Clinical Skills Competition has been held in China for 5 consecutive years since 2010 to promote undergraduate education reform and improve the teaching quality. The effects of the simulation-based competition will be analyzed in this study. Methods Participation in the competitions and the compilation of the questions used in the competition finals are summarized, and the influence and guidance quality are further analyzed. Through the nationwide distribution of questionnaires in medical colleges, the effects of the simulation-based competition on promoting undergraduate medical education reform were evaluated. Results The results show that approximately 450 students from more than 110 colleges (accounting for 81% of colleges providing undergraduate clinical medical education in China) participated in the competition each year. The knowledge, skills, and attitudes were comprehensively evaluated by simulation-based assessment. Eight hundred and eighty copies of the questionnaires were distributed to 110 participating medical schools in 2015. In total, 752 valid responses were received across 95 schools. The majority of the interviewees agreed or strongly agreed that competition promoted the adoption of advanced educational principles (76.8%), updated the curriculum model and instructional methods (79.8%), strengthened faculty development (84.0%), improved educational resources (82.1%), and benefited all students (53.4%). Conclusions The National Clinical Skills Competition is widely accepted in China. It has effectively promoted the reform and development of undergraduate medical education in China. PMID:26894586

  17. An Example-Based Brain MRI Simulation Framework.

    PubMed

    He, Qing; Roy, Snehashis; Jog, Amod; Pham, Dzung L

    2015-02-21

    The simulation of magnetic resonance (MR) images plays an important role in the validation of image analysis algorithms such as image segmentation, due to lack of sufficient ground truth in real MR images. Previous work on MRI simulation has focused on explicitly modeling the MR image formation process. However, because of the overwhelming complexity of MR acquisition these simulations must involve simplifications and approximations that can result in visually unrealistic simulated images. In this work, we describe an example-based simulation framework, which uses an "atlas" consisting of an MR image and its anatomical models derived from the hard segmentation. The relationships between the MR image intensities and its anatomical models are learned using a patch-based regression that implicitly models the physics of the MR image formation. Given the anatomical models of a new brain, a new MR image can be simulated using the learned regression. This approach has been extended to also simulate intensity inhomogeneity artifacts based on the statistical model of training data. Results show that the example based MRI simulation method is capable of simulating different image contrasts and is robust to different choices of atlas. The simulated images resemble real MR images more than simulations produced by a physics-based model.

  18. A flood map based DOI decoding method for block detector: a GATE simulation study.

    PubMed

    Shi, Han; Du, Dong; Su, Zhihong; Peng, Qiyu

    2014-01-01

    Positron Emission Tomography (PET) systems using detectors with Depth of Interaction (DOI) capabilities could achieve higher spatial resolution and better image quality than those without DOI. Up till now, most DOI methods developed are not cost-efficient for a whole body PET system. In this paper, we present a DOI decoding method based on flood map for low-cost conventional block detector with four-PMT readout. Using this method, the DOI information can be directly extracted from the DOI-related crystal spot deformation in the flood map. GATE simulations are then carried out to validate the method, confirming a DOI sorting accuracy of 85.27%. Therefore, we conclude that this method has the potential to be applied in conventional detectors to achieve a reasonable DOI measurement without dramatically increasing their complexity and cost of an entire PET system.

  19. A regularized vortex-particle mesh method for large eddy simulation

    NASA Astrophysics Data System (ADS)

    Spietz, H. J.; Walther, J. H.; Hejlesen, M. M.

    2017-11-01

    We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible fluid flow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green's function solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the filtered Navier Stokes equations, hence we use the method for Large Eddy Simulation by including a dynamic subfilter-scale model based on test-filters compatible with the aforementioned regularization functions. Further the subfilter-scale model uses Lagrangian averaging, which is a natural candidate in light of the Lagrangian nature of vortex particle methods. A multiresolution variation of the method is applied to simulate the benchmark problem of the flow past a square cylinder at Re = 22000 and the obtained results are compared to results from the literature.

  20. Task-based image quality evaluation of iterative reconstruction methods for low dose CT using computer simulations

    NASA Astrophysics Data System (ADS)

    Xu, Jingyan; Fuld, Matthew K.; Fung, George S. K.; Tsui, Benjamin M. W.

    2015-04-01

    Iterative reconstruction (IR) methods for x-ray CT is a promising approach to improve image quality or reduce radiation dose to patients. The goal of this work was to use task based image quality measures and the channelized Hotelling observer (CHO) to evaluate both analytic and IR methods for clinical x-ray CT applications. We performed realistic computer simulations at five radiation dose levels, from a clinical reference low dose D0 to 25% D0. A fixed size and contrast lesion was inserted at different locations into the liver of the XCAT phantom to simulate a weak signal. The simulated data were reconstructed on a commercial CT scanner (SOMATOM Definition Flash; Siemens, Forchheim, Germany) using the vendor-provided analytic (WFBP) and IR (SAFIRE) methods. The reconstructed images were analyzed by CHOs with both rotationally symmetric (RS) and rotationally oriented (RO) channels, and with different numbers of lesion locations (5, 10, and 20) in a signal known exactly (SKE), background known exactly but variable (BKEV) detection task. The area under the receiver operating characteristic curve (AUC) was used as a summary measure to compare the IR and analytic methods; the AUC was also used as the equal performance criterion to derive the potential dose reduction factor of IR. In general, there was a good agreement in the relative AUC values of different reconstruction methods using CHOs with RS and RO channels, although the CHO with RO channels achieved higher AUCs than RS channels. The improvement of IR over analytic methods depends on the dose level. The reference dose level D0 was based on a clinical low dose protocol, lower than the standard dose due to the use of IR methods. At 75% D0, the performance improvement was statistically significant (p < 0.05). The potential dose reduction factor also depended on the detection task. For the SKE/BKEV task involving 10 lesion locations, a dose reduction of at least 25% from D0 was achieved.

  1. Optical simulation of flying targets using physically based renderer

    NASA Astrophysics Data System (ADS)

    Cheng, Ye; Zheng, Quan; Peng, Junkai; Lv, Pin; Zheng, Changwen

    2018-02-01

    The simulation of aerial flying targets is widely needed in many fields. This paper proposes a physically based method for optical simulation of flying targets. In the first step, three-dimensional target models are built and the motion speed and direction are defined. Next, the material of the outward appearance of a target is also simulated. Then the illumination conditions are defined. After all definitions are given, all settings are encoded in a description file. Finally, simulated results are generated by Monte Carlo ray tracing in a physically based renderer. Experiments show that this method is able to simulate materials, lighting and motion blur for flying targets, and it can generate convincing and highquality simulation results.

  2. Modelling and Simulation on Multibody Dynamics for Vehicular Cold Launch Systems Based on Subsystem Synthesis Method

    NASA Astrophysics Data System (ADS)

    Panyun, YAN; Guozhu, LIANG; Yongzhi, LU; Zhihui, QI; Xingdou, GAO

    2017-12-01

    The fast simulation of the vehicular cold launch system (VCLS) in the launch process is an essential requirement for practical engineering applications. In particular, a general and fast simulation model of the VCLS will help the designer to obtain the optimum scheme in the initial design phase. For these purposes, a system-level fast simulation model was established for the VCLS based on the subsystem synthesis method. Moreover, a comparison of the load of a seven-axis VCLS on the rigid ground through both theoretical calculations and experiments was carried out. It was found that the error of the load of the rear left outrigger is less than 7.1%, and the error of the total load of all the outriggers is less than 2.8%. Moreover, time taken for completion of the simulation model is only 9.5 min, which is 5% of the time taken by conventional algorithms.

  3. Ground motion simulation for the 23 August 2011, Mineral, Virginia earthquake using physics-based and stochastic broadband methods

    USGS Publications Warehouse

    Sun, Xiaodan; Hartzell, Stephen; Rezaeian, Sanaz

    2015-01-01

    Three broadband simulation methods are used to generate synthetic ground motions for the 2011 Mineral, Virginia, earthquake and compare with observed motions. The methods include a physics‐based model by Hartzell et al. (1999, 2005), a stochastic source‐based model by Boore (2009), and a stochastic site‐based model by Rezaeian and Der Kiureghian (2010, 2012). The ground‐motion dataset consists of 40 stations within 600 km of the epicenter. Several metrics are used to validate the simulations: (1) overall bias of response spectra and Fourier spectra (from 0.1 to 10 Hz); (2) spatial distribution of residuals for GMRotI50 peak ground acceleration (PGA), peak ground velocity, and pseudospectral acceleration (PSA) at various periods; (3) comparison with ground‐motion prediction equations (GMPEs) for the eastern United States. Our results show that (1) the physics‐based model provides satisfactory overall bias from 0.1 to 10 Hz and produces more realistic synthetic waveforms; (2) the stochastic site‐based model also yields more realistic synthetic waveforms and performs superiorly for frequencies greater than about 1 Hz; (3) the stochastic source‐based model has larger bias at lower frequencies (<0.5  Hz) and cannot reproduce the varying frequency content in the time domain. The spatial distribution of GMRotI50 residuals shows that there is no obvious pattern with distance in the simulation bias, but there is some azimuthal variability. The comparison between synthetics and GMPEs shows similar fall‐off with distance for all three models, comparable PGA and PSA amplitudes for the physics‐based and stochastic site‐based models, and systematic lower amplitudes for the stochastic source‐based model at lower frequencies (<0.5  Hz).

  4. A probability-based multi-cycle sorting method for 4D-MRI: A simulation study

    PubMed Central

    Liang, Xiao; Yin, Fang-Fang; Liu, Yilin; Cai, Jing

    2016-01-01

    accuracy as measured by the 4D images, and also the accuracy of average intensity projection (AIP) of 4D images. Results: Probability-based sorting showed improved similarity of breathing motion PDF from 4D images to reference PDF compared to single cycle sorting, indicated by the significant increase in Dice similarity coefficient (DSC) (probability-based sorting, DSC = 0.89 ± 0.03, and single cycle sorting, DSC = 0.83 ± 0.05, p-value <0.001). Based on the simulation study on XCAT, the probability-based method outperforms the conventional phase-based methods in qualitative evaluation on motion artifacts and quantitative evaluation on tumor volume precision and accuracy and accuracy of AIP of the 4D images. Conclusions: In this paper the authors demonstrated the feasibility of a novel probability-based multicycle 4D image sorting method. The authors’ preliminary results showed that the new method can improve the accuracy of tumor motion PDF and the AIP of 4D images, presenting potential advantages over the conventional phase-based sorting method for radiation therapy motion management. PMID:27908178

  5. Examining Information Problem-Solving, Knowledge, and Application Gains within Two Instructional Methods: Problem-Based and Computer-Mediated Participatory Simulation

    ERIC Educational Resources Information Center

    Newell, Terrance S.

    2008-01-01

    This study compared the effectiveness of two instructional methods--problem-based instruction within a face-to-face context and computer-mediated participatory simulation--in increasing students' content knowledge and application gains in the area of information problem-solving. The instructional methods were implemented over a four-week period. A…

  6. Comparing the Effects of Simulation-Based and Traditional Teaching Methods on the Critical Thinking Abilities and Self-Confidence of Nursing Students.

    PubMed

    Alamrani, Mashael Hasan; Alammar, Kamila Ahmad; Alqahtani, Sarah Saad; Salem, Olfat A

    2018-06-01

    Critical thinking and self-confidence are imperative to success in clinical practice. Educators should use teaching strategies that will help students enhance their critical thinking and self-confidence in complex content such as electrocardiogram interpretation. Therefore, teaching electrocardiogram interpretation to students is important for nurse educators. This study compares the effect of simulation-based and traditional teaching methods on the critical thinking and self-confidence of students during electrocardiogram interpretation sessions. Thirty undergraduate nursing students volunteered to participate in this study. The participants were divided into intervention and control groups, which were taught respectively using the simulation-based and traditional teaching programs. All of the participants were asked to complete the study instrumentpretest and posttest to measure their critical thinking and self-confidence. Improvement was observed in the control and experimental groups with respect to critical thinking and self-confidence, as evidenced by the results of the paired samples t test and the Wilcoxon signed-rank test (p < .05). However, the independent t test and Mann-Whitney U test indicate that the difference between the two groups was not significant (p > .05). This study evaluated an innovative simulation-based teaching method for nurses. No significant differences in outcomes were identified between the simulator-based and traditional teaching methods, indicating that well-implemented educational programs that use either teaching method effectively promote critical thinking and self-confidence in nursing students. Nurse educators are encouraged to design educational plans with clear objectives to improve the critical thinking and self-confidence of their students. Future research should compare the effects of several teaching sessions using each method in a larger sample.

  7. A probability-based multi-cycle sorting method for 4D-MRI: A simulation study.

    PubMed

    Liang, Xiao; Yin, Fang-Fang; Liu, Yilin; Cai, Jing

    2016-12-01

    by the 4D images, and also the accuracy of average intensity projection (AIP) of 4D images. Probability-based sorting showed improved similarity of breathing motion PDF from 4D images to reference PDF compared to single cycle sorting, indicated by the significant increase in Dice similarity coefficient (DSC) (probability-based sorting, DSC = 0.89 ± 0.03, and single cycle sorting, DSC = 0.83 ± 0.05, p-value <0.001). Based on the simulation study on XCAT, the probability-based method outperforms the conventional phase-based methods in qualitative evaluation on motion artifacts and quantitative evaluation on tumor volume precision and accuracy and accuracy of AIP of the 4D images. In this paper the authors demonstrated the feasibility of a novel probability-based multicycle 4D image sorting method. The authors' preliminary results showed that the new method can improve the accuracy of tumor motion PDF and the AIP of 4D images, presenting potential advantages over the conventional phase-based sorting method for radiation therapy motion management.

  8. Plant landscape design simulating natural community by using AHP method based on TWINSPAN classification

    NASA Astrophysics Data System (ADS)

    Wang, Li Han

    2018-06-01

    Taking the forest vegetation in Zijin Mountain (Purple Mountain) Area of Nanjing as the research object, based on the simulation natural and semi natural plant communities, the systematic research on the construction of Nanjing regional plant landscape is carried out by the method such as literature and theory, investigation and evaluation, discussion and reference. On the basis of TWINSPAN classification, the species composition (flora and geographical composition), community structure, species diversity, interspecific relationship and ecological niche of Zijin Mountain natural vegetation are studied and analyzed as a basis for simulation design and planting. Then, from the three levels of ornamental value, resource development and utilization potential and biological characteristics, a comprehensive evaluation system used for wild ornamental plant resources in Zijin Mountain is built. Finally, some suggestions on the planting species of deep forest vegetation in Zijin Mountain are put forward.

  9. Simulation of unsteady flows by the DSMC macroscopic chemistry method

    NASA Astrophysics Data System (ADS)

    Goldsworthy, Mark; Macrossan, Michael; Abdel-jawad, Madhat

    2009-03-01

    In the Direct Simulation Monte-Carlo (DSMC) method, a combination of statistical and deterministic procedures applied to a finite number of 'simulator' particles are used to model rarefied gas-kinetic processes. In the macroscopic chemistry method (MCM) for DSMC, chemical reactions are decoupled from the specific particle pairs selected for collisions. Information from all of the particles within a cell, not just those selected for collisions, is used to determine a reaction rate coefficient for that cell. Unlike collision-based methods, MCM can be used with any viscosity or non-reacting collision models and any non-reacting energy exchange models. It can be used to implement any reaction rate formulations, whether these be from experimental or theoretical studies. MCM has been previously validated for steady flow DSMC simulations. Here we show how MCM can be used to model chemical kinetics in DSMC simulations of unsteady flow. Results are compared with a collision-based chemistry procedure for two binary reactions in a 1-D unsteady shock-expansion tube simulation. Close agreement is demonstrated between the two methods for instantaneous, ensemble-averaged profiles of temperature, density and species mole fractions, as well as for the accumulated number of net reactions per cell.

  10. Comparison of three-dimensional poisson solution methods for particle-based simulation and inhomogeneous dielectrics.

    PubMed

    Berti, Claudio; Gillespie, Dirk; Bardhan, Jaydeep P; Eisenberg, Robert S; Fiegna, Claudio

    2012-07-01

    Particle-based simulation represents a powerful approach to modeling physical systems in electronics, molecular biology, and chemical physics. Accounting for the interactions occurring among charged particles requires an accurate and efficient solution of Poisson's equation. For a system of discrete charges with inhomogeneous dielectrics, i.e., a system with discontinuities in the permittivity, the boundary element method (BEM) is frequently adopted. It provides the solution of Poisson's equation, accounting for polarization effects due to the discontinuity in the permittivity by computing the induced charges at the dielectric boundaries. In this framework, the total electrostatic potential is then found by superimposing the elemental contributions from both source and induced charges. In this paper, we present a comparison between two BEMs to solve a boundary-integral formulation of Poisson's equation, with emphasis on the BEMs' suitability for particle-based simulations in terms of solution accuracy and computation speed. The two approaches are the collocation and qualocation methods. Collocation is implemented following the induced-charge computation method of D. Boda et al. [J. Chem. Phys. 125, 034901 (2006)]. The qualocation method is described by J. Tausch et al. [IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20, 1398 (2001)]. These approaches are studied using both flat and curved surface elements to discretize the dielectric boundary, using two challenging test cases: a dielectric sphere embedded in a different dielectric medium and a toy model of an ion channel. Earlier comparisons of the two BEM approaches did not address curved surface elements or semiatomistic models of ion channels. Our results support the earlier findings that for flat-element calculations, qualocation is always significantly more accurate than collocation. On the other hand, when the dielectric boundary is discretized with curved surface elements, the

  11. The Application of Simulation Method in Isothermal Elastic Natural Gas Pipeline

    NASA Astrophysics Data System (ADS)

    Xing, Chunlei; Guan, Shiming; Zhao, Yue; Cao, Jinggang; Chu, Yanji

    2018-02-01

    This Elastic pipeline mathematic model is of crucial importance in natural gas pipeline simulation because of its compliance with the practical industrial cases. The numerical model of elastic pipeline will bring non-linear complexity to the discretized equations. Hence the Newton-Raphson method cannot achieve fast convergence in this kind of problems. Therefore A new Newton Based method with Powell-Wolfe Condition to simulate the Isothermal elastic pipeline flow is presented. The results obtained by the new method aregiven based on the defined boundary conditions. It is shown that the method converges in all cases and reduces significant computational cost.

  12. Enriching Triangle Mesh Animations with Physically Based Simulation.

    PubMed

    Li, Yijing; Xu, Hongyi; Barbic, Jernej

    2017-10-01

    We present a system to combine arbitrary triangle mesh animations with physically based Finite Element Method (FEM) simulation, enabling control over the combination both in space and time. The input is a triangle mesh animation obtained using any method, such as keyframed animation, character rigging, 3D scanning, or geometric shape modeling. The input may be non-physical, crude or even incomplete. The user provides weights, specified using a minimal user interface, for how much physically based simulation should be allowed to modify the animation in any region of the model, and in time. Our system then computes a physically-based animation that is constrained to the input animation to the amount prescribed by these weights. This permits smoothly turning physics on and off over space and time, making it possible for the output to strictly follow the input, to evolve purely based on physically based simulation, and anything in between. Achieving such results requires a careful combination of several system components. We propose and analyze these components, including proper automatic creation of simulation meshes (even for non-manifold and self-colliding undeformed triangle meshes), converting triangle mesh animations into animations of the simulation mesh, and resolving collisions and self-collisions while following the input.

  13. Parallel implementation of the particle simulation method with dynamic load balancing: Toward realistic geodynamical simulation

    NASA Astrophysics Data System (ADS)

    Furuichi, M.; Nishiura, D.

    2015-12-01

    Fully Lagrangian methods such as Smoothed Particle Hydrodynamics (SPH) and Discrete Element Method (DEM) have been widely used to solve the continuum and particles motions in the computational geodynamics field. These mesh-free methods are suitable for the problems with the complex geometry and boundary. In addition, their Lagrangian nature allows non-diffusive advection useful for tracking history dependent properties (e.g. rheology) of the material. These potential advantages over the mesh-based methods offer effective numerical applications to the geophysical flow and tectonic processes, which are for example, tsunami with free surface and floating body, magma intrusion with fracture of rock, and shear zone pattern generation of granular deformation. In order to investigate such geodynamical problems with the particle based methods, over millions to billion particles are required for the realistic simulation. Parallel computing is therefore important for handling such huge computational cost. An efficient parallel implementation of SPH and DEM methods is however known to be difficult especially for the distributed-memory architecture. Lagrangian methods inherently show workload imbalance problem for parallelization with the fixed domain in space, because particles move around and workloads change during the simulation. Therefore dynamic load balance is key technique to perform the large scale SPH and DEM simulation. In this work, we present the parallel implementation technique of SPH and DEM method utilizing dynamic load balancing algorithms toward the high resolution simulation over large domain using the massively parallel super computer system. Our method utilizes the imbalances of the executed time of each MPI process as the nonlinear term of parallel domain decomposition and minimizes them with the Newton like iteration method. In order to perform flexible domain decomposition in space, the slice-grid algorithm is used. Numerical tests show that our

  14. Models and Methods for Adaptive Management of Individual and Team-Based Training Using a Simulator

    NASA Astrophysics Data System (ADS)

    Lisitsyna, L. S.; Smetyuh, N. P.; Golikov, S. P.

    2017-05-01

    Research of adaptive individual and team-based training has been analyzed and helped find out that both in Russia and abroad, individual and team-based training and retraining of AASTM operators usually includes: production training, training of general computer and office equipment skills, simulator training including virtual simulators which use computers to simulate real-world manufacturing situation, and, as a rule, the evaluation of AASTM operators’ knowledge determined by completeness and adequacy of their actions under the simulated conditions. Such approach to training and re-training of AASTM operators stipulates only technical training of operators and testing their knowledge based on assessing their actions in a simulated environment.

  15. Image based SAR product simulation for analysis

    NASA Technical Reports Server (NTRS)

    Domik, G.; Leberl, F.

    1987-01-01

    SAR product simulation serves to predict SAR image gray values for various flight paths. Input typically consists of a digital elevation model and backscatter curves. A new method is described of product simulation that employs also a real SAR input image for image simulation. This can be denoted as 'image-based simulation'. Different methods to perform this SAR prediction are presented and advantages and disadvantages discussed. Ascending and descending orbit images from NASA's SIR-B experiment were used for verification of the concept: input images from ascending orbits were converted into images from a descending orbit; the results are compared to the available real imagery to verify that the prediction technique produces meaningful image data.

  16. Simulation of large-scale rule-based models

    PubMed Central

    Colvin, Joshua; Monine, Michael I.; Faeder, James R.; Hlavacek, William S.; Von Hoff, Daniel D.; Posner, Richard G.

    2009-01-01

    Motivation: Interactions of molecules, such as signaling proteins, with multiple binding sites and/or multiple sites of post-translational covalent modification can be modeled using reaction rules. Rules comprehensively, but implicitly, define the individual chemical species and reactions that molecular interactions can potentially generate. Although rules can be automatically processed to define a biochemical reaction network, the network implied by a set of rules is often too large to generate completely or to simulate using conventional procedures. To address this problem, we present DYNSTOC, a general-purpose tool for simulating rule-based models. Results: DYNSTOC implements a null-event algorithm for simulating chemical reactions in a homogenous reaction compartment. The simulation method does not require that a reaction network be specified explicitly in advance, but rather takes advantage of the availability of the reaction rules in a rule-based specification of a network to determine if a randomly selected set of molecular components participates in a reaction during a time step. DYNSTOC reads reaction rules written in the BioNetGen language which is useful for modeling protein–protein interactions involved in signal transduction. The method of DYNSTOC is closely related to that of StochSim. DYNSTOC differs from StochSim by allowing for model specification in terms of BNGL, which extends the range of protein complexes that can be considered in a model. DYNSTOC enables the simulation of rule-based models that cannot be simulated by conventional methods. We demonstrate the ability of DYNSTOC to simulate models accounting for multisite phosphorylation and multivalent binding processes that are characterized by large numbers of reactions. Availability: DYNSTOC is free for non-commercial use. The C source code, supporting documentation and example input files are available at http://public.tgen.org/dynstoc/. Contact: dynstoc@tgen.org Supplementary information

  17. Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems

    PubMed Central

    Stover, Lori J.; Nair, Niketh S.; Faeder, James R.

    2014-01-01

    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This “network-free” approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of “partial network expansion” into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory

  18. Exact hybrid particle/population simulation of rule-based models of biochemical systems.

    PubMed

    Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R

    2014-04-01

    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings

  19. Evaluation and comparison of statistical methods for early temporal detection of outbreaks: A simulation-based study

    PubMed Central

    Le Strat, Yann

    2017-01-01

    The objective of this paper is to evaluate a panel of statistical algorithms for temporal outbreak detection. Based on a large dataset of simulated weekly surveillance time series, we performed a systematic assessment of 21 statistical algorithms, 19 implemented in the R package surveillance and two other methods. We estimated false positive rate (FPR), probability of detection (POD), probability of detection during the first week, sensitivity, specificity, negative and positive predictive values and F1-measure for each detection method. Then, to identify the factors associated with these performance measures, we ran multivariate Poisson regression models adjusted for the characteristics of the simulated time series (trend, seasonality, dispersion, outbreak sizes, etc.). The FPR ranged from 0.7% to 59.9% and the POD from 43.3% to 88.7%. Some methods had a very high specificity, up to 99.4%, but a low sensitivity. Methods with a high sensitivity (up to 79.5%) had a low specificity. All methods had a high negative predictive value, over 94%, while positive predictive values ranged from 6.5% to 68.4%. Multivariate Poisson regression models showed that performance measures were strongly influenced by the characteristics of time series. Past or current outbreak size and duration strongly influenced detection performances. PMID:28715489

  20. A new method for the prediction of chatter stability lobes based on dynamic cutting force simulation model and support vector machine

    NASA Astrophysics Data System (ADS)

    Peng, Chong; Wang, Lun; Liao, T. Warren

    2015-10-01

    Currently, chatter has become the critical factor in hindering machining quality and productivity in machining processes. To avoid cutting chatter, a new method based on dynamic cutting force simulation model and support vector machine (SVM) is presented for the prediction of chatter stability lobes. The cutting force is selected as the monitoring signal, and the wavelet energy entropy theory is used to extract the feature vectors. A support vector machine is constructed using the MATLAB LIBSVM toolbox for pattern classification based on the feature vectors derived from the experimental cutting data. Then combining with the dynamic cutting force simulation model, the stability lobes diagram (SLD) can be estimated. Finally, the predicted results are compared with existing methods such as zero-order analytical (ZOA) and semi-discretization (SD) method as well as actual cutting experimental results to confirm the validity of this new method.

  1. Numerical Simulation of Evacuation Process in Malaysia By Using Distinct-Element-Method Based Multi-Agent Model

    NASA Astrophysics Data System (ADS)

    Abustan, M. S.; Rahman, N. A.; Gotoh, H.; Harada, E.; Talib, S. H. A.

    2016-07-01

    In Malaysia, not many researches on crowd evacuation simulation had been reported. Hence, the development of numerical crowd evacuation process by taking into account people behavioral patterns and psychological characteristics is crucial in Malaysia. On the other hand, tsunami disaster began to gain attention of Malaysian citizens after the 2004 Indian Ocean Tsunami that need quick evacuation process. In relation to the above circumstances, we have conducted simulations of tsunami evacuation process at the Miami Beach of Penang Island by using Distinct Element Method (DEM)-based crowd behavior simulator. The main objectives are to investigate and reproduce current conditions of evacuation process at the said locations under different hypothetical scenarios for the efficiency study of the evacuation. The sim-1 is initial condition of evacuation planning while sim-2 as improvement of evacuation planning by adding new evacuation area. From the simulation result, sim-2 have a shorter time of evacuation process compared to the sim-1. The evacuation time recuded 53 second. The effect of the additional evacuation place is confirmed from decreasing of the evacuation completion time. Simultaneously, the numerical simulation may be promoted as an effective tool in studying crowd evacuation process.

  2. Current concepts in simulation-based trauma education.

    PubMed

    Cherry, Robert A; Ali, Jameel

    2008-11-01

    The use of simulation-based technology in trauma education has focused on providing a safe and effective alternative to the more traditional methods that are used to teach technical skills and critical concepts in trauma resuscitation. Trauma team training using simulation-based technology is also being used to develop skills in leadership, team-information sharing, communication, and decision-making. The integration of simulators into medical student curriculum, residency training, and continuing medical education has been strongly recommended by the American College of Surgeons as an innovative means of enhancing patient safety, reducing medical errors, and performing a systematic evaluation of various competencies. Advanced human patient simulators are increasingly being used in trauma as an evaluation tool to assess clinical performance and to teach and reinforce essential knowledge, skills, and abilities. A number of specialty simulators in trauma and critical care have also been designed to meet these educational objectives. Ongoing educational research is still needed to validate long-term retention of knowledge and skills, provide reliable methods to evaluate teaching effectiveness and performance, and to demonstrate improvement in patient safety and overall quality of care.

  3. Video-Based Method of Quantifying Performance and Instrument Motion During Simulated Phonosurgery

    PubMed Central

    Conroy, Ellen; Surender, Ketan; Geng, Zhixian; Chen, Ting; Dailey, Seth; Jiang, Jack

    2015-01-01

    Objectives/Hypothesis To investigate the use of the Video-Based Phonomicrosurgery Instrument Tracking System to collect instrument position data during simulated phonomicrosurgery and calculate motion metrics using these data. We used this system to determine if novice subject motion metrics improved over 1 week of training. Study Design Prospective cohort study. Methods Ten subjects performed simulated surgical tasks once per day for 5 days. Instrument position data were collected and used to compute motion metrics (path length, depth perception, and motion smoothness). Data were analyzed to determine if motion metrics improved with practice time. Task outcome was also determined each day, and relationships between task outcome and motion metrics were used to evaluate the validity of motion metrics as indicators of surgical performance. Results Significant decreases over time were observed for path length (P <.001), depth perception (P <.001), and task outcome (P <.001). No significant change was observed for motion smoothness. Significant relationships were observed between task outcome and path length (P <.001), depth perception (P <.001), and motion smoothness (P <.001). Conclusions Our system can estimate instrument trajectory and provide quantitative descriptions of surgical performance. It may be useful for evaluating phonomicrosurgery performance. Path length and depth perception may be particularly useful indicators. PMID:24737286

  4. National Clinical Skills Competition: an effective simulation-based method to improve undergraduate medical education in China.

    PubMed

    Jiang, Guanchao; Chen, Hong; Wang, Qiming; Chi, Baorong; He, Qingnan; Xiao, Haipeng; Zhou, Qinghuan; Liu, Jing; Wang, Shan

    2016-01-01

    The National Clinical Skills Competition has been held in China for 5 consecutive years since 2010 to promote undergraduate education reform and improve the teaching quality. The effects of the simulation-based competition will be analyzed in this study. Participation in the competitions and the compilation of the questions used in the competition finals are summarized, and the influence and guidance quality are further analyzed. Through the nationwide distribution of questionnaires in medical colleges, the effects of the simulation-based competition on promoting undergraduate medical education reform were evaluated. The results show that approximately 450 students from more than 110 colleges (accounting for 81% of colleges providing undergraduate clinical medical education in China) participated in the competition each year. The knowledge, skills, and attitudes were comprehensively evaluated by simulation-based assessment. Eight hundred and eighty copies of the questionnaires were distributed to 110 participating medical schools in 2015. In total, 752 valid responses were received across 95 schools. The majority of the interviewees agreed or strongly agreed that competition promoted the adoption of advanced educational principles (76.8%), updated the curriculum model and instructional methods (79.8%), strengthened faculty development (84.0%), improved educational resources (82.1%), and benefited all students (53.4%). The National Clinical Skills Competition is widely accepted in China. It has effectively promoted the reform and development of undergraduate medical education in China.

  5. Construction of dynamic stochastic simulation models using knowledge-based techniques

    NASA Technical Reports Server (NTRS)

    Williams, M. Douglas; Shiva, Sajjan G.

    1990-01-01

    Over the past three decades, computer-based simulation models have proven themselves to be cost-effective alternatives to the more structured deterministic methods of systems analysis. During this time, many techniques, tools and languages for constructing computer-based simulation models have been developed. More recently, advances in knowledge-based system technology have led many researchers to note the similarities between knowledge-based programming and simulation technologies and to investigate the potential application of knowledge-based programming techniques to simulation modeling. The integration of conventional simulation techniques with knowledge-based programming techniques is discussed to provide a development environment for constructing knowledge-based simulation models. A comparison of the techniques used in the construction of dynamic stochastic simulation models and those used in the construction of knowledge-based systems provides the requirements for the environment. This leads to the design and implementation of a knowledge-based simulation development environment. These techniques were used in the construction of several knowledge-based simulation models including the Advanced Launch System Model (ALSYM).

  6. Discrete stochastic simulation methods for chemically reacting systems.

    PubMed

    Cao, Yang; Samuels, David C

    2009-01-01

    Discrete stochastic chemical kinetics describe the time evolution of a chemically reacting system by taking into account the fact that, in reality, chemical species are present with integer populations and exhibit some degree of randomness in their dynamical behavior. In recent years, with the development of new techniques to study biochemistry dynamics in a single cell, there are increasing studies using this approach to chemical kinetics in cellular systems, where the small copy number of some reactant species in the cell may lead to deviations from the predictions of the deterministic differential equations of classical chemical kinetics. This chapter reviews the fundamental theory related to stochastic chemical kinetics and several simulation methods based on that theory. We focus on nonstiff biochemical systems and the two most important discrete stochastic simulation methods: Gillespie's stochastic simulation algorithm (SSA) and the tau-leaping method. Different implementation strategies of these two methods are discussed. Then we recommend a relatively simple and efficient strategy that combines the strengths of the two methods: the hybrid SSA/tau-leaping method. The implementation details of the hybrid strategy are given here and a related software package is introduced. Finally, the hybrid method is applied to simple biochemical systems as a demonstration of its application.

  7. Meshless Method for Simulation of Compressible Flow

    NASA Astrophysics Data System (ADS)

    Nabizadeh Shahrebabak, Ebrahim

    In the present age, rapid development in computing technology and high speed supercomputers has made numerical analysis and computational simulation more practical than ever before for large and complex cases. Numerical simulations have also become an essential means for analyzing the engineering problems and the cases that experimental analysis is not practical. There are so many sophisticated and accurate numerical schemes, which do these simulations. The finite difference method (FDM) has been used to solve differential equation systems for decades. Additional numerical methods based on finite volume and finite element techniques are widely used in solving problems with complex geometry. All of these methods are mesh-based techniques. Mesh generation is an essential preprocessing part to discretize the computation domain for these conventional methods. However, when dealing with mesh-based complex geometries these conventional mesh-based techniques can become troublesome, difficult to implement, and prone to inaccuracies. In this study, a more robust, yet simple numerical approach is used to simulate problems in an easier manner for even complex problem. The meshless, or meshfree, method is one such development that is becoming the focus of much research in the recent years. The biggest advantage of meshfree methods is to circumvent mesh generation. Many algorithms have now been developed to help make this method more popular and understandable for everyone. These algorithms have been employed over a wide range of problems in computational analysis with various levels of success. Since there is no connectivity between the nodes in this method, the challenge was considerable. The most fundamental issue is lack of conservation, which can be a source of unpredictable errors in the solution process. This problem is particularly evident in the presence of steep gradient regions and discontinuities, such as shocks that frequently occur in high speed compressible flow

  8. Multiscale Simulation of Porous Ceramics Based on Movable Cellular Automaton Method

    NASA Astrophysics Data System (ADS)

    Smolin, A.; Smolin, I.; Eremina, G.; Smolina, I.

    2017-10-01

    The paper presents a model for simulating mechanical behaviour of multiscale porous ceramics based on movable cellular automaton method, which is a novel particle method in computational mechanics of solid. The initial scale of the proposed approach corresponds to the characteristic size of the smallest pores in the ceramics. At this scale, we model uniaxial compression of several representative samples with an explicit account of pores of the same size but with the random unique position in space. As a result, we get the average values of Young’s modulus and strength, as well as the parameters of the Weibull distribution of these properties at the current scale level. These data allow us to describe the material behaviour at the next scale level were only the larger pores are considered explicitly, while the influence of small pores is included via the effective properties determined at the previous scale level. If the pore size distribution function of the material has N maxima we need to perform computations for N - 1 levels in order to get the properties from the lowest scale up to the macroscale step by step. The proposed approach was applied to modelling zirconia ceramics with bimodal pore size distribution. The obtained results show correct behaviour of the model sample at the macroscale.

  9. Assessing methane emission estimation methods based on atmospheric measurements from oil and gas production using LES simulations

    NASA Astrophysics Data System (ADS)

    Saide, P. E.; Steinhoff, D.; Kosovic, B.; Weil, J.; Smith, N.; Blewitt, D.; Delle Monache, L.

    2017-12-01

    There are a wide variety of methods that have been proposed and used to estimate methane emissions from oil and gas production by using air composition and meteorology observations in conjunction with dispersion models. Although there has been some verification of these methodologies using controlled releases and concurrent atmospheric measurements, it is difficult to assess the accuracy of these methods for more realistic scenarios considering factors such as terrain, emissions from multiple components within a well pad, and time-varying emissions representative of typical operations. In this work we use a large-eddy simulation (LES) to generate controlled but realistic synthetic observations, which can be used to test multiple source term estimation methods, also known as an Observing System Simulation Experiment (OSSE). The LES is based on idealized simulations of the Weather Research & Forecasting (WRF) model at 10 m horizontal grid-spacing covering an 8 km by 7 km domain with terrain representative of a region located in the Barnett shale. Well pads are setup in the domain following a realistic distribution and emissions are prescribed every second for the components of each well pad (e.g., chemical injection pump, pneumatics, compressor, tanks, and dehydrator) using a simulator driven by oil and gas production volume, composition and realistic operational conditions. The system is setup to allow assessments under different scenarios such as normal operations, during liquids unloading events, or during other prescribed operational upset events. Methane and meteorology model output are sampled following the specifications of the emission estimation methodologies and considering typical instrument uncertainties, resulting in realistic observations (see Figure 1). We will show the evaluation of several emission estimation methods including the EPA Other Test Method 33A and estimates using the EPA AERMOD regulatory model. We will also show source estimation

  10. Experimental Evaluation of Suitability of Selected Multi-Criteria Decision-Making Methods for Large-Scale Agent-Based Simulations.

    PubMed

    Tučník, Petr; Bureš, Vladimír

    2016-01-01

    Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the-server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models.

  11. Estimating School Efficiency: A Comparison of Methods Using Simulated Data.

    ERIC Educational Resources Information Center

    Bifulco, Robert; Bretschneider, Stuart

    2001-01-01

    Uses simulated data to assess the adequacy of two econometric and linear-programming techniques (data-envelopment analysis and corrected ordinary least squares) for measuring performance-based school reform. In complex data sets (simulated to contain measurement error and endogeneity), these methods are inadequate efficiency measures. (Contains 40…

  12. Simulation-based MDP verification for leading-edge masks

    NASA Astrophysics Data System (ADS)

    Su, Bo; Syrel, Oleg; Pomerantsev, Michael; Hagiwara, Kazuyuki; Pearman, Ryan; Pang, Leo; Fujimara, Aki

    2017-07-01

    For IC design starts below the 20nm technology node, the assist features on photomasks shrink well below 60nm and the printed patterns of those features on masks written by VSB eBeam writers start to show a large deviation from the mask designs. Traditional geometry-based fracturing starts to show large errors for those small features. As a result, other mask data preparation (MDP) methods have become available and adopted, such as rule-based Mask Process Correction (MPC), model-based MPC and eventually model-based MDP. The new MDP methods may place shot edges slightly differently from target to compensate for mask process effects, so that the final patterns on a mask are much closer to the design (which can be viewed as the ideal mask), especially for those assist features. Such an alteration generally produces better masks that are closer to the intended mask design. Traditional XOR-based MDP verification cannot detect problems caused by eBeam effects. Much like model-based OPC verification which became a necessity for OPC a decade ago, we see the same trend in MDP today. Simulation-based MDP verification solution requires a GPU-accelerated computational geometry engine with simulation capabilities. To have a meaningful simulation-based mask check, a good mask process model is needed. The TrueModel® system is a field tested physical mask model developed by D2S. The GPU-accelerated D2S Computational Design Platform (CDP) is used to run simulation-based mask check, as well as model-based MDP. In addition to simulation-based checks such as mask EPE or dose margin, geometry-based rules are also available to detect quality issues such as slivers or CD splits. Dose margin related hotspots can also be detected by setting a correct detection threshold. In this paper, we will demonstrate GPU-acceleration for geometry processing, and give examples of mask check results and performance data. GPU-acceleration is necessary to make simulation-based mask MDP verification

  13. A new battery-charging method suggested by molecular dynamics simulations.

    PubMed

    Abou Hamad, Ibrahim; Novotny, M A; Wipf, D O; Rikvold, P A

    2010-03-20

    Based on large-scale molecular dynamics simulations, we propose a new charging method that should be capable of charging a lithium-ion battery in a fraction of the time needed when using traditional methods. This charging method uses an additional applied oscillatory electric field. Our simulation results show that this charging method offers a great reduction in the average intercalation time for Li(+) ions, which dominates the charging time. The oscillating field not only increases the diffusion rate of Li(+) ions in the electrolyte but, more importantly, also enhances intercalation by lowering the corresponding overall energy barrier.

  14. A New Combined Stepwise-Based High-Order Decoupled Direct and Reduced-Form Method To Improve Uncertainty Analysis in PM2.5 Simulations.

    PubMed

    Huang, Zhijiong; Hu, Yongtao; Zheng, Junyu; Yuan, Zibing; Russell, Armistead G; Ou, Jiamin; Zhong, Zhuangmin

    2017-04-04

    The traditional reduced-form model (RFM) based on the high-order decoupled direct method (HDDM), is an efficient uncertainty analysis approach for air quality models, but it has large biases in uncertainty propagation due to the limitation of the HDDM in predicting nonlinear responses to large perturbations of model inputs. To overcome the limitation, a new stepwise-based RFM method that combines several sets of local sensitive coefficients under different conditions is proposed. Evaluations reveal that the new RFM improves the prediction of nonlinear responses. The new method is applied to quantify uncertainties in simulated PM 2.5 concentrations in the Pearl River Delta (PRD) region of China as a case study. Results show that the average uncertainty range of hourly PM 2.5 concentrations is -28% to 57%, which can cover approximately 70% of the observed PM 2.5 concentrations, while the traditional RFM underestimates the upper bound of the uncertainty range by 1-6%. Using a variance-based method, the PM 2.5 boundary conditions and primary PM 2.5 emissions are found to be the two major uncertainty sources in PM 2.5 simulations. The new RFM better quantifies the uncertainty range in model simulations and can be applied to improve applications that rely on uncertainty information.

  15. Experiential Learning Methods, Simulation Complexity and Their Effects on Different Target Groups

    ERIC Educational Resources Information Center

    Kluge, Annette

    2007-01-01

    This article empirically supports the thesis that there is no clear and unequivocal argument in favor of simulations and experiential learning. Instead the effectiveness of simulation-based learning methods depends strongly on the target group's characteristics. Two methods of supporting experiential learning are compared in two different complex…

  16. The introduction and effectiveness of simulation-based learning in medical education.

    PubMed

    Nara, Nobuo; Beppu, Masashi; Tohda, Shuji; Suzuki, Toshiya

    2009-01-01

    To contribute to reforming the medical education system in Japan, we visited overseas medical schools and observed the methods utilized in medical education. We visited 28 medical schools and five institutes in the United States, Europe, Australia and Asia in 2008. We met deans and specialists in medical affairs and observed the medical schools' facilities. Among the several effective educational methods used in overseas medical schools, simulation-based learning was being used in all that we visited. Simulation-based learning is used to promote medical students' mastery of communication skills, medical interviewing, physical examination and basic clinical procedures. Students and tutors both recognize the effectiveness of simulation-based learning in medical education. In contrast to overseas medical schools, simulation-based learning is not common in Japan. There remain many barriers to introduce simulation-based education in Japan, such as a shortage of medical tutors, staff, mannequins and budget. However, enhancing the motivation of tutors is likely the most important factor to facilitate simulation-based education in Japanese medical schools to become common place.

  17. Parameter Studies, time-dependent simulations and design with automated Cartesian methods

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael

    2005-01-01

    Over the past decade, NASA has made a substantial investment in developing adaptive Cartesian grid methods for aerodynamic simulation. Cartesian-based methods played a key role in both the Space Shuttle Accident Investigation and in NASA's return to flight activities. The talk will provide an overview of recent technological developments focusing on the generation of large-scale aerodynamic databases, automated CAD-based design, and time-dependent simulations with of bodies in relative motion. Automation, scalability and robustness underly all of these applications and research in each of these topics will be presented.

  18. Steel Fibre Reinforced Concrete Simulation with the SPH Method

    NASA Astrophysics Data System (ADS)

    Hušek, Martin; Kala, Jiří; Král, Petr; Hokeš, Filip

    2017-10-01

    Steel fibre reinforced concrete (SFRC) is very popular in many branches of civil engineering. Thanks to its increased ductility, it is able to resist various types of loading. When designing a structure, the mechanical behaviour of SFRC can be described by currently available material models (with equivalent material for example) and therefore no problems arise with numerical simulations. But in many scenarios, e.g. high speed loading, it would be a mistake to use such an equivalent material. Physical modelling of the steel fibres used in concrete is usually problematic, though. It is necessary to consider the fact that mesh-based methods are very unsuitable for high-speed simulations with regard to the issues that occur due to the effect of excessive mesh deformation. So-called meshfree methods are much more suitable for this purpose. The Smoothed Particle Hydrodynamics (SPH) method is currently the best choice, thanks to its advantages. However, a numerical defect known as tensile instability may appear when the SPH method is used. It causes the development of numerical (false) cracks, making simulations of ductile types of failure significantly more difficult to perform. The contribution therefore deals with the description of a procedure for avoiding this defect and successfully simulating the behaviour of SFRC with the SPH method. The essence of the problem lies in the choice of coordinates and the description of the integration domain derived from them - spatial (Eulerian kernel) or material coordinates (Lagrangian kernel). The contribution describes the behaviour of both formulations. Conclusions are drawn from the fundamental tasks, and the contribution additionally demonstrates the functionality of SFRC simulations. The random generation of steel fibres and their inclusion in simulations are also discussed. The functionality of the method is supported by the results of pressure test simulations which compare various levels of fibre reinforcement of SFRC

  19. Smoothed particle hydrodynamics method for simulating waterfall flow

    NASA Astrophysics Data System (ADS)

    Suwardi, M. G.; Jondri; Tarwidi, D.

    2018-03-01

    The existence of waterfall in many nations, such as Indonesia has a potential to develop and to fulfill the electricity demand in the nation. By utilizing mechanical flow energy of the waterfall, it would be able to generate electricity. The study of mechanical energy could be done by simulating waterfall flow using 2-D smoothed particle hydrodynamics (SPH) method. The SPH method is suitable to simulate the flow of the waterfall, because it has an advantage which could form particles movement that mimic the characteristics of fluid. In this paper, the SPH method is used to solve Navier-Stokes and continuity equation which are the main cores of fluid motion. The governing equations of fluid flow are used to obtain the acceleration, velocity, density, and position of the SPH particles as well as the completion of Leapfrog time-stepping method. With these equations, simulating a waterfall flow would be more attractive and able to complete the analysis of mechanical energy as desired. The mechanical energy that generated from the waterfall flow is calculated and analyzed based on the mass, height, and velocity of each SPH particle.

  20. Internet-based system for simulation-based medical planning for cardiovascular disease.

    PubMed

    Steele, Brooke N; Draney, Mary T; Ku, Joy P; Taylor, Charles A

    2003-06-01

    Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments, which does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described simulation-based medical planning methods to model blood flow in arteries and plan medical treatments based on physiologic models. An important consideration for the design of these patient-specific modeling systems is the accessibility to physicians with modest computational resources. We describe a simulation-based medical planning environment developed for the World Wide Web (WWW) using the Virtual Reality Modeling Language (VRML) and the Java programming language.

  1. Implicit methods for efficient musculoskeletal simulation and optimal control

    PubMed Central

    van den Bogert, Antonie J.; Blana, Dimitra; Heinrich, Dieter

    2011-01-01

    The ordinary differential equations for musculoskeletal dynamics are often numerically stiff and highly nonlinear. Consequently, simulations require small time steps, and optimal control problems are slow to solve and have poor convergence. In this paper, we present an implicit formulation of musculoskeletal dynamics, which leads to new numerical methods for simulation and optimal control, with the expectation that we can mitigate some of these problems. A first order Rosenbrock method was developed for solving forward dynamic problems using the implicit formulation. It was used to perform real-time dynamic simulation of a complex shoulder arm system with extreme dynamic stiffness. Simulations had an RMS error of only 0.11 degrees in joint angles when running at real-time speed. For optimal control of musculoskeletal systems, a direct collocation method was developed for implicitly formulated models. The method was applied to predict gait with a prosthetic foot and ankle. Solutions were obtained in well under one hour of computation time and demonstrated how patients may adapt their gait to compensate for limitations of a specific prosthetic limb design. The optimal control method was also applied to a state estimation problem in sports biomechanics, where forces during skiing were estimated from noisy and incomplete kinematic data. Using a full musculoskeletal dynamics model for state estimation had the additional advantage that forward dynamic simulations, could be done with the same implicitly formulated model to simulate injuries and perturbation responses. While these methods are powerful and allow solution of previously intractable problems, there are still considerable numerical challenges, especially related to the convergence of gradient-based solvers. PMID:22102983

  2. Method of simulation and visualization of FDG metabolism based on VHP image

    NASA Astrophysics Data System (ADS)

    Cui, Yunfeng; Bai, Jing

    2005-04-01

    FDG ([18F] 2-fluoro-2-deoxy-D-glucose) is the typical tracer used in clinical PET (positron emission tomography) studies. The FDG-PET is an important imaging tool for early diagnosis and treatment of malignant tumor and functional disease. The main purpose of this work is to propose a method that represents FDG metabolism in human body through the simulation and visualization of 18F distribution process dynamically based on the segmented VHP (Visible Human Project) image dataset. First, the plasma time-activity curve (PTAC) and the tissues time-activity curves (TTAC) are obtained from the previous studies and the literatures. According to the obtained PTAC and TTACs, a set of corresponding values are assigned to the segmented VHP image, Thus a set of dynamic images are derived to show the 18F distribution in the concerned tissues for the predetermined sampling schedule. Finally, the simulated FDG distribution images are visualized in 3D and 2D formats, respectively, incorporated with principal interaction functions. As compared with original PET image, our visualization result presents higher resolution because of the high resolution of VHP image data, and show the distribution process of 18F dynamically. The results of our work can be used in education and related research as well as a tool for the PET operator to design their PET experiment program.

  3. A particle-in-cell method for the simulation of plasmas based on an unconditionally stable field solver

    DOE PAGES

    Wolf, Eric M.; Causley, Matthew; Christlieb, Andrew; ...

    2016-08-09

    Here, we propose a new particle-in-cell (PIC) method for the simulation of plasmas based on a recently developed, unconditionally stable solver for the wave equation. This method is not subject to a CFL restriction, limiting the ratio of the time step size to the spatial step size, typical of explicit methods, while maintaining computational cost and code complexity comparable to such explicit schemes. We describe the implementation in one and two dimensions for both electrostatic and electromagnetic cases, and present the results of several standard test problems, showing good agreement with theory with time step sizes much larger than allowedmore » by typical CFL restrictions.« less

  4. An open, object-based modeling approach for simulating subsurface heterogeneity

    NASA Astrophysics Data System (ADS)

    Bennett, J.; Ross, M.; Haslauer, C. P.; Cirpka, O. A.

    2017-12-01

    Characterization of subsurface heterogeneity with respect to hydraulic and geochemical properties is critical in hydrogeology as their spatial distribution controls groundwater flow and solute transport. Many approaches of characterizing subsurface heterogeneity do not account for well-established geological concepts about the deposition of the aquifer materials; those that do (i.e. process-based methods) often require forcing parameters that are difficult to derive from site observations. We have developed a new method for simulating subsurface heterogeneity that honors concepts of sequence stratigraphy, resolves fine-scale heterogeneity and anisotropy of distributed parameters, and resembles observed sedimentary deposits. The method implements a multi-scale hierarchical facies modeling framework based on architectural element analysis, with larger features composed of smaller sub-units. The Hydrogeological Virtual Reality simulator (HYVR) simulates distributed parameter models using an object-based approach. Input parameters are derived from observations of stratigraphic morphology in sequence type-sections. Simulation outputs can be used for generic simulations of groundwater flow and solute transport, and for the generation of three-dimensional training images needed in applications of multiple-point geostatistics. The HYVR algorithm is flexible and easy to customize. The algorithm was written in the open-source programming language Python, and is intended to form a code base for hydrogeological researchers, as well as a platform that can be further developed to suit investigators' individual needs. This presentation will encompass the conceptual background and computational methods of the HYVR algorithm, the derivation of input parameters from site characterization, and the results of groundwater flow and solute transport simulations in different depositional settings.

  5. Three-dimensional microstructure simulation of Ni-based superalloy investment castings

    NASA Astrophysics Data System (ADS)

    Pan, Dong; Xu, Qingyan; Liu, Baicheng

    2011-05-01

    An integrated macro and micro multi-scale model for the three-dimensional microstructure simulation of Ni-based superalloy investment castings was developed, and applied to industrial castings to investigate grain evolution during solidification. A ray tracing method was used to deal with the complex heat radiation transfer. The microstructure evolution was simulated based on the Modified Cellular Automaton method, which was coupled with three-dimensional nested macro and micro grids. Experiments for Ni-based superalloy turbine wheel investment casting were carried out, which showed a good correspondence with the simulated results. It is indicated that the proposed model is able to predict the microstructure of the casting precisely, which provides a tool for the optimizing process.

  6. Network-based simulation of aircraft at gates in airport terminals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Y.

    1998-03-01

    Simulation is becoming an essential tool for planning, design, and management of airport facilities. A simulation of aircraft at gates at an airport can be applied for various periodically performed applications, relating to the dynamic behavior of aircraft at gates in airport terminals for analyses, evaluations, and decision supports. Conventionally, such simulations are implemented using an event-driven method. For a more efficient simulation, this paper proposes a network-based method. The basic idea is to transform all the sequence constraint relations of aircraft at gates into a network. The simulation is done by calculating the longest path to all the nodesmore » in the network. The effect of the algorithm of the proposed method has been examined by experiments, and the superiority of the proposed method over the event-driven method is revealed through comprehensive comparisons of their overall simulation performance.« less

  7. Simulation of violent free surface flow by AMR method

    NASA Astrophysics Data System (ADS)

    Hu, Changhong; Liu, Cheng

    2018-05-01

    A novel CFD approach based on adaptive mesh refinement (AMR) technique is being developed for numerical simulation of violent free surface flows. CIP method is applied to the flow solver and tangent of hyperbola for interface capturing with slope weighting (THINC/SW) scheme is implemented as the free surface capturing scheme. The PETSc library is adopted to solve the linear system. The linear solver is redesigned and modified to satisfy the requirement of the AMR mesh topology. In this paper, our CFD method is outlined and newly obtained results on numerical simulation of violent free surface flows are presented.

  8. Experimental Evaluation of Suitability of Selected Multi-Criteria Decision-Making Methods for Large-Scale Agent-Based Simulations

    PubMed Central

    2016-01-01

    Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the–server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models. PMID:27806061

  9. [Comparison of two algorithms for development of design space-overlapping method and probability-based method].

    PubMed

    Shao, Jing-Yuan; Qu, Hai-Bin; Gong, Xing-Chu

    2018-05-01

    In this work, two algorithms (overlapping method and the probability-based method) for design space calculation were compared by using the data collected from extraction process of Codonopsis Radix as an example. In the probability-based method, experimental error was simulated to calculate the probability of reaching the standard. The effects of several parameters on the calculated design space were studied, including simulation number, step length, and the acceptable probability threshold. For the extraction process of Codonopsis Radix, 10 000 times of simulation and 0.02 for the calculation step length can lead to a satisfactory design space. In general, the overlapping method is easy to understand, and can be realized by several kinds of commercial software without coding programs, but the reliability of the process evaluation indexes when operating in the design space is not indicated. Probability-based method is complex in calculation, but can provide the reliability to ensure that the process indexes can reach the standard within the acceptable probability threshold. In addition, there is no probability mutation in the edge of design space by probability-based method. Therefore, probability-based method is recommended for design space calculation. Copyright© by the Chinese Pharmaceutical Association.

  10. A Method for Functional Task Alignment Analysis of an Arthrocentesis Simulator.

    PubMed

    Adams, Reid A; Gilbert, Gregory E; Buckley, Lisa A; Nino Fong, Rodolfo; Fuentealba, I Carmen; Little, Erika L

    2018-05-16

    During simulation-based education, simulators are subjected to procedures composed of a variety of tasks and processes. Simulators should functionally represent a patient in response to the physical action of these tasks. The aim of this work was to describe a method for determining whether a simulator does or does not have sufficient functional task alignment (FTA) to be used in a simulation. Potential performance checklist items were gathered from published arthrocentesis guidelines and aggregated into a performance checklist using Lawshe's method. An expert panel used this performance checklist and an FTA analysis questionnaire to evaluate a simulator's ability to respond to the physical actions required by the performance checklist. Thirteen items, from a pool of 39, were included on the performance checklist. Experts had mixed reviews of the simulator's FTA and its suitability for use in simulation. Unexpectedly, some positive FTA was found for several tasks where the simulator lacked functionality. By developing a detailed list of specific tasks required to complete a clinical procedure, and surveying experts on the simulator's response to those actions, educators can gain insight into the simulator's clinical accuracy and suitability. Unexpected of positive FTA ratings of function deficits suggest that further revision of the survey method is required.

  11. Parallel computing method for simulating hydrological processesof large rivers under climate change

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, Y.

    2016-12-01

    Climate change is one of the proverbial global environmental problems in the world.Climate change has altered the watershed hydrological processes in time and space distribution, especially in worldlarge rivers.Watershed hydrological process simulation based on physically based distributed hydrological model can could have better results compared with the lumped models.However, watershed hydrological process simulation includes large amount of calculations, especially in large rivers, thus needing huge computing resources that may not be steadily available for the researchers or at high expense, this seriously restricted the research and application. To solve this problem, the current parallel method are mostly parallel computing in space and time dimensions.They calculate the natural features orderly thatbased on distributed hydrological model by grid (unit, a basin) from upstream to downstream.This articleproposes ahigh-performancecomputing method of hydrological process simulation with high speedratio and parallel efficiency.It combinedthe runoff characteristics of time and space of distributed hydrological model withthe methods adopting distributed data storage, memory database, distributed computing, parallel computing based on computing power unit.The method has strong adaptability and extensibility,which means it canmake full use of the computing and storage resources under the condition of limited computing resources, and the computing efficiency can be improved linearly with the increase of computing resources .This method can satisfy the parallel computing requirements ofhydrological process simulation in small, medium and large rivers.

  12. Stochastic simulation by image quilting of process-based geological models

    NASA Astrophysics Data System (ADS)

    Hoffimann, Júlio; Scheidt, Céline; Barfod, Adrian; Caers, Jef

    2017-09-01

    Process-based modeling offers a way to represent realistic geological heterogeneity in subsurface models. The main limitation lies in conditioning such models to data. Multiple-point geostatistics can use these process-based models as training images and address the data conditioning problem. In this work, we further develop image quilting as a method for 3D stochastic simulation capable of mimicking the realism of process-based geological models with minimal modeling effort (i.e. parameter tuning) and at the same time condition them to a variety of data. In particular, we develop a new probabilistic data aggregation method for image quilting that bypasses traditional ad-hoc weighting of auxiliary variables. In addition, we propose a novel criterion for template design in image quilting that generalizes the entropy plot for continuous training images. The criterion is based on the new concept of voxel reuse-a stochastic and quilting-aware function of the training image. We compare our proposed method with other established simulation methods on a set of process-based training images of varying complexity, including a real-case example of stochastic simulation of the buried-valley groundwater system in Denmark.

  13. Numeric Modified Adomian Decomposition Method for Power System Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrovski, Aleksandar D; Simunovic, Srdjan; Pannala, Sreekanth

    This paper investigates the applicability of numeric Wazwaz El Sayed modified Adomian Decomposition Method (WES-ADM) for time domain simulation of power systems. WESADM is a numerical method based on a modified Adomian decomposition (ADM) technique. WES-ADM is a numerical approximation method for the solution of nonlinear ordinary differential equations. The non-linear terms in the differential equations are approximated using Adomian polynomials. In this paper WES-ADM is applied to time domain simulations of multimachine power systems. WECC 3-generator, 9-bus system and IEEE 10-generator, 39-bus system have been used to test the applicability of the approach. Several fault scenarios have been tested.more » It has been found that the proposed approach is faster than the trapezoidal method with comparable accuracy.« less

  14. Is social projection based on simulation or theory? Why new methods are needed for differentiating

    PubMed Central

    Bazinger, Claudia; Kühberger, Anton

    2012-01-01

    The literature on social cognition reports many instances of a phenomenon titled ‘social projection’ or ‘egocentric bias’. These terms indicate egocentric predictions, i.e., an over-reliance on the self when predicting the cognition, emotion, or behavior of other people. The classic method to diagnose egocentric prediction is to establish high correlations between our own and other people's cognition, emotion, or behavior. We argue that this method is incorrect because there is a different way to come to a correlation between own and predicted states, namely, through the use of theoretical knowledge. Thus, the use of correlational measures is not sufficient to identify the source of social predictions. Based on the distinction between simulation theory and theory theory, we propose the following alternative methods for inferring prediction strategies: independent vs. juxtaposed predictions, the use of ‘hot’ mental processes, and the use of participants’ self-reports. PMID:23209342

  15. A free energy-based surface tension force model for simulation of multiphase flows by level-set method

    NASA Astrophysics Data System (ADS)

    Yuan, H. Z.; Chen, Z.; Shu, C.; Wang, Y.; Niu, X. D.; Shu, S.

    2017-09-01

    In this paper, a free energy-based surface tension force (FESF) model is presented for accurately resolving the surface tension force in numerical simulation of multiphase flows by the level set method. By using the analytical form of order parameter along the normal direction to the interface in the phase-field method and the free energy principle, FESF model offers an explicit and analytical formulation for the surface tension force. The only variable in this formulation is the normal distance to the interface, which can be substituted by the distance function solved by the level set method. On one hand, as compared to conventional continuum surface force (CSF) model in the level set method, FESF model introduces no regularized delta function, due to which it suffers less from numerical diffusions and performs better in mass conservation. On the other hand, as compared to the phase field surface tension force (PFSF) model, the evaluation of surface tension force in FESF model is based on an analytical approach rather than numerical approximations of spatial derivatives. Therefore, better numerical stability and higher accuracy can be expected. Various numerical examples are tested to validate the robustness of the proposed FESF model. It turns out that FESF model performs better than CSF model and PFSF model in terms of accuracy, stability, convergence speed and mass conservation. It is also shown in numerical tests that FESF model can effectively simulate problems with high density/viscosity ratio, high Reynolds number and severe topological interfacial changes.

  16. Simulation methods supporting homologation of Electronic Stability Control in vehicle variants

    NASA Astrophysics Data System (ADS)

    Lutz, Albert; Schick, Bernhard; Holzmann, Henning; Kochem, Michael; Meyer-Tuve, Harald; Lange, Olav; Mao, Yiqin; Tosolin, Guido

    2017-10-01

    Vehicle simulation has a long tradition in the automotive industry as a powerful supplement to physical vehicle testing. In the field of Electronic Stability Control (ESC) system, the simulation process has been well established to support the ESC development and application by suppliers and Original Equipment Manufacturers (OEMs). The latest regulation of the United Nations Economic Commission for Europe UN/ECE-R 13 allows also for simulation-based homologation. This extends the usage of simulation from ESC development to homologation. This paper gives an overview of simulation methods, as well as processes and tools used for the homologation of ESC in vehicle variants. The paper first describes the generic homologation process according to the European Regulation (UN/ECE-R 13H, UN/ECE-R 13/11) and U.S. Federal Motor Vehicle Safety Standard (FMVSS 126). Subsequently the ESC system is explained as well as the generic application and release process at the supplier and OEM side. Coming up with the simulation methods, the ESC development and application process needs to be adapted for the virtual vehicles. The simulation environment, consisting of vehicle model, ESC model and simulation platform, is explained in detail with some exemplary use-cases. In the final section, examples of simulation-based ESC homologation in vehicle variants are shown for passenger cars, light trucks, heavy trucks and trailers. This paper is targeted to give a state-of-the-art account of the simulation methods supporting the homologation of ESC systems in vehicle variants. However, the described approach and the lessons learned can be used as reference in future for an extended usage of simulation-supported releases of the ESC system up to the development and release of driver assistance systems.

  17. The Co-simulation of Humanoid Robot Based on Solidworks, ADAMS and Simulink

    NASA Astrophysics Data System (ADS)

    Song, Dalei; Zheng, Lidan; Wang, Li; Qi, Weiwei; Li, Yanli

    A simulation method of adaptive controller is proposed for the humanoid robot system based on co-simulation of Solidworks, ADAMS and Simulink. A complex mathematical modeling process is avoided by this method, and the real time dynamic simulating function of Simulink would be exerted adequately. This method could be generalized to other complicated control system. This method is adopted to build and analyse the model of humanoid robot. The trajectory tracking and adaptive controller design also proceed based on it. The effect of trajectory tracking is evaluated by fitting-curve theory of least squares method. The anti-interference capability of the robot is improved a lot through comparative analysis.

  18. A multiscale quantum mechanics/electromagnetics method for device simulations.

    PubMed

    Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua

    2015-04-07

    Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method.

  19. Agent-Based Simulations for Project Management

    NASA Technical Reports Server (NTRS)

    White, J. Chris; Sholtes, Robert M.

    2011-01-01

    Currently, the most common approach used in project planning tools is the Critical Path Method (CPM). While this method was a great improvement over the basic Gantt chart technique being used at the time, it now suffers from three primary flaws: (1) task duration is an input, (2) productivity impacts are not considered , and (3) management corrective actions are not included. Today, computers have exceptional computational power to handle complex simulations of task e)(eculion and project management activities (e.g ., dynamically changing the number of resources assigned to a task when it is behind schedule). Through research under a Department of Defense contract, the author and the ViaSim team have developed a project simulation tool that enables more realistic cost and schedule estimates by using a resource-based model that literally turns the current duration-based CPM approach "on its head." The approach represents a fundamental paradigm shift in estimating projects, managing schedules, and reducing risk through innovative predictive techniques.

  20. ρ-VOF: An interface sharpening method for gas-liquid flow simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jiantao; Liu, Gang; Jiang, Xiong; Mou, Bin

    2018-05-01

    The study on simulation of compressible gas-liquid flow remains open. Popular methods are either confined to incompressible flow regime, or inevitably induce smear of the free interface. A new finite volume method for compressible two-phase flow simulation is contributed for this subject. First, the “heterogeneous equilibrium” assumption is introduced to the control volume, by hiring free interface reconstruction technology, the distribution of each component in the control volume is achieved. Next, AUSM+-up (advection upstream splitting method) scheme is employed to calculate the convective fluxes and pressure fluxes, with the contact discontinuity characteristic considered, followed by the update of the whole flow field. The new method features on density-based pattern and interface reconstruction technology from VOF (volume of fluid), thus we name it “ρ-VOF method”. Inherited from AUSM families and VOF, ρ-VOF behaves as an all-speed method, capable of simulating shock in gas-liquid flow, and preserving the sharpness of the free interface. Gas-liquid shock tube is simulated to evaluate the method, from which good agreement is obtained between the predicted results and those of the cited literature, meanwhile, sharper free interface is identified. Finally, the capability and validity of ρ-VOF method can be concluded in compressible gas-liquid flow simulation.

  1. Towards an entropy-based detached-eddy simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Rui; Yan, Chao; Li, XinLiang; Kong, WeiXuan

    2013-10-01

    A concept of entropy increment ratio ( s¯) is introduced for compressible turbulence simulation through a series of direct numerical simulations (DNS). s¯ represents the dissipation rate per unit mechanical energy with the benefit of independence of freestream Mach numbers. Based on this feature, we construct the shielding function f s to describe the boundary layer region and propose an entropy-based detached-eddy simulation method (SDES). This approach follows the spirit of delayed detached-eddy simulation (DDES) proposed by Spalart et al. in 2005, but it exhibits much better behavior after their performances are compared in the following flows, namely, pure attached flow with thick boundary layer (a supersonic flat-plate flow with high Reynolds number), fully separated flow (the supersonic base flow), and separated-reattached flow (the supersonic cavity-ramp flow). The Reynolds-averaged Navier-Stokes (RANS) resolved region is reliably preserved and the modeled stress depletion (MSD) phenomenon which is inherent in DES and DDES is partly alleviated. Moreover, this new hybrid strategy is simple and general, making it applicable to other models related to the boundary layer predictions.

  2. Simulator certification methods and the vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Showalter, T. W.

    1981-01-01

    The vertical motion simulator (VMS) is designed to simulate a variety of experimental helicopter and STOL/VTOL aircraft as well as other kinds of aircraft with special pitch and Z axis characteristics. The VMS includes a large motion base with extensive vertical and lateral travel capabilities, a computer generated image visual system, and a high speed CDC 7600 computer system, which performs aero model calculations. Guidelines on how to measure and evaluate VMS performance were developed. A survey of simulation users was conducted to ascertain they evaluated and certified simulators for use. The results are presented.

  3. Petascale turbulence simulation using a highly parallel fast multipole method on GPUs

    NASA Astrophysics Data System (ADS)

    Yokota, Rio; Barba, L. A.; Narumi, Tetsu; Yasuoka, Kenji

    2013-03-01

    This paper reports large-scale direct numerical simulations of homogeneous-isotropic fluid turbulence, achieving sustained performance of 1.08 petaflop/s on GPU hardware using single precision. The simulations use a vortex particle method to solve the Navier-Stokes equations, with a highly parallel fast multipole method (FMM) as numerical engine, and match the current record in mesh size for this application, a cube of 40963 computational points solved with a spectral method. The standard numerical approach used in this field is the pseudo-spectral method, relying on the FFT algorithm as the numerical engine. The particle-based simulations presented in this paper quantitatively match the kinetic energy spectrum obtained with a pseudo-spectral method, using a trusted code. In terms of parallel performance, weak scaling results show the FMM-based vortex method achieving 74% parallel efficiency on 4096 processes (one GPU per MPI process, 3 GPUs per node of the TSUBAME-2.0 system). The FFT-based spectral method is able to achieve just 14% parallel efficiency on the same number of MPI processes (using only CPU cores), due to the all-to-all communication pattern of the FFT algorithm. The calculation time for one time step was 108 s for the vortex method and 154 s for the spectral method, under these conditions. Computing with 69 billion particles, this work exceeds by an order of magnitude the largest vortex-method calculations to date.

  4. Simulation of Thermographic Responses of Delaminations in Composites with Quadrupole Method

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.; Cramer, K. Elliott

    2016-01-01

    The application of the quadrupole method for simulating thermal responses of delaminations in carbon fiber reinforced epoxy composites materials is presented. The method solves for the flux at the interface containing the delamination. From the interface flux, the temperature at the surface is calculated. While the results presented are for single sided measurements, with ash heating, expansion of the technique to arbitrary temporal flux heating or through transmission measurements is simple. The quadrupole method is shown to have two distinct advantages relative to finite element or finite difference techniques. First, it is straight forward to incorporate arbitrary shaped delaminations into the simulation. Second, the quadrupole method enables calculation of the thermal response at only the times of interest. This, combined with a significant reduction in the number of degrees of freedom for the same simulation quality, results in a reduction of the computation time by at least an order of magnitude. Therefore, it is a more viable technique for model based inversion of thermographic data. Results for simulations of delaminations in composites are presented and compared to measurements and finite element method results.

  5. Bridging the gap: simulations meet knowledge bases

    NASA Astrophysics Data System (ADS)

    King, Gary W.; Morrison, Clayton T.; Westbrook, David L.; Cohen, Paul R.

    2003-09-01

    Tapir and Krill are declarative languages for specifying actions and agents, respectively, that can be executed in simulation. As such, they bridge the gap between strictly declarative knowledge bases and strictly executable code. Tapir and Krill components can be combined to produce models of activity which can answer questions about mechanisms and processes using conventional inference methods and simulation. Tapir was used in DARPA's Rapid Knowledge Formation (RKF) project to construct models of military tactics from the Army Field Manual FM3-90. These were then used to build Courses of Actions (COAs) which could be critiqued by declarative reasoning or via Monte Carlo simulation. Tapir and Krill can be read and written by non-knowledge engineers making it an excellent vehicle for Subject Matter Experts to build and critique knowledge bases.

  6. A grouping method based on grid density and relationship for crowd evacuation simulation

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Hong; Liu, Guang-peng; Li, Liang; Moore, Philip; Hu, Bin

    2017-05-01

    Psychological factors affect the movement of people in the competitive or panic mode of evacuation, in which the density of pedestrians is relatively large and the distance among them is small. In this paper, a crowd is divided into groups according to their social relations to simulate the actual movement of crowd evacuation more realistically and increase the attractiveness of the group based on social force model. The force of group attraction is the synthesis of two forces; one is the attraction of the individuals generated by their social relations to gather, and the other is that of the group leader to the individuals within the group to ensure that the individuals follow the leader. The synthetic force determines the trajectory of individuals. The evacuation process is demonstrated using the improved social force model. In the improved social force model, the individuals with close social relations gradually present a closer and coordinated action while following the leader. In this paper, a grouping algorithm is proposed based on grid density and relationship via computer simulation to illustrate the features of the improved social force model. The definition of the parameters involved in the algorithm is given, and the effect of relational value on the grouping is tested. Reasonable numbers of grids and weights are selected. The effectiveness of the algorithm is shown through simulation experiments. A simulation platform is also established using the proposed grouping algorithm and the improved social force model for crowd evacuation simulation.

  7. Knowledge-based simulation using object-oriented programming

    NASA Technical Reports Server (NTRS)

    Sidoran, Karen M.

    1993-01-01

    Simulations have become a powerful mechanism for understanding and modeling complex phenomena. Their results have had substantial impact on a broad range of decisions in the military, government, and industry. Because of this, new techniques are continually being explored and developed to make them even more useful, understandable, extendable, and efficient. One such area of research is the application of the knowledge-based methods of artificial intelligence (AI) to the computer simulation field. The goal of knowledge-based simulation is to facilitate building simulations of greatly increased power and comprehensibility by making use of deeper knowledge about the behavior of the simulated world. One technique for representing and manipulating knowledge that has been enhanced by the AI community is object-oriented programming. Using this technique, the entities of a discrete-event simulation can be viewed as objects in an object-oriented formulation. Knowledge can be factual (i.e., attributes of an entity) or behavioral (i.e., how the entity is to behave in certain circumstances). Rome Laboratory's Advanced Simulation Environment (RASE) was developed as a research vehicle to provide an enhanced simulation development environment for building more intelligent, interactive, flexible, and realistic simulations. This capability will support current and future battle management research and provide a test of the object-oriented paradigm for use in large scale military applications.

  8. Krylov subspace methods for computing hydrodynamic interactions in Brownian dynamics simulations

    PubMed Central

    Ando, Tadashi; Chow, Edmond; Saad, Yousef; Skolnick, Jeffrey

    2012-01-01

    Hydrodynamic interactions play an important role in the dynamics of macromolecules. The most common way to take into account hydrodynamic effects in molecular simulations is in the context of a Brownian dynamics simulation. However, the calculation of correlated Brownian noise vectors in these simulations is computationally very demanding and alternative methods are desirable. This paper studies methods based on Krylov subspaces for computing Brownian noise vectors. These methods are related to Chebyshev polynomial approximations, but do not require eigenvalue estimates. We show that only low accuracy is required in the Brownian noise vectors to accurately compute values of dynamic and static properties of polymer and monodisperse suspension models. With this level of accuracy, the computational time of Krylov subspace methods scales very nearly as O(N2) for the number of particles N up to 10 000, which was the limit tested. The performance of the Krylov subspace methods, especially the “block” version, is slightly better than that of the Chebyshev method, even without taking into account the additional cost of eigenvalue estimates required by the latter. Furthermore, at N = 10 000, the Krylov subspace method is 13 times faster than the exact Cholesky method. Thus, Krylov subspace methods are recommended for performing large-scale Brownian dynamics simulations with hydrodynamic interactions. PMID:22897254

  9. Research on facial expression simulation based on depth image

    NASA Astrophysics Data System (ADS)

    Ding, Sha-sha; Duan, Jin; Zhao, Yi-wu; Xiao, Bo; Wang, Hao

    2017-11-01

    Nowadays, face expression simulation is widely used in film and television special effects, human-computer interaction and many other fields. Facial expression is captured by the device of Kinect camera .The method of AAM algorithm based on statistical information is employed to detect and track faces. The 2D regression algorithm is applied to align the feature points. Among them, facial feature points are detected automatically and 3D cartoon model feature points are signed artificially. The aligned feature points are mapped by keyframe techniques. In order to improve the animation effect, Non-feature points are interpolated based on empirical models. Under the constraint of Bézier curves we finish the mapping and interpolation. Thus the feature points on the cartoon face model can be driven if the facial expression varies. In this way the purpose of cartoon face expression simulation in real-time is came ture. The experiment result shows that the method proposed in this text can accurately simulate the facial expression. Finally, our method is compared with the previous method. Actual data prove that the implementation efficiency is greatly improved by our method.

  10. Methods of sound simulation and applications in flight simulators

    NASA Technical Reports Server (NTRS)

    Gaertner, K. P.

    1980-01-01

    An overview of methods for electronically synthesizing sounds is presented. A given amount of hardware and computer capacity places an upper limit on the degree and fidelity of realism of sound simulation which is attainable. Good sound realism for aircraft simulators can be especially expensive because of the complexity of flight sounds and their changing patterns through time. Nevertheless, the flight simulator developed at the Research Institute for Human Engineering, West Germany, shows that it is possible to design an inexpensive sound simulator with the required acoustic properties using analog computer elements. The characteristics of the sub-sound elements produced by this sound simulator for take-off, cruise and approach are discussed.

  11. Deployment Simulation Methods for Ultra-Lightweight Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Johnson, Arthur R.

    2003-01-01

    Two dynamic inflation simulation methods are employed for modeling the deployment of folded thin-membrane tubes. The simulations are necessary because ground tests include gravity effects and may poorly represent deployment in space. The two simulation methods are referred to as the Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method. They are available in the LS-DYNA nonlinear dynamic finite element code. Both methods are suitable for modeling the interactions between the inflation gas and the thin-membrane tube structures. The CV method only considers the pressure induced by the inflation gas in the simulation, while the ALE method models the actual flow of the inflation gas. Thus, the transient fluid properties at any location within the tube can be predicted by the ALE method. Deployment simulations of three packaged tube models; namely coiled, Z-folded, and telescopically-folded configurations, are performed. Results predicted by both methods for the telescopically-folded configuration are correlated and computational efficiency issues are discussed.

  12. A Lattice Boltzmann Method for Turbomachinery Simulations

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Lopez, I.

    2003-01-01

    Lattice Boltzmann (LB) Method is a relatively new method for flow simulations. The start point of LB method is statistic mechanics and Boltzmann equation. The LB method tries to set up its model at molecular scale and simulate the flow at macroscopic scale. LBM has been applied to mostly incompressible flows and simple geometry.

  13. Comparison of AGE and Spectral Methods for the Simulation of Far-Wakes

    NASA Technical Reports Server (NTRS)

    Bisset, D. K.; Rogers, M. M.; Kega, Dennis (Technical Monitor)

    1999-01-01

    Turbulent flow simulation methods based on finite differences are attractive for their simplicity, flexibility and efficiency, but not always for accuracy or stability. This report demonstrates that a good compromise is possible with the Advected Grid Explicit (AGE) method. AGE has proven to be both efficient and accurate for simulating turbulent free-shear flows, including planar mixing layers and planar jets. Its efficiency results from its localized fully explicit finite difference formulation (Bisset 1998a,b) that is very straightforward to compute, outweighing the need for a fairly small timestep. Also, most of the successful simulations were slightly under-resolved, and therefore they were, in effect, large-eddy simulations (LES) without a sub-grid-scale (SGS) model, rather than direct numerical simulations (DNS). The principle is that the role of the smallest scales of turbulent motion (when the Reynolds number is not too low) is to dissipate turbulent energy, and therefore they do not have to be simulated when the numerical method is inherently dissipative at its resolution limits. Such simulations are termed 'auto-LES' (LES with automatic SGS modeling) in this report.

  14. Methods for Monte Carlo simulations of biomacromolecules

    PubMed Central

    Vitalis, Andreas; Pappu, Rohit V.

    2010-01-01

    The state-of-the-art for Monte Carlo (MC) simulations of biomacromolecules is reviewed. Available methodologies for sampling conformational equilibria and associations of biomacromolecules in the canonical ensemble, given a continuum description of the solvent environment, are reviewed. Detailed sections are provided dealing with the choice of degrees of freedom, the efficiencies of MC algorithms and algorithmic peculiarities, as well as the optimization of simple movesets. The issue of introducing correlations into elementary MC moves, and the applicability of such methods to simulations of biomacromolecules is discussed. A brief discussion of multicanonical methods and an overview of recent simulation work highlighting the potential of MC methods are also provided. It is argued that MC simulations, while underutilized biomacromolecular simulation community, hold promise for simulations of complex systems and phenomena that span multiple length scales, especially when used in conjunction with implicit solvation models or other coarse graining strategies. PMID:20428473

  15. [Method for environmental management in paper industry based on pollution control technology simulation].

    PubMed

    Zhang, Xue-Ying; Wen, Zong-Guo

    2014-11-01

    To evaluate the reduction potential of industrial water pollutant emissions and to study the application of technology simulation in pollutant control and environment management, an Industrial Reduction Potential Analysis and Environment Management (IRPAEM) model was developed based on coupling of "material-process-technology-product". The model integrated bottom-up modeling and scenario analysis method, and was applied to China's paper industry. Results showed that under CM scenario, the reduction potentials of waster water, COD and ammonia nitrogen would reach 7 x 10(8) t, 39 x 10(4) t and 0.3 x 10(4) t, respectively in 2015, 13.8 x 10(8) t, 56 x 10(4) t and 0.5 x 10(4) t, respectively in 2020. Strengthening the end-treatment would still be the key method to reduce emissions during 2010-2020, while the reduction effect of structure adjustment would be more obvious during 2015-2020. Pollution production could basically reach the domestic or international advanced level of clean production in 2015 and 2020; the index of wastewater and ammonia nitrogen would basically meet the emission standards in 2015 and 2020 while COD would not.

  16. Evolution simulation of lightning discharge based on a magnetohydrodynamics method

    NASA Astrophysics Data System (ADS)

    Fusheng, WANG; Xiangteng, MA; Han, CHEN; Yao, ZHANG

    2018-07-01

    In order to solve the load problem for aircraft lightning strikes, lightning channel evolution is simulated under the key physical parameters for aircraft lightning current component C. A numerical model of the discharge channel is established, based on magnetohydrodynamics (MHD) and performed by FLUENT software. With the aid of user-defined functions and a user-defined scalar, the Lorentz force, Joule heating and material parameters of an air thermal plasma are added. A three-dimensional lightning arc channel is simulated and the arc evolution in space is obtained. The results show that the temperature distribution of the lightning channel is symmetrical and that the hottest region occurs at the center of the lightning channel. The distributions of potential and current density are obtained, showing that the difference in electric potential or energy between two points tends to make the arc channel develop downwards. The arc channel comes into expansion on the anode surface due to stagnation of the thermal plasma and there exists impingement on the copper plate when the arc channel comes into contact with the anode plate.

  17. Discrete Particle Method for Simulating Hypervelocity Impact Phenomena.

    PubMed

    Watson, Erkai; Steinhauser, Martin O

    2017-04-02

    In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI) phenomena which is based on the Discrete Element Method (DEM). Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms -1 . We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we use discrete spherical particles that interact with each other via potentials. In our numerical investigations we are particularly interested in the dynamics of material fragmentation upon impact. We model a typical HVI experiment configuration where a sphere strikes a thin plate and investigate the properties of the resulting debris cloud. We provide a quantitative computational analysis of the resulting debris cloud caused by impact and a comprehensive parameter study by varying key parameters of our model. We compare our findings from the simulations with recent HVI experiments performed at our institute. Our findings are that the DEM method leads to very stable, energy-conserving simulations of HVI scenarios that map the experimental setup where a sphere strikes a thin plate at hypervelocity speed. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength.

  18. A new variable parallel holes collimator for scintigraphic device with validation method based on Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Trinci, G.; Massari, R.; Scandellari, M.; Boccalini, S.; Costantini, S.; Di Sero, R.; Basso, A.; Sala, R.; Scopinaro, F.; Soluri, A.

    2010-09-01

    The aim of this work is to show a new scintigraphic device able to change automatically the length of its collimator in order to adapt the spatial resolution value to gamma source distance. This patented technique replaces the need for collimator change that standard gamma cameras still feature. Monte Carlo simulations represent the best tool in searching new technological solutions for such an innovative collimation structure. They also provide a valid analysis on response of gamma cameras performances as well as on advantages and limits of this new solution. Specifically, Monte Carlo simulations are realized with GEANT4 (GEometry ANd Tracking) framework and the specific simulation object is a collimation method based on separate blocks that can be brought closer and farther, in order to reach and maintain specific spatial resolution values for all source-detector distances. To verify the accuracy and the faithfulness of these simulations, we have realized experimental measurements with identical setup and conditions. This confirms the power of the simulation as an extremely useful tool, especially where new technological solutions need to be studied, tested and analyzed before their practical realization. The final aim of this new collimation system is the improvement of the SPECT techniques, with the real control of the spatial resolution value during tomographic acquisitions. This principle did allow us to simulate a tomographic acquisition of two capillaries of radioactive solution, in order to verify the possibility to clearly distinguish them.

  19. Scalable Methods for Eulerian-Lagrangian Simulation Applied to Compressible Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Zwick, David; Hackl, Jason; Balachandar, S.

    2017-11-01

    Multiphase flows can be found in countless areas of physics and engineering. Many of these flows can be classified as dispersed two-phase flows, meaning that there are solid particles dispersed in a continuous fluid phase. A common technique for simulating such flow is the Eulerian-Lagrangian method. While useful, this method can suffer from scaling issues on larger problem sizes that are typical of many realistic geometries. Here we present scalable techniques for Eulerian-Lagrangian simulations and apply it to the simulation of a particle bed subjected to expansion waves in a shock tube. The results show that the methods presented here are viable for simulation of larger problems on modern supercomputers. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138. This work was supported in part by the U.S. Department of Energy under Contract No. DE-NA0002378.

  20. Implementation of unsteady sampling procedures for the parallel direct simulation Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Cave, H. M.; Tseng, K.-C.; Wu, J.-S.; Jermy, M. C.; Huang, J.-C.; Krumdieck, S. P.

    2008-06-01

    An unsteady sampling routine for a general parallel direct simulation Monte Carlo method called PDSC is introduced, allowing the simulation of time-dependent flow problems in the near continuum range. A post-processing procedure called DSMC rapid ensemble averaging method (DREAM) is developed to improve the statistical scatter in the results while minimising both memory and simulation time. This method builds an ensemble average of repeated runs over small number of sampling intervals prior to the sampling point of interest by restarting the flow using either a Maxwellian distribution based on macroscopic properties for near equilibrium flows (DREAM-I) or output instantaneous particle data obtained by the original unsteady sampling of PDSC for strongly non-equilibrium flows (DREAM-II). The method is validated by simulating shock tube flow and the development of simple Couette flow. Unsteady PDSC is found to accurately predict the flow field in both cases with significantly reduced run-times over single processor code and DREAM greatly reduces the statistical scatter in the results while maintaining accurate particle velocity distributions. Simulations are then conducted of two applications involving the interaction of shocks over wedges. The results of these simulations are compared to experimental data and simulations from the literature where there these are available. In general, it was found that 10 ensembled runs of DREAM processing could reduce the statistical uncertainty in the raw PDSC data by 2.5-3.3 times, based on the limited number of cases in the present study.

  1. Use of simulated data sets to evaluate the fidelity of Metagenomicprocessing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavromatis, Konstantinos; Ivanova, Natalia; Barry, Kerri

    2006-12-01

    Metagenomics is a rapidly emerging field of research for studying microbial communities. To evaluate methods presently used to process metagenomic sequences, we constructed three simulated data sets of varying complexity by combining sequencing reads randomly selected from 113 isolate genomes. These data sets were designed to model real metagenomes in terms of complexity and phylogenetic composition. We assembled sampled reads using three commonly used genome assemblers (Phrap, Arachne and JAZZ), and predicted genes using two popular gene finding pipelines (fgenesb and CRITICA/GLIMMER). The phylogenetic origins of the assembled contigs were predicted using one sequence similarity--based (blast hit distribution) and twomore » sequence composition--based (PhyloPythia, oligonucleotide frequencies) binning methods. We explored the effects of the simulated community structure and method combinations on the fidelity of each processing step by comparison to the corresponding isolate genomes. The simulated data sets are available online to facilitate standardized benchmarking of tools for metagenomic analysis.« less

  2. Partial Variance of Increments Method in Solar Wind Observations and Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Greco, A.; Matthaeus, W. H.; Perri, S.; Osman, K. T.; Servidio, S.; Wan, M.; Dmitruk, P.

    2018-02-01

    The method called "PVI" (Partial Variance of Increments) has been increasingly used in analysis of spacecraft and numerical simulation data since its inception in 2008. The purpose of the method is to study the kinematics and formation of coherent structures in space plasmas, a topic that has gained considerable attention, leading the development of identification methods, observations, and associated theoretical research based on numerical simulations. This review paper will summarize key features of the method and provide a synopsis of the main results obtained by various groups using the method. This will enable new users or those considering methods of this type to find details and background collected in one place.

  3. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE PAGES

    Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; ...

    2015-09-28

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for

  4. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.

    2016-09-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for

  5. Situating Computer Simulation Professional Development: Does It Promote Inquiry-Based Simulation Use?

    ERIC Educational Resources Information Center

    Gonczi, Amanda L.; Maeng, Jennifer L.; Bell, Randy L.; Whitworth, Brooke A.

    2016-01-01

    This mixed-methods study sought to identify professional development implementation variables that may influence participant (a) adoption of simulations, and (b) use for inquiry-based science instruction. Two groups (Cohort 1, N = 52; Cohort 2, N = 104) received different professional development. Cohort 1 was focused on Web site use mechanics.…

  6. Self-reconfigurable ship fluid-network modeling for simulation-based design

    NASA Astrophysics Data System (ADS)

    Moon, Kyungjin

    Our world is filled with large-scale engineering systems, which provide various services and conveniences in our daily life. A distinctive trend in the development of today's large-scale engineering systems is the extensive and aggressive adoption of automation and autonomy that enable the significant improvement of systems' robustness, efficiency, and performance, with considerably reduced manning and maintenance costs, and the U.S. Navy's DD(X), the next-generation destroyer program, is considered as an extreme example of such a trend. This thesis pursues a modeling solution for performing simulation-based analysis in the conceptual or preliminary design stage of an intelligent, self-reconfigurable ship fluid system, which is one of the concepts of DD(X) engineering plant development. Through the investigations on the Navy's approach for designing a more survivable ship system, it is found that the current naval simulation-based analysis environment is limited by the capability gaps in damage modeling, dynamic model reconfiguration, and simulation speed of the domain specific models, especially fluid network models. As enablers of filling these gaps, two essential elements were identified in the formulation of the modeling method. The first one is the graph-based topological modeling method, which will be employed for rapid model reconstruction and damage modeling, and the second one is the recurrent neural network-based, component-level surrogate modeling method, which will be used to improve the affordability and efficiency of the modeling and simulation (M&S) computations. The integration of the two methods can deliver computationally efficient, flexible, and automation-friendly M&S which will create an environment for more rigorous damage analysis and exploration of design alternatives. As a demonstration for evaluating the developed method, a simulation model of a notional ship fluid system was created, and a damage analysis was performed. Next, the models

  7. Surface defects evaluation system based on electromagnetic model simulation and inverse-recognition calibration method

    NASA Astrophysics Data System (ADS)

    Yang, Yongying; Chai, Huiting; Li, Chen; Zhang, Yihui; Wu, Fan; Bai, Jian; Shen, Yibing

    2017-05-01

    Digitized evaluation of micro sparse defects on large fine optical surfaces is one of the challenges in the field of optical manufacturing and inspection. The surface defects evaluation system (SDES) for large fine optical surfaces is developed based on our previously reported work. In this paper, the electromagnetic simulation model based on Finite-Difference Time-Domain (FDTD) for vector diffraction theory is firstly established to study the law of microscopic scattering dark-field imaging. Given the aberration in actual optical systems, point spread function (PSF) approximated by a Gaussian function is introduced in the extrapolation from the near field to the far field and the scatter intensity distribution in the image plane is deduced. Analysis shows that both diffraction-broadening imaging and geometrical imaging should be considered in precise size evaluation of defects. Thus, a novel inverse-recognition calibration method is put forward to avoid confusion caused by diffraction-broadening effect. The evaluation method is applied to quantitative evaluation of defects information. The evaluation results of samples of many materials by SDES are compared with those by OLYMPUS microscope to verify the micron-scale resolution and precision. The established system has been applied to inspect defects on large fine optical surfaces and can achieve defects inspection of surfaces as large as 850 mm×500 mm with the resolution of 0.5 μm.

  8. Mirage events & driver haptic steering alerts in a motion-base driving simulator: A method for selecting an optimal HMI.

    PubMed

    Talamonti, Walter; Tijerina, Louis; Blommer, Mike; Swaminathan, Radhakrishnan; Curry, Reates; Ellis, R Darin

    2017-11-01

    This paper describes a new method, a 'mirage scenario,' to support formative evaluation of driver alerting or warning displays for manual and automated driving. This method provides driving contexts (e.g., various Times-To-Collision (TTCs) to a lead vehicle) briefly presented and then removed. In the present study, during each mirage event, a haptic steering display was evaluated. This haptic display indicated a steering response may be initiated to drive around an obstacle ahead. A motion-base simulator was used in a 32-participant study to present vehicle motion cues similar to the actual application. Surprise was neither present nor of concern, as it would be for a summative evaluation of a forward collision warning system. Furthermore, no collision avoidance maneuvers were performed, thereby reducing the risk of simulator sickness. This paper illustrates the mirage scenario procedures, the rating methods and definitions used with the mirage scenario, and analysis of the ratings obtained, together with a multi-attribute utility theory (MAUT) approach to evaluate and select among alternative designs for future summative evaluation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Simulated maximum likelihood method for estimating kinetic rates in gene expression.

    PubMed

    Tian, Tianhai; Xu, Songlin; Gao, Junbin; Burrage, Kevin

    2007-01-01

    Kinetic rate in gene expression is a key measurement of the stability of gene products and gives important information for the reconstruction of genetic regulatory networks. Recent developments in experimental technologies have made it possible to measure the numbers of transcripts and protein molecules in single cells. Although estimation methods based on deterministic models have been proposed aimed at evaluating kinetic rates from experimental observations, these methods cannot tackle noise in gene expression that may arise from discrete processes of gene expression, small numbers of mRNA transcript, fluctuations in the activity of transcriptional factors and variability in the experimental environment. In this paper, we develop effective methods for estimating kinetic rates in genetic regulatory networks. The simulated maximum likelihood method is used to evaluate parameters in stochastic models described by either stochastic differential equations or discrete biochemical reactions. Different types of non-parametric density functions are used to measure the transitional probability of experimental observations. For stochastic models described by biochemical reactions, we propose to use the simulated frequency distribution to evaluate the transitional density based on the discrete nature of stochastic simulations. The genetic optimization algorithm is used as an efficient tool to search for optimal reaction rates. Numerical results indicate that the proposed methods can give robust estimations of kinetic rates with good accuracy.

  10. Study on photon transport problem based on the platform of molecular optical simulation environment.

    PubMed

    Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie

    2010-01-01

    As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (SP(n)), and physical measurement to verify the performance of our study method on both accuracy and efficiency.

  11. Simulation of thermal transpiration flow using a high-order moment method

    NASA Astrophysics Data System (ADS)

    Sheng, Qiang; Tang, Gui-Hua; Gu, Xiao-Jun; Emerson, David R.; Zhang, Yong-Hao

    2014-04-01

    Nonequilibrium thermal transpiration flow is numerically analyzed by an extended thermodynamic approach, a high-order moment method. The captured velocity profiles of temperature-driven flow in a parallel microchannel and in a micro-chamber are compared with available kinetic data or direct simulation Monte Carlo (DSMC) results. The advantages of the high-order moment method are shown as a combination of more accuracy than the Navier-Stokes-Fourier (NSF) equations and less computation cost than the DSMC method. In addition, the high-order moment method is also employed to simulate the thermal transpiration flow in complex geometries in two types of Knudsen pumps. One is based on micro-mechanized channels, where the effect of different wall temperature distributions on thermal transpiration flow is studied. The other relies on porous structures, where the variation of flow rate with a changing porosity or pore surface area ratio is investigated. These simulations can help to optimize the design of a real Knudsen pump.

  12. Three-dimensional implementation of the Low Diffusion method for continuum flow simulations

    NASA Astrophysics Data System (ADS)

    Mirza, A.; Nizenkov, P.; Pfeiffer, M.; Fasoulas, S.

    2017-11-01

    Concepts of a particle-based continuum method have existed for many years. The ultimate goal is to couple such a method with the Direct Simulation Monte Carlo (DSMC) in order to bridge the gap of numerical tools in the treatment of the transitional flow regime between near-equilibrium and rarefied gas flows. For this purpose, the Low Diffusion (LD) method, introduced first by Burt and Boyd, offers a promising solution. In this paper, the LD method is revisited and the implementation in a modern particle solver named PICLas is given. The modifications of the LD routines enable three-dimensional continuum flow simulations. The implementation is successfully verified through a series of test cases: simple stationary shock, oblique shock simulation and thermal Couette flow. Additionally, the capability of this method is demonstrated by the simulation of a hypersonic nitrogen flow around a 70°-blunted cone. Overall results are in very good agreement with experimental data. Finally, the scalability of PICLas using LD on a high performance cluster is presented.

  13. Two methods for transmission line simulation model creation based on time domain measurements

    NASA Astrophysics Data System (ADS)

    Rinas, D.; Frei, S.

    2011-07-01

    The emission from transmission lines plays an important role in the electromagnetic compatibility of automotive electronic systems. In a frequency range below 200 MHz radiation from cables is often the dominant emission factor. In higher frequency ranges radiation from PCBs and their housing becomes more relevant. Main sources for this emission are the conducting traces. The established field measurement methods according CISPR 25 for evaluation of emissions suffer from the need to use large anechoic chambers. Furthermore measurement data can not be used for simulation model creation in order to compute the overall fields radiated from a car. In this paper a method to determine the far-fields and a simulation model of radiating transmission lines, esp. cable bundles and conducting traces on planar structures, is proposed. The method measures the electromagnetic near-field above the test object. Measurements are done in time domain in order to get phase information and to reduce measurement time. On the basis of near-field data equivalent source identification can be done. Considering correlations between sources along each conductive structure in model creation process, the model accuracy increases and computational costs can be reduced.

  14. The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellier, J.M., E-mail: jeanmichel.sellier@parallel.bas.bg; Dimov, I.

    2014-09-15

    The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practicallymore » unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.« less

  15. GPU-based Efficient Realistic Techniques for Bleeding and Smoke Generation in Surgical Simulators

    PubMed Central

    Halic, Tansel; Sankaranarayanan, Ganesh; De, Suvranu

    2010-01-01

    Background In actual surgery, smoke and bleeding due to cautery processes, provide important visual cues to the surgeon which have been proposed as factors in surgical skill assessment. While several virtual reality (VR)-based surgical simulators have incorporated effects of bleeding and smoke generation, they are not realistic due to the requirement of real time performance. To be interactive, visual update must be performed at least 30 Hz and haptic (touch) information must be refreshed at 1 kHz. Simulation of smoke and bleeding is, therefore, either ignored or simulated using highly simplified techniques since other computationally intensive processes compete for the available CPU resources. Methods In this work, we develop a novel low-cost method to generate realistic bleeding and smoke in VR-based surgical simulators which outsources the computations to the graphical processing unit (GPU), thus freeing up the CPU for other time-critical tasks. This method is independent of the complexity of the organ models in the virtual environment. User studies were performed using 20 subjects to determine the visual quality of the simulations compared to real surgical videos. Results The smoke and bleeding simulation were implemented as part of a Laparoscopic Adjustable Gastric Banding (LAGB) simulator. For the bleeding simulation, the original implementation using the shader did not incur in noticeable overhead. However, for smoke generation, an I/O (Input/Output) bottleneck was observed and two different methods were developed to overcome this limitation. Based on our benchmark results, a buffered approach performed better than a pipelined approach and could support up to 15 video streams in real time. Human subject studies showed that the visual realism of the simulations were as good as in real surgery (median rating of 4 on a 5-point Likert scale). Conclusions Based on the performance results and subject study, both bleeding and smoke simulations were concluded to be

  16. Discrete Particle Method for Simulating Hypervelocity Impact Phenomena

    PubMed Central

    Watson, Erkai; Steinhauser, Martin O.

    2017-01-01

    In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI) phenomena which is based on the Discrete Element Method (DEM). Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms−1. We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we use discrete spherical particles that interact with each other via potentials. In our numerical investigations we are particularly interested in the dynamics of material fragmentation upon impact. We model a typical HVI experiment configuration where a sphere strikes a thin plate and investigate the properties of the resulting debris cloud. We provide a quantitative computational analysis of the resulting debris cloud caused by impact and a comprehensive parameter study by varying key parameters of our model. We compare our findings from the simulations with recent HVI experiments performed at our institute. Our findings are that the DEM method leads to very stable, energy–conserving simulations of HVI scenarios that map the experimental setup where a sphere strikes a thin plate at hypervelocity speed. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength. PMID:28772739

  17. Adaptive and dynamic meshing methods for numerical simulations

    NASA Astrophysics Data System (ADS)

    Acikgoz, Nazmiye

    For the numerical simulation of many problems of engineering interest, it is desirable to have an automated mesh adaption tool capable of producing high quality meshes with an affordably low number of mesh points. This is important especially for problems, which are characterized by anisotropic features of the solution and require mesh clustering in the direction of high gradients. Another significant issue in meshing emerges in the area of unsteady simulations with moving boundaries or interfaces, where the motion of the boundary has to be accommodated by deforming the computational grid. Similarly, there exist problems where current mesh needs to be adapted to get more accurate solutions because either the high gradient regions are initially predicted inaccurately or they change location throughout the simulation. To solve these problems, we propose three novel procedures. For this purpose, in the first part of this work, we present an optimization procedure for three-dimensional anisotropic tetrahedral grids based on metric-driven h-adaptation. The desired anisotropy in the grid is dictated by a metric that defines the size, shape, and orientation of the grid elements throughout the computational domain. Through the use of topological and geometrical operators, the mesh is iteratively adapted until the final mesh minimizes a given objective function. In this work, the objective function measures the distance between the metric of each simplex and a target metric, which can be either user-defined (a-priori) or the result of a-posteriori error analysis. During the adaptation process, one tries to decrease the metric-based objective function until the final mesh is compliant with the target within a given tolerance. However, in regions such as corners and complex face intersections, the compliance condition was found to be very difficult or sometimes impossible to satisfy. In order to address this issue, we propose an optimization process based on an ad

  18. Simulating large-scale crop yield by using perturbed-parameter ensemble method

    NASA Astrophysics Data System (ADS)

    Iizumi, T.; Yokozawa, M.; Sakurai, G.; Nishimori, M.

    2010-12-01

    Toshichika Iizumi, Masayuki Yokozawa, Gen Sakurai, Motoki Nishimori Agro-Meteorology Division, National Institute for Agro-Environmental Sciences, Japan Abstract One of concerning issues of food security under changing climate is to predict the inter-annual variation of crop production induced by climate extremes and modulated climate. To secure food supply for growing world population, methodology that can accurately predict crop yield on a large scale is needed. However, for developing a process-based large-scale crop model with a scale of general circulation models (GCMs), 100 km in latitude and longitude, researchers encounter the difficulties in spatial heterogeneity of available information on crop production such as cultivated cultivars and management. This study proposed an ensemble-based simulation method that uses a process-based crop model and systematic parameter perturbation procedure, taking maize in U.S., China, and Brazil as examples. The crop model was developed modifying the fundamental structure of the Soil and Water Assessment Tool (SWAT) to incorporate the effect of heat stress on yield. We called the new model PRYSBI: the Process-based Regional-scale Yield Simulator with Bayesian Inference. The posterior probability density function (PDF) of 17 parameters, which represents the crop- and grid-specific features of the crop and its uncertainty under given data, was estimated by the Bayesian inversion analysis. We then take 1500 ensemble members of simulated yield values based on the parameter sets sampled from the posterior PDF to describe yearly changes of the yield, i.e. perturbed-parameter ensemble method. The ensemble median for 27 years (1980-2006) was compared with the data aggregated from the county yield. On a country scale, the ensemble median of the simulated yield showed a good correspondence with the reported yield: the Pearson’s correlation coefficient is over 0.6 for all countries. In contrast, on a grid scale, the correspondence

  19. Simulations of Ground and Space-Based Oxygen Atom Experiments

    NASA Technical Reports Server (NTRS)

    Finchum, A. (Technical Monitor); Cline, J. A.; Minton, T. K.; Braunstein, M.

    2003-01-01

    A low-earth orbit (LEO) materials erosion scenario and the ground-based experiment designed to simulate it are compared using the direct-simulation Monte Carlo (DSMC) method. The DSMC model provides a detailed description of the interactions between the hyperthermal gas flow and a normally oriented flat plate for each case. We find that while the general characteristics of the LEO exposure are represented in the ground-based experiment, multi-collision effects can potentially alter the impact energy and directionality of the impinging molecules in the ground-based experiment. Multi-collision phenomena also affect downstream flux measurements.

  20. A novel stochastic modeling method to simulate cooling loads in residential districts

    DOE PAGES

    An, Jingjing; Yan, Da; Hong, Tianzhen; ...

    2017-09-04

    District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less

  1. A novel stochastic modeling method to simulate cooling loads in residential districts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Jingjing; Yan, Da; Hong, Tianzhen

    District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less

  2. Hybrid Method for Power Control Simulation of a Single Fluid Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Jaisankar, S.; Sheshadri, T. S.

    2018-05-01

    Propulsive plasma flow through a cylindrical-conical diverging thruster is simulated by a power controlled hybrid method to obtain the basic flow, thermodynamic and electromagnetic variables. Simulation is based on a single fluid model with electromagnetics being described by the equations of potential Poisson, Maxwell and the Ohm's law while the compressible fluid dynamics by the Navier Stokes in cylindrical form. The proposed method solved the electromagnetics and fluid dynamics separately, both to segregate the two prominent scales for an efficient computation and for the delivery of voltage controlled rated power. The magnetic transport is solved for steady state while fluid dynamics is allowed to evolve in time along with an electromagnetic source using schemes based on generalized finite difference discretization. The multistep methodology with power control is employed for simulating fully ionized propulsive flow of argon plasma through the thruster. Numerical solution shows convergence of every part of the solver including grid stability causing the multistep hybrid method to converge for a rated power delivery. Simulation results are reasonably in agreement with the reported physics of plasma flow in the thruster thus indicating the potential utility of this hybrid computational framework, especially when single fluid approximation of plasma is relevant.

  3. Particle Methods for Simulating Atomic Radiation in Hypersonic Reentry Flows

    NASA Astrophysics Data System (ADS)

    Ozawa, T.; Wang, A.; Levin, D. A.; Modest, M.

    2008-12-01

    With a fast reentry speed, the Stardust vehicle generates a strong shock region ahead of its blunt body with a temperature above 60,000 K. These extreme Mach number flows are sufficiently energetic to initiate gas ionization processes and thermal and chemical ablation processes. The nonequilibrium gaseous radiation from the shock layer is so strong that it affects the flowfield macroparameter distributions. In this work, we present the first loosely coupled direct simulation Monte Carlo (DSMC) simulations with the particle-based photon Monte Carlo (p-PMC) method to simulate high-Mach number reentry flows in the near-continuum flow regime. To efficiently capture the highly nonequilibrium effects, emission and absorption cross section databases using the Nonequilibrium Air Radiation (NEQAIR) were generated, and atomic nitrogen and oxygen radiative transport was calculated by the p-PMC method. The radiation energy change calculated by the p-PMC method has been coupled in the DSMC calculations, and the atomic radiation was found to modify the flow field and heat flux at the wall.

  4. Lattice Boltzmann Method for Spacecraft Propellant Slosh Simulation

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Powers, Joseph F.; Yang, Hong Q

    2015-01-01

    A scalable computational approach to the simulation of propellant tank sloshing dynamics in microgravity is presented. In this work, we use the lattice Boltzmann equation (LBE) to approximate the behavior of two-phase, single-component isothermal flows at very low Bond numbers. Through the use of a non-ideal gas equation of state and a modified multiple relaxation time (MRT) collision operator, the proposed method can simulate thermodynamically consistent phase transitions at temperatures and density ratios consistent with typical spacecraft cryogenic propellants, for example, liquid oxygen. Determination of the tank forces and moments is based upon a novel approach that relies on the global momentum conservation of the closed fluid domain, and a parametric wall wetting model allows tuning of the free surface contact angle. Development of the interface is implicit and no interface tracking approach is required. A numerical example illustrates the method's application to prediction of bulk fluid behavior during a spacecraft ullage settling maneuver.

  5. Simulation optimization of PSA-threshold based prostate cancer screening policies

    PubMed Central

    Zhang, Jingyu; Denton, Brian T.; Shah, Nilay D.; Inman, Brant A.

    2013-01-01

    We describe a simulation optimization method to design PSA screening policies based on expected quality adjusted life years (QALYs). Our method integrates a simulation model in a genetic algorithm which uses a probabilistic method for selection of the best policy. We present computational results about the efficiency of our algorithm. The best policy generated by our algorithm is compared to previously recommended screening policies. Using the policies determined by our model, we present evidence that patients should be screened more aggressively but for a shorter length of time than previously published guidelines recommend. PMID:22302420

  6. Analysis of optimisation method for a two-stroke piston ring using the Finite Element Method and the Simulated Annealing Method

    NASA Astrophysics Data System (ADS)

    Kaliszewski, M.; Mazuro, P.

    2016-09-01

    Simulated Annealing Method of optimisation for the sealing piston ring geometry is tested. The aim of optimisation is to develop ring geometry which would exert demanded pressure on a cylinder just while being bended to fit the cylinder. Method of FEM analysis of an arbitrary piston ring geometry is applied in an ANSYS software. The demanded pressure function (basing on formulae presented by A. Iskra) as well as objective function are introduced. Geometry definition constructed by polynomials in radial coordinate system is delivered and discussed. Possible application of Simulated Annealing Method in a piston ring optimisation task is proposed and visualised. Difficulties leading to possible lack of convergence of optimisation are presented. An example of an unsuccessful optimisation performed in APDL is discussed. Possible line of further optimisation improvement is proposed.

  7. Same Content, Different Methods: Comparing Lecture, Engaged Classroom, and Simulation.

    PubMed

    Raleigh, Meghan F; Wilson, Garland Anthony; Moss, David Alan; Reineke-Piper, Kristen A; Walden, Jeffrey; Fisher, Daniel J; Williams, Tracy; Alexander, Christienne; Niceler, Brock; Viera, Anthony J; Zakrajsek, Todd

    2018-02-01

    There is a push to use classroom technology and active teaching methods to replace didactic lectures as the most prevalent format for resident education. This multisite collaborative cohort study involving nine residency programs across the United States compared a standard slide-based didactic lecture, a facilitated group discussion via an engaged classroom, and a high-fidelity, hands-on simulation scenario for teaching the topic of acute dyspnea. The primary outcome was knowledge retention at 2 to 4 weeks. Each teaching method was assigned to three different residency programs in the collaborative according to local resources. Learning objectives were determined by faculty. Pre- and posttest questions were validated and utilized as a measurement of knowledge retention. Each site administered the pretest, taught the topic of acute dyspnea utilizing their assigned method, and administered a posttest 2 to 4 weeks later. Differences between the groups were compared using paired t-tests. A total of 146 residents completed the posttest, and scores increased from baseline across all groups. The average score increased 6% in the standard lecture group (n=47), 11% in the engaged classroom (n=53), and 9% in the simulation group (n=56). The differences in improvement between engaged classroom and simulation were not statistically significant. Compared to standard lecture, both engaged classroom and high-fidelity simulation were associated with a statistically significant improvement in knowledge retention. Knowledge retention after engaged classroom and high-fidelity simulation did not significantly differ. More research is necessary to determine if different teaching methods result in different levels of comfort and skill with actual patient care.

  8. An Ellipsoidal Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 1

    NASA Technical Reports Server (NTRS)

    Shivarama, Ravishankar; Fahrenthold, Eric P.

    2004-01-01

    A number of coupled particle-element and hybrid particle-element methods have been developed for the simulation of hypervelocity impact problems, to avoid certain disadvantages associated with the use of pure continuum based or pure particle based methods. To date these methods have employed spherical particles. In recent work a hybrid formulation has been extended to the ellipsoidal particle case. A model formulation approach based on Lagrange's equations, with particles entropies serving as generalized coordinates, avoids the angular momentum conservation problems which have been reported with ellipsoidal smooth particle hydrodynamics models.

  9. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavromatis, K; Ivanova, N; Barry, Kerrie

    2007-01-01

    Metagenomics is a rapidly emerging field of research for studying microbial communities. To evaluate methods presently used to process metagenomic sequences, we constructed three simulated data sets of varying complexity by combining sequencing reads randomly selected from 113 isolate genomes. These data sets were designed to model real metagenomes in terms of complexity and phylogenetic composition. We assembled sampled reads using three commonly used genome assemblers (Phrap, Arachne and JAZZ), and predicted genes using two popular gene-finding pipelines (fgenesb and CRITICA/GLIMMER). The phylogenetic origins of the assembled contigs were predicted using one sequence similarity-based ( blast hit distribution) and twomore » sequence composition-based (PhyloPythia, oligonucleotide frequencies) binning methods. We explored the effects of the simulated community structure and method combinations on the fidelity of each processing step by comparison to the corresponding isolate genomes. The simulated data sets are available online to facilitate standardized benchmarking of tools for metagenomic analysis.« less

  10. Improving the Aircraft Design Process Using Web-Based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.; Follen, Gregory J. (Technical Monitor)

    2000-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  11. Improving the Aircraft Design Process Using Web-based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.

    2003-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  12. Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment

    PubMed Central

    Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie

    2010-01-01

    As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (S P n), and physical measurement to verify the performance of our study method on both accuracy and efficiency. PMID:20445737

  13. Physiological Based Simulator Fidelity Design Guidance

    NASA Technical Reports Server (NTRS)

    Schnell, Thomas; Hamel, Nancy; Postnikov, Alex; Hoke, Jaclyn; McLean, Angus L. M. Thom, III

    2012-01-01

    The evolution of the role of flight simulation has reinforced assumptions in aviation that the degree of realism in a simulation system directly correlates to the training benefit, i.e., more fidelity is always better. The construct of fidelity has several dimensions, including physical fidelity, functional fidelity, and cognitive fidelity. Interaction of different fidelity dimensions has an impact on trainee immersion, presence, and transfer of training. This paper discusses research results of a recent study that investigated if physiological-based methods could be used to determine the required level of simulator fidelity. Pilots performed a relatively complex flight task consisting of mission task elements of various levels of difficulty in a fixed base flight simulator and a real fighter jet trainer aircraft. Flight runs were performed using one forward visual channel of 40 deg. field of view for the lowest level of fidelity, 120 deg. field of view for the middle level of fidelity, and unrestricted field of view and full dynamic acceleration in the real airplane. Neuro-cognitive and physiological measures were collected under these conditions using the Cognitive Avionics Tool Set (CATS) and nonlinear closed form models for workload prediction were generated based on these data for the various mission task elements. One finding of the work described herein is that simple heart rate is a relatively good predictor of cognitive workload, even for short tasks with dynamic changes in cognitive loading. Additionally, we found that models that used a wide range of physiological and neuro-cognitive measures can further boost the accuracy of the workload prediction.

  14. Adjoint-based Simultaneous Estimation Method of Fault Slip and Asthenosphere Viscosity Using Large-Scale Finite Element Simulation of Viscoelastic Deformation

    NASA Astrophysics Data System (ADS)

    Agata, R.; Ichimura, T.; Hori, T.; Hirahara, K.; Hashimoto, C.; Hori, M.

    2016-12-01

    Estimation of the coseismic/postseismic slip using postseismic deformation observation data is an important topic in the field of geodetic inversion. Estimation methods for this purpose are expected to be improved by introducing numerical simulation tools (e.g. finite element (FE) method) of viscoelastic deformation, in which the computation model is of high fidelity to the available high-resolution crustal data. The authors have proposed a large-scale simulation method using such FE high-fidelity models (HFM), assuming use of a large-scale computation environment such as the K computer in Japan (Ichimura et al. 2016). On the other hand, the values of viscosity in the heterogeneous viscoelastic structure in the high-fidelity model are not trivial. In this study, we developed an adjoint-based optimization method incorporating HFM, in which fault slip and asthenosphere viscosity are simultaneously estimated. We carried out numerical experiments using synthetic crustal deformation data. We constructed an HFM in the domain of 2048x1536x850 km, which includes the Tohoku region in northeast Japan based on Ichimura et al. (2013). We used the model geometry data set of JTOPO30 (2003), Koketsu et al. (2008) and CAMP standard model (Hashimoto et al. 2004). The geometry of crustal structures in HFM is in 1km resolution, resulting in 36 billion degrees-of-freedom. Synthetic crustal deformation data due to prescribed coseismic slip and after slips in the location of GEONET, GPS/A observation points, and S-net are used. The target inverse analysis is formulated as minimization of L2 norm of the difference between the FE simulation results and the observation data with respect to viscosity and fault slip, combining the quasi-Newton algorithm with the adjoint method. Use of this combination decreases the necessary number of forward analyses in the optimization calculation. As a result, we are now able to finish the estimation using 2560 computer nodes of the K computer for less

  15. Development of Human Posture Simulation Method for Assessing Posture Angles and Spinal Loads

    PubMed Central

    Lu, Ming-Lun; Waters, Thomas; Werren, Dwight

    2015-01-01

    Video-based posture analysis employing a biomechanical model is gaining a growing popularity for ergonomic assessments. A human posture simulation method of estimating multiple body postural angles and spinal loads from a video record was developed to expedite ergonomic assessments. The method was evaluated by a repeated measures study design with three trunk flexion levels, two lift asymmetry levels, three viewing angles and three trial repetitions as experimental factors. The study comprised two phases evaluating the accuracy of simulating self and other people’s lifting posture via a proxy of a computer-generated humanoid. The mean values of the accuracy of simulating self and humanoid postures were 12° and 15°, respectively. The repeatability of the method for the same lifting condition was excellent (~2°). The least simulation error was associated with side viewing angle. The estimated back compressive force and moment, calculated by a three dimensional biomechanical model, exhibited a range of 5% underestimation. The posture simulation method enables researchers to simultaneously quantify body posture angles and spinal loading variables with accuracy and precision comparable to on-screen posture matching methods. PMID:26361435

  16. A Monte Carlo method for the simulation of coagulation and nucleation based on weighted particles and the concepts of stochastic resolution and merging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotalczyk, G., E-mail: Gregor.Kotalczyk@uni-due.de; Kruis, F.E.

    Monte Carlo simulations based on weighted simulation particles can solve a variety of population balance problems and allow thus to formulate a solution-framework for many chemical engineering processes. This study presents a novel concept for the calculation of coagulation rates of weighted Monte Carlo particles by introducing a family of transformations to non-weighted Monte Carlo particles. The tuning of the accuracy (named ‘stochastic resolution’ in this paper) of those transformations allows the construction of a constant-number coagulation scheme. Furthermore, a parallel algorithm for the inclusion of newly formed Monte Carlo particles due to nucleation is presented in the scope ofmore » a constant-number scheme: the low-weight merging. This technique is found to create significantly less statistical simulation noise than the conventional technique (named ‘random removal’ in this paper). Both concepts are combined into a single GPU-based simulation method which is validated by comparison with the discrete-sectional simulation technique. Two test models describing a constant-rate nucleation coupled to a simultaneous coagulation in 1) the free-molecular regime or 2) the continuum regime are simulated for this purpose.« less

  17. Entropy in bimolecular simulations: A comprehensive review of atomic fluctuations-based methods.

    PubMed

    Kassem, Summer; Ahmed, Marawan; El-Sheikh, Salah; Barakat, Khaled H

    2015-11-01

    Entropy of binding constitutes a major, and in many cases a detrimental, component of the binding affinity in biomolecular interactions. While the enthalpic part of the binding free energy is easier to calculate, estimating the entropy of binding is further more complicated. A precise evaluation of entropy requires a comprehensive exploration of the complete phase space of the interacting entities. As this task is extremely hard to accomplish in the context of conventional molecular simulations, calculating entropy has involved many approximations. Most of these golden standard methods focused on developing a reliable estimation of the conformational part of the entropy. Here, we review these methods with a particular emphasis on the different techniques that extract entropy from atomic fluctuations. The theoretical formalisms behind each method is explained highlighting its strengths as well as its limitations, followed by a description of a number of case studies for each method. We hope that this brief, yet comprehensive, review provides a useful tool to understand these methods and realize the practical issues that may arise in such calculations. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Simulation of earthquake ground motions in the eastern United States using deterministic physics‐based and site‐based stochastic approaches

    USGS Publications Warehouse

    Rezaeian, Sanaz; Hartzell, Stephen; Sun, Xiaodan; Mendoza, Carlos

    2017-01-01

    Earthquake ground‐motion recordings are scarce in the central and eastern United States (CEUS) for large‐magnitude events and at close distances. We use two different simulation approaches, a deterministic physics‐based method and a site‐based stochastic method, to simulate ground motions over a wide range of magnitudes. Drawing on previous results for the modeling of recordings from the 2011 Mw 5.8 Mineral, Virginia, earthquake and using the 2001 Mw 7.6 Bhuj, India, earthquake as a tectonic analog for a large magnitude CEUS event, we are able to calibrate the two simulation methods over this magnitude range. Both models show a good fit to the Mineral and Bhuj observations from 0.1 to 10 Hz. Model parameters are then adjusted to obtain simulations for Mw 6.5, 7.0, and 7.6 events in the CEUS. Our simulations are compared with the 2014 U.S. Geological Survey weighted combination of existing ground‐motion prediction equations in the CEUS. The physics‐based simulations show comparable response spectral amplitudes and a fairly similar attenuation with distance. The site‐based stochastic simulations suggest a slightly faster attenuation of the response spectral amplitudes with distance for larger magnitude events and, as a result, slightly lower amplitudes at distances greater than 200 km. Both models are plausible alternatives and, given the few available data points in the CEUS, can be used to represent the epistemic uncertainty in modeling of postulated CEUS large‐magnitude events.

  19. A Multi-Stage Method for Connecting Participatory Sensing and Noise Simulations

    PubMed Central

    Hu, Mingyuan; Che, Weitao; Zhang, Qiuju; Luo, Qingli; Lin, Hui

    2015-01-01

    Most simulation-based noise maps are important for official noise assessment but lack local noise characteristics. The main reasons for this lack of information are that official noise simulations only provide information about expected noise levels, which is limited by the use of large-scale monitoring of noise sources, and are updated infrequently. With the emergence of smart cities and ubiquitous sensing, the possible improvements enabled by sensing technologies provide the possibility to resolve this problem. This study proposed an integrated methodology to propel participatory sensing from its current random and distributed sampling origins to professional noise simulation. The aims of this study were to effectively organize the participatory noise data, to dynamically refine the granularity of the noise features on road segments (e.g., different portions of a road segment), and then to provide a reasonable spatio-temporal data foundation to support noise simulations, which can be of help to researchers in understanding how participatory sensing can play a role in smart cities. This study first discusses the potential limitations of the current participatory sensing and simulation-based official noise maps. Next, we explain how participatory noise data can contribute to a simulation-based noise map by providing (1) spatial matching of the participatory noise data to the virtual partitions at a more microscopic level of road networks; (2) multi-temporal scale noise estimations at the spatial level of virtual partitions; and (3) dynamic aggregation of virtual partitions by comparing the noise values at the relevant temporal scale to form a dynamic segmentation of each road segment to support multiple spatio-temporal noise simulations. In this case study, we demonstrate how this method could play a significant role in a simulation-based noise map. Together, these results demonstrate the potential benefits of participatory noise data as dynamic input sources for

  20. A multi-stage method for connecting participatory sensing and noise simulations.

    PubMed

    Hu, Mingyuan; Che, Weitao; Zhang, Qiuju; Luo, Qingli; Lin, Hui

    2015-01-22

    Most simulation-based noise maps are important for official noise assessment but lack local noise characteristics. The main reasons for this lack of information are that official noise simulations only provide information about expected noise levels, which is limited by the use of large-scale monitoring of noise sources, and are updated infrequently. With the emergence of smart cities and ubiquitous sensing, the possible improvements enabled by sensing technologies provide the possibility to resolve this problem. This study proposed an integrated methodology to propel participatory sensing from its current random and distributed sampling origins to professional noise simulation. The aims of this study were to effectively organize the participatory noise data, to dynamically refine the granularity of the noise features on road segments (e.g., different portions of a road segment), and then to provide a reasonable spatio-temporal data foundation to support noise simulations, which can be of help to researchers in understanding how participatory sensing can play a role in smart cities. This study first discusses the potential limitations of the current participatory sensing and simulation-based official noise maps. Next, we explain how participatory noise data can contribute to a simulation-based noise map by providing (1) spatial matching of the participatory noise data to the virtual partitions at a more microscopic level of road networks; (2) multi-temporal scale noise estimations at the spatial level of virtual partitions; and (3) dynamic aggregation of virtual partitions by comparing the noise values at the relevant temporal scale to form a dynamic segmentation of each road segment to support multiple spatio-temporal noise simulations. In this case study, we demonstrate how this method could play a significant role in a simulation-based noise map. Together, these results demonstrate the potential benefits of participatory noise data as dynamic input sources for

  1. A Method for Large Eddy Simulation of Acoustic Combustion Instabilities

    NASA Astrophysics Data System (ADS)

    Wall, Clifton; Moin, Parviz

    2003-11-01

    A method for performing Large Eddy Simulation of acoustic combustion instabilities is presented. By extending the low Mach number pressure correction method to the case of compressible flow, a numerical method is developed in which the Poisson equation for pressure is replaced by a Helmholtz equation. The method avoids the acoustic CFL condition by using implicit time advancement, leading to large efficiency gains at low Mach number. The method also avoids artificial damping of acoustic waves. The numerical method is attractive for the simulation of acoustics combustion instabilities, since these flows are typically at low Mach number, and the acoustic frequencies of interest are usually low. Additionally, new boundary conditions based on the work of Poinsot and Lele have been developed to model the acoustic effect of a long channel upstream of the computational inlet, thus avoiding the need to include such a channel in the computational domain. The turbulent combustion model used is the Level Set model of Duchamp de Lageneste and Pitsch for premixed combustion. Comparison of LES results to the reacting experiments of Besson et al. will be presented.

  2. Preservice Teachers' Video Simulations and Subsequent Noticing: A Practice-Based Method to Prepare Mathematics Teachers

    ERIC Educational Resources Information Center

    Amador, Julie M.

    2017-01-01

    The purpose of this study was to implement a Video Simulation Task in a mathematics methods teacher education course to engage preservice teachers in considering both the teaching and learning aspects of mathematics lesson delivery. Participants anticipated student and teacher thinking and created simulations, in which they acted out scenes on a…

  3. Distributed Simulation as a modelling tool for the development of a simulation-based training programme for cardiovascular specialties.

    PubMed

    Kelay, Tanika; Chan, Kah Leong; Ako, Emmanuel; Yasin, Mohammad; Costopoulos, Charis; Gold, Matthew; Kneebone, Roger K; Malik, Iqbal S; Bello, Fernando

    2017-01-01

    Distributed Simulation is the concept of portable, high-fidelity immersive simulation. Here, it is used for the development of a simulation-based training programme for cardiovascular specialities. We present an evidence base for how accessible, portable and self-contained simulated environments can be effectively utilised for the modelling, development and testing of a complex training framework and assessment methodology. Iterative user feedback through mixed-methods evaluation techniques resulted in the implementation of the training programme. Four phases were involved in the development of our immersive simulation-based training programme: ( 1) initial conceptual stage for mapping structural criteria and parameters of the simulation training framework and scenario development ( n  = 16), (2) training facility design using Distributed Simulation , (3) test cases with clinicians ( n  = 8) and collaborative design, where evaluation and user feedback involved a mixed-methods approach featuring (a) quantitative surveys to evaluate the realism and perceived educational relevance of the simulation format and framework for training and (b) qualitative semi-structured interviews to capture detailed feedback including changes and scope for development. Refinements were made iteratively to the simulation framework based on user feedback, resulting in (4) transition towards implementation of the simulation training framework, involving consistent quantitative evaluation techniques for clinicians ( n  = 62). For comparative purposes, clinicians' initial quantitative mean evaluation scores for realism of the simulation training framework, realism of the training facility and relevance for training ( n  = 8) are presented longitudinally, alongside feedback throughout the development stages from concept to delivery, including the implementation stage ( n  = 62). Initially, mean evaluation scores fluctuated from low to average, rising incrementally. This corresponded

  4. Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review

    PubMed Central

    Misra, Sarthak; Ramesh, K. T.; Okamura, Allison M.

    2009-01-01

    Surgical simulators present a safe and potentially effective method for surgical training, and can also be used in robot-assisted surgery for pre- and intra-operative planning. Accurate modeling of the interaction between surgical instruments and organs has been recognized as a key requirement in the development of high-fidelity surgical simulators. Researchers have attempted to model tool-tissue interactions in a wide variety of ways, which can be broadly classified as (1) linear elasticity-based, (2) nonlinear (hyperelastic) elasticity-based finite element (FE) methods, and (3) other techniques that not based on FE methods or continuum mechanics. Realistic modeling of organ deformation requires populating the model with real tissue data (which are difficult to acquire in vivo) and simulating organ response in real time (which is computationally expensive). Further, it is challenging to account for connective tissue supporting the organ, friction, and topological changes resulting from tool-tissue interactions during invasive surgical procedures. Overcoming such obstacles will not only help us to model tool-tissue interactions in real time, but also enable realistic force feedback to the user during surgical simulation. This review paper classifies the existing research on tool-tissue interactions for surgical simulators specifically based on the modeling techniques employed and the kind of surgical operation being simulated, in order to inform and motivate future research on improved tool-tissue interaction models. PMID:20119508

  5. Numerical simulation the pollutants transport in the Lake base on remote sensing image with Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Qiao, Y.

    2013-12-01

    As China's economic development, water pollution incidents happened frequently. For example, the cyanobacterial bloom events repeatedly occur in Taihu Lake. In this research, we investigate the pollutants solute transport start at different points, such as the eutrophication substances Nitrogen and Phosphorus et al, with the Lattice Boltzmann Method (LBM) performed on real pore geometries. The LBM has emerged as a powerful tool for simulating the behaviour of multi-component fluid systems in complex pore networks. We will build a quick response simulation system, which is base on the high resolution GIS figure, using the LBM numerical method.When the start two deferent points at the Meiliang Bay nearby the Wuxi City, it is shown that the pollutants solute can't transport out of the bay to influence the Taihu Lake and the diffusion areas are similar. On the other hand, when the start point at central region of the Taihu Lake, it is found that the pollutants solute covered the almost whole area of the lake and the cyanobacterial bloom with good condition. In the same way, if the cyanobacterial bloom transport in the central area, then it will pollute the whole Taihu Lake. Therefore, when we monitor and deal with the eutrophication substances, we need to focus on the central area of lake.

  6. A Cloud-Based Simulation Architecture for Pandemic Influenza Simulation

    PubMed Central

    Eriksson, Henrik; Raciti, Massimiliano; Basile, Maurizio; Cunsolo, Alessandro; Fröberg, Anders; Leifler, Ola; Ekberg, Joakim; Timpka, Toomas

    2011-01-01

    High-fidelity simulations of pandemic outbreaks are resource consuming. Cluster-based solutions have been suggested for executing such complex computations. We present a cloud-based simulation architecture that utilizes computing resources both locally available and dynamically rented online. The approach uses the Condor framework for job distribution and management of the Amazon Elastic Computing Cloud (EC2) as well as local resources. The architecture has a web-based user interface that allows users to monitor and control simulation execution. In a benchmark test, the best cost-adjusted performance was recorded for the EC2 H-CPU Medium instance, while a field trial showed that the job configuration had significant influence on the execution time and that the network capacity of the master node could become a bottleneck. We conclude that it is possible to develop a scalable simulation environment that uses cloud-based solutions, while providing an easy-to-use graphical user interface. PMID:22195089

  7. Comment on: 'A Poisson resampling method for simulating reduced counts in nuclear medicine images'.

    PubMed

    de Nijs, Robin

    2015-07-21

    In order to be able to calculate half-count images from already acquired data, White and Lawson published their method based on Poisson resampling. They verified their method experimentally by measurements with a Co-57 flood source. In this comment their results are reproduced and confirmed by a direct numerical simulation in Matlab. Not only Poisson resampling, but also two direct redrawing methods were investigated. Redrawing methods were based on a Poisson and a Gaussian distribution. Mean, standard deviation, skewness and excess kurtosis half-count/full-count ratios were determined for all methods, and compared to the theoretical values for a Poisson distribution. Statistical parameters showed the same behavior as in the original note and showed the superiority of the Poisson resampling method. Rounding off before saving of the half count image had a severe impact on counting statistics for counts below 100. Only Poisson resampling was not affected by this, while Gaussian redrawing was less affected by it than Poisson redrawing. Poisson resampling is the method of choice, when simulating half-count (or less) images from full-count images. It simulates correctly the statistical properties, also in the case of rounding off of the images.

  8. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.

    2016-09-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include methods that 1) explicitly model the three-dimensional geometry of pore spaces and 2) those that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of class 1, based on direct numerical simulation using computational fluid dynamics (CFD) codes, against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of class 1 based on the immersed-boundary method (IMB),more » lattice Boltzmann method (LBM), smoothed particle hydrodynamics (SPH), as well as a model of class 2 (a pore-network model or PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results with previously reported experimental observations. Experimental observations are limited to measured pore-scale velocities, so solute transport comparisons are made only among the various models. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations).« less

  9. Rule-based simulation models

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph L.; Seraphine, Kathleen M.

    1991-01-01

    Procedural modeling systems, rule based modeling systems, and a method for converting a procedural model to a rule based model are described. Simulation models are used to represent real time engineering systems. A real time system can be represented by a set of equations or functions connected so that they perform in the same manner as the actual system. Most modeling system languages are based on FORTRAN or some other procedural language. Therefore, they must be enhanced with a reaction capability. Rule based systems are reactive by definition. Once the engineering system has been decomposed into a set of calculations using only basic algebraic unary operations, a knowledge network of calculations and functions can be constructed. The knowledge network required by a rule based system can be generated by a knowledge acquisition tool or a source level compiler. The compiler would take an existing model source file, a syntax template, and a symbol table and generate the knowledge network. Thus, existing procedural models can be translated and executed by a rule based system. Neural models can be provide the high capacity data manipulation required by the most complex real time models.

  10. Adaptive Set-Based Methods for Association Testing

    PubMed Central

    Su, Yu-Chen; Gauderman, W. James; Kiros, Berhane; Lewinger, Juan Pablo

    2017-01-01

    With a typical sample size of a few thousand subjects, a single genomewide association study (GWAS) using traditional one-SNP-at-a-time methods can only detect genetic variants conferring a sizable effect on disease risk. Set-based methods, which analyze sets of SNPs jointly, can detect variants with smaller effects acting within a gene, a pathway, or other biologically relevant sets. While self-contained set-based methods (those that test sets of variants without regard to variants not in the set) are generally more powerful than competitive set-based approaches (those that rely on comparison of variants in the set of interest with variants not in the set), there is no consensus as to which self-contained methods are best. In particular, several self-contained set tests have been proposed to directly or indirectly ‘adapt’ to the a priori unknown proportion and distribution of effects of the truly associated SNPs in the set, which is a major determinant of their power. A popular adaptive set-based test is the adaptive rank truncated product (ARTP), which seeks the set of SNPs that yields the best-combined evidence of association. We compared the standard ARTP, several ARTP variations we introduced, and other adaptive methods in a comprehensive simulation study to evaluate their performance. We used permutations to assess significance for all the methods and thus provide a level playing field for comparison. We found the standard ARTP test to have the highest power across our simulations followed closely by the global model of random effects (GMRE) and a LASSO based test. PMID:26707371

  11. Improving the performance of a filling line based on simulation

    NASA Astrophysics Data System (ADS)

    Jasiulewicz-Kaczmarek, M.; Bartkowiak, T.

    2016-08-01

    The paper describes the method of improving performance of a filling line based on simulation. This study concerns a production line that is located in a manufacturing centre of a FMCG company. A discrete event simulation model was built using data provided by maintenance data acquisition system. Two types of failures were identified in the system and were approximated using continuous statistical distributions. The model was validated taking into consideration line performance measures. A brief Pareto analysis of line failures was conducted to identify potential areas of improvement. Two improvements scenarios were proposed and tested via simulation. The outcome of the simulations were the bases of financial analysis. NPV and ROI values were calculated taking into account depreciation, profits, losses, current CIT rate and inflation. A validated simulation model can be a useful tool in maintenance decision-making process.

  12. GPU-based efficient realistic techniques for bleeding and smoke generation in surgical simulators.

    PubMed

    Halic, Tansel; Sankaranarayanan, Ganesh; De, Suvranu

    2010-12-01

    In actual surgery, smoke and bleeding due to cauterization processes provide important visual cues to the surgeon, which have been proposed as factors in surgical skill assessment. While several virtual reality (VR)-based surgical simulators have incorporated the effects of bleeding and smoke generation, they are not realistic due to the requirement of real-time performance. To be interactive, visual update must be performed at at least 30 Hz and haptic (touch) information must be refreshed at 1 kHz. Simulation of smoke and bleeding is, therefore, either ignored or simulated using highly simplified techniques, since other computationally intensive processes compete for the available Central Processing Unit (CPU) resources. In this study we developed a novel low-cost method to generate realistic bleeding and smoke in VR-based surgical simulators, which outsources the computations to the graphical processing unit (GPU), thus freeing up the CPU for other time-critical tasks. This method is independent of the complexity of the organ models in the virtual environment. User studies were performed using 20 subjects to determine the visual quality of the simulations compared to real surgical videos. The smoke and bleeding simulation were implemented as part of a laparoscopic adjustable gastric banding (LAGB) simulator. For the bleeding simulation, the original implementation using the shader did not incur noticeable overhead. However, for smoke generation, an input/output (I/O) bottleneck was observed and two different methods were developed to overcome this limitation. Based on our benchmark results, a buffered approach performed better than a pipelined approach and could support up to 15 video streams in real time. Human subject studies showed that the visual realism of the simulations were as good as in real surgery (median rating of 4 on a 5-point Likert scale). Based on the performance results and subject study, both bleeding and smoke simulations were concluded to be

  13. A Simulation Study of Methods for Selecting Subgroup-Specific Doses in Phase I Trials

    PubMed Central

    Morita, Satoshi; Thall, Peter F.; Takeda, Kentaro

    2016-01-01

    Summary Patient heterogeneity may complicate dose-finding in phase I clinical trials if the dose-toxicity curves differ between subgroups. Conducting separate trials within subgroups may lead to infeasibly small sample sizes in subgroups having low prevalence. Alternatively, it is not obvious how to conduct a single trial while accounting for heterogeneity. To address this problem, we consider a generalization of the continual reassessment method (O’Quigley, et al., 1990) based on a hierarchical Bayesian dose-toxicity model that borrows strength between subgroups under the assumption that the subgroups are exchangeable. We evaluate a design using this model that includes subgroup-specific dose selection and safety rules. A simulation study is presented that includes comparison of this method to three alternative approaches, based on non-hierarchical models, that make different types of assumptions about within-subgroup dose-toxicity curves. The simulations show that the hierarchical model-based method is recommended in settings where the dose-toxicity curves are exchangeable between subgroups. We present practical guidelines for application, and provide computer programs for trial simulation and conduct. PMID:28111916

  14. Asthma management simulation for children: translating theory, methods, and strategies to effect behavior change.

    PubMed

    Shegog, Ross; Bartholomew, L Kay; Gold, Robert S; Pierrel, Elaine; Parcel, Guy S; Sockrider, Marianna M; Czyzewski, Danita I; Fernandez, Maria E; Berlin, Nina J; Abramson, Stuart

    2006-01-01

    Translating behavioral theories, models, and strategies to guide the development and structure of computer-based health applications is well recognized, although a continued challenge for program developers. A stepped approach to translate behavioral theory in the design of simulations to teach chronic disease management to children is described. This includes the translation steps to: 1) define target behaviors and their determinants, 2) identify theoretical methods to optimize behavioral change, and 3) choose educational strategies to effectively apply these methods and combine these into a cohesive computer-based simulation for health education. Asthma is used to exemplify a chronic health management problem and a computer-based asthma management simulation (Watch, Discover, Think and Act) that has been evaluated and shown to effect asthma self-management in children is used to exemplify the application of theory to practice. Impact and outcome evaluation studies have indicated the effectiveness of these steps in providing increased rigor and accountability, suggesting their utility for educators and developers seeking to apply simulations to enhance self-management behaviors in patients.

  15. Broadening the interface bandwidth in simulation based training

    NASA Technical Reports Server (NTRS)

    Somers, Larry E.

    1989-01-01

    Currently most computer based simulations rely exclusively on computer generated graphics to create the simulation. When training is involved, the method almost exclusively used to display information to the learner is text displayed on the cathode ray tube. MICROEXPERT Systems is concentrating on broadening the communications bandwidth between the computer and user by employing a novel approach to video image storage combined with sound and voice output. An expert system is used to combine and control the presentation of analog video, sound, and voice output with computer based graphics and text. Researchers are currently involved in the development of several graphics based user interfaces for NASA, the U.S. Army, and the U.S. Navy. Here, the focus is on the human factors considerations, software modules, and hardware components being used to develop these interfaces.

  16. Boron nitride nanotube-based biosensing of various bacterium/viruses: continuum modelling-based simulation approach.

    PubMed

    Panchal, Mitesh B; Upadhyay, Sanjay H

    2014-09-01

    In this study, the feasibility of single walled boron nitride nanotube (SWBNNT)-based biosensors has been ensured considering the continuum modelling-based simulation approach, for mass-based detection of various bacterium/viruses. Various types of bacterium or viruses have been taken into consideration at the free-end of the cantilevered configuration of the SWBNNT, as a biosensor. Resonant frequency shift-based analysis has been performed with the adsorption of various bacterium/viruses considered as additional mass to the SWBNNT-based sensor system. The continuum mechanics-based analytical approach, considering effective wall thickness has been considered to validate the finite element method (FEM)-based simulation results, based on continuum volume-based modelling of the SWBNNT. As a systematic analysis approach, the FEM-based simulation results are found in excellent agreement with the analytical results, to analyse the SWBNNTs for their wide range of applications such as nanoresonators, biosensors, gas-sensors, transducers and so on. The obtained results suggest that by using the SWBNNT of smaller size the sensitivity of the sensor system can be enhanced and detection of the bacterium/virus having mass of 4.28 × 10⁻²⁴ kg can be effectively performed.

  17. A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques

    NASA Astrophysics Data System (ADS)

    Bellos, Vasilis; Tsakiris, George

    2016-09-01

    The study presents a new hybrid method for the simulation of flood events in small catchments. It combines a physically-based two-dimensional hydrodynamic model and the hydrological unit hydrograph theory. Unit hydrographs are derived using the FLOW-R2D model which is based on the full form of two-dimensional Shallow Water Equations, solved by a modified McCormack numerical scheme. The method is tested at a small catchment in a suburb of Athens-Greece for a storm event which occurred in February 2013. The catchment is divided into three friction zones and unit hydrographs of 15 and 30 min are produced. The infiltration process is simulated by the empirical Kostiakov equation and the Green-Ampt model. The results from the implementation of the proposed hybrid method are compared with recorded data at the hydrometric station at the outlet of the catchment and the results derived from the fully hydrodynamic model FLOW-R2D. It is concluded that for the case studied, the proposed hybrid method produces results close to those of the fully hydrodynamic simulation at substantially shorter computational time. This finding, if further verified in a variety of case studies, can be useful in devising effective hybrid tools for the two-dimensional flood simulations, which are lead to accurate and considerably faster results than those achieved by the fully hydrodynamic simulations.

  18. A GPU-based large-scale Monte Carlo simulation method for systems with long-range interactions

    NASA Astrophysics Data System (ADS)

    Liang, Yihao; Xing, Xiangjun; Li, Yaohang

    2017-06-01

    In this work we present an efficient implementation of Canonical Monte Carlo simulation for Coulomb many body systems on graphics processing units (GPU). Our method takes advantage of the GPU Single Instruction, Multiple Data (SIMD) architectures, and adopts the sequential updating scheme of Metropolis algorithm. It makes no approximation in the computation of energy, and reaches a remarkable 440-fold speedup, compared with the serial implementation on CPU. We further use this method to simulate primitive model electrolytes, and measure very precisely all ion-ion pair correlation functions at high concentrations. From these data, we extract the renormalized Debye length, renormalized valences of constituent ions, and renormalized dielectric constants. These results demonstrate unequivocally physics beyond the classical Poisson-Boltzmann theory.

  19. Meshfree simulation of avalanches with the Finite Pointset Method (FPM)

    NASA Astrophysics Data System (ADS)

    Michel, Isabel; Kuhnert, Jörg; Kolymbas, Dimitrios

    2017-04-01

    Meshfree methods are the numerical method of choice in case of applications which are characterized by strong deformations in conjunction with free surfaces or phase boundaries. In the past the meshfree Finite Pointset Method (FPM) developed by Fraunhofer ITWM (Kaiserslautern, Germany) has been successfully applied to problems in computational fluid dynamics such as water crossing of cars, water turbines, and hydraulic valves. Most recently the simulation of granular flows, e.g. soil interaction with cars (rollover), has also been tackled. This advancement is the basis for the simulation of avalanches. Due to the generalized finite difference formulation in FPM, the implementation of different material models is quite simple. We will demonstrate 3D simulations of avalanches based on the Drucker-Prager yield criterion as well as the nonlinear barodesy model. The barodesy model (Division of Geotechnical and Tunnel Engineering, University of Innsbruck, Austria) describes the mechanical behavior of soil by an evolution equation for the stress tensor. The key feature of successful and realistic simulations of avalanches - apart from the numerical approximation of the occurring differential operators - is the choice of the boundary conditions (slip, no-slip, friction) between the different phases of the flow as well as the geometry. We will discuss their influences for simplified one- and two-phase flow examples. This research is funded by the German Research Foundation (DFG) and the FWF Austrian Science Fund.

  20. An analytical method to simulate the H I 21-cm visibility signal for intensity mapping experiments

    NASA Astrophysics Data System (ADS)

    Sarkar, Anjan Kumar; Bharadwaj, Somnath; Marthi, Visweshwar Ram

    2018-01-01

    Simulations play a vital role in testing and validating H I 21-cm power spectrum estimation techniques. Conventional methods use techniques like N-body simulations to simulate the sky signal which is then passed through a model of the instrument. This makes it necessary to simulate the H I distribution in a large cosmological volume, and incorporate both the light-cone effect and the telescope's chromatic response. The computational requirements may be particularly large if one wishes to simulate many realizations of the signal. In this paper, we present an analytical method to simulate the H I visibility signal. This is particularly efficient if one wishes to simulate a large number of realizations of the signal. Our method is based on theoretical predictions of the visibility correlation which incorporate both the light-cone effect and the telescope's chromatic response. We have demonstrated this method by applying it to simulate the H I visibility signal for the upcoming Ooty Wide Field Array Phase I.

  1. Simulation methods to estimate design power: an overview for applied research

    PubMed Central

    2011-01-01

    Background Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. Methods We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. Results We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Conclusions Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research. PMID:21689447

  2. Finite-Element Methods for Real-Time Simulation of Surgery

    NASA Technical Reports Server (NTRS)

    Basdogan, Cagatay

    2003-01-01

    Two finite-element methods have been developed for mathematical modeling of the time-dependent behaviors of deformable objects and, more specifically, the mechanical responses of soft tissues and organs in contact with surgical tools. These methods may afford the computational efficiency needed to satisfy the requirement to obtain computational results in real time for simulating surgical procedures as described in Simulation System for Training in Laparoscopic Surgery (NPO-21192) on page 31 in this issue of NASA Tech Briefs. Simulation of the behavior of soft tissue in real time is a challenging problem because of the complexity of soft-tissue mechanics. The responses of soft tissues are characterized by nonlinearities and by spatial inhomogeneities and rate and time dependences of material properties. Finite-element methods seem promising for integrating these characteristics of tissues into computational models of organs, but they demand much central-processing-unit (CPU) time and memory, and the demand increases with the number of nodes and degrees of freedom in a given finite-element model. Hence, as finite-element models become more realistic, it becomes more difficult to compute solutions in real time. In both of the present methods, one uses approximate mathematical models trading some accuracy for computational efficiency and thereby increasing the feasibility of attaining real-time up36 NASA Tech Briefs, October 2003 date rates. The first of these methods is based on modal analysis. In this method, one reduces the number of differential equations by selecting only the most significant vibration modes of an object (typically, a suitable number of the lowest-frequency modes) for computing deformations of the object in response to applied forces.

  3. DEPEND: A simulation-based environment for system level dependability analysis

    NASA Technical Reports Server (NTRS)

    Goswami, Kumar; Iyer, Ravishankar K.

    1992-01-01

    The design and evaluation of highly reliable computer systems is a complex issue. Designers mostly develop such systems based on prior knowledge and experience and occasionally from analytical evaluations of simplified designs. A simulation-based environment called DEPEND which is especially geared for the design and evaluation of fault-tolerant architectures is presented. DEPEND is unique in that it exploits the properties of object-oriented programming to provide a flexible framework with which a user can rapidly model and evaluate various fault-tolerant systems. The key features of the DEPEND environment are described, and its capabilities are illustrated with a detailed analysis of a real design. In particular, DEPEND is used to simulate the Unix based Tandem Integrity fault-tolerance and evaluate how well it handles near-coincident errors caused by correlated and latent faults. Issues such as memory scrubbing, re-integration policies, and workload dependent repair times which affect how the system handles near-coincident errors are also evaluated. Issues such as the method used by DEPEND to simulate error latency and the time acceleration technique that provides enormous simulation speed up are also discussed. Unlike any other simulation-based dependability studies, the use of these approaches and the accuracy of the simulation model are validated by comparing the results of the simulations, with measurements obtained from fault injection experiments conducted on a production Tandem Integrity machine.

  4. Microcanonical ensemble simulation method applied to discrete potential fluids

    NASA Astrophysics Data System (ADS)

    Sastre, Francisco; Benavides, Ana Laura; Torres-Arenas, José; Gil-Villegas, Alejandro

    2015-09-01

    In this work we extend the applicability of the microcanonical ensemble simulation method, originally proposed to study the Ising model [A. Hüller and M. Pleimling, Int. J. Mod. Phys. C 13, 947 (2002), 10.1142/S0129183102003693], to the case of simple fluids. An algorithm is developed by measuring the transition rates probabilities between macroscopic states, that has as advantage with respect to conventional Monte Carlo NVT (MC-NVT) simulations that a continuous range of temperatures are covered in a single run. For a given density, this new algorithm provides the inverse temperature, that can be parametrized as a function of the internal energy, and the isochoric heat capacity is then evaluated through a numerical derivative. As an illustrative example we consider a fluid composed of particles interacting via a square-well (SW) pair potential of variable range. Equilibrium internal energies and isochoric heat capacities are obtained with very high accuracy compared with data obtained from MC-NVT simulations. These results are important in the context of the application of the Hüller-Pleimling method to discrete-potential systems, that are based on a generalization of the SW and square-shoulder fluids properties.

  5. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.; King, W.; Hay, M.

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions duringmore » tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.« less

  6. Large Eddy simulation of compressible flows with a low-numerical dissipation patch-based adaptive mesh refinement method

    NASA Astrophysics Data System (ADS)

    Pantano, Carlos

    2005-11-01

    We describe a hybrid finite difference method for large-eddy simulation (LES) of compressible flows with a low-numerical dissipation scheme and structured adaptive mesh refinement (SAMR). Numerical experiments and validation calculations are presented including a turbulent jet and the strongly shock-driven mixing of a Richtmyer-Meshkov instability. The approach is a conservative flux-based SAMR formulation and as such, it utilizes refinement to computational advantage. The numerical method for the resolved scale terms encompasses the cases of scheme alternation and internal mesh interfaces resulting from SAMR. An explicit centered scheme that is consistent with a skew-symmetric finite difference formulation is used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. The subgrid stresses and transports are calculated by means of the streched-vortex model, Misra & Pullin (1997)

  7. Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Flegg, Mark B.; Hellander, Stefan; Erban, Radek

    2015-05-01

    In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step Δt (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered: Δt → 0 and h is fixed; Δt → 0 and h → 0 such that √{ Δt } / h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.

  8. Rupture Dynamics Simulation for Non-Planar fault by a Curved Grid Finite Difference Method

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Zhu, G.; Chen, X.

    2011-12-01

    We first implement the non-staggered finite difference method to solve the dynamic rupture problem, with split-node, for non-planar fault. Split-node method for dynamic simulation has been used widely, because of that it's more precise to represent the fault plane than other methods, for example, thick fault, stress glut and so on. The finite difference method is also a popular numeric method to solve kinematic and dynamic problem in seismology. However, previous works focus most of theirs eyes on the staggered-grid method, because of its simplicity and computational efficiency. However this method has its own disadvantage comparing to non-staggered finite difference method at some fact for example describing the boundary condition, especially the irregular boundary, or non-planar fault. Zhang and Chen (2006) proposed the MacCormack high order non-staggered finite difference method based on curved grids to precisely solve irregular boundary problem. Based upon on this non-staggered grid method, we make success of simulating the spontaneous rupture problem. The fault plane is a kind of boundary condition, which could be irregular of course. So it's convinced that we could simulate rupture process in the case of any kind of bending fault plane. We will prove this method is valid in the case of Cartesian coordinate first. In the case of bending fault, the curvilinear grids will be used.

  9. An experiment teaching method based on the Optisystem simulation platform

    NASA Astrophysics Data System (ADS)

    Zhu, Jihua; Xiao, Xuanlu; Luo, Yuan

    2017-08-01

    The experiment teaching of optical communication system is difficult to achieve because of expensive equipment. The Optisystem is optical communication system design software, being able to provide such a simulation platform. According to the characteristic of the OptiSystem, an approach of experiment teaching is put forward in this paper. It includes three gradual levels, the basics, the deeper looks and the practices. Firstly, the basics introduce a brief overview of the technology, then the deeper looks include demoes and example analyses, lastly the practices are going on through the team seminars and comments. A variety of teaching forms are implemented in class. The fact proves that this method can not only make up the laboratory but also motivate the students' learning interest and improve their practical abilities, cooperation abilities and creative spirits. On the whole, it greatly raises the teaching effect.

  10. An Integrated In Silico Method to Discover Novel Rock1 Inhibitors: Multi- Complex-Based Pharmacophore, Molecular Dynamics Simulation and Hybrid Protocol Virtual Screening.

    PubMed

    Chen, Haining; Li, Sijia; Hu, Yajiao; Chen, Guo; Jiang, Qinglin; Tong, Rongsheng; Zang, Zhihe; Cai, Lulu

    2016-01-01

    Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) is an important regulator of focal adhesion, actomyosin contraction and cell motility. In this manuscript, a combination of the multi-complex-based pharmacophore (MCBP), molecular dynamics simulation and a hybrid protocol of a virtual screening method, comprised of multipharmacophore- based virtual screening (PBVS) and ensemble docking-based virtual screening (DBVS) methods were used for retrieving novel ROCK1 inhibitors from the natural products database embedded in the ZINC database. Ten hit compounds were selected from the hit compounds, and five compounds were tested experimentally. Thus, these results may provide valuable information for further discovery of more novel ROCK1 inhibitors.

  11. eLearning techniques supporting problem based learning in clinical simulation.

    PubMed

    Docherty, Charles; Hoy, Derek; Topp, Helena; Trinder, Kathryn

    2005-08-01

    This paper details the results of the first phase of a project using eLearning to support students' learning within a simulated environment. The locus was a purpose built clinical simulation laboratory (CSL) where the School's philosophy of problem based learning (PBL) was challenged through lecturers using traditional teaching methods. a student-centred, problem based approach to the acquisition of clinical skills that used high quality learning objects embedded within web pages, substituting for lecturers providing instruction and demonstration. This encouraged student nurses to explore, analyse and make decisions within the safety of a clinical simulation. Learning was facilitated through network communications and reflection on video performances of self and others. Evaluations were positive, students demonstrating increased satisfaction with PBL, improved performance in exams, and increased self-efficacy in the performance of nursing activities. These results indicate that eLearning techniques can help students acquire clinical skills in the safety of a simulated environment within the context of a problem based learning curriculum.

  12. A LiDAR data-based camera self-calibration method

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Feng, Jing; Li, Xiaolu; Chen, Jianjun

    2018-07-01

    To find the intrinsic parameters of a camera, a LiDAR data-based camera self-calibration method is presented here. Parameters have been estimated using particle swarm optimization (PSO), enhancing the optimal solution of a multivariate cost function. The main procedure of camera intrinsic parameter estimation has three parts, which include extraction and fine matching of interest points in the images, establishment of cost function, based on Kruppa equations and optimization of PSO using LiDAR data as the initialization input. To improve the precision of matching pairs, a new method of maximal information coefficient (MIC) and maximum asymmetry score (MAS) was used to remove false matching pairs based on the RANSAC algorithm. Highly precise matching pairs were used to calculate the fundamental matrix so that the new cost function (deduced from Kruppa equations in terms of the fundamental matrix) was more accurate. The cost function involving four intrinsic parameters was minimized by PSO for the optimal solution. To overcome the issue of optimization pushed to a local optimum, LiDAR data was used to determine the scope of initialization, based on the solution to the P4P problem for camera focal length. To verify the accuracy and robustness of the proposed method, simulations and experiments were implemented and compared with two typical methods. Simulation results indicated that the intrinsic parameters estimated by the proposed method had absolute errors less than 1.0 pixel and relative errors smaller than 0.01%. Based on ground truth obtained from a meter ruler, the distance inversion accuracy in the experiments was smaller than 1.0 cm. Experimental and simulated results demonstrated that the proposed method was highly accurate and robust.

  13. Octree-based Global Earthquake Simulations

    NASA Astrophysics Data System (ADS)

    Ramirez-Guzman, L.; Juarez, A.; Bielak, J.; Salazar Monroy, E. F.

    2017-12-01

    Seismological research has motivated recent efforts to construct more accurate three-dimensional (3D) velocity models of the Earth, perform global simulations of wave propagation to validate models, and also to study the interaction of seismic fields with 3D structures. However, traditional methods for seismogram computation at global scales are limited by computational resources, relying primarily on traditional methods such as normal mode summation or two-dimensional numerical methods. We present an octree-based mesh finite element implementation to perform global earthquake simulations with 3D models using topography and bathymetry with a staircase approximation, as modeled by the Carnegie Mellon Finite Element Toolchain Hercules (Tu et al., 2006). To verify the implementation, we compared the synthetic seismograms computed in a spherical earth against waveforms calculated using normal mode summation for the Preliminary Earth Model (PREM) for a point source representation of the 2014 Mw 7.3 Papanoa, Mexico earthquake. We considered a 3 km-thick ocean layer for stations with predominantly oceanic paths. Eigen frequencies and eigen functions were computed for toroidal, radial, and spherical oscillations in the first 20 branches. Simulations are valid at frequencies up to 0.05 Hz. Matching among the waveforms computed by both approaches, especially for long period surface waves, is excellent. Additionally, we modeled the Mw 9.0 Tohoku-Oki earthquake using the USGS finite fault inversion. Topography and bathymetry from ETOPO1 are included in a mesh with more than 3 billion elements; constrained by the computational resources available. We compared estimated velocity and GPS synthetics against observations at regional and teleseismic stations of the Global Seismological Network and discuss the differences among observations and synthetics, revealing that heterogeneity, particularly in the crust, needs to be considered.

  14. Applying dynamic simulation modeling methods in health care delivery research-the SIMULATE checklist: report of the ISPOR simulation modeling emerging good practices task force.

    PubMed

    Marshall, Deborah A; Burgos-Liz, Lina; IJzerman, Maarten J; Osgood, Nathaniel D; Padula, William V; Higashi, Mitchell K; Wong, Peter K; Pasupathy, Kalyan S; Crown, William

    2015-01-01

    Health care delivery systems are inherently complex, consisting of multiple tiers of interdependent subsystems and processes that are adaptive to changes in the environment and behave in a nonlinear fashion. Traditional health technology assessment and modeling methods often neglect the wider health system impacts that can be critical for achieving desired health system goals and are often of limited usefulness when applied to complex health systems. Researchers and health care decision makers can either underestimate or fail to consider the interactions among the people, processes, technology, and facility designs. Health care delivery system interventions need to incorporate the dynamics and complexities of the health care system context in which the intervention is delivered. This report provides an overview of common dynamic simulation modeling methods and examples of health care system interventions in which such methods could be useful. Three dynamic simulation modeling methods are presented to evaluate system interventions for health care delivery: system dynamics, discrete event simulation, and agent-based modeling. In contrast to conventional evaluations, a dynamic systems approach incorporates the complexity of the system and anticipates the upstream and downstream consequences of changes in complex health care delivery systems. This report assists researchers and decision makers in deciding whether these simulation methods are appropriate to address specific health system problems through an eight-point checklist referred to as the SIMULATE (System, Interactions, Multilevel, Understanding, Loops, Agents, Time, Emergence) tool. It is a primer for researchers and decision makers working in health care delivery and implementation sciences who face complex challenges in delivering effective and efficient care that can be addressed with system interventions. On reviewing this report, the readers should be able to identify whether these simulation modeling

  15. Methods for Analysis and Simulation of Ballistic Impact

    DTIC Science & Technology

    2017-04-01

    ARL-RP-0597 ● Apr 2017 US Army Research Laboratory Methods for Analysis and Simulation of Ballistic Impact by John D Clayton...Laboratory Methods for Analysis and Simulation of Ballistic Impact by John D Clayton Weapons and Materials Research Directorate, ARL...analytical, and numerical methods of ballistics research . Similar lengthy references dealing with pertinent aspects include [8, 9]. In contrast, the

  16. Comparison of Different Methods of Grading a Level Turn Task on a Flight Simulator

    NASA Technical Reports Server (NTRS)

    Heath, Bruce E.; Crier, tomyka

    2003-01-01

    With the advancements in the computing power of personal computers, pc-based flight simulators and trainers have opened new avenues in the training of airplane pilots. It may be desirable to have the flight simulator make a quantitative evaluation of the progress of a pilot's training thereby reducing the physical requirement of the flight instructor who must, in turn, watch every flight. In an experiment, University students conducted six different flights, each consisting of two level turns. The flights were three minutes in duration. By evaluating videotapes, two certified flight instructors provided separate letter grades for each turn. These level turns were also evaluated using two other computer based grading methods. One method determined automated grades based on prescribed tolerances in bank angle, airspeed and altitude. The other method used was deviations in altitude and bank angle for performance index and performance grades.

  17. Simulation Learning: PC-Screen Based (PCSB) versus High Fidelity Simulation (HFS)

    DTIC Science & Technology

    2012-08-01

    methods for the use of simulation for teaching clinical skills to military and civilian clinicians . High fidelity simulation is an expensive method of...without the knowledge and approval of the IRB. Changes include, but not limited to, modifications in study design, recruitment process and number of...Person C-Collar simulation algorithm Pathway A Scenario A - Spinal stabilization: Sub processes Legend: Pathway Points Complex task to be performed by

  18. Adaptive Set-Based Methods for Association Testing.

    PubMed

    Su, Yu-Chen; Gauderman, William James; Berhane, Kiros; Lewinger, Juan Pablo

    2016-02-01

    With a typical sample size of a few thousand subjects, a single genome-wide association study (GWAS) using traditional one single nucleotide polymorphism (SNP)-at-a-time methods can only detect genetic variants conferring a sizable effect on disease risk. Set-based methods, which analyze sets of SNPs jointly, can detect variants with smaller effects acting within a gene, a pathway, or other biologically relevant sets. Although self-contained set-based methods (those that test sets of variants without regard to variants not in the set) are generally more powerful than competitive set-based approaches (those that rely on comparison of variants in the set of interest with variants not in the set), there is no consensus as to which self-contained methods are best. In particular, several self-contained set tests have been proposed to directly or indirectly "adapt" to the a priori unknown proportion and distribution of effects of the truly associated SNPs in the set, which is a major determinant of their power. A popular adaptive set-based test is the adaptive rank truncated product (ARTP), which seeks the set of SNPs that yields the best-combined evidence of association. We compared the standard ARTP, several ARTP variations we introduced, and other adaptive methods in a comprehensive simulation study to evaluate their performance. We used permutations to assess significance for all the methods and thus provide a level playing field for comparison. We found the standard ARTP test to have the highest power across our simulations followed closely by the global model of random effects (GMRE) and a least absolute shrinkage and selection operator (LASSO)-based test. © 2015 WILEY PERIODICALS, INC.

  19. Simulation and analyses of the aeroassist flight experiment attitude update method

    NASA Technical Reports Server (NTRS)

    Carpenter, J. R.

    1991-01-01

    A method which will be used to update the alignment of the Aeroassist Flight Experiment's Inertial Measuring Unit is simulated and analyzed. This method, the Star Line Maneuver, uses measurements from the Space Shuttle Orbiter star trackers along with an extended Kalman filter to estimate a correction to the attitude quaternion maintained by an Inertial Measuring Unit in the Orbiter's payload bay. This quaternion is corrupted by on-orbit bending of the Orbiter payload bay with respect to the Orbiter navigation base, which is incorporated into the payload quaternion when it is initialized via a direct transfer of the Orbiter attitude state. The method of updating this quaternion is examined through verification of baseline cases and Monte Carlo analysis using a simplified simulation, The simulation uses nominal state dynamics and measurement models from the Kalman filter as its real world models, and is programmed on Microvax minicomputer using Matlab, and interactive matrix analysis tool. Results are presented which confirm and augment previous performance studies, thereby enhancing confidence in the Star Line Maneuver design methodology.

  20. MODFLOW equipped with a new method for the accurate simulation of axisymmetric flow

    NASA Astrophysics Data System (ADS)

    Samani, N.; Kompani-Zare, M.; Barry, D. A.

    2004-01-01

    Axisymmetric flow to a well is an important topic of groundwater hydraulics, the simulation of which depends on accurate computation of head gradients. Groundwater numerical models with conventional rectilinear grid geometry such as MODFLOW (in contrast to analytical models) generally have not been used to simulate aquifer test results at a pumping well because they are not designed or expected to closely simulate the head gradient near the well. A scaling method is proposed based on mapping the governing flow equation from cylindrical to Cartesian coordinates, and vice versa. A set of relationships and scales is derived to implement the conversion. The proposed scaling method is then embedded in MODFLOW 2000. To verify the accuracy of the method steady and unsteady flows in confined and unconfined aquifers with fully or partially penetrating pumping wells are simulated and compared with the corresponding analytical solutions. In all cases a high degree of accuracy is achieved.

  1. A Study of Impact Point Detecting Method Based on Seismic Signal

    NASA Astrophysics Data System (ADS)

    Huo, Pengju; Zhang, Yu; Xu, Lina; Huang, Yong

    The projectile landing position has to be determined for its recovery and range in the targeting test. In this paper, a global search method based on the velocity variance is proposed. In order to verify the applicability of this method, simulation analysis within the scope of four million square meters has been conducted in the same array structure of the commonly used linear positioning method, and MATLAB was used to compare and analyze the two methods. The compared simulation results show that the global search method based on the speed of variance has high positioning accuracy and stability, which can meet the needs of impact point location.

  2. Verification technology of remote sensing camera satellite imaging simulation based on ray tracing

    NASA Astrophysics Data System (ADS)

    Gu, Qiongqiong; Chen, Xiaomei; Yang, Deyun

    2017-08-01

    Remote sensing satellite camera imaging simulation technology is broadly used to evaluate the satellite imaging quality and to test the data application system. But the simulation precision is hard to examine. In this paper, we propose an experimental simulation verification method, which is based on the test parameter variation comparison. According to the simulation model based on ray-tracing, the experiment is to verify the model precision by changing the types of devices, which are corresponding the parameters of the model. The experimental results show that the similarity between the imaging model based on ray tracing and the experimental image is 91.4%, which can simulate the remote sensing satellite imaging system very well.

  3. Evolutionary game theory using agent-based methods.

    PubMed

    Adami, Christoph; Schossau, Jory; Hintze, Arend

    2016-12-01

    Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Comparative study on gene set and pathway topology-based enrichment methods.

    PubMed

    Bayerlová, Michaela; Jung, Klaus; Kramer, Frank; Klemm, Florian; Bleckmann, Annalen; Beißbarth, Tim

    2015-10-22

    Enrichment analysis is a popular approach to identify pathways or sets of genes which are significantly enriched in the context of differentially expressed genes. The traditional gene set enrichment approach considers a pathway as a simple gene list disregarding any knowledge of gene or protein interactions. In contrast, the new group of so called pathway topology-based methods integrates the topological structure of a pathway into the analysis. We comparatively investigated gene set and pathway topology-based enrichment approaches, considering three gene set and four topological methods. These methods were compared in two extensive simulation studies and on a benchmark of 36 real datasets, providing the same pathway input data for all methods. In the benchmark data analysis both types of methods showed a comparable ability to detect enriched pathways. The first simulation study was conducted with KEGG pathways, which showed considerable gene overlaps between each other. In this study with original KEGG pathways, none of the topology-based methods outperformed the gene set approach. Therefore, a second simulation study was performed on non-overlapping pathways created by unique gene IDs. Here, methods accounting for pathway topology reached higher accuracy than the gene set methods, however their sensitivity was lower. We conducted one of the first comprehensive comparative works on evaluating gene set against pathway topology-based enrichment methods. The topological methods showed better performance in the simulation scenarios with non-overlapping pathways, however, they were not conclusively better in the other scenarios. This suggests that simple gene set approach might be sufficient to detect an enriched pathway under realistic circumstances. Nevertheless, more extensive studies and further benchmark data are needed to systematically evaluate these methods and to assess what gain and cost pathway topology information introduces into enrichment analysis. Both

  5. A simplified rainfall-runoff stochastic simulation method for an application of the SCHADEX method to ungauged catchments.

    NASA Astrophysics Data System (ADS)

    Penot, David; Paquet, Emmanuel; Lang, Michel

    2014-05-01

    SCHADEX is a probabilistic method for extreme flood estimation, developed and applied since 2006 at Electricité de France (EDF) for dam spillway design [Paquet et al., 2013]. SCHADEX is based on a semi-continuous rainfall-runoff simulation process. The method has been built around two models: a Multi-Exponential Weather Pattern (MEWP) distribution for rainfall probability estimation [Garavaglia et al., 2010] and the MORDOR hydrological model. To use SCHADEX in ungauged context, rainfall distribution and hydrological model must be regionalized. The regionalization of the MEWP rainfall distribution can be managed with SPAZM, a daily rainfall interpolator [Gottardi et al., 2012] which provides reasonable estimates of point and areal rainfall up to hight quantiles. The main issue remains to regionalize MORDOR which is heavily parametrized. A much more simple model has been considered: the SCS model. It is a well known model for event simulation [USDA SCS, 1985; Beven, 2003] and it relies on only one parameter. Then, the idea is to use the SCS model instead of MORDOR within a simplified stochastic simulation scheme to produce a distribution of flood volume from an exhaustive crossing between rainy events and catchment saturation hazards. The presentation details this process and its capacity to generate a runoff distribution based on catchment areal rainfall distribution. The simulation method depends on a unique parameter Smax, the maximum initial loss of the catchment. Then an initial loss S (between zero and Smax) can be drawn to account for the variability of catchment state (between dry and saturated). The distribution of initial loss (or conversely, of catchment saturation, as modeled by MORDOR) seems closely linked to the catchment's regime, therefore easily to regionalize. The simulation takes into account a snow contribution for snow driven catchments, and an antecedent runoff. The presentation shows the results of this stochastic procedure applied on 80

  6. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method.

    PubMed

    Shidahara, Miho; Watabe, Hiroshi; Kim, Kyeong Min; Kato, Takashi; Kawatsu, Shoji; Kato, Rikio; Yoshimura, Kumiko; Iida, Hidehiro; Ito, Kengo

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99mTc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I(mub)AC with Chang's attenuation correction factor. The scatter component image is estimated by convolving I(mub)AC with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99mTc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine.

  7. Construction schedule simulation of a diversion tunnel based on the optimized ventilation time.

    PubMed

    Wang, Xiaoling; Liu, Xuepeng; Sun, Yuefeng; An, Juan; Zhang, Jing; Chen, Hongchao

    2009-06-15

    Former studies, the methods for estimating the ventilation time are all empirical in construction schedule simulation. However, in many real cases of construction schedule, the many factors have impact on the ventilation time. Therefore, in this paper the 3D unsteady quasi-single phase models are proposed to optimize the ventilation time with different tunneling lengths. The effect of buoyancy is considered in the momentum equation of the CO transport model, while the effects of inter-phase drag, lift force, and virtual mass force are taken into account in the momentum source of the dust transport model. The prediction by the present model for airflow in a diversion tunnel is confirmed by the experimental values reported by Nakayama [Nakayama, In-situ measurement and simulation by CFD of methane gas distribution at a heading faces, Shigen-to-Sozai 114 (11) (1998) 769-775]. The construction ventilation of the diversion tunnel of XinTangfang power station in China is used as a case. The distributions of airflow, CO and dust in the diversion tunnel are analyzed. A theory method for GIS-based dynamic visual simulation for the construction processes of underground structure groups is presented that combines cyclic operation network simulation, system simulation, network plan optimization, and GIS-based construction processes' 3D visualization. Based on the ventilation time the construction schedule of the diversion tunnel is simulated by the above theory method.

  8. Application of Wavelet-Based Methods for Accelerating Multi-Time-Scale Simulation of Bistable Heterogeneous Catalysis

    DOE PAGES

    Gur, Sourav; Frantziskonis, George N.; Univ. of Arizona, Tucson, AZ; ...

    2017-02-16

    Here, we report results from a numerical study of multi-time-scale bistable dynamics for CO oxidation on a catalytic surface in a flowing, well-mixed gas stream. The problem is posed in terms of surface and gas-phase submodels that dynamically interact in the presence of stochastic perturbations, reflecting the impact of molecular-scale fluctuations on the surface and turbulence in the gas. Wavelet-based methods are used to encode and characterize the temporal dynamics produced by each submodel and detect the onset of sudden state shifts (bifurcations) caused by nonlinear kinetics. When impending state shifts are detected, a more accurate but computationally expensive integrationmore » scheme can be used. This appears to make it possible, at least in some cases, to decrease the net computational burden associated with simulating multi-time-scale, nonlinear reacting systems by limiting the amount of time in which the more expensive integration schemes are required. Critical to achieving this is being able to detect unstable temporal transitions such as the bistable shifts in the example problem considered here. Lastly, our results indicate that a unique wavelet-based algorithm based on the Lipschitz exponent is capable of making such detections, even under noisy conditions, and may find applications in critical transition detection problems beyond catalysis.« less

  9. Automated Simulation Updates based on Flight Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Ward, David G.

    2007-01-01

    A statistically-based method for using flight data to update aerodynamic data tables used in flight simulators is explained and demonstrated. A simplified wind-tunnel aerodynamic database for the F/A-18 aircraft is used as a starting point. Flight data from the NASA F-18 High Alpha Research Vehicle (HARV) is then used to update the data tables so that the resulting aerodynamic model characterizes the aerodynamics of the F-18 HARV. Prediction cases are used to show the effectiveness of the automated method, which requires no ad hoc adjustments by the analyst.

  10. AGREEMENT AND COVERAGE OF INDICATORS OF RESPONSE TO INTERVENTION: A MULTI-METHOD COMPARISON AND SIMULATION

    PubMed Central

    Fletcher, Jack M.; Stuebing, Karla K.; Barth, Amy E.; Miciak, Jeremy; Francis, David J.; Denton, Carolyn A.

    2013-01-01

    Purpose Agreement across methods for identifying students as inadequate responders or as learning disabled is often poor. We report (1) an empirical examination of final status (post-intervention benchmarks) and dual-discrepancy growth methods based on growth during the intervention and final status for assessing response to intervention; and (2) a statistical simulation of psychometric issues that may explain low agreement. Methods After a Tier 2 intervention, final status benchmark criteria were used to identify 104 inadequate and 85 adequate responders to intervention, with comparisons of agreement and coverage for these methods and a dual-discrepancy method. Factors affecting agreement were investigated using computer simulation to manipulate reliability, the intercorrelation between measures, cut points, normative samples, and sample size. Results Identification of inadequate responders based on individual measures showed that single measures tended not to identify many members of the pool of 104 inadequate responders. Poor to fair levels of agreement for identifying inadequate responders were apparent between pairs of measures In the simulation, comparisons across two simulated measures generated indices of agreement (kappa) that were generally low because of multiple psychometric issues inherent in any test. Conclusions Expecting excellent agreement between two correlated tests with even small amounts of unreliability may not be realistic. Assessing outcomes based on multiple measures, such as level of CBM performance and short norm-referenced assessments of fluency may improve the reliability of diagnostic decisions. PMID:25364090

  11. Advances in free-energy-based simulations of protein folding and ligand binding.

    PubMed

    Perez, Alberto; Morrone, Joseph A; Simmerling, Carlos; Dill, Ken A

    2016-02-01

    Free-energy-based simulations are increasingly providing the narratives about the structures, dynamics and biological mechanisms that constitute the fabric of protein science. Here, we review two recent successes. It is becoming practical: first, to fold small proteins with free-energy methods without knowing substructures and second, to compute ligand-protein binding affinities, not just their binding poses. Over the past 40 years, the timescales that can be simulated by atomistic MD are doubling every 1.3 years--which is faster than Moore's law. Thus, these advances are not simply due to the availability of faster computers. Force fields, solvation models and simulation methodology have kept pace with computing advancements, and are now quite good. At the tip of the spear recently are GPU-based computing, improved fast-solvation methods, continued advances in force fields, and conformational sampling methods that harness external information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.

    PubMed

    Kelly, Sinead; O'Rourke, Malachy

    2012-04-01

    This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given

  13. Design of virtual simulation experiment based on key events

    NASA Astrophysics Data System (ADS)

    Zhong, Zheng; Zhou, Dongbo; Song, Lingxiu

    2018-06-01

    Considering complex content and lacking of guidance in virtual simulation experiments, the key event technology in VR narrative theory was introduced for virtual simulation experiment to enhance fidelity and vividness process. Based on the VR narrative technology, an event transition structure was designed to meet the need of experimental operation process, and an interactive event processing model was used to generate key events in interactive scene. The experiment of" margin value of bees foraging" based on Biologic morphology was taken as an example, many objects, behaviors and other contents were reorganized. The result shows that this method can enhance the user's experience and ensure experimental process complete and effectively.

  14. Simulated Tempering Distributed Replica Sampling, Virtual Replica Exchange, and Other Generalized-Ensemble Methods for Conformational Sampling.

    PubMed

    Rauscher, Sarah; Neale, Chris; Pomès, Régis

    2009-10-13

    Generalized-ensemble algorithms in temperature space have become popular tools to enhance conformational sampling in biomolecular simulations. A random walk in temperature leads to a corresponding random walk in potential energy, which can be used to cross over energetic barriers and overcome the problem of quasi-nonergodicity. In this paper, we introduce two novel methods: simulated tempering distributed replica sampling (STDR) and virtual replica exchange (VREX). These methods are designed to address the practical issues inherent in the replica exchange (RE), simulated tempering (ST), and serial replica exchange (SREM) algorithms. RE requires a large, dedicated, and homogeneous cluster of CPUs to function efficiently when applied to complex systems. ST and SREM both have the drawback of requiring extensive initial simulations, possibly adaptive, for the calculation of weight factors or potential energy distribution functions. STDR and VREX alleviate the need for lengthy initial simulations, and for synchronization and extensive communication between replicas. Both methods are therefore suitable for distributed or heterogeneous computing platforms. We perform an objective comparison of all five algorithms in terms of both implementation issues and sampling efficiency. We use disordered peptides in explicit water as test systems, for a total simulation time of over 42 μs. Efficiency is defined in terms of both structural convergence and temperature diffusion, and we show that these definitions of efficiency are in fact correlated. Importantly, we find that ST-based methods exhibit faster temperature diffusion and correspondingly faster convergence of structural properties compared to RE-based methods. Within the RE-based methods, VREX is superior to both SREM and RE. On the basis of our observations, we conclude that ST is ideal for simple systems, while STDR is well-suited for complex systems.

  15. Comparing effects of fire modeling methods on simulated fire patterns and succession: a case study in the Missouri Ozarks

    Treesearch

    Jian Yang; Hong S. He; Brian R. Sturtevant; Brian R. Miranda; Eric J. Gustafson

    2008-01-01

    We compared four fire spread simulation methods (completely random, dynamic percolation. size-based minimum travel time algorithm. and duration-based minimum travel time algorithm) and two fire occurrence simulation methods (Poisson fire frequency model and hierarchical fire frequency model) using a two-way factorial design. We examined these treatment effects on...

  16. Fast Particle Methods for Multiscale Phenomena Simulations

    NASA Technical Reports Server (NTRS)

    Koumoutsakos, P.; Wray, A.; Shariff, K.; Pohorille, Andrew

    2000-01-01

    We are developing particle methods oriented at improving computational modeling capabilities of multiscale physical phenomena in : (i) high Reynolds number unsteady vortical flows, (ii) particle laden and interfacial flows, (iii)molecular dynamics studies of nanoscale droplets and studies of the structure, functions, and evolution of the earliest living cell. The unifying computational approach involves particle methods implemented in parallel computer architectures. The inherent adaptivity, robustness and efficiency of particle methods makes them a multidisciplinary computational tool capable of bridging the gap of micro-scale and continuum flow simulations. Using efficient tree data structures, multipole expansion algorithms, and improved particle-grid interpolation, particle methods allow for simulations using millions of computational elements, making possible the resolution of a wide range of length and time scales of these important physical phenomena.The current challenges in these simulations are in : [i] the proper formulation of particle methods in the molecular and continuous level for the discretization of the governing equations [ii] the resolution of the wide range of time and length scales governing the phenomena under investigation. [iii] the minimization of numerical artifacts that may interfere with the physics of the systems under consideration. [iv] the parallelization of processes such as tree traversal and grid-particle interpolations We are conducting simulations using vortex methods, molecular dynamics and smooth particle hydrodynamics, exploiting their unifying concepts such as : the solution of the N-body problem in parallel computers, highly accurate particle-particle and grid-particle interpolations, parallel FFT's and the formulation of processes such as diffusion in the context of particle methods. This approach enables us to transcend among seemingly unrelated areas of research.

  17. Discontinuous Galerkin Methods for Turbulence Simulation

    NASA Technical Reports Server (NTRS)

    Collis, S. Scott

    2002-01-01

    A discontinuous Galerkin (DG) method is formulated, implemented, and tested for simulation of compressible turbulent flows. The method is applied to turbulent channel flow at low Reynolds number, where it is found to successfully predict low-order statistics with fewer degrees of freedom than traditional numerical methods. This reduction is achieved by utilizing local hp-refinement such that the computational grid is refined simultaneously in all three spatial coordinates with decreasing distance from the wall. Another advantage of DG is that Dirichlet boundary conditions can be enforced weakly through integrals of the numerical fluxes. Both for a model advection-diffusion problem and for turbulent channel flow, weak enforcement of wall boundaries is found to improve results at low resolution. Such weak boundary conditions may play a pivotal role in wall modeling for large-eddy simulation.

  18. Rotor dynamic simulation and system identification methods for application to vacuum whirl data

    NASA Technical Reports Server (NTRS)

    Berman, A.; Giansante, N.; Flannelly, W. G.

    1980-01-01

    Methods of using rotor vacuum whirl data to improve the ability to model helicopter rotors were developed. The work consisted of the formulation of the equations of motion of elastic blades on a hub using a Galerkin method; the development of a general computer program for simulation of these equations; the study and implementation of a procedure for determining physical parameters based on measured data; and the application of a method for computing the normal modes and natural frequencies based on test data.

  19. Simulation methods to estimate design power: an overview for applied research.

    PubMed

    Arnold, Benjamin F; Hogan, Daniel R; Colford, John M; Hubbard, Alan E

    2011-06-20

    Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research.

  20. Computer Simulation Is an Undervalued Tool for Genetic Analysis: A Historical View and Presentation of SHIMSHON – A Web-Based Genetic Simulation Package

    PubMed Central

    Greenberg, David A.

    2011-01-01

    Computer simulation methods are under-used tools in genetic analysis because simulation approaches have been portrayed as inferior to analytic methods. Even when simulation is used, its advantages are not fully exploited. Here, I present SHIMSHON, our package of genetic simulation programs that have been developed, tested, used for research, and used to generated data for Genetic Analysis Workshops (GAW). These simulation programs, now web-accessible, can be used by anyone to answer questions about designing and analyzing genetic disease studies for locus identification. This work has three foci: (1) the historical context of SHIMSHON's development, suggesting why simulation has not been more widely used so far. (2) Advantages of simulation: computer simulation helps us to understand how genetic analysis methods work. It has advantages for understanding disease inheritance and methods for gene searches. Furthermore, simulation methods can be used to answer fundamental questions that either cannot be answered by analytical approaches or cannot even be defined until the problems are identified and studied, using simulation. (3) I argue that, because simulation was not accepted, there was a failure to grasp the meaning of some simulation-based studies of linkage. This may have contributed to perceived weaknesses in linkage analysis; weaknesses that did not, in fact, exist. PMID:22189467

  1. A Computer-Based Simulation of an Acid-Base Titration

    ERIC Educational Resources Information Center

    Boblick, John M.

    1971-01-01

    Reviews the advantages of computer simulated environments for experiments, referring in particular to acid-base titrations. Includes pre-lab instructions and a sample computer printout of a student's use of an acid-base simulation. Ten references. (PR)

  2. Efficient simulation and likelihood methods for non-neutral multi-allele models.

    PubMed

    Joyce, Paul; Genz, Alan; Buzbas, Erkan Ozge

    2012-06-01

    Throughout the 1980s, Simon Tavaré made numerous significant contributions to population genetics theory. As genetic data, in particular DNA sequence, became more readily available, a need to connect population-genetic models to data became the central issue. The seminal work of Griffiths and Tavaré (1994a , 1994b , 1994c) was among the first to develop a likelihood method to estimate the population-genetic parameters using full DNA sequences. Now, we are in the genomics era where methods need to scale-up to handle massive data sets, and Tavaré has led the way to new approaches. However, performing statistical inference under non-neutral models has proved elusive. In tribute to Simon Tavaré, we present an article in spirit of his work that provides a computationally tractable method for simulating and analyzing data under a class of non-neutral population-genetic models. Computational methods for approximating likelihood functions and generating samples under a class of allele-frequency based non-neutral parent-independent mutation models were proposed by Donnelly, Nordborg, and Joyce (DNJ) (Donnelly et al., 2001). DNJ (2001) simulated samples of allele frequencies from non-neutral models using neutral models as auxiliary distribution in a rejection algorithm. However, patterns of allele frequencies produced by neutral models are dissimilar to patterns of allele frequencies produced by non-neutral models, making the rejection method inefficient. For example, in some cases the methods in DNJ (2001) require 10(9) rejections before a sample from the non-neutral model is accepted. Our method simulates samples directly from the distribution of non-neutral models, making simulation methods a practical tool to study the behavior of the likelihood and to perform inference on the strength of selection.

  3. A hybrid Boundary Element Unstructured Transmission-line (BEUT) method for accurate 2D electromagnetic simulation

    NASA Astrophysics Data System (ADS)

    Simmons, Daniel; Cools, Kristof; Sewell, Phillip

    2016-11-01

    Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications.

  4. A hybrid Boundary Element Unstructured Transmission-line (BEUT) method for accurate 2D electromagnetic simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Daniel, E-mail: daniel.simmons@nottingham.ac.uk; Cools, Kristof; Sewell, Phillip

    Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removesmore » staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications. - Graphical abstract:.« less

  5. Simulation teaching method in Engineering Optics

    NASA Astrophysics Data System (ADS)

    Lu, Qieni; Wang, Yi; Li, Hongbin

    2017-08-01

    We here introduce a pedagogical method of theoretical simulation as one major means of the teaching process of "Engineering Optics" in course quality improvement action plan (Qc) in our school. Students, in groups of three to five, complete simulations of interference, diffraction, electromagnetism and polarization of light; each student is evaluated and scored in light of his performance in the interviews between the teacher and the student, and each student can opt to be interviewed many times until he is satisfied with his score and learning. After three years of Qc practice, the remarkable teaching and learning effect is obatined. Such theoretical simulation experiment is a very valuable teaching method worthwhile for physical optics which is highly theoretical and abstruse. This teaching methodology works well in training students as to how to ask questions and how to solve problems, which can also stimulate their interest in research learning and their initiative to develop their self-confidence and sense of innovation.

  6. Building occupancy simulation and data assimilation using a graph-based agent-oriented model

    NASA Astrophysics Data System (ADS)

    Rai, Sanish; Hu, Xiaolin

    2018-07-01

    Building occupancy simulation and estimation simulates the dynamics of occupants and estimates their real-time spatial distribution in a building. It requires a simulation model and an algorithm for data assimilation that assimilates real-time sensor data into the simulation model. Existing building occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating large numbers of occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of existing models, this paper presents a new graph-based agent-oriented model which can efficiently simulate large numbers of occupants in various kinds of building structures. To support real-time occupancy dynamics estimation, a data assimilation framework based on Sequential Monte Carlo Methods is also developed and applied to the graph-based agent-oriented model to assimilate real-time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this work are to provide an efficient model for building occupancy simulation that can accommodate large numbers of occupants and an effective data assimilation framework that can provide real-time estimations of building occupancy from sensor data.

  7. Effects of a System Thinking-Based Simulation Program for Congestive Heart Failure.

    PubMed

    Kim, Hyeon-Young; Yun, Eun Kyoung

    2018-03-01

    This study evaluated a system thinking-based simulation program for the care of patients with congestive heart failure. Participants were 67 undergraduate nursing students from a nursing college in Seoul, South Korea. The experimental group was given a 4-hour system-thinking program and a 2-hour simulation program, whereas the control group had a 4-hour case study and a 2-hour simulation program. There were significant improvements in critical thinking in both groups, but no significant group differences between educational methods (F = 3.26, P = .076). Problem-solving ability in the experimental group was significantly higher than in the control group (F = 5.04, P = .028). Clinical competency skills in the experimental group were higher than in the control group (t = 2.12, P = .038). A system thinking-based simulation program is a more effective learning method in terms of problem-solving ability and clinical competency skills compared to the existing simulation program. Further research using a longitudinal study is needed to test the long-term effect of the intervention and apply it to the nursing curriculum.

  8. New method of processing heat treatment experiments with numerical simulation support

    NASA Astrophysics Data System (ADS)

    Kik, T.; Moravec, J.; Novakova, I.

    2017-08-01

    In this work, benefits of combining modern software for numerical simulations of welding processes with laboratory research was described. Proposed new method of processing heat treatment experiments leading to obtaining relevant input data for numerical simulations of heat treatment of large parts was presented. It is now possible, by using experiments on small tested samples, to simulate cooling conditions comparable with cooling of bigger parts. Results from this method of testing makes current boundary conditions during real cooling process more accurate, but also can be used for improvement of software databases and optimization of a computational models. The point is to precise the computation of temperature fields for large scale hardening parts based on new method of temperature dependence determination of the heat transfer coefficient into hardening media for the particular material, defined maximal thickness of processed part and cooling conditions. In the paper we will also present an example of the comparison standard and modified (according to newly suggested methodology) heat transfer coefficient data’s and theirs influence on the simulation results. It shows how even the small changes influence mainly on distribution of temperature, metallurgical phases, hardness and stresses distribution. By this experiment it is also possible to obtain not only input data and data enabling optimization of computational model but at the same time also verification data. The greatest advantage of described method is independence of used cooling media type.

  9. Design of simulation-based medical education and advantages and disadvantages of in situ simulation versus off-site simulation.

    PubMed

    Sørensen, Jette Led; Østergaard, Doris; LeBlanc, Vicki; Ottesen, Bent; Konge, Lars; Dieckmann, Peter; Van der Vleuten, Cees

    2017-01-21

    Simulation-based medical education (SBME) has traditionally been conducted as off-site simulation in simulation centres. Some hospital departments also provide off-site simulation using in-house training room(s) set up for simulation away from the clinical setting, and these activities are called in-house training. In-house training facilities can be part of hospital departments and resemble to some extent simulation centres but often have less technical equipment. In situ simulation, introduced over the past decade, mainly comprises of team-based activities and occurs in patient care units with healthcare professionals in their own working environment. Thus, this intentional blend of simulation and real working environments means that in situ simulation brings simulation to the real working environment and provides training where people work. In situ simulation can be either announced or unannounced, the latter also known as a drill. This article presents and discusses the design of SBME and the advantage and disadvantage of the different simulation settings, such as training in simulation-centres, in-house simulations in hospital departments, announced or unannounced in situ simulations. Non-randomised studies argue that in situ simulation is more effective for educational purposes than other types of simulation settings. Conversely, the few comparison studies that exist, either randomised or retrospective, show that choice of setting does not seem to influence individual or team learning. However, hospital department-based simulations, such as in-house simulation and in situ simulation, lead to a gain in organisational learning. To our knowledge no studies have compared announced and unannounced in situ simulation. The literature suggests some improved organisational learning from unannounced in situ simulation; however, unannounced in situ simulation was also found to be challenging to plan and conduct, and more stressful among participants. The importance of

  10. Efficiency of reactant site sampling in network-free simulation of rule-based models for biochemical systems

    PubMed Central

    Yang, Jin; Hlavacek, William S.

    2011-01-01

    Rule-based models, which are typically formulated to represent cell signaling systems, can now be simulated via various network-free simulation methods. In a network-free method, reaction rates are calculated for rules that characterize molecular interactions, and these rule rates, which each correspond to the cumulative rate of all reactions implied by a rule, are used to perform a stochastic simulation of reaction kinetics. Network-free methods, which can be viewed as generalizations of Gillespie’s method, are so named because these methods do not require that a list of individual reactions implied by a set of rules be explicitly generated, which is a requirement of other methods for simulating rule-based models. This requirement is impractical for rule sets that imply large reaction networks (i.e., long lists of individual reactions), as reaction network generation is expensive. Here, we compare the network-free simulation methods implemented in RuleMonkey and NFsim, general-purpose software tools for simulating rule-based models encoded in the BioNetGen language. The method implemented in NFsim uses rejection sampling to correct overestimates of rule rates, which introduces null events (i.e., time steps that do not change the state of the system being simulated). The method implemented in RuleMonkey uses iterative updates to track rule rates exactly, which avoids null events. To ensure a fair comparison of the two methods, we developed implementations of the rejection and rejection-free methods specific to a particular class of kinetic models for multivalent ligand-receptor interactions. These implementations were written with the intention of making them as much alike as possible, minimizing the contribution of irrelevant coding differences to efficiency differences. Simulation results show that performance of the rejection method is equal to or better than that of the rejection-free method over wide parameter ranges. However, when parameter values are such

  11. Fast multipole method using Cartesian tensor in beam dynamic simulation

    DOE PAGES

    Zhang, He; Huang, He; Li, Rui; ...

    2017-03-06

    Here, the fast multipole method (FMM) using traceless totally symmetric Cartesian tensor to calculate the Coulomb interaction between charged particles will be presented. The Cartesian tensor-based FMM can be generalized to treat other non-oscillating interactions with the help of the differential algebra or the truncated power series algebra. Issues on implementation of the FMM in beam dynamic simulations are also discussed.

  12. Student perceptions of a simulation-based flipped classroom for the surgery clerkship: A mixed-methods study.

    PubMed

    Liebert, Cara A; Mazer, Laura; Bereknyei Merrell, Sylvia; Lin, Dana T; Lau, James N

    2016-09-01

    The flipped classroom, a blended learning paradigm that uses pre-session online videos reinforced with interactive sessions, has been proposed as an alternative to traditional lectures. This article investigates medical students' perceptions of a simulation-based, flipped classroom for the surgery clerkship and suggests best practices for implementation in this setting. A prospective cohort of students (n = 89), who were enrolled in the surgery clerkship during a 1-year period, was taught via a simulation-based, flipped classroom approach. Students completed an anonymous, end-of-clerkship survey regarding their perceptions of the curriculum. Quantitative analysis of Likert responses and qualitative analysis of narrative responses were performed. Students' perceptions of the curriculum were positive, with 90% rating it excellent or outstanding. The majority reported the curriculum should be continued (95%) and applied to other clerkships (84%). The component received most favorably by the students was the simulation-based skill sessions. Students rated the effectiveness of the Khan Academy-style videos the highest compared with other video formats (P < .001). Qualitative analysis identified 21 subthemes in 4 domains: general positive feedback, educational content, learning environment, and specific benefits to medical students. The students reported that the learning environment fostered accountability and self-directed learning. Specific perceived benefits included preparation for the clinical rotation and the National Board of Medical Examiners shelf exam, decreased class time, socialization with peers, and faculty interaction. Medical students' perceptions of a simulation-based, flipped classroom in the surgery clerkship were overwhelmingly positive. The flipped classroom approach can be applied successfully in a surgery clerkship setting and may offer additional benefits compared with traditional lecture-based curricula. Copyright © 2016 Elsevier Inc. All

  13. Binomial leap methods for simulating stochastic chemical kinetics.

    PubMed

    Tian, Tianhai; Burrage, Kevin

    2004-12-01

    This paper discusses efficient simulation methods for stochastic chemical kinetics. Based on the tau-leap and midpoint tau-leap methods of Gillespie [D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001)], binomial random variables are used in these leap methods rather than Poisson random variables. The motivation for this approach is to improve the efficiency of the Poisson leap methods by using larger stepsizes. Unlike Poisson random variables whose range of sample values is from zero to infinity, binomial random variables have a finite range of sample values. This probabilistic property has been used to restrict possible reaction numbers and to avoid negative molecular numbers in stochastic simulations when larger stepsize is used. In this approach a binomial random variable is defined for a single reaction channel in order to keep the reaction number of this channel below the numbers of molecules that undergo this reaction channel. A sampling technique is also designed for the total reaction number of a reactant species that undergoes two or more reaction channels. Samples for the total reaction number are not greater than the molecular number of this species. In addition, probability properties of the binomial random variables provide stepsize conditions for restricting reaction numbers in a chosen time interval. These stepsize conditions are important properties of robust leap control strategies. Numerical results indicate that the proposed binomial leap methods can be applied to a wide range of chemical reaction systems with very good accuracy and significant improvement on efficiency over existing approaches. (c) 2004 American Institute of Physics.

  14. Performance Analysis of an Actor-Based Distributed Simulation

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D.

    1998-01-01

    Object-oriented design of simulation programs appears to be very attractive because of the natural association of components in the simulated system with objects. There is great potential in distributing the simulation across several computers for the purpose of parallel computation and its consequent handling of larger problems in less elapsed time. One approach to such a design is to use "actors", that is, active objects with their own thread of control. Because these objects execute concurrently, communication is via messages. This is in contrast to an object-oriented design using passive objects where communication between objects is via method calls (direct calls when they are in the same address space and remote procedure calls when they are in different address spaces or different machines). This paper describes a performance analysis program for the evaluation of a design for distributed simulations based upon actors.

  15. Numerical simulation of transonic compressor under circumferential inlet distortion and rotor/stator interference using harmonic balance method

    NASA Astrophysics Data System (ADS)

    Wang, Ziwei; Jiang, Xiong; Chen, Ti; Hao, Yan; Qiu, Min

    2018-05-01

    Simulating the unsteady flow of compressor under circumferential inlet distortion and rotor/stator interference would need full-annulus grid with a dual time method. This process is time consuming and needs a large amount of computational resources. Harmonic balance method simulates the unsteady flow in compressor on single passage grid with a series of steady simulations. This will largely increase the computational efficiency in comparison with the dual time method. However, most simulations with harmonic balance method are conducted on the flow under either circumferential inlet distortion or rotor/stator interference. Based on an in-house CFD code, the harmonic balance method is applied in the simulation of flow in the NASA Stage 35 under both circumferential inlet distortion and rotor/stator interference. As the unsteady flow is influenced by two different unsteady disturbances, it leads to the computational instability. The instability can be avoided by coupling the harmonic balance method with an optimizing algorithm. The computational result of harmonic balance method is compared with the result of full-annulus simulation. It denotes that, the harmonic balance method simulates the flow under circumferential inlet distortion and rotor/stator interference as precise as the full-annulus simulation with a speed-up of about 8 times.

  16. Web-based emergency response exercise management systems and methods thereof

    DOEpatents

    Goforth, John W.; Mercer, Michael B.; Heath, Zach; Yang, Lynn I.

    2014-09-09

    According to one embodiment, a method for simulating portions of an emergency response exercise includes generating situational awareness outputs associated with a simulated emergency and sending the situational awareness outputs to a plurality of output devices. Also, the method includes outputting to a user device a plurality of decisions associated with the situational awareness outputs at a decision point, receiving a selection of one of the decisions from the user device, generating new situational awareness outputs based on the selected decision, and repeating the sending, outputting and receiving steps based on the new situational awareness outputs. Other methods, systems, and computer program products are included according to other embodiments of the invention.

  17. Understanding exoplanet populations with simulation-based methods

    NASA Astrophysics Data System (ADS)

    Morehead, Robert Charles

    The Kepler candidate catalog represents an unprecedented sample of exoplanet host stars. This dataset is ideal for probing the populations of exoplanet systems and exploring their architectures. Confirming transiting exoplanets candidates through traditional follow-up methods is challenging, especially for faint host stars. Most of Kepler's validated planets relied on statistical methods to separate true planets from false-positives. Multiple transiting planet systems (MTPS) have been previously shown to have low false-positive rates and over 850 planets in MTPSs have been statistically validated so far. We show that the period-normalized transit duration ratio (xi) offers additional information that can be used to establish the planetary nature of these systems. We briefly discuss the observed distribution of xi for the Q1-Q17 Kepler Candidate Search. We also use xi to develop a Bayesian statistical framework combined with Monte Carlo methods to determine which pairs of planet candidates in an MTPS are consistent with the planet hypothesis for a sample of 862 MTPSs that include candidate planets, confirmed planets, and known false-positives. This analysis proves to be efficient and advantageous in that it only requires catalog-level bulk candidate properties and galactic population modeling to compute the probabilities of a myriad of feasible scenarios composed of background and companion stellar blends in the photometric aperture, without needing additional observational follow-up. Our results agree with the previous results of a low false-positive rate in the Kepler MTPSs. This implies, independently of any other estimates, that most of the MTPSs detected by Kepler are planetary in nature, but that a substantial fraction could be orbiting stars other than then the putative target star, and therefore may be subject to significant error in the inferred planet parameters resulting from unknown or mismeasured stellar host attributes. We also apply approximate

  18. Perspectives on the simulation of protein–surface interactions using empirical force field methods

    PubMed Central

    Latour, Robert A.

    2014-01-01

    Protein–surface interactions are of fundamental importance for a broad range of applications in the fields of biomaterials and biotechnology. Present experimental methods are limited in their ability to provide a comprehensive depiction of these interactions at the atomistic level. In contrast, empirical force field based simulation methods inherently provide the ability to predict and visualize protein–surface interactions with full atomistic detail. These methods, however, must be carefully developed, validated, and properly applied before confidence can be placed in results from the simulations. In this perspectives paper, I provide an overview of the critical aspects that I consider being of greatest importance for the development of these methods, with a focus on the research that my combined experimental and molecular simulation groups have conducted over the past decade to address these issues. These critical issues include the tuning of interfacial force field parameters to accurately represent the thermodynamics of interfacial behavior, adequate sampling of these types of complex molecular systems to generate results that can be comparable with experimental data, and the generation of experimental data that can be used for simulation results evaluation and validation. PMID:25028242

  19. A theoretical study on tunneling based biosensor having a redox-active monolayer using physics based simulation

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Yeon; Lee, Won Cheol; Yun, Jun Yeon; Lee, Youngeun; Choi, Seoungwook; Jin, Seonghoon; Park, Young June

    2018-01-01

    We developed a numerical simulator to model the operation of a tunneling based biosensor which has a redox-active monolayer. The simulator takes a realistic device structure as a simulation domain, and it employs the drift-diffusion equation for ion transport, the non-equilibrium Green's function formalism for electron tunneling, and the Ramo-Shockley theorem for accurate calculation of non-faradaic current. We also accounted for the buffer reaction and the immobilized peptide layer. For efficient transient simulation, the implicit time integration scheme is employed where the solution at each time step is obtained from the coupled Newton-Raphson method. As an application, we studied the operation of a recently fabricated reference-electrode free biosensor in various bias conditions and confirmed the effect of buffer reaction and the current flowing mechanism. Using the simulator, we also found a strategy to maximize the sensitivity of the tunneling based sensor.

  20. Patch-based iterative conditional geostatistical simulation using graph cuts

    NASA Astrophysics Data System (ADS)

    Li, Xue; Mariethoz, Gregoire; Lu, DeTang; Linde, Niklas

    2016-08-01

    Training image-based geostatistical methods are increasingly popular in groundwater hydrology even if existing algorithms present limitations that often make real-world applications difficult. These limitations include a computational cost that can be prohibitive for high-resolution 3-D applications, the presence of visual artifacts in the model realizations, and a low variability between model realizations due to the limited pool of patterns available in a finite-size training image. In this paper, we address these issues by proposing an iterative patch-based algorithm which adapts a graph cuts methodology that is widely used in computer graphics. Our adapted graph cuts method optimally cuts patches of pixel values borrowed from the training image and assembles them successively, each time accounting for the information of previously stitched patches. The initial simulation result might display artifacts, which are identified as regions of high cost. These artifacts are reduced by iteratively placing new patches in high-cost regions. In contrast to most patch-based algorithms, the proposed scheme can also efficiently address point conditioning. An advantage of the method is that the cut process results in the creation of new patterns that are not present in the training image, thereby increasing pattern variability. To quantify this effect, a new measure of variability is developed, the merging index, quantifies the pattern variability in the realizations with respect to the training image. A series of sensitivity analyses demonstrates the stability of the proposed graph cuts approach, which produces satisfying simulations for a wide range of parameters values. Applications to 2-D and 3-D cases are compared to state-of-the-art multiple-point methods. The results show that the proposed approach obtains significant speedups and increases variability between realizations. Connectivity functions applied to 2-D models transport simulations in 3-D models are used to

  1. NMR diffusion simulation based on conditional random walk.

    PubMed

    Gudbjartsson, H; Patz, S

    1995-01-01

    The authors introduce here a new, very fast, simulation method for free diffusion in a linear magnetic field gradient, which is an extension of the conventional Monte Carlo (MC) method or the convolution method described by Wong et al. (in 12th SMRM, New York, 1993, p.10). In earlier NMR-diffusion simulation methods, such as the finite difference method (FD), the Monte Carlo method, and the deterministic convolution method, the outcome of the calculations depends on the simulation time step. In the authors' method, however, the results are independent of the time step, although, in the convolution method the step size has to be adequate for spins to diffuse to adjacent grid points. By always selecting the largest possible time step the computation time can therefore be reduced. Finally the authors point out that in simple geometric configurations their simulation algorithm can be used to reduce computation time in the simulation of restricted diffusion.

  2. Twitter's tweet method modelling and simulation

    NASA Astrophysics Data System (ADS)

    Sarlis, Apostolos S.; Sakas, Damianos P.; Vlachos, D. S.

    2015-02-01

    This paper seeks to purpose the concept of Twitter marketing methods. The tools that Twitter provides are modelled and simulated using iThink in the context of a Twitter media-marketing agency. The paper has leveraged the system's dynamic paradigm to conduct Facebook marketing tools and methods modelling, using iThink™ system to implement them. It uses the design science research methodology for the proof of concept of the models and modelling processes. The following models have been developed for a twitter marketing agent/company and tested in real circumstances and with real numbers. These models were finalized through a number of revisions and iterators of the design, develop, simulate, test and evaluate. It also addresses these methods that suit most organized promotion through targeting, to the Twitter social media service. The validity and usefulness of these Twitter marketing methods models for the day-to-day decision making are authenticated by the management of the company organization. It implements system dynamics concepts of Twitter marketing methods modelling and produce models of various Twitter marketing situations. The Tweet method that Twitter provides can be adjusted, depending on the situation, in order to maximize the profit of the company/agent.

  3. Steady and Unsteady Nozzle Simulations Using the Conservation Element and Solution Element Method

    NASA Technical Reports Server (NTRS)

    Friedlander, David Joshua; Wang, Xiao-Yen J.

    2014-01-01

    This paper presents results from computational fluid dynamic (CFD) simulations of a three-stream plug nozzle. Time-accurate, Euler, quasi-1D and 2D-axisymmetric simulations were performed as part of an effort to provide a CFD-based approach to modeling nozzle dynamics. The CFD code used for the simulations is based on the space-time Conservation Element and Solution Element (CESE) method. Steady-state results were validated using the Wind-US code and a code utilizing the MacCormack method while the unsteady results were partially validated via an aeroacoustic benchmark problem. The CESE steady-state flow field solutions showed excellent agreement with solutions derived from the other methods and codes while preliminary unsteady results for the three-stream plug nozzle are also shown. Additionally, a study was performed to explore the sensitivity of gross thrust computations to the control surface definition. The results showed that most of the sensitivity while computing the gross thrust is attributed to the control surface stencil resolution and choice of stencil end points and not to the control surface definition itself.Finally, comparisons between the quasi-1D and 2D-axisymetric solutions were performed in order to gain insight on whether a quasi-1D solution can capture the steady and unsteady nozzle phenomena without the cost of a 2D-axisymmetric simulation. Initial results show that while the quasi-1D solutions are similar to the 2D-axisymmetric solutions, the inability of the quasi-1D simulations to predict two dimensional phenomena limits its accuracy.

  4. Critical thinking skills in nursing students: comparison of simulation-based performance with metrics

    PubMed Central

    Fero, Laura J.; O’Donnell, John M.; Zullo, Thomas G.; Dabbs, Annette DeVito; Kitutu, Julius; Samosky, Joseph T.; Hoffman, Leslie A.

    2018-01-01

    Aim This paper is a report of an examination of the relationship between metrics of critical thinking skills and performance in simulated clinical scenarios. Background Paper and pencil assessments are commonly used to assess critical thinking but may not reflect simulated performance. Methods In 2007, a convenience sample of 36 nursing students participated in measurement of critical thinking skills and simulation-based performance using videotaped vignettes, high-fidelity human simulation, the California Critical Thinking Disposition Inventory and California Critical Thinking Skills Test. Simulation- based performance was rated as ‘meeting’ or ‘not meeting’ overall expectations. Test scores were categorized as strong, average, or weak. Results Most (75·0%) students did not meet overall performance expectations using videotaped vignettes or high-fidelity human simulation; most difficulty related to problem recognition and reporting findings to the physician. There was no difference between overall performance based on method of assessment (P = 0·277). More students met subcategory expectations for initiating nursing interventions (P ≤ 0·001) using high-fidelity human simulation. The relationship between video-taped vignette performance and critical thinking disposition or skills scores was not statistically significant, except for problem recognition and overall critical thinking skills scores (Cramer’s V = 0·444, P = 0·029). There was a statistically significant relationship between overall high-fidelity human simulation performance and overall critical thinking disposition scores (Cramer’s V = 0·413, P = 0·047). Conclusion Students’ performance reflected difficulty meeting expectations in simulated clinical scenarios. High-fidelity human simulation performance appeared to approximate scores on metrics of critical thinking best. Further research is needed to determine if simulation-based performance correlates with critical thinking skills

  5. Cut-cell method based large-eddy simulation of tip-leakage flow

    NASA Astrophysics Data System (ADS)

    Pogorelov, Alexej; Meinke, Matthias; Schröder, Wolfgang

    2015-07-01

    The turbulent low Mach number flow through an axial fan at a Reynolds number of 9.36 × 105 based on the outer casing diameter is investigated by large-eddy simulation. A finite-volume flow solver in an unstructured hierarchical Cartesian setup for the compressible Navier-Stokes equations is used. To account for sharp edges, a fully conservative cut-cell approach is applied. A newly developed rotational periodic boundary condition for Cartesian meshes is introduced such that the simulations are performed just for a 72° segment, i.e., the flow field over one out of five axial blades is resolved. The focus of this numerical analysis is on the development of the vortical flow structures in the tip-gap region. A detailed grid convergence study is performed on four computational grids with 50 × 106, 250 × 106, 1 × 109, and 1.6 × 109 cells. Results of the instantaneous and the mean fan flow field are thoroughly analyzed based on the solution with 1 × 109 cells. High levels of turbulent kinetic energy and pressure fluctuations are generated by a tip-gap vortex upstream of the blade, the separating vortices inside the tip gap, and a counter-rotating vortex on the outer casing wall. An intermittent interaction of the turbulent wake, generated by the tip-gap vortex, with the downstream blade, leads to a cyclic transition with high pressure fluctuations on the suction side of the blade and a decay of the tip-gap vortex. The disturbance of the tip-gap vortex results in an unsteady behavior of the turbulent wake causing the intermittent interaction. For this interaction and the cyclic transition, two dominant frequencies are identified which perfectly match with the characteristic frequencies in the experimental sound power level and therefore explain their physical origin.

  6. Modelling Geomechanical Heterogeneity of Rock Masses Using Direct and Indirect Geostatistical Conditional Simulation Methods

    NASA Astrophysics Data System (ADS)

    Eivazy, Hesameddin; Esmaieli, Kamran; Jean, Raynald

    2017-12-01

    An accurate characterization and modelling of rock mass geomechanical heterogeneity can lead to more efficient mine planning and design. Using deterministic approaches and random field methods for modelling rock mass heterogeneity is known to be limited in simulating the spatial variation and spatial pattern of the geomechanical properties. Although the applications of geostatistical techniques have demonstrated improvements in modelling the heterogeneity of geomechanical properties, geostatistical estimation methods such as Kriging result in estimates of geomechanical variables that are not fully representative of field observations. This paper reports on the development of 3D models for spatial variability of rock mass geomechanical properties using geostatistical conditional simulation method based on sequential Gaussian simulation. A methodology to simulate the heterogeneity of rock mass quality based on the rock mass rating is proposed and applied to a large open-pit mine in Canada. Using geomechanical core logging data collected from the mine site, a direct and an indirect approach were used to model the spatial variability of rock mass quality. The results of the two modelling approaches were validated against collected field data. The study aims to quantify the risks of pit slope failure and provides a measure of uncertainties in spatial variability of rock mass properties in different areas of the pit.

  7. External Aiding Methods for IMU-Based Navigation

    DTIC Science & Technology

    2016-11-26

    Carlo simulation and particle filtering . This approach allows for the utilization of highly complex systems in a black box configuration with minimal...alternative method, which has the advantage of being less computationally demanding, is to use a Kalman filtering -based approach. The particular...Kalman filtering -based approach used here is known as linear covariance analysis. In linear covariance analysis, the nonlinear systems describing the

  8. Simulations of 6-DOF Motion with a Cartesian Method

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Berger, Marsha J.; Kwak, Dochan (Technical Monitor)

    2003-01-01

    Coupled 6-DOF/CFD trajectory predictions using an automated Cartesian method are demonstrated by simulating a GBU-32/JDAM store separating from an F-18C aircraft. Numerical simulations are performed at two Mach numbers near the sonic speed, and compared with flight-test telemetry and photographic-derived data. Simulation results obtained with a sequential-static series of flow solutions are contrasted with results using a time-dependent flow solver. Both numerical methods show good agreement with the flight-test data through the first half of the simulations. The sequential-static and time-dependent methods diverge over the last half of the trajectory prediction. after the store produces peak angular rates. A cost comparison for the Cartesian method is included, in terms of absolute cost and relative to computing uncoupled 6-DOF trajectories. A detailed description of the 6-DOF method, as well as a verification of its accuracy, is provided in an appendix.

  9. A comparative study of interface reconstruction methods for multi-material ALE simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucharik, Milan; Garimalla, Rao; Schofield, Samuel

    2009-01-01

    In this paper we compare the performance of different methods for reconstructing interfaces in multi-material compressible flow simulations. The methods compared are a material-order-dependent Volume-of-Fluid (VOF) method, a material-order-independent VOF method based on power diagram partitioning of cells and the Moment-of-Fluid method (MOF). We demonstrate that the MOF method provides the most accurate tracking of interfaces, followed by the VOF method with the right material ordering. The material-order-independent VOF method performs some-what worse than the above two while the solutions with VOF using the wrong material order are considerably worse.

  10. On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods

    PubMed Central

    Lee, Anthony; Yau, Christopher; Giles, Michael B.; Doucet, Arnaud; Holmes, Christopher C.

    2011-01-01

    We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design. PMID:22003276

  11. Determining procedures for simulation-based training in radiology: a nationwide needs assessment.

    PubMed

    Nayahangan, Leizl Joy; Nielsen, Kristina Rue; Albrecht-Beste, Elisabeth; Bachmann Nielsen, Michael; Paltved, Charlotte; Lindorff-Larsen, Karen Gilboe; Nielsen, Bjørn Ulrik; Konge, Lars

    2018-06-01

    New training modalities such as simulation are widely accepted in radiology; however, development of effective simulation-based training programs is challenging. They are often unstructured and based on convenience or coincidence. The study objective was to perform a nationwide needs assessment to identify and prioritize technical procedures that should be included in a simulation-based curriculum. A needs assessment using the Delphi method was completed among 91 key leaders in radiology. Round 1 identified technical procedures that radiologists should learn. Round 2 explored frequency of procedure, number of radiologists performing the procedure, risk and/or discomfort for patients, and feasibility for simulation. Round 3 was elimination and prioritization of procedures. Response rates were 67 %, 70 % and 66 %, respectively. In Round 1, 22 technical procedures were included. Round 2 resulted in pre-prioritization of procedures. In round 3, 13 procedures were included in the final prioritized list. The three highly prioritized procedures were ultrasound-guided (US) histological biopsy and fine-needle aspiration, US-guided needle puncture and catheter drainage, and basic abdominal ultrasound. A needs assessment identified and prioritized 13 technical procedures to include in a simulation-based curriculum. The list may be used as guide for development of training programs. • Simulation-based training can supplement training on patients in radiology. • Development of simulation-based training should follow a structured approach. • The CAMES Needs Assessment Formula explores needs for simulation training. • A national Delphi study identified and prioritized procedures suitable for simulation training. • The prioritized list serves as guide for development of courses in radiology.

  12. Virtual reality-based simulation training for ventriculostomy: an evidence-based approach.

    PubMed

    Schirmer, Clemens M; Elder, J Bradley; Roitberg, Ben; Lobel, Darlene A

    2013-10-01

    Virtual reality (VR) simulation-based technologies play an important role in neurosurgical resident training. The Congress of Neurological Surgeons (CNS) Simulation Committee developed a simulation-based curriculum incorporating VR simulators to train residents in the management of common neurosurgical disorders. To enhance neurosurgical resident training for ventriculostomy placement using simulation-based training. A course-based neurosurgical simulation curriculum was introduced at the Neurosurgical Simulation Symposium at the 2011 and 2012 CNS annual meetings. A trauma module was developed to teach ventriculostomy placement as one of the neurosurgical procedures commonly performed in the management of traumatic brain injury. The course offered both didactic and simulator-based instruction, incorporating written and practical pretests and posttests and questionnaires to assess improvement in skill level and to validate the simulators as teaching tools. Fourteen trainees participated in the didactic component of the trauma module. Written scores improved significantly from pretest (75%) to posttest (87.5%; P < .05). Seven participants completed the ventriculostomy simulation. Significant improvements were observed in anatomy (P < .04), burr hole placement (P < .03), final location of the catheter (P = .05), and procedure completion time (P < .004). Senior residents planned a significantly better trajectory (P < .01); junior participants improved most in terms of identifying the relevant anatomy (P < .03) and the time required to complete the procedure (P < .04). VR ventriculostomy placement as part of the CNS simulation trauma module complements standard training techniques for residents in the management of neurosurgical trauma. Improvement in didactic and hands-on knowledge by course participants demonstrates the usefulness of the VR simulator as a training tool.

  13. Particle behavior simulation in thermophoresis phenomena by direct simulation Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wada, Takao

    2014-07-01

    A particle motion considering thermophoretic force is simulated by using direct simulation Monte Carlo (DSMC) method. Thermophoresis phenomena, which occur for a particle size of 1 μm, are treated in this paper. The problem of thermophoresis simulation is computation time which is proportional to the collision frequency. Note that the time step interval becomes much small for the simulation considering the motion of large size particle. Thermophoretic forces calculated by DSMC method were reported, but the particle motion was not computed because of the small time step interval. In this paper, the molecule-particle collision model, which computes the collision between a particle and multi molecules in a collision event, is considered. The momentum transfer to the particle is computed with a collision weight factor, where the collision weight factor means the number of molecules colliding with a particle in a collision event. The large time step interval is adopted by considering the collision weight factor. Furthermore, the large time step interval is about million times longer than the conventional time step interval of the DSMC method when a particle size is 1 μm. Therefore, the computation time becomes about one-millionth. We simulate the graphite particle motion considering thermophoretic force by DSMC-Neutrals (Particle-PLUS neutral module) with above the collision weight factor, where DSMC-Neutrals is commercial software adopting DSMC method. The size and the shape of the particle are 1 μm and a sphere, respectively. The particle-particle collision is ignored. We compute the thermophoretic forces in Ar and H2 gases of a pressure range from 0.1 to 100 mTorr. The results agree well with Gallis' analytical results. Note that Gallis' analytical result for continuum limit is the same as Waldmann's result.

  14. A comparison of model-based imputation methods for handling missing predictor values in a linear regression model: A simulation study

    NASA Astrophysics Data System (ADS)

    Hasan, Haliza; Ahmad, Sanizah; Osman, Balkish Mohd; Sapri, Shamsiah; Othman, Nadirah

    2017-08-01

    In regression analysis, missing covariate data has been a common problem. Many researchers use ad hoc methods to overcome this problem due to the ease of implementation. However, these methods require assumptions about the data that rarely hold in practice. Model-based methods such as Maximum Likelihood (ML) using the expectation maximization (EM) algorithm and Multiple Imputation (MI) are more promising when dealing with difficulties caused by missing data. Then again, inappropriate methods of missing value imputation can lead to serious bias that severely affects the parameter estimates. The main objective of this study is to provide a better understanding regarding missing data concept that can assist the researcher to select the appropriate missing data imputation methods. A simulation study was performed to assess the effects of different missing data techniques on the performance of a regression model. The covariate data were generated using an underlying multivariate normal distribution and the dependent variable was generated as a combination of explanatory variables. Missing values in covariate were simulated using a mechanism called missing at random (MAR). Four levels of missingness (10%, 20%, 30% and 40%) were imposed. ML and MI techniques available within SAS software were investigated. A linear regression analysis was fitted and the model performance measures; MSE, and R-Squared were obtained. Results of the analysis showed that MI is superior in handling missing data with highest R-Squared and lowest MSE when percent of missingness is less than 30%. Both methods are unable to handle larger than 30% level of missingness.

  15. Computer Based Simulation of Laboratory Experiments.

    ERIC Educational Resources Information Center

    Edward, Norrie S.

    1997-01-01

    Examines computer based simulations of practical laboratory experiments in engineering. Discusses the aims and achievements of lab work (cognitive, process, psychomotor, and affective); types of simulations (model building and behavioral); and the strengths and weaknesses of simulations. Describes the development of a centrifugal pump simulation,…

  16. Simulation-based interpersonal communication skills training for neurosurgical residents.

    PubMed

    Harnof, Sagi; Hadani, Moshe; Ziv, Amitai; Berkenstadt, Haim

    2013-09-01

    Communication skills are an important component of the neurosurgery residency training program. We developed a simulation-based training module for neurosurgery residents in which medical, communication and ethical dilemmas are presented by role-playing actors. To assess the first national simulation-based communication skills training for neurosurgical residents. Eight scenarios covering different aspects of neurosurgery were developed by our team: (1) obtaining informed consent for an elective surgery, (2) discharge of a patient following elective surgery, (3) dealing with an unsatisfied patient, (4) delivering news of intraoperative complications, (5) delivering news of a brain tumor to parents of a 5 year old boy, (6) delivering news of brain death to a family member, (7) obtaining informed consent for urgent surgery from the grandfather of a 7 year old boy with an epidural hematoma, and (8) dealing with a case of child abuse. Fifteen neurosurgery residents from all major medical centers in Israel participated in the training. The session was recorded on video and was followed by videotaped debriefing by a senior neurosurgeon and communication expert and by feedback questionnaires. All trainees participated in two scenarios and observed another two. Participants largely agreed that the actors simulating patients represented real patients and family members and that the videotaped debriefing contributed to the teaching of professional skills. Simulation-based communication skill training is effective, and together with thorough debriefing is an excellent learning and practical method for imparting communication skills to neurosurgery residents. Such simulation-based training will ultimately be part of the national residency program.

  17. Impact of crisis resource management simulation-based training for interprofessional and interdisciplinary teams: A systematic review.

    PubMed

    Fung, Lillia; Boet, Sylvain; Bould, M Dylan; Qosa, Haytham; Perrier, Laure; Tricco, Andrea; Tavares, Walter; Reeves, Scott

    2015-01-01

    Crisis resource management (CRM) abilities are important for different healthcare providers to effectively manage critical clinical events. This study aims to review the effectiveness of simulation-based CRM training for interprofessional and interdisciplinary teams compared to other instructional methods (e.g., didactics). Interprofessional teams are composed of several professions (e.g., nurse, physician, midwife) while interdisciplinary teams are composed of several disciplines from the same profession (e.g., cardiologist, anaesthesiologist, orthopaedist). Medline, EMBASE, CINAHL, Cochrane Central Register of Controlled Trials, and ERIC were searched using terms related to CRM, crisis management, crew resource management, teamwork, and simulation. Trials comparing simulation-based CRM team training versus any other methods of education were included. The educational interventions involved interprofessional or interdisciplinary healthcare teams. The initial search identified 7456 publications; 12 studies were included. Simulation-based CRM team training was associated with significant improvements in CRM skill acquisition in all but two studies when compared to didactic case-based CRM training or simulation without CRM training. Of the 12 included studies, one showed significant improvements in team behaviours in the workplace, while two studies demonstrated sustained reductions in adverse patient outcomes after a single simulation-based CRM team intervention. In conclusion, CRM simulation-based training for interprofessional and interdisciplinary teams show promise in teaching CRM in the simulator when compared to didactic case-based CRM education or simulation without CRM teaching. More research, however, is required to demonstrate transfer of learning to workplaces and potential impact on patient outcomes.

  18. A Transfer Voltage Simulation Method for Generator Step Up Transformers

    NASA Astrophysics Data System (ADS)

    Funabashi, Toshihisa; Sugimoto, Toshirou; Ueda, Toshiaki; Ametani, Akihiro

    It has been found from measurements for 13 sets of GSU transformers that a transfer voltage of a generator step-up (GSU) transformer involves one dominant oscillation frequency. The frequency can be estimated from the inductance and capacitance values of the GSU transformer low-voltage-side. This observation has led to a new method for simulating a GSU transformer transfer voltage. The method is based on the EMTP TRANSFORMER model, but stray capacitances are added. The leakage inductance and the magnetizing resistance are modified using approximate curves for their frequency characteristics determined from the measured results. The new method is validated in comparison with the measured results.

  19. Low-Density Nozzle Flow by the Direct Simulation Monte Carlo and Continuum Methods

    NASA Technical Reports Server (NTRS)

    Chung, Chang-Hong; Kim, Sku C.; Stubbs, Robert M.; Dewitt, Kenneth J.

    1994-01-01

    Two different approaches, the direct simulation Monte Carlo (DSMC) method based on molecular gasdynamics, and a finite-volume approximation of the Navier-Stokes equations, which are based on continuum gasdynamics, are employed in the analysis of a low-density gas flow in a small converging-diverging nozzle. The fluid experiences various kinds of flow regimes including continuum, slip, transition, and free-molecular. Results from the two numerical methods are compared with Rothe's experimental data, in which density and rotational temperature variations along the centerline and at various locations inside a low-density nozzle were measured by the electron-beam fluorescence technique. The continuum approach showed good agreement with the experimental data as far as density is concerned. The results from the DSMC method showed good agreement with the experimental data, both in the density and the rotational temperature. It is also shown that the simulation parameters, such as the gas/surface interaction model, the energy exchange model between rotational and translational modes, and the viscosity-temperature exponent, have substantial effects on the results of the DSMC method.

  20. Viscoelastic Earthquake Cycle Simulation with Memory Variable Method

    NASA Astrophysics Data System (ADS)

    Hirahara, K.; Ohtani, M.

    2017-12-01

    There have so far been no EQ (earthquake) cycle simulations, based on RSF (rate and state friction) laws, in viscoelastic media, except for Kato (2002), who simulated cycles on a 2-D vertical strike-slip fault, and showed nearly the same cycles as those in elastic cases. The viscoelasticity could, however, give more effects on large dip-slip EQ cycles. In a boundary element approach, stress is calculated using a hereditary integral of stress relaxation function and slip deficit rate, where we need the past slip rates, leading to huge computational costs. This is a cause for almost no simulations in viscoelastic media. We have investigated the memory variable method utilized in numerical computation of wave propagation in dissipative media (e.g., Moczo and Kristek, 2005). In this method, introducing memory variables satisfying 1st order differential equations, we need no hereditary integrals in stress calculation and the computational costs are the same order of those in elastic cases. Further, Hirahara et al. (2012) developed the iterative memory variable method, referring to Taylor et al. (1970), in EQ cycle simulations in linear viscoelastic media. In this presentation, first, we introduce our method in EQ cycle simulations and show the effect of the linear viscoelasticity on stick-slip cycles in a 1-DOF block-SLS (standard linear solid) model, where the elastic spring of the traditional block-spring model is replaced by SLS element and we pull, in a constant rate, the block obeying RSF law. In this model, the memory variable stands for the displacement of the dash-pot in SLS element. The use of smaller viscosity reduces the recurrence time to a minimum value. The smaller viscosity means the smaller relaxation time, which makes the stress recovery quicker, leading to the smaller recurrence time. Second, we show EQ cycles on a 2-D dip-slip fault with the dip angel of 20 degrees in an elastic layer with thickness of 40 km overriding a Maxwell viscoelastic half

  1. Human-simulation-based learning to prevent medication error: A systematic review.

    PubMed

    Sarfati, Laura; Ranchon, Florence; Vantard, Nicolas; Schwiertz, Vérane; Larbre, Virginie; Parat, Stéphanie; Faudel, Amélie; Rioufol, Catherine

    2018-01-31

    In the past 2 decades, there has been an increasing interest in simulation-based learning programs to prevent medication error (ME). To improve knowledge, skills, and attitudes in prescribers, nurses, and pharmaceutical staff, these methods enable training without directly involving patients. However, best practices for simulation for healthcare providers are as yet undefined. By analysing the current state of experience in the field, the present review aims to assess whether human simulation in healthcare helps to reduce ME. A systematic review was conducted on Medline from 2000 to June 2015, associating the terms "Patient Simulation," "Medication Errors," and "Simulation Healthcare." Reports of technology-based simulation were excluded, to focus exclusively on human simulation in nontechnical skills learning. Twenty-one studies assessing simulation-based learning programs were selected, focusing on pharmacy, medicine or nursing students, or concerning programs aimed at reducing administration or preparation errors, managing crises, or learning communication skills for healthcare professionals. The studies varied in design, methodology, and assessment criteria. Few demonstrated that simulation was more effective than didactic learning in reducing ME. This review highlights a lack of long-term assessment and real-life extrapolation, with limited scenarios and participant samples. These various experiences, however, help in identifying the key elements required for an effective human simulation-based learning program for ME prevention: ie, scenario design, debriefing, and perception assessment. The performance of these programs depends on their ability to reflect reality and on professional guidance. Properly regulated simulation is a good way to train staff in events that happen only exceptionally, as well as in standard daily activities. By integrating human factors, simulation seems to be effective in preventing iatrogenic risk related to ME, if the program is

  2. Studying distributed cognition of simulation-based team training with DiCoT.

    PubMed

    Rybing, Jonas; Nilsson, Heléne; Jonson, Carl-Oscar; Bang, Magnus

    2016-03-01

    Health care organizations employ simulation-based team training (SBTT) to improve skill, communication and coordination in a broad range of critical care contexts. Quantitative approaches, such as team performance measurements, are predominantly used to measure SBTTs effectiveness. However, a practical evaluation method that examines how this approach supports cognition and teamwork is missing. We have applied Distributed Cognition for Teamwork (DiCoT), a method for analysing cognition and collaboration aspects of work settings, with the purpose of assessing the methodology's usefulness for evaluating SBTTs. In a case study, we observed and analysed four Emergo Train System® simulation exercises where medical professionals trained emergency response routines. The study suggests that DiCoT is an applicable and learnable tool for determining key distributed cognition attributes of SBTTs that are of importance for the simulation validity of training environments. Moreover, we discuss and exemplify how DiCoT supports design of SBTTs with a focus on transfer and validity characteristics. Practitioner Summary: In this study, we have evaluated a method to assess simulation-based team training environments from a cognitive ergonomics perspective. Using a case study, we analysed Distributed Cognition for Teamwork (DiCoT) by applying it to the Emergo Train System®. We conclude that DiCoT is useful for SBTT evaluation and simulator (re)design.

  3. Brain-shift compensation using intraoperative ultrasound and constraint-based biomechanical simulation.

    PubMed

    Morin, Fanny; Courtecuisse, Hadrien; Reinertsen, Ingerid; Le Lann, Florian; Palombi, Olivier; Payan, Yohan; Chabanas, Matthieu

    2017-08-01

    During brain tumor surgery, planning and guidance are based on preoperative images which do not account for brain-shift. However, this deformation is a major source of error in image-guided neurosurgery and affects the accuracy of the procedure. In this paper, we present a constraint-based biomechanical simulation method to compensate for craniotomy-induced brain-shift that integrates the deformations of the blood vessels and cortical surface, using a single intraoperative ultrasound acquisition. Prior to surgery, a patient-specific biomechanical model is built from preoperative images, accounting for the vascular tree in the tumor region and brain soft tissues. Intraoperatively, a navigated ultrasound acquisition is performed directly in contact with the organ. Doppler and B-mode images are recorded simultaneously, enabling the extraction of the blood vessels and probe footprint, respectively. A constraint-based simulation is then executed to register the pre- and intraoperative vascular trees as well as the cortical surface with the probe footprint. Finally, preoperative images are updated to provide the surgeon with images corresponding to the current brain shape for navigation. The robustness of our method is first assessed using sparse and noisy synthetic data. In addition, quantitative results for five clinical cases are provided, first using landmarks set on blood vessels, then based on anatomical structures delineated in medical images. The average distances between paired vessels landmarks ranged from 3.51 to 7.32 (in mm) before compensation. With our method, on average 67% of the brain-shift is corrected (range [1.26; 2.33]) against 57% using one of the closest existing works (range [1.71; 2.84]). Finally, our method is proven to be fully compatible with a surgical workflow in terms of execution times and user interactions. In this paper, a new constraint-based biomechanical simulation method is proposed to compensate for craniotomy-induced brain

  4. Base Camp Design Simulation Training

    DTIC Science & Technology

    2011-07-01

    States Military Academy undertook a project to bring base camp design and development simulation support into the classrooms of the US Army Engineer...endeavor was to bring simulation support to Army classrooms . Initial discussions between the ORCEN and the Manuever Support Center of Excellence... classrooms . MSCoE acts as TRADOC’s proponent for base camps, subsequently delegated to the Engineer School (one of three branch schools overseen by

  5. Acoustic-based proton range verification in heterogeneous tissue: simulation studies

    NASA Astrophysics Data System (ADS)

    Jones, Kevin C.; Nie, Wei; Chu, James C. H.; Turian, Julius V.; Kassaee, Alireza; Sehgal, Chandra M.; Avery, Stephen

    2018-01-01

    Acoustic-based proton range verification (protoacoustics) is a potential in vivo technique for determining the Bragg peak position. Previous measurements and simulations have been restricted to homogeneous water tanks. Here, a CT-based simulation method is proposed and applied to a liver and prostate case to model the effects of tissue heterogeneity on the protoacoustic amplitude and time-of-flight range verification accuracy. For the liver case, posterior irradiation with a single proton pencil beam was simulated for detectors placed on the skin. In the prostate case, a transrectal probe measured the protoacoustic pressure generated by irradiation with five separate anterior proton beams. After calculating the proton beam dose deposition, each CT voxel’s material properties were mapped based on Hounsfield Unit values, and thermoacoustically-generated acoustic wave propagation was simulated with the k-Wave MATLAB toolbox. By comparing the simulation results for the original liver CT to homogenized variants, the effects of heterogeneity were assessed. For the liver case, 1.4 cGy of dose at the Bragg peak generated 50 mPa of pressure (13 cm distal), a 2×  lower amplitude than simulated in a homogeneous water tank. Protoacoustic triangulation of the Bragg peak based on multiple detector measurements resulted in 0.4 mm accuracy for a δ-function proton pulse irradiation of the liver. For the prostate case, higher amplitudes are simulated (92-1004 mPa) for closer detectors (<8 cm). For four of the prostate beams, the protoacoustic range triangulation was accurate to  ⩽1.6 mm (δ-function proton pulse). Based on the results, application of protoacoustic range verification to heterogeneous tissue will result in decreased signal amplitudes relative to homogeneous water tank measurements, but accurate range verification is still expected to be possible.

  6. Simple Method to Estimate Mean Heart Dose From Hodgkin Lymphoma Radiation Therapy According to Simulation X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimwegen, Frederika A. van; Cutter, David J.; Oxford Cancer Centre, Oxford University Hospitals NHS Trust, Oxford

    Purpose: To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Methods and Materials: Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case–controlmore » study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. Results: According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Conclusion: Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor

  7. Two methods to simulate intrapulpal pressure: effects upon bonding performance of self-etch adhesives.

    PubMed

    Feitosa, V P; Gotti, V B; Grohmann, C V; Abuná, G; Correr-Sobrinho, L; Sinhoreti, M A C; Correr, A B

    2014-09-01

    To evaluate the effects of two methods to simulate physiological pulpal pressure on the dentine bonding performance of two all-in-one adhesives and a two-step self-etch silorane-based adhesive by means of microtensile bond strength (μTBS) and nanoleakage surveys. The self-etch adhesives [G-Bond Plus (GB), Adper Easy Bond (EB) and silorane adhesive (SIL)] were applied to flat deep dentine surfaces from extracted human molars. The restorations were constructed using resin composites Filtek Silorane or Filtek Z350 (3M ESPE). After 24 h using the two methods of simulated pulpal pressure or no pulpal pressure (control groups), the bonded teeth were cut into specimens and submitted to μTBS and silver uptake examination. Results were analysed with two-way anova and Tukey's test (P < 0.05). Both methods of simulated pulpal pressure led statistically similar μTBS for all adhesives. No difference between control and pulpal pressure groups was found for SIL and GB. EB led significant drop (P = 0.002) in bond strength under pulpal pressure. Silver impregnation was increased after both methods of simulated pulpal pressure for all adhesives, and it was similar between the simulated pulpal pressure methods. The innovative method to simulate pulpal pressure behaved similarly to the classic one and could be used as an alternative. The HEMA-free one-step and the two-step self-etch adhesives had acceptable resistance against pulpal pressure, unlike the HEMA-rich adhesive. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Stabilized finite element methods to simulate the conductances of ion channels

    NASA Astrophysics Data System (ADS)

    Tu, Bin; Xie, Yan; Zhang, Linbo; Lu, Benzhuo

    2015-03-01

    We have previously developed a finite element simulator, ichannel, to simulate ion transport through three-dimensional ion channel systems via solving the Poisson-Nernst-Planck equations (PNP) and Size-modified Poisson-Nernst-Planck equations (SMPNP), and succeeded in simulating some ion channel systems. However, the iterative solution between the coupled Poisson equation and the Nernst-Planck equations has difficulty converging for some large systems. One reason we found is that the NP equations are advection-dominated diffusion equations, which causes troubles in the usual FE solution. The stabilized schemes have been applied to compute fluids flow in various research fields. However, they have not been studied in the simulation of ion transport through three-dimensional models based on experimentally determined ion channel structures. In this paper, two stabilized techniques, the SUPG and the Pseudo Residual-Free Bubble function (PRFB) are introduced to enhance the numerical robustness and convergence performance of the finite element algorithm in ichannel. The conductances of the voltage dependent anion channel (VDAC) and the anthrax toxin protective antigen pore (PA) are simulated to validate the stabilization techniques. Those two stabilized schemes give reasonable results for the two proteins, with decent agreement with both experimental data and Brownian dynamics (BD) simulations. For a variety of numerical tests, it is found that the simulator effectively avoids previous numerical instability after introducing the stabilization methods. Comparison based on our test data set between the two stabilized schemes indicates both SUPG and PRFB have similar performance (the latter is slightly more accurate and stable), while SUPG is relatively more convenient to implement.

  9. Treecode-based generalized Born method

    NASA Astrophysics Data System (ADS)

    Xu, Zhenli; Cheng, Xiaolin; Yang, Haizhao

    2011-02-01

    We have developed a treecode-based O(Nlog N) algorithm for the generalized Born (GB) implicit solvation model. Our treecode-based GB (tGB) is based on the GBr6 [J. Phys. Chem. B 111, 3055 (2007)], an analytical GB method with a pairwise descreening approximation for the R6 volume integral expression. The algorithm is composed of a cutoff scheme for the effective Born radii calculation, and a treecode implementation of the GB charge-charge pair interactions. Test results demonstrate that the tGB algorithm can reproduce the vdW surface based Poisson solvation energy with an average relative error less than 0.6% while providing an almost linear-scaling calculation for a representative set of 25 proteins with different sizes (from 2815 atoms to 65456 atoms). For a typical system of 10k atoms, the tGB calculation is three times faster than the direct summation as implemented in the original GBr6 model. Thus, our tGB method provides an efficient way for performing implicit solvent GB simulations of larger biomolecular systems at longer time scales.

  10. Twelve tips for a successful interprofessional team-based high-fidelity simulation education session

    PubMed Central

    Bould, M. Dylan; Layat Burn, Carine; Reeves, Scott

    2014-01-01

    Simulation-based education allows experiential learning without risk to patients. Interprofessional education aims to provide opportunities to different professions for learning how to work effectively together. Interprofessional simulation-based education presents many challenges, including the logistics of setting up the session and providing effective feedback to participants with different backgrounds and mental models. This paper aims to provide educators with a series of practical and pedagogical tips for designing, implementing, assessing, and evaluating a successful interprofessional team-based simulation session. The paper is organized in the sequence that an educator might use in developing an interprofessional simulation-based education session. Collectively, this paper provides guidance from determining interprofessional learning objectives and curricular design to program evaluation. With a better understanding of the concepts and pedagogical methods underlying interprofessional education and simulation, educators will be able to create conditions for a unique educational experience where individuals learn with and from other specialties and professions in a controlled, safe environment. PMID:25023765

  11. Simulating Social Networks of Online Communities: Simulation as a Method for Sociability Design

    NASA Astrophysics Data System (ADS)

    Ang, Chee Siang; Zaphiris, Panayiotis

    We propose the use of social simulations to study and support the design of online communities. In this paper, we developed an Agent-Based Model (ABM) to simulate and study the formation of social networks in a Massively Multiplayer Online Role Playing Game (MMORPG) guild community. We first analyzed the activities and the social network (who-interacts-with-whom) of an existing guild community to identify its interaction patterns and characteristics. Then, based on the empirical results, we derived and formalized the interaction rules, which were implemented in our simulation. Using the simulation, we reproduced the observed social network of the guild community as a means of validation. The simulation was then used to examine how various parameters of the community (e.g. the level of activity, the number of neighbors of each agent, etc) could potentially influence the characteristic of the social networks.

  12. Multi-pass Monte Carlo simulation method in nuclear transmutations.

    PubMed

    Mateescu, Liviu; Kadambi, N Prasad; Ravindra, Nuggehalli M

    2016-12-01

    Monte Carlo methods, in their direct brute simulation incarnation, bring realistic results if the involved probabilities, be they geometrical or otherwise, remain constant for the duration of the simulation. However, there are physical setups where the evolution of the simulation represents a modification of the simulated system itself. Chief among such evolving simulated systems are the activation/transmutation setups. That is, the simulation starts with a given set of probabilities, which are determined by the geometry of the system, the components and by the microscopic interaction cross-sections. However, the relative weight of the components of the system changes along with the steps of the simulation. A natural measure would be adjusting probabilities after every step of the simulation. On the other hand, the physical system has typically a number of components of the order of Avogadro's number, usually 10 25 or 10 26 members. A simulation step changes the characteristics for just a few of these members; a probability will therefore shift by a quantity of 1/10 25 . Such a change cannot be accounted for within a simulation, because then the simulation should have then a number of at least 10 28 steps in order to have some significance. This is not feasible, of course. For our computing devices, a simulation of one million steps is comfortable, but a further order of magnitude becomes too big a stretch for the computing resources. We propose here a method of dealing with the changing probabilities, leading to the increasing of the precision. This method is intended as a fast approximating approach, and also as a simple introduction (for the benefit of students) in the very branched subject of Monte Carlo simulations vis-à-vis nuclear reactors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A new method for photon transport in Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Sato, T.; Ogawa, K.

    1999-12-01

    Monte Carlo methods are used to evaluate data methods such as scatter and attenuation compensation in single photon emission CT (SPECT), treatment planning in radiation therapy, and in many industrial applications. In Monte Carlo simulation, photon transport requires calculating the distance from the location of the emitted photon to the nearest boundary of each uniform attenuating medium along its path of travel, and comparing this distance with the length of its path generated at emission. Here, the authors propose a new method that omits the calculation of the location of the exit point of the photon from each voxel and of the distance between the exit point and the original position. The method only checks the medium of each voxel along the photon's path. If the medium differs from that in the voxel from which the photon was emitted, the authors calculate the location of the entry point in the voxel, and the length of the path is compared with the mean free path length generated by a random number. Simulations using the MCAT phantom show that the ratios of the calculation time were 1.0 for the voxel-based method, and 0.51 for the proposed method with a 256/spl times/256/spl times/256 matrix image, thereby confirming the effectiveness of the algorithm.

  14. Cloud GPU-based simulations for SQUAREMR.

    PubMed

    Kantasis, George; Xanthis, Christos G; Haris, Kostas; Heiberg, Einar; Aletras, Anthony H

    2017-01-01

    Quantitative Magnetic Resonance Imaging (MRI) is a research tool, used more and more in clinical practice, as it provides objective information with respect to the tissues being imaged. Pixel-wise T 1 quantification (T 1 mapping) of the myocardium is one such application with diagnostic significance. A number of mapping sequences have been developed for myocardial T 1 mapping with a wide range in terms of measurement accuracy and precision. Furthermore, measurement results obtained with these pulse sequences are affected by errors introduced by the particular acquisition parameters used. SQUAREMR is a new method which has the potential of improving the accuracy of these mapping sequences through the use of massively parallel simulations on Graphical Processing Units (GPUs) by taking into account different acquisition parameter sets. This method has been shown to be effective in myocardial T 1 mapping; however, execution times may exceed 30min which is prohibitively long for clinical applications. The purpose of this study was to accelerate the construction of SQUAREMR's multi-parametric database to more clinically acceptable levels. The aim of this study was to develop a cloud-based cluster in order to distribute the computational load to several GPU-enabled nodes and accelerate SQUAREMR. This would accommodate high demands for computational resources without the need for major upfront equipment investment. Moreover, the parameter space explored by the simulations was optimized in order to reduce the computational load without compromising the T 1 estimates compared to a non-optimized parameter space approach. A cloud-based cluster with 16 nodes resulted in a speedup of up to 13.5 times compared to a single-node execution. Finally, the optimized parameter set approach allowed for an execution time of 28s using the 16-node cluster, without compromising the T 1 estimates by more than 10ms. The developed cloud-based cluster and optimization of the parameter set

  15. Thread scheduling for GPU-based OPC simulation on multi-thread

    NASA Astrophysics Data System (ADS)

    Lee, Heejun; Kim, Sangwook; Hong, Jisuk; Lee, Sooryong; Han, Hwansoo

    2018-03-01

    As semiconductor product development based on shrinkage continues, the accuracy and difficulty required for the model based optical proximity correction (MBOPC) is increasing. OPC simulation time, which is the most timeconsuming part of MBOPC, is rapidly increasing due to high pattern density in a layout and complex OPC model. To reduce OPC simulation time, we attempt to apply graphic processing unit (GPU) to MBOPC because OPC process is good to be programmed in parallel. We address some issues that may typically happen during GPU-based OPC simulation in multi thread system, such as "out of memory" and "GPU idle time". To overcome these problems, we propose a thread scheduling method, which manages OPC jobs in multiple threads in such a way that simulations jobs from multiple threads are alternatively executed on GPU while correction jobs are executed at the same time in each CPU cores. It was observed that the amount of GPU peak memory usage decreases by up to 35%, and MBOPC runtime also decreases by 4%. In cases where out of memory issues occur in a multi-threaded environment, the thread scheduler was used to improve MBOPC runtime up to 23%.

  16. Acoustic, elastic and poroelastic simulations of CO2 sequestration crosswell monitoring based on spectral-element and adjoint methods

    NASA Astrophysics Data System (ADS)

    Morency, Christina; Luo, Yang; Tromp, Jeroen

    2011-05-01

    The key issues in CO2 sequestration involve accurate monitoring, from the injection stage to the prediction and verification of CO2 movement over time, for environmental considerations. '4-D seismics' is a natural non-intrusive monitoring technique which involves 3-D time-lapse seismic surveys. Successful monitoring of CO2 movement requires a proper description of the physical properties of a porous reservoir. We investigate the importance of poroelasticity by contrasting poroelastic simulations with elastic and acoustic simulations. Discrepancies highlight a poroelastic signature that cannot be captured using an elastic or acoustic theory and that may play a role in accurately imaging and quantifying injected CO2. We focus on time-lapse crosswell imaging and model updating based on Fréchet derivatives, or finite-frequency sensitivity kernels, which define the sensitivity of an observable to the model parameters. We compare results of time-lapse migration imaging using acoustic, elastic (with and without the use of Gassmann's formulae) and poroelastic models. Our approach highlights the influence of using different physical theories for interpreting seismic data, and, more importantly, for extracting the CO2 signature from seismic waveforms. We further investigate the differences between imaging with the direct compressional wave, as is commonly done, versus using both direct compressional (P) and shear (S) waves. We conclude that, unlike direct P-wave traveltimes, a combination of direct P- and S-wave traveltimes constrains most parameters. Adding P- and S-wave amplitude information does not drastically improve parameter sensitivity, but it does improve spatial resolution of the injected CO2 zone. The main advantage of using a poroelastic theory lies in direct sensitivity to fluid properties. Simulations are performed using a spectral-element method, and finite-frequency sensitivity kernels are calculated using an adjoint method.

  17. Development of modelling method selection tool for health services management: from problem structuring methods to modelling and simulation methods.

    PubMed

    Jun, Gyuchan T; Morris, Zoe; Eldabi, Tillal; Harper, Paul; Naseer, Aisha; Patel, Brijesh; Clarkson, John P

    2011-05-19

    There is an increasing recognition that modelling and simulation can assist in the process of designing health care policies, strategies and operations. However, the current use is limited and answers to questions such as what methods to use and when remain somewhat underdeveloped. The aim of this study is to provide a mechanism for decision makers in health services planning and management to compare a broad range of modelling and simulation methods so that they can better select and use them or better commission relevant modelling and simulation work. This paper proposes a modelling and simulation method comparison and selection tool developed from a comprehensive literature review, the research team's extensive expertise and inputs from potential users. Twenty-eight different methods were identified, characterised by their relevance to different application areas, project life cycle stages, types of output and levels of insight, and four input resources required (time, money, knowledge and data). The characterisation is presented in matrix forms to allow quick comparison and selection. This paper also highlights significant knowledge gaps in the existing literature when assessing the applicability of particular approaches to health services management, where modelling and simulation skills are scarce let alone money and time. A modelling and simulation method comparison and selection tool is developed to assist with the selection of methods appropriate to supporting specific decision making processes. In particular it addresses the issue of which method is most appropriate to which specific health services management problem, what the user might expect to be obtained from the method, and what is required to use the method. In summary, we believe the tool adds value to the scarce existing literature on methods comparison and selection.

  18. Spectral-Element Simulations of Wave Propagation in Porous Media: Finite-Frequency Sensitivity Kernels Based Upon Adjoint Methods

    NASA Astrophysics Data System (ADS)

    Morency, C.; Tromp, J.

    2008-12-01

    The mathematical formulation of wave propagation in porous media developed by Biot is based upon the principle of virtual work, ignoring processes at the microscopic level, and does not explicitly incorporate gradients in porosity. Based on recent studies focusing on averaging techniques, we derive the macroscopic porous medium equations from the microscale, with a particular emphasis on the effects of gradients in porosity. In doing so, we are able to naturally determine two key terms in the momentum equations and constitutive relationships, directly translating the coupling between the solid and fluid phases, namely a drag force and an interfacial strain tensor. In both terms, gradients in porosity arise. One remarkable result is that when we rewrite this set of equations in terms of the well known Biot variables us, w), terms involving gradients in porosity are naturally accommodated by gradients involving w, the fluid motion relative to the solid, and Biot's formulation is recovered, i.e., it remains valid in the presence of porosity gradients We have developed a numerical implementation of the Biot equations for two-dimensional problems based upon the spectral-element method (SEM) in the time domain. The SEM is a high-order variational method, which has the advantage of accommodating complex geometries like a finite-element method, while keeping the exponential convergence rate of (pseudo)spectral methods. As in the elastic and acoustic cases, poroelastic wave propagation based upon the SEM involves a diagonal mass matrix, which leads to explicit time integration schemes that are well-suited to simulations on parallel computers. Effects associated with physical dispersion & attenuation and frequency-dependent viscous resistance are addressed by using a memory variable approach. Various benchmarks involving poroelastic wave propagation in the high- and low-frequency regimes, and acoustic-poroelastic and poroelastic-poroelastic discontinuities have been

  19. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks

    PubMed Central

    Walpole, J.; Chappell, J.C.; Cluceru, J.G.; Mac Gabhann, F.; Bautch, V.L.; Peirce, S. M.

    2015-01-01

    Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods. PMID:26158406

  20. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks.

    PubMed

    Walpole, J; Chappell, J C; Cluceru, J G; Mac Gabhann, F; Bautch, V L; Peirce, S M

    2015-09-01

    Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods.

  1. Simulation-based training for thoracoscopic lobectomy: a randomized controlled trial: virtual-reality versus black-box simulation.

    PubMed

    Jensen, Katrine; Ringsted, Charlotte; Hansen, Henrik Jessen; Petersen, René Horsleben; Konge, Lars

    2014-06-01

    Video-assisted thoracic surgery is gradually replacing conventional open thoracotomy as the method of choice for the treatment of early-stage non-small cell lung cancers, and thoracic surgical trainees must learn and master this technique. Simulation-based training could help trainees overcome the first part of the learning curve, but no virtual-reality simulators for thoracoscopy are commercially available. This study aimed to investigate whether training on a laparoscopic simulator enables trainees to perform a thoracoscopic lobectomy. Twenty-eight surgical residents were randomized to either virtual-reality training on a nephrectomy module or traditional black-box simulator training. After a retention period they performed a thoracoscopic lobectomy on a porcine model and their performance was scored using a previously validated assessment tool. The groups did not differ in age or gender. All participants were able to complete the lobectomy. The performance of the black-box group was significantly faster during the test scenario than the virtual-reality group: 26.6 min (SD 6.7 min) versus 32.7 min (SD 7.5 min). No difference existed between the two groups when comparing bleeding and anatomical and non-anatomical errors. Simulation-based training and targeted instructions enabled the trainees to perform a simulated thoracoscopic lobectomy. Traditional black-box training was more effective than virtual-reality laparoscopy training. Thus, a dedicated simulator for thoracoscopy should be available before establishing systematic virtual-reality training programs for trainees in thoracic surgery.

  2. Simple method to estimate mean heart dose from Hodgkin lymphoma radiation therapy according to simulation X-rays.

    PubMed

    van Nimwegen, Frederika A; Cutter, David J; Schaapveld, Michael; Rutten, Annemarieke; Kooijman, Karen; Krol, Augustinus D G; Janus, Cécile P M; Darby, Sarah C; van Leeuwen, Flora E; Aleman, Berthe M P

    2015-05-01

    To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case-control study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor-intensive representative CT-based method. This simpler method may produce a

  3. Fast multipole methods on a cluster of GPUs for the meshless simulation of turbulence

    NASA Astrophysics Data System (ADS)

    Yokota, R.; Narumi, T.; Sakamaki, R.; Kameoka, S.; Obi, S.; Yasuoka, K.

    2009-11-01

    Recent advances in the parallelizability of fast N-body algorithms, and the programmability of graphics processing units (GPUs) have opened a new path for particle based simulations. For the simulation of turbulence, vortex methods can now be considered as an interesting alternative to finite difference and spectral methods. The present study focuses on the efficient implementation of the fast multipole method and pseudo-particle method on a cluster of NVIDIA GeForce 8800 GT GPUs, and applies this to a vortex method calculation of homogeneous isotropic turbulence. The results of the present vortex method agree quantitatively with that of the reference calculation using a spectral method. We achieved a maximum speed of 7.48 TFlops using 64 GPUs, and the cost performance was near 9.4/GFlops. The calculation of the present vortex method on 64 GPUs took 4120 s, while the spectral method on 32 CPUs took 4910 s.

  4. Model-based surgical planning and simulation of cranial base surgery.

    PubMed

    Abe, M; Tabuchi, K; Goto, M; Uchino, A

    1998-11-01

    Plastic skull models of seven individual patients were fabricated by stereolithography from three-dimensional data based on computed tomography bone images. Skull models were utilized for neurosurgical planning and simulation in the seven patients with cranial base lesions that were difficult to remove. Surgical approaches and areas of craniotomy were evaluated using the fabricated skull models. In preoperative simulations, hand-made models of the tumors, major vessels and nerves were placed in the skull models. Step-by-step simulation of surgical procedures was performed using actual surgical tools. The advantages of using skull models to plan and simulate cranial base surgery include a better understanding of anatomic relationships, preoperative evaluation of the proposed procedure, increased understanding by the patient and family, and improved educational experiences for residents and other medical staff. The disadvantages of using skull models include the time and cost of making the models. The skull models provide a more realistic tool that is easier to handle than computer-graphic images. Surgical simulation using models facilitates difficult cranial base surgery and may help reduce surgical complications.

  5. Practice Makes Perfect: Using a Computer-Based Business Simulation in Entrepreneurship Education

    ERIC Educational Resources Information Center

    Armer, Gina R. M.

    2011-01-01

    This article explains the use of a specific computer-based simulation program as a successful experiential learning model and as a way to increase student motivation while augmenting conventional methods of business instruction. This model is based on established adult learning principles.

  6. Physically-Based Modelling and Real-Time Simulation of Fluids.

    NASA Astrophysics Data System (ADS)

    Chen, Jim Xiong

    1995-01-01

    Simulating physically realistic complex fluid behaviors presents an extremely challenging problem for computer graphics researchers. Such behaviors include the effects of driving boats through water, blending differently colored fluids, rain falling and flowing on a terrain, fluids interacting in a Distributed Interactive Simulation (DIS), etc. Such capabilities are useful in computer art, advertising, education, entertainment, and training. We present a new method for physically-based modeling and real-time simulation of fluids in computer graphics and dynamic virtual environments. By solving the 2D Navier -Stokes equations using a CFD method, we map the surface into 3D using the corresponding pressures in the fluid flow field. This achieves realistic real-time fluid surface behaviors by employing the physical governing laws of fluids but avoiding extensive 3D fluid dynamics computations. To complement the surface behaviors, we calculate fluid volume and external boundary changes separately to achieve full 3D general fluid flow. To simulate physical activities in a DIS, we introduce a mechanism which uses a uniform time scale proportional to the clock-time and variable time-slicing to synchronize physical models such as fluids in the networked environment. Our approach can simulate many different fluid behaviors by changing the internal or external boundary conditions. It can model different kinds of fluids by varying the Reynolds number. It can simulate objects moving or floating in fluids. It can also produce synchronized general fluid flows in a DIS. Our model can serve as a testbed to simulate many other fluid phenomena which have never been successfully modeled previously.

  7. WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method

    NASA Astrophysics Data System (ADS)

    Crevoisier, David; Voltz, Marc

    2013-04-01

    To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute

  8. Simulation of weak polyelectrolytes: a comparison between the constant pH and the reaction ensemble method

    NASA Astrophysics Data System (ADS)

    Landsgesell, Jonas; Holm, Christian; Smiatek, Jens

    2017-03-01

    The reaction ensemble and the constant pH method are well-known chemical equilibrium approaches to simulate protonation and deprotonation reactions in classical molecular dynamics and Monte Carlo simulations. In this article, we demonstrate the similarity between both methods under certain conditions. We perform molecular dynamics simulations of a weak polyelectrolyte in order to compare the titration curves obtained by both approaches. Our findings reveal a good agreement between the methods when the reaction ensemble is used to sweep the reaction constant. Pronounced differences between the reaction ensemble and the constant pH method can be observed for stronger acids and bases in terms of adaptive pH values. These deviations are due to the presence of explicit protons in the reaction ensemble method which induce a screening of electrostatic interactions between the charged titrable groups of the polyelectrolyte. The outcomes of our simulation hint to a better applicability of the reaction ensemble method for systems in confined geometries and titrable groups in polyelectrolytes with different pKa values.

  9. Combining Monte Carlo methods with coherent wave optics for the simulation of phase-sensitive X-ray imaging

    PubMed Central

    Peter, Silvia; Modregger, Peter; Fix, Michael K.; Volken, Werner; Frei, Daniel; Manser, Peter; Stampanoni, Marco

    2014-01-01

    Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging. PMID:24763652

  10. Forecasting nonlinear chaotic time series with function expression method based on an improved genetic-simulated annealing algorithm.

    PubMed

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.

  11. Accurate Simulation of MPPT Methods Performance When Applied to Commercial Photovoltaic Panels

    PubMed Central

    2015-01-01

    A new, simple, and quick-calculation methodology to obtain a solar panel model, based on the manufacturers' datasheet, to perform MPPT simulations, is described. The method takes into account variations on the ambient conditions (sun irradiation and solar cells temperature) and allows fast MPPT methods comparison or their performance prediction when applied to a particular solar panel. The feasibility of the described methodology is checked with four different MPPT methods applied to a commercial solar panel, within a day, and under realistic ambient conditions. PMID:25874262

  12. Accurate simulation of MPPT methods performance when applied to commercial photovoltaic panels.

    PubMed

    Cubas, Javier; Pindado, Santiago; Sanz-Andrés, Ángel

    2015-01-01

    A new, simple, and quick-calculation methodology to obtain a solar panel model, based on the manufacturers' datasheet, to perform MPPT simulations, is described. The method takes into account variations on the ambient conditions (sun irradiation and solar cells temperature) and allows fast MPPT methods comparison or their performance prediction when applied to a particular solar panel. The feasibility of the described methodology is checked with four different MPPT methods applied to a commercial solar panel, within a day, and under realistic ambient conditions.

  13. Immersed boundary peridynamics (IB/PD) method to simulate aortic dissection

    NASA Astrophysics Data System (ADS)

    Bhalla, Amneet Pal Singh; Griffith, Boyce

    2016-11-01

    Aortic dissection occurs when an intimal tear in the aortic wall propagates into the media to form a false lumen within the vessel wall. Rupture of the false lumen and collapse of the true lumen both carry a high risk of morbidity and mortality. Surgical treatment consists of either replacement of a portion of the aorta, or stent implantation to cover the affected segment. Both approaches carry significant risks: open surgical intervention is highly invasive, whereas stents can be challenging to implant and offer unclear long-term patient outcomes. It is also difficult to time optimally the intervention to ensure that the benefits of treatment outweigh its risks. In this work we develop innovative fluid-structure interaction (FSI) model combining elements from immersed boundary (IB) and peridynamics (PD) methods to simulate tears in membranes. The new approach is termed as IB/PD method. We use non-ordinary state based PD to represent material hyperelasticity. Several test problems are taken to validate peridynamics approach to model structural dynamics, with and without accounting for failure in the structures. FSI simulations using IB/PD method are compared with immersed finite element method (IB/FE) to validate the new hybrid approach. NIH Award R01HL117163 NSF Award ACI 1450327.

  14. Computational Simulations of the Lateral-Photovoltage-Scanning-Method

    NASA Astrophysics Data System (ADS)

    Kayser, S.; Lüdge, A.; Böttcher, K.

    2018-05-01

    The major task for the Lateral-Photovoltage-Scanning-Method is to detect doping striations and the shape of the solid-liquid-interface of an indirect semiconductor crystal. This method is sensitive to the gradient of the charge carrier density. Attempting to simulate the signal generation of the LPS-Method, we are using a three dimensional Finite Volume approach for solving the van Roosbroeck equations with COMSOL Multiphysics in a silicon sample. We show that the simulated LPS-voltage is directly proportional to the gradient of a given doping distribution, which is also the case for the measured LPS-voltage.

  15. Comparison between Simulation-based Training and Lecture-based Education in Teaching Situation Awareness. A Randomized Controlled Study.

    PubMed

    Lee Chang, Alfredo; Dym, Andrew A; Venegas-Borsellino, Carla; Bangar, Maneesha; Kazzi, Massoud; Lisenenkov, Dmitry; Qadir, Nida; Keene, Adam; Eisen, Lewis Ari

    2017-04-01

    Situation awareness has been defined as the perception of the elements in the environment within volumes of time and space, the comprehension of their meaning, and the projection of their status in the near future. Intensivists often make time-sensitive critical decisions, and loss of situation awareness can lead to errors. It has been shown that simulation-based training is superior to lecture-based training for some critical scenarios. Because the methods of training to improve situation awareness have not been well studied in the medical field, we compared the impact of simulation vs. lecture training using the Situation Awareness Global Assessment Technique (SAGAT) score. To identify an effective method for teaching situation awareness. We randomly assigned 17 critical care fellows to simulation vs. lecture training. Training consisted of eight cases on airway management, including topics such as elevated intracranial pressure, difficult airway, arrhythmia, and shock. During the testing scenario, at random times between 4 and 6 minutes into the simulation, the scenario was frozen, and the screens were blanked. Respondents then completed the 28 questions on the SAGAT scale. Sample items were categorized as Perception, Projection, and Comprehension of the situation. Results were analyzed using SPSS Version 21. Eight fellows from the simulation group and nine from the lecture group underwent simulation testing. Sixty-four SAGAT scores were recorded for the simulation group and 48 scores were recorded for the lecture group. The mean simulation vs. lecture group SAGAT score was 64.3 ± 10.1 (SD) vs. 59.7 ± 10.8 (SD) (P = 0.02). There was also a difference in the median Perception ability between the simulation vs. lecture groups (61.1 vs. 55.5, P = 0.01). There was no difference in the median Projection and Comprehension scores between the two groups (50.0 vs. 50.0, P = 0.92, and 83.3 vs. 83.3, P = 0.27). We found a significant, albeit

  16. Simulations of string vibrations with boundary conditions of third kind using the functional transformation method

    NASA Astrophysics Data System (ADS)

    Trautmann, L.; Petrausch, S.; Bauer, M.

    2005-09-01

    The functional transformation method (FTM) is an established mathematical method for accurate simulation of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. It is a frequency-domain method based on the decomposition into eigenvectors and eigenfrequencies of the underlying physical problem. In this article, the FTM is applied to real-time simulations of vibrating strings which are ideally fixed at one end while the fixing at the other end is modeled by a frequency-dependent input impedance. Thus, boundary conditions of third kind are applied to the model at the end fixed with the input impedance. It is shown that accurate and stable simulations are achieved with nearly the same computational cost as with strings ideally fixed at both ends.

  17. Simulation of ground motion using the stochastic method

    USGS Publications Warehouse

    Boore, D.M.

    2003-01-01

    A simple and powerful method for simulating ground motions is to combine parametric or functional descriptions of the ground motion's amplitude spectrum with a random phase spectrum modified such that the motion is distributed over a duration related to the earthquake magnitude and to the distance from the source. This method of simulating ground motions often goes by the name "the stochastic method." It is particularly useful for simulating the higher-frequency ground motions of most interest to engineers (generally, f>0.1 Hz), and it is widely used to predict ground motions for regions of the world in which recordings of motion from potentially damaging earthquakes are not available. This simple method has been successful in matching a variety of ground-motion measures for earthquakes with seismic moments spanning more than 12 orders of magnitude and in diverse tectonic environments. One of the essential characteristics of the method is that it distills what is known about the various factors affecting ground motions (source, path, and site) into simple functional forms. This provides a means by which the results of the rigorous studies reported in other papers in this volume can be incorporated into practical predictions of ground motion.

  18. Mosquito population dynamics from cellular automata-based simulation

    NASA Astrophysics Data System (ADS)

    Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning

    2016-02-01

    In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.

  19. A tool for simulating parallel branch-and-bound methods

    NASA Astrophysics Data System (ADS)

    Golubeva, Yana; Orlov, Yury; Posypkin, Mikhail

    2016-01-01

    The Branch-and-Bound method is known as one of the most powerful but very resource consuming global optimization methods. Parallel and distributed computing can efficiently cope with this issue. The major difficulty in parallel B&B method is the need for dynamic load redistribution. Therefore design and study of load balancing algorithms is a separate and very important research topic. This paper presents a tool for simulating parallel Branchand-Bound method. The simulator allows one to run load balancing algorithms with various numbers of processors, sizes of the search tree, the characteristics of the supercomputer's interconnect thereby fostering deep study of load distribution strategies. The process of resolution of the optimization problem by B&B method is replaced by a stochastic branching process. Data exchanges are modeled using the concept of logical time. The user friendly graphical interface to the simulator provides efficient visualization and convenient performance analysis.

  20. Long-time atomistic simulations with the Parallel Replica Dynamics method

    NASA Astrophysics Data System (ADS)

    Perez, Danny

    Molecular Dynamics (MD) -- the numerical integration of atomistic equations of motion -- is a workhorse of computational materials science. Indeed, MD can in principle be used to obtain any thermodynamic or kinetic quantity, without introducing any approximation or assumptions beyond the adequacy of the interaction potential. It is therefore an extremely powerful and flexible tool to study materials with atomistic spatio-temporal resolution. These enviable qualities however come at a steep computational price, hence limiting the system sizes and simulation times that can be achieved in practice. While the size limitation can be efficiently addressed with massively parallel implementations of MD based on spatial decomposition strategies, allowing for the simulation of trillions of atoms, the same approach usually cannot extend the timescales much beyond microseconds. In this article, we discuss an alternative parallel-in-time approach, the Parallel Replica Dynamics (ParRep) method, that aims at addressing the timescale limitation of MD for systems that evolve through rare state-to-state transitions. We review the formal underpinnings of the method and demonstrate that it can provide arbitrarily accurate results for any definition of the states. When an adequate definition of the states is available, ParRep can simulate trajectories with a parallel speedup approaching the number of replicas used. We demonstrate the usefulness of ParRep by presenting different examples of materials simulations where access to long timescales was essential to access the physical regime of interest and discuss practical considerations that must be addressed to carry out these simulations. Work supported by the United States Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

  1. Cognitive Transfer Outcomes for a Simulation-Based Introductory Statistics Curriculum

    ERIC Educational Resources Information Center

    Backman, Matthew D.; Delmas, Robert C.; Garfield, Joan

    2017-01-01

    Cognitive transfer is the ability to apply learned skills and knowledge to new applications and contexts. This investigation evaluates cognitive transfer outcomes for a tertiary-level introductory statistics course using the CATALST curriculum, which exclusively used simulation-based methods to develop foundations of statistical inference. A…

  2. Simulation based optimization on automated fibre placement process

    NASA Astrophysics Data System (ADS)

    Lei, Shi

    2018-02-01

    In this paper, a software simulation (Autodesk TruPlan & TruFiber) based method is proposed to optimize the automate fibre placement (AFP) process. Different types of manufacturability analysis are introduced to predict potential defects. Advanced fibre path generation algorithms are compared with respect to geometrically different parts. Major manufacturing data have been taken into consideration prior to the tool paths generation to achieve high success rate of manufacturing.

  3. An ODE-Based Wall Model for Turbulent Flow Simulations

    NASA Technical Reports Server (NTRS)

    Berger, Marsha J.; Aftosmis, Michael J.

    2017-01-01

    Fully automated meshing for Reynolds-Averaged Navier-Stokes Simulations, Mesh generation for complex geometry continues to be the biggest bottleneck in the RANS simulation process; Fully automated Cartesian methods routinely used for inviscid simulations about arbitrarily complex geometry; These methods lack of an obvious & robust way to achieve near wall anisotropy; Goal: Extend these methods for RANS simulation without sacrificing automation, at an affordable cost; Note: Nothing here is limited to Cartesian methods, and much becomes simpler in a body-fitted setting.

  4. A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.

    A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the

  5. A numerical method for simulations of rigid fiber suspensions

    NASA Astrophysics Data System (ADS)

    Tornberg, Anna-Karin; Gustavsson, Katarina

    2006-06-01

    In this paper, we present a numerical method designed to simulate the challenging problem of the dynamics of slender fibers immersed in an incompressible fluid. Specifically, we consider microscopic, rigid fibers, that sediment due to gravity. Such fibers make up the micro-structure of many suspensions for which the macroscopic dynamics are not well understood. Our numerical algorithm is based on a non-local slender body approximation that yields a system of coupled integral equations, relating the forces exerted on the fibers to their velocities, which takes into account the hydrodynamic interactions of the fluid and the fibers. The system is closed by imposing the constraints of rigid body motions. The fact that the fibers are straight have been further exploited in the design of the numerical method, expanding the force on Legendre polynomials to take advantage of the specific mathematical structure of a finite-part integral operator, as well as introducing analytical quadrature in a manner possible only for straight fibers. We have carefully treated issues of accuracy, and present convergence results for all numerical parameters before we finally discuss the results from simulations including a larger number of fibers.

  6. A high precision extrapolation method in multiphase-field model for simulating dendrite growth

    NASA Astrophysics Data System (ADS)

    Yang, Cong; Xu, Qingyan; Liu, Baicheng

    2018-05-01

    The phase-field method coupling with thermodynamic data has become a trend for predicting the microstructure formation in technical alloys. Nevertheless, the frequent access to thermodynamic database and calculation of local equilibrium conditions can be time intensive. The extrapolation methods, which are derived based on Taylor expansion, can provide approximation results with a high computational efficiency, and have been proven successful in applications. This paper presents a high precision second order extrapolation method for calculating the driving force in phase transformation. To obtain the phase compositions, different methods in solving the quasi-equilibrium condition are tested, and the M-slope approach is chosen for its best accuracy. The developed second order extrapolation method along with the M-slope approach and the first order extrapolation method are applied to simulate dendrite growth in a Ni-Al-Cr ternary alloy. The results of the extrapolation methods are compared with the exact solution with respect to the composition profile and dendrite tip position, which demonstrate the high precision and efficiency of the newly developed algorithm. To accelerate the phase-field and extrapolation computation, the graphic processing unit (GPU) based parallel computing scheme is developed. The application to large-scale simulation of multi-dendrite growth in an isothermal cross-section has demonstrated the ability of the developed GPU-accelerated second order extrapolation approach for multiphase-field model.

  7. Pilot study comparing simulation-based and didactic lecture-based critical care teaching for final-year medical students.

    PubMed

    Solymos, Orsolya; O'Kelly, Patrick; Walshe, Criona M

    2015-10-21

    Simulation-based medical education has rapidly evolved over the past two decades, despite this, there are few published reports of its use in critical care teaching. We hypothesised that simulation-based teaching of a critical care topic to final-year medical students is superior to lecture-based teaching. Thirty-nine final-year medical students were randomly assigned to either simulation-based or lecture-based teaching in the chosen critical care topic. The study was conducted over a 6-week period. Efficacy of each teaching method was compared through use of multiple choice questionnaires (MCQ) - baseline, post-teaching and 2 week follow-up. Student satisfaction was evaluated by means of a questionnaire. Feasibility and resource requirements were documented by teachers. Eighteen students were randomised to simulation-based, and 21 to lecture-based teaching. There were no differences in age and gender between groups (p > 0.05). Simulation proved more resource intensive requiring specialised equipment, two instructors, and increased duration of teaching sessions (126.7 min (SD = 4.71) vs 68.3 min (SD = 2.36)). Students ranked simulation-based teaching higher with regard to enjoyment (p = 0.0044), interest (p = 0.0068), relevance to taught subject (p = 0.0313), ease of understanding (p = 0.0476) and accessibility to posing questions (p = 0.001). Both groups demonstrated improvement in post-teaching MCQ from baseline (p = 0.0002), with greater improvement seen among the simulation group (p = 0.0387), however, baseline scores were higher among the lecture group. The results of the 2-week follow-up MCQ and post-teaching MCQ were not statistically significant when each modality were compared. Simulation was perceived as more enjoyable by students. Although there was a greater improvement in post-teaching MCQ among the simulator group, baseline scores were higher among lecture group which limits interpretation of efficacy

  8. Integrating viscoelastic mass spring dampers into position-based dynamics to simulate soft tissue deformation in real time

    PubMed Central

    Lu, Yuhua; Liu, Qian

    2018-01-01

    We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications. PMID:29515870

  9. Integrating viscoelastic mass spring dampers into position-based dynamics to simulate soft tissue deformation in real time.

    PubMed

    Xu, Lang; Lu, Yuhua; Liu, Qian

    2018-02-01

    We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications.

  10. Using Simulation to Improve Systems-Based Practices.

    PubMed

    Gardner, Aimee K; Johnston, Maximilian; Korndorffer, James R; Haque, Imad; Paige, John T

    2017-09-01

    Ensuring the safe, effective management of patients requires efficient processes of care within a smoothly operating system in which highly reliable teams of talented, skilled health care providers are able to use the vast array of high-technology resources and intensive care techniques available. Simulation can play a unique role in exploring and improving the complex perioperative system by proactively identifying latent safety threats and mitigating their damage to ensure that all those who work in this critical health care environment can provide optimal levels of patient care. A panel of five experts from a wide range of institutions was brought together to discuss the added value of simulation-based training for improving systems-based aspects of the perioperative service line. Panelists shared the way in which simulation was demonstrated at their institutions. The themes discussed by each panel member were delineated into four avenues through which simulation-based techniques have been used. Simulation-based techniques are being used in (1) testing new clinical workspaces and facilities before they open to identify potential latent conditions; (2) practicing how to identify the deteriorating patient and escalate care in an effective manner; (3) performing prospective root cause analyses to address system weaknesses leading to sentinel events; and (4) evaluating the efficiency and effectiveness of the electronic health record in the perioperative setting. This focused review of simulation-based interventions to test and improve components of the perioperative microsystem, which includes literature that has emerged since the panel's presentation, highlights the broad-based utility of simulation-based technologies in health care. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  11. A Method for Combining Experimentation and Molecular Dynamics Simulation to Improve Cohesive Zone Models for Metallic Microstructures

    NASA Technical Reports Server (NTRS)

    Hochhalter, J. D.; Glaessgen, E. H.; Ingraffea, A. R.; Aquino, W. A.

    2009-01-01

    Fracture processes within a material begin at the nanometer length scale at which the formation, propagation, and interaction of fundamental damage mechanisms occur. Physics-based modeling of these atomic processes quickly becomes computationally intractable as the system size increases. Thus, a multiscale modeling method, based on the aggregation of fundamental damage processes occurring at the nanoscale within a cohesive zone model, is under development and will enable computationally feasible and physically meaningful microscale fracture simulation in polycrystalline metals. This method employs atomistic simulation to provide an optimization loop with an initial prediction of a cohesive zone model (CZM). This initial CZM is then applied at the crack front region within a finite element model. The optimization procedure iterates upon the CZM until the finite element model acceptably reproduces the near-crack-front displacement fields obtained from experimental observation. With this approach, a comparison can be made between the original CZM predicted by atomistic simulation and the converged CZM that is based on experimental observation. Comparison of the two CZMs gives insight into how atomistic simulation scales.

  12. Science Classroom Inquiry (SCI) Simulations: A Novel Method to Scaffold Science Learning

    PubMed Central

    Peffer, Melanie E.; Beckler, Matthew L.; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students’ self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study. PMID:25786245

  13. Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.

    PubMed

    Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  14. [The virtual reality simulation research of China Mechanical Virtual Human based on the Creator/Vega].

    PubMed

    Wei, Gaofeng; Tang, Gang; Fu, Zengliang; Sun, Qiuming; Tian, Feng

    2010-10-01

    The China Mechanical Virtual Human (CMVH) is a human musculoskeletal biomechanical simulation platform based on China Visible Human slice images; it has great realistic application significance. In this paper is introduced the construction method of CMVH 3D models. Then a simulation system solution based on Creator/Vega is put forward for the complex and gigantic data characteristics of the 3D models. At last, combined with MFC technology, the CMVH simulation system is developed and a running simulation scene is given. This paper provides a new way for the virtual reality application of CMVH.

  15. Forecasting Nonlinear Chaotic Time Series with Function Expression Method Based on an Improved Genetic-Simulated Annealing Algorithm

    PubMed Central

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior. PMID:26000011

  16. Facilitating arrhythmia simulation: the method of quantitative cellular automata modeling and parallel running

    PubMed Central

    Zhu, Hao; Sun, Yan; Rajagopal, Gunaretnam; Mondry, Adrian; Dhar, Pawan

    2004-01-01

    Background Many arrhythmias are triggered by abnormal electrical activity at the ionic channel and cell level, and then evolve spatio-temporally within the heart. To understand arrhythmias better and to diagnose them more precisely by their ECG waveforms, a whole-heart model is required to explore the association between the massively parallel activities at the channel/cell level and the integrative electrophysiological phenomena at organ level. Methods We have developed a method to build large-scale electrophysiological models by using extended cellular automata, and to run such models on a cluster of shared memory machines. We describe here the method, including the extension of a language-based cellular automaton to implement quantitative computing, the building of a whole-heart model with Visible Human Project data, the parallelization of the model on a cluster of shared memory computers with OpenMP and MPI hybrid programming, and a simulation algorithm that links cellular activity with the ECG. Results We demonstrate that electrical activities at channel, cell, and organ levels can be traced and captured conveniently in our extended cellular automaton system. Examples of some ECG waveforms simulated with a 2-D slice are given to support the ECG simulation algorithm. A performance evaluation of the 3-D model on a four-node cluster is also given. Conclusions Quantitative multicellular modeling with extended cellular automata is a highly efficient and widely applicable method to weave experimental data at different levels into computational models. This process can be used to investigate complex and collective biological activities that can be described neither by their governing differentiation equations nor by discrete parallel computation. Transparent cluster computing is a convenient and effective method to make time-consuming simulation feasible. Arrhythmias, as a typical case, can be effectively simulated with the methods described. PMID:15339335

  17. [Simulation of water and carbon fluxes in harvard forest area based on data assimilation method].

    PubMed

    Zhang, Ting-Long; Sun, Rui; Zhang, Rong-Hua; Zhang, Lei

    2013-10-01

    Model simulation and in situ observation are the two most important means in studying the water and carbon cycles of terrestrial ecosystems, but have their own advantages and shortcomings. To combine these two means would help to reflect the dynamic changes of ecosystem water and carbon fluxes more accurately. Data assimilation provides an effective way to integrate the model simulation and in situ observation. Based on the observation data from the Harvard Forest Environmental Monitoring Site (EMS), and by using ensemble Kalman Filter algorithm, this paper assimilated the field measured LAI and remote sensing LAI into the Biome-BGC model to simulate the water and carbon fluxes in Harvard forest area. As compared with the original model simulated without data assimilation, the improved Biome-BGC model with the assimilation of the field measured LAI in 1998, 1999, and 2006 increased the coefficient of determination R2 between model simulation and flux observation for the net ecosystem exchange (NEE) and evapotranspiration by 8.4% and 10.6%, decreased the sum of absolute error (SAE) and root mean square error (RMSE) of NEE by 17.7% and 21.2%, and decreased the SAE and RMSE of the evapotranspiration by 26. 8% and 28.3%, respectively. After assimilated the MODIS LAI products of 2000-2004 into the improved Biome-BGC model, the R2 between simulated and observed results of NEE and evapotranspiration was increased by 7.8% and 4.7%, the SAE and RMSE of NEE were decreased by 21.9% and 26.3%, and the SAE and RMSE of evapotranspiration were decreased by 24.5% and 25.5%, respectively. It was suggested that the simulation accuracy of ecosystem water and carbon fluxes could be effectively improved if the field measured LAI or remote sensing LAI was integrated into the model.

  18. A Primer for Agent-Based Simulation and Modeling in Transportation Applications

    DOT National Transportation Integrated Search

    2013-11-01

    Agent-based modeling and simulation (ABMS) methods have been applied in a spectrum of research domains. This primer focuses on ABMS in the transportation interdisciplinary domain, describes the basic concepts of ABMS and the recent progress of ABMS i...

  19. The Distributed Diagonal Force Decomposition Method for Parallelizing Molecular Dynamics Simulations

    PubMed Central

    Boršnik, Urban; Miller, Benjamin T.; Brooks, Bernard R.; Janežič, Dušanka

    2011-01-01

    Parallelization is an effective way to reduce the computational time needed for molecular dynamics simulations. We describe a new parallelization method, the distributed-diagonal force decomposition method, with which we extend and improve the existing force decomposition methods. Our new method requires less data communication during molecular dynamics simulations than replicated data and current force decomposition methods, increasing the parallel efficiency. It also dynamically load-balances the processors' computational load throughout the simulation. The method is readily implemented in existing molecular dynamics codes and it has been incorporated into the CHARMM program, allowing its immediate use in conjunction with the many molecular dynamics simulation techniques that are already present in the program. We also present the design of the Force Decomposition Machine, a cluster of personal computers and networks that is tailored to running molecular dynamics simulations using the distributed diagonal force decomposition method. The design is expandable and provides various degrees of fault resilience. This approach is easily adaptable to computers with Graphics Processing Units because it is independent of the processor type being used. PMID:21793007

  20. Science Based Human Reliability Analysis: Using Digital Nuclear Power Plant Simulators for Human Reliability Research

    NASA Astrophysics Data System (ADS)

    Shirley, Rachel Elizabeth

    Nuclear power plant (NPP) simulators are proliferating in academic research institutions and national laboratories in response to the availability of affordable, digital simulator platforms. Accompanying the new research facilities is a renewed interest in using data collected in NPP simulators for Human Reliability Analysis (HRA) research. An experiment conducted in The Ohio State University (OSU) NPP Simulator Facility develops data collection methods and analytical tools to improve use of simulator data in HRA. In the pilot experiment, student operators respond to design basis accidents in the OSU NPP Simulator Facility. Thirty-three undergraduate and graduate engineering students participated in the research. Following each accident scenario, student operators completed a survey about perceived simulator biases and watched a video of the scenario. During the video, they periodically recorded their perceived strength of significant Performance Shaping Factors (PSFs) such as Stress. This dissertation reviews three aspects of simulator-based research using the data collected in the OSU NPP Simulator Facility: First, a qualitative comparison of student operator performance to computer simulations of expected operator performance generated by the Information Decision Action Crew (IDAC) HRA method. Areas of comparison include procedure steps, timing of operator actions, and PSFs. Second, development of a quantitative model of the simulator bias introduced by the simulator environment. Two types of bias are defined: Environmental Bias and Motivational Bias. This research examines Motivational Bias--that is, the effect of the simulator environment on an operator's motivations, goals, and priorities. A bias causal map is introduced to model motivational bias interactions in the OSU experiment. Data collected in the OSU NPP Simulator Facility are analyzed using Structural Equation Modeling (SEM). Data include crew characteristics, operator surveys, and time to recognize

  1. Simulation of extreme reservoir level distribution with the SCHADEX method (EXTRAFLO project)

    NASA Astrophysics Data System (ADS)

    Paquet, Emmanuel; Penot, David; Garavaglia, Federico

    2013-04-01

    The standard practice for the design of dam spillways structures and gates is to consider the maximum reservoir level reached for a given hydrologic scenario. This scenario has several components: peak discharge, flood volumes on different durations, discharge gradients etc. Within a probabilistic analysis framework, several scenarios can be associated with different return times, although a reference return level (e.g. 1000 years) is often prescribed by the local regulation rules or usual practice. Using continuous simulation method for extreme flood estimation is a convenient solution to provide a great variety of hydrological scenarios to feed a hydraulic model of dam operation: flood hydrographs are explicitly simulated by a rainfall-runoff model fed by a stochastic rainfall generator. The maximum reservoir level reached will be conditioned by the scale and the dynamics of the generated hydrograph, by the filling of the reservoir prior to the flood, and by the dam gates and spillway operation during the event. The simulation of a great number of floods will allow building a probabilistic distribution of maximum reservoir levels. A design value can be chosen at a definite return level. An alternative approach is proposed here, based on the SCHADEX method for extreme flood estimation, proposed by Paquet et al. (2006, 2013). SCHADEX is a so-called "semi-continuous" stochastic simulation method in that flood events are simulated on an event basis and are superimposed on a continuous simulation of the catchment saturation hazard using rainfall-runoff modelling. The SCHADEX process works at the study time-step (e.g. daily), and the peak flow distribution is deduced from the simulated daily flow distribution by a peak-to-volume ratio. A reference hydrograph relevant for extreme floods is proposed. In the standard version of the method, both the peak-to-volume and the reference hydrograph are constant. An enhancement of this method is presented, with variable peak

  2. The Numerical Technique for the Landslide Tsunami Simulations Based on Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Kozelkov, A. S.

    2017-12-01

    The paper presents an integral technique simulating all phases of a landslide-driven tsunami. The technique is based on the numerical solution of the system of Navier-Stokes equations for multiphase flows. The numerical algorithm uses a fully implicit approximation method, in which the equations of continuity and momentum conservation are coupled through implicit summands of pressure gradient and mass flow. The method we propose removes severe restrictions on the time step and allows simulation of tsunami propagation to arbitrarily large distances. The landslide origin is simulated as an individual phase being a Newtonian fluid with its own density and viscosity and separated from the water and air phases by an interface. The basic formulas of equation discretization and expressions for coefficients are presented, and the main steps of the computation procedure are described in the paper. To enable simulations of tsunami propagation across wide water areas, we propose a parallel algorithm of the technique implementation, which employs an algebraic multigrid method. The implementation of the multigrid method is based on the global level and cascade collection algorithms that impose no limitations on the paralleling scale and make this technique applicable to petascale systems. We demonstrate the possibility of simulating all phases of a landslide-driven tsunami, including its generation, propagation and uprush. The technique has been verified against the problems supported by experimental data. The paper describes the mechanism of incorporating bathymetric data to simulate tsunamis in real water areas of the world ocean. Results of comparison with the nonlinear dispersion theory, which has demonstrated good agreement, are presented for the case of a historical tsunami of volcanic origin on the Montserrat Island in the Caribbean Sea.

  3. Assessment of statistical education in Indonesia: Preliminary results and initiation to simulation-based inference

    NASA Astrophysics Data System (ADS)

    Saputra, K. V. I.; Cahyadi, L.; Sembiring, U. A.

    2018-01-01

    Start in this paper, we assess our traditional elementary statistics education and also we introduce elementary statistics with simulation-based inference. To assess our statistical class, we adapt the well-known CAOS (Comprehensive Assessment of Outcomes in Statistics) test that serves as an external measure to assess the student’s basic statistical literacy. This test generally represents as an accepted measure of statistical literacy. We also introduce a new teaching method on elementary statistics class. Different from the traditional elementary statistics course, we will introduce a simulation-based inference method to conduct hypothesis testing. From the literature, it has shown that this new teaching method works very well in increasing student’s understanding of statistics.

  4. Simulation of plume dynamics by the Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Mora, Peter; Yuen, David A.

    2017-09-01

    The Lattice Boltzmann Method (LBM) is a semi-microscopic method to simulate fluid mechanics by modelling distributions of particles moving and colliding on a lattice. We present 2-D simulations using the LBM of a fluid in a rectangular box being heated from below, and cooled from above, with a Rayleigh of Ra = 108, similar to current estimates of the Earth's mantle, and a Prandtl number of 5000. At this Prandtl number, the flow is found to be in the non-inertial regime where the inertial terms denoted I ≪ 1. Hence, the simulations presented lie within the regime of relevance for geodynamical problems. We obtain narrow upwelling plumes with mushroom heads and chutes of downwelling fluid as expected of a flow in the non-inertial regime. The method developed demonstrates that the LBM has great potential for simulating thermal convection and plume dynamics relevant to geodynamics, albeit with some limitations.

  5. Method for inserting noise in digital mammography to simulate reduction in radiation dose

    NASA Astrophysics Data System (ADS)

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Vieira, Marcelo A. C.

    2015-03-01

    The quality of clinical x-ray images is closely related to the radiation dose used in the imaging study. The general principle for selecting the radiation is ALARA ("as low as reasonably achievable"). The practical optimization, however, remains challenging. It is well known that reducing the radiation dose increases the quantum noise, which could compromise the image quality. In order to conduct studies about dose reduction in mammography, it would be necessary to acquire repeated clinical images, from the same patient, with different dose levels. However, such practice would be unethical due to radiation related risks. One solution is to simulate the effects of dose reduction in clinical images. This work proposes a new method, based on the Anscombe transformation, which simulates dose reduction in digital mammography by inserting quantum noise into clinical mammograms acquired with the standard radiation dose. Thus, it is possible to simulate different levels of radiation doses without exposing the patient to new levels of radiation. Results showed that the achieved quality of simulated images generated with our method is the same as when using other methods found in the literature, with the novelty of using the Anscombe transformation for converting signal-independent Gaussian noise into signal-dependent quantum noise.

  6. Using Computer Simulations for Promoting Model-based Reasoning. Epistemological and Educational Dimensions

    NASA Astrophysics Data System (ADS)

    Develaki, Maria

    2017-11-01

    Scientific reasoning is particularly pertinent to science education since it is closely related to the content and methodologies of science and contributes to scientific literacy. Much of the research in science education investigates the appropriate framework and teaching methods and tools needed to promote students' ability to reason and evaluate in a scientific way. This paper aims (a) to contribute to an extended understanding of the nature and pedagogical importance of model-based reasoning and (b) to exemplify how using computer simulations can support students' model-based reasoning. We provide first a background for both scientific reasoning and computer simulations, based on the relevant philosophical views and the related educational discussion. This background suggests that the model-based framework provides an epistemologically valid and pedagogically appropriate basis for teaching scientific reasoning and for helping students develop sounder reasoning and decision-taking abilities and explains how using computer simulations can foster these abilities. We then provide some examples illustrating the use of computer simulations to support model-based reasoning and evaluation activities in the classroom. The examples reflect the procedure and criteria for evaluating models in science and demonstrate the educational advantages of their application in classroom reasoning activities.

  7. Simulation Platform: a cloud-based online simulation environment.

    PubMed

    Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro

    2011-09-01

    For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. A threshold selection method based on edge preserving

    NASA Astrophysics Data System (ADS)

    Lou, Liantang; Dan, Wei; Chen, Jiaqi

    2015-12-01

    A method of automatic threshold selection for image segmentation is presented. An optimal threshold is selected in order to preserve edge of image perfectly in image segmentation. The shortcoming of Otsu's method based on gray-level histograms is analyzed. The edge energy function of bivariate continuous function is expressed as the line integral while the edge energy function of image is simulated by discretizing the integral. An optimal threshold method by maximizing the edge energy function is given. Several experimental results are also presented to compare with the Otsu's method.

  9. Simulation-Based Evaluation of Hybridization Network Reconstruction Methods in the Presence of Incomplete Lineage Sorting

    PubMed Central

    Kamneva, Olga K; Rosenberg, Noah A

    2017-01-01

    Hybridization events generate reticulate species relationships, giving rise to species networks rather than species trees. We report a comparative study of consensus, maximum parsimony, and maximum likelihood methods of species network reconstruction using gene trees simulated assuming a known species history. We evaluate the role of the divergence time between species involved in a hybridization event, the relative contributions of the hybridizing species, and the error in gene tree estimation. When gene tree discordance is mostly due to hybridization and not due to incomplete lineage sorting (ILS), most of the methods can detect even highly skewed hybridization events between highly divergent species. For recent divergences between hybridizing species, when the influence of ILS is sufficiently high, likelihood methods outperform parsimony and consensus methods, which erroneously identify extra hybridizations. The more sophisticated likelihood methods, however, are affected by gene tree errors to a greater extent than are consensus and parsimony. PMID:28469378

  10. Simulation methods with extended stability for stiff biochemical Kinetics.

    PubMed

    Rué, Pau; Villà-Freixa, Jordi; Burrage, Kevin

    2010-08-11

    With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, tau, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where tau can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called tau-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as tau grows. In this paper we extend Poisson tau-leap methods to a general class of Runge-Kutta (RK) tau-leap methods. We show that with the proper selection of the coefficients, the variance of the extended tau-leap can be well-behaved, leading to significantly larger step sizes. The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original tau-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.

  11. Identifying content for simulation-based curricula in urology: a national needs assessment.

    PubMed

    Nayahangan, Leizl Joy; Bølling Hansen, Rikke; Gilboe Lindorff-Larsen, Karen; Paltved, Charlotte; Nielsen, Bjørn Ulrik; Konge, Lars

    2017-12-01

    Simulation-based training is well recognized in the transforming field of urological surgery; however, integration into the curriculum is often unstructured. Development of simulation-based curricula should follow a stepwise approach starting with a needs assessment. This study aimed to identify technical procedures in urology that should be included in a simulation-based curriculum for residency training. A national needs assessment was performed using the Delphi method involving 56 experts with significant roles in the education of urologists. Round 1 identified technical procedures that newly qualified urologists should perform. Round 2 included a survey using an established needs assessment formula to explore: the frequency of procedures; the number of physicians who should be able to perform the procedure; the risk and/or discomfort to patients when a procedure is performed by an inexperienced physician; and the feasibility of simulation training. Round 3 involved elimination and reranking of procedures according to priority. The response rates for the three Delphi rounds were 70%, 55% and 67%, respectively. The 34 procedures identified in Round 1 were reduced to a final prioritized list of 18 technical procedures for simulation-based training. The five procedures that reached the highest prioritization were cystoscopy, transrectal ultrasound-guided biopsy of the prostate, placement of ureteral stent, insertion of urethral and suprapubic catheter, and transurethral resection of the bladder. The prioritized list of technical procedures in urology that were identified as highly suitable for simulation can be used as an aid in the planning and development of simulation-based training programs.

  12. Influence of model order reduction methods on dynamical-optical simulations

    NASA Astrophysics Data System (ADS)

    Störkle, Johannes; Eberhard, Peter

    2017-04-01

    In this work, the influence of model order reduction (MOR) methods on optical aberrations is analyzed within a dynamical-optical simulation of a high precision optomechanical system. Therefore, an integrated modeling process and new methods have to be introduced for the computation and investigation of the overall dynamical-optical behavior. For instance, this optical system can be a telescope optic or a lithographic objective. In order to derive a simplified mechanical model for transient time simulations with low computational cost, the method of elastic multibody systems in combination with MOR methods can be used. For this, software tools and interfaces are defined and created. Furthermore, mechanical and optical simulation models are derived and implemented. With these, on the one hand, the mechanical sensitivity can be investigated for arbitrary external excitations and on the other hand, the related optical behavior can be predicted. In order to clarify these methods, academic examples are chosen and the influences of the MOR methods and simulation strategies are analyzed. Finally, the systems are investigated with respect to the mechanical-optical frequency responses, and in conclusion, some recommendations for the application of reduction methods are given.

  13. Fluctuations, noise, and numerical methods in gyrokinetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas Grant

    In this thesis, the role of the "marker weight" (or "particle weight") used in gyrokinetic particle-in-cell (PIC) simulations is explored. Following a review of the foundations and major developments of gyrokinetic theory, key concepts of the Monte Carlo methods which form the basis for PIC simulations are set forth. Consistent with these methods, a Klimontovich representation for the set of simulation markers is developed in the extended phase space {R, v||, v ⊥, W, P} (with the additional coordinates representing weight fields); clear distinctions are consequently established between the marker distribution function and various physical distribution functions (arising from diverse moments of the marker distribution). Equations describing transport in the simulation are shown to be easily derivable using the formalism. The necessity of a two-weight model for nonequilibrium simulations is demonstrated, and a simple method for calculating the second (background-related) weight is presented. Procedures for arbitrary marker loading schemes in gyrokinetic PIC simulations are outlined; various initialization methods for simulations are compared. Possible effects of inadequate velocity-space resolution in gyrokinetic continuum simulations are explored. The "partial-f" simulation method is developed and its limitations indicated. A quasilinear treatment of electrostatic drift waves is shown to correctly predict nonlinear saturation amplitudes, and the relevance of the gyrokinetic fluctuation-dissipation theorem in assessing the effects of discrete-marker-induced statistical noise on the resulting marginally stable states is demonstrated.

  14. Hybrid finite-volume/transported PDF method for the simulation of turbulent reactive flows

    NASA Astrophysics Data System (ADS)

    Raman, Venkatramanan

    A novel computational scheme is formulated for simulating turbulent reactive flows in complex geometries with detailed chemical kinetics. A Probability Density Function (PDF) based method that handles the scalar transport equation is coupled with an existing Finite Volume (FV) Reynolds-Averaged Navier-Stokes (RANS) flow solver. The PDF formulation leads to closed chemical source terms and facilitates the use of detailed chemical mechanisms without approximations. The particle-based PDF scheme is modified to handle complex geometries and grid structures. Grid-independent particle evolution schemes that scale linearly with the problem size are implemented in the Monte-Carlo PDF solver. A novel algorithm, in situ adaptive tabulation (ISAT) is employed to ensure tractability of complex chemistry involving a multitude of species. Several non-reacting test cases are performed to ascertain the efficiency and accuracy of the method. Simulation results from a turbulent jet-diffusion flame case are compared against experimental data. The effect of micromixing model, turbulence model and reaction scheme on flame predictions are discussed extensively. Finally, the method is used to analyze the Dow Chlorination Reactor. Detailed kinetics involving 37 species and 158 reactions as well as a reduced form with 16 species and 21 reactions are used. The effect of inlet configuration on reactor behavior and product distribution is analyzed. Plant-scale reactors exhibit quenching phenomena that cannot be reproduced by conventional simulation methods. The FV-PDF method predicts quenching accurately and provides insight into the dynamics of the reactor near extinction. The accuracy of the fractional time-stepping technique in discussed in the context of apparent multiple-steady states observed in a non-premixed feed configuration of the chlorination reactor.

  15. Developing a Novel Parameter Estimation Method for Agent-Based Model in Immune System Simulation under the Framework of History Matching: A Case Study on Influenza A Virus Infection

    PubMed Central

    Li, Tingting; Cheng, Zhengguo; Zhang, Le

    2017-01-01

    Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency. PMID:29194393

  16. Developing a Novel Parameter Estimation Method for Agent-Based Model in Immune System Simulation under the Framework of History Matching: A Case Study on Influenza A Virus Infection.

    PubMed

    Li, Tingting; Cheng, Zhengguo; Zhang, Le

    2017-12-01

    Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency.

  17. A Practical Cone-beam CT Scatter Correction Method with Optimized Monte Carlo Simulations for Image-Guided Radiation Therapy

    PubMed Central

    Xu, Yuan; Bai, Ti; Yan, Hao; Ouyang, Luo; Pompos, Arnold; Wang, Jing; Zhou, Linghong; Jiang, Steve B.; Jia, Xun

    2015-01-01

    Cone-beam CT (CBCT) has become the standard image guidance tool for patient setup in image-guided radiation therapy. However, due to its large illumination field, scattered photons severely degrade its image quality. While kernel-based scatter correction methods have been used routinely in the clinic, it is still desirable to develop Monte Carlo (MC) simulation-based methods due to their accuracy. However, the high computational burden of the MC method has prevented routine clinical application. This paper reports our recent development of a practical method of MC-based scatter estimation and removal for CBCT. In contrast with conventional MC approaches that estimate scatter signals using a scatter-contaminated CBCT image, our method used a planning CT image for MC simulation, which has the advantages of accurate image intensity and absence of image truncation. In our method, the planning CT was first rigidly registered with the CBCT. Scatter signals were then estimated via MC simulation. After scatter signals were removed from the raw CBCT projections, a corrected CBCT image was reconstructed. The entire workflow was implemented on a GPU platform for high computational efficiency. Strategies such as projection denoising, CT image downsampling, and interpolation along the angular direction were employed to further enhance the calculation speed. We studied the impact of key parameters in the workflow on the resulting accuracy and efficiency, based on which the optimal parameter values were determined. Our method was evaluated in numerical simulation, phantom, and real patient cases. In the simulation cases, our method reduced mean HU errors from 44 HU to 3 HU and from 78 HU to 9 HU in the full-fan and the half-fan cases, respectively. In both the phantom and the patient cases, image artifacts caused by scatter, such as ring artifacts around the bowtie area, were reduced. With all the techniques employed, we achieved computation time of less than 30 sec including the

  18. Goals, Success Factors, and Barriers for Simulation-Based Learning: A Qualitative Interview Study in Health Care

    ERIC Educational Resources Information Center

    Dieckmann, Peter; Friis, Susanne Molin; Lippert, Anne; Ostergaard, Doris

    2012-01-01

    Introduction: This study describes (a) process goals, (b) success factors, and (c) barriers for optimizing simulation-based learning environments within the simulation setting model developed by Dieckmann. Methods: Seven simulation educators of different experience levels were interviewed using the Critical Incident Technique. Results: (a) The…

  19. Simulation-Based Medical Education Is No Better than Problem-Based Discussions and Induces Misjudgment in Self-Assessment

    ERIC Educational Resources Information Center

    Wenk, Manuel; Waurick, Rene; Schotes, David; Wenk, Melanie; Gerdes, Christina; Van Aken, Hugo K.; Popping, Daniel M.

    2009-01-01

    Simulation-based teaching (SBT) is increasingly used in medical education. As an alternative to other teaching methods there is a lack of evidence concerning its efficacy. The aim of this study was to evaluate the potency of SBT in anesthesia in comparison to problem-based discussion (PBD) with students in a randomized controlled setting.…

  20. An Improved Computing Method for 3D Mechanical Connectivity Rates Based on a Polyhedral Simulation Model of Discrete Fracture Network in Rock Masses

    NASA Astrophysics Data System (ADS)

    Li, Mingchao; Han, Shuai; Zhou, Sibao; Zhang, Ye

    2018-06-01

    Based on a 3D model of a discrete fracture network (DFN) in a rock mass, an improved projective method for computing the 3D mechanical connectivity rate was proposed. The Monte Carlo simulation method, 2D Poisson process and 3D geological modeling technique were integrated into a polyhedral DFN modeling approach, and the simulation results were verified by numerical tests and graphical inspection. Next, the traditional projective approach for calculating the rock mass connectivity rate was improved using the 3D DFN models by (1) using the polyhedral model to replace the Baecher disk model; (2) taking the real cross section of the rock mass, rather than a part of the cross section, as the test plane; and (3) dynamically searching the joint connectivity rates using different dip directions and dip angles at different elevations to calculate the maximum, minimum and average values of the joint connectivity at each elevation. In a case study, the improved method and traditional method were used to compute the mechanical connectivity rate of the slope of a dam abutment. The results of the two methods were further used to compute the cohesive force of the rock masses. Finally, a comparison showed that the cohesive force derived from the traditional method had a higher error, whereas the cohesive force derived from the improved method was consistent with the suggested values. According to the comparison, the effectivity and validity of the improved method were verified indirectly.

  1. A simulation study of detection of weapon of mass destruction based on radar

    NASA Astrophysics Data System (ADS)

    Sharifahmadian, E.; Choi, Y.; Latifi, S.

    2013-05-01

    Typical systems used for detection of Weapon of Mass Destruction (WMD) are based on sensing objects using gamma rays or neutrons. Nonetheless, depending on environmental conditions, current methods for detecting fissile materials have limited distance of effectiveness. Moreover, radiation related to gamma- rays can be easily shielded. Here, detecting concealed WMD from a distance is simulated and studied based on radar, especially WideBand (WB) technology. The WB-based method capitalizes on the fact that electromagnetic waves penetrate through different materials at different rates. While low-frequency waves can pass through objects more easily, high-frequency waves have a higher rate of absorption by objects, making the object recognition easier. Measuring the penetration depth allows one to identify the sensed material. During simulation, radar waves and propagation area including free space, and objects in the scene are modeled. In fact, each material is modeled as a layer with a certain thickness. At start of simulation, a modeled radar wave is radiated toward the layers. At the receiver side, based on the received signals from every layer, each layer can be identified. When an electromagnetic wave passes through an object, the wave's power will be subject to a certain level of attenuation depending of the object's characteristics. Simulation is performed using radar signals with different frequencies (ranges MHz-GHz) and powers to identify different layers.

  2. Improved methods for simulating nearly extremal binary black holes

    NASA Astrophysics Data System (ADS)

    Scheel, Mark A.; Giesler, Matthew; Hemberger, Daniel A.; Lovelace, Geoffrey; Kuper, Kevin; Boyle, Michael; Szilágyi, Béla; Kidder, Lawrence E.

    2015-05-01

    Astrophysical black holes could be nearly extremal (that is, rotating nearly as fast as possible); therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass m and spin S exceeding the Bowen-York limit of S/{{m}2}=0.93. We present improved methods that enable us to simulate merging, nearly extremal black holes (i.e., black holes with S/{{m}2}\\gt 0.93) more robustly and more efficiently. We use these methods to simulate an unequal-mass, precessing binary black hole (BBH) coalescence, where the larger black hole has S/{{m}2}=0.99. We also use these methods to simulate a non-precessing BBH coalescence, where both black holes have S/{{m}2}=0.994, nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; we compare the evolution of the black hole masses and spins with analytic predictions; and we explore the effect of increasing spin magnitude on the orbital dynamics (the so-called ‘orbital hangup’ effect).

  3. GPU-Based Simulation of Ultrasound Imaging Artifacts for Cryosurgery Training.

    PubMed

    Keelan, Robert; Shimada, Kenji; Rabin, Yoed

    2017-02-01

    This study presents an efficient computational technique for the simulation of ultrasound imaging artifacts associated with cryosurgery based on nonlinear ray tracing. This study is part of an ongoing effort to develop computerized training tools for cryosurgery, with prostate cryosurgery as a development model. The capability of performing virtual cryosurgical procedures on a variety of test cases is essential for effective surgical training. Simulated ultrasound imaging artifacts include reverberation and reflection of the cryoprobes in the unfrozen tissue, reflections caused by the freezing front, shadowing caused by the frozen region, and tissue property changes in repeated freeze-thaw cycles procedures. The simulated artifacts appear to preserve the key features observed in a clinical setting. This study displays an example of how training may benefit from toggling between the undisturbed ultrasound image, the simulated temperature field, the simulated imaging artifacts, and an augmented hybrid presentation of the temperature field superimposed on the ultrasound image. The proposed method is demonstrated on a graphic processing unit at 100 frames per second, on a mid-range personal workstation, at two orders of magnitude faster than a typical cryoprocedure. This performance is based on computation with C++ accelerated massive parallelism and its interoperability with the DirectX-rendering application programming interface.

  4. GPU-Based Simulation of Ultrasound Imaging Artifacts for Cryosurgery Training

    PubMed Central

    Keelan, Robert; Shimada, Kenji

    2016-01-01

    This study presents an efficient computational technique for the simulation of ultrasound imaging artifacts associated with cryosurgery based on nonlinear ray tracing. This study is part of an ongoing effort to develop computerized training tools for cryosurgery, with prostate cryosurgery as a development model. The capability of performing virtual cryosurgical procedures on a variety of test cases is essential for effective surgical training. Simulated ultrasound imaging artifacts include reverberation and reflection of the cryoprobes in the unfrozen tissue, reflections caused by the freezing front, shadowing caused by the frozen region, and tissue property changes in repeated freeze–thaw cycles procedures. The simulated artifacts appear to preserve the key features observed in a clinical setting. This study displays an example of how training may benefit from toggling between the undisturbed ultrasound image, the simulated temperature field, the simulated imaging artifacts, and an augmented hybrid presentation of the temperature field superimposed on the ultrasound image. The proposed method is demonstrated on a graphic processing unit at 100 frames per second, on a mid-range personal workstation, at two orders of magnitude faster than a typical cryoprocedure. This performance is based on computation with C++ accelerated massive parallelism and its interoperability with the DirectX-rendering application programming interface. PMID:26818026

  5. Selecting a dynamic simulation modeling method for health care delivery research-part 2: report of the ISPOR Dynamic Simulation Modeling Emerging Good Practices Task Force.

    PubMed

    Marshall, Deborah A; Burgos-Liz, Lina; IJzerman, Maarten J; Crown, William; Padula, William V; Wong, Peter K; Pasupathy, Kalyan S; Higashi, Mitchell K; Osgood, Nathaniel D

    2015-03-01

    In a previous report, the ISPOR Task Force on Dynamic Simulation Modeling Applications in Health Care Delivery Research Emerging Good Practices introduced the fundamentals of dynamic simulation modeling and identified the types of health care delivery problems for which dynamic simulation modeling can be used more effectively than other modeling methods. The hierarchical relationship between the health care delivery system, providers, patients, and other stakeholders exhibits a level of complexity that ought to be captured using dynamic simulation modeling methods. As a tool to help researchers decide whether dynamic simulation modeling is an appropriate method for modeling the effects of an intervention on a health care system, we presented the System, Interactions, Multilevel, Understanding, Loops, Agents, Time, Emergence (SIMULATE) checklist consisting of eight elements. This report builds on the previous work, systematically comparing each of the three most commonly used dynamic simulation modeling methods-system dynamics, discrete-event simulation, and agent-based modeling. We review criteria for selecting the most suitable method depending on 1) the purpose-type of problem and research questions being investigated, 2) the object-scope of the model, and 3) the method to model the object to achieve the purpose. Finally, we provide guidance for emerging good practices for dynamic simulation modeling in the health sector, covering all aspects, from the engagement of decision makers in the model design through model maintenance and upkeep. We conclude by providing some recommendations about the application of these methods to add value to informed decision making, with an emphasis on stakeholder engagement, starting with the problem definition. Finally, we identify areas in which further methodological development will likely occur given the growing "volume, velocity and variety" and availability of "big data" to provide empirical evidence and techniques

  6. Testability analysis on a hydraulic system in a certain equipment based on simulation model

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Cong, Hua; Liu, Yuanhong; Feng, Fuzhou

    2018-03-01

    Aiming at the problem that the complicated structure and the shortage of fault statistics information in hydraulic systems, a multi value testability analysis method based on simulation model is proposed. Based on the simulation model of AMESim, this method injects the simulated faults and records variation of test parameters ,such as pressure, flow rate, at each test point compared with those under normal conditions .Thus a multi-value fault-test dependency matrix is established. Then the fault detection rate (FDR) and fault isolation rate (FIR) are calculated based on the dependency matrix. Finally the system of testability and fault diagnosis capability are analyzed and evaluated, which can only reach a lower 54%(FDR) and 23%(FIR). In order to improve testability performance of the system,. number and position of the test points are optimized on the system. Results show the proposed test placement scheme can be used to solve the problems that difficulty, inefficiency and high cost in the system maintenance.

  7. Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation.

    PubMed

    Ziegenhein, Peter; Pirner, Sven; Ph Kamerling, Cornelis; Oelfke, Uwe

    2015-08-07

    Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by leveraging the potential of modern many- and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37[Formula: see text] compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25[Formula: see text] and 1.95[Formula: see text] faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated.

  8. Multi-level Monte Carlo Methods for Efficient Simulation of Coulomb Collisions

    NASA Astrophysics Data System (ADS)

    Ricketson, Lee

    2013-10-01

    We discuss the use of multi-level Monte Carlo (MLMC) schemes--originally introduced by Giles for financial applications--for the efficient simulation of Coulomb collisions in the Fokker-Planck limit. The scheme is based on a Langevin treatment of collisions, and reduces the computational cost of achieving a RMS error scaling as ɛ from O (ɛ-3) --for standard Langevin methods and binary collision algorithms--to the theoretically optimal scaling O (ɛ-2) for the Milstein discretization, and to O (ɛ-2 (logɛ)2) with the simpler Euler-Maruyama discretization. In practice, this speeds up simulation by factors up to 100. We summarize standard MLMC schemes, describe some tricks for achieving the optimal scaling, present results from a test problem, and discuss the method's range of applicability. This work was performed under the auspices of the U.S. DOE by the University of California, Los Angeles, under grant DE-FG02-05ER25710, and by LLNL under contract DE-AC52-07NA27344.

  9. A Numerical Method for Simulating the Microscopic Damage Evolution in Composites Under Uniaxial Transverse Tension

    NASA Astrophysics Data System (ADS)

    Zhi, Jie; Zhao, Libin; Zhang, Jianyu; Liu, Zhanli

    2016-06-01

    In this paper, a new numerical method that combines a surface-based cohesive model and extended finite element method (XFEM) without predefining the crack paths is presented to simulate the microscopic damage evolution in composites under uniaxial transverse tension. The proposed method is verified to accurately capture the crack kinking into the matrix after fiber/matrix debonding. A statistical representative volume element (SRVE) under periodic boundary conditions is used to approximate the microstructure of the composites. The interface parameters of the cohesive models are investigated, in which the initial interface stiffness has a great effect on the predictions of the fiber/matrix debonding. The detailed debonding states of SRVE with strong and weak interfaces are compared based on the surface-based and element-based cohesive models. The mechanism of damage in composites under transverse tension is described as the appearance of the interface cracks and their induced matrix micro-cracking, both of which coalesce into transversal macro-cracks. Good agreement is found between the predictions of the model and the in situ experimental observations, demonstrating the efficiency of the presented model for simulating the microscopic damage evolution in composites.

  10. A Method to Estimate the Size and Characteristics of HIV-positive Populations Using an Individual-based Stochastic Simulation Model.

    PubMed

    Nakagawa, Fumiyo; van Sighem, Ard; Thiebaut, Rodolphe; Smith, Colette; Ratmann, Oliver; Cambiano, Valentina; Albert, Jan; Amato-Gauci, Andrew; Bezemer, Daniela; Campbell, Colin; Commenges, Daniel; Donoghoe, Martin; Ford, Deborah; Kouyos, Roger; Lodwick, Rebecca; Lundgren, Jens; Pantazis, Nikos; Pharris, Anastasia; Quinten, Chantal; Thorne, Claire; Touloumi, Giota; Delpech, Valerie; Phillips, Andrew

    2016-03-01

    It is important not only to collect epidemiologic data on HIV but to also fully utilize such information to understand the epidemic over time and to help inform and monitor the impact of policies and interventions. We describe and apply a novel method to estimate the size and characteristics of HIV-positive populations. The method was applied to data on men who have sex with men living in the UK and to a pseudo dataset to assess performance for different data availability. The individual-based simulation model was calibrated using an approximate Bayesian computation-based approach. In 2013, 48,310 (90% plausibility range: 39,900-45,560) men who have sex with men were estimated to be living with HIV in the UK, of whom 10,400 (6,160-17,350) were undiagnosed. There were an estimated 3,210 (1,730-5,350) infections per year on average between 2010 and 2013. Sixty-two percent of the total HIV-positive population are thought to have viral load <500 copies/ml. In the pseudo-epidemic example, HIV estimates have narrower plausibility ranges and are closer to the true number, the greater the data availability to calibrate the model. We demonstrate that our method can be applied to settings with less data, however plausibility ranges for estimates will be wider to reflect greater uncertainty of the data used to fit the model.

  11. Managing simulation-based training: A framework for optimizing learning, cost, and time

    NASA Astrophysics Data System (ADS)

    Richmond, Noah Joseph

    This study provides a management framework for optimizing training programs for learning, cost, and time when using simulation based training (SBT) and reality based training (RBT) as resources. Simulation is shown to be an effective means for implementing activity substitution as a way to reduce risk. The risk profile of 22 US Air Force vehicles are calculated, and the potential risk reduction is calculated under the assumption of perfect substitutability of RBT and SBT. Methods are subsequently developed to relax the assumption of perfect substitutability. The transfer effectiveness ratio (TER) concept is defined and modeled as a function of the quality of the simulator used, and the requirements of the activity trained. The Navy F/A-18 is then analyzed in a case study illustrating how learning can be maximized subject to constraints in cost and time, and also subject to the decision maker's preferences for the proportional and absolute use of simulation. Solution methods for optimizing multiple activities across shared resources are next provided. Finally, a simulation strategy including an operations planning program (OPP), an implementation program (IP), an acquisition program (AP), and a pedagogical research program (PRP) is detailed. The study provides the theoretical tools to understand how to leverage SBT, a case study demonstrating these tools' efficacy, and a set of policy recommendations to enable the US military to better utilize SBT in the future.

  12. Cognitive task analysis-based design and authoring software for simulation training.

    PubMed

    Munro, Allen; Clark, Richard E

    2013-10-01

    The development of more effective medical simulators requires a collaborative team effort where three kinds of expertise are carefully coordinated: (1) exceptional medical expertise focused on providing complete and accurate information about the medical challenges (i.e., critical skills and knowledge) to be simulated; (2) instructional expertise focused on the design of simulation-based training and assessment methods that produce maximum learning and transfer to patient care; and (3) software development expertise that permits the efficient design and development of the software required to capture expertise, present it in an engaging way, and assess student interactions with the simulator. In this discussion, we describe a method of capturing more complete and accurate medical information for simulators and combine it with new instructional design strategies that emphasize the learning of complex knowledge. Finally, we describe three different types of software support (Development/Authoring, Run Time, and Post Run Time) required at different stages in the development of medical simulations and the instructional design elements of the software required at each stage. We describe the contributions expected of each kind of software and the different instructional control authoring support required. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  13. Effectiveness of simulation with team-based learning in newborn nursing care.

    PubMed

    Kang, Kyung-Ah; Kim, Shin-Jeong; Oh, Jina; Kim, Sunghee; Lee, Myung-Nam

    2016-06-01

    This study determines the effect of simulation with team-based learning (TBL) on newborn nursing care. This randomized controlled trial included 74 nursing students from one university located in Seoul, South Korea. Participants were categorized into two groups according to educational modality: one group involved both simulation and TBL, and the other involved simulation alone. Learning attitudes, academic achievement, and simulation performance were examined to assess effectiveness. The mean difference in learning attitudes between the two groups was non-significant. Low academic achievement differed significantly between the two groups (t = 3.445, P = 0.002). There was no significant difference in mean scores for simulation performance between the two groups. In this study, simulation with TBL was effective in improving learning outcomes. In current nursing education, various learning methods are employed within complex nursing situations and require flexibility and problem-solving approaches. © 2015 Wiley Publishing Asia Pty Ltd.

  14. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    DOE PAGES

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-01-01

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less

  15. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-06-23

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less

  16. Auditorium acoustics evaluation based on simulated impulse response

    NASA Astrophysics Data System (ADS)

    Wu, Shuoxian; Wang, Hongwei; Zhao, Yuezhe

    2004-05-01

    The impulse responses and other acoustical parameters of Huangpu Teenager Palace in Guangzhou were measured. Meanwhile, the acoustical simulation and auralization based on software ODEON were also made. The comparison between the parameters based on computer simulation and measuring is given. This case study shows that auralization technique based on computer simulation can be used for predicting the acoustical quality of a hall at its design stage.

  17. Quasi-static earthquake cycle simulation based on nonlinear viscoelastic finite element analyses

    NASA Astrophysics Data System (ADS)

    Agata, R.; Ichimura, T.; Hyodo, M.; Barbot, S.; Hori, T.

    2017-12-01

    To explain earthquake generation processes, simulation methods of earthquake cycles have been studied. For such simulations, the combination of the rate- and state-dependent friction law at the fault plane and the boundary integral method based on Green's function in an elastic half space is widely used (e.g. Hori 2009; Barbot et al. 2012). In this approach, stress change around the fault plane due to crustal deformation can be computed analytically, while the effects of complex physics such as mantle rheology and gravity are generally not taken into account. To consider such effects, we seek to develop an earthquake cycle simulation combining crustal deformation computation based on the finite element (FE) method with the rate- and state-dependent friction law. Since the drawback of this approach is the computational cost associated with obtaining numerical solutions, we adopt a recently developed fast and scalable FE solver (Ichimura et al. 2016), which assumes use of supercomputers, to solve the problem in a realistic time. As in the previous approach, we solve the governing equations consisting of the rate- and state-dependent friction law. In solving the equations, we compute stress changes along the fault plane due to crustal deformation using FE simulation, instead of computing them by superimposing slip response function as in the previous approach. In stress change computation, we take into account nonlinear viscoelastic deformation in the asthenosphere. In the presentation, we will show simulation results in a normative three-dimensional problem, where a circular-shaped velocity-weakening area is set in a square-shaped fault plane. The results with and without nonlinear viscosity in the asthenosphere will be compared. We also plan to apply the developed code to simulate the post-earthquake deformation of a megathrust earthquake, such as the 2011 Tohoku earthquake. Acknowledgment: The results were obtained using the K computer at the RIKEN (Proposal number

  18. Comparison of projection skills of deterministic ensemble methods using pseudo-simulation data generated from multivariate Gaussian distribution

    NASA Astrophysics Data System (ADS)

    Oh, Seok-Geun; Suh, Myoung-Seok

    2017-07-01

    The projection skills of five ensemble methods were analyzed according to simulation skills, training period, and ensemble members, using 198 sets of pseudo-simulation data (PSD) produced by random number generation assuming the simulated temperature of regional climate models. The PSD sets were classified into 18 categories according to the relative magnitude of bias, variance ratio, and correlation coefficient, where each category had 11 sets (including 1 truth set) with 50 samples. The ensemble methods used were as follows: equal weighted averaging without bias correction (EWA_NBC), EWA with bias correction (EWA_WBC), weighted ensemble averaging based on root mean square errors and correlation (WEA_RAC), WEA based on the Taylor score (WEA_Tay), and multivariate linear regression (Mul_Reg). The projection skills of the ensemble methods improved generally as compared with the best member for each category. However, their projection skills are significantly affected by the simulation skills of the ensemble member. The weighted ensemble methods showed better projection skills than non-weighted methods, in particular, for the PSD categories having systematic biases and various correlation coefficients. The EWA_NBC showed considerably lower projection skills than the other methods, in particular, for the PSD categories with systematic biases. Although Mul_Reg showed relatively good skills, it showed strong sensitivity to the PSD categories, training periods, and number of members. On the other hand, the WEA_Tay and WEA_RAC showed relatively superior skills in both the accuracy and reliability for all the sensitivity experiments. This indicates that WEA_Tay and WEA_RAC are applicable even for simulation data with systematic biases, a short training period, and a small number of ensemble members.

  19. Numerical Simulation of Monitoring Corrosion in Reinforced Concrete Based on Ultrasonic Guided Waves

    PubMed Central

    Zheng, Zhupeng; Lei, Ying; Xue, Xin

    2014-01-01

    Numerical simulation based on finite element method is conducted to predict the location of pitting corrosion in reinforced concrete. Simulation results show that it is feasible to predict corrosion monitoring based on ultrasonic guided wave in reinforced concrete, and wavelet analysis can be used for the extremely weak signal of guided waves due to energy leaking into concrete. The characteristic of time-frequency localization of wavelet transform is adopted in the corrosion monitoring of reinforced concrete. Guided waves can be successfully used to identify corrosion defects in reinforced concrete with the analysis of suitable wavelet-based function and its scale. PMID:25013865

  20. Dynamic modeling method for infrared smoke based on enhanced discrete phase model

    NASA Astrophysics Data System (ADS)

    Zhang, Zhendong; Yang, Chunling; Zhang, Yan; Zhu, Hongbo

    2018-03-01

    The dynamic modeling of infrared (IR) smoke plays an important role in IR scene simulation systems and its accuracy directly influences the system veracity. However, current IR smoke models cannot provide high veracity, because certain physical characteristics are frequently ignored in fluid simulation; simplifying the discrete phase as a continuous phase and ignoring the IR decoy missile-body spinning. To address this defect, this paper proposes a dynamic modeling method for IR smoke, based on an enhanced discrete phase model (DPM). A mathematical simulation model based on an enhanced DPM is built and a dynamic computing fluid mesh is generated. The dynamic model of IR smoke is then established using an extended equivalent-blackbody-molecule model. Experiments demonstrate that this model realizes a dynamic method for modeling IR smoke with higher veracity.

  1. An image-based reaction field method for electrostatic interactions in molecular dynamics simulations of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lin, Yuchun; Baumketner, Andrij; Deng, Shaozhong; Xu, Zhenli; Jacobs, Donald; Cai, Wei

    2009-10-01

    In this paper, a new solvation model is proposed for simulations of biomolecules in aqueous solutions that combines the strengths of explicit and implicit solvent representations. Solute molecules are placed in a spherical cavity filled with explicit water, thus providing microscopic detail where it is most needed. Solvent outside of the cavity is modeled as a dielectric continuum whose effect on the solute is treated through the reaction field corrections. With this explicit/implicit model, the electrostatic potential represents a solute molecule in an infinite bath of solvent, thus avoiding unphysical interactions between periodic images of the solute commonly used in the lattice-sum explicit solvent simulations. For improved computational efficiency, our model employs an accurate and efficient multiple-image charge method to compute reaction fields together with the fast multipole method for the direct Coulomb interactions. To minimize the surface effects, periodic boundary conditions are employed for nonelectrostatic interactions. The proposed model is applied to study liquid water. The effect of model parameters, which include the size of the cavity, the number of image charges used to compute reaction field, and the thickness of the buffer layer, is investigated in comparison with the particle-mesh Ewald simulations as a reference. An optimal set of parameters is obtained that allows for a faithful representation of many structural, dielectric, and dynamic properties of the simulated water, while maintaining manageable computational cost. With controlled and adjustable accuracy of the multiple-image charge representation of the reaction field, it is concluded that the employed model achieves convergence with only one image charge in the case of pure water. Future applications to pKa calculations, conformational sampling of solvated biomolecules and electrolyte solutions are briefly discussed.

  2. Tsunami Simulation using CIP Method with Characteristic Curve Equations and TVD-MacCormack Method

    NASA Astrophysics Data System (ADS)

    Fukazawa, Souki; Tosaka, Hiroyuki

    2015-04-01

    After entering 21st century, we already had two big tsunami disasters associated with Mw9 earthquakes in Sumatra and Japan. To mitigate the damages of tsunami, the numerical simulation technology combined with information technologies could provide reliable predictions in planning countermeasures to prevent the damage to the social system, making safety maps, and submitting early evacuation information to the residents. Shallow water equations are still solved not only for global scale simulation of the ocean tsunami propagation but also for local scale simulation of overland inundation in many tsunami simulators though three-dimensional model starts to be used due to improvement of CPU. One-dimensional shallow water equations are below: partial bm{Q}/partial t+partial bm{E}/partial x=bm{S} in which bm{Q}=( D M )), bm{E}=( M M^2/D+gD^2/2 )), bm{S}=( 0 -gDpartial z/partial x-gn2 M|M| /D7/3 )). where D[m] is total water depth; M[m^2/s] is water flux; z[m] is topography; g[m/s^2] is the gravitational acceleration; n[s/m1/3] is Manning's roughness coefficient. To solve these, the staggered leapfrog scheme is used in a lot of wide-scale tsunami simulator. But this scheme has a problem that lagging phase error occurs when courant number is small. In some practical simulation, a kind of diffusion term is added. In this study, we developed two wide-scale tsunami simulators with different schemes and compared usual scheme and other schemes in practicability and validity. One is a total variation diminishing modification of the MacCormack method (TVD-MacCormack method) which is famous for the simulation of compressible fluids. The other is the Cubic Interpolated Profile (CIP) method with characteristic curve equations transformed from shallow water equations. Characteristic curve equations derived from shallow water equations are below: partial R_x±/partial t+C_x±partial R_x±/partial x=∓ g/2partial z/partial x in which R_x±=√{gD}± u/2, C_x±=u± √{gD}. where u

  3. Simulation of Foam Divot Weight on External Tank Utilizing Least Squares and Neural Network Methods

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Coroneos, Rula M.

    2007-01-01

    Simulation of divot weight in the insulating foam, associated with the external tank of the U.S. space shuttle, has been evaluated using least squares and neural network concepts. The simulation required models based on fundamental considerations that can be used to predict under what conditions voids form, the size of the voids, and subsequent divot ejection mechanisms. The quadratic neural networks were found to be satisfactory for the simulation of foam divot weight in various tests associated with the external tank. Both linear least squares method and the nonlinear neural network predicted identical results.

  4. Simulation-based training for prostate surgery.

    PubMed

    Khan, Raheej; Aydin, Abdullatif; Khan, Muhammad Shamim; Dasgupta, Prokar; Ahmed, Kamran

    2015-10-01

    models, human cadavers, distributed simulation and advanced training programmes and modules. The currently validated simulators can be used by healthcare organisations to provide supplementary training sessions for trainee surgeons. Further research should be conducted to validate simulated environments, to determine which simulators have greater efficacy than others and to assess the cost-effectiveness of the simulators and the transferability of skills learnt. With surgeons investigating new possibilities for easily reproducible and valid methods of training, simulation offers great scope for implementation alongside traditional methods of training. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  5. Propagation based phase retrieval of simulated intensity measurements using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Kemp, Z. D. C.

    2018-04-01

    Determining the phase of a wave from intensity measurements has many applications in fields such as electron microscopy, visible light optics, and medical imaging. Propagation based phase retrieval, where the phase is obtained from defocused images, has shown significant promise. There are, however, limitations in the accuracy of the retrieved phase arising from such methods. Sources of error include shot noise, image misalignment, and diffraction artifacts. We explore the use of artificial neural networks (ANNs) to improve the accuracy of propagation based phase retrieval algorithms applied to simulated intensity measurements. We employ a phase retrieval algorithm based on the transport-of-intensity equation to obtain the phase from simulated micrographs of procedurally generated specimens. We then train an ANN with pairs of retrieved and exact phases, and use the trained ANN to process a test set of retrieved phase maps. The total error in the phase is significantly reduced using this method. We also discuss a variety of potential extensions to this work.

  6. A vessel length-based method to compute coronary fractional flow reserve from optical coherence tomography images.

    PubMed

    Lee, Kyung Eun; Lee, Seo Ho; Shin, Eun-Seok; Shim, Eun Bo

    2017-06-26

    Hemodynamic simulation for quantifying fractional flow reserve (FFR) is often performed in a patient-specific geometry of coronary arteries reconstructed from the images from various imaging modalities. Because optical coherence tomography (OCT) images can provide more precise vascular lumen geometry, regardless of stenotic severity, hemodynamic simulation based on OCT images may be effective. The aim of this study is to perform OCT-FFR simulations by coupling a 3D CFD model from geometrically correct OCT images with a LPM based on vessel lengths extracted from CAG data with clinical validations for the present method. To simulate coronary hemodynamics, we developed a fast and accurate method that combined a computational fluid dynamics (CFD) model of an OCT-based region of interest (ROI) with a lumped parameter model (LPM) of the coronary microvasculature and veins. Here, the LPM was based on vessel lengths extracted from coronary X-ray angiography (CAG) images. Based on a vessel length-based approach, we describe a theoretical formulation for the total resistance of the LPM from a three-dimensional (3D) CFD model of the ROI. To show the utility of this method, we present calculated examples of FFR from OCT images. To validate the OCT-based FFR calculation (OCT-FFR) clinically, we compared the computed OCT-FFR values for 17 vessels of 13 patients with clinically measured FFR (M-FFR) values. A novel formulation for the total resistance of LPM is introduced to accurately simulate a 3D CFD model of the ROI. The simulated FFR values compared well with clinically measured ones, showing the accuracy of the method. Moreover, the present method is fast in terms of computational time, enabling clinicians to provide solutions handled within the hospital.

  7. Design-Based Comparison of Spine Surgery Simulators: Optimizing Educational Features of Surgical Simulators.

    PubMed

    Ryu, Won Hyung A; Mostafa, Ahmed E; Dharampal, Navjit; Sharlin, Ehud; Kopp, Gail; Jacobs, W Bradley; Hurlbert, R John; Chan, Sonny; Sutherland, Garnette R

    2017-10-01

    Simulation-based education has made its entry into surgical residency training, particularly as an adjunct to hands-on clinical experience. However, one of the ongoing challenges to wide adoption is the capacity of simulators to incorporate educational features required for effective learning. The aim of this study was to identify strengths and limitations of spine simulators to characterize design elements that are essential in enhancing resident education. We performed a mixed qualitative and quantitative cohort study with a focused survey and interviews of stakeholders in spine surgery pertaining to their experiences on 3 spine simulators. Ten participants were recruited spanning all levels of training and expertise until qualitative analysis reached saturation of themes. Participants were asked to perform lumbar pedicle screw insertion on 3 simulators. Afterward, a 10-item survey was administrated and a focused interview was conducted to explore topics pertaining to the design features of the simulators. Overall impressions of the simulators were positive with regards to their educational benefit, but our qualitative analysis revealed differing strengths and limitations. Main design strengths of the computer-based simulators were incorporation of procedural guidance and provision of performance feedback. The synthetic model excelled in achieving more realistic haptic feedback and incorporating use of actual surgical tools. Stakeholders from trainees to experts acknowledge the growing role of simulation-based education in spine surgery. However, different simulation modalities have varying design elements that augment learning in distinct ways. Characterization of these design characteristics will allow for standardization of simulation curricula in spinal surgery, optimizing educational benefit. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.

    PubMed

    Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing

    2016-10-01

    The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.

  9. Simulation of Electromigration Based on Resistor Networks

    NASA Astrophysics Data System (ADS)

    Patrinos, Anthony John

    A two dimensional computer simulation of electromigration based on resistor networks was designed and implemented. The model utilizes a realistic grain structure generated by the Monte Carlo method and takes specific account of the local effects through which electromigration damage progresses. The dynamic evolution of the simulated thin film is governed by the local current and temperature distributions. The current distribution is calculated by superimposing a two dimensional electrical network on the lattice whose nodes correspond to the particles in the lattice and the branches to interparticle bonds. Current is assumed to flow from site to site via nearest neighbor bonds. The current distribution problem is solved by applying Kirchhoff's rules on the resulting electrical network. The calculation of the temperature distribution in the lattice proceeds by discretizing the partial differential equation for heat conduction, with appropriate material parameters chosen for the lattice and its defects. SEReNe (for Simulation of Electromigration using Resistor Networks) was tested by applying it to common situations arising in experiments with real films with satisfactory results. Specifically, the model successfully reproduces the expected grain size, line width and bamboo effects, the lognormal failure time distribution and the relationship between current density exponent and current density. It has also been modified to simulate temperature ramp experiments but with mixed, in this case, results.

  10. Simulation-based assessment in anesthesiology: requirements for practical implementation.

    PubMed

    Boulet, John R; Murray, David J

    2010-04-01

    Simulations have taken a central role in the education and assessment of medical students, residents, and practicing physicians. The introduction of simulation-based assessments in anesthesiology, especially those used to establish various competencies, has demanded fairly rigorous studies concerning the psychometric properties of the scores. Most important, major efforts have been directed at identifying, and addressing, potential threats to the validity of simulation-based assessment scores. As a result, organizations that wish to incorporate simulation-based assessments into their evaluation practices can access information regarding effective test development practices, the selection of appropriate metrics, the minimization of measurement errors, and test score validation processes. The purpose of this article is to provide a broad overview of the use of simulation for measuring physician skills and competencies. For simulations used in anesthesiology, studies that describe advances in scenario development, the development of scoring rubrics, and the validation of assessment results are synthesized. Based on the summary of relevant research, psychometric requirements for practical implementation of simulation-based assessments in anesthesiology are forwarded. As technology expands, and simulation-based education and evaluation takes on a larger role in patient safety initiatives, the groundbreaking work conducted to date can serve as a model for those individuals and organizations that are responsible for developing, scoring, or validating simulation-based education and assessment programs in anesthesiology.

  11. A Level-set based framework for viscous simulation of particle-laden supersonic flows

    NASA Astrophysics Data System (ADS)

    Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.

    2017-06-01

    Particle-laden supersonic flows are important in natural and industrial processes, such as, volcanic eruptions, explosions, pneumatic conveyance of particle in material processing etc. Numerical study of such high-speed particle laden flows at the mesoscale calls for a numerical framework which allows simulation of supersonic flow around multiple moving solid objects. Only a few efforts have been made toward development of numerical frameworks for viscous simulation of particle-fluid interaction in supersonic flow regime. The current work presents a Cartesian grid based sharp-interface method for viscous simulations of interaction between supersonic flow with moving rigid particles. The no-slip boundary condition is imposed at the solid-fluid interfaces using a modified ghost fluid method (GFM). The current method is validated against the similarity solution of compressible boundary layer over flat-plate and benchmark numerical solution for steady supersonic flow over cylinder. Further validation is carried out against benchmark numerical results for shock induced lift-off of a cylinder in a shock tube. 3D simulation of steady supersonic flow over sphere is performed to compare the numerically obtained drag co-efficient with experimental results. A particle-resolved viscous simulation of shock interaction with a cloud of particles is performed to demonstrate that the current method is suitable for large-scale particle resolved simulations of particle-laden supersonic flows.

  12. A new unconditionally stable and consistent quasi-analytical in-stream water quality solution scheme for CSTR-based water quality simulators

    NASA Astrophysics Data System (ADS)

    Woldegiorgis, Befekadu Taddesse; van Griensven, Ann; Pereira, Fernando; Bauwens, Willy

    2017-06-01

    Most common numerical solutions used in CSTR-based in-stream water quality simulators are susceptible to instabilities and/or solution inconsistencies. Usually, they cope with instability problems by adopting computationally expensive small time steps. However, some simulators use fixed computation time steps and hence do not have the flexibility to do so. This paper presents a novel quasi-analytical solution for CSTR-based water quality simulators of an unsteady system. The robustness of the new method is compared with the commonly used fourth-order Runge-Kutta methods, the Euler method and three versions of the SWAT model (SWAT2012, SWAT-TCEQ, and ESWAT). The performance of each method is tested for different hypothetical experiments. Besides the hypothetical data, a real case study is used for comparison. The growth factors we derived as stability measures for the different methods and the R-factor—considered as a consistency measure—turned out to be very useful for determining the most robust method. The new method outperformed all the numerical methods used in the hypothetical comparisons. The application for the Zenne River (Belgium) shows that the new method provides stable and consistent BOD simulations whereas the SWAT2012 model is shown to be unstable for the standard daily computation time step. The new method unconditionally simulates robust solutions. Therefore, it is a reliable scheme for CSTR-based water quality simulators that use first-order reaction formulations.

  13. An Exercise Health Simulation Method Based on Integrated Human Thermophysiological Model

    PubMed Central

    Chen, Xiaohui; Yu, Liang; Yang, Kaixing

    2017-01-01

    Research of healthy exercise has garnered a keen research for the past few years. It is known that participation in a regular exercise program can help improve various aspects of cardiovascular function and reduce the risk of suffering from illness. But some exercise accidents like dehydration, exertional heatstroke, and even sudden death need to be brought to attention. If these exercise accidents can be analyzed and predicted before they happened, it will be beneficial to alleviate or avoid disease or mortality. To achieve this objective, an exercise health simulation approach is proposed, in which an integrated human thermophysiological model consisting of human thermal regulation model and a nonlinear heart rate regulation model is reported. The human thermoregulatory mechanism as well as the heart rate response mechanism during exercise can be simulated. On the basis of the simulated physiological indicators, a fuzzy finite state machine is constructed to obtain the possible health transition sequence and predict the exercise health status. The experiment results show that our integrated exercise thermophysiological model can numerically simulate the thermal and physiological processes of the human body during exercise and the predicted exercise health transition sequence from finite state machine can be used in healthcare. PMID:28702074

  14. Contributions of numerical simulation data bases to the physics, modeling and measurement of turbulence

    NASA Technical Reports Server (NTRS)

    Moin, Parviz; Spalart, Philippe R.

    1987-01-01

    The use of simulation data bases for the examination of turbulent flows is an effective research tool. Studies of the structure of turbulence have been hampered by the limited number of probes and the impossibility of measuring all desired quantities. Also, flow visualization is confined to the observation of passive markers with limited field of view and contamination caused by time-history effects. Computer flow fields are a new resource for turbulence research, providing all the instantaneous flow variables in three-dimensional space. Simulation data bases also provide much-needed information for phenomenological turbulence modeling. Three dimensional velocity and pressure fields from direct simulations can be used to compute all the terms in the transport equations for the Reynolds stresses and the dissipation rate. However, only a few, geometrically simple flows have been computed by direct numerical simulation, and the inventory of simulation does not fully address the current modeling needs in complex turbulent flows. The availability of three-dimensional flow fields also poses challenges in developing new techniques for their analysis, techniques based on experimental methods, some of which are used here for the analysis of direct-simulation data bases in studies of the mechanics of turbulent flows.

  15. A PFC3D-based numerical simulation of cutting load for lunar rock simulant and experimental validation

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jiang, Shengyuan; Tang, Dewei; Xu, Bo

    2017-05-01

    For sake of striking a balance between the need of drilling efficiency and the constrains of power budget on the moon, the penetrations per revolution of drill bit are generally limited in the range around 0.1 mm, and besides the geometric angle of the cutting blade need to be well designed. This paper introduces a simulation approach based on PFC3D (particle flow code 3 dimensions) for analyzing the cutting load feature on lunar rock simulant, which is derived from different geometric-angle blades with a small cutting depth. The mean values of the cutting force of five blades in the survey region (four on the boundary points and one on the center point) are selected as the macroscopic responses of model. The method of experimental design which includes Plackett-Burman (PB) design and central composite design (CCD) method is adopted in the matching procedure of microparameters in PFC model. Using the optimization method of enumeration, the optimum set of microparameters is acquired. Then, the experimental validation is implemented by using other twenty-five blades with different geometric angles, and the results from both simulations and laboratory tests give fair agreements. Additionally, the rock breaking process cut by different blades are quantified from simulation analysis. This research provides the theoretical support for the refinement of the rock cutting load prediction and the geometric design of cutting blade on the drill bit.

  16. How to qualify and validate wear simulation devices and methods.

    PubMed

    Heintze, S D

    2006-08-01

    The clinical significance of increased wear can mainly be attributed to impaired aesthetic appearance and/or functional restrictions. Little is known about the systemic effects of swallowed or inhaled worn particles that derive from restorations. As wear measurements in vivo are complicated and time-consuming, wear simulation devices and methods had been developed without, however, systematically looking at the factors that influence important wear parameters. Wear simulation devices shall simulate processes that occur in the oral cavity during mastication, namely force, force profile, contact time, sliding movement, clearance of worn material, etc. Different devices that use different force actuator principles are available. Those with the highest citation frequency in the literature are - in descending order - the Alabama, ACTA, OHSU, Zurich and MTS wear simulators. When following the FDA guidelines on good laboratory practice (GLP) only the expensive MTS wear simulator is a qualified machine to test wear in vitro; the force exerted by the hydraulic actuator is controlled and regulated during all movements of the stylus. All the other simulators lack control and regulation of force development during dynamic loading of the flat specimens. This may be an explanation for the high coefficient of variation of the results in some wear simulators (28-40%) and the poor reproducibility of wear results if dental databases are searched for wear results of specific dental materials (difference of 22-72% for the same material). As most of the machines are not qualifiable, wear methods applying the machine may have a sound concept but cannot be validated. Only with the MTS method have wear parameters and influencing factors been documented and verified. A good compromise with regard to costs, practicability and robustness is the Willytec chewing simulator, which uses weights as force actuator and step motors for vertical and lateral movements. The Ivoclar wear method run on

  17. Inferring the photometric and size evolution of galaxies from image simulations. I. Method

    NASA Astrophysics Data System (ADS)

    Carassou, Sébastien; de Lapparent, Valérie; Bertin, Emmanuel; Le Borgne, Damien

    2017-09-01

    Context. Current constraints on models of galaxy evolution rely on morphometric catalogs extracted from multi-band photometric surveys. However, these catalogs are altered by selection effects that are difficult to model, that correlate in non trivial ways, and that can lead to contradictory predictions if not taken into account carefully. Aims: To address this issue, we have developed a new approach combining parametric Bayesian indirect likelihood (pBIL) techniques and empirical modeling with realistic image simulations that reproduce a large fraction of these selection effects. This allows us to perform a direct comparison between observed and simulated images and to infer robust constraints on model parameters. Methods: We use a semi-empirical forward model to generate a distribution of mock galaxies from a set of physical parameters. These galaxies are passed through an image simulator reproducing the instrumental characteristics of any survey and are then extracted in the same way as the observed data. The discrepancy between the simulated and observed data is quantified, and minimized with a custom sampling process based on adaptive Markov chain Monte Carlo methods. Results: Using synthetic data matching most of the properties of a Canada-France-Hawaii Telescope Legacy Survey Deep field, we demonstrate the robustness and internal consistency of our approach by inferring the parameters governing the size and luminosity functions and their evolutions for different realistic populations of galaxies. We also compare the results of our approach with those obtained from the classical spectral energy distribution fitting and photometric redshift approach. Conclusions: Our pipeline infers efficiently the luminosity and size distribution and evolution parameters with a very limited number of observables (three photometric bands). When compared to SED fitting based on the same set of observables, our method yields results that are more accurate and free from

  18. MOSES: A Matlab-based open-source stochastic epidemic simulator.

    PubMed

    Varol, Huseyin Atakan

    2016-08-01

    This paper presents an open-source stochastic epidemic simulator. Discrete Time Markov Chain based simulator is implemented in Matlab. The simulator capable of simulating SEQIJR (susceptible, exposed, quarantined, infected, isolated and recovered) model can be reduced to simpler models by setting some of the parameters (transition probabilities) to zero. Similarly, it can be extended to more complicated models by editing the source code. It is designed to be used for testing different control algorithms to contain epidemics. The simulator is also designed to be compatible with a network based epidemic simulator and can be used in the network based scheme for the simulation of a node. Simulations show the capability of reproducing different epidemic model behaviors successfully in a computationally efficient manner.

  19. Research on Knowledge-Based Optimization Method of Indoor Location Based on Low Energy Bluetooth

    NASA Astrophysics Data System (ADS)

    Li, C.; Li, G.; Deng, Y.; Wang, T.; Kang, Z.

    2017-09-01

    With the rapid development of LBS (Location-based Service), the demand for commercialization of indoor location has been increasing, but its technology is not perfect. Currently, the accuracy of indoor location, the complexity of the algorithm, and the cost of positioning are hard to be simultaneously considered and it is still restricting the determination and application of mainstream positioning technology. Therefore, this paper proposes a method of knowledge-based optimization of indoor location based on low energy Bluetooth. The main steps include: 1) The establishment and application of a priori and posterior knowledge base. 2) Primary selection of signal source. 3) Elimination of positioning gross error. 4) Accumulation of positioning knowledge. The experimental results show that the proposed algorithm can eliminate the signal source of outliers and improve the accuracy of single point positioning in the simulation data. The proposed scheme is a dynamic knowledge accumulation rather than a single positioning process. The scheme adopts cheap equipment and provides a new idea for the theory and method of indoor positioning. Moreover, the performance of the high accuracy positioning results in the simulation data shows that the scheme has a certain application value in the commercial promotion.

  20. A Machine Learning Method for the Prediction of Receptor Activation in the Simulation of Synapses

    PubMed Central

    Montes, Jesus; Gomez, Elena; Merchán-Pérez, Angel; DeFelipe, Javier; Peña, Jose-Maria

    2013-01-01

    Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models, preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive model of the behavior of synapses under different conditions without the need for additional computationally expensive Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the simulation of high numbers of synapses and it is

  1. Nonequilibrium hypersonic flows simulations with asymptotic-preserving Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Liu, Hong; Jin, Shi

    2014-12-01

    In the rarefied gas dynamics, the DSMC method is one of the most popular numerical tools. It performs satisfactorily in simulating hypersonic flows surrounding re-entry vehicles and micro-/nano- flows. However, the computational cost is expensive, especially when Kn → 0. Even for flows in the near-continuum regime, pure DSMC simulations require a number of computational efforts for most cases. Albeit several DSMC/NS hybrid methods are proposed to deal with this, those methods still suffer from the boundary treatment, which may cause nonphysical solutions. Filbet and Jin [1] proposed a framework of new numerical methods of Boltzmann equation, called asymptotic preserving schemes, whose computational costs are affordable as Kn → 0. Recently, Ren et al. [2] realized the AP schemes with Monte Carlo methods (AP-DSMC), which have better performance than counterpart methods. In this paper, AP-DSMC is applied in simulating nonequilibrium hypersonic flows. Several numerical results are computed and analyzed to study the efficiency and capability of capturing complicated flow characteristics.

  2. Comparison of 2 resident learning tools-interactive screen-based simulated case scenarios versus problem-based learning discussions: a prospective quasi-crossover cohort study.

    PubMed

    Rajan, Shobana; Khanna, Ashish; Argalious, Maged; Kimatian, Stephen J; Mascha, Edward J; Makarova, Natalya; Nada, Eman M; Elsharkawy, Hesham; Firoozbakhsh, Farhad; Avitsian, Rafi

    2016-02-01

    Simulation-based learning is emerging as an alternative educational tool in this era of a relative shortfall of teaching anesthesiologists. The objective of the study is to assess whether screen-based (interactive computer simulated) case scenarios are more effective than problem-based learning discussions (PBLDs) in improving test scores 4 and 8 weeks after these interventions in anesthesia residents during their first neuroanesthesia rotation. Prospective, nonblinded quasi-crossover study. Cleveland Clinic. Anesthesiology residents. Two case scenarios were delivered from the Anesoft software as screen-based sessions, and parallel scripts were developed for 2 PBLDs. Each resident underwent both types of training sessions, starting with the PBLD session, and the 2 cases were alternated each month (ie, in 1 month, the screen-based intervention used case 1 and the PBLD used case 2, and vice versa for the next month). Test scores before the rotation (baseline), immediately after the rotation (4 weeks after the start of the rotation), and 8 weeks after the start of rotation were collected on each topic from each resident. The effect of training method on improvement in test scores was assessed using a linear mixed-effects model. Compared to the departmental standard of PBLD, the simulation method did not improve either the 4- or 8-week mean test scores (P = .41 and P = .40 for training method effect on 4- and 8-week scores, respectively). Resident satisfaction with the simulation module on a 5-point Likert scale showed subjective evidence of a positive impact on resident education. Screen-based simulators were not more effective than PBLD for education during the neuroanesthesia rotation in anesthesia residency. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A Semi-implicit Method for Time Accurate Simulation of Compressible Flow

    NASA Astrophysics Data System (ADS)

    Wall, Clifton; Pierce, Charles D.; Moin, Parviz

    2001-11-01

    A semi-implicit method for time accurate simulation of compressible flow is presented. The method avoids the acoustic CFL limitation, allowing a time step restricted only by the convective velocity. Centered discretization in both time and space allows the method to achieve zero artificial attenuation of acoustic waves. The method is an extension of the standard low Mach number pressure correction method to the compressible Navier-Stokes equations, and the main feature of the method is the solution of a Helmholtz type pressure correction equation similar to that of Demirdžić et al. (Int. J. Num. Meth. Fluids, Vol. 16, pp. 1029-1050, 1993). The method is attractive for simulation of acoustic combustion instabilities in practical combustors. In these flows, the Mach number is low; therefore the time step allowed by the convective CFL limitation is significantly larger than that allowed by the acoustic CFL limitation, resulting in significant efficiency gains. Also, the method's property of zero artificial attenuation of acoustic waves is important for accurate simulation of the interaction between acoustic waves and the combustion process. The method has been implemented in a large eddy simulation code, and results from several test cases will be presented.

  4. Simulation of meso-damage of refractory based on cohesion model and molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Zhao, Jiuling; Shang, Hehao; Zhu, Zhaojun; Zhang, Guoxing; Duan, Leiguang; Sun, Xinya

    2018-06-01

    In order to describe the meso-damage of the refractories more accurately, and to study of the relationship between the mesostructured of the refractories and the macro-mechanics, this paper takes the magnesia-carbon refractories as the research object and uses the molecular dynamics method to instead the traditional sequential algorithm to establish the meso-particles filling model including small and large particles. Finally, the finite element software-ABAQUS is used to conducts numerical simulation on the meso-damage evolution process of refractory materials. From the results, the process of initiation and propagation of microscopic interface cracks can be observed intuitively, and the macroscopic stress-strain curve of the refractory material is obtained. The results show that the combination of molecular dynamics modeling and the use of Python in the interface to insert the cohesive element numerical simulation, obtaining of more accurate interface parameters through parameter inversion, can be more accurate to observe the interface of the meso-damage evolution process and effective to consider the effect of the mesostructured of the refractory material on its macroscopic mechanical properties.

  5. Extending rule-based methods to model molecular geometry and 3D model resolution.

    PubMed

    Hoard, Brittany; Jacobson, Bruna; Manavi, Kasra; Tapia, Lydia

    2016-08-01

    Computational modeling is an important tool for the study of complex biochemical processes associated with cell signaling networks. However, it is challenging to simulate processes that involve hundreds of large molecules due to the high computational cost of such simulations. Rule-based modeling is a method that can be used to simulate these processes with reasonably low computational cost, but traditional rule-based modeling approaches do not include details of molecular geometry. The incorporation of geometry into biochemical models can more accurately capture details of these processes, and may lead to insights into how geometry affects the products that form. Furthermore, geometric rule-based modeling can be used to complement other computational methods that explicitly represent molecular geometry in order to quantify binding site accessibility and steric effects. We propose a novel implementation of rule-based modeling that encodes details of molecular geometry into the rules and binding rates. We demonstrate how rules are constructed according to the molecular curvature. We then perform a study of antigen-antibody aggregation using our proposed method. We simulate the binding of antibody complexes to binding regions of the shrimp allergen Pen a 1 using a previously developed 3D rigid-body Monte Carlo simulation, and we analyze the aggregate sizes. Then, using our novel approach, we optimize a rule-based model according to the geometry of the Pen a 1 molecule and the data from the Monte Carlo simulation. We use the distances between the binding regions of Pen a 1 to optimize the rules and binding rates. We perform this procedure for multiple conformations of Pen a 1 and analyze the impact of conformation and resolution on the optimal rule-based model. We find that the optimized rule-based models provide information about the average steric hindrance between binding regions and the probability that antibodies will bind to these regions. These optimized models

  6. Web-based system for surgical planning and simulation

    NASA Astrophysics Data System (ADS)

    Eldeib, Ayman M.; Ahmed, Mohamed N.; Farag, Aly A.; Sites, C. B.

    1998-10-01

    The growing scientific knowledge and rapid progress in medical imaging techniques has led to an increasing demand for better and more efficient methods of remote access to high-performance computer facilities. This paper introduces a web-based telemedicine project that provides interactive tools for surgical simulation and planning. The presented approach makes use of client-server architecture based on new internet technology where clients use an ordinary web browser to view, send, receive and manipulate patients' medical records while the server uses the supercomputer facility to generate online semi-automatic segmentation, 3D visualization, surgical simulation/planning and neuroendoscopic procedures navigation. The supercomputer (SGI ONYX 1000) is located at the Computer Vision and Image Processing Lab, University of Louisville, Kentucky. This system is under development in cooperation with the Department of Neurological Surgery, Alliant Health Systems, Louisville, Kentucky. The server is connected via a network to the Picture Archiving and Communication System at Alliant Health Systems through a DICOM standard interface that enables authorized clients to access patients' images from different medical modalities.

  7. Budget Time: A Gender-Based Negotiation Simulation

    ERIC Educational Resources Information Center

    Barkacs, Linda L.; Barkacs, Craig B.

    2017-01-01

    This article presents a gender-based negotiation simulation designed to make participants aware of gender-based stereotypes and their effect on negotiation outcomes. In this simulation, the current research on gender issues is animated via three role sheets: (a) Vice president (VP), (b) advantaged department head, and (c) disadvantaged department…

  8. Evaluating color deficiency simulation and daltonization methods through visual search and sample-to-match: SaMSEM and ViSDEM

    NASA Astrophysics Data System (ADS)

    Simon-Liedtke, Joschua T.; Farup, Ivar; Laeng, Bruno

    2015-01-01

    Color deficient people might be confronted with minor difficulties when navigating through daily life, for example when reading websites or media, navigating with maps, retrieving information from public transport schedules and others. Color deficiency simulation and daltonization methods have been proposed to better understand problems of color deficient individuals and to improve color displays for their use. However, it remains unclear whether these color prosthetic" methods really work and how well they improve the performance of color deficient individuals. We introduce here two methods to evaluate color deficiency simulation and daltonization methods based on behavioral experiments that are widely used in the field of psychology. Firstly, we propose a Sample-to-Match Simulation Evaluation Method (SaMSEM); secondly, we propose a Visual Search Daltonization Evaluation Method (ViSDEM). Both methods can be used to validate and allow the generalization of the simulation and daltonization methods related to color deficiency. We showed that both the response times (RT) and the accuracy of SaMSEM can be used as an indicator of the success of color deficiency simulation methods and that performance in the ViSDEM can be used as an indicator for the efficacy of color deficiency daltonization methods. In future work, we will include comparison and analysis of different color deficiency simulation and daltonization methods with the help of SaMSEM and ViSDEM.

  9. Retention of colonoscopy skills after virtual reality simulator training by independent and proctored methods.

    PubMed

    Snyder, Christopher W; Vandromme, Marianne J; Tyra, Sharon L; Hawn, Mary T

    2010-07-01

    Virtual reality (VR) simulators may enhance surgical resident colonoscopy skills, but the duration of skill retention and the effects of different simulator training methods are unknown. Medical students participating in a randomized trial of independent (automated simulator feedback only) versus proctored (human expert feedback plus simulator feedback) simulator training performed a standardized VR colonoscopy scenario at baseline, at the end of training (posttraining), and after a median 4.5 months without practice (retention). Performances were scored on a 10-point scale based on expert proficiency criteria and compared for the independent and proctored groups. Thirteen trainees (8 proctored, 5 independent) were included. Performance at retention testing was significantly better than baseline (median score 10 vs. 5, P < 0.0001), and no different from posttraining (median score 10 vs. 10, P = 0.19). Score changes from baseline to retention and from posttraining to retention were no different for the proctored and independent groups. Overinsufflation and excessive force were the most common reasons for nonproficiency at retention. After proficiency-based VR simulator training, colonoscopy skills are retained for several months, regardless of whether an independent or proctored approach is used. Error avoidance skills may not be retained as well as speed and efficiency skills.

  10. Understanding GPU Power. A Survey of Profiling, Modeling, and Simulation Methods

    DOE PAGES

    Bridges, Robert A.; Imam, Neena; Mintz, Tiffany M.

    2016-09-01

    Modern graphics processing units (GPUs) have complex architectures that admit exceptional performance and energy efficiency for high throughput applications.Though GPUs consume large amounts of power, their use for high throughput applications facilitate state-of-the-art energy efficiency and performance. Consequently, continued development relies on understanding their power consumption. Our work is a survey of GPU power modeling and profiling methods with increased detail on noteworthy efforts. Moreover, as direct measurement of GPU power is necessary for model evaluation and parameter initiation, internal and external power sensors are discussed. Hardware counters, which are low-level tallies of hardware events, share strong correlation to powermore » use and performance. Statistical correlation between power and performance counters has yielded worthwhile GPU power models, yet the complexity inherent to GPU architectures presents new hurdles for power modeling. Developments and challenges of counter-based GPU power modeling is discussed. Often building on the counter-based models, research efforts for GPU power simulation, which make power predictions from input code and hardware knowledge, provide opportunities for optimization in programming or architectural design. Noteworthy strides in power simulations for GPUs are included along with their performance or functional simulator counterparts when appropriate. Lastly, possible directions for future research are discussed.« less

  11. Understanding GPU Power. A Survey of Profiling, Modeling, and Simulation Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, Robert A.; Imam, Neena; Mintz, Tiffany M.

    Modern graphics processing units (GPUs) have complex architectures that admit exceptional performance and energy efficiency for high throughput applications.Though GPUs consume large amounts of power, their use for high throughput applications facilitate state-of-the-art energy efficiency and performance. Consequently, continued development relies on understanding their power consumption. Our work is a survey of GPU power modeling and profiling methods with increased detail on noteworthy efforts. Moreover, as direct measurement of GPU power is necessary for model evaluation and parameter initiation, internal and external power sensors are discussed. Hardware counters, which are low-level tallies of hardware events, share strong correlation to powermore » use and performance. Statistical correlation between power and performance counters has yielded worthwhile GPU power models, yet the complexity inherent to GPU architectures presents new hurdles for power modeling. Developments and challenges of counter-based GPU power modeling is discussed. Often building on the counter-based models, research efforts for GPU power simulation, which make power predictions from input code and hardware knowledge, provide opportunities for optimization in programming or architectural design. Noteworthy strides in power simulations for GPUs are included along with their performance or functional simulator counterparts when appropriate. Lastly, possible directions for future research are discussed.« less

  12. Simulation-Based Joint Estimation of Body Deformation and Elasticity Parameters for Medical Image Analysis

    PubMed Central

    Foskey, Mark; Niethammer, Marc; Krajcevski, Pavel; Lin, Ming C.

    2014-01-01

    Estimation of tissue stiffness is an important means of noninvasive cancer detection. Existing elasticity reconstruction methods usually depend on a dense displacement field (inferred from ultrasound or MR images) and known external forces. Many imaging modalities, however, cannot provide details within an organ and therefore cannot provide such a displacement field. Furthermore, force exertion and measurement can be difficult for some internal organs, making boundary forces another missing parameter. We propose a general method for estimating elasticity and boundary forces automatically using an iterative optimization framework, given the desired (target) output surface. During the optimization, the input model is deformed by the simulator, and an objective function based on the distance between the deformed surface and the target surface is minimized numerically. The optimization framework does not depend on a particular simulation method and is therefore suitable for different physical models. We show a positive correlation between clinical prostate cancer stage (a clinical measure of severity) and the recovered elasticity of the organ. Since the surface correspondence is established, our method also provides a non-rigid image registration, where the quality of the deformation fields is guaranteed, as they are computed using a physics-based simulation. PMID:22893381

  13. Effects of Learning Support in Simulation-Based Physics Learning

    ERIC Educational Resources Information Center

    Chang, Kuo-En; Chen, Yu-Lung; Lin, He-Yan; Sung, Yao-Ting

    2008-01-01

    This paper describes the effects of learning support on simulation-based learning in three learning models: experiment prompting, a hypothesis menu, and step guidance. A simulation learning system was implemented based on these three models, and the differences between simulation-based learning and traditional laboratory learning were explored in…

  14. Simulation studies of chemical erosion on carbon based materials at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Kenmotsu, T.; Kawamura, T.; Li, Zhijie; Ono, T.; Yamamura, Y.

    1999-06-01

    We simulated the fluence dependence of methane reaction yield in carbon with hydrogen bombardment using the ACAT-DIFFUSE code. The ACAT-DIFFUSE code is a simulation code based on a Monte Carlo method with a binary collision approximation and on solving diffusion equations. The chemical reaction model in carbon was studied by Roth or other researchers. Roth's model is suitable for the steady state methane reaction. But this model cannot estimate the fluence dependence of the methane reaction. Then, we derived an empirical formula based on Roth's model for methane reaction. In this empirical formula, we assumed the reaction region where chemical sputtering due to methane formation takes place. The reaction region corresponds to the peak range of incident hydrogen distribution in the target material. We adopted this empirical formula to the ACAT-DIFFUSE code. The simulation results indicate the similar fluence dependence compared with the experiment result. But, the fluence to achieve the steady state are different between experiment and simulation results.

  15. Implementing economic evaluation in simulation-based medical education: challenges and opportunities.

    PubMed

    Lin, Yiqun; Cheng, Adam; Hecker, Kent; Grant, Vincent; Currie, Gillian R

    2018-02-01

    Simulation-based medical education (SBME) is now ubiquitous at all levels of medical training. Given the substantial resources needed for SBME, economic evaluation of simulation-based programmes or curricula is required to demonstrate whether improvement in trainee performance (knowledge, skills and attitudes) and health outcomes justifies the cost of investment. Current literature evaluating SBME fails to provide consistent and interpretable information on the relative costs and benefits of alternatives. Economic evaluation is widely applied in health care, but is relatively scarce in medical education. Therefore, in this paper, using a focus on SBME, we define economic evaluation, describe the key components, and discuss the challenges associated with conducting an economic evaluation of medical education interventions. As a way forward to the rigorous and state of the art application of economic evaluation in medical education, we outline the steps to gather the necessary information to conduct an economic evaluation of simulation-based education programmes and curricula, and describe the main approaches to conducting an economic evaluation. A properly conducted economic evaluation can help stakeholders (i.e., programme directors, policy makers and curriculum designers) to determine the optimal use of resources in selecting the modality or method of assessment in simulation. It also helps inform broader decision making about allocation of scarce resources within an educational programme, as well as between education and clinical care. Economic evaluation in medical education research is still in its infancy, and there is significant potential for state-of-the-art application of these methods in this area. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  16. Comparison of deterministic and stochastic methods for time-dependent Wigner simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Sihong, E-mail: sihong@math.pku.edu.cn; Sellier, Jean Michel, E-mail: jeanmichel.sellier@parallel.bas.bg

    2015-11-01

    Recently a Monte Carlo method based on signed particles for time-dependent simulations of the Wigner equation has been proposed. While it has been thoroughly validated against physical benchmarks, no technical study about its numerical accuracy has been performed. To this end, this paper presents the first step towards the construction of firm mathematical foundations for the signed particle Wigner Monte Carlo method. An initial investigation is performed by means of comparisons with a cell average spectral element method, which is a highly accurate deterministic method and utilized to provide reference solutions. Several different numerical tests involving the time-dependent evolution ofmore » a quantum wave-packet are performed and discussed in deep details. In particular, this allows us to depict a set of crucial criteria for the signed particle Wigner Monte Carlo method to achieve a satisfactory accuracy.« less

  17. Classroom Simulation to Prepare Teachers to Use Evidence-Based Comprehension Practices

    ERIC Educational Resources Information Center

    Ely, Emily; Alves, Kat D.; Dolenc, Nathan R.; Sebolt, Stephanie; Walton, Emily A.

    2018-01-01

    Reading comprehension is an area of weakness for many students, including those with disabilities. Innovative technology methods may play a role in improving teacher readiness to use evidence-based comprehension practices for all students. In this experimental study, researchers examined a classroom simulation (TLE TeachLivE™) to improve…

  18. The Impact of Content Area Focus on the Effectiveness of a Web-Based Simulation

    ERIC Educational Resources Information Center

    Adcock, Amy B.; Duggan, Molly H.; Watson, Ginger S.; Belfore, Lee A.

    2010-01-01

    This paper describes an assessment of a web-based interview simulation designed to teach empathetic helping skills. The system includes an animated character acting as a client and responses designed to recreate a simulated role-play, a common assessment method used for teaching these skills. The purpose of this study was to determine whether…

  19. Optimal visual simulation of the self-tracking combustion of the infrared decoy based on the particle system

    NASA Astrophysics Data System (ADS)

    Hu, Qi; Duan, Jin; Wang, LiNing; Zhai, Di

    2016-09-01

    The high-efficiency simulation test of military weapons has a very important effect on the high cost of the actual combat test and the very demanding operational efficiency. Especially among the simulative emulation methods of the explosive smoke, the simulation method based on the particle system has generated much attention. In order to further improve the traditional simulative emulation degree of the movement process of the infrared decoy during the real combustion cycle, this paper, adopting the virtual simulation platform of OpenGL and Vega Prime and according to their own radiation characteristics and the aerodynamic characteristics of the infrared decoy, has simulated the dynamic fuzzy characteristics of the infrared decoy during the real combustion cycle by using particle system based on the double depth peeling algorithm and has solved key issues such as the interface, coordinate conversion and the retention and recovery of the Vega Prime's status. The simulation experiment has basically reached the expected improvement purpose, effectively improved the simulation fidelity and provided theoretical support for improving the performance of the infrared decoy.

  20. A Novel Simulation Technician Laboratory Design: Results of a Survey-Based Study

    PubMed Central

    Hughes, Patrick G; Friedl, Ed; Ortiz Figueroa, Fabiana; Cepeda Brito, Jose R; Frey, Jennifer; Birmingham, Lauren E; Atkinson, Steven Scott

    2016-01-01

    Objective  The purpose of this study was to elicit feedback from simulation technicians prior to developing the first simulation technician-specific simulation laboratory in Akron, OH. Background Simulation technicians serve a vital role in simulation centers within hospitals/health centers around the world. The first simulation technician degree program in the US has been approved in Akron, OH. To satisfy the requirements of this program and to meet the needs of this special audience of learners, a customized simulation lab is essential.  Method A web-based survey was circulated to simulation technicians prior to completion of the lab for the new program. The survey consisted of questions aimed at identifying structural and functional design elements of a novel simulation center for the training of simulation technicians. Quantitative methods were utilized to analyze data. Results Over 90% of technicians (n=65) think that a lab designed explicitly for the training of technicians is novel and beneficial. Approximately 75% of respondents think that the space provided appropriate audiovisual (AV) infrastructure and space to evaluate the ability of technicians to be independent. The respondents think that the lab needed more storage space, visualization space for a large number of students, and more space in the technical/repair area. Conclusions  A space designed for the training of simulation technicians was considered to be beneficial. This laboratory requires distinct space for technical repair, adequate bench space for the maintenance and repair of simulators, an appropriate AV infrastructure, and space to evaluate the ability of technicians to be independent. PMID:27096134

  1. Creation and Delphi-method refinement of pediatric disaster triage simulations.

    PubMed

    Cicero, Mark X; Brown, Linda; Overly, Frank; Yarzebski, Jorge; Meckler, Garth; Fuchs, Susan; Tomassoni, Anthony; Aghababian, Richard; Chung, Sarita; Garrett, Andrew; Fagbuyi, Daniel; Adelgais, Kathleen; Goldman, Ran; Parker, James; Auerbach, Marc; Riera, Antonio; Cone, David; Baum, Carl R

    2014-01-01

    There is a need for rigorously designed pediatric disaster triage (PDT) training simulations for paramedics. First, we sought to design three multiple patient incidents for EMS provider training simulations. Our second objective was to determine the appropriate interventions and triage level for each victim in each of the simulations and develop evaluation instruments for each simulation. The final objective was to ensure that each simulation and evaluation tool was free of bias toward any specific PDT strategy. We created mixed-methods disaster simulation scenarios with pediatric victims: a school shooting, a school bus crash, and a multiple-victim house fire. Standardized patients, high-fidelity manikins, and low-fidelity manikins were used to portray the victims. Each simulation had similar acuity of injuries and 10 victims. Examples include children with special health-care needs, gunshot wounds, and smoke inhalation. Checklist-based evaluation tools and behaviorally anchored global assessments of function were created for each simulation. Eight physicians and paramedics from areas with differing PDT strategies were recruited as Subject Matter Experts (SMEs) for a modified Delphi iterative critique of the simulations and evaluation tools. The modified Delphi was managed with an online survey tool. The SMEs provided an expected triage category for each patient. The target for modified Delphi consensus was ≥85%. Using Likert scales and free text, the SMEs assessed the validity of the simulations, including instances of bias toward a specific PDT strategy, clarity of learning objectives, and the correlation of the evaluation tools to the learning objectives and scenarios. After two rounds of the modified Delphi, consensus for expected triage level was >85% for 28 of 30 victims, with the remaining two achieving >85% consensus after three Delphi iterations. To achieve consensus, we amended 11 instances of bias toward a specific PDT strategy and corrected 10

  2. magnum.fe: A micromagnetic finite-element simulation code based on FEniCS

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Exl, Lukas; Bruckner, Florian; Drews, André; Suess, Dieter

    2013-11-01

    We have developed a finite-element micromagnetic simulation code based on the FEniCS package called magnum.fe. Here we describe the numerical methods that are applied as well as their implementation with FEniCS. We apply a transformation method for the solution of the demagnetization-field problem. A semi-implicit weak formulation is used for the integration of the Landau-Lifshitz-Gilbert equation. Numerical experiments show the validity of simulation results. magnum.fe is open source and well documented. The broad feature range of the FEniCS package makes magnum.fe a good choice for the implementation of novel micromagnetic finite-element algorithms.

  3. A constraint optimization based virtual network mapping method

    NASA Astrophysics Data System (ADS)

    Li, Xiaoling; Guo, Changguo; Wang, Huaimin; Li, Zhendong; Yang, Zhiwen

    2013-03-01

    Virtual network mapping problem, maps different virtual networks onto the substrate network is an extremely challenging work. This paper proposes a constraint optimization based mapping method for solving virtual network mapping problem. This method divides the problem into two phases, node mapping phase and link mapping phase, which are all NP-hard problems. Node mapping algorithm and link mapping algorithm are proposed for solving node mapping phase and link mapping phase, respectively. Node mapping algorithm adopts the thinking of greedy algorithm, mainly considers two factors, available resources which are supplied by the nodes and distance between the nodes. Link mapping algorithm is based on the result of node mapping phase, adopts the thinking of distributed constraint optimization method, which can guarantee to obtain the optimal mapping with the minimum network cost. Finally, simulation experiments are used to validate the method, and results show that the method performs very well.

  4. Constant-pH Hybrid Nonequilibrium Molecular Dynamics–Monte Carlo Simulation Method

    PubMed Central

    2016-01-01

    A computational method is developed to carry out explicit solvent simulations of complex molecular systems under conditions of constant pH. In constant-pH simulations, preidentified ionizable sites are allowed to spontaneously protonate and deprotonate as a function of time in response to the environment and the imposed pH. The method, based on a hybrid scheme originally proposed by H. A. Stern (J. Chem. Phys.2007, 126, 164112), consists of carrying out short nonequilibrium molecular dynamics (neMD) switching trajectories to generate physically plausible configurations with changed protonation states that are subsequently accepted or rejected according to a Metropolis Monte Carlo (MC) criterion. To ensure microscopic detailed balance arising from such nonequilibrium switches, the atomic momenta are altered according to the symmetric two-ends momentum reversal prescription. To achieve higher efficiency, the original neMD–MC scheme is separated into two steps, reducing the need for generating a large number of unproductive and costly nonequilibrium trajectories. In the first step, the protonation state of a site is randomly attributed via a Metropolis MC process on the basis of an intrinsic pKa; an attempted nonequilibrium switch is generated only if this change in protonation state is accepted. This hybrid two-step inherent pKa neMD–MC simulation method is tested with single amino acids in solution (Asp, Glu, and His) and then applied to turkey ovomucoid third domain and hen egg-white lysozyme. Because of the simple linear increase in the computational cost relative to the number of titratable sites, the present method is naturally able to treat extremely large systems. PMID:26300709

  5. System dynamic simulation: A new method in social impact assessment (SIA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karami, Shobeir, E-mail: shobeirkarami@gmail.com; Karami, Ezatollah, E-mail: ekarami@shirazu.ac.ir; Buys, Laurie, E-mail: l.buys@qut.edu.au

    Many complex social questions are difficult to address adequately with conventional methods and techniques, due to the complicated dynamics, and hard to quantify social processes. Despite these difficulties researchers and practitioners have attempted to use conventional methods not only in evaluative modes but also in predictive modes to inform decision making. The effectiveness of SIAs would be increased if they were used to support the project design processes. This requires deliberate use of lessons from retrospective assessments to inform predictive assessments. Social simulations may be a useful tool for developing a predictive SIA method. There have been limited attempts tomore » develop computer simulations that allow social impacts to be explored and understood before implementing development projects. In light of this argument, this paper aims to introduce system dynamic (SD) simulation as a new predictive SIA method in large development projects. We propose the potential value of the SD approach to simulate social impacts of development projects. We use data from the SIA of Gareh-Bygone floodwater spreading project to illustrate the potential of SD simulation in SIA. It was concluded that in comparison to traditional SIA methods SD simulation can integrate quantitative and qualitative inputs from different sources and methods and provides a more effective and dynamic assessment of social impacts for development projects. We recommend future research to investigate the full potential of SD in SIA in comparing different situations and scenarios.« less

  6. a Marker-Based Eulerian-Lagrangian Method for Multiphase Flow with Supersonic Combustion Applications

    NASA Astrophysics Data System (ADS)

    Fan, Xiaofeng; Wang, Jiangfeng

    2016-06-01

    The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.

  7. Performance of residents and anesthesiologists in a simulation-based skill assessment.

    PubMed

    Murray, David J; Boulet, John R; Avidan, Michael; Kras, Joseph F; Henrichs, Bernadette; Woodhouse, Julie; Evers, Alex S

    2007-11-01

    Anesthesiologists and anesthesia residents are expected to acquire and maintain skills to manage a wide range of acute intraoperative anesthetic events. The purpose of this study was to determine whether an inventory of simulated intraoperative scenarios provided a reliable and valid measure of anesthesia residents' and anesthesiologists' skill. Twelve simulated acute intraoperative scenarios were designed to assess the performance of 64 residents and 35 anesthesiologists. The participants were divided into four groups based on their training and experience. There were 31 new CA-1, 12 advanced CA-1, and 22 CA-2/CA-3 residents as well as a group of 35 experienced anesthesiologists who participated in the assessment. Each participant managed a set of simulated events. The advanced CA-1 residents, CA-2/CA-3 residents, and 35 anesthesiologists managed 8 of 12 intraoperative simulation exercises. The 31 CA-1 residents each managed 3 intraoperative scenarios. The new CA-1 residents received lower scores on the simulated intraoperative events than the other groups of participants. The advanced CA-1 residents, CA-2/CA-3 residents, and anesthesiologists performed similarly on the overall assessment. There was a wide range of scores obtained by individuals in each group. A number of the exercises were difficult for the majority of participants to recognize and treat, but most events effectively discriminated among participants who achieved higher and lower overall scores. This simulation-based assessment provided a valid method to distinguish the skills of more experienced anesthesia residents and anesthesiologists from residents in early training. The overall score provided a reliable measure of a participant's ability to recognize and manage simulated acute intraoperative events. Additional studies are needed to determine whether these simulation-based assessments are valid measures of clinical performance.

  8. A 2.5D Computational Method to Simulate Cylindrical Fluidized Beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Benyahia, Sofiane; Dietiker, Jeff

    2015-02-17

    In this paper, the limitations of axisymmetric and Cartesian two-dimensional (2D) simulations of cylindrical gas-solid fluidized beds are discussed. A new method has been proposed to carry out pseudo-two-dimensional (2.5D) simulations of a cylindrical fluidized bed by appropriately combining computational domains of Cartesian 2D and axisymmetric simulations. The proposed method was implemented in the open-source code MFIX and applied to the simulation of a lab-scale bubbling fluidized bed with necessary sensitivity study. After a careful grid study to ensure the numerical results are grid independent, detailed comparisons of the flow hydrodynamics were presented against axisymmetric and Cartesian 2D simulations. Furthermore,more » the 2.5D simulation results have been compared to the three-dimensional (3D) simulation for evaluation. This new approach yields better agreement with the 3D simulation results than with axisymmetric and Cartesian 2D simulations.« less

  9. Problem-based learning using patient-simulated videos showing daily life for a comprehensive clinical approach

    PubMed Central

    Ohira, Yoshiyuki; Uehara, Takanori; Noda, Kazutaka; Suzuki, Shingo; Shikino, Kiyoshi; Kajiwara, Hideki; Kondo, Takeshi; Hirota, Yusuke; Ikusaka, Masatomi

    2017-01-01

    Objectives We examined whether problem-based learning tutorials using patient-simulated videos showing daily life are more practical for clinical learning, compared with traditional paper-based problem-based learning, for the consideration rate of psychosocial issues and the recall rate for experienced learning. Methods Twenty-two groups with 120 fifth-year students were each assigned paper-based problem-based learning and video-based problem-based learning using patient-simulated videos. We compared target achievement rates in questionnaires using the Wilcoxon signed-rank test and discussion contents diversity using the Mann-Whitney U test. A follow-up survey used a chi-square test to measure students’ recall of cases in three categories: video, paper, and non-experienced. Results Video-based problem-based learning displayed significantly higher achievement rates for imagining authentic patients (p=0.001), incorporating a comprehensive approach including psychosocial aspects (p<0.001), and satisfaction with sessions (p=0.001). No significant differences existed in the discussion contents diversity regarding the International Classification of Primary Care Second Edition codes and chapter types or in the rate of psychological codes. In a follow-up survey comparing video and paper groups to non-experienced groups, the rates were higher for video (χ2=24.319, p<0.001) and paper (χ2=11.134, p=0.001). Although the video rate tended to be higher than the paper rate, no significant difference was found between the two. Conclusions Patient-simulated videos showing daily life facilitate imagining true patients and support a comprehensive approach that fosters better memory. The clinical patient-simulated video method is more practical and clinical problem-based tutorials can be implemented if we create patient-simulated videos for each symptom as teaching materials.  PMID:28245193

  10. Computational Fluid Dynamics (CFD) Simulation of Hypersonic Turbine-Based Combined-Cycle (TBCC) Inlet Mode Transition

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Saunders, John D.

    2010-01-01

    Methods of computational fluid dynamics were applied to simulate the aerodynamics within the turbine flowpath of a turbine-based combined-cycle propulsion system during inlet mode transition at Mach 4. Inlet mode transition involved the rotation of a splitter cowl to close the turbine flowpath to allow the full operation of a parallel dual-mode ramjet/scramjet flowpath. Steady-state simulations were performed at splitter cowl positions of 0deg, -2deg, -4deg, and -5.7deg, at which the turbine flowpath was closed half way. The simulations satisfied one objective of providing a greater understanding of the flow during inlet mode transition. Comparisons of the simulation results with wind-tunnel test data addressed another objective of assessing the applicability of the simulation methods for simulating inlet mode transition. The simulations showed that inlet mode transition could occur in a stable manner and that accurate modeling of the interactions among the shock waves, boundary layers, and porous bleed regions was critical for evaluating the inlet static and total pressures, bleed flow rates, and bleed plenum pressures. The simulations compared well with some of the wind-tunnel data, but uncertainties in both the windtunnel data and simulations prevented a formal evaluation of the accuracy of the simulation methods.

  11. Critical thinking skills in nursing students: comparison of simulation-based performance with metrics.

    PubMed

    Fero, Laura J; O'Donnell, John M; Zullo, Thomas G; Dabbs, Annette DeVito; Kitutu, Julius; Samosky, Joseph T; Hoffman, Leslie A

    2010-10-01

    This paper is a report of an examination of the relationship between metrics of critical thinking skills and performance in simulated clinical scenarios. Paper and pencil assessments are commonly used to assess critical thinking but may not reflect simulated performance. In 2007, a convenience sample of 36 nursing students participated in measurement of critical thinking skills and simulation-based performance using videotaped vignettes, high-fidelity human simulation, the California Critical Thinking Disposition Inventory and California Critical Thinking Skills Test. Simulation-based performance was rated as 'meeting' or 'not meeting' overall expectations. Test scores were categorized as strong, average, or weak. Most (75.0%) students did not meet overall performance expectations using videotaped vignettes or high-fidelity human simulation; most difficulty related to problem recognition and reporting findings to the physician. There was no difference between overall performance based on method of assessment (P = 0.277). More students met subcategory expectations for initiating nursing interventions (P ≤ 0.001) using high-fidelity human simulation. The relationship between videotaped vignette performance and critical thinking disposition or skills scores was not statistically significant, except for problem recognition and overall critical thinking skills scores (Cramer's V = 0.444, P = 0.029). There was a statistically significant relationship between overall high-fidelity human simulation performance and overall critical thinking disposition scores (Cramer's V = 0.413, P = 0.047). Students' performance reflected difficulty meeting expectations in simulated clinical scenarios. High-fidelity human simulation performance appeared to approximate scores on metrics of critical thinking best. Further research is needed to determine if simulation-based performance correlates with critical thinking skills in the clinical setting. © 2010 The Authors. Journal of Advanced

  12. Verification of a ground-based method for simulating high-altitude, supersonic flight conditions

    NASA Astrophysics Data System (ADS)

    Zhou, Xuewen; Xu, Jian; Lv, Shuiyan

    Ground-based methods for accurately representing high-altitude, high-speed flight conditions have been an important research topic in the aerospace field. Based on an analysis of the requirements for high-altitude supersonic flight tests, a ground-based test bed was designed combining Laval nozzle, which is often found in wind tunnels, with a rocket sled system. Sled tests were used to verify the performance of the test bed. The test results indicated that the test bed produced a uniform-flow field with a static pressure and density equivalent to atmospheric conditions at an altitude of 13-15km and at a flow velocity of approximately M 2.4. This test method has the advantages of accuracy, fewer experimental limitations, and reusability.

  13. A method for validation of finite element forming simulation on basis of a pointwise comparison of distance and curvature

    NASA Astrophysics Data System (ADS)

    Dörr, Dominik; Joppich, Tobias; Schirmaier, Fabian; Mosthaf, Tobias; Kärger, Luise; Henning, Frank

    2016-10-01

    Thermoforming of continuously fiber reinforced thermoplastics (CFRTP) is ideally suited to thin walled and complex shaped products. By means of forming simulation, an initial validation of the producibility of a specific geometry, an optimization of the forming process and the prediction of fiber-reorientation due to forming is possible. Nevertheless, applied methods need to be validated. Therefor a method is presented, which enables the calculation of error measures for the mismatch between simulation results and experimental tests, based on measurements with a conventional coordinate measuring device. As a quantitative measure, describing the curvature is provided, the presented method is also suitable for numerical or experimental sensitivity studies on wrinkling behavior. The applied methods for forming simulation, implemented in Abaqus explicit, are presented and applied to a generic geometry. The same geometry is tested experimentally and simulation and test results are compared by the proposed validation method.

  14. Accelerated SPECT Monte Carlo Simulation Using Multiple Projection Sampling and Convolution-Based Forced Detection

    NASA Astrophysics Data System (ADS)

    Liu, Shaoying; King, Michael A.; Brill, Aaron B.; Stabin, Michael G.; Farncombe, Troy H.

    2008-02-01

    Monte Carlo (MC) is a well-utilized tool for simulating photon transport in single photon emission computed tomography (SPECT) due to its ability to accurately model physical processes of photon transport. As a consequence of this accuracy, it suffers from a relatively low detection efficiency and long computation time. One technique used to improve the speed of MC modeling is the effective and well-established variance reduction technique (VRT) known as forced detection (FD). With this method, photons are followed as they traverse the object under study but are then forced to travel in the direction of the detector surface, whereby they are detected at a single detector location. Another method, called convolution-based forced detection (CFD), is based on the fundamental idea of FD with the exception that detected photons are detected at multiple detector locations and determined with a distance-dependent blurring kernel. In order to further increase the speed of MC, a method named multiple projection convolution-based forced detection (MP-CFD) is presented. Rather than forcing photons to hit a single detector, the MP-CFD method follows the photon transport through the object but then, at each scatter site, forces the photon to interact with a number of detectors at a variety of angles surrounding the object. This way, it is possible to simulate all the projection images of a SPECT simulation in parallel, rather than as independent projections. The result of this is vastly improved simulation time as much of the computation load of simulating photon transport through the object is done only once for all projection angles. The results of the proposed MP-CFD method agrees well with the experimental data in measurements of point spread function (PSF), producing a correlation coefficient (r2) of 0.99 compared to experimental data. The speed of MP-CFD is shown to be about 60 times faster than a regular forced detection MC program with similar results.

  15. Simulation-based learning: Just like the real thing.

    PubMed

    Lateef, Fatimah

    2010-10-01

    Simulation is a technique for practice and learning that can be applied to many different disciplines and trainees. It is a technique (not a technology) to replace and amplify real experiences with guided ones, often "immersive" in nature, that evoke or replicate substantial aspects of the real world in a fully interactive fashion. Simulation-based learning can be the way to develop health professionals' knowledge, skills, and attitudes, whilst protecting patients from unnecessary risks. Simulation-based medical education can be a platform which provides a valuable tool in learning to mitigate ethical tensions and resolve practical dilemmas. Simulation-based training techniques, tools, and strategies can be applied in designing structured learning experiences, as well as be used as a measurement tool linked to targeted teamwork competencies and learning objectives. It has been widely applied in fields such aviation and the military. In medicine, simulation offers good scope for training of interdisciplinary medical teams. The realistic scenarios and equipment allows for retraining and practice till one can master the procedure or skill. An increasing number of health care institutions and medical schools are now turning to simulation-based learning. Teamwork training conducted in the simulated environment may offer an additive benefit to the traditional didactic instruction, enhance performance, and possibly also help reduce errors.

  16. Assessment methodology for computer-based instructional simulations.

    PubMed

    Koenig, Alan; Iseli, Markus; Wainess, Richard; Lee, John J

    2013-10-01

    Computer-based instructional simulations are becoming more and more ubiquitous, particularly in military and medical domains. As the technology that drives these simulations grows ever more sophisticated, the underlying pedagogical models for how instruction, assessment, and feedback are implemented within these systems must evolve accordingly. In this article, we review some of the existing educational approaches to medical simulations, and present pedagogical methodologies that have been used in the design and development of games and simulations at the University of California, Los Angeles, Center for Research on Evaluation, Standards, and Student Testing. In particular, we present a methodology for how automated assessments of computer-based simulations can be implemented using ontologies and Bayesian networks, and discuss their advantages and design considerations for pedagogical use. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  17. Simulator for beam-based LHC collimator alignment

    NASA Astrophysics Data System (ADS)

    Valentino, Gianluca; Aßmann, Ralph; Redaelli, Stefano; Sammut, Nicholas

    2014-02-01

    In the CERN Large Hadron Collider, collimators need to be set up to form a multistage hierarchy to ensure efficient multiturn cleaning of halo particles. Automatic algorithms were introduced during the first run to reduce the beam time required for beam-based setup, improve the alignment accuracy, and reduce the risk of human errors. Simulating the alignment procedure would allow for off-line tests of alignment policies and algorithms. A simulator was developed based on a diffusion beam model to generate the characteristic beam loss signal spike and decay produced when a collimator jaw touches the beam, which is observed in a beam loss monitor (BLM). Empirical models derived from the available measurement data are used to simulate the steady-state beam loss and crosstalk between multiple BLMs. The simulator design is presented, together with simulation results and comparison to measurement data.

  18. Smoldyn: particle-based simulation with rule-based modeling, improved molecular interaction and a library interface.

    PubMed

    Andrews, Steven S

    2017-03-01

    Smoldyn is a spatial and stochastic biochemical simulator. It treats each molecule of interest as an individual particle in continuous space, simulating molecular diffusion, molecule-membrane interactions and chemical reactions, all with good accuracy. This article presents several new features. Smoldyn now supports two types of rule-based modeling. These are a wildcard method, which is very convenient, and the BioNetGen package with extensions for spatial simulation, which is better for complicated models. Smoldyn also includes new algorithms for simulating the diffusion of surface-bound molecules and molecules with excluded volume. Both are exact in the limit of short time steps and reasonably good with longer steps. In addition, Smoldyn supports single-molecule tracking simulations. Finally, the Smoldyn source code can be accessed through a C/C ++ language library interface. Smoldyn software, documentation, code, and examples are at http://www.smoldyn.org . steven.s.andrews@gmail.com. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  19. A Dynamic Finite Element Method for Simulating the Physics of Faults Systems

    NASA Astrophysics Data System (ADS)

    Saez, E.; Mora, P.; Gross, L.; Weatherley, D.

    2004-12-01

    We introduce a dynamic Finite Element method using a novel high level scripting language to describe the physical equations, boundary conditions and time integration scheme. The library we use is the parallel Finley library: a finite element kernel library, designed for solving large-scale problems. It is incorporated as a differential equation solver into a more general library called escript, based on the scripting language Python. This library has been developed to facilitate the rapid development of 3D parallel codes, and is optimised for the Australian Computational Earth Systems Simulator Major National Research Facility (ACcESS MNRF) supercomputer, a 208 processor SGI Altix with a peak performance of 1.1 TFlops. Using the scripting approach we obtain a parallel FE code able to take advantage of the computational efficiency of the Altix 3700. We consider faults as material discontinuities (the displacement, velocity, and acceleration fields are discontinuous at the fault), with elastic behavior. The stress continuity at the fault is achieved naturally through the expression of the fault interactions in the weak formulation. The elasticity problem is solved explicitly in time, using the Saint Verlat scheme. Finally, we specify a suitable frictional constitutive relation and numerical scheme to simulate fault behaviour. Our model is based on previous work on modelling fault friction and multi-fault systems using lattice solid-like models. We adapt the 2D model for simulating the dynamics of parallel fault systems described to the Finite-Element method. The approach uses a frictional relation along faults that is slip and slip-rate dependent, and the numerical integration approach introduced by Mora and Place in the lattice solid model. In order to illustrate the new Finite Element model, single and multi-fault simulation examples are presented.

  20. Simulation Of A Photofission-Based Cargo Interrogation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Michael; Gozani, Tsahi; Stevenson, John

    A comprehensive model has been developed to characterize and optimize the detection of Bremsstrahlung x-ray induced fission signatures from nuclear materials hidden in cargo containers. An effective active interrogation system should not only induce a large number of fission events but also efficiently detect their signatures. The proposed scanning system utilizes a 9-MV commercially available linear accelerator and the detection of strong fission signals i.e. delayed gamma rays and prompt neutrons. Because the scanning system is complex and the cargo containers are large and often highly attenuating, the simulation method segments the model into several physical steps, representing each changemore » of radiation particle. Each approximation is carried-out separately, resulting in a major reduction in computational time and a significant improvement in tally statistics. The model investigates the effect on the fission rate and detection rate by various cargo types, densities and distributions. Hydrogenous and metallic cargos, homogeneous and heterogeneous, as well as various locations of the nuclear material inside the cargo container were studied. We will show that for the photofission-based interrogation system simulation, the final results are not only in good agreement with a full, single-step simulation but also with experimental results, further validating the full-system simulation.« less

  1. Competency-Based Training and Simulation: Making a "Valid" Argument.

    PubMed

    Noureldin, Yasser A; Lee, Jason Y; McDougall, Elspeth M; Sweet, Robert M

    2018-02-01

    The use of simulation as an assessment tool is much more controversial than is its utility as an educational tool. However, without valid simulation-based assessment tools, the ability to objectively assess technical skill competencies in a competency-based medical education framework will remain challenging. The current literature in urologic simulation-based training and assessment uses a definition and framework of validity that is now outdated. This is probably due to the absence of awareness rather than an absence of comprehension. The following review article provides the urologic community an updated taxonomy on validity theory as it relates to simulation-based training and assessments and translates our simulation literature to date into this framework. While the old taxonomy considered validity as distinct subcategories and focused on the simulator itself, the modern taxonomy, for which we translate the literature evidence, considers validity as a unitary construct with a focus on interpretation of simulator data/scores.

  2. A finite-element simulation of galvanic coupling intra-body communication based on the whole human body.

    PubMed

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-10-09

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz-5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication.

  3. A Finite-Element Simulation of Galvanic Coupling Intra-Body Communication Based on the Whole Human Body

    PubMed Central

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-01-01

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz–5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication. PMID:23202010

  4. Modelling and Simulation as a Recognizing Method in Education

    ERIC Educational Resources Information Center

    Stoffa, Veronika

    2004-01-01

    Computer animation-simulation models of complex processes and events, which are the method of instruction, can be an effective didactic device. Gaining deeper knowledge about objects modelled helps to plan simulation experiments oriented on processes and events researched. Animation experiments realized on multimedia computers can aid easier…

  5. The impact of internet and simulation-based training on transoesophageal echocardiography learning in anaesthetic trainees: a prospective randomised study.

    PubMed

    Sharma, V; Chamos, C; Valencia, O; Meineri, M; Fletcher, S N

    2013-06-01

    With the increasing role of transoesophageal echocardiography in clinical fields other than cardiac surgery, we decided to assess the efficacy of multi-modular echocardiography learning in echo-naïve anaesthetic trainees. Twenty-eight trainees undertook a pre-test to ascertain basic echocardiography knowledge, following which the study subjects were randomly assigned to two groups: learning via traditional methods such as review of guidelines and other literature (non-internet group); and learning via an internet-based echocardiography resource (internet group). After this, subjects in both groups underwent simulation-based echocardiography training. More tests were then conducted after a review of the respective educational resources and simulation sessions. Mean (SD) scores of subjects in the non-internet group were 28 (10)%, 44 (10)% and 63 (5)% in the pre-test, post-intervention test and post-simulation test, respectively, whereas those in the internet group scored 29 (8)%, 59 (10)%, (p = 0.001) and 72 (8)%, p = 0.005, respectively. The use of internet- and simulation-based learning methods led to a significant improvement in knowledge of transoesophageal echocardiography by anaesthetic trainees. The impact of simulation-based training was greater in the group who did not use the internet-based resource. We conclude that internet- and simulation-based learning methods both improve transoesophageal echocardiography knowledge in echo-naïve anaesthetic trainees. Anaesthesia © 2013 The Association of Anaesthetists of Great Britain and Ireland.

  6. Simulation-based Testing of Control Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozmen, Ozgur; Nutaro, James J.; Sanyal, Jibonananda

    It is impossible to adequately test complex software by examining its operation in a physical prototype of the system monitored. Adequate test coverage can require millions of test cases, and the cost of equipment prototypes combined with the real-time constraints of testing with them makes it infeasible to sample more than a small number of these tests. Model based testing seeks to avoid this problem by allowing for large numbers of relatively inexpensive virtual prototypes that operate in simulation time at a speed limited only by the available computing resources. In this report, we describe how a computer system emulatormore » can be used as part of a model based testing environment; specifically, we show that a complete software stack including operating system and application software - can be deployed within a simulated environment, and that these simulations can proceed as fast as possible. To illustrate this approach to model based testing, we describe how it is being used to test several building control systems that act to coordinate air conditioning loads for the purpose of reducing peak demand. These tests involve the use of ADEVS (A Discrete Event System Simulator) and QEMU (Quick Emulator) to host the operational software within the simulation, and a building model developed with the MODELICA programming language using Buildings Library and packaged as an FMU (Functional Mock-up Unit) that serves as the virtual test environment.« less

  7. A particle finite element method for machining simulations

    NASA Astrophysics Data System (ADS)

    Sabel, Matthias; Sator, Christian; Müller, Ralf

    2014-07-01

    The particle finite element method (PFEM) appears to be a convenient technique for machining simulations, since the geometry and topology of the problem can undergo severe changes. In this work, a short outline of the PFEM-algorithm is given, which is followed by a detailed description of the involved operations. The -shape method, which is used to track the topology, is explained and tested by a simple example. Also the kinematics and a suitable finite element formulation are introduced. To validate the method simple settings without topological changes are considered and compared to the standard finite element method for large deformations. To examine the performance of the method, when dealing with separating material, a tensile loading is applied to a notched plate. This investigation includes a numerical analysis of the different meshing parameters, and the numerical convergence is studied. With regard to the cutting simulation it is found that only a sufficiently large number of particles (and thus a rather fine finite element discretisation) leads to converged results of process parameters, such as the cutting force.

  8. A New Hybrid Viscoelastic Soft Tissue Model based on Meshless Method for Haptic Surgical Simulation

    PubMed Central

    Bao, Yidong; Wu, Dongmei; Yan, Zhiyuan; Du, Zhijiang

    2013-01-01

    This paper proposes a hybrid soft tissue model that consists of a multilayer structure and many spheres for surgical simulation system based on meshless. To improve accuracy of the model, tension is added to the three-parameter viscoelastic structure that connects the two spheres. By using haptic device, the three-parameter viscoelastic model (TPM) produces accurate deformationand also has better stress-strain, stress relaxation and creep properties. Stress relaxation and creep formulas have been obtained by mathematical formula derivation. Comparing with the experimental results of the real pig liver which were reported by Evren et al. and Amy et al., the curve lines of stress-strain, stress relaxation and creep of TPM are close to the experimental data of the real liver. Simulated results show that TPM has better real-time, stability and accuracy. PMID:24339837

  9. A Newton-Raphson Method Approach to Adjusting Multi-Source Solar Simulators

    NASA Technical Reports Server (NTRS)

    Snyder, David B.; Wolford, David S.

    2012-01-01

    NASA Glenn Research Center has been using an in house designed X25 based multi-source solar simulator since 2003. The simulator is set up for triple junction solar cells prior to measurements b y adjusting the three sources to produce the correct short circuit current, lsc, in each of three AM0 calibrated sub-cells. The past practice has been to adjust one source on one sub-cell at a time, iterating until all the sub-cells have the calibrated Isc. The new approach is to create a matrix of measured lsc for small source changes on each sub-cell. A matrix, A, is produced. This is normalized to unit changes in the sources so that Ax(delta)s = (delta)isc. This matrix can now be inverted and used with the known Isc differences from the AM0 calibrated values to indicate changes in the source settings, (delta)s = A ·'x.(delta)isc This approach is still an iterative one, but all sources are changed during each iteration step. It typically takes four to six steps to converge on the calibrated lsc values. Even though the source lamps may degrade over time, the initial matrix evaluation i s not performed each time, since measurement matrix needs to be only approximate. Because an iterative approach is used the method will still continue to be valid. This method may become more important as state-of-the-art solar cell junction responses overlap the sources of the simulator. Also, as the number of cell junctions and sources increase, this method should remain applicable.

  10. Modeling and simulation of different and representative engineering problems using Network Simulation Method.

    PubMed

    Sánchez-Pérez, J F; Marín, F; Morales, J L; Cánovas, M; Alhama, F

    2018-01-01

    Mathematical models simulating different and representative engineering problem, atomic dry friction, the moving front problems and elastic and solid mechanics are presented in the form of a set of non-linear, coupled or not coupled differential equations. For different parameters values that influence the solution, the problem is numerically solved by the network method, which provides all the variables of the problems. Although the model is extremely sensitive to the above parameters, no assumptions are considered as regards the linearization of the variables. The design of the models, which are run on standard electrical circuit simulation software, is explained in detail. The network model results are compared with common numerical methods or experimental data, published in the scientific literature, to show the reliability of the model.

  11. Combined Monte Carlo and path-integral method for simulated library of time-resolved reflectance curves from layered tissue models

    NASA Astrophysics Data System (ADS)

    Wilson, Robert H.; Vishwanath, Karthik; Mycek, Mary-Ann

    2009-02-01

    Monte Carlo (MC) simulations are considered the "gold standard" for mathematical description of photon transport in tissue, but they can require large computation times. Therefore, it is important to develop simple and efficient methods for accelerating MC simulations, especially when a large "library" of related simulations is needed. A semi-analytical method involving MC simulations and a path-integral (PI) based scaling technique generated time-resolved reflectance curves from layered tissue models. First, a zero-absorption MC simulation was run for a tissue model with fixed scattering properties in each layer. Then, a closed-form expression for the average classical path of a photon in tissue was used to determine the percentage of time that the photon spent in each layer, to create a weighted Beer-Lambert factor to scale the time-resolved reflectance of the simulated zero-absorption tissue model. This method is a unique alternative to other scaling techniques in that it does not require the path length or number of collisions of each photon to be stored during the initial simulation. Effects of various layer thicknesses and absorption and scattering coefficients on the accuracy of the method will be discussed.

  12. Force-momentum-based self-guided Langevin dynamics: A rapid sampling method that approaches the canonical ensemble

    NASA Astrophysics Data System (ADS)

    Wu, Xiongwu; Brooks, Bernard R.

    2011-11-01

    The self-guided Langevin dynamics (SGLD) is a method to accelerate conformational searching. This method is unique in the way that it selectively enhances and suppresses molecular motions based on their frequency to accelerate conformational searching without modifying energy surfaces or raising temperatures. It has been applied to studies of many long time scale events, such as protein folding. Recent progress in the understanding of the conformational distribution in SGLD simulations makes SGLD also an accurate method for quantitative studies. The SGLD partition function provides a way to convert the SGLD conformational distribution to the canonical ensemble distribution and to calculate ensemble average properties through reweighting. Based on the SGLD partition function, this work presents a force-momentum-based self-guided Langevin dynamics (SGLDfp) simulation method to directly sample the canonical ensemble. This method includes interaction forces in its guiding force to compensate the perturbation caused by the momentum-based guiding force so that it can approximately sample the canonical ensemble. Using several example systems, we demonstrate that SGLDfp simulations can approximately maintain the canonical ensemble distribution and significantly accelerate conformational searching. With optimal parameters, SGLDfp and SGLD simulations can cross energy barriers of more than 15 kT and 20 kT, respectively, at similar rates for LD simulations to cross energy barriers of 10 kT. The SGLDfp method is size extensive and works well for large systems. For studies where preserving accessible conformational space is critical, such as free energy calculations and protein folding studies, SGLDfp is an efficient approach to search and sample the conformational space.

  13. Knowledge Based Cloud FE Simulation of Sheet Metal Forming Processes

    PubMed Central

    Zhou, Du; Yuan, Xi; Gao, Haoxiang; Wang, Ailing; Liu, Jun; El Fakir, Omer; Politis, Denis J.; Wang, Liliang; Lin, Jianguo

    2016-01-01

    The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions. PMID:28060298

  14. Knowledge Based Cloud FE Simulation of Sheet Metal Forming Processes.

    PubMed

    Zhou, Du; Yuan, Xi; Gao, Haoxiang; Wang, Ailing; Liu, Jun; El Fakir, Omer; Politis, Denis J; Wang, Liliang; Lin, Jianguo

    2016-12-13

    The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions.

  15. Shrinkage regression-based methods for microarray missing value imputation.

    PubMed

    Wang, Hsiuying; Chiu, Chia-Chun; Wu, Yi-Ching; Wu, Wei-Sheng

    2013-01-01

    Missing values commonly occur in the microarray data, which usually contain more than 5% missing values with up to 90% of genes affected. Inaccurate missing value estimation results in reducing the power of downstream microarray data analyses. Many types of methods have been developed to estimate missing values. Among them, the regression-based methods are very popular and have been shown to perform better than the other types of methods in many testing microarray datasets. To further improve the performances of the regression-based methods, we propose shrinkage regression-based methods. Our methods take the advantage of the correlation structure in the microarray data and select similar genes for the target gene by Pearson correlation coefficients. Besides, our methods incorporate the least squares principle, utilize a shrinkage estimation approach to adjust the coefficients of the regression model, and then use the new coefficients to estimate missing values. Simulation results show that the proposed methods provide more accurate missing value estimation in six testing microarray datasets than the existing regression-based methods do. Imputation of missing values is a very important aspect of microarray data analyses because most of the downstream analyses require a complete dataset. Therefore, exploring accurate and efficient methods for estimating missing values has become an essential issue. Since our proposed shrinkage regression-based methods can provide accurate missing value estimation, they are competitive alternatives to the existing regression-based methods.

  16. An Immersed Boundary-Lattice Boltzmann Method for Simulating Particulate Flows

    NASA Astrophysics Data System (ADS)

    Zhang, Baili; Cheng, Ming; Lou, Jing

    2013-11-01

    A two-dimensional momentum exchange-based immersed boundary-lattice Boltzmann method developed by X.D. Niu et al. (2006) has been extended in three-dimensions for solving fluid-particles interaction problems. This method combines the most desirable features of the lattice Boltzmann method and the immersed boundary method by using a regular Eulerian mesh for the flow domain and a Lagrangian mesh for the moving particles in the flow field. The non-slip boundary conditions for the fluid and the particles are enforced by adding a force density term into the lattice Boltzmann equation, and the forcing term is simply calculated by the momentum exchange of the boundary particle density distribution functions, which are interpolated by the Lagrangian polynomials from the underlying Eulerian mesh. This method preserves the advantages of lattice Boltzmann method in tracking a group of particles and, at the same time, provides an alternative approach to treat solid-fluid boundary conditions. Numerical validations show that the present method is very accurate and efficient. The present method will be further developed to simulate more complex problems with particle deformation, particle-bubble and particle-droplet interactions.

  17. Comparing Simulations and Observations of Galaxy Evolution: Methods for Constraining the Nature of Stellar Feedback

    NASA Astrophysics Data System (ADS)

    Hummels, Cameron

    Computational hydrodynamical simulations are a very useful tool for understanding how galaxies form and evolve over cosmological timescales not easily revealed through observations. However, they are only useful if they reproduce the sorts of galaxies that we see in the real universe. One of the ways in which simulations of this sort tend to fail is in the prescription of stellar feedback, the process by which nascent stars return material and energy to their immediate environments. Careful treatment of this interaction in subgrid models, so-called because they operate on scales below the resolution of the simulation, is crucial for the development of realistic galaxy models. Equally important is developing effective methods for comparing simulation data against observations to ensure galaxy models which mimic reality and inform us about natural phenomena. This thesis examines the formation and evolution of galaxies and the observable characteristics of the resulting systems. We employ extensive use of cosmological hydrodynamical simulations in order to simulate and interpret the evolution of massive spiral galaxies like our own Milky Way. First, we create a method for producing synthetic photometric images of grid-based hydrodynamical models for use in a direct comparison against observations in a variety of filter bands. We apply this method to a simulation of a cluster of galaxies to investigate the nature of the red-sequence/blue-cloud dichotomy in the galaxy color-magnitude diagram. Second, we implement several subgrid models governing the complex behavior of gas and stars on small scales in our galaxy models. Several numerical simulations are conducted with similar initial conditions, where we systematically vary the subgrid models, afterward assessing their efficacy through comparisons of their internal kinematics with observed systems. Third, we generate an additional method to compare observations with simulations, focusing on the tenuous circumgalactic

  18. Immersed boundary methods for simulating fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Yang, Xiaolei

    2014-02-01

    Fluid-structure interaction (FSI) problems commonly encountered in engineering and biological applications involve geometrically complex flexible or rigid bodies undergoing large deformations. Immersed boundary (IB) methods have emerged as a powerful simulation tool for tackling such flows due to their inherent ability to handle arbitrarily complex bodies without the need for expensive and cumbersome dynamic re-meshing strategies. Depending on the approach such methods adopt to satisfy boundary conditions on solid surfaces they can be broadly classified as diffused and sharp interface methods. In this review, we present an overview of the fundamentals of both classes of methods with emphasis on solution algorithms for simulating FSI problems. We summarize and juxtapose different IB approaches for imposing boundary conditions, efficient iterative algorithms for solving the incompressible Navier-Stokes equations in the presence of dynamic immersed boundaries, and strong and loose coupling FSI strategies. We also present recent results from the application of such methods to study a wide range of problems, including vortex-induced vibrations, aquatic swimming, insect flying, human walking and renewable energy. Limitations of such methods and the need for future research to mitigate them are also discussed.

  19. Development of modern approach to absorbed dose assessment in radionuclide therapy, based on Monte Carlo method simulation of patient scintigraphy

    NASA Astrophysics Data System (ADS)

    Lysak, Y. V.; Klimanov, V. A.; Narkevich, B. Ya

    2017-01-01

    One of the most difficult problems of modern radionuclide therapy (RNT) is control of the absorbed dose in pathological volume. This research presents new approach based on estimation of radiopharmaceutical (RP) accumulated activity value in tumor volume, based on planar scintigraphic images of the patient and calculated radiation transport using Monte Carlo method, including absorption and scattering in biological tissues of the patient, and elements of gamma camera itself. In our research, to obtain the data, we performed modeling scintigraphy of the vial with administered to the patient activity of RP in gamma camera, the vial was placed at the certain distance from the collimator, and the similar study was performed in identical geometry, with the same values of activity of radiopharmaceuticals in the pathological target in the body of the patient. For correct calculation results, adapted Fisher-Snyder human phantom was simulated in MCNP program. In the context of our technique, calculations were performed for different sizes of pathological targets and various tumors deeps inside patient’s body, using radiopharmaceuticals based on a mixed β-γ-radiating (131I, 177Lu), and clear β- emitting (89Sr, 90Y) therapeutic radionuclides. Presented method can be used for adequate implementing in clinical practice estimation of absorbed doses in the regions of interest on the basis of planar scintigraphy of the patient with sufficient accuracy.

  20. Simulation tools for guided wave based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Mesnil, Olivier; Imperiale, Alexandre; Demaldent, Edouard; Baronian, Vahan; Chapuis, Bastien

    2018-04-01

    Structural Health Monitoring (SHM) is a thematic derived from Non Destructive Evaluation (NDE) based on the integration of sensors onto or into a structure in order to monitor its health without disturbing its regular operating cycle. Guided wave based SHM relies on the propagation of guided waves in plate-like or extruded structures. Using piezoelectric transducers to generate and receive guided waves is one of the most widely accepted paradigms due to the low cost and low weight of those sensors. A wide range of techniques for flaw detection based on the aforementioned setup is available in the literature but very few of these techniques have found industrial applications yet. A major difficulty comes from the sensitivity of guided waves to a substantial number of parameters such as the temperature or geometrical singularities, making guided wave measurement difficult to analyze. In order to apply guided wave based SHM techniques to a wider spectrum of applications and to transfer those techniques to the industry, the CEA LIST develops novel numerical methods. These methods facilitate the evaluation of the robustness of SHM techniques for multiple applicative cases and ease the analysis of the influence of various parameters, such as sensors positioning or environmental conditions. The first numerical tool is the guided wave module integrated to the commercial software CIVA, relying on a hybrid modal-finite element formulation to compute the guided wave response of perturbations (cavities, flaws…) in extruded structures of arbitrary cross section such as rails or pipes. The second numerical tool is based on the spectral element method [2] and simulates guided waves in both isotropic (metals) and orthotropic (composites) plate like-structures. This tool is designed to match the widely accepted sparse piezoelectric transducer array SHM configuration in which each embedded sensor acts as both emitter and receiver of guided waves. This tool is under development and

  1. Vehicle response-based track geometry assessment using multi-body simulation

    NASA Astrophysics Data System (ADS)

    Kraft, Sönke; Causse, Julien; Coudert, Frédéric

    2018-02-01

    The assessment of the geometry of railway tracks is an indispensable requirement for safe rail traffic. Defects which represent a risk for the safety of the train have to be identified and the necessary measures taken. According to current standards, amplitude thresholds are applied to the track geometry parameters measured by recording cars. This geometry-based assessment has proved its value but suffers from the low correlation between the geometry parameters and the vehicle reactions. Experience shows that some defects leading to critical vehicle reactions are underestimated by this approach. The use of vehicle responses in the track geometry assessment process allows identifying critical defects and improving the maintenance operations. This work presents a vehicle response-based assessment method using multi-body simulation. The choice of the relevant operation conditions and the estimation of the simulation uncertainty are outlined. The defects are identified from exceedances of track geometry and vehicle response parameters. They are then classified using clustering methods and the correlation with vehicle response is analysed. The use of vehicle responses allows the detection of critical defects which are not identified from geometry parameters.

  2. Multidimensional kinetic simulations using dissipative closures and other reduced Vlasov methods for differing particle magnetizations

    NASA Astrophysics Data System (ADS)

    Newman, David L.

    2006-10-01

    Kinetic plasma simulations in which the phase-space distribution functions are advanced directly via the coupled Vlasov and Poisson (or Maxwell) equations---better known simply as Vlasov simulations---provide a valuable low-noise complement to the more commonly employed Particle-in-Cell (PIC) simulations. However, in more than one spatial dimension Vlasov simulations become numerically demanding due to the high dimensionality of x--v phase-space. Methods that can reduce this computational demand are therefore highly desirable. Several such methods will be presented, which treat the phase-space dynamics along a dominant dimension (e.g., parallel to a beam or current) with the full Vlasov propagator, while employing a reduced description, such as moment equations, for the evolution perpendicular to the dominant dimension. A key difference between the moment-based (and other reduced) methods considered here and standard fluid methods is that the moments are now functions of a phase-space coordinate (e.g. moments of vy in z--vz--y phase space, where z is the dominant dimension), rather than functions of spatial coordinates alone. Of course, moment-based methods require closure. For effectively unmagnetized species, new dissipative closure methods inspired by those of Hammett and Perkins [PRL, 64, 3019 (1990)] have been developed, which exactly reproduce the linear electrostatic response for a broad class of distributions with power-law tails, as are commonly measured in space plasmas. The nonlinear response, which requires more care, will also be discussed. For weakly magnetized species (i.e., φs<φs) an alternative algorithm has been developed in which the distributions are assumed to gyrate about the magnetic field with a fixed nominal perpendicular ``thermal'' velocity, thereby reducing the required phase-space dimension by one. These reduced algorithms have been incorporated into 2-D codes used to study the evolution of nonlinear structures such as double layers

  3. Simulation-based learning: Just like the real thing

    PubMed Central

    Lateef, Fatimah

    2010-01-01

    Simulation is a technique for practice and learning that can be applied to many different disciplines and trainees. It is a technique (not a technology) to replace and amplify real experiences with guided ones, often “immersive” in nature, that evoke or replicate substantial aspects of the real world in a fully interactive fashion. Simulation-based learning can be the way to develop health professionals’ knowledge, skills, and attitudes, whilst protecting patients from unnecessary risks. Simulation-based medical education can be a platform which provides a valuable tool in learning to mitigate ethical tensions and resolve practical dilemmas. Simulation-based training techniques, tools, and strategies can be applied in designing structured learning experiences, as well as be used as a measurement tool linked to targeted teamwork competencies and learning objectives. It has been widely applied in fields such aviation and the military. In medicine, simulation offers good scope for training of interdisciplinary medical teams. The realistic scenarios and equipment allows for retraining and practice till one can master the procedure or skill. An increasing number of health care institutions and medical schools are now turning to simulation-based learning. Teamwork training conducted in the simulated environment may offer an additive benefit to the traditional didactic instruction, enhance performance, and possibly also help reduce errors. PMID:21063557

  4. Methods of parallel computation applied on granular simulations

    NASA Astrophysics Data System (ADS)

    Martins, Gustavo H. B.; Atman, Allbens P. F.

    2017-06-01

    Every year, parallel computing has becoming cheaper and more accessible. As consequence, applications were spreading over all research areas. Granular materials is a promising area for parallel computing. To prove this statement we study the impact of parallel computing in simulations of the BNE (Brazil Nut Effect). This property is due the remarkable arising of an intruder confined to a granular media when vertically shaken against gravity. By means of DEM (Discrete Element Methods) simulations, we study the code performance testing different methods to improve clock time. A comparison between serial and parallel algorithms, using OpenMP® is also shown. The best improvement was obtained by optimizing the function that find contacts using Verlet's cells.

  5. Resolved-particle simulation by the Physalis method: Enhancements and new capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierakowski, Adam J., E-mail: sierakowski@jhu.edu; Prosperetti, Andrea; Faculty of Science and Technology and J.M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede

    2016-03-15

    We present enhancements and new capabilities of the Physalis method for simulating disperse multiphase flows using particle-resolved simulation. The current work enhances the previous method by incorporating a new type of pressure-Poisson solver that couples with a new Physalis particle pressure boundary condition scheme and a new particle interior treatment to significantly improve overall numerical efficiency. Further, we implement a more efficient method of calculating the Physalis scalar products and incorporate short-range particle interaction models. We provide validation and benchmarking for the Physalis method against experiments of a sedimenting particle and of normal wall collisions. We conclude with an illustrativemore » simulation of 2048 particles sedimenting in a duct. In the appendix, we present a complete and self-consistent description of the analytical development and numerical methods.« less

  6. Efficient Monte Carlo Methods for Biomolecular Simulations.

    NASA Astrophysics Data System (ADS)

    Bouzida, Djamal

    A new approach to efficient Monte Carlo simulations of biological molecules is presented. By relaxing the usual restriction to Markov processes, we are able to optimize performance while dealing directly with the inhomogeneity and anisotropy inherent in these systems. The advantage of this approach is that we can introduce a wide variety of Monte Carlo moves to deal with complicated motions of the molecule, while maintaining full optimization at every step. This enables the use of a variety of collective rotational moves that relax long-wavelength modes. We were able to show by explicit simulations that the resulting algorithms substantially increase the speed of the simulation while reproducing the correct equilibrium behavior. This approach is particularly intended for simulations of macromolecules, although we expect it to be useful in other situations. The dynamic optimization of the new Monte Carlo methods makes them very suitable for simulated annealing experiments on all systems whose state space is continuous in general, and to the protein folding problem in particular. We introduce an efficient annealing schedule using preferential bias moves. Our simulated annealing experiments yield structures whose free energies were lower than the equilibrated X-ray structure, which leads us to believe that the empirical energy function used does not fully represent the interatomic interactions. Furthermore, we believe that the largest discrepancies involve the solvent effects in particular.

  7. A methodology towards virtualisation-based high performance simulation platform supporting multidisciplinary design of complex products

    NASA Astrophysics Data System (ADS)

    Ren, Lei; Zhang, Lin; Tao, Fei; (Luke) Zhang, Xiaolong; Luo, Yongliang; Zhang, Yabin

    2012-08-01

    Multidisciplinary design of complex products leads to an increasing demand for high performance simulation (HPS) platforms. One great challenge is how to achieve high efficient utilisation of large-scale simulation resources in distributed and heterogeneous environments. This article reports a virtualisation-based methodology to realise a HPS platform. This research is driven by the issues concerning large-scale simulation resources deployment and complex simulation environment construction, efficient and transparent utilisation of fine-grained simulation resources and high reliable simulation with fault tolerance. A framework of virtualisation-based simulation platform (VSIM) is first proposed. Then the article investigates and discusses key approaches in VSIM, including simulation resources modelling, a method to automatically deploying simulation resources for dynamic construction of system environment, and a live migration mechanism in case of faults in run-time simulation. Furthermore, the proposed methodology is applied to a multidisciplinary design system for aircraft virtual prototyping and some experiments are conducted. The experimental results show that the proposed methodology can (1) significantly improve the utilisation of fine-grained simulation resources, (2) result in a great reduction in deployment time and an increased flexibility for simulation environment construction and (3)achieve fault tolerant simulation.

  8. Systematic review of skills transfer after surgical simulation-based training.

    PubMed

    Dawe, S R; Pena, G N; Windsor, J A; Broeders, J A J L; Cregan, P C; Hewett, P J; Maddern, G J

    2014-08-01

    Simulation-based training assumes that skills are directly transferable to the patient-based setting, but few studies have correlated simulated performance with surgical performance. A systematic search strategy was undertaken to find studies published since the last systematic review, published in 2007. Inclusion of articles was determined using a predetermined protocol, independent assessment by two reviewers and a final consensus decision. Studies that reported on the use of surgical simulation-based training and assessed the transferability of the acquired skills to a patient-based setting were included. Twenty-seven randomized clinical trials and seven non-randomized comparative studies were included. Fourteen studies investigated laparoscopic procedures, 13 endoscopic procedures and seven other procedures. These studies provided strong evidence that participants who reached proficiency in simulation-based training performed better in the patient-based setting than their counterparts who did not have simulation-based training. Simulation-based training was equally as effective as patient-based training for colonoscopy, laparoscopic camera navigation and endoscopic sinus surgery in the patient-based setting. These studies strengthen the evidence that simulation-based training, as part of a structured programme and incorporating predetermined proficiency levels, results in skills transfer to the operative setting. © 2014 BJS Society Ltd. Published by John Wiley & Sons Ltd.

  9. On simulating flow with multiple time scales using a method of averages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolin, L.G.

    1997-12-31

    The author presents a new computational method based on averaging to efficiently simulate certain systems with multiple time scales. He first develops the method in a simple one-dimensional setting and employs linear stability analysis to demonstrate numerical stability. He then extends the method to multidimensional fluid flow. His method of averages does not depend on explicit splitting of the equations nor on modal decomposition. Rather he combines low order and high order algorithms in a generalized predictor-corrector framework. He illustrates the methodology in the context of a shallow fluid approximation to an ocean basin circulation. He finds that his newmore » method reproduces the accuracy of a fully explicit second-order accurate scheme, while costing less than a first-order accurate scheme.« less

  10. Extending simulation modeling to activity-based costing for clinical procedures.

    PubMed

    Glick, N D; Blackmore, C C; Zelman, W N

    2000-04-01

    A simulation model was developed to measure costs in an Emergency Department setting for patients presenting with possible cervical-spine injury who needed radiological imaging. Simulation, a tool widely used to account for process variability but typically focused on utilization and throughput analysis, is being introduced here as a realistic means to perform an activity-based-costing (ABC) analysis, because traditional ABC methods have difficulty coping with process variation in healthcare. Though the study model has a very specific application, it can be generalized to other settings simply by changing the input parameters. In essence, simulation was found to be an accurate and viable means to conduct an ABC analysis; in fact, the output provides more complete information than could be achieved through other conventional analyses, which gives management more leverage with which to negotiate contractual reimbursements.

  11. A Virtual Reality-Based Simulation of Abdominal Surgery

    DTIC Science & Technology

    1994-06-30

    415) 591-7881 In! IhNiI 1 SHORT TITLE: A Virtual Reality -Based Simulation of Abdominal Surgery REPORTING PERIOD: October 31, 1993-June 30, 1994 The...Report - A Virtual Reality -Based Simulation Of Abdominal Surgery Page 2 June 21, 1994 TECHNICAL REPORT SUMMARY Virtual Reality is a marriage between...applications of this technology. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations. simulate and

  12. The UPSF code: a metaprogramming-based high-performance automatically parallelized plasma simulation framework

    NASA Astrophysics Data System (ADS)

    Gao, Xiatian; Wang, Xiaogang; Jiang, Binhao

    2017-10-01

    UPSF (Universal Plasma Simulation Framework) is a new plasma simulation code designed for maximum flexibility by using edge-cutting techniques supported by C++17 standard. Through use of metaprogramming technique, UPSF provides arbitrary dimensional data structures and methods to support various kinds of plasma simulation models, like, Vlasov, particle in cell (PIC), fluid, Fokker-Planck, and their variants and hybrid methods. Through C++ metaprogramming technique, a single code can be used to arbitrary dimensional systems with no loss of performance. UPSF can also automatically parallelize the distributed data structure and accelerate matrix and tensor operations by BLAS. A three-dimensional particle in cell code is developed based on UPSF. Two test cases, Landau damping and Weibel instability for electrostatic and electromagnetic situation respectively, are presented to show the validation and performance of the UPSF code.

  13. Geometrical force constraint method for vessel and x-ray angiogram simulation.

    PubMed

    Song, Shuang; Yang, Jian; Fan, Jingfan; Cong, Weijian; Ai, Danni; Zhao, Yitian; Wang, Yongtian

    2016-01-01

    This study proposes a novel geometrical force constraint method for 3-D vasculature modeling and angiographic image simulation. For this method, space filling force, gravitational force, and topological preserving force are proposed and combined for the optimization of the topology of the vascular structure. The surface covering force and surface adhesion force are constructed to drive the growth of the vasculature on any surface. According to the combination effects of the topological and surface adhering forces, a realistic vasculature can be effectively simulated on any surface. The image projection of the generated 3-D vascular structures is simulated according to the perspective projection and energy attenuation principles of X-rays. Finally, the simulated projection vasculature is fused with a predefined angiographic mask image to generate a realistic angiogram. The proposed method is evaluated on a CT image and three generally utilized surfaces. The results fully demonstrate the effectiveness and robustness of the proposed method.

  14. Simulation of random road microprofile based on specified correlation function

    NASA Astrophysics Data System (ADS)

    Rykov, S. P.; Rykova, O. A.; Koval, V. S.; Vlasov, V. G.; Fedotov, K. V.

    2018-03-01

    The paper aims to develop a numerical simulation method and an algorithm for a random microprofile of special roads based on the specified correlation function. The paper used methods of correlation, spectrum and numerical analysis. It proves that the transfer function of the generating filter for known expressions of spectrum input and output filter characteristics can be calculated using a theorem on nonnegative and fractional rational factorization and integral transformation. The model of the random function equivalent of the real road surface microprofile enables us to assess springing system parameters and identify ranges of variations.

  15. Multigrid methods for numerical simulation of laminar diffusion flames

    NASA Technical Reports Server (NTRS)

    Liu, C.; Liu, Z.; Mccormick, S.

    1993-01-01

    This paper documents the result of a computational study of multigrid methods for numerical simulation of 2D diffusion flames. The focus is on a simplified combustion model, which is assumed to be a single step, infinitely fast and irreversible chemical reaction with five species (C3H8, O2, N2, CO2 and H2O). A fully-implicit second-order hybrid scheme is developed on a staggered grid, which is stretched in the streamwise coordinate direction. A full approximation multigrid scheme (FAS) based on line distributive relaxation is developed as a fast solver for the algebraic equations arising at each time step. Convergence of the process for the simplified model problem is more than two-orders of magnitude faster than other iterative methods, and the computational results show good grid convergence, with second-order accuracy, as well as qualitatively agreement with the results of other researchers.

  16. Simulation-based artifact correction (SBAC) for metrological computed tomography

    NASA Astrophysics Data System (ADS)

    Maier, Joscha; Leinweber, Carsten; Sawall, Stefan; Stoschus, Henning; Ballach, Frederic; Müller, Tobias; Hammer, Michael; Christoph, Ralf; Kachelrieß, Marc

    2017-06-01

    Computed tomography (CT) is a valuable tool for the metrolocical assessment of industrial components. However, the application of CT to the investigation of highly attenuating objects or multi-material components is often restricted by the presence of CT artifacts caused by beam hardening, x-ray scatter, off-focal radiation, partial volume effects or the cone-beam reconstruction itself. In order to overcome this limitation, this paper proposes an approach to calculate a correction term that compensates for the contribution of artifacts and thus enables an appropriate assessment of these components using CT. Therefore, we make use of computer simulations of the CT measurement process. Based on an appropriate model of the object, e.g. an initial reconstruction or a CAD model, two simulations are carried out. One simulation considers all physical effects that cause artifacts using dedicated analytic methods as well as Monte Carlo-based models. The other one represents an ideal CT measurement i.e. a measurement in parallel beam geometry with a monochromatic, point-like x-ray source and no x-ray scattering. Thus, the difference between these simulations is an estimate for the present artifacts and can be used to correct the acquired projection data or the corresponding CT reconstruction, respectively. The performance of the proposed approach is evaluated using simulated as well as measured data of single and multi-material components. Our approach yields CT reconstructions that are nearly free of artifacts and thereby clearly outperforms commonly used artifact reduction algorithms in terms of image quality. A comparison against tactile reference measurements demonstrates the ability of the proposed approach to increase the accuracy of the metrological assessment significantly.

  17. Diffraction-Based Density Restraints for Membrane and Membrane-Peptide Molecular Dynamics Simulations

    PubMed Central

    Benz, Ryan W.; Nanda, Hirsh; Castro-Román, Francisco; White, Stephen H.; Tobias, Douglas J.

    2006-01-01

    We have recently shown that current molecular dynamics (MD) atomic force fields are not yet able to produce lipid bilayer structures that agree with experimentally-determined structures within experimental errors. Because of the many advantages offered by experimentally validated simulations, we have developed a novel restraint method for membrane MD simulations that uses experimental diffraction data. The restraints, introduced into the MD force field, act upon specified groups of atoms to restrain their mean positions and widths to values determined experimentally. The method was first tested using a simple liquid argon system, and then applied to a neat dioleoylphosphatidylcholine (DOPC) bilayer at 66% relative humidity and to the same bilayer containing the peptide melittin. Application of experiment-based restraints to the transbilayer double-bond and water distributions of neat DOPC bilayers led to distributions that agreed with the experimental values. Based upon the experimental structure, the restraints improved the simulated structure in some regions while introducing larger differences in others, as might be expected from imperfect force fields. For the DOPC-melittin system, the experimental transbilayer distribution of melittin was used as a restraint. The addition of the peptide caused perturbations of the simulated bilayer structure, but which were larger than observed experimentally. The melittin distribution of the simulation could be fit accurately to a Gaussian with parameters close to the observed ones, indicating that the restraints can be used to produce an ensemble of membrane-bound peptide conformations that are consistent with experiments. Such ensembles pave the way for understanding peptide-bilayer interactions at the atomic level. PMID:16950837

  18. Developing a Theory-Based Simulation Educator Resource.

    PubMed

    Thomas, Christine M; Sievers, Lisa D; Kellgren, Molly; Manning, Sara J; Rojas, Deborah E; Gamblian, Vivian C

    2015-01-01

    The NLN Leadership Development Program for Simulation Educators 2014 faculty development group identified a lack of a common language/terminology to outline the progression of expertise of simulation educators. The group analyzed Benner's novice-to-expert model and applied its levels of experience to simulation educator growth. It established common operational categories of faculty development and used them to organize resources that support progression toward expertise. The resulting theory-based Simulator Educator Toolkit outlines levels of ability and provides quality resources to meet the diverse needs of simulation educators and team members.

  19. Fuzzy-based simulation of real color blindness.

    PubMed

    Lee, Jinmi; dos Santos, Wellington P

    2010-01-01

    About 8% of men are affected by color blindness. That population is at a disadvantage since they cannot perceive a substantial amount of the visual information. This work presents two computational tools developed to assist color blind people. The first one tests color blindness and assess its severity. The second tool is based on Fuzzy Logic, and implements a method proposed to simulate real red and green color blindness in order to generate synthetic cases of color vision disturbance in a statistically significant amount. Our purpose is to develop correction tools and obtain a deeper understanding of the accessibility problems faced by people with chromatic visual impairment.

  20. Precipitation frequency analysis based on regional climate simulations in Central Alberta

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Chao; Gan, Thian Yew; Hanrahan, Janel L.

    2014-03-01

    A Regional Climate Model (RCM), MM5 (the Fifth Generation Pennsylvania State University/National Center for Atmospheric Research mesoscale model), is used to simulate summer precipitation in Central Alberta. MM5 was set up with a one-way, three-domain nested framework, with domain resolutions of 27, 9, and 3 km, respectively, and forced with ERA-Interim reanalysis data of ECMWF (European Centre for Medium-Range Weather Forecasts). The objective is to develop high resolution, grid-based Intensity-Duration-Frequency (IDF) curves based on the simulated annual maximums of precipitation (AMP) data for durations ranging from 15-min to 24-h. The performance of MM5 was assessed in terms of simulated rainfall intensity, precipitable water, and 2-m air temperature. Next, the grid-based IDF curves derived from MM5 were compared to IDF curves derived from six RCMs of the North American Regional Climate Change Assessment Program (NARCCAP) set up with 50-km grids, driven with NCEP-DOE (National Centers for Environmental Prediction-Department of Energy) Reanalysis II data, and regional IDF curves derived from observed rain gauge data (RG-IDF). The analyzed results indicate that 6-h simulated precipitable water and 2-m temperature agree well with the ERA-Interim reanalysis data. However, compared to RG-IDF curves, IDF curves based on simulated precipitation data of MM5 are overestimated especially for IDF curves of 2-year return period. In contract, IDF curves developed from NARCCAP data suffer from under-estimation and differ more from RG-IDF curves than the MM5 IDF curves. The over-estimation of IDF curves of MM5 was corrected by a quantile-based, bias correction method. By dynamically downscale the ERA-Interim and after bias correction, it is possible to develop IDF curves useful for regions with limited or no rain gauge data. This estimation process can be further extended to predict future grid-based IDF curves subjected to possible climate change impacts based on climate