Sample records for based single drop

  1. A mix-and-read drop-based in vitro two-hybrid method for screening high-affinity peptide binders

    PubMed Central

    Cui, Naiwen; Zhang, Huidan; Schneider, Nils; Tao, Ye; Asahara, Haruichi; Sun, Zhiyi; Cai, Yamei; Koehler, Stephan A.; de Greef, Tom F. A.; Abbaspourrad, Alireza; Weitz, David A.; Chong, Shaorong

    2016-01-01

    Drop-based microfluidics have recently become a novel tool by providing a stable linkage between phenotype and genotype for high throughput screening. However, use of drop-based microfluidics for screening high-affinity peptide binders has not been demonstrated due to the lack of a sensitive functional assay that can detect single DNA molecules in drops. To address this sensitivity issue, we introduced in vitro two-hybrid system (IVT2H) into microfluidic drops and developed a streamlined mix-and-read drop-IVT2H method to screen a random DNA library. Drop-IVT2H was based on the correlation between the binding affinity of two interacting protein domains and transcriptional activation of a fluorescent reporter. A DNA library encoding potential peptide binders was encapsulated with IVT2H such that single DNA molecules were distributed in individual drops. We validated drop-IVT2H by screening a three-random-residue library derived from a high-affinity MDM2 inhibitor PMI. The current drop-IVT2H platform is ideally suited for affinity screening of small-to-medium-sized libraries (103–106). It can obtain hits within a single day while consuming minimal amounts of reagents. Drop-IVT2H simplifies and accelerates the drop-based microfluidics workflow for screening random DNA libraries, and represents a novel alternative method for protein engineering and in vitro directed protein evolution. PMID:26940078

  2. Using the Image Analysis Method for Describing Soil Detachment by a Single Water Drop Impact

    PubMed Central

    Ryżak, Magdalena; Bieganowski, Andrzej

    2012-01-01

    The aim of the present work was to develop a method based on image analysis for describing soil detachment caused by the impact of a single water drop. The method consisted of recording tracks made by splashed particles on blotting paper under an optical microscope. The analysis facilitated division of the recorded particle tracks on the paper into drops, “comets” and single particles. Additionally, the following relationships were determined: (i) the distances of splash; (ii) the surface areas of splash tracks into relation to distance; (iii) the surface areas of the solid phase transported over a given distance; and (iv) the ratio of the solid phase to the splash track area in relation to distance. Furthermore, the proposed method allowed estimation of the weight of soil transported by a single water drop splash in relation to the distance of the water drop impact. It was concluded that the method of image analysis of splashed particles facilitated analysing the results at very low water drop energy and generated by single water drops.

  3. Bubble and Drop Nonlinear Dynamics (BDND)

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Leal, L. Gary; Thomas, D. A.; Crouch, R. K.

    1998-01-01

    Free drops and bubbles are weakly nonlinear mechanical systems that are relatively simple to characterize experimentally in 1-G as well as in microgravity. The understanding of the details of their motion contributes to the fundamental study of nonlinear phenomena and to the measurement of the thermophysical properties of freely levitated melts. The goal of this Glovebox-based experimental investigation is the low-gravity assessment of the capabilities of a modular apparatus based on ultrasonic resonators and on the pseudo- extinction optical method. The required experimental task is the accurate measurements of the large-amplitude dynamics of free drops and bubbles in the absence of large biasing influences such as gravity and levitation fields. A single-axis levitator used for the positioning of drops in air, and an ultrasonic water-filled resonator for the trapping of air bubbles have been evaluated in low-gravity and in 1-G. The basic feasibility of drop positioning and shape oscillations measurements has been verified by using a laptop-interfaced automated data acquisition and the optical extinction technique. The major purpose of the investigation was to identify the salient technical issues associated with the development of a full-scale Microgravity experiment on single drop and bubble dynamics.

  4. Acute Effects of Drop-Jump Protocols on Explosive Performances of Elite Handball Players.

    PubMed

    Dello Iacono, Antonio; Martone, Domenico; Padulo, Johnny

    2016-11-01

    Dello Iacono, A, Martone, D, and Padulo, J. Acute effects of drop-jump protocols on explosive performances of elite handball players. J Strength Cond Res 30(11): 3122-3133, 2016-This study aimed to assess the acute effects of vertical and horizontal drop jump-based postactivation potentiation (PAP) protocols on neuromuscular abilities in tasks such as jumping, sprinting, and change of direction (COD). Eighteen handball players were assessed before and after PAP regimens, consisting of either vertical single-leg drop-jumps (VDJ) or horizontal single-leg drop-jumps (HDJ) single-leg drop-jumps, on countermovement jump (CMJ), linear sprint, shuttle sprint, and agility performance. The HDJ led to greater improvement of the COD performance in comparison with the VDJ (-6.8 vs. -1.3%; p ≤ 0.05), whereas the VDJ caused greater improvement in the CMJ task compared with the HDJs (+6.5 vs. +1%; p ≤ 0.05). Moreover, the VDJ regimens compared with HDJ induced greater changes in most of the kinetic variables associated with vertical jumping performance, such as peak ground reaction forces (+9.6 vs. +1.3%), vertical displacement (-13.4 vs. -5.3%), leg-spring stiffness (+18.6 vs. +3.6%), contact time (-9.2 vs. -1.3%), and reactive strength index (+7.3 vs. +2.4%) (all comparisons with p ≤ 0.05). Conversely, the HDJ regimens were able to improve the COD performance only by reducing the contact time on COD more than the VDJ (-13.3 vs. -2.4% with p ≤ 0.05). The results showed that both PAPs were able to improve the performances that specifically featured similar force-orientation production. This investigation showed the crucial role that different and specific PAP regimens play in optimizing related functional performances. Specifically oriented vertical and horizontal single-leg drop-jump protocols represent viable means for achieving enhanced explosive-based tasks such as jumping and COD.

  5. Low-Temperature Band Transport and Impact of Contact Resistance in Organic Field-Effect Transistors Based on Single-Crystal Films of Ph-BTBT-C10

    NASA Astrophysics Data System (ADS)

    Cho, Joung-min; Mori, Takehiko

    2016-06-01

    Transistors based on single-crystal films of 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) fabricated using the blade-coating method are investigated by the four-probe method down to low temperatures. The four-probe mobility is as large as 18 cm2/V s at room temperature, and increases to 45 cm2/V s at 80 K. At 60 K the two-probe mobility drops abruptly by about 50%, but the mobility drop is mostly attributed to the increase of the source resistance. The carrier transport in the present single-crystal film is regarded as essentially bandlike down to 30 K.

  6. Bipedal gait model for precise gait recognition and optimal triggering in foot drop stimulator: a proof of concept.

    PubMed

    Shaikh, Muhammad Faraz; Salcic, Zoran; Wang, Kevin I-Kai; Hu, Aiguo Patrick

    2018-03-10

    Electrical stimulators are often prescribed to correct foot drop walking. However, commercial foot drop stimulators trigger inappropriately under certain non-gait scenarios. Past researches addressed this limitation by defining stimulation control based on automaton of a gait cycle executed by foot drop of affected limb/foot only. Since gait is a collaborative activity of both feet, this research highlights the role of normal foot for robust gait detection and stimulation triggering. A novel bipedal gait model is proposed where gait cycle is realized as an automaton based on concurrent gait sub-phases (states) from each foot. The input for state transition is fused information from feet-worn pressure and inertial sensors. Thereafter, a bipedal gait model-based stimulation control algorithm is developed. As a feasibility study, bipedal gait model and stimulation control are evaluated in real-time simulation manner on normal and simulated foot drop gait measurements from 16 able-bodied participants with three speed variations, under inappropriate triggering scenarios and with foot drop rehabilitation exercises. Also, the stimulation control employed in commercial foot drop stimulators and single foot gait-based foot drop stimulators are compared alongside. Gait detection accuracy (98.9%) and precise triggering under all investigations prove bipedal gait model reliability. This infers that gait detection leveraging bipedal periodicity is a promising strategy to rectify prevalent stimulation triggering deficiencies in commercial foot drop stimulators. Graphical abstract Bipedal information-based gait recognition and stimulation triggering.

  7. Impulsively Induced Jets from Viscoelastic Films for High-Resolution Printing

    NASA Astrophysics Data System (ADS)

    Turkoz, Emre; Perazzo, Antonio; Kim, Hyoungsoo; Stone, Howard A.; Arnold, Craig B.

    2018-02-01

    Understanding jet formation from non-Newtonian fluids is important for improving the quality of various printing and dispensing techniques. Here, we use a laser-based nozzleless method to investigate impulsively formed jets of non-Newtonian fluids. Experiments with a time-resolved imaging setup demonstrate multiple regimes during jet formation that can result in zero, single, or multiple drops per laser pulse. These regimes depend on the ink thickness, ink rheology, and laser energy. For optimized printing, it is desirable to select parameters that result in a single-drop breakup; however, the strain-rate dependent rheology of these inks makes it challenging to determine these conditions a priori. Rather, we present a methodology for characterizing these regimes using dimensionless parameters evaluated from the process parameters and measured ink rheology that are obtained prior to printing and, so, offer a criterion for a single-drop breakup.

  8. Priority Queue Based Reactive Buffer Management Policy for Delay Tolerant Network under City Based Environments.

    PubMed

    Ayub, Qaisar; Ngadi, Asri; Rashid, Sulma; Habib, Hafiz Adnan

    2018-01-01

    Delay Tolerant Network (DTN) multi-copy routing protocols are privileged to create and transmit multiple copies of each message that causes congestion and some messages are dropped. This process is known as reactive drop because messages were dropped re-actively to overcome buffer overflows. The existing reactive buffer management policies apply a single metric to drop source, relay and destine messages. Hereby, selection to drop a message is dubious because each message as source, relay or destine may have consumed dissimilar magnitude of network resources. Similarly, DTN has included time to live (ttl) parameter which defines lifetime of message. Hence, when ttl expires then message is automatically destroyed from relay nodes. However, time-to-live (ttl) is not applicable on messages reached at their destinations. Moreover, nodes keep replicating messages till ttl expires even-though large number of messages has already been dispersed. In this paper, we have proposed Priority Queue Based Reactive Buffer Management Policy (PQB-R) for DTN under City Based Environments. The PQB-R classifies buffered messages into source, relay and destine queues. Moreover, separate drop metric has been applied on individual queue. The experiment results prove that proposed PQB-R has reduced number of messages transmissions, message drop and increases delivery ratio.

  9. Priority Queue Based Reactive Buffer Management Policy for Delay Tolerant Network under City Based Environments

    PubMed Central

    Ngadi, Asri; Rashid, Sulma; Habib, Hafiz Adnan

    2018-01-01

    Delay Tolerant Network (DTN) multi-copy routing protocols are privileged to create and transmit multiple copies of each message that causes congestion and some messages are dropped. This process is known as reactive drop because messages were dropped re-actively to overcome buffer overflows. The existing reactive buffer management policies apply a single metric to drop source, relay and destine messages. Hereby, selection to drop a message is dubious because each message as source, relay or destine may have consumed dissimilar magnitude of network resources. Similarly, DTN has included time to live (ttl) parameter which defines lifetime of message. Hence, when ttl expires then message is automatically destroyed from relay nodes. However, time-to-live (ttl) is not applicable on messages reached at their destinations. Moreover, nodes keep replicating messages till ttl expires even-though large number of messages has already been dispersed. In this paper, we have proposed Priority Queue Based Reactive Buffer Management Policy (PQB-R) for DTN under City Based Environments. The PQB-R classifies buffered messages into source, relay and destine queues. Moreover, separate drop metric has been applied on individual queue. The experiment results prove that proposed PQB-R has reduced number of messages transmissions, message drop and increases delivery ratio. PMID:29438438

  10. Automated single cell sorting and deposition in submicroliter drops

    NASA Astrophysics Data System (ADS)

    Salánki, Rita; Gerecsei, Tamás; Orgovan, Norbert; Sándor, Noémi; Péter, Beatrix; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint

    2014-08-01

    Automated manipulation and sorting of single cells are challenging, when intact cells are needed for further investigations, e.g., RNA or DNA sequencing. We applied a computer controlled micropipette on a microscope admitting 80 PCR (Polymerase Chain Reaction) tubes to be filled with single cells in a cycle. Due to the Laplace pressure, fluid starts to flow out from the micropipette only above a critical pressure preventing the precise control of drop volume in the submicroliter range. We found an anomalous pressure additive to the Laplace pressure that we attribute to the evaporation of the drop. We have overcome the problem of the critical dropping pressure with sequentially operated fast fluidic valves timed with a millisecond precision. Minimum drop volume was 0.4-0.7 μl with a sorting speed of 15-20 s per cell. After picking NE-4C neuroectodermal mouse stem cells and human primary monocytes from a standard plastic Petri dish we could gently deposit single cells inside tiny drops. 94 ± 3% and 54 ± 7% of the deposited drops contained single cells for NE-4C and monocytes, respectively. 7.5 ± 4% of the drops contained multiple cells in case of monocytes. Remaining drops were empty. Number of cells deposited in a drop could be documented by imaging the Petri dish before and after sorting. We tuned the adhesion force of cells to make the manipulation successful without the application of microstructures for trapping cells on the surface. We propose that our straightforward and flexible setup opens an avenue for single cell isolation, critically needed for the rapidly growing field of single cell biology.

  11. Controlling charge on levitating drops.

    PubMed

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation.

  12. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocitymore » exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)« less

  13. Preparation and evaluation of HPMC-based pirfenidone solution in vivo.

    PubMed

    Yang, Mei; Yang, Yang-Fan; Lei, Ming; Ye, Cheng-Tian; Zhao, Chun-Shun; Xu, Jian-Gang; Wu, Kai-Li; Yu, Min-Bin

    2017-01-01

    Pirfenidone (PFD) has exhibited therapeutic potential in the treatment of cell proliferative disorders. The previously developed 0.5% water-based PFD eye drops by our team exhibited antiscarring effectiveness and ocular safety but with a limit of short half-life and poor bioavailability. To increase bioavailability of the water-based PFD eye drops, we prepared a viscous solution by adding hydroxypropyl methylcellulose (HPMC, F4M), which acted as a viscosity-enhancer. Subsequently, we compared the HPMC-based PFD solution with the water-based PFD eye drops. PFD solution with 1% HPMC (w/v) was prepared, and the viscosities at different shear rates were measured to investigate its rheology. PFD concentrations in the tear, aqueous humor, conjunctiva, cornea, and sclerae of New Zealand rabbits were detected at different time points with high-performance liquid chromatography (HPLC) following single instillation of the 0.5% PFD (w/v) water-based eye drops or HPMC-based solution. Compared with the 0.5% water-based PFD eye drops, the HPMC-based solution increased the PFD levels in tears and prolonged the residence time from 10 to more than 20 min (p < .01). Consequently, the concentrations of PFD in aqueous humor, conjunctiva, cornea, and sclera were elevated to varying degrees until 90 min after topical administration. The developed formulation possesses a same readily administration and simple preparation as the PFD eye drops; however, the HPMC-based solution exhibited the higher bioavailability.

  14. Internal Flows in Free Drops (IFFD)

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Sadhal, Satwindar S.; Thomas, D. A.; Crouch, R. K.

    1998-01-01

    Within the framework of an Earth-based research task investigating the internal flows within freely levitated drops, a low-gravity technology development experiment has been designed and carried out within the NASA Glovebox facility during the STS-83 and STS-94 Shuttle flights (MSL-1 mission). The goal was narrowly defined as the assessment of the capabilities of a resonant single-axis ultrasonic levitator to stably position free drops in the Shuttle environment with a precision required for the detailed measurement of internal flows. The results of this entirely crew-operated investigation indicate that the approach is fundamentally sound, but also that the ultimate stability of the positioning is highly dependent on the residual acceleration characteristic of the Spacecraft, and to a certain extent, on the initial drop deployment of the drop. The principal results are: the measured dependence of the residual drop rotation and equilibrium drop shape on the ultrasonic power level, the experimental evaluation of the typical drop translational stability in a realistic low-gravity environment, and the semi-quantitative evaluation of background internal flows within quasi-isothermal drops. Based on these results, we conclude that the successful design of a full-scale Microgravity experiment is possible, and would allow accurate the measurement of thermocapillary flows within transparent drops. The need has been demonstrated, however, for the capability for accurately deploying the drop, for a quiescent environment, and for precise mechanical adjustments of the levitator.

  15. Antimisting kerosene: Low temperature degradation and blending

    NASA Technical Reports Server (NTRS)

    Yavrouian, A.; Parikh, P.; Sarohia, V.

    1988-01-01

    The inline filtration characteristics of freshly blended and degraded antimisting fuels (AMK) at low temperature are examined. A needle valve degrader was modified to include partial recirculation of degraded fuel and heat addition in the bypass loop. A pressure drop across the needle valve of up to 4,000 psi was used. The pressure drop across a 325 mesh filter screen placed inline with the degrader and directly downstream of the needle valve was measured as a function of time for different values of pressure drop across the needle valve. A volume flux of 1 gpm/sq in was employed based on the frontal area of the screen. It was found that, at ambient temperatures, freshly blended AMK fuel could be degraded using a single pass degradation at 4,000 psi pressure drop across the needle valve to give acceptable filterability performance. At fuel temperatures below -20 C, degradation becomes increasingly difficult and a single pass technique results in unacceptable filtration performance. Recirculation of a fraction of the degraded fuel and heat addition in the bypass loop improved low temperature degradation performance. The problem is addressed of blending the AMK additive with Jet A at various base fuel temperatures.

  16. 49 CFR 178.603 - Drop test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the fourth sample). Fifth drop: On a corner (using the fifth sample). Bags—single-ply with a side seam...). Bags—single-ply without a side seam, or multi-ply Three—(two drops per bag) First drop: Flat on a wide...) For a bag, neither the outermost ply nor an outer packaging exhibits any damage likely to adversely...

  17. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber

    NASA Astrophysics Data System (ADS)

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-01

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.

  18. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber.

    PubMed

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-12

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.

  19. Experimental Investigation of two-phase nitrogen Cryo transfer line

    NASA Astrophysics Data System (ADS)

    Singh, G. K.; Nimavat, H.; Panchal, R.; Garg, A.; Srikanth, GLN; Patel, K.; Shah, P.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line.

  20. Rapid detection of atrazine and metolachlor in farm soils: gas chromatography-mass spectrometry-based analysis using the bubble-in-drop single drop microextraction enrichment method.

    PubMed

    Williams, D Bradley G; George, Mosotho J; Marjanovic, Ljiljana

    2014-08-06

    Tracking of metolachlor and atrazine herbicides in agricultural soils, from spraying through to harvest, was conducted using our recently reported "bubble-in-drop single-drop microextraction" method. The method showed good linearity (R(2) = 0.999 and 0.999) in the concentration range of 0.01-1.0 ng/mL with LOD values of 0.01 and 0.02 ng/mL for atrazine and metolachlor, respectively. Sonication methods were poor at releasing these herbicides from the soil matrixes, while hot water extraction readily liberated them, providing an efficient accessible alternative to sonication techniques. Good recoveries of 97% and 105% were shown for atrazine and metolachlor, respectively, from the soil. The spiking protocol was also investigated, resulting in a traceless spiking method. We demonstrate a very sensitive technique by which to assess, for example, the length of residence of pesticides in given soils and thus risk of exposure.

  1. 49 CFR 178.603 - Drop test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (using the fourth sample). Fifth drop: On a corner (using the fifth sample). Bags—single-ply with a side... samples). Bags—single-ply without a side seam, or multi-ply Three—(two drops per bag) First drop: Flat on... the drum is no longer sift-proof; (3) For a bag, neither the outermost ply nor an outer packaging...

  2. Preliminary investigation into the analytical potential of a multiwavelength fiber drop analyzer with special reference to applications in medical diagnostics

    NASA Astrophysics Data System (ADS)

    McMillan, Norman D.; O'Mongain, Eon; Walsh, James E.; Breen, Liam; McMillan, Duncan G.; Power, Michael J.; O'Dea, John P.; Kinsella, Seamus M.; Kelly, Mairead P.; Hammil, Conor; Orr, Dermot

    1994-12-01

    A preliminary investigation into the use of multiwavelength fiber drop analyzer (FDA) for the measurement of viscosity, spectral absorbance and refractive index is made with a view to obtaining conservative estimates of the instrumental capability of the FDA for these measurands. Some important new insights into drop vibrations are made from studies on the fiber drop traces (FDTs) of mechanically excited damped vibrations in drops with a set volume. A brief description of the feasibility measurements on the first application of the FDA in the diagnosis of disease in synovial fluid is given. Strong experimental evidence is reported for the existence of the surface-guided wave peak of the fiber drop trace and some new insights into the nature of the FDT are suggested based on a comparative study of the FDTs from a multiple-wavelength and a single-wavelength FDA. The earlier reported drop period dependence on applied electric field is critically reexamined, a new interpretation of this effect, is suggested, and an experimental study of clarification is given. Finally, a brief review of the projected capabilities of the FDA based on the work reported here is provided.

  3. Numerical modeling of the interaction of liquid drops and jets with shock waves and gas jets

    NASA Astrophysics Data System (ADS)

    Surov, V. S.

    1993-02-01

    The motion of a liquid drop (jet) and of the ambient gas is described, in the general case, by Navier-Stokes equations. An approximate solution to the interaction of a plane shock wave with a single liquid drop is presented. Based on the analysis, the general system of Navier-Stokes equations is reduced to two groups of equations, Euler equations for gas and Navier-Stokes equations for liquid; solutions to these equations are presented. The discussion also covers the modeling of the interaction of a shock wave with a drop screen, interaction of a liquid jet with a counterpropagating supersonic gas flow, and modeling of processes in a shock layer during the impact of a drop against an obstacle in gas flow.

  4. Actuation of digital micro drops by electrowetting on open microfluidic chips fabricated in photolithography.

    PubMed

    Ko, Hyojin; Lee, Jeong Soo; Jung, Chan-Hee; Choi, Jae-Hak; Kwon, Oh-Sun; Shin, Kwanwoo

    2014-08-01

    Basic manipulations of discrete liquid drops on opened microfluidic chips based on electrowetting on dielectrics were described. While most developed microfluidic chips are closed systems equipped with a top plate to cover mechanically and to contact electrically to drop samples, our chips are opened systems with a single plate without any electric contact to drops directly. The chips consist of a linear array of patterned electrodes at 1.8 mm pitch was fabricated on a glass plate coated with thin hydrophobic and dielectric layers by using various methods including photolithography, spin coating and ion sputtering. Several actuations such as lateral oscillation, colliding mergence and translational motion for 3-10 μL water drops have been demonstrated satisfactory. All these kinetic performances of opened chips were similar to those of closed chip systems, indicating superiority of a none-contact method for the transport of drops on opened microfluidic chips actuated by using electrowetting technique.

  5. Stress drop with constant, scale independent seismic efficiency and overshoot

    USGS Publications Warehouse

    Beeler, N.M.

    2001-01-01

    To model dissipated and radiated energy during earthquake stress drop, I calculate dynamic fault slip using a single degree of freedom spring-slider block and a laboratory-based static/kinetic fault strength relation with a dynamic stress drop proportional to effective normal stress. The model is scaled to earthquake size assuming a circular rupture; stiffness varies inversely with rupture radius, and rupture duration is proportional to radius. Calculated seismic efficiency, the ratio of radiated to total energy expended during stress drop, is in good agreement with laboratory and field observations. Predicted overshoot, a measure of how much the static stress drop exceeds the dynamic stress drop, is higher than previously published laboratory and seismic observations and fully elasto-dynamic calculations. Seismic efficiency and overshoot are constant, independent of normal stress and scale. Calculated variation of apparent stress with seismic moment resembles the observational constraints of McGarr [1999].

  6. Noncircular Cross Sections Could Enhance Mixing in Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Abdel-Hameed, Hesham

    2003-01-01

    A computational study has shown that by injecting drops in jets of gas having square, elliptical, triangular, or other noncircular injection cross sections, it should be possible to increase (relative to comparable situations having circular cross section) the entrainment and dispersion of liquid drops. This finding has practical significance for a variety of applications in which it is desirable to increase dispersion of drops. For example, in chemical-process sprays, increased dispersion leads to increases in chemical- reaction rates; in diesel engines, increasing the dispersion of drops of sprayed fuel reduces the production of soot; and in household and paint sprays, increasing the dispersion of drops makes it possible to cover larger surfaces. It has been known for some years that single-phase fluid jets that enter flow fields through noncircular inlets entrain more fluid than do comparable jets entering through circular inlets. The computational study reported here was directed in part toward determining whether and how this superior mixing characteristic of noncircular single phase jets translates to a similar benefit in cases of two-phase jets (that is, sprays). The study involved direct numerical simulations of single- and two-phase free jets with circular, elliptical, rectangular, square, and triangular inlet cross sections. The two-phase jets consisted of gas laden with liquid drops randomly injected at the inlets. To address the more interesting case of evaporating drops, the carrier gas in the jets was specified to be initially unvitiated by the vapor of the liquid chemical species and the initial temperature of the drops was chosen to be smaller than that of the gas. The mathematical model used in the study was constructed from the conservation equations for the two-phase flow and included complete couplings of mass, momentum, and energy based on thermodynamically self-consistent specification of the enthalpy, internal energy, and latent heat of vaporization of the vapor.

  7. Coupling analysis of high Q resonators in add-drop configuration through cavity ringdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Frigenti, G.; Arjmand, M.; Barucci, A.; Baldini, F.; Berneschi, S.; Farnesi, D.; Gianfreda, M.; Pelli, S.; Soria, S.; Aray, A.; Dumeige, Y.; Féron, P.; Nunzi Conti, G.

    2018-06-01

    An original method able to fully characterize high-Q resonators in an add-drop configuration has been implemented. The method is based on the study of two cavity ringdown (CRD) signals, which are produced at the transmission and drop ports by wavelength sweeping a resonance in a time interval comparable with the photon cavity lifetime. All the resonator parameters can be assessed with a single set of simultaneous measurements. We first developed a model describing the two CRD output signals and a fitting program able to deduce the key parameters from the measured profiles. We successfully validated the model with an experiment based on a fiber ring resonator of known characteristics. Finally, we characterized a high-Q, home-made, MgF2 whispering gallery mode disk resonator in the add-drop configuration, assessing its intrinsic and coupling parameters.

  8. Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform.

    PubMed

    Kaushik, Aniruddha M; Hsieh, Kuangwen; Chen, Liben; Shin, Dong Jin; Liao, Joseph C; Wang, Tza-Huei

    2017-11-15

    There remains an urgent need for rapid diagnostic methods that can evaluate antibiotic resistance for pathogenic bacteria in order to deliver targeted antibiotic treatments. Toward this end, we present a rapid and integrated single-cell biosensing platform, termed dropFAST, for bacterial growth detection and antimicrobial susceptibility assessment. DropFAST utilizes a rapid resazurin-based fluorescent growth assay coupled with stochastic confinement of bacteria in 20 pL droplets to detect signal from growing bacteria after 1h incubation, equivalent to 2-3 bacterial replications. Full integration of droplet generation, incubation, and detection into a single, uninterrupted stream also renders this platform uniquely suitable for in-line bacterial phenotypic growth assessment. To illustrate the concept of rapid digital antimicrobial susceptibility assessment, we employ the dropFAST platform to evaluate the antibacterial effect of gentamicin on E. coli growth. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A precise goniometer/tensiometer using a low cost single-board computer

    NASA Astrophysics Data System (ADS)

    Favier, Benoit; Chamakos, Nikolaos T.; Papathanasiou, Athanasios G.

    2017-12-01

    Measuring the surface tension and the Young contact angle of a droplet is extremely important for many industrial applications. Here, considering the booming interest for small and cheap but precise experimental instruments, we have constructed a low-cost contact angle goniometer/tensiometer, based on a single-board computer (Raspberry Pi). The device runs an axisymmetric drop shape analysis (ADSA) algorithm written in Python. The code, here named DropToolKit, was developed in-house. We initially present the mathematical framework of our algorithm and then we validate our software tool against other well-established ADSA packages, including the commercial ramé-hart DROPimage Advanced as well as the DropAnalysis plugin in ImageJ. After successfully testing for various combinations of liquids and solid surfaces, we concluded that our prototype device would be highly beneficial for industrial applications as well as for scientific research in wetting phenomena compared to the commercial solutions.

  10. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber

    PubMed Central

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-01

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices. PMID:25578467

  11. Reliability of 3-Dimensional Measures of Single-Leg Cross Drop Landing Across 3 Different Institutions: Implications for Multicenter Biomechanical and Epidemiological Research on ACL Injury Prevention.

    PubMed

    DiCesare, Christopher A; Bates, Nathaniel A; Barber Foss, Kim D; Thomas, Staci M; Wordeman, Samuel C; Sugimoto, Dai; Roewer, Benjamin D; Medina McKeon, Jennifer M; Di Stasi, Stephanie; Noehren, Brian W; Ford, Kevin R; Kiefer, Adam W; Hewett, Timothy E; Myer, Gregory D

    2015-12-01

    Anterior cruciate ligament (ACL) injuries are physically and financially devastating but affect a relatively small percentage of the population. Prospective identification of risk factors for ACL injury necessitates a large sample size; therefore, study of this injury would benefit from a multicenter approach. To determine the reliability of kinematic and kinetic measures of a single-leg cross drop task across 3 institutions. Controlled laboratory study. Twenty-five female high school volleyball players participated in this study. Three-dimensional motion data of each participant performing the single-leg cross drop were collected at 3 institutions over a period of 4 weeks. Coefficients of multiple correlation were calculated to assess the reliability of kinematic and kinetic measures during the landing phase of the movement. Between-centers reliability for kinematic waveforms in the frontal and sagittal planes was good, but moderate in the transverse plane. Between-centers reliability for kinetic waveforms was good in the sagittal, frontal, and transverse planes. Based on these findings, the single-leg cross drop task has moderate to good reliability of kinematic and kinetic measures across institutions after implementation of a standardized testing protocol. Multicenter collaborations can increase study numbers and generalize results, which is beneficial for studies of relatively rare phenomena, such as ACL injury. An important step is to determine the reliability of risk assessments across institutions before a multicenter collaboration can be initiated.

  12. Reliability of 3-Dimensional Measures of Single-Leg Cross Drop Landing Across 3 Different Institutions

    PubMed Central

    DiCesare, Christopher A.; Bates, Nathaniel A.; Barber Foss, Kim D.; Thomas, Staci M.; Wordeman, Samuel C.; Sugimoto, Dai; Roewer, Benjamin D.; Medina McKeon, Jennifer M.; Di Stasi, Stephanie; Noehren, Brian W.; Ford, Kevin R.; Kiefer, Adam W.; Hewett, Timothy E.; Myer, Gregory D.

    2015-01-01

    Background: Anterior cruciate ligament (ACL) injuries are physically and financially devastating but affect a relatively small percentage of the population. Prospective identification of risk factors for ACL injury necessitates a large sample size; therefore, study of this injury would benefit from a multicenter approach. Purpose: To determine the reliability of kinematic and kinetic measures of a single-leg cross drop task across 3 institutions. Study Design: Controlled laboratory study. Methods: Twenty-five female high school volleyball players participated in this study. Three-dimensional motion data of each participant performing the single-leg cross drop were collected at 3 institutions over a period of 4 weeks. Coefficients of multiple correlation were calculated to assess the reliability of kinematic and kinetic measures during the landing phase of the movement. Results: Between-centers reliability for kinematic waveforms in the frontal and sagittal planes was good, but moderate in the transverse plane. Between-centers reliability for kinetic waveforms was good in the sagittal, frontal, and transverse planes. Conclusion: Based on these findings, the single-leg cross drop task has moderate to good reliability of kinematic and kinetic measures across institutions after implementation of a standardized testing protocol. Clinical Relevance: Multicenter collaborations can increase study numbers and generalize results, which is beneficial for studies of relatively rare phenomena, such as ACL injury. An important step is to determine the reliability of risk assessments across institutions before a multicenter collaboration can be initiated. PMID:26779550

  13. Optical Add-Drop Filters Based on Photonic Crystal Ring Resonators

    DTIC Science & Technology

    2007-02-19

    34 Appl. Phys. Lett. 81,2499-2501 (2002). 17. V. Dinesh Kumar , T. Srinivas, A. Selvarajan, "Investigation of ring resonators in photonic crystal...No.4 / opncs EXPRESS 1824 Kumar et al. [17], where a large single quasi-rectangular ring was introduced as the frequency selective dropping elements...were introduced by Kumar et al. as well, in order to suppress the counter propagating modes which can cause spurious dips in the transmission spectrum

  14. Single-molecule enzymology based on the principle of the Millikan oil drop experiment.

    PubMed

    Leiske, Danielle L; Chow, Andrea; Dettloff, Roger; Farinas, Javier

    2014-03-01

    The ability to monitor the progress of single-molecule enzyme reactions is often limited by the need to use fluorogenic substrates. A method based on the principle of the Millikan oil drop experiment was developed to monitor the change in charge of substrates bound to a nanoparticle and offers a means of detecting single-enzyme reactions without fluorescence detection. As a proof of principle of the ability to monitor reactions that result in a change in substrate charge, polymerization on a single DNA template was detected. A custom oligonucleotide was synthesized that allowed for the attachment of single DNA templates to gold nanoparticles with a single polymer tether. The nanoparticles were then tethered to the surface of a microfluidic channel where the positions of the nanoparticles, subjected to an oscillating electric field, were monitored using dark field microscopy. With short averaging times, the signal-to-noise level was low enough to discriminate changes in charge of less than 1.2%. Polymerization of a long DNA template demonstrated the ability to use the system to monitor single-molecule enzymatic activity. Finally, nanoparticle surfaces were modified with thiolated moieties to reduce and/or shield the number of unproductive charges and allow for improved sensitivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Single-Molecule Enzymology Based On The Principle Of The Millikan Oil Drop Experiment

    PubMed Central

    Leiske, Danielle L.; Chow, Andrea; Dettloff, Roger; Farinas, Javier

    2014-01-01

    The ability to monitor the progress of single molecule enzyme reactions is often limited by the need to use fluorogenic substrates. A method based on the principle of the Millikan Oil Drop Experiment was developed to monitor the change in charge of substrates bound to a nanoparticle and offers a means of detecting single enzyme reactions without fluorescence detection. As a proof of principle of the ability to monitor reactions which result in a change in substrate charge, polymerization on a single DNA template was detected. A custom oligonucleotide was synthesized which allowed for the attachment of single DNA templates to gold nanoparticles with a single polymer tether. The nanoparticles were then tethered to the surface of a microfluidic channel where the positions of the nanoparticles, subjected to an oscillating electric field, were monitored using darkfield microscopy. With short averaging times, the signal-to-noise level was low enough to discriminate changes in charge of less than 1.2%. Polymerization of a long DNA template demonstrated the ability to use the system to monitor single molecule enzymatic activity. Finally, nanoparticle surfaces were modified with thiolated moieties in order to reduce and/or shield the number of unproductive charges and allow for improved sensitivity. PMID:24291542

  16. Biomechanical comparisons of single- and double-legged drop jumps with changes in drop height.

    PubMed

    Wang, L-I; Peng, H-T

    2014-06-01

    The purpose of this study was to compare the biomechanics of single- and double-legged drop jumps (SDJ vs. DDJ) with changes in drop height. Jumping height, ground contact time, reactive strength index, ground reaction force, loading rate of ground reaction force, joint power and stiffness were measured in 12 male college students during SDJ from 20-, 30-, 40-, and 50-cm heights and DDJ from of 20- and 40-cm heights. The peak impact force was increased with the incremental drop height during SDJs. The jumping height and leg and ankle stiffness of SDJ30 were greater than those of SDJ40 and SDJ50. The knee and hip stiffnesses of SDJ30 were greater than those of SDJ50. The impact forces of SDJ30-50 were greater than those of DDJ40. The leg, ankle, knee and hip joint stiffnesses of SDJ20-30 were greater than those of DDJ20 and DDJ40. The propulsive forces of SDJ20-50 were greater than those of DDJ20 and DDJ40. The jumping height of SDJ30 was greater than that of DDJ20. Drop height of 30 cm was recommended during single-legged drop jump with the best biomechanical benefit. Single-legged drop jump from 20-30 cm could provide comparable intensity to double-legged drop jump from 40 cm. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Ionic liquid-based single-drop microextraction/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene and xylene isomers in waters.

    PubMed

    Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2008-08-01

    The direct coupling between ionic liquid-based single-drop microextraction and gas chromatography/mass spectrometry is proposed for the rapid and simple determination of benzene, toluene, ethylbenzene and xylenes isomers (BTEX) in water samples. The extraction procedure exploits not only the high affinity of the selected ionic liquid (1-methyl-3-octyl-imidazolium hexaflourophosphate) to these aromatic compounds but also its special properties like viscosity, low vapour pressure and immiscibility with water. All the variables involved in the extraction process have been studied in depth. The developed method allows the determination of these single-ring compounds in water under the reference concentration level fixed by the international legislation. In this case, limits of detection were in the range 20 ng L(-1) (obtained for benzene) and 91 ng L(-1) (for o-xylene). The repeatability of the proposed method, expressed as RSD (n=5), varied between 3.0% (o-xylene) and 5.2% (toluene).

  18. Impact of a single drop on the same liquid: formation, growth and disintegration of jets

    NASA Astrophysics Data System (ADS)

    Agbaglah, G. Gilou; Deegan, Robert

    2015-11-01

    One of the simplest splashing scenarios results from the impact of a single drop on on the same liquid. The traditional understanding of this process is that the impact generates a jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are bifurcations in the multiplicity of jets. First, we study the formation, growth and disintegration of jets following the impact of a drop on a thin film of the same liquid using a combination of numerical simulations and linear stability theory. We obtain scaling relations from our simulations and use these as inputs to our stability analysis. We also use experiments and numerical simulations of a single drop impacting on a deep pool to examine the bifurcation from a single jet into two jets. Using high speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet.

  19. Computational analysis of drop formation before and after the first singularity: the fate of free and satellite drops during simple dripping and DOD drop formation

    NASA Astrophysics Data System (ADS)

    Chen, Alvin U.; Basaran, Osman A.

    2000-11-01

    Drop formation from a capillary --- dripping mode --- or an ink jet nozzle --- drop-on-demand (DOD) mode --- falls into a class of scientifically challenging yet practically useful free surface flows that exhibit a finite time singularity, i.e. the breakup of an initially single liquid mass into two or more fragments. While computational tools to model such problems have been developed recently, they lack the accuracy needed to quantitatively predict all the dynamics observed in experiments. Here we present a new finite element method (FEM) based on a robust algorithm for elliptic mesh generation and remeshing to handle extremely large interface deformations. The new algorithm allows continuation of computations beyond the first singularity to track fates of both primary and any satellite drops. The accuracy of the computations is demonstrated by comparison of simulations with experimental measurements made possible with an ultra high-speed digital imager capable of recording 100 million frames per second.

  20. How glaucoma patient characteristics, self-efficacy, and patient-provider communication are associated with eye drop technique

    PubMed Central

    Sayner, Robyn; Carpenter, Delesha M; Robin, Alan L; Blalock, Susan J; Muir, Kelly W; Vitko, Michelle; Hartnett, Mary Elizabeth; Lawrence, Scott D; Giangiacomo, Annette L; Tudor, Gail; Goldsmith, Jason A; Sleath, Betsy

    2017-01-01

    Objectives The objective of this study was to examine the extent to which patient characteristics, eye drop technique self-efficacy, and ophthalmologist–patient communication about eye drop administration are associated with glaucoma patients’ ability to instil a single drop, have the drop land in the eye, and avoid touching the applicator tip of the medication bottle to the eye or face while self-administering eye drops. Methods Glaucoma patients (n = 279) were recruited from six ophthalmology clinics. Medical visits were videotape-recorded. Afterwards, patients were interviewed and demonstrated administering an eye drop on a videotaped-recording. Generalized estimating equations were used to analyse the data. Key findings Ophthalmologists provided eye drop administration instruction to 40 patients. Patients with more years of education were significantly more likely to both instil a single drop (P = 0.017) and have the drop land in their eye (P = 0.017). Women were significantly more likely to touch the applicator tip to their eyes or face (P = 0.014). Patients with severe glaucoma (P = 0.016), women (P = 0.026), and patients who asked at least one eye drop administration question (P = 0.001) were significantly less likely to instil a single drop. Patients with arthritis were significantly less likely to have the drop land in their eye (P = 0.008). African American patients were significantly less likely to touch the applicator tip to their eyes or face (P = 0.008). Conclusions Some glaucoma patients have a difficult time self-administering eye drops. As so few patients received eye drop administration instruction from their providers, there is an opportunity for pharmacists to complement care. PMID:26303667

  1. How glaucoma patient characteristics, self-efficacy and patient-provider communication are associated with eye drop technique.

    PubMed

    Sayner, Robyn; Carpenter, Delesha M; Robin, Alan L; Blalock, Susan J; Muir, Kelly W; Vitko, Michelle; Hartnett, Mary Elizabeth; Lawrence, Scott D; Giangiacomo, Annette L; Tudor, Gail; Goldsmith, Jason A; Sleath, Betsy

    2016-04-01

    The objective of this study was to examine the extent to which patient characteristics, eye drop technique self-efficacy, and ophthalmologist-patient communication about eye drop administration are associated with glaucoma patients' ability to instil a single drop, have the drop land in the eye, and avoid touching the applicator tip of the medication bottle to the eye or face while self-administering eye drops. Glaucoma patients (n = 279) were recruited from six ophthalmology clinics. Medical visits were videotape-recorded. Afterwards, patients were interviewed and demonstrated administering an eye drop on a videotaped-recording. Generalized estimating equations were used to analyse the data. Ophthalmologists provided eye drop administration instruction to 40 patients. Patients with more years of education were significantly more likely to both instil a single drop (P = 0.017) and have the drop land in their eye (P = 0.017). Women were significantly more likely to touch the applicator tip to their eyes or face (P = 0.014). Patients with severe glaucoma (P = 0.016), women (P = 0.026), and patients who asked at least one eye drop administration question (P = 0.001) were significantly less likely to instil a single drop. Patients with arthritis were significantly less likely to have the drop land in their eye (P = 0.008). African American patients were significantly less likely to touch the applicator tip to their eyes or face (P = 0.008). Some glaucoma patients have a difficult time self-administering eye drops. As so few patients received eye drop administration instruction from their providers, there is an opportunity for pharmacists to complement care. © 2015 Royal Pharmaceutical Society.

  2. Simple, robust storage of drops and fluids in a microfluidic device.

    PubMed

    Boukellal, Hakim; Selimović, Seila; Jia, Yanwei; Cristobal, Galder; Fraden, Seth

    2009-01-21

    We describe a single microfluidic device and two methods for the passive storage of aqueous drops in a continuous stream of oil without any external control but hydrodynamic flow. Advantages of this device are that it is simple to manufacture, robust under operation, and drops never come into contact with each other, making it unnecessary to stabilize drops against coalescence. In one method the device can be used to store drops that are created upstream from the storage zone. In the second method the same device can be used to simultaneously create and store drops from a single large continuous fluid stream without resorting to the usual flow focusing or T-junction drop generation processes. Additionally, this device stores all the fluid introduced, including the first amount, with zero waste. Transport of drops in this device depends, however, on whether or not the aqueous drops wet the device walls. Analysis of drop transport in these two cases is presented. Finally, a method for extraction of the drops from the device is also presented, which works best when drops do not wet the walls of the chip.

  3. Microwave Dielectric Heating of Drops in Microfluidic Devices†

    PubMed Central

    Issadore, David; Humphry, Katherine J.; Brown, Keith A.; Sandberg, Lori; Weitz, David; Westervelt, Robert M.

    2010-01-01

    We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has a large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picoliter drop of water and this enables very fast thermal cycling. We demonstrate microwave dielectric heating in a microfluidic device that integrates a flow-focusing drop maker, drop splitters, and metal electrodes to locally deliver microwave power from an inexpensive, commercially available 3.0 GHz source and amplifier. The temperature of the drops is measured by observing the temperature dependent fluorescence intensity of cadmium selenide nanocrystals suspended in the water drops. We demonstrate characteristic heating times as short as 15 ms to steady-state temperatures as large as 30°C above the base temperature of the microfluidic device. Many common biological and chemical applications require rapid and local control of temperature, such as PCR amplification of DNA, and can benefit from this new technique. PMID:19495453

  4. Radar volume reflectivity estimation using an array of ground-based rainfall drop size detectors

    NASA Astrophysics Data System (ADS)

    Lane, John; Merceret, Francis; Kasparis, Takis; Roy, D.; Muller, Brad; Jones, W. Linwood

    2000-08-01

    Rainfall drop size distribution (DSD) measurements made by single disdrometers at isolated ground sites have traditionally been used to estimate the transformation between weather radar reflectivity Z and rainfall rate R. Despite the immense disparity in sampling geometries, the resulting Z-R relation obtained by these single point measurements has historically been important in the study of applied radar meteorology. Simultaneous DSD measurements made at several ground sites within a microscale area may be used to improve the estimate of radar reflectivity in the air volume surrounding the disdrometer array. By applying the equations of motion for non-interacting hydrometers, a volume estimate of Z is obtained from the array of ground based disdrometers by first calculating a 3D drop size distribution. The 3D-DSD model assumes that only gravity and terminal velocity due to atmospheric drag within the sampling volume influence hydrometer dynamics. The sampling volume is characterized by wind velocities, which are input parameters to the 3D-DSD model, composed of vertical and horizontal components. Reflectivity data from four consecutive WSR-88D volume scans, acquired during a thunderstorm near Melbourne, FL on June 1, 1997, are compared to data processed using the 3D-DSD model and data form three ground based disdrometers of a microscale array.

  5. Estimation of methacrylate monolith binding capacity from pressure drop data.

    PubMed

    Podgornik, Aleš; Smrekar, Vida; Krajnc, Peter; Strancar, Aleš

    2013-01-11

    Convective chromatographic media comprising of membranes and monoliths represent an important group of chromatographic supports due to their flow-unaffected chromatographic properties and consequently fast separation and purification even of large biological macromolecules. Consisting of a single piece of material, common characterization procedures based on analysis of a small sample assuming to be representative for the entire batch, cannot be applied. Because of that, non-invasive characterization methods are preferred. In this work pressure drop was investigated for an estimation of dynamic binding capacity (DBC) of proteins and plasmid DNA for monoliths with different pore sizes. It was demonstrated that methacrylate monolith surface area is reciprocally proportional to pore diameter and that pressure drop on monolith is reciprocally proportional to square pore size demonstrating that methacrylate monolith microstructure is preserved by changing pore size. Based on these facts mathematical formalism has been derived predicting that DBC is in linear correlation with the square root of pressure drop. This was experimentally confirmed for ion-exchange and hydrophobic interactions for proteins and plasmid DNA. Furthermore, pressure drop was also applied for an estimation of DBC in grafted layers of different thicknesses as estimated from the pressure drop data. It was demonstrated that the capacity is proportional to the estimated grafted layer thickness. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. The Role of Drag Force in Shedding of Multiple Sessile Drops

    NASA Astrophysics Data System (ADS)

    Razzaghi, Aysan; Banitabaei, Sayyed Hossein; Amirfazli, Alidad; -Team

    2017-11-01

    A sessile drop placed on a solid surface can shed, if the drag force due to a shearing airflow overcomes the drop adhesion to the surface. Sessile drop shedding is of importance due to its applications in condensation, fuel cells, icing, etc. Majority of the studies so far have considered the shedding of a single sessile droplet; however, in the applications above, multiple sessile droplets appear on a surface. Shedding of sessile drops in different arrangements, i.e. tandem, side by side, triangle, and rectangle have been investigated both experimentally and through VOF simulations. The minimum air velocity (Ucr) at which the drop(s) at the upstream dislodge from the surface was measured. Drops were placed in a wind tunnel with increasing air velocity at a rate of 1m/s2. It has been found that Ucr, deviates from its value for a single drop due to presence of the neighboring drops. The amount of the deviation is closely related to the flow pattern and interaction of drop wakes which are elucidated numerically. The interacting wakes change the drag force on the drops. Generally, the adhesion force is not affected by presence of other drops. As such, when the drops' wakes are interacting strongly, Ucr can increase by 45%.

  7. Homogeneous freezing of single sulfuric and nitric acid solution drops levitated in an acoustic trap

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Ettner-Mahl, Matthias; Hannemann, Anke; Mitra, Subir K.

    2009-10-01

    The freezing temperatures of single supercooled drops of binary and ternary sulfuric and nitric acid solutions were measured while varying the acid concentration. An acoustic levitator was used which allows to freely suspend single solution drops in air without electrical charges thereby avoiding any electrical influences which may affect the freezing process. The drops of typically 500 µm in radius were monitored by a video camera during cooling cycles down to - 85 °C to simulate the upper tropospheric and stratospheric temperature range. The present data confirm that liquid solution droplets can be supercooled far below the equilibrium melting point by approximately 35 °C. They follow the general trend of the expected freezing temperatures for homogeneous ice nucleation.

  8. Developments in Analytical Chemistry: Acoustically Levitated Drop Reactors for Enzyme Reaction Kinetics and Single-Walled Carbon Nanotube-Based Sensors for Detection of Toxic Organic Phosphonates

    ERIC Educational Resources Information Center

    Field, Christopher Ryan

    2009-01-01

    Developments in analytical chemistry were made using acoustically levitated small volumes of liquid to study enzyme reaction kinetics and by detecting volatile organic compounds in the gas phase using single-walled carbon nanotubes. Experience gained in engineering, electronics, automation, and software development from the design and…

  9. Drop evaporation in a single-axis acoustic levitator

    NASA Technical Reports Server (NTRS)

    Lierke, E. G.; Croonquist, A. P.

    1990-01-01

    A 20 kHz single-axis acoustic positioner is used to levitate aqueous-solution drops (volumes less than or approximately equal to 100 micro-liters). Drop evaporation rates are measured under ambient, isothermal conditions for different relative humidities. Acoustic convection around the levitated sample enhances the mass loss over that due to natural convection and diffusion. A theoretical treatment of the mass flow is developed in analogy to previous studies of the heat transfer from a sphere in an acoustic field. Predictions of the enhanced mass loss, in the form of Nusselt (Sherwood) numbers, are compared with observed rages of drop shrinking. The work is part of an ESA crystal growth from levitated solution drops.

  10. Experimental investigation into vortex structure and pressure drop across microcavities in 3D integrated electronics

    NASA Astrophysics Data System (ADS)

    Renfer, Adrian; Tiwari, Manish K.; Brunschwiler, Thomas; Michel, Bruno; Poulikakos, Dimos

    2011-09-01

    Hydrodynamics in microcavities with cylindrical micropin fin arrays simulating a single layer of a water-cooled electronic chip stack is investigated experimentally. Both inline and staggered pin arrangements are investigated using pressure drop and microparticle image velocimetry (μPIV) measurements. The pressure drop across the cavity shows a flow transition at pin diameter-based Reynolds numbers ( Re d ) ~200. Instantaneous μPIV, performed using a pH-controlled high seeding density of tracer microspheres, helps visualize vortex structure unreported till date in microscale geometries. The post-transition flow field shows vortex shedding and flow impingement onto the pins explaining the pressure drop increase. The flow fluctuations start at the chip outlet and shift upstream with increasing Re d . No fluctuations are observed for a cavity with pin height-to-diameter ratio h/ d = 1 up to Re d ~330; however, its pressure drop was higher than for a cavity with h/d = 2 due to pronounced influence of cavity walls.

  11. Three dimensional drop tracking flow chamber for coalescence studies

    DOE PAGES

    Grillet, Anne M.; Brooks, Carlton F.; Bourdon, Chris J.; ...

    2007-09-12

    Here, we have developed a novel flow chamber which imposes a controlled axisymmetric stagnation flow to enable the study of external flow effects on coalescence dynamics. This system allows for the first time the precise positioning of a drop in a three dimensional flow and additionally enforces a highly symmetric flow around the drop. We focus on the study of a single drop approaching a stationary flat plane as this is analogous to two drops approaching each other. A single drop is created and then guided along the unsteady center line of a stagnation flow. The real time computer controlmore » algorithm analyzes video images of the drop in two orthogonal planes and manipulates flow restricting valves along the four outlets of the flow. We demonstrate using particle image velocimetry that the computer control not only controls the drop position but also ensures a symmetric flow inside the flow chamber. Finally, this chamber will enable a detailed investigation of the drainage of the thin film between the drop and the lower surface in order to probe the effect of external flow on coalescence.« less

  12. Viscosity measurements of metallic melts using the oscillating drop technique

    NASA Astrophysics Data System (ADS)

    Heintzmann, P.; Yang, F.; Schneider, S.; Lohöfer, G.; Meyer, A.

    2016-06-01

    By means of benchmarking reduced gravity experiments, we have verified the measured viscosity of binary Zr-Ni glass forming liquids utilizing the oscillating drop technique combined with ground-based electrostatic levitation (ESL). Reliable viscosity data can be obtained as long as internal viscous damping of a single oscillation mode of a levitated drop dominates external perturbations. This can be verified by the absence of a sample mass dependence of the results. Hence, ESL is an excellent tool for studying the viscosity of metallic glass forming melts in the range of about 10-250 mPa s, with sample masses below 100 mg. To this end, we show that, for binary Zr-Ni melts, the viscosity is qualitatively controlled by the packing density.

  13. Model of Mixing Layer With Multicomponent Evaporating Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Le Clercq, Patrick

    2004-01-01

    A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The study is motivated by the fact that typical real petroleum fuels contain hundreds of chemical species. Previously, for the sake of computational efficiency, spray studies were performed using either models based on a single representative species or models based on surrogate fuels of at most 15 species. The present multicomponent model makes it possible to perform more realistic simulations by accounting for hundreds of chemical species in a computationally efficient manner. The model is used to perform Direct Numerical Simulations in continuing studies directed toward understanding the behavior of liquid petroleum fuel sprays. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and the drops, respectively. This representation is consistent with the expected volumetrically small loading of the drops in gas (of the order of 10 3), although the mass loading can be substantial because of the high ratio (of the order of 103) between the densities of liquid and gas. The drops are treated as point sources of mass, momentum, and energy; this representation is consistent with the drop size being smaller than the Kolmogorov scale. Unsteady drag, added-mass effects, Basset history forces, and collisions between the drops are neglected, and the gas is assumed calorically perfect. The model incorporates the concept of continuous thermodynamics, according to which the chemical composition of a fuel is described probabilistically, by use of a distribution function. Distribution functions generally depend on many parameters. However, for mixtures of homologous species, the distribution can be approximated with acceptable accuracy as a sole function of the molecular weight. The mixing layer is initially laden with drops in its lower stream, and the drops are colder than the gas. Drop evaporation leads to a change in the gas-phase composition, which, like the composition of the drops, is described in a probabilistic manner

  14. Coumarins as turn on/off fluorescent probes for detection of residual acetone in cosmetics following headspace single-drop microextraction.

    PubMed

    Cabaleiro, N; de la Calle, I; Bendicho, C; Lavilla, I

    2014-11-01

    In this work, a new method based on headspace-single drop microextraction for the determination of residual acetone in cosmetics by microfluorospectrometry is proposed. Acetone causes fluorescence changes in a 2.5 µL-ethanolic drop (40% v/v) containing 3.10(-4) mol L(-1) 7-hydroxy-4-methylcoumarin ('turn off') or 6.10(-6) mol L(-1) 7-diethylamino-4-methylcoumarin ('turn on'). Polarity and ability to form hydrogen bonds of short chain alcohols (polar protic solvents) were crucial in order to observe these changes in the presence of acetone (polar aprotic solvent). Parameters related with the HS-SDME procedure were studied, namely headspace volume, composition, volume and temperature of drop, microextraction time, stirring rate, mass and temperature of sample, as well as the effect of potential interferents (alcohols and fragrances). The high volatility of acetone allows its extraction from an untreated cosmetic sample within 3 min. A detection limit of 0.26 µg g(-1) and repeatability, expressed as relative standard deviation, around 5% were reached. Accuracy of the proposed methodology was evaluated by means of recovery studies. The method was successfully used to analyze different cosmetics. Simplicity and high sample throughput can be highlighted. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Drop Impact Dynamics with Sessile Drops and Geometries: Spreading, Jetting, and Fragmentation

    NASA Astrophysics Data System (ADS)

    Tilger, Christopher F.

    The tendency of surface tension to cause small parcels of fluid to form into drops allows convenient packaging, transport, dispersal of liquid phase matter. Liquid drop impacts with solids, liquids, and other drops have realized and additional future applications in biological, manufacturing, heat transfer, and combustion systems. Experiments were conducted to investigate the dynamics of multiple drop collisions, rather than the most-studied phenomenon of single drop impacts. Additional drop impacts were performed on rigid hemispheres representing sessile drops, angled substrates, and into the vertex of two tilted surfaces arranged into a vee shape. A qualitative inspection of drop-sessile drop impacts shows distinct post-impact shapes depending on the offset distance between the drops. At intermediate offset distances, distinct jets issue from the overlap region between the two drops projected areas. These jets are observed to reach their maximum extent at a critical offset distance ratio, epsilon epsilon ˜ 0.75-0.80, with substrate contact angle and W e having a lesser effect. Capillary waves that traverse the sessile drop after collision cause a lower aspect ratio liquid column to emanate from the sessile drop opposite the impact. In order to better understand the jetting phenomenon seen in the offset drop-sessile drop impacts, simpler solid geometries are investigated that elicit a similar behavior. Solid hemispheres do not show the singular jetting observed in the fluidic case, however, a simple vee formed by two intersection planar substrates do jet in a similar fashion to the fluidic case. A geometric model with partnered experiments is developed to describe the bisymmetric spread of an impacting drop on an angled substrate. This geometric model is used to guide a time of arrival based model for various features of the drop impact, which is used to predict jetting in various vee channel experiments.

  16. Beyond Bernoulli

    PubMed Central

    Donati, Fabrizio; Myerson, Saul; Bissell, Malenka M.; Smith, Nicolas P.; Neubauer, Stefan; Monaghan, Mark J.; Nordsletten, David A.

    2017-01-01

    Background— Transvalvular peak pressure drops are routinely assessed noninvasively by echocardiography using the Bernoulli principle. However, the Bernoulli principle relies on several approximations that may not be appropriate, including that the majority of the pressure drop is because of the spatial acceleration of the blood flow, and the ejection jet is a single streamline (single peak velocity value). Methods and Results— We assessed the accuracy of the Bernoulli principle to estimate the peak pressure drop at the aortic valve using 3-dimensional cardiovascular magnetic resonance flow data in 32 subjects. Reference pressure drops were computed from the flow field, accounting for the principles of physics (ie, the Navier–Stokes equations). Analysis of the pressure components confirmed that the spatial acceleration of the blood jet through the valve is most significant (accounting for 99% of the total drop in stenotic subjects). However, the Bernoulli formulation demonstrated a consistent overestimation of the transvalvular pressure (average of 54%, range 5%–136%) resulting from the use of a single peak velocity value, which neglects the velocity distribution across the aortic valve plane. This assumption was a source of uncontrolled variability. Conclusions— The application of the Bernoulli formulation results in a clinically significant overestimation of peak pressure drops because of approximation of blood flow as a single streamline. A corrected formulation that accounts for the cross-sectional profile of the blood flow is proposed and adapted to both cardiovascular magnetic resonance and echocardiographic data. PMID:28093412

  17. MHD work related to a self-cooled Pb-17Li blanket with poloidal-radial-toroidal ducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimann, J.; Barleon, L.; Buehler, L.

    1994-12-31

    For self cooled liquid metal blankets MHD pressure drop and velocity distributions are considered as critical issues. This paper summarizes MHD work performed for a DEMO-relevant Pb-17Li blanket which uses essential characteristics of a previous ANL design: The coolant flows downwards in the rear poloidal ducts, turns by 180{degrees} at the blanket bottom and is distributed from the ascending poloidal ducts into short radial channels which feed the toroidal First Wall coolant ducts (aligned with the main magnetic field direction). The flow through the subsequent radial channels is collected again in poloidal channels and the coolant leaves the blanket segmentmore » at the top. The blanket design is based on the use of flow channel inserts (FCIs) (which means electrically thin conducting walls for MHD) for all ducts except for the toroidal FW coolant channels. MHD related issues were defined and estimations of corresponding pressure drops were performed. Previous experimental work included a proof of principle of FCIs and a detailed experiment with a single {open_quotes}poloidal{sm_bullet}toroidal{sm_bullet}poloidal{close_quotes} duct (cooperation with ANL). In parallel, a numerical code based on the Core Flow Approximation (CFA) was developed to predict pressure drop and velocity distributions for arbitrary single duct geometries.« less

  18. Tunable all-optical photonic crystal channel drop filter for DWDM systems

    NASA Astrophysics Data System (ADS)

    Habibiyan, H.; Ghafoori-Fard, H.; Rostami, A.

    2009-06-01

    In this paper we propose a tunable channel drop filter in a two-dimensional photonic crystal, based on coupled-cavity waveguides with alternating small and large defects and an electromagnetically induced transparency phenomenon. By utilizing this phenomenon a narrower linewidth is obtained and also the frequency of the dropped signal becomes tunable. Simulation results show that the proposed filter is suitable for dense wavelength-division multiplexing (DWDM) systems with 0.8 nm channel spacing. Using this novel component, two ultrasmall eight-channel double-sided and single-sided demultiplexers are introduced. The properties of these devices are investigated using the finite-difference time-domain method. For the single-sided device, transmission loss is 1.5 ± 0.5 dB, the cross-talk level between adjacent channels is better than -18 dB and the average 3 dB optical passband is 0.36 nm. Using planar silicon-on-insulator technology, the physical area for the single-sided component is 700 µm2 and for the double-sided component is 575 µm2. To the best of our knowledge, these are the smallest all-optical demultiplexers with this spectral resolution reported to date. Malfunction of the proposed device due to fabrication errors is modeled and its tunable characteristic is demonstrated.

  19. Medio-lateral Knee Fluency in Anterior Cruciate Ligament-Injured Athletes During Dynamic Movement Trials

    PubMed Central

    Panos, Joseph A.; Hoffman, Joshua T.; Wordeman, Samuel C.; Hewett, Timothy E.

    2016-01-01

    Background Correction of neuromuscular impairments after anterior cruciate ligament injury is vital to successful return to sport. Frontal plane knee control during landing is a common measure of lower-extremity neuromuscular control and asymmetries in neuromuscular control of the knee can predispose injured athletes to additional injury and associated morbidities. Therefore, this study investigated the effects of anterior cruciate ligament injury on knee biomechanics during landing. Methods Two-dimensional frontal plane video of single leg drop, cross over drop, and drop vertical jump dynamic movement trials was analyzed for twenty injured and reconstructed athletes. The position of the knee joint center was tracked in ImageJ software for 500 milliseconds after landing to calculate medio-lateral knee motion velocities and determine normal fluency, the number of times per second knee velocity changed direction. The inverse of this calculation, analytical fluency, was used to associate larger numerical values with fluent movement. Findings Analytical fluency was decreased in involved limbs for single leg drop trials (P=0.0018). Importantly, analytical fluency for single leg drop differed compared to cross over drop trials for involved (P<0.001), but not uninvolved limbs (P=0.5029). For involved limbs, analytical fluency values exhibited a stepwise trend in relative magnitudes. Interpretation Decreased analytical fluency in involved limbs is consistent with previous studies. Fluency asymmetries observed during single leg drop tasks may be indicative of abhorrent landing strategies in the involved limb. Analytical fluency differences in unilateral tasks for injured limbs may represent neuromuscular impairment as a result of injury. PMID:26895446

  20. Effects of menarcheal age on the anterior cruciate ligament injury risk factors during single-legged drop landing in female artistic elite gymnasts.

    PubMed

    Kim, Kew-Wan; Lim, Bee-Oh

    2014-11-01

    Although numerous studies have demonstrated the relationship between maturation and lower extremity biomechanics during landing in team sport athletes, we are presently uninformed of any research that examined the single-legged drop landing biomechanics of gymnasts. The purpose of this study is to investigate the effects of the menarcheal age on the lower extremity biomechanics during a single-legged drop landing in female artistic elite gymnasts. Twenty-two female artistic elite gymnasts, between 9 and 36 years of age, participated in this study. The participants were divided into two groups pre- (n = 11) and post- (n = 11) menarche and asked to perform a single-legged drop landing on top of a 30 cm platform and land on a force plate. The statistical analysis consisted of the multivariate analysis with the level of significance set at p < 0.05. The post-menarche group showed a decrease in their maximum knee flexion angle and increase in their maximum knee abduction angle, maximum internal tibial rotation angle, maximum knee abduction moment, and hamstring-quadriceps muscle activity ratio compared with the pre-menarche group during the single-legged drop landing. The post-menarche group showed an increased noncontact anterior cruciate ligament injury risk, due to their greater knee loads, compared with the pre-menarche group.

  1. Cavity optomechanics in a levitated helium drop

    NASA Astrophysics Data System (ADS)

    Childress, L.; Schmidt, M. P.; Kashkanova, A. D.; Brown, C. D.; Harris, G. I.; Aiello, A.; Marquardt, F.; Harris, J. G. E.

    2017-12-01

    We describe a proposal for a type of optomechanical system based on a drop of liquid helium that is magnetically levitated in vacuum. In the proposed device, the drop would serve three roles: its optical whispering-gallery modes would provide the optical cavity, its surface vibrations would constitute the mechanical element, and evaporation of He atoms from its surface would provide continuous refrigeration. We analyze the feasibility of such a system in light of previous experimental demonstrations of its essential components: magnetic levitation of mm-scale and cm-scale drops of liquid He , evaporative cooling of He droplets in vacuum, and coupling to high-quality optical whispering-gallery modes in a wide range of liquids. We find that the combination of these features could result in a device that approaches the single-photon strong-coupling regime, due to the high optical quality factors attainable at low temperatures. Moreover, the system offers a unique opportunity to use optical techniques to study the motion of a superfluid that is freely levitating in vacuum (in the case of 4He). Alternatively, for a normal fluid drop of 3He, we propose to exploit the coupling between the drop's rotations and vibrations to perform quantum nondemolition measurements of angular momentum.

  2. Ultrasonic characterization of single drops of liquids

    DOEpatents

    Sinha, Dipen N.

    1998-01-01

    Ultrasonic characterization of single drops of liquids. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities.

  3. Adding the 'heart' to hanging drop networks for microphysiological multi-tissue experiments.

    PubMed

    Rismani Yazdi, Saeed; Shadmani, Amir; Bürgel, Sebastian C; Misun, Patrick M; Hierlemann, Andreas; Frey, Olivier

    2015-11-07

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid-air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip.

  4. Morphology and anisotropy of thin conductive inkjet printed lines of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Torres-Canas, Fernando; Blanc, Christophe; Mašlík, Jan; Tahir, Said; Izard, Nicolas; Karasahin, Senguel; Castellani, Mauro; Dammasch, Matthias; Zamora-Ledezma, Camilo; Anglaret, Eric

    2017-03-01

    We show that the properties of thin conductive inkjet printed lines of single-walled carbon nanotubes (SWCNT) can be greatly tuned, using only a few deposition parameters. The morphology, anisotropy and electrical resistivity of single-stroke printed lines are studied as a function of ink concentration and drop density. An original method based on coupled profilometry-Raman measurements is developed to determine the height, mass, orientational order and density profiles of SWCNT across the printed lines with a micrometric lateral resolution. Height profiles can be tuned from ‘rail tracks’ (twin parallel lines) to layers of homogeneous thickness by controlling nanotube concentration and drop density. In all samples, the nanotubes are strongly oriented parallel to the line axis at the edges of the lines, and the orientational order decreases continuously towards the center of the lines. The resistivity of ‘rail tracks’ is significantly larger than that of homogeneous deposits, likely because of large amounts of electrical dead-ends.

  5. Implementation of an axisymmetric drop shape apparatus using a Raspberry-Pi single-board computer and a web camera

    NASA Astrophysics Data System (ADS)

    Carlà, Marcello; Orlando, Antonio

    2018-07-01

    This paper describes the implementation of an axisymmetric drop shape apparatus for the measurement of surface or interfacial tension of a hanging liquid drop, using only cheap resources like a common web camera and a single-board microcomputer. The mechanics of the apparatus is composed of stubs of commonly available aluminium bar, with all other mechanical parts manufactured with an amateur 3D printer. All of the required software, either for handling the camera and taking the images, or for processing the drop images to get the drop profile and fit it with the Bashforth and Adams equation, is freely available under an open source license. Despite the very limited cost of the whole setup, an extensive test has demonstrated an overall accuracy of ±0.2% or better.

  6. Employee responses to health insurance premium increases.

    PubMed

    Goldman, Dana P; Leibowitz, Arleen A; Robalino, David A

    2004-01-01

    To determine the sensitivity of employees' health insurance decisions--including the decision to not choose health maintenance organization or fee-for-service coverage--during periods of rapidly escalating healthcare costs. A retrospective cohort study of employee plan choices at a single large firm with a "cafeteria-style" benefits plan wherein employees paid all the additional cost of purchasing more generous insurance. We modeled the probability that an employee would drop coverage or switch plans in response to employee premium increases using data from a single large US company with employees across 47 states during the 3-year period of 1989 through 1991, a time of large premium increases within and across plans. Premium increases induced substantial plan switching. Single employees were more likely to respond to premium increases by dropping coverage, whereas families tended to switch to another plan. Premium increases of 10% induced 7% of single employees to drop or severely cut back on coverage; 13% to switch to another plan; and 80% to remain in their existing plan. Similar figures for those with family coverage were 11%, 12%, and 77%, respectively. Simulation results that control for known covariates show similar increases. When faced with a dramatic increase in premiums--on the order of 20%--nearly one fifth of the single employees dropped coverage compared with 10% of those with family coverage. Employee coverage decisions are sensitive to rapidly increasing premiums, and single employees may be likely to drop coverage. This finding suggests that sustained premium increases could induce substantial increases in the number of uninsured individuals.

  7. Drop impact into a deep pool: vortex shedding and jet formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agbaglah, G.; Thoraval, M. -J.; Thoroddsen, S. T.

    2015-02-01

    One of the simplest splashing scenarios results from the impact of a single drop on a deep pool. The traditional understanding of this process is that the impact generates an axisymmetric sheet-like jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are transitions in the multiplicity of jets as the experimental parameters are varied. Here, we use experiments and numerical simulations of a single drop impacting on a deep pool to examine themore » transition from impacts that produce a single jet to those that produce two jets. Using high-speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet. Using numerical simulations we develop a phase diagram for this transition and show that the capillary number is the most appropriate order parameter for the transition.« less

  8. A study of nonlinear dynamics of single- and two-phase flow oscillations

    NASA Astrophysics Data System (ADS)

    Mawasha, Phetolo Ruby

    The dynamics of single- and two-phase flows in channels can be contingent on nonlinearities which are not clearly understood. These nonlinearities could be interfacial forces between the flowing fluid and its walls, variations in fluid properties, growth of voids, etc. The understanding of nonlinear dynamics of fluid flow is critical in physical systems which can undergo undesirable system operating scenarios such an oscillatory behavior which may lead to component failure. A nonlinear lumped mathematical model of a surge tank with a constant inlet flow into the tank and an outlet flow through a channel is derived from first principles. The model is used to demonstrate that surge tanks with inlet and outlet flows contribute to oscillatory behavior in laminar, turbulent, single-phase, and two-phase flow systems. Some oscillations are underdamped while others are self-sustaining. The mechanisms that are active in single-phase oscillations with no heating are presented using specific cases of simplified models. Also, it is demonstrated how an external mechanism such as boiling contributes to the oscillations observed in two-phase flow and gives rise to sustained oscillations (or pressure drop oscillations). A description of the pressure drop oscillation mechanism is presented using the steady state pressure drop versus mass flow rate characteristic curve of the heated channel, available steady state pressure drop versus mass flow rate from the surge tank, and the transient pressure drop versus mass flow rate limit cycle. Parametric studies are used to verify the theoretical pressure drop oscillations model using experimental data by Yuncu's (1990). The following contributions are unique: (1) comparisons of nonlinear pressure drop oscillation models with and without the effect of the wall thermal heat capacity and (2) comparisons of linearized pressure drop oscillation models with and without the effect of the wall thermal heat capacity to identify stability boundaries.

  9. Design of dual ring wavelength filters for WDM applications

    NASA Astrophysics Data System (ADS)

    Sathyadevaki, R.; Shanmuga sundar, D.; Sivanantha Raja, A.

    2016-12-01

    Wavelength division multiplexing plays a prime role in an optical communication due to its advantages such as easy network expansion, longer span lengths etc. In this work, photonic crystal based filters with the dual rings are proposed which act as band pass filters (BPF) and channel drop filter (CDF) that has found a massive applications in C and L-bands used for wavelength selection and noise filtering at erbium doped fiber amplifiers and dense wavelength division multiplexing operation. These filters are formulated on the square lattice with crystal rods of silicon material of refractive index 3.4 which are perforated on an air of refractive index 1. Dual ring double filters (band pass filter and channel drop filter) on single layout possess passing and dropping band of wavelengths in two distinct arrangements with entire band quality factors of 92.09523 & 505.263 and 124.85019 & 456.8633 for the pass and drop filters of initial setup and amended setup respectively. These filters have the high-quality factor with broad and narrow bandwidths of 16.8 nm & 3.04 nm and 12.85 nm & 3.3927 nm. Transmission spectra and band gap of the desired filters is analyzed using Optiwave software suite. Two dual ring filters incorporated on a single layout comprises the size of 15×11 μm which can also be used in the integrated photonic chips for the ultra-compact unification of devices.

  10. An improved ionic liquid-based headspace single-drop microextraction-liquid chromatography method for the analysis of camphor and trans-anethole in compound liquorice tablets.

    PubMed

    He, Xiaowen; Zhang, Fucheng; Jiang, Ye

    2012-07-01

    A simple, accurate and sensitive ionic liquid-based headspace single-drop microextraction procedure followed by high-performance liquid chromatography was developed and validated for the determination of camphor and trans-anethole in compound liquorice tablets. The volume of the ionic liquid microdrop was increased to 12 µL by modifying the device of the suspended drop. The stability of the microdrop and the sensitivity of the method were improved. Under the optimum experimental conditions, the calculated calibration curves gave acceptable linearity for camphor and trans-anethole with correlation coefficients of 0.9990 and 0.9998, respectively. The repeatability of the proposed method, expressed as relative standard deviation, was below 4.5% (n = 5). The limits of detection for the two target analytes were found to be 9.77 and 1.95 × 10(-2) μg/mL, respectively. In this study, the separation, purification and enrichment were achieved in one step in an airtight system, which reduced the interferences caused by other complicated constituents, increased the signal-to-noise of the method and ensured the accuracy of the results because there was no loss of volatile components. It is expected to be widely applied for sample pretreatment of volatile components with high boiling points in samples with complicated matrices such as the extractions of plants or Chinese traditional drugs.

  11. Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karatzos, Sergios; van Dyk, J. Susan; McMillan, James D.

    Drop-in biofuels that are 'functionally identical to petroleum fuels and fully compatible with existing infrastructure' are needed for sectors such as aviation where biofuels such as bioethanol/biodiesel cannot be used. The technologies used to produce drop-in biofuels can be grouped into the four categories: oleochemical, thermochemical, biochemical, and hybrid technologies. Commercial volumes of conventional drop-in biofuels are currently produced through the oleochemical pathway, to make products such as renewable diesel and biojet fuel. However, the cost, sustainability, and availability of the lipid/fatty acid feedstocks are significant challenges that need to be addressed. In the longer-term, it is likely that commercialmore » growth in drop-in biofuels will be based on lignocellulosic feedstocks. However, these technologies have been slow to develop and have been hampered by several technoeconomic challenges. For example, the gasification/Fischer-Tropsch (FT) synthesis route suffers from high capital costs and economies of scale difficulties, while the economical production of high quality syngas remains a significant challenge. Although pyrolysis/hydrothermal liquefaction (HTL) based technologies are promising, the upgrading of pyrolysis oils to higher specification fuels has encountered several technical challenges, such as high catalyst cost and short catalyst lifespan. Biochemical routes to drop-in fuels have the advantage of producing single molecules with simple chemistry. Moreover, the high value of these molecules in other markets such as renewable chemical precursors and fragrances will limit their use for fuel. In the near-term, (1-5 years) it is likely that, 'conventional' drop-in biofuels will be produced predominantly via the oleochemical route, due to the relative simplicity and maturity of this pathway.« less

  12. Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I

    DOE PAGES

    Karatzos, Sergios; van Dyk, J. Susan; McMillan, James D.; ...

    2017-01-23

    Drop-in biofuels that are 'functionally identical to petroleum fuels and fully compatible with existing infrastructure' are needed for sectors such as aviation where biofuels such as bioethanol/biodiesel cannot be used. The technologies used to produce drop-in biofuels can be grouped into the four categories: oleochemical, thermochemical, biochemical, and hybrid technologies. Commercial volumes of conventional drop-in biofuels are currently produced through the oleochemical pathway, to make products such as renewable diesel and biojet fuel. However, the cost, sustainability, and availability of the lipid/fatty acid feedstocks are significant challenges that need to be addressed. In the longer-term, it is likely that commercialmore » growth in drop-in biofuels will be based on lignocellulosic feedstocks. However, these technologies have been slow to develop and have been hampered by several technoeconomic challenges. For example, the gasification/Fischer-Tropsch (FT) synthesis route suffers from high capital costs and economies of scale difficulties, while the economical production of high quality syngas remains a significant challenge. Although pyrolysis/hydrothermal liquefaction (HTL) based technologies are promising, the upgrading of pyrolysis oils to higher specification fuels has encountered several technical challenges, such as high catalyst cost and short catalyst lifespan. Biochemical routes to drop-in fuels have the advantage of producing single molecules with simple chemistry. Moreover, the high value of these molecules in other markets such as renewable chemical precursors and fragrances will limit their use for fuel. In the near-term, (1-5 years) it is likely that, 'conventional' drop-in biofuels will be produced predominantly via the oleochemical route, due to the relative simplicity and maturity of this pathway.« less

  13. The effect of surfactant on headspace single drop microextraction for the determination of some volatile aroma compounds in citronella grass and lemongrass leaves by gas chromatography

    USDA-ARS?s Scientific Manuscript database

    A rapid method for the determination of some volatile aromatic compounds (VACs), including citronellal, citronellol, neral, geranial, geraniol, and eugenol in citronella grass and lemongrass leaves, was developed using surfactant as a surface tension modifier while performing headspace single drop m...

  14. Genetic interaction of the fusiform rust fungus with resistance gene FR1 in loblolly pine

    Treesearch

    Thomas L. Kubisiak; Henry V. Amerson; C. Dana Nelson

    2005-01-01

    We propose a method for defining DNA markers linked to Cronartium quercuum f. sp. fusiforme avirulence (Avr) genes. However, before this method can be successfully employed, a spore competition study was needed to determine the genetic composition of single pycnial drops and multiple drops on single galls when using the standard...

  15. Using Single Drop Microextraction for Headspace Analysis with Gas Chromatography

    ERIC Educational Resources Information Center

    Riccio, Daniel; Wood, Derrick C.; Miller, James M.

    2008-01-01

    Headspace (HS) gas chromatography (GC) is commonly used to analyze samples that contain non-volatiles. In 1996, a new sampling technique called single drop microextraction, SDME, was introduced, and in 2001 it was applied to HS analysis. It is a simple technique that uses equipment normally found in the undergraduate laboratory, making it ideal…

  16. Size Distribution and Velocity of Ethanol Drops in a Rocket Combustor Burning Ethanol and Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1961-01-01

    Single jets of ethanol were studied photomicrographically inside a rocket chamber as they broke up into sprays of drops which underwent simultaneous acceleration and vaporization with chemical reaction occurring in the surrounding combustion gas stream. In each rocket test-firing, liquid oxygen was used as the oxidant. Both drop velocity and drop size distribution data were obtained from photomicrographs of the ethanol drops taken with an ultra-high speed tracking camera developed at NASA, Lewis Research Center.

  17. Progress on Concepts for Next-Generation Drop Tower Systems

    NASA Astrophysics Data System (ADS)

    Könemann, Thorben; Eigenbrod, Christian; Von Kampen, Peter; Laemmerzahl, Claus; Kaczmarczik, Ulrich

    2016-07-01

    The Center of Applied Space Technology and Microgravity (ZARM) founded by Prof. Dr.-Ing. Hans J. Rath in 1985 is part of the Department of Production Engineering at the University of Bremen, Germany. ZARM is mainly concentrated on fundamental investigations of gravitational and space-related phenomenas under conditions of weightlessness as well as questions and developments related to technologies for space. At ZARM about 100 scientists, engineers, and administrative staff as well as many students from different departments are employed. Today, ZARM is still one of the largest and most important research center for space sciences and technologies in Europe. With a height of 146 m the Bremen Drop Tower is the predominant facility of ZARM and also the only drop tower of its class in Europe. ZARM's ground-based laboratory offers the opportunity for daily short-term experiments under conditions of high-quality weightlessness at a level of 10-6 g (microgravity), which is one of the best achievable for ground-based flight opportunities. Scientists may choose up to three times a day between a single drop experiment with 4.74 s in simple free fall and an experiment in ZARM's worldwide unique catapult system with 9.3 s in weightlessness. Since the start of operation of the facility in 1990, over 7500 drops or catapult launches of more than 160 different experiment types from various scientific fields like fundamental physics, combustion, fluid dynamics, planetary formation / astrophysics, biology and materials sciences have been accomplished so far. In addition, more and more technology tests have been conducted under microgravity conditions at the Bremen Drop Tower in order to effectively prepare appropriate space missions in advance. In this paper we report on the progress on concepts for next-generation drop tower systems based on the GraviTower idea utilizing a guided electro-magnetic linear drive. Alternative concepts motivated by the scientific demand for higher experiment repetition rates are discussed.

  18. dropEst: pipeline for accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments.

    PubMed

    Petukhov, Viktor; Guo, Jimin; Baryawno, Ninib; Severe, Nicolas; Scadden, David T; Samsonova, Maria G; Kharchenko, Peter V

    2018-06-19

    Recent single-cell RNA-seq protocols based on droplet microfluidics use massively multiplexed barcoding to enable simultaneous measurements of transcriptomes for thousands of individual cells. The increasing complexity of such data creates challenges for subsequent computational processing and troubleshooting of these experiments, with few software options currently available. Here, we describe a flexible pipeline for processing droplet-based transcriptome data that implements barcode corrections, classification of cell quality, and diagnostic information about the droplet libraries. We introduce advanced methods for correcting composition bias and sequencing errors affecting cellular and molecular barcodes to provide more accurate estimates of molecular counts in individual cells.

  19. An investigation of two phase flow pressure drops in a reduced acceleration environment

    NASA Astrophysics Data System (ADS)

    Wheeler, Montgomery W.; Best, Frederick R.; Reinarts, Thomas R.

    1993-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion system advantages include the capability of achieving high specific power levels. Before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a reduced acceleration environment is necessary. To meet these needs, two phase flow experiments were conducted aboard the National Aeronautic and Space Administration's KC-135 using R12 as the working fluid. Annular flow two phase pressure drops were measured through 10.41-mm ID 1.251-m long glass tubing during periods with acceleration levels in the range ±0.05 G. The experiments were conducted with emphasis on achieving data with a high level of accuracy. The reduced acceleration annular flow pressure drops were compred with pressure drops measured in a 1-G environment for similar flow conditions. The reduced acceleration pressure drops were found to be 45% greater than the 1-G pressure drops. In addition, the reduced acceleration annular flow interfacial friction factors were compared with models for vertical up-flow in a 1-G environment. The reduced acceleration interfacial friction factor data was not predicted by the 1-G models.

  20. Ultrasonic characterization of single drops of liquids

    DOEpatents

    Sinha, D.N.

    1998-04-14

    Ultrasonic characterization of single drops of liquids is disclosed. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities. 5 figs.

  1. Ultrasonic characterization of single drops of liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, D.N.

    Ultrasonic characterization of single drops of liquids is disclosed. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-qualitymore » measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities. 5 figs.« less

  2. Interaction Between Graphene-Coated SiC Single Crystal and Liquid Copper

    NASA Astrophysics Data System (ADS)

    Homa, M.; Sobczak, N.; Sobczak, J. J.; Kudyba, A.; Bruzda, G.; Nowak, R.; Pietrzak, K.; Chmielewski, M.; Strupiński, W.

    2018-04-01

    The wettability of graphene-coated SiC single crystal (CGn/SiCsc) by liquid Cu (99.99%) was investigated by a sessile drop method in vacuum conditions at temperature of 1100 °C. The graphene layer was produced via a chemical vapor deposition routine using 4H-SiC single crystal cut out from 6″ wafer. A dispensed drop technique combined with a non-contact heating of a couple of materials was applied. The Cu drop was squeezed from a graphite capillary and deposited on the substrate directly in a vacuum chamber. The first Cu drop did not wet the CGn/SiCsc substrate and showed a lack of adhesion to the substrate: the falling Cu drop only touched the substrate forming a contact angle of θ 0 = 121° and then immediately rolled like a ball along the substrate surface. After settling near the edge of the substrate in about 0.15 s, the Cu drop formed an asymmetric shape with the right and left contact angles of different values (θ R = 86° and θ L = 70°, respectively), while in the next 30 min, θ R and θ L achieved the same final value of 52°. The second Cu drop was put down on the displacement path of the first drop, and immediately after the deposition, it also did not wet the substrate (θ = 123°). This drop kept symmetry and the primary position, but its wetting behavior was unusual: both θ R and θ L decreased in 17 min to the value of 23° and next, they increased to a final value of 65°. Visual observations revealed a presence of 2.5-mm-thick interfacial phase layer reactively formed under the second drop. Scanning electron microscopy (SEM) investigations revealed the presence of carbon-enriched precipitates on the top surface of the first Cu drop. These precipitates were identified by the Raman spectroscopy as double-layer graphene. The Raman spectrum taken from the substrate far from the drop revealed the presence of graphene, while that obtained from the first drop displacement path exhibited a decreased intensity of 2D peak. The results of SEM investigations and Raman spectroscopy studies suggest that the presence of graphene layer on the SiC substrate suppresses but does not completely prevent chemical interaction between liquid Cu drop and SiC. Both chemical degradation (etching) and mechanical degradation of the graphene layer during drop rolling due to high adhesion of the Cu drop to the SiC substrate are responsible for mass transfer through the 2nd drop/substrate interface that in turn results in significant changes of structure and chemistry of the drop and the interface.

  3. Interaction Between Graphene-Coated SiC Single Crystal and Liquid Copper

    NASA Astrophysics Data System (ADS)

    Homa, M.; Sobczak, N.; Sobczak, J. J.; Kudyba, A.; Bruzda, G.; Nowak, R.; Pietrzak, K.; Chmielewski, M.; Strupiński, W.

    2018-05-01

    The wettability of graphene-coated SiC single crystal (CGn/SiCsc) by liquid Cu (99.99%) was investigated by a sessile drop method in vacuum conditions at temperature of 1100 °C. The graphene layer was produced via a chemical vapor deposition routine using 4H-SiC single crystal cut out from 6″ wafer. A dispensed drop technique combined with a non-contact heating of a couple of materials was applied. The Cu drop was squeezed from a graphite capillary and deposited on the substrate directly in a vacuum chamber. The first Cu drop did not wet the CGn/SiCsc substrate and showed a lack of adhesion to the substrate: the falling Cu drop only touched the substrate forming a contact angle of θ 0 = 121° and then immediately rolled like a ball along the substrate surface. After settling near the edge of the substrate in about 0.15 s, the Cu drop formed an asymmetric shape with the right and left contact angles of different values ( θ R = 86° and θ L = 70°, respectively), while in the next 30 min, θ R and θ L achieved the same final value of 52°. The second Cu drop was put down on the displacement path of the first drop, and immediately after the deposition, it also did not wet the substrate ( θ = 123°). This drop kept symmetry and the primary position, but its wetting behavior was unusual: both θ R and θ L decreased in 17 min to the value of 23° and next, they increased to a final value of 65°. Visual observations revealed a presence of 2.5-mm-thick interfacial phase layer reactively formed under the second drop. Scanning electron microscopy (SEM) investigations revealed the presence of carbon-enriched precipitates on the top surface of the first Cu drop. These precipitates were identified by the Raman spectroscopy as double-layer graphene. The Raman spectrum taken from the substrate far from the drop revealed the presence of graphene, while that obtained from the first drop displacement path exhibited a decreased intensity of 2D peak. The results of SEM investigations and Raman spectroscopy studies suggest that the presence of graphene layer on the SiC substrate suppresses but does not completely prevent chemical interaction between liquid Cu drop and SiC. Both chemical degradation (etching) and mechanical degradation of the graphene layer during drop rolling due to high adhesion of the Cu drop to the SiC substrate are responsible for mass transfer through the 2nd drop/substrate interface that in turn results in significant changes of structure and chemistry of the drop and the interface.

  4. Intrinsic magnetic refrigeration of a single electron transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciccarelli, C.; Ferguson, A. J.; Campion, R. P.

    In this work, we show that aluminium doped with low concentrations of magnetic impurities can be used to fabricate quantum devices with intrinsic cooling capabilities. We fabricate single electron transistors made of aluminium doped with 2% Mn by using a standard multi angle evaporation technique and show that the quantity of metal used to fabricate the devices generates enough cooling power to achieve a drop of 160 mK in the electron temperature at the base temperature of our cryostat (300 mK). The cooling mechanism is based on the magneto-caloric effect from the diluted Mn moments.

  5. Effect of grain boundary on the field-effect mobility of microrod single crystal organic transistors.

    PubMed

    Kim, Jaekyun; Kang, Jingu; Cho, Sangho; Yoo, Byungwook; Kim, Yong-Hoon; Park, Sung Kyu

    2014-11-01

    High-performance microrod single crystal organic transistors based on a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor are fabricated and the effects of grain boundaries on the carrier transport have been investigated. The spin-coating of C8-BTBT and subsequent solvent vapor annealing process enabled the formation of organic single crystals with high aspect ratio in the range of 10 - 20. It was found that the organic field-effect transistors (OFETs) based on these single crystals yield a field-effect mobility and an on/off current ratio of 8.04 cm2/Vs and > 10(5), respectively. However, single crystal OFETs with a kink, in which two single crystals are fused together, exhibited a noticeable drop of field-effect mobility, and we claim that this phenomenon results from the carrier scattering at the grain boundary.

  6. Fibrous filter efficiency and pressure drop in the viscous-inertial transition flow regime.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Andres L.; Brockmann, John E.; Dellinger, Jennifer Gwynne

    2011-10-01

    Fibrous filter pressure drop and aerosol collection efficiency were measured at low air pressures (0.2 to 0.8 atm) and high face velocities (5 to 20 meters per second) to give fiber Reynolds numbers in the viscous-inertial transition flow regime (1 to 16). In this regime, contemporary filtration theory based on Kuwabara's viscous flow through an ensemble of fibers under-predicts single fiber impaction by several orders of magnitude. Streamline curvature increases substantially as inertial forces become dominant. Dimensionless pressure drop measurements followed the viscous-inertial theory of Robinson and Franklin rather than Darcy's linear pressure-velocity relationship (1972). Sodium chloride and iron nano-agglomeratemore » test aerosols were used to evaluate the effects of particle density and shape factor. Total filter efficiency collapsed when plotted against the particle Stokes and fiber Reynolds numbers. Efficiencies were then fitted with an impactor type equation where the cutpoint Stokes number and a steepness parameter described data well in the sharply increasing portion of the curve (20% to 80% efficiency). The cutpoint Stokes number was a linearly decreasing function of fiber Reynolds number. Single fiber efficiencies were calculated from total filter efficiencies and compared to contemporary viscous flow impaction theory (Stechkina et al. 1969), and numerical simulations from the literature. Existing theories under-predicted measured single fiber efficiencies although the assumption of uniform flow conditions for each successive layer of fibers is questionable; the common exponential relationship between single fiber efficiency and total filter efficiency may not be appropriate in this regime.« less

  7. Dynamic ultrasonic nebulisation extraction coupled with headspace ionic liquid-based single-drop microextraction for the analysis of the essential oil in Forsythia suspensa.

    PubMed

    Yang, Jinjuan; Wei, Hongmin; Teng, Xiane; Zhang, Hanqi; Shi, Yuhua

    2014-01-01

    Ionic liquids have attracted much attention as an extraction solvent instead of traditional organic solvent in single-drop microextraction. However, non-volatile ionic liquids are difficult to couple with gas chromatography. Thus, the following injection system for the determination of organic compounds is described. To establish an environmentally friendly, simple, and effective extraction method for preparation and analysis of the essential oil from aromatic plants. The dynamic ultrasonic nebulisation extraction was coupled with headspace ionic liquid-based single-drop microextraction(UNE-HS/IL/SDME)for the extraction of essential oils from Forsythia suspense fruits. After 13 min of extraction for 50 mg sample, the extracts in ionic liquid were evaporated rapidly in the gas chromatography injector through a thermal desorption unit (5 s). The traditional extraction method was carried out for comparative study. The optimum conditions were: 3 μL of 1-methyl-3-octylimidazolium hexafluorophosphate was selected as the extraction solvent, the sample amount was 50 mg, the flow rate of purging gas was 200 mL/min, the extraction time was 13 min, the injection volume was 2 μL, and the thermal desorption temperature and time were 240 °C and 5 s respectively. Comparing with hydrodistillation (HD), the proposed method was environment friendly and efficient. The proposed method is environmentally friendly, time saving, with high efficiency and low consumption. It would extend the application range of the HS/SDME and would be useful especially for aromatic plants analysis. Copyright © 2013 John Wiley & Sons, Ltd.

  8. A Single Drop of 0.5% Proparacaine Hydrochloride for Uncomplicated Clear Corneal Phacoemulsification

    PubMed Central

    Joshi, Rajesh Subhash

    2013-01-01

    Purpose: The purpose of this study was to compare the efficacy of a single drop of 0.5% proparacaine hydrochloride in uncomplicated cataract surgery with phacoemulsification. Materials and Methods: Two hundred and ninety five patients scheduled for the phacoemulsification were divided into 2 groups based on the anesthetic agents they were to receive: 146 patients who received a single drop of 0.5% proparacaine 2 min before the start of the surgery (proparacaine group) and; 149 patients who received supplementation of 0.5% intracameral preservative free xylocaine (xylocaine group). A single surgeon performed all surgeries. Intraoperative and post-operative pain scores were evaluated on a visual analog scale. The surgeon noted his subjective impression of corneal clarity, discomfort while performing the surgery any supplemental anesthesia required and intraoperative complications. An anesthetist noted vital parameters and the need for intravenous sedation. Total surgical time was noted. Comparison of parameters was performed with the Chi-square test, and A P value less than 0.05 was considered as statistically significant. Results: No statistically significant difference was seen in the intraoperative (P = 0.24) and post-operative (P = 0.164) pain scores between groups. There was no pain (0 score) in 41.8% of patients in the proparacaine group and 46.3% of patients in the xylocaine group. The average surgical time (P = 0.279) and surgeon discomfort (P = 0.07) were not statistically significantly different between groups. No patients required supplemental anesthesia. There were no surgical complications that could compromise the visual outcome. An equal number of patients in both groups preferred same type of anesthetic technique for the fellow eye cataract surgery (89.11% for the proparacaine group and 90.18% for the xylocaine group). No patients in either group had changes in vital parameters or required intravenous sedation. Conclusion: A single drop pre-operatively, of proparacaine hydrochloride was comparable to the intracameral supplementation of preservative free xylocaine for phacoemulsification in uncomplicated cataract surgery without compromising the visual outcome. However, we recommend individualizing the anesthetic technique according to the requirements of the surgeon. PMID:24014985

  9. Adding the ‘heart’ to hanging drop networks for microphysiological multi-tissue experiments†

    PubMed Central

    Yazdi, Saeed Rismani; Shadmani, Amir; Bürgel, Sebastian C.; Misun, Patrick M.; Hierlemann, Andreas; Frey, Olivier

    2017-01-01

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid–air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip. PMID:26401602

  10. Failure rate of single dose methotrexate in managment of ectopic pregnancy.

    PubMed

    Sendy, Feras; AlShehri, Eman; AlAjmi, Amani; Bamanie, Elham; Appani, Surekha; Shams, Taghreed

    2015-01-01

    Background. One of the treatment modalities for ectopic pregnancy is methotrexate. The purpose of this study is to identify the failure rate of methotrexate in treating patients with ectopic pregnancy as well as the risk factors leading to treatment failure. Methods. A retrospective chart review of 225 patients who received methotrexate as a primary management option for ectopic pregnancy. Failure of single dose of methotrexate was defined as drop of BHCG level less than or equal to 14% in the seventh day after administration of methotrexate. Results. 225 patients had methotrexate. Most of the patients (151 (67%)) received methotrexate based on the following formula: f 50 mg X body surface area. Single dose of methotrexate was successful in 72% (162/225) of the patients. 28% (63/225) were labeled as failure of single dose of methotrexate because of suboptimal drop in BhCG. 63% (40/63) of failure received a second dose of methotrexate, and 37% (23/63) underwent surgical treatment. Among patient who received initial dose of methotrexate, 71% had moderate or severe pain, and 58% had ectopic mass size of more than 4 cm on ultrasound. Conclusion. Liberal use of medical treatment of ectopic pregnancy results in 71% success rate.

  11. What is normal? Female lower limb kinematic profiles during athletic tasks used to examine anterior cruciate ligament injury risk: a systematic review.

    PubMed

    Fox, Aaron S; Bonacci, Jason; McLean, Scott G; Spittle, Michael; Saunders, Natalie

    2014-06-01

    It has been proposed that the performance of athletic tasks where normal motion is exceeded has the potential to damage the anterior cruciate ligament (ACL). Determining the expected or 'normal' kinematic profile of athletic tasks commonly used to assess ACL injury risk can provide an evidence base for the identification of abnormal or anomalous task performances in a laboratory setting. The objective was to conduct a systematic review of studies examining lower limb kinematics of females during drop landing, drop vertical jump, and side-step cutting tasks, to determine 'normal' ranges for hip and knee joint kinematic variables. An electronic database search was conducted on the SPORTDiscus(TM), MEDLINE, AMED and CINAHL (January 1980-August 2013) databases using a combination of relevant keywords. Studies identified as potentially relevant were independently examined by two reviewers for inclusion. Where consensus could not be reached, a third reviewer was consulted. Original research articles that examined three-dimensional hip and knee kinematics of female subjects during the athletic tasks of interest were included for review. Articles were excluded if subjects had a history of lower back or lower limb joint injury or isolated data from the female cohort could not be extracted. Two reviewers independently assessed the quality of included studies. Data on subject characteristics, the athletic task performed, and kinematic data were extracted from included studies. Studies were categorised according to the athletic task being examined and each study allocated a weight within categories based on the number of subjects assessed. Extracted data were used to calculate the weighted means and standard deviations for hip and knee kinematics (initial contact and peak values). 'Normal' motion was classified as the weighted mean plus/minus one standard deviation. Of 2,920 citations, a total of 159 articles were identified as potentially relevant, with 29 meeting all inclusion/exclusion criteria. Due to the limited number of studies available examining double-leg drop landings and single-leg drop vertical jumps, insufficient data was available to include these tasks in the review. Therefore, a total of 25 articles were included. From the included studies, 'normal' ranges were calculated for the kinematic variables of interest across the athletic tasks examined. Joint forces and other additional elements play a role in ACL injuries, therefore, focusing solely on lower limb kinematics in classifying injury risk may not encapsulate all relevant factors. Insufficient data resulted in no normal ranges being calculated for double-leg drop land and single-leg drop vertical jump tasks. No included study examined hip internal/external rotation during single-leg drop landings, therefore ranges for this kinematic variable could not be determined. Variation in data between studies resulted in wide normal ranges being observed across certain kinematic variables. The ranges calculated in this review provide evidence-based values that can be used to identify abnormal or anomalous athletic task performances on a multi-planar scale. This may be useful in identifying neuromuscular factors or specific muscular recruitment strategies that contribute to ACL injury risk.

  12. Dustiness behaviour of loose and compacted Bentonite and organoclay powders: What is the difference in exposure risk?

    NASA Astrophysics Data System (ADS)

    Jensen, Keld Alstrup; Koponen, Ismo Kalevi; Clausen, Per Axel; Schneider, Thomas

    2009-01-01

    Single-drop and rotating drum dustiness testing was used to investigate the dustiness of loose and compacted montmorillonite (Bentonite) and an organoclay (Nanofil®5), which had been modified from montmorillonite-rich Bentonite. The dustiness was analysed based on filter measurements as well as particle size distributions, the particle generation rate, and the total number of generated particles. Particle monitoring was completed using a TSI Fast Mobility Particle Sizer (FMPS) and a TSI Aerosol Particle Sizer (APS) at 1 s resolution. Low-pressure uniaxial powder compaction of the starting materials showed a logarithmic compaction curve and samples subjected to 3.5 kg/cm2 were used for dustiness testing to evaluate the role of powder compaction, which could occur in powders from large shipments or high-volume storage facilities. The dustiness tests showed intermediate dustiness indices (1,077-2,077 mg/kg powder) in tests of Nanofil®5, Bentonite, and compacted Bentonite, while a high-level dustiness index was found for compacted Nanofil®5 (3,487 mg/kg powder). All powders produced multimodal particle size-distributions in the dust cloud with one mode around 300 nm (Bentonite) or 400 nm (Nanofil®5) as well as one (Nanofil®5) or two modes (Bentonite) with peaks between 1 and 2.5 μm. The dust release was found to occur either as a burst (loose Bentonite and Nanofil®5), constant rate (compacted Nanofil®5), or slowly increasing rate (compacted Bentonite). In rotating drum experiments, the number of particles generated in the FMPS and APS size-ranges were in general agreement with the mass-based dustiness index, but the same order was not observed in the single-drop tests. Compaction of Bentonite reduced the number of generated particles with app. 70 and 40% during single-drop and rotating drum dustiness tests, respectively. Compaction of Nanofil®5 reduced the dustiness in the single-drop test, but it was more than doubled in the rotating drum test. Physically relevant low-pressure compaction may reduce the risk of particle exposure if powders are handled in operations with few agitations such as pouring or tapping. Repeated agitation, e.g., mixing, of these compacted powders, would result in reduced (app. 20% for Bentonite) or highly increased (app. 225% for Nanofil®5) dustiness and thereby alter the exposure risk significantly.

  13. Spontaneous phase transition from free flow to synchronized flow in traffic on a single-lane highway.

    PubMed

    Jin, Cheng-Jie; Wang, Wei; Jiang, Rui; Zhang, H M; Wang, Hao

    2013-01-01

    Traffic flow complexity comes from the car-following and lane-changing behavior. Based on empirical data for individual vehicle speeds and time headways measured on a single-lane highway section, we have studied the traffic flow properties induced by pure car-following behavior. We have found that a spontaneous sudden drop in velocity could happen in a platoon of vehicles when the velocity of the leading vehicle is quite high (~70 km/h). In contrast, when the velocity of the leading vehicle in a platoon slows down, such a spontaneous sudden drop of velocity has not been observed. Our finding indicates that traffic breakdown on a single-lane road might be a phase transition from free flow to synchronized flow (F→S transition). We have found that the flow rate within the emergent synchronized flow can be either smaller or larger than the flow rate in the free flow within which the synchronized flow propagates. Our empirical findings support Kerner's three-phase theory in which traffic breakdown is associated with an F→S transition.

  14. Determination of pressure drop across activated carbon fiber respirator cartridges.

    PubMed

    Balanay, Jo Anne G; Lungu, Claudiu T

    2016-01-01

    Activated carbon fiber (ACF) is considered as an alternative adsorbent to granular activated carbon (GAC) for the development of thinner, lighter, and efficient respirators because of their larger surface area and adsorption capacities, thinner critical bed depth, lighter weight, and fabric form. This study aims to measure the pressure drop across different types of commercially available ACFs in respirator cartridges to determine the ACF composition and density that will result in acceptably breathable respirators. Seven ACF types in cloth (ACFC) and felt (ACFF) forms were tested. ACFs in cartridges were challenged with pre-conditioned constant air flow (43 LPM, 23°C, 50% RH) at different compositions (single- or combination-ACF type) in a test chamber. Pressure drop across ACF cartridges were obtained using a micromanometer, and compared among different cartridge configurations, to those of the GAC cartridge, and to the NIOSH breathing resistance requirements for respirator cartridges. Single-ACF type cartridges filled with any ACFF had pressure drop measurements (23.71-39.93 mmH2O) within the NIOSH inhalation resistance requirement of 40 mmH2O, while those of the ACFC cartridges (85.47±3.67 mmH2O) exceeded twice the limit due possibly to the denser weaving of ACFC fibers. All single ACFF-type cartridges had higher pressure drop compared to the GAC cartridge (23.13±1.14 mmH2O). Certain ACF combinations (2 ACFF or ACFC/ACFF types) resulted to pressure drop (26.39-32.81 mmH2O) below the NIOSH limit. All single-ACFF type and all combination-ACF type cartridges with acceptable pressure drop had much lower adsorbent weights than GAC (≤15.2% of GAC weight), showing potential for light-weight respirator cartridges. 100% ACFC in cartridges may result to respirators with high breathing resistance and, thus, is not recommended. The more dense ACFF and ACFC types may still be possibly used in respirators by combining them with less dense ACFF materials and/or by reducing cartridge bed depth to reduce pressure drop to acceptable levels. ACFF by itself may be more appropriate as adsorbent materials in ACF respirator cartridges in terms of acceptable breathing resistance.

  15. High-Pressure Transport Properties Of Fluids: Theory And Data From Levitated Drops At Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Ohsaka, Kenichi

    2003-01-01

    Although the high pressure multicomponent fluid conservation equations have already been derived and approximately validated for binary mixtures by this PI, the validation of the multicomponent theory is hampered by the lack of existing mixing rules for property calculations. Classical gas dynamics theory can provide property mixing-rules at low pressures exclusively. While thermal conductivity and viscosity high-pressure mixing rules have been documented in the literature, there is no such equivalent for the diffusion coefficients and the thermal diffusion factors. The primary goal of this investigation is to extend the low pressure mixing rule theory to high pressures and validate the new theory with experimental data from levitated single drops. The two properties that will be addressed are the diffusion coefficients and the thermal diffusion factors. To validate/determine the property calculations, ground-based experiments from levitated drops are being conducted.

  16. Wetting morphologies on randomly oriented fibers.

    PubMed

    Sauret, Alban; Boulogne, François; Soh, Beatrice; Dressaire, Emilie; Stone, Howard A

    2015-06-01

    We characterize the different morphologies adopted by a drop of liquid placed on two randomly oriented fibers, which is a first step toward understanding the wetting of fibrous networks. The present work reviews previous modeling for parallel and touching crossed fibers and extends it to an arbitrary orientation of the fibers characterized by the tilting angle and the minimum spacing distance. Depending on the volume of liquid, the spacing distance between fibers and the angle between the fibers, we highlight that the liquid can adopt three different equilibrium morphologies: 1) a column morphology in which the liquid spreads between the fibers, 2) a mixed morphology where a drop grows at one end of the column or 3) a single drop located at the node. We capture the different morphologies observed using an analytical model that predicts the equilibrium configuration of the liquid based on the geometry of the fibers and the volume of liquid.

  17. Embryo density and medium volume effects on early murine embryo development.

    PubMed

    Canseco, R S; Sparks, A E; Pearson, R E; Gwazdauskas, F C

    1992-10-01

    One-cell mouse embryos were used to determine the effects of drop size and number of embryos per drop for optimum development in vitro. Embryos were collected from immature C57BL6 female mice superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin and mated by CD1 males. Groups of 1, 5, 10, or 20 embryos were cultured in 5-, 10-, 20-, or 40-microliters drops of CZB under silicon oil at 37.5 degrees C in a humidified atmosphere of 5% CO2 and 95% air. Development score for embryos cultured in 10 microliters was higher than that of embryos cultured in 20 or 40 microliters. Embryos cultured in groups of 5, 10, or 20 had higher development scores than embryos cultured singly. The highest development score was obtained by the combination of 5 embryos per 10-microliters drop. The percentage of live embryos in 20 or 40 microliters was lower than that of embryos cultured in 10 microliters. Additionally, the percentage of live embryos cultured singly was lower than that of embryos cultured in groups. Our results suggest that a stimulatory interaction occurs among embryos possibly exerted through the secretion of growth factors. This effect can be diluted if the embryos are cultured in large drops or singly.

  18. Optimal formation of genetically modified and functional pancreatic islet spheroids by using hanging-drop strategy.

    PubMed

    Kim, H J; Alam, Z; Hwang, J W; Hwang, Y H; Kim, M J; Yoon, S; Byun, Y; Lee, D Y

    2013-03-01

    Rejection and hypoxia are important factors causing islet loss at an early stage after pancreatic islet transplantation. Recently, islets have been dissociated into single cells for reaggregation into so-called islet spheroids. Herein, we used a hanging-drop strategy to form islet spheroids to achieve functional equivalence to intact islets. To obtain single islet cells, we dissociated islets with trypsin-EDTA digestion for 10 minutes. To obtain spheroids, we dropped various numbers of single cells (125, 250, or 500 cells/30 μL drop) onto a Petri dish, that was inverted for incubation in humidified air containing 5% CO(2) at 37 °C for 7 days. The aggregated spheroids in the droplets were harvested for further culture. The size of the aggregated islet spheroids depended on the number of single cells (125-500 cells/30 μL droplet). Their morphology was similar to that of intact islets without any cellular damage. When treated with various concentrations of glucose to evaluate responsiveness, their glucose-mediated stimulation index value was similar to that of intact islets, an observation that was attributed to strong cell-to-cell interactions in islet spheroids. However, islet spheroids aggregated in general culture dishes showed abnormal glucose responsiveness owing to weak cell-to-cell interactions. Cell-to-cell interactions in islet spheroids were confirmed with an anti-connexin-36 monoclonal antibody. Finally, nonviral poly(ethylene imine)-mediated interleukin-10 cytokine gene delivered beforehand into dissociated single cells before formation of islet spheroids increased the gene transfection efficacy and interleukin-10 secretion from islet spheroids >4-fold compared with intact islets. These results demonstrated the potential application of genetically modified, functional islet spheroids with of controlled size and morphology using an hanging-drop technique. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Thermocapillary flow contribution to dropwise condensation heat transfer

    NASA Astrophysics Data System (ADS)

    Phadnis, Akshay; Rykaczewski, Konrad

    2017-11-01

    With recent developments of durable hydrophobic materials potentially enabling industrial applications of dropwise condensation, accurate modeling of heat transfer during this phase change process is becoming increasingly important. Classical steady state models of dropwise condensation are based on the integration of heat transfer through individual droplets over the entire drop size distribution. These models consider only the conduction heat transfer inside the droplets. However, simple scaling arguments suggest that thermocapillary flows might exist in such droplets. In this work, we used Finite Element heat transfer model to quantify the effect of Marangoni flow on dropwise condensation heat transfer of liquids with a wide range of surface tensions ranging from water to pentane. We confirmed that the Marangoni flow is present for a wide range of droplet sizes, but only has quantifiable effects on heat transfer in drops larger than 10 µm. By integrating the single drop heat transfer simulation results with drop size distribution for the cases considered, we demonstrated that Marangoni flow contributes a 10-30% increase in the overall heat transfer coefficient over conduction only model.

  20. Lower Extremity Biomechanics in Athletes With Ankle Instability After a 6-Week Integrated Training Program

    PubMed Central

    Huang, Pi-Yin; Chen, Wen-Ling; Lin, Cheng-Feng; Lee, Heng-Ju

    2014-01-01

    Context: Plyometric exercise has been recommended to prevent lower limb injury, but its feasibility in and effects on those with functional ankle instability (FAI) are unclear. Objective: To investigate the effect of integrated plyometric and balance training in participants with FAI during a single-legged drop landing and single-legged standing position. Design: Randomized controlled clinical trial. Setting: University motion-analysis laboratory. Patients or Other Participants: Thirty athletes with FAI were divided into 3 groups: plyometric group (8 men, 2 women, age = 23.20 ± 2.82 years; 10 unstable ankles), plyometric-balance (integrated)–training group (8 men, 2 women, age = 23.80 ± 4.13 years; 10 unstable ankles), and control group (7 men, 3 women, age = 23.50 ± 3.00 years; 10 unstable ankles). Intervention(s): A 6-week plyometric-training program versus a 6-week integrated-training program. Main Outcome Measure(s): Postural sway during single-legged standing with eyes open and closed was measured before and after training. Kinematic data were recorded during medial and lateral single-legged drop landings after a 5-second single-legged stance. Results: Reduced postural sway in the medial-lateral direction and reduced sway area occurred in the plyometric- and integrated-training groups. Generally, the plyometric training and integrated training increased the maximum angles at the hip and knee in the sagittal plane, reduced the maximum angles at the hip and ankle in the frontal and transverse planes in the lateral drop landing, and reduced the time to stabilization for knee flexion in the medial drop landing. Conclusions: After 6 weeks of plyometric training or integrated training, individuals with FAI used a softer landing strategy during drop landings and decreased their postural sway during the single-legged stance. Plyometric training improved static and dynamic postural control and should be incorporated into rehabilitation programs for those with FAI. PMID:24568224

  1. Gold nanorods for in-drop colorimetric determination of thiomersal after photochemical decomposition.

    PubMed

    Martín-Alonso, Manuel; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2018-03-13

    This work reports on the implementation of gold nanorods (AuNRs) in headspace solvent microextraction for colorimetric determination of volatile analyte derivatives in a single drop. The exposure of AuNRs to both H 2 Se and elemental mercury (Hg 0 ) results in a shift of the longitudinal plasmonic band, unlike a number of volatiles. Accordingly, a method is reported for the determination of Hg 0 with potential applicability to the determination of thiomersal (sodium ethylmercurithiosalicylate). It is based on the photochemical decomposition of thiomersal into Hg(II) and subsequent exposure of AuNRs-containing microdrop to in situ generated Hg 0 . Colorimetric analysis of the enriched drop was carried out without dilution by means of a cuvetteless microvolume UV-vis spectrometer. Under optimal conditions, the limit of detection was 0.5 ng mL -1 (as Hg). The repeatability, expressed as relative standard deviation, was 8.4% (for n = 10). AuNRs exposed to increasing concentrations of the analyte were characterized by means of transmission electron microscopy and UV-vis spectrophotometry to ascertain the mechanism of detection. The method was finally applied to the determination of thiomersal in various pharmaceutical samples and showed quantitative recoveries. Graphical abstract Schematic illustration of a miniaturized colorimetric method based on the use of a microdrop of gold nanorods (AuNRs) for thiomersal determination in pharmaceuticals. It is based on the photochemical decomposition of thiomersal and subsequent Hg 0 generation with in-drop amalgamation.

  2. a New Phenomenological Formula for Ground-State Binding Energies

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, G.

    A phenomenological formula based on liquid drop model has been proposed for ground-state binding energies of nuclei. The effect due to bunching of single particle levels has been incorporated through a term resembling the one-body Hamiltonian. The effect of n-p interaction has been included through a function of valence nucleons. A total of 50 parameters has been used in the present calculation. The root mean square (r.m.s.) deviation for the binding energy values for 2140 nuclei comes out to be 0.376 MeV, and that for 1091 alpha decay energies is 0.284 MeV. The correspondence with the conventional liquid drop model is discussed.

  3. "Self-Shaping" of Multicomponent Drops.

    PubMed

    Cholakova, Diana; Valkova, Zhulieta; Tcholakova, Slavka; Denkov, Nikolai; Smoukov, Stoyan K

    2017-06-13

    In our recent study we showed that single-component emulsion drops, stabilized by proper surfactants, can spontaneously break symmetry and transform into various polygonal shapes during cooling [ Denkov Nature 2015 , 528 , 392 - 395 ]. This process involves the formation of a plastic rotator phase of self-assembled oil molecules beneath the drop surface. The plastic phase spontaneously forms a frame of plastic rods at the oil drop perimeter which supports the polygonal shapes. However, most of the common substances used in industry appear as mixtures of molecules rather than pure substances. Here we present a systematic study of the ability of multicomponent emulsion drops to deform upon cooling. The observed trends can be summarized as follows: (1) The general drop-shape evolution for multicomponent drops during cooling is the same as with single-component drops; however, some additional shapes are observed. (2) Preservation of the particle shape upon freezing is possible for alkane mixtures with chain length difference Δn ≤ 4; for greater Δn, phase separation within the droplet is observed. (3) Multicomponent particles prepared from alkanes with Δn ≤ 4 plastify upon cooling due to the formation of a bulk rotator phase within the particles. (4) If a compound, which cannot induce self-shaping when pure, is mixed with a certain amount of a compound which induces self-shaping, then drops prepared from this mixture can also self-shape upon cooling. (5) Self-emulsification phenomena are also observed for multicomponent drops. In addition to the three recently reported mechanisms of self-emulsification [ Tcholakova Nat. Commun. 2017 , ( 8 ), 15012 ], a new (fourth) mechanism is observed upon freezing for alkane mixtures with Δn > 4. It involves disintegration of the particles due to a phase separation of alkanes upon freezing.

  4. Drop interaction with solid boundaries in liquid/liquid systems

    NASA Astrophysics Data System (ADS)

    Bordoloi, Ankur Deep

    The present experimental work was motivated primarily by the CO 2 sequestration process. In a possible scenario during this process, gravity driven CO2 bubbles coalesce at an interface near the rock surface. In another scenario, trapped CO2 fluid may escape from a porous matrix overcoming interfacial force inside a pore. Based on these potential scenarios, the current research was divided into two broad experimental studies. In the first part, coalescence at a quiescent interface of two analogous fluids (silicone oil and water/glycerin mixture) was investigated for water/glycerin drops with Bond number (Bo) ~7 and Ohnesorge number ~ 0.01 using high-speed imaging and time-resolved tomographic PIV. Two perturbation cases with a solid particle wetted in oil and water/glycerin placed adjacent to the coalescing drop were considered. The results were compared with coalescence of a single drop and that of a drop neighBored by a second drop of equivalent size. Each perturbing object caused an initial tilting of the drop, influencing its rupture location, subsequent film retraction and eventual collapse behavior. Once tilted, drops typically ruptured near their lowest vertical position which was located either toward or away from the perturbing object depending on the case. The trends in local retraction speed of the ruptured film and the overall dynamics of the collapsing drops were discussed in detail. In the second part, the motion of gravity driven drops (B o~0.8-11) through a confining orifice d/D<1) was studied using high speed imaging and planar PIV. Drops of water/glycerin, surrounded by silicone oil, fall toward and encounter the orifice plate after reaching terminal speed. The effects of surface wettability were investigated for Both round-edged and sharp-edged orifices. For the round-edged case, a thin film of surrounding oil prevented the drop fluid from contacting the orifice surface, such that the flow outcomes of the drops were independent of surface wettability. For d/D<0.8, the Boundary between drop capture and release depended on a modified Bond number relating drop gravitational time scale to orifice surface tension time scale. For the sharp-edged case, contact was initiated at the orifice edge immediately upon impact, such that surface wettability influenced the drop outcome.

  5. Failure Rate of Single Dose Methotrexate in Managment of Ectopic Pregnancy

    PubMed Central

    Sendy, Feras; AlShehri, Eman; AlAjmi, Amani; Bamanie, Elham; Appani, Surekha; Shams, Taghreed

    2015-01-01

    Background. One of the treatment modalities for ectopic pregnancy is methotrexate. The purpose of this study is to identify the failure rate of methotrexate in treating patients with ectopic pregnancy as well as the risk factors leading to treatment failure. Methods. A retrospective chart review of 225 patients who received methotrexate as a primary management option for ectopic pregnancy. Failure of single dose of methotrexate was defined as drop of BHCG level less than or equal to 14% in the seventh day after administration of methotrexate. Results. 225 patients had methotrexate. Most of the patients (151 (67%)) received methotrexate based on the following formula: f 50 mg X body surface area. Single dose of methotrexate was successful in 72% (162/225) of the patients. 28% (63/225) were labeled as failure of single dose of methotrexate because of suboptimal drop in BhCG. 63% (40/63) of failure received a second dose of methotrexate, and 37% (23/63) underwent surgical treatment. Among patient who received initial dose of methotrexate, 71% had moderate or severe pain, and 58% had ectopic mass size of more than 4 cm on ultrasound. Conclusion. Liberal use of medical treatment of ectopic pregnancy results in 71% success rate. PMID:25861275

  6. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Astrophysics Data System (ADS)

    Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  7. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.

    1992-01-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  8. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.

    1992-01-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  9. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Astrophysics Data System (ADS)

    Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.

    1992-07-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  10. Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution

    PubMed Central

    Cottinet, Denis; Condamine, Florence; Bremond, Nicolas; Griffiths, Andrew D.; Rainey, Paul B.; de Visser, J. Arjan G. M.; Baudry, Jean; Bibette, Jérôme

    2016-01-01

    Determining the phenotype and genotype of single cells is central to understand microbial evolution. DNA sequencing technologies allow the detection of mutants at high resolution, but similar approaches for phenotypic analyses are still lacking. We show that a drop-based millifluidic system enables the detection of heritable phenotypic changes in evolving bacterial populations. At time intervals, cells were sampled and individually compartmentalized in 100 nL drops. Growth through 15 generations was monitored using a fluorescent protein reporter. Amplification of heritable changes–via growth–over multiple generations yields phenotypically distinct clusters reflecting variation relevant for evolution. To demonstrate the utility of this approach, we follow the evolution of Escherichia coli populations during 30 days of starvation. Phenotypic diversity was observed to rapidly increase upon starvation with the emergence of heritable phenotypes. Mutations corresponding to each phenotypic class were identified by DNA sequencing. This scalable lineage-tracking technology opens the door to large-scale phenotyping methods with special utility for microbiology and microbial population biology. PMID:27077662

  11. Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution.

    PubMed

    Cottinet, Denis; Condamine, Florence; Bremond, Nicolas; Griffiths, Andrew D; Rainey, Paul B; de Visser, J Arjan G M; Baudry, Jean; Bibette, Jérôme

    2016-01-01

    Determining the phenotype and genotype of single cells is central to understand microbial evolution. DNA sequencing technologies allow the detection of mutants at high resolution, but similar approaches for phenotypic analyses are still lacking. We show that a drop-based millifluidic system enables the detection of heritable phenotypic changes in evolving bacterial populations. At time intervals, cells were sampled and individually compartmentalized in 100 nL drops. Growth through 15 generations was monitored using a fluorescent protein reporter. Amplification of heritable changes-via growth-over multiple generations yields phenotypically distinct clusters reflecting variation relevant for evolution. To demonstrate the utility of this approach, we follow the evolution of Escherichia coli populations during 30 days of starvation. Phenotypic diversity was observed to rapidly increase upon starvation with the emergence of heritable phenotypes. Mutations corresponding to each phenotypic class were identified by DNA sequencing. This scalable lineage-tracking technology opens the door to large-scale phenotyping methods with special utility for microbiology and microbial population biology.

  12. Raindrop intervalometer

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nicolaas; Hut, Rolf; ten Veldhuis, Marie-claire

    2017-04-01

    If one can assume that drop size distributions can be effectively described by a generalized gamma function [1], one can estimate this function on the basis of the distribution of time intervals between drops hitting a certain area. The arrival of a single drop is relatively easy to measure with simple consumer devices such as cameras or piezoelectric elements. Here we present an open-hardware design for the electronics and statistical processing of an intervalometer that measures time intervals between drop arrivals. The specific hardware in this case is a piezoelectric element in an appropriate housing, combined with an instrumentation op-amp and an Arduino processor. Although it would not be too difficult to simply register the arrival times of all drops, it is more practical to only report the main statistics. For this purpose, all intervals below a certain threshold during a reporting interval are summed and counted. We also sum the scaled squares, cubes, and fourth powers of the intervals. On the basis of the first four moments, one can estimate the corresponding generalized gamma function and obtain some sense of the accuracy of the underlying assumptions. Special attention is needed to determine the lower threshold of the drop sizes that can be measured. This minimum size often varies over the area being monitored, such as is the case for piezoelectric elements. We describe a simple method to determine these (distributed) minimal drop sizes and present a bootstrap method to make the necessary corrections. Reference [1] Uijlenhoet, R., and J. N. M. Stricker. "A consistent rainfall parameterization based on the exponential raindrop size distribution." Journal of Hydrology 218, no. 3 (1999): 101-127.

  13. Hydrophilic magnetic ionic liquid for magnetic headspace single-drop microextraction of chlorobenzenes prior to thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Fernández, Elena; Vidal, Lorena; Canals, Antonio

    2017-11-23

    A new, fast, easy to handle, and environmentally friendly magnetic headspace single-drop microextraction (Mag-HS-SDME) based on a magnetic ionic liquid (MIL) as an extractant solvent is presented. A small drop of the MIL 1-ethyl-3-methylimidazolium tetraisothiocyanatocobaltate(II) ([Emim] 2 [Co(NCS) 4 ]) is located on one end of a small neodymium magnet to extract nine chlorobenzenes (1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, 1,2,3,4-tetrachlorobenzene, 1,2,4,5-tetrachlorobenzene, and pentachlorobenzene) as model analytes from water samples prior to thermal desorption-gas chromatography-mass spectrometry determination. A multivariate optimization strategy was employed to optimize experimental parameters affecting Mag-HS-SDME. The method was evaluated under optimized extraction conditions (i.e., sample volume, 20 mL; MIL volume, 1 μL; extraction time, 10 min; stirring speed, 1500 rpm; and ionic strength, 15% NaCl (w/v)), obtaining a linear response from 0.05 to 5 μg L -1 for all analytes. The repeatability of the proposed method was evaluated at 0.7 and 3 μg L -1 spiking levels and coefficients of variation ranged between 3 and 18% (n = 3). Limits of detection were in the order of nanograms per liter ranging from 4 ng L -1 for 1,4-dichlorobenzene and 1,2,3,4-tetrachlorobenzene to 8 ng L -1 for 1,2,4,5-tetrachlorobenzene. Finally, tap water, pond water, and wastewater were selected as real water samples to assess the applicability of the method. Relative recoveries varied between 82 and 114% showing negligible matrix effects. Graphical abstract Magnetic headspace single-drop microextraction followed by thermal desorption-gas chromatography-mass spectrometry.

  14. Electro-hydrodynamic propulsion of counter-rotating Pickering drops

    NASA Astrophysics Data System (ADS)

    Dommersnes, P.; Mikkelsen, A.; Fossum, J. O.

    2016-07-01

    Insulating particles or drops suspended in carrier liquids may start to rotate with a constant frequency when subjected to a uniform DC electric field. This is known as the Quincke rotation electro-hydrodynamic instability. A single isolated rotating particle exhibit no translational motion at low Reynolds number, however interacting rotating particles may move relative to one another. Here we present a simple system consisting of two interacting and deformable Quincke rotating particle covered drops, i.e. deformable Pickering drops. The drops attract one another and spontaneously form a counter-rotating pair that exhibits electro-hydrodynamic driven propulsion at low Reynolds number flow.

  15. The shape and dynamics of the generation of the splash forms in single-phase systems after drop hitting

    NASA Astrophysics Data System (ADS)

    Sochan, Agata; Beczek, Michał; Mazur, Rafał; RyŻak, Magdalena; Bieganowski, Andrzej

    2018-02-01

    The splash phenomenon is being increasingly explored with the use of modern measurement tools, including the high-speed cameras. Recording images at a rate of several thousand frames per second facilitates parameterization and description of the dynamics of splash phases. This paper describes the impact of a single drop of a liquid falling on the surface of the same liquid. Three single-phase liquid systems, i.e., water, petrol, and diesel fuel, were examined. The falling drops were characterized by different kinetic energy values depending on the height of the fall, which ranged from 0.1 to 7.0 m. Four forms, i.e., waves, crowns, semi-closed domes, and domes, were distinguished depending on the drop energy. The analysis of the recorded images facilitated determination of the static and dynamic parameters of each form, e.g., the maximum height of each splash form, the width of the splash form at its maximum height, and the rate of growth of the splash form. We, Re, Fr, and K numbers were determined for all analyzed liquid systems. On the basis of the obtained values of dimensionless numbers, the areas of occurrence of characteristic splash forms were separated.

  16. Combat Helmet-Headform Coupling Characterized from Blunt Impact Events

    DTIC Science & Technology

    2011-11-01

    Testing was completed on a monorail drop tower to analyze the effect of helmet/headform coupling on the blunt impact behavior of ACH helmets using FMVSS...designates its own methods and test equipment: a drop tower ( monorail or twin- wire), headform (DOT, ISO, NOCSAE), headform CG accelerometer (single or...the more anthropomorphic International Standard Organization (ISO) half headform. Testing was completed on a monorail drop tower to analyze the effect

  17. Axisymmetric oscillation modes of a double droplet system

    DOE PAGES

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) themore » pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)πR 3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. Specifically, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R 3, dimensionless plate thickness d/R, and Ohnesorge number Oh =μ/√ρRσ , where σ is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.« less

  18. Single-Cell-Based Platform for Copy Number Variation Profiling through Digital Counting of Amplified Genomic DNA Fragments.

    PubMed

    Li, Chunmei; Yu, Zhilong; Fu, Yusi; Pang, Yuhong; Huang, Yanyi

    2017-04-26

    We develop a novel single-cell-based platform through digital counting of amplified genomic DNA fragments, named multifraction amplification (mfA), to detect the copy number variations (CNVs) in a single cell. Amplification is required to acquire genomic information from a single cell, while introducing unavoidable bias. Unlike prevalent methods that directly infer CNV profiles from the pattern of sequencing depth, our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced; therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods.

  19. Local birefringence of the anterior segment of the human eye in a single capture with a full range polarisation-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Li, Qingyun; Karnowski, Karol; Villiger, Martin; Sampson, David D.

    2017-04-01

    A fibre-based full-range polarisation-sensitive optical coherence tomography system is developed to enable complete capture of the structural and birefringence properties of the anterior segment of the human eye in a single acquisition. The system uses a wavelength swept source centered at 1.3 μm, passively depth-encoded, orthogonal polarisation states in the illumination path and polarisation-diversity detection. Off-pivot galvanometer scanning is used to extend the imaging range and compensate for sensitivity drop-off. A Mueller matrix-based method is used to analyse data. We demonstrate the performance of the system and discuss issues relating to its optimisation.

  20. Comparison of Fucithalmic viscous eye drops and Chloramphenicol eye ointment as a single treatment in corneal abrasion.

    PubMed

    Boberg-Ans, G; Nissen, K R

    1998-02-01

    To compare the healing of the cornea and the incidence of infection after traumatic corneal epithelial defect after single treatment with double bandage combined with either Fucithalmic single unit dose eye drops or chloramphenicol eye ointment. This is a single-centre, randomised, single-blind, parallel-group study of 144 patients with accidental corneal abrasion or corpus alieni cornea who were referred to the Eye Department at Gentofte Hospital. The injured eye was examined with a photo slit-lamp before and 24 hours after treatment. The size of the abrasion was recorded and calculated on a PCX computerized video system and by slit-lamp photography. The Fucithalmic and chloramphenicol ointment treated groups showed no significant difference in corneal healing, local side effects, or signs of local infection.

  1. Redefining Molecular Amphipathicity in Reversing the "Coffee-Ring Effect": Implications for Single Base Mutation Detection.

    PubMed

    Huang, Chi; Wang, Jie; Lv, Xiaobo; Liu, Liu; Liang, Ling; Hu, Wei; Luo, Changliang; Wang, Fubing; Yuan, Quan

    2018-05-21

    The "coffee ring effect" is a natural phenomenon where sessile drops leave ring-shaped structures on solid surfaces upon drying. It drives non-uniform deposition of suspended compounds on substrates, which adversely affects many processes, including surface-assisted biosensing and molecular self-assembly. In this study, we describe how the coffee ring effect can be eliminated by controlling the amphipathicity of the suspended compounds, for example DNA modified with hydrophobic dye. Specifically, nuclease digestion of the hydrophilic DNA end converts the dye-labeled molecule into an amphipathic molecule (one with comparably weighted hydrophobic and hydrophilic ends) and reverses the coffee ring effect and results in uniform disc-shaped feature deposition of the dye. The amphipathic product decreases the surface tension of the sessile drops and induces Marangoni flow, which drives the uniform distribution of the amphipathic dye-labeled product in the drops. As proof-of-concept, this strategy was used in a novel enzymatic amplification method for biosensing to eliminate the coffee ring effect on a nitrocellulose membrane and increase assay reliability and sensitivity. Importantly, the reported strategy for eliminating the coffee ring effect can be extended to other sessile drop systems for potentially improving assay reliability, and sensitivity.

  2. Characterisation and optimisation of flexible transfer lines for liquid helium. Part II: Thermohydraulic modelling

    NASA Astrophysics Data System (ADS)

    Dittmar, N.; Haberstroh, Ch.; Hesse, U.; Krzyzowski, M.

    2016-10-01

    In part one of this publication experimental results for a single-channel transfer line used at liquid helium (LHe) decant stations are presented. The transfer of LHe into mobile dewars is an unavoidable process since the places of storage and usage are generally located apart from each other. The experimental results have shown that reasonable amounts of LHe evaporate due to heat leak and pressure drop. Thus, generated helium cold gas has to be collected and reliquefied, demanding a huge amount of electrical energy. Although this transfer process is common in cryogenic laboratories, no existing code could be found to model it. Therefore, a thermohydraulic model has been developed to model the LHe flow at operating conditions using published heat transfer and pressure drop correlations. This paper covers the basic equations used to calculate heat transfer and pressure drop, as well as the validation of the thermohydraulic code, and its application within the optimisation process. The final transfer line design features reduced heat leak and pressure drop values based on a combined measurement and modelling campaign in the range of 0.112 < pin < 0.148 MPa, 190 < G < 450 kg/(m2 s), and 0.04 < xout < 0.12.

  3. Science Support for Space-Based Droplet Combustion: Drop Tower Experiments and Detailed Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Marchese, Anthony J.; Dryer, Frederick L.

    1997-01-01

    This program supports the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies. Experimental emphasis is on the study of simple alcohols (methanol, ethanol) and alkanes (n-heptane, n-decane) as fuels with time dependent measurements of drop size, flame-stand-off, liquid-phase composition, and finally, extinction. Experiments have included bench-scale studies at Princeton, studies in the 2.2 and 5.18 drop towers at NASA-LeRC, and both the Fiber Supported Droplet Combustion (FSDC-1, FSDC-2) and the free Droplet Combustion Experiment (DCE) studies aboard the shuttle. Test matrix and data interpretation are performed through spherically-symmetric, time-dependent numerical computations which embody detailed sub-models for physical and chemical processes. The computed burning rate, flame stand-off, and extinction diameter are compared with the respective measurements for each individual experiment. In particular, the data from FSDC-1 and subsequent space-based experiments provide the opportunity to compare all three types of data simultaneously with the computed parameters. Recent numerical efforts are extending the computational tools to consider time dependent, axisymmetric 2-dimensional reactive flow situations.

  4. Inertial-ordering-assisted droplet microfluidics for high-throughput single-cell RNA-sequencing.

    PubMed

    Moon, Hui-Sung; Je, Kwanghwi; Min, Jae-Woong; Park, Donghyun; Han, Kyung-Yeon; Shin, Seung-Ho; Park, Woong-Yang; Yoo, Chang Eun; Kim, Shin-Hyun

    2018-02-27

    Single-cell RNA-seq reveals the cellular heterogeneity inherent in the population of cells, which is very important in many clinical and research applications. Recent advances in droplet microfluidics have achieved the automatic isolation, lysis, and labeling of single cells in droplet compartments without complex instrumentation. However, barcoding errors occurring in the cell encapsulation process because of the multiple-beads-in-droplet and insufficient throughput because of the low concentration of beads for avoiding multiple-beads-in-a-droplet remain important challenges for precise and efficient expression profiling of single cells. In this study, we developed a new droplet-based microfluidic platform that significantly improved the throughput while reducing barcoding errors through deterministic encapsulation of inertially ordered beads. Highly concentrated beads containing oligonucleotide barcodes were spontaneously ordered in a spiral channel by an inertial effect, which were in turn encapsulated in droplets one-by-one, while cells were simultaneously encapsulated in the droplets. The deterministic encapsulation of beads resulted in a high fraction of single-bead-in-a-droplet and rare multiple-beads-in-a-droplet although the bead concentration increased to 1000 μl -1 , which diminished barcoding errors and enabled accurate high-throughput barcoding. We successfully validated our device with single-cell RNA-seq. In addition, we found that multiple-beads-in-a-droplet, generated using a normal Drop-Seq device with a high concentration of beads, underestimated transcript numbers and overestimated cell numbers. This accurate high-throughput platform can expand the capability and practicality of Drop-Seq in single-cell analysis.

  5. Isoform-level gene expression patterns in single-cell RNA-sequencing data.

    PubMed

    Vu, Trung Nghia; Wills, Quin F; Kalari, Krishna R; Niu, Nifang; Wang, Liewei; Pawitan, Yudi; Rantalainen, Mattias

    2018-02-27

    RNA sequencing of single cells enables characterization of transcriptional heterogeneity in seemingly homogeneous cell populations. Single-cell sequencing has been applied in a wide range of researches fields. However, few studies have focus on characterization of isoform-level expression patterns at the single-cell level. In this study we propose and apply a novel method, ISOform-Patterns (ISOP), based on mixture modeling, to characterize the expression patterns of isoform pairs from the same gene in single-cell isoform-level expression data. We define six principal patterns of isoform expression relationships and describe a method for differential-pattern analysis. We demonstrate ISOP through analysis of single-cell RNA-sequencing data from a breast cancer cell line, with replication in three independent datasets. We assigned the pattern types to each of 16,562 isoform-pairs from 4,929 genes. Among those, 26% of the discovered patterns were significant (p<0.05), while remaining patterns are possibly effects of transcriptional bursting, drop-out and stochastic biological heterogeneity. Furthermore, 32% of genes discovered through differential-pattern analysis were not detected by differential-expression analysis. The effect of drop-out events, mean expression level, and properties of the expression distribution on the performances of ISOP were also investigated through simulated datasets. To conclude, ISOP provides a novel approach for characterization of isoformlevel preference, commitment and heterogeneity in single-cell RNA-sequencing data. The ISOP method has been implemented as a R package and is available at https://github.com/nghiavtr/ISOP under a GPL-3 license. mattias.rantalainen@ki.se. Supplementary data are available at Bioinformatics online.

  6. Determination of trihalomethanes in waters by ionic liquid-based single drop microextraction/gas chromatographic/mass spectrometry.

    PubMed

    Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2008-10-31

    A simple, rapid, solventless method for the determination of trihalomethanes (THMs) (chloroform, bromodichloromethane, dibromochloromethane and bromoform) in water samples is presented. The analytes are extracted from the headspace of the aqueous matrix into a 2 microL drop of the ionic liquid 1-octyl-3-methyl-imidazolium hexafluorophosphate working at 30 degrees C for 30 min. The separation and detection of the target compounds is accomplished by gas chromatography/mass spectrometry owing to the use of an interface that efficiently transfers the analytes extracted in the ionic liquid drop to the gas chromatograph while preventing the ionic liquid from entering the column. The detection limits obtained are below the values compelled by the legislation, ranging from 0.5 microg L(-1) for chloroform and bromodichloromethane to 0.9 microg L(-1) for dibromochloromethane. The use of ionic liquid in the extraction procedure avoids the use of organic solvents and leads to relative standard deviations that range from 3.1% to 4.8%.

  7. The shape of oxygen abundance profiles explored with MUSE: evidence for widespread deviations from single gradients

    NASA Astrophysics Data System (ADS)

    Sánchez-Menguiano, L.; Sánchez, S. F.; Pérez, I.; Ruiz-Lara, T.; Galbany, L.; Anderson, J. P.; Krühler, T.; Kuncarayakti, H.; Lyman, J. D.

    2018-02-01

    We characterised the oxygen abundance radial distribution of a sample of 102 spiral galaxies observed with VLT/MUSE using the O3N2 calibrator. The high spatial resolution of the data allowed us to detect 14345 H II regions with the same image quality as with photometric data, avoiding any dilution effect. We developed a new methodology to automatically fit the abundance radial profiles, finding that 55 galaxies of the sample exhibit a single negative gradient. The remaining 47 galaxies also display, as well as this negative trend, either an inner drop in the abundances (21), an outer flattening (10), or both (16), which suggests that these features are a common property of disc galaxies. The presence and depth of the inner drop depends on the stellar mass of the galaxies with the most massive systems presenting the deepest abundance drops, while there is no such dependence in the case of the outer flattening. We find that the inner drop appears always around 0.5 re, while the position of the outer flattening varies over a wide range of galactocentric distances. Regarding the main negative gradient, we find a characteristic slope in the sample of αO/H =-0.10 ± 0.03 dex /re. This slope is independent of the presence of bars and the density of the environment. However, when inner drops or outer flattenings are detected, slightly steeper gradients are observed. This suggests that radial motions might play an important role in shaping the abundance profiles. We define a new normalisation scale ("the abundance scale length", rO/H) for the radial profiles based on the characteristic abundance gradient, with which all the galaxies show a similar position for the inner drop ( 0.5 rO/H) and the outer flattening ( 1.5 rO/H). Finally, we find no significant dependence of the dispersion around the negative gradient with any property of the galaxies, with values compatible with the uncertainties associated with the derivation of the abundances.

  8. Magnetic Flattening of Stem-Cell Spheroids Indicates a Size-Dependent Elastocapillary Transition

    NASA Astrophysics Data System (ADS)

    Mazuel, Francois; Reffay, Myriam; Du, Vicard; Bacri, Jean-Claude; Rieu, Jean-Paul; Wilhelm, Claire

    2015-03-01

    Cellular aggregates (spheroids) are widely used in biophysics and tissue engineering as model systems for biological tissues. In this Letter we propose novel methods for molding stem-cell spheroids, deforming them, and measuring their interfacial and elastic properties with a single method based on cell tagging with magnetic nanoparticles and application of a magnetic field gradient. Magnetic molding yields spheroids of unprecedented sizes (up to a few mm in diameter) and preserves tissue integrity. On subjecting these spheroids to magnetic flattening (over 150 g ), we observed a size-dependent elastocapillary transition with two modes of deformation: liquid-drop-like behavior for small spheroids, and elastic-sphere-like behavior for larger spheroids, followed by relaxation to a liquidlike drop.

  9. Heat Transfer Enhancement for Finned-Tube Heat Exchangers with Vortex Generators: Experimental and Numerical Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert

    2002-08-01

    A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numericalmore » modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.« less

  10. Combustion of Unconfined Droplet Clusters in Microgravity

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Liu, S.

    2001-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the confounding effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would fill a large gap in our current understanding of droplet and spray combustion and provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. This paper describes the design and performance of the 1-g experimental apparatus, some preliminary 1-g results, and plans for testing in microgravity.

  11. Characterization of Acousto-Electric Cluster and Array Levitation and its Application to Evaporation

    NASA Technical Reports Server (NTRS)

    Robert E. Apfel; Zheng, Yibing

    2000-01-01

    An acousto-electric levitator has been developed to study the behavior of liquid drop and solid particle clusters and arrays. Unlike an ordinary acoustic levitator that uses only a standing acoustic wave to levitate a single drop or particle, this device uses an extra electric static field and the acoustic field simultaneously to generate and levitate charged drops in two-dimensional arrays in air without any contact to a solid surface. This cluster and array generation (CAG) instrument enables us to steadily position drops and arrays to study the behavior of multiple drop and particle systems such as spray and aerosol systems relevant to the energy, environmental, and material sciences.

  12. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding.

    PubMed

    Lin, Po-Cheng; I, Lin

    2016-02-01

    We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.

  13. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding

    NASA Astrophysics Data System (ADS)

    Lin, Po-Cheng; I, Lin

    2016-02-01

    We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.

  14. Single-drop impingement onto a wavy liquid film and description of the asymmetrical cavity dynamics

    NASA Astrophysics Data System (ADS)

    van Hinsberg, Nils Paul; Charbonneau-Grandmaison, Marie

    2015-07-01

    The present paper is devoted to an experimental investigation of the cavity formed upon a single-drop impingement onto a traveling solitary surface wave on a deep pool of the same liquid. The dynamics of the cavity throughout its complete expansion and receding phase are analyzed using high-speed shadowgraphy and compared to the outcomes of drop impingements onto steady liquid surface films having equal thickness. The effects of the surface wave velocity, amplitude and phase, drop impingement velocity, and liquid viscosity on the cavity's diameter and depth evolution are accurately characterized at various time instants. The wave velocity induces a distinct and in time increasing inclination of the cavity in the wave propagation direction. In particular for strong waves an asymmetrical distribution of the radial expansion and retraction velocity along the cavity's circumference is observed. A linear dependency between the absolute Weber number and the typical length and time scales associated with the cavity's maximum depth and maximum diameter is reported.

  15. The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuhiro; Sussman, Mark

    2012-11-01

    The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid is computationally explored by way of 3d-axisymmetric computations. The Navier-Stokes equations for incompressible two-fluid flow are solved numerically in which the coupled level-set and volume-of-fluid method is used to simulate the deforming bubble/drop boundary and the interface jump conditions on the deforming boundary are enforced through a sharp interface numerical treatment. Dynamic, block structured adaptive grid refinement is employed in order to sufficiently resolve the thin skirts. Results on the sensitivity of the thickness of trailing bubble/drop skirts to the density ratio and viscosity ratio are reported. It is shown that both the density ratio (not the density difference) and the viscosity ratio effect the skirt thickness. Previous theory for predicting skirt thickness can be refined as a result of our calculations. It is also discovered that the formation of thin skirts for bubbles and drops have little effect on the rise velocity. In other words, the measured Re number for cases without skirt formation have almost the same values for Re as cases with a thin skirt.

  16. Drop deformation and breakup in a partially filled horizontal rotating cylinder

    NASA Astrophysics Data System (ADS)

    White, Andrew; Pereira, Caroline; Hyacinthe, Hyaquino; Ward, Thomas

    2014-11-01

    Drop deformation and breakup due to shear flow has been studied extensively in Couette devices as well as in gravity-driven flows. In these cases shear is generated either by the moving wall or the drop's motion. For such flows the drop shape remains unperturbed at low capillary number (Ca), deforms at moderate Ca , and can experience breakup as Ca --> 1 and larger. Here single drops of NaOH(aq) will be placed in a horizontal cylindrical rotating tank partially filled with vegetable oil resulting in 10-2 < Ca <101 . It will be shown that the reactive vegetable oil-NaOH(aq) system, where surfactants are produced in situ by saponification, can yield lower minimum surface tensions and faster adsorption than non-reactive surfactant systems. Oil films between the wall and drop as well as drop shape will be observed as rotation rates and NaOH(aq) concentration are varied. Results will be presented in the context of previous work on bubble and drop shapes and breakup. NSF CBET #1262718.

  17. Surface film effects on drop tube undercooling studies

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Kaukler, W. F.

    1986-01-01

    The effects of various gaseous atmospheric constituents on drop-tube solidified samples of elemental metals were examined from a microstructural standpoint. All specimens were prepared from the purest available elements, so effects of impurities should not account for the observed effects. The drop-tube gas has a definite effect on the sample microstructure. Most dramatically, the sample cooling rate is effected. Some samples receive sufficient cooling to solidify in free fall while others do not, splating at the end of the drop tube in the sample catcher. Gases are selectively absorbed into the sample. Upon solidification gas can become less soluble and as a result forms voids within the sample. The general oxidation/reduction characteristics of the gas also affect sample microstructures. In general, under the more favorable experimental conditions including reducing atmospheric conditions and superheatings, examination of sample microstructures indicates that nucleation has been suppressed. This is indicated by underlying uniform dendrite spacings throughout the sample and with a single dendrite orientation through most of the sample. The samples were annealed yielding a few large grains and single or bi-crystal samples were commonly formed. This was especially true of samples that were inadvertently greatly superheated. This is in contrast with results from a previous study in which surface oxides were stable and contained numerous sites of nucleation. The number of nucleation events depends upon the surface state of the specimen as determined by the atmosphere and is consistent with theoretical expectations based upon the thermodynamic stability of surface oxide films. Oxide-free specimens are characterized by shiny surfaces, with no observable features under the scanning electron microscope at 5000X.

  18. Evaporative Optical Marangoni Assembly: Tailoring the Three-Dimensional Morphology of Individual Deposits of Nanoparticles from Sessile Drops.

    PubMed

    Anyfantakis, Manos; Varanakkottu, Subramanyan Namboodiri; Rudiuk, Sergii; Morel, Mathieu; Baigl, Damien

    2017-10-25

    We have recently devised the evaporative optical Marangoni assembly (eOMA), a novel and versatile interfacial flow-based method for directing the deposition of colloidal nanoparticles (NPs) on solid substrates from evaporating sessile drops along desired patterns using shaped UV light. Here, we focus on a fixed UV spot irradiation resulting in a cylinder-like deposit of assembled particles and show how the geometrical features of the single deposit can be tailored in three dimensions by simply adjusting the optical conditions or the sample composition, in a quantitative and reproducible manner. Sessile drops containing cationic NPs and a photosensitive surfactant at various concentrations are allowed to evaporate under a single UV beam with a diameter much smaller than that of the drop. After complete evaporation, the geometrical characteristics of the NP deposits are precisely assessed using optical profilometry. We show that both the volume and the radial size of the light-directed NP deposit can be adjusted by varying the diameter or the intensity of the UV beam or alternatively by changing the concentration of the photosensitive surfactant. Notably, in all these cases, the deposits display an almost constant median height corresponding to a few layers of particles. Moreover, both the radial and the axial extent of the patterns are tuned by changing the NP concentration. These results are explained by the correlation among the strength of Marangoni flow, the particle trapping efficiency, and the volume of the deposit, and by the role of evaporation-driven flow in strongly controlling the deposit height. Finally, we extend the versatility of eOMA by demonstrating that NPs down to 30 nm in diameter can be effectively patterned on glass or polymeric substrates.

  19. High-throughput single-cell PCR using microfluidic emulsions

    NASA Astrophysics Data System (ADS)

    Guo, Mira; Mazutis, Linas; Agresti, Jeremy; Sommer, Morten; Dantas, Gautam; Church, George; Turnbaugh, Peter; Weitz, David

    2012-02-01

    The human gut and other environmental samples contain large populations of diverse bacteria that are poorly characterized and unculturable, yet have many functions relevant to human health. Our goal is to identify exactly which species carry some gene of interest, such as a carbohydrate metabolism gene. Conventional metagenomic assays sequence DNA extracted in bulk from populations of mixed cell types, and are therefore unable to associate a gene of interest with a species-identifying 16S gene, to determine that the two genes originated from the same cell. We solve this problem by microfluidically encapsulating single bacteria cells in drops, using PCR to amplify the two genes inside any drop whose encapsulated cell contains both genes, and sequencing the DNA from those drops that contain both amplification products.

  20. Heat Transfer Enhancement Through Self-Sustained Oscillating Flow in Microchannels

    DTIC Science & Technology

    2006-05-01

    Qu and Mudawar [30]. The numerical results for Nusselt number and pressure drop are in good agreement with the experimental Contract Number: FA8650...500 1000 1500 0 0.2 0.4 0.6 0.8 1 Experiment, Qu and Mudawar (2002) Numerical study, present Figure 28. Comparison of pressure drop between numerical...Mass Transfer, 48, 1688-1704, 2005. [30]. Weilin Qu, Issam Mudawar , Experimental and numerical study of pressure drop and heat transfer in a single

  1. Visualization Measurement of Streaming Flows Associated with a Single-Acoustic Levitator

    NASA Astrophysics Data System (ADS)

    Hasegawa, Koji; Abe, Yutaka; Kaneko, Akiko; Yamamoto, Yuji; Aoki, Kazuyoshi

    2009-08-01

    The purpose of the study is to experimentally investigate flow fields generated by an acoustic levitator. This flow field has been observed using flow visualization, PIV method. In the absent of a drop, the flow field was strongly influenced by sound pressure level (SPL). In light of the interfacial stability of a levitated drop, SPL was set at 161-163 [dB] in our experiments. In the case of any levitated drop at a pressure node of a standing wave, the toroidal vortices were appeared around a drop and clearly observed the flow fields around the drop by PIV measurement. It is found that the toroidal vortices around a levitated drop were strongly affected by the viscosity of a drop. For more detailed research, experiments in the reduced gravity were conducted with aircraft parabolic flights. By comparison with experimental results in the earth and reduced gravity, it is also indicated that the configuration of the external flow field around a drop is most likely to be affected by a position of a drop as well.

  2. A 4DCT imaging-based breathing lung model with relative hysteresis

    PubMed Central

    Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2016-01-01

    To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. PMID:28260811

  3. A 4DCT imaging-based breathing lung model with relative hysteresis

    NASA Astrophysics Data System (ADS)

    Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2016-12-01

    To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry.

  4. Role of Structural Asymmetry in Controlling Drop Spacing in Microfluidic Ladder Networks

    NASA Astrophysics Data System (ADS)

    Wang, William; Maddala, Jeevan; Vanapalli, Siva; Rengasamy, Raghunathan

    2012-02-01

    Manipulation of drop spacing is crucial to many processes in microfluidic devices including drop coalescence, detection and storage. Microfluidic ladder networks ---where two droplet-carrying parallel channels are connected by narrow bypass channels through which the motion of drops is forbidden---have been proposed as a means to control relative separation between pairs of drops. Prior studies in microfluidic ladder networks with vertical bypasses, which possess fore-aft structural symmetry, have revealed that pairs of drops can only undergo reduction in drop spacing at the ladder exit. We investigate the dynamics of drops in microfluidic ladder networks with both vertical and slanted bypasses. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative spacing between drops, enabling them to contract, synchronize, expand or even flip at the ladder exit. Our experiments confirm all the behaviors predicted by theory. Numerical analysis further shows that ladders containing several identical bypasses can only linearly transform the input drop spacing. Finally, we find that ladders with specific combinations of vertical and slanted bypasses can generate non-linear transformation of input drop spacing, despite the absence of drop decision-making events at the bypass junctions.

  5. The effect of the stability threshold on time to stabilization and its reliability following a single leg drop jump landing.

    PubMed

    Fransz, Duncan P; Huurnink, Arnold; de Boode, Vosse A; Kingma, Idsart; van Dieën, Jaap H

    2016-02-08

    We aimed to provide insight in how threshold selection affects time to stabilization (TTS) and its reliability to support selection of methods to determine TTS. Eighty-two elite youth soccer players performed six single leg drop jump landings. The TTS was calculated based on four processed signals: raw ground reaction force (GRF) signal (RAW), moving root mean square window (RMS), sequential average (SA) or unbounded third order polynomial fit (TOP). For each trial and processing method a wide range of thresholds was applied. Per threshold, reliability of the TTS was assessed through intra-class correlation coefficients (ICC) for the vertical (V), anteroposterior (AP) and mediolateral (ML) direction of force. Low thresholds resulted in a sharp increase of TTS values and in the percentage of trials in which TTS exceeded trial duration. The TTS and ICC were essentially similar for RAW and RMS in all directions; ICC's were mostly 'insufficient' (<0.4) to 'fair' (0.4-0.6) for the entire range of thresholds. The SA signals resulted in the most stable ICC values across thresholds, being 'substantial' (>0.8) for V, and 'moderate' (0.6-0.8) for AP and ML. The ICC's for TOP were 'substantial' for V, 'moderate' for AP, and 'fair' for ML. The present findings did not reveal an optimal threshold to assess TTS in elite youth soccer players following a single leg drop jump landing. Irrespective of threshold selection, the SA and TOP methods yielded sufficiently reliable TTS values, while for RAW and RMS the reliability was insufficient to differentiate between players. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Combustion Of Interacting Droplet Arrays In Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Struk, P. M.; Ikegami, M.; Xu, G.

    2003-01-01

    Theory and experiments involving single droplet combustion date back to 1953, with the first microgravity work appearing in 1956. The problem of a spherical droplet burning in an infinite, quiescent microgravity environment is a classical problem in combustion research with the classical solution appearing in nearly every textbook on combustion. The microgravity environment offered by ground-based facilities such as drop towers and space-based facilities is ideal for studying the problem experimentally. A recent review by Choi and Dryer shows significant advances in droplet combustion have been made by studying the problem experimentally in microgravity and comparing the results to one dimensional theoretical and numerical treatments of the problem. Studying small numbers of interacting droplets in a well-controlled geometry represents a logical step in extending single droplet investigations to more practical spray configurations. Studies of droplet interactions date back to Rex and co-workers, and were recently summarized by Annamalai and Ryan. All previous studies determined the change in the burning rate constant, k, or the flame characteristics as a result of interactions. There exists almost no information on how droplet interactions a effect extinction limits, and if the extinction limits change if the array is in the diffusive or the radiative extinction regime. Thus, this study examined experimentally the effect that droplet interactions have on the extinction process by investigating the simplest array configuration, a binary droplet array. The studies were both in normal gravity, reduced pressure ambients and microgravity facilities. The microgravity facilities were the 2.2 and 5.2 second drop towers at the NASA Glenn Research Center and the 10 second drop tower at the Japan Microgravity Center. The experimental apparatus and the data analysis techniques are discussed in detail elsewhere.

  7. Droplet Vaporization In A Levitating Acoustic Field

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Liu, S.; Ciobanescu, I.

    2003-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. While the low-gravity test facility is being completed, tests have been conducted in 1-g to characterize the effect of the acoustic field on the vaporization of single and multiple droplets. This is important because in the combustion experiment, the droplets will be formed and levitated prior to ignition. Therefore, the droplets will begin to vaporize in the acoustic field thus forming the "initial conditions" for the combustion process. Understanding droplet vaporization in the acoustic field of this levitator is a necessary step that will help to interpret the experimental results obtained in low-gravity.

  8. A selective and sensitive optical sensor for dissolved ammonia detection via agglomeration of fluorescent Ag nanoclusters and temperature gradient headspace single drop microextraction.

    PubMed

    Dong, Jiang Xue; Gao, Zhong Feng; Zhang, Ying; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2017-05-15

    In this paper, a simple sensor platform is presented for highly selective and sensitive detection of dissolved ammonia in aqueous solutions without pretreatment based on temperature gradient headspace single drop microextraction (HS-SDME) technique, and fluorescence and UV-vis spectrophotometry are utilized with the Ag nanoclusters (Ag NCs) functioned by citrate and glutathione as the probe. The sensing mechanism is based on the volatility of ammonia gas and the active response of Ag NCs to pH change caused by the introduction of ammonia. High pH can make the Ag NCs agglomerate and lead to the obvious decrease of fluorescence intensity and absorbance of Ag NCs solution. Moreover, the presented method exhibits a remarkably high selectivity toward dissolved ammonia over most of inorganic ions and amino acid, and shows a good linear range of 10-350μM (0.14-4.9mgNL -1 ) with a low detection limit of 336nM (4.70μgNL -1 ) at a signal-to-noise ratio of 3. In addition, the practical applications of the sensor have been successfully demonstrated by detecting dissolved ammonia in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Single-cell printer: automated, on demand, and label free.

    PubMed

    Gross, Andre; Schöndube, Jonas; Niekrawitz, Sonja; Streule, Wolfgang; Riegger, Lutz; Zengerle, Roland; Koltay, Peter

    2013-12-01

    Within the past years, single-cell analysis has developed into a key topic in cell biology to study cellular functions that are not accessible by investigation of larger cell populations. Engineering approaches aiming to access single cells to extract information about their physiology, phenotype, and genotype at the single-cell level are going manifold ways, meanwhile allowing separation, sorting, culturing, and analysis of individual cells. Based on our earlier research toward inkjet-like printing of single cells, this article presents further characterization results obtained with a fully automated prototype instrument for printing of single living cells in a noncontact inkjet-like manner. The presented technology is based on a transparent microfluidic drop-on-demand dispenser chip coupled with a camera-assisted automatic detection system. Cells inside the chip are detected and classified with this detection system before they are expelled from the nozzle confined in microdroplets, thus enabling a "one cell per droplet" printing mode. To demonstrate the prototype instrument's suitability for biological and biomedical applications, basic experiments such as printing of single-bead and cell arrays as well as deposition and culture of single cells in microwell plates are presented. Printing efficiencies greater than 80% and viability rates about 90% were achieved.

  10. Ultrafast amorphization in Ge(10)Sb(2)Te(13) thin film induced by single femtosecond laser pulse.

    PubMed

    Konishi, Mitsutaka; Santo, Hisashi; Hongo, Yuki; Tajima, Kazuyuki; Hosoi, Masaharu; Saiki, Toshiharu

    2010-06-20

    We demonstrate amorphization in a Ge(10)Sb(2)Te(13) (GST) thin film through a nonthermal process by femtosecond electronic excitation. Amorphous recording marks were formed by irradiation with a single femtosecond pulse, and were confirmed to be recrystallized by laser thermal annealing. Scanning electron microscope observations revealed that amorphization occurred below the melting temperature. We performed femtosecond pump-probe measurements to investigate the amorphization dynamics of a GST thin film. We found that the reflectivity dropped abruptly within 500fs after excitation by a single pulse and that a small change in the reflectivity occurred within 5ps of this drop.

  11. A Microfluidic Route to Breaking Chiral Symmetry: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Ocko, Samuel; Adams, Laura

    A robust route for the biased production of single handed chiral structures has been found in generating non-spherical, multi-component double emulsions using glass microfluidic devices. The specific type of handedness is determined by the final packing geometry of four different inner drops inside an ultra-thin sheath of oil. Before the three dimensional chiral structures are formed, the quasi-one dimensional chain of four inner drops re-arranges in two dimensions into either checkerboard or stripe patterns. We derive an analytical model predicting which pattern is more likely and assembles in the least amount of time. Moreover, our model accurately predicts our experimental results and is based on local bending dynamics, rather than global surface energy minimization. We gratefully acknowledge Professors D. Weitz and L. Mahadevan's support.

  12. Topical Delivery of Anti-VEGF Drugs to the Ocular Posterior Segment Using Cell-Penetrating Peptides.

    PubMed

    de Cogan, Felicity; Hill, Lisa J; Lynch, Aisling; Morgan-Warren, Peter J; Lechner, Judith; Berwick, Matthew R; Peacock, Anna F A; Chen, Mei; Scott, Robert A H; Xu, Heping; Logan, Ann

    2017-05-01

    To evaluate the efficacy of anti-VEGF agents for treating choroidal neovascularization (CNV) when delivered topically using novel cell-penetrating peptides (CPPs) compared with delivery by intravitreal (ivit) injection. CPP toxicity was investigated in cell cultures. Ivit concentrations of ranibizumab and bevacizumab after topical administration were measured using ELISA. The biological efficacy of topical anti-VEGF + CPP complexes was compared with ivit anti-VEGF injections using an established model of CNV. CPPs were nontoxic in vitro. In vivo, after topical eye drop delivery, CPPs were present in the rat anterior chamber within 6 minutes. A single application of CPP + bevacizumab eye drop delivered clinically relevant concentrations of bevacizumab to the posterior chamber of the rat eye in vivo. Similarly, clinically relevant levels of CPP + ranibizumab and CPP + bevacizumab were detected in the porcine vitreous and retina ex vivo. In an established model of CNV, mice treated with either a single ivit injection of anti-VEGF, twice daily CPP + anti-VEGF eye drops or daily dexamethasone gavage for 10 days all had significantly reduced areas of CNV when compared with lasered eyes without treatment. CPPs are nontoxic to ocular cells and can be used to deliver therapeutically relevant doses of ranibizumab and bevacizumab by eye drop to the posterior segment of mouse, rat, and pig eyes. The CPP + anti-VEGF drug complexes were cleared from the retina within 24 hours, suggesting a daily eye drop dosing regimen. Daily, topically delivered anti-VEGF with CPP was as efficacious as a single ivit injection of anti-VEGF in reducing areas of CNV in vivo.

  13. Direct numerical simulations of two-phase laminar jet flows with different cross-section injection geometries

    NASA Astrophysics Data System (ADS)

    Abdel-Hameed, H.; Bellan, J.

    2002-10-01

    Direct numerical simulations are performed of spatial, three-dimensional, laminar jets of different inlet geometric configurations for the purpose of quantifying the characteristics of the flows; both single-phase (SP) and two-phase (TP) free jets are considered. The TP jets consist of gas laden with liquid drops randomly injected at the inlet. Drop evaporation ensues both due to the gaseous flow being initially unvitiated by the vapor species corresponding to the liquid drops, and to drop heating as the initial drop temperature is lower than that of the carrier gas. The conservation equations for the TP flow include complete couplings of mass, momentum, and energy based on thermodynamically self-consistent specification of the vapor enthalpy, internal energy, and latent heat of vaporization. Inlet geometries investigated are circular, elliptic, rectangular, square, and triangular. The results focus both on the different spreading achieved according to the inlet geometry, as well as on the considerable change in the flow field due to the presence of the drops. The most important consequence of the drop interaction with the flow is the production of streamwise vorticity that alters entrainment and species mixing according to the inlet geometry. Similar to their SP equivalent, TP jets are shown to reach steady-state entrainment; examination of the flows at this time station shows that the potential cores of TP jets are shorter by an order of magnitude than their SP counterpart. Moreover, whereas the TP circular jet exhibits a symmetric entrainment pattern well past the streamwise location of the potential core, noncircular jets display at the same location strong departures from symmetry. Furthermore, the SP-jet phenomenon of axis switching is no longer present in TP jets. The distributions of drop-number density, liquid mass, and evaporated species are compared for different inlet cross sections and recommendations are made regarding the optimal choice for different applications.

  14. The possible equilibrium shapes of static pendant drops

    NASA Astrophysics Data System (ADS)

    Sumesh, P. T.; Govindarajan, Rama

    2010-10-01

    Analytical and numerical studies are carried out on the shapes of two-dimensional and axisymmetric pendant drops hanging under gravity from a solid surface. Drop shapes with both pinned and equilibrium contact angles are obtained naturally from a single boundary condition in the analytical energy optimization procedure. The numerical procedure also yields optimum energy shapes, satisfying Young's equation without the explicit imposition of a boundary condition at the plate. It is shown analytically that a static pendant two-dimensional drop can never be longer than 3.42 times the capillary length. A related finding is that a range of existing solutions for long two-dimensional drops correspond to unphysical drop shapes. Therefore, two-dimensional drops of small volume display only one static solution. In contrast, it is known that axisymmetric drops can display multiple solutions for a given volume. We demonstrate numerically that there is no limit to the height of multiple-lobed Kelvin drops, but the total volume is finite, with the volume of successive lobes forming a convergent series. The stability of such drops is in question, though. Drops of small volume can attain large heights. A bifurcation is found within the one-parameter space of Laplacian shapes, with a range of longer drops displaying a minimum in energy in the investigated space. Axisymmetric Kelvin drops exhibit an infinite number of bifurcations.

  15. Analytical and experimental investigation of liquid double drop dynamics: Preliminary design for space shuttle experiments

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The preliminary grant assessed the use of laboratory experiments for simulating low g liquid drop experiments in the space shuttle environment. Investigations were begun of appropriate immiscible liquid systems, design of experimental apparatus and analyses. The current grant continued these topics, completed construction and preliminary testing of the experimental apparatus, and performed experiments on single and compound liquid drops. A continuing assessment of laboratory capabilities, and the interests of project personnel and available collaborators, led to, after consultations with NASA personnel, a research emphasis specializing on compound drops consisting of hollow plastic or elastic spheroids filled with liquids.

  16. Droplet Impact Sub-cavity Histories and PDPA Spray Experiments for Spray Cooling Modeling

    NASA Astrophysics Data System (ADS)

    Hillen, Nicholas Lee

    Spray cooling is a topic of current interest for its ability to uniformly remove high levels of waste heat from densely packed microelectronics. It has demonstrated the ability to achieve very high heat fluxes, up to 500 W/cm2 with water as the coolant, making it an attractive active thermal management tool. Full Computational Fluid Dynamic (CFD) simulations of spray cooling are infeasible due to the complexity of the spray (drops fluxes of 106 drops/cm2-sec) and heater surface physics requiring impractical resources. Thus a Monte-Carlo (MC) spray cooling simulation model based on empirical data is under development to serve as a cost effective design tool. The initial MC model shows promise, but it lacks additional physics necessary to predict accurate heat fluxes based on nozzle conditions and heated surface geometry. This work reports spray and single drop experiments with the goal of computing the volume beneath a droplet impact cavity (the sub-cavity volume) created by a single impinging droplet on an initial liquid layer. A Phase Doppler Particle Analyzer (PDPA) was utilized to characterize a spray of interest in terms of integrated global Weber, Reynolds, and Froude numbers for varying flow conditions. Results showed that the spray droplet diameters decreased and velocities increased with increasing nozzle gage pressure. A relevant test plan for the single drop experiments has been created from the measured PDPA spray profiles combined with residual spray film thickness measurements from literature resulting in: 140≤We≤1,000, 1,200≤ Re≤3,300, and 0.2≤h0*≤1.0. Froude numbers were not able to be matched for the current single drop experiments (spray: 32,800≤Fr≤275,000). Liquid film thicknesses under the cavity formed by a single droplet have been measured versus radius and time via a non-contact optical thickness sensor for the selected range of dimensionless numbers (We, Re, and h0*). Sub-cavity radius histories have also been analyzed utilizing high-speed imagery techniques to create the cavity thickness traverse profiles. Time dependent sub-cavity volumes have been computed by integrating these subcavity liquid film thicknesses versus radius at various times. It is found that higher We and lower h0* result in a more radially uniform sub-cavity surface contour versus time, except for thinner liquid film regions which are observed near the outer bottom cavity radius. The subcavity volume was found to be nearly constant for a majority of the cavity lifetime and increased with We and h0*. These results will be incorporated into the MC model to improve its predictive capability in future work. In addition, splashed droplet diameters and velocities have been extracted from PDPA data for a spray impinging normal to a smooth surface. It was found that the splashed droplets had sizes which were similar to the impinging spray droplets, and had velocities that never exceeded 3 m/s. The splashed droplet results have a negligible contribution to cavity formations due to their low Weber number. This splashing data has been detailed for future implementation into the MC model in terms of mass conservation in the liquid film.

  17. Formation of curved micrometer-sized single crystals.

    PubMed

    Koifman Khristosov, Maria; Kabalah-Amitai, Lee; Burghammer, Manfred; Katsman, Alex; Pokroy, Boaz

    2014-05-27

    Crystals in nature often demonstrate curved morphologies rather than classical faceted surfaces. Inspired by biogenic curved single crystals, we demonstrate that gold single crystals exhibiting curved surfaces can be grown with no need of any fabrication steps. These single crystals grow from the confined volume of a droplet of a eutectic composition melt that forms via the dewetting of nanometric thin films. We can control their curvature by controlling the environment in which the process is carried out, including several parameters, such as the contact angle and the curvature of the drops, by changing the surface tension of the liquid drop during crystal growth. Here we present an energetic model that explains this phenomenon and predicts why and under what conditions crystals will be forced to grow with the curvature of the microdroplet even though the energetic state of a curved single crystal is very high.

  18. Dissecting Cell-Type Composition and Activity-Dependent Transcriptional State in Mammalian Brains by Massively Parallel Single-Nucleus RNA-Seq.

    PubMed

    Hu, Peng; Fabyanic, Emily; Kwon, Deborah Y; Tang, Sheng; Zhou, Zhaolan; Wu, Hao

    2017-12-07

    Massively parallel single-cell RNA sequencing can precisely resolve cellular diversity in a high-throughput manner at low cost, but unbiased isolation of intact single cells from complex tissues such as adult mammalian brains is challenging. Here, we integrate sucrose-gradient-assisted purification of nuclei with droplet microfluidics to develop a highly scalable single-nucleus RNA-seq approach (sNucDrop-seq), which is free of enzymatic dissociation and nucleus sorting. By profiling ∼18,000 nuclei isolated from cortical tissues of adult mice, we demonstrate that sNucDrop-seq not only accurately reveals neuronal and non-neuronal subtype composition with high sensitivity but also enables in-depth analysis of transient transcriptional states driven by neuronal activity, at single-cell resolution, in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Passive Optical Locking Techniques for Diode Lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Quan

    1995-01-01

    Most current diode-based nonlinear frequency converters utilize electronic frequency locking techniques. However, this type of locking technique typically involves very complex electronics, and suffers the 'power-drop' problem. This dissertation is devoted to the development of an all-optical passive locking technique that locks the diode laser frequency to the external cavity resonance stably without using any kind of electronic servo. The amplitude noise problem associated with the strong optical locking has been studied. Single-mode operation of a passively locked single-stripe diode with an amplitude stability better than 1% has been achieved. This passive optical locking technique applies to broad-area diodes as well as single-stripe diodes, and can be easily used to generate blue light. A schematic of a milliwatt level blue laser based on the single-stripe diode locking technique has been proposed. A 120 mW 467 nm blue laser has been built using the tapered amplifier locking technique. In addition to diode-based blue lasers, this passive locking technique has applications in nonlinear frequency conversions, resonant spectroscopy, particle counter devices, telecommunications, and medical devices.

  20. Two-phase adiabatic pressure drop experiments and modeling under micro-gravity conditions

    NASA Astrophysics Data System (ADS)

    Longeot, Matthieu J.; Best, Frederick R.

    1995-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion systems have the capability of achieving high specific power levels. However, before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a ``0-g'' acceleration environment is necessary. To meet this need, two phase flow experiments were conducted by the Interphase Transport Phenomena Laboratory Group (ITP) aboard the National Aeronautics and Space Administration's (NASA) KC-135, using R12 as the working fluid. The present work is concerned with modeling of two-phase pressure drop under 0-g conditions, for bubbly and slug flow regimes. The set of data from the ITP group includes 3 bubbly points, 9 bubbly/slug points and 6 slug points. These two phase pressure drop data were collected in 1991 and 1992. A methodology to correct and validate the data was developed to achieve high levels of confidence. A homogeneous model was developed to predict the pressure drop for particular flow conditions. This model, which uses the Blasius Correlation, was found to be accurate for bubbly and bubbly/slug flows, with errors not larger than 28%. For slug flows, however, the errors are greater, attaining values up to 66%.

  1. Viscous Effect of Drop Impacting on Liquid Film

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoyu; Saha, Abhishek; Law, Chung K.; Sun, Chao

    2017-11-01

    Drop impacting a liquid film is commonly observed in many processes including inkjet printing and thermal sprays. The accumulation and growth of the film depend on the outcome of subsequent drop impact on the initially formed film. In our recent study (Tang, et al. Soft Matter 2016), we have proposed a regime diagram based on the Weber number We (ratio of impact inertia and surface tension) and the film thickness, characterizing non-monotonic transitions between the bouncing and merging outcomes and providing scaling analysis for the boundaries for a single liquid (n-tetradecane). Since liquid viscosity fundamentally affects the impact outcome, through its influence on the flow field and dissipation of the kinetic energy, here we extend the study for a number of alkanes and silicone oils, covering a wide range of viscosity, to evaluate its effect on the regime diagram. We will show that while the regime diagram maintains its general structure, the merging regime becomes smaller for more viscous liquids and eventually the non-monotonicity disappears. We will model the viscous effects and present a modified scaling. This new scaling attempts to unify all liquids and provides a useful tool to manipulate the outcome of drop impact on liquid film. The work at Princeton University is supported by the Army Research Office and the Xerox Corporation.

  2. From drop impact physics to spray cooling models: a critical review

    NASA Astrophysics Data System (ADS)

    Breitenbach, Jan; Roisman, Ilia V.; Tropea, Cameron

    2018-03-01

    Spray-wall interaction is an important process encountered in a large number of existing and emerging technologies and is the underlying phenomenon associated with spray cooling. Spray cooling is a very efficient technology, surpassing all other conventional cooling methods, especially those not involving phase change and not exploiting the latent heat of vaporization. However, the effectiveness of spray cooling is dependent on a large number of parameters, including spray characteristics like drop size, velocity and number density, the surface morphology, but also on the temperature range and thermal properties of the materials involved. Indeed, the temperature of the substrate can have significant influence on the hydrodynamics of drop and spray impact, an aspect which is seldom considered in model formulation. This process is extremely complex, thus most design rules to date are highly empirical in nature. On the other hand, significant theoretical progress has been made in recent years about the interaction of single drops with heated walls and improvements to the fundamentals of spray cooling can now be anticipated. The present review has the objective of summarizing some of these recent advances and to establish a framework for future development of more reliable and universal physics-based correlations to describe quantities involved in spray cooling.

  3. CPAS Preflight Drop Test Analysis Process

    NASA Technical Reports Server (NTRS)

    Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.

    2015-01-01

    Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.

  4. Water evaporation on highly viscoelastic polymer surfaces.

    PubMed

    Pu, Gang; Severtson, Steven J

    2012-07-03

    Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.

  5. Numerical Simulations of Single Flow Element in a Nuclear Thermal Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed and global thermo-fluid environments of a single now element in a hypothetical solid-core nuclear thermal thrust chamber assembly, Several numerical and multi-physics thermo-fluid models, such as chemical reactions, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver. The numerical simulations of a single now element provide a detailed thermo-fluid environment for thermal stress estimation and insight for possible occurrence of mid-section corrosion. In addition, detailed conjugate heat transfer simulations were employed to develop the porosity models for efficient pressure drop and thermal load calculations.

  6. Mechanism - based translational pharmacokinetic - pharmacodynamic model to predict intraocular pressure lowering effect of drugs in patients with glaucoma or ocular hypertension.

    PubMed

    Durairaj, Chandrasekar; Shen, Jie; Cherukury, Madhu

    2014-08-01

    To develop a mechanism based translational pharmacokinetic-pharmacodynamic (PKPD) model in preclinical species and to predict the intraocular pressure (IOP) following drug treatment in patients with glaucoma or ocular hypertension (OHT). Baseline diurnal IOP of normotensive albino rabbits, beagle dogs and patients with glaucoma or OHT was collected from literature. In addition, diurnal IOP of patients treated with brimonidine or Xalatan® were also obtained from literature. Healthy normotensive New Zealand rabbits were topically treated with a single drop of 0.15% brimonidine tartrate and normotensive beagle dogs were treated with a single drop of Xalatan®. At pre-determined time intervals, IOP was measured and aqueous humor samples were obtained from a satellite group of animals. Population based PKPD modeling was performed to describe the IOP data and the chosen model was extended to predict the IOP in patients. Baseline IOP clearly depicts a distinctive circadian rhythm in rabbits versus human. An aqueous humor dynamics based physiological model was developed to describe the baseline diurnal IOP across species. Model was extended to incorporate the effect of drug administration on baseline IOP in rabbits and dogs. The translational model with substituted human aqueous humor dynamic parameters predicted IOP in patients following drug treatment. A physiology based mechanistic PKPD model was developed to describe the baseline and post-treatment IOP in animals. The preclinical PKPD model was successfully translated to predict IOP in patients with glaucoma or OHT and can be applied in assisting dose and treatment selection and predicting outcome of glaucoma clinical trials.

  7. Drop-on-Demand Single Cell Isolation and Total RNA Analysis

    PubMed Central

    Moon, Sangjun; Kim, Yun-Gon; Dong, Lingsheng; Lombardi, Michael; Haeggstrom, Edward; Jensen, Roderick V.; Hsiao, Li-Li; Demirci, Utkan

    2011-01-01

    Technologies that rapidly isolate viable single cells from heterogeneous solutions have significantly contributed to the field of medical genomics. Challenges remain both to enable efficient extraction, isolation and patterning of single cells from heterogeneous solutions as well as to keep them alive during the process due to a limited degree of control over single cell manipulation. Here, we present a microdroplet based method to isolate and pattern single cells from heterogeneous cell suspensions (10% target cell mixture), preserve viability of the extracted cells (97.0±0.8%), and obtain genomic information from isolated cells compared to the non-patterned controls. The cell encapsulation process is both experimentally and theoretically analyzed. Using the isolated cells, we identified 11 stem cell markers among 1000 genes and compare to the controls. This automated platform enabling high-throughput cell manipulation for subsequent genomic analysis employs fewer handling steps compared to existing methods. PMID:21412416

  8. Increased drop formation frequency via reduction of surfactant interactions in flow-focusing microfluidic devices.

    PubMed

    Josephides, Dimitris N; Sajjadi, Shahriar

    2015-01-27

    Glass capillary based microfluidic devices are able to create extremely uniform droplets, when formed under the dripping regime, at low setup costs due to their ease of manufacture. However, as they are rarely parallelized, simple methods to increase droplet production from a single device are sought. Surfactants used to stabilize drops in such systems often limit the maximum flow rate that highly uniform drops can be produced due to the lowering interfacial tension causing jetting. In this paper we show that by simple design changes we can limit the interactions of surfactants and maximize uniform droplet production. Three flow-focused configurations are explored: a standard glass capillary device (consisting of a single round capillary inserted into a square capillary), a nozzle fed device, and a surfactant shielding device (both consisting of two round capillaries inserted into either end of a square capillary). In principle, the maximum productivity of uniform droplets is achieved if surfactants are not present. It was found that surfactants in the standard device greatly inhibit droplet production by means of interfacial tension lowering and tip-streaming phenomena. In the nozzle fed configuration, surfactant interactions were greatly limited, yielding flow rates comparable to, but lower than, a surfactant-free system. In the surfactant shielding configuration, flow rates were equal to that of a surfactant-free system and could make uniform droplets at rates an order of magnitude above the standard surfactant system.

  9. Decontamination of chemical tracers in droplets by a submerging thin film flow

    NASA Astrophysics Data System (ADS)

    Landel, Julien R.; McEvoy, Harry; Dalziel, Stuart B.

    2016-11-01

    We investigate the decontamination of chemical tracers contained in small viscous drops by a submerging falling film. This problem has applications in the decontamination of hazardous chemicals, following accidental releases or terrorist attacks. Toxic droplets lying on surfaces are cleaned by spraying a liquid decontaminant over the surface. The decontaminant film submerges the droplets, without detaching them, in order to neutralize toxic chemicals in the droplets. The decontamination process is controlled by advection, diffusion and reaction processes near the drop-film interface. Chemical tracers dissolve into the film flow forming a thin diffusive boundary layer at the interface. The chemical tracers are then neutralized through a reaction with a chemical decontaminant transported in the film. We assume in this work that the decontamination process occurs mainly in the film phase owing to low solubility of the decontaminant in the drop phase. We analyze the impact of the reaction time scale, assuming first-order reaction, in relation with the characteristic advection and diffusion time scales in the case of a single droplet. Using theoretical, numerical and experimental means, we find that the reaction time scale need to be significantly smaller than the characteristic time scale in the diffusive boundary layer in order to enhance noticeably the decontamination of a single toxic droplet. We discuss these results in the more general case of the decontamination of a large number of droplets. This material is based upon work supported by the Defense Threat Reduction Agency under Contract No. HDTRA1-12-D-0003-0001.

  10. A review of the design and clinical evaluation of the ShefStim array-based functional electrical stimulation system.

    PubMed

    Kenney, Laurence P; Heller, Ben W; Barker, Anthony T; Reeves, Mark L; Healey, Jamie; Good, Timothy R; Cooper, Glen; Sha, Ning; Prenton, Sarah; Liu, Anmin; Howard, David

    2016-11-01

    Functional electrical stimulation has been shown to be a safe and effective means of correcting foot drop of central neurological origin. Current surface-based devices typically consist of a single channel stimulator, a sensor for determining gait phase and a cuff, within which is housed the anode and cathode. The cuff-mounted electrode design reduces the likelihood of large errors in electrode placement, but the user is still fully responsible for selecting the correct stimulation level each time the system is donned. Researchers have investigated different approaches to automating aspects of setup and/or use, including recent promising work based on iterative learning techniques. This paper reports on the design and clinical evaluation of an electrode array-based FES system for the correction of drop foot, ShefStim. The paper reviews the design process from proof of concept lab-based study, through modelling of the array geometry and interface layer to array search algorithm development. Finally, the paper summarises two clinical studies involving patients with drop foot. The results suggest that the ShefStim system with automated setup produces results which are comparable with clinician setup of conventional systems. Further, the final study demonstrated that patients can use the system without clinical supervision. When used unsupervised, setup time was 14min (9min for automated search plus 5min for donning the equipment), although this figure could be reduced significantly with relatively minor changes to the design. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Ultrasonic nebulization extraction-heating gas flow transfer-headspace single drop microextraction of essential oil from pericarp of Zanthoxylum bungeanum Maxim.

    PubMed

    Wei, Shigang; Zhang, Huihui; Wang, Yeqiang; Wang, Lu; Li, Xueyuan; Wang, Yinghua; Zhang, Hanqi; Xu, Xu; Shi, Yuhua

    2011-07-22

    The ultrasonic nebulization extraction-heating gas flow transfer coupled with headspace single drop microextraction (UNE-HGFT-HS-SDME) was developed for the extraction of essential oil from Zanthoxylum bungeanum Maxim. The gas chromatography-mass spectrometry was applied to the determination of the constituents in the essential oil. The contents of the constituents from essential oil obtained by the proposed method were found to be more similar to those obtained by hydro-distillation (HD) than those obtained by ultrasonic nebulization extraction coupled with headspace single drop microextraction (UNE-HS-SDME). The heating gas flow was firstly used in the analysis of the essential oil to transfer the analytes from the headspace to the solvent microdrop. The relative standard deviations for determining the five major constituents were in the range from 1.5 to 6.7%. The proposed method is a fast, sensitive, low cost and small sample consumption method for the determination of the volatile and semivolatile constituents in the plant materials. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. The investigation of an electric arc in the long cylindrical channel of the powerful high-voltage AC plasma torch

    NASA Astrophysics Data System (ADS)

    Rutberg, Ph G.; Popov, S. D.; Surov, A. V.; Serba, E. O.; Nakonechny, Gh V.; Spodobin, V. A.; Pavlov, A. V.; Surov, A. V.

    2012-12-01

    The comparison of conductivity obtained in experiments with calculated values is made in this paper. Powerful stationary plasma torches with prolonged period of continuous work are popular for modern plasmachemical applications. The maximum electrode lifetime with the minimum erosion can be reached while working on rather low currents. Meanwhile it is required to provide voltage arc drop for the high power achievement. Electric field strength in the arc column of the high-voltage plasma torch, using air as a plasma-forming gas, does not exceed 15 V/cm. It is possible to obtain the high voltage drop in the long arc stabilized in the channel by the intensive gas flow under given conditions. Models of high voltage plasma torches with rod electrodes with power up to 50 kW have been developed and investigated. The plasma torch arcs are burning in cylindrical channels. Present investigations are directed at studying the possibility of developing long arc plasma torches with higher power. The advantage of AC power supplies usage is the possibility of the loss minimization due to the reactive power compensation. The theoretical maximum of voltage arc drop for power supplies with inductive current limitations is about 50 % of the no-load voltage for a single-phase circuit and about 30 % for the three-phase circuit. Burning of intensively blown arcs in the long cylindrical channel using the AC power supply with 10 kV no-load voltage is experimentally investigated in the work. Voltage drops close to the maximum possible had been reached in the examined arcs in single-phase and three-phase modes. Operating parameters for single-phase mode were: current -30 A, voltage drop -5 kV, air flow rate 35 g/s; for three-phase mode: current (40-85) A, voltage drop (2.5-3.2) kV, air flow rate (60-100) g/s. Arc length in the installations exceeded 2 m.

  13. Comparative Aging Study of Organic Solar Cells Utilizing Polyaniline and PEDOT:PSS as Hole Transport Layers.

    PubMed

    Abdulrazzaq, Omar; Bourdo, Shawn E; Woo, Myungwu; Saini, Viney; Berry, Brian C; Ghosh, Anindya; Biris, Alexandru S

    2015-12-23

    The aging effect on P3HT:PCBM organic solar cells was investigated with camphorsulfonic doped polyaniline (PANI:CSA) or poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) used as the hole transport layer (HTL). The cells were encapsulated and exposed to a continuous normal atmosphere on a dark shelf and then characterized intermittently for more than two years. The photovoltaic results revealed that the cells with PSS HTL showed better initial results than the cells with PANI:CSA HTL. Over time, PSS-based cells exhibited faster degradation than PANI:CSA-based cells, where the average efficiency of six cells dropped to zero in less than one and a half years. On the other hand, PANI:CSA-based cells exhibited a much more stable performance with an average efficiency drop of only 15% of their initial values after one and a half years and 63% after two years. A single-diode model was utilized to fit the experimental data with the theoretical curve to extract the diode parameters, such as the ideality factor, to explain the effect of aging on the diode's performance.

  14. Heat and mass transfer in flames

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1986-01-01

    Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.

  15. The production of drops by the bursting of a bubble at an air liquid interface

    NASA Technical Reports Server (NTRS)

    Darrozes, J. S.; Ligneul, P.

    1982-01-01

    The fundamental mechanism arising during the bursting of a bubble at an air-liquid interface is described. A single bubble was followed from an arbitrary depth in the liquid, up to the creation and motion of the film and jet drops. Several phenomena were involved and their relative order of magnitude was compared in order to point out the dimensionless parameters which govern each step of the motion. High-speed cinematography is employed. The characteristic bubble radius which separates the creation of jet drops from cap bursting without jet drops is expressed mathematically. The corresponding numerical value for water is 3 mm and agrees with experimental observations.

  16. Flow tests of a single fuel element coolant channel for a compact fast reactor for space power

    NASA Technical Reports Server (NTRS)

    Springborn, R. H.

    1971-01-01

    Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.

  17. Effect of surfactant on single drop mass transfer for extraction of aromatics from lubricating oils

    NASA Astrophysics Data System (ADS)

    Izza, H.; Ben Abdessalam, S.; Korichi, M.

    2018-03-01

    Solvent extraction is an effective method for the reduction of the content of aromatic of lubricating oil. Frequently, with phenol, furfural, the NMP (out of N-methyl pyrrolidone). The power solvent and the selectivity can be still to increase while using surfactant as additive which facilitates the separation of phase and increases the yeild in raffinat. Liquid-liquid mass transfer coefficients for single freely rising drops in the presence of surfactant in an extraction column have been investigated. The surfactant used in this study was sodium lauryl ether sulfate (SLES). The experiments were performed by bubbling a solvent as a series of individual drops from the top of the column containing furfural-SLES solution. The column used in this experiment was made from glass with 17 mm inner diameter and a capacity of 125ml. The effects of the concentration of surfactant on the overall coefficient of mass transfer was investigated.

  18. Diffraction and interference of walking drops

    NASA Astrophysics Data System (ADS)

    Pucci, Giuseppe; Harris, Daniel M.; Bush, John W. M.

    2016-11-01

    A decade ago, Yves Couder and Emmanuel Fort discovered a wave-particle association on the macroscopic scale: a drop can bounce indefinitely on a vibrating bath of the same liquid and can be piloted by the waves that it generates. These walking droplets have been shown to exhibit several quantum-like features, including single-particle diffraction and interference. Recently, the original diffraction and interference experiments of Couder and Fort have been revisited and contested. We have revisited this system using an improved experimental set-up, and observed a strong dependence of the behavior on system parameters, including drop size and vibrational forcing. In both the single- and the double-slit geometries, the diffraction pattern is dominated by the interaction of the walking droplet with a planar boundary. Critically, in the double-slit geometry, the walking droplet is influenced by both slits by virtue of its spatially extended wave field. NSF support via CMMI-1333242.

  19. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets

    PubMed Central

    Macosko, Evan Z.; Basu, Anindita; Satija, Rahul; Nemesh, James; Shekhar, Karthik; Goldman, Melissa; Tirosh, Itay; Bialas, Allison R.; Kamitaki, Nolan; Martersteck, Emily M.; Trombetta, John J.; Weitz, David A.; Sanes, Joshua R.; Shalek, Alex K.; Regev, Aviv; McCarroll, Steven A.

    2015-01-01

    Summary Cells, the basic units of biological structure and function, vary broadly in type and state. Single-cell genomics can characterize cell identity and function, but limitations of ease and scale have prevented its broad application. Here we describe Drop-Seq, a strategy for quickly profiling thousands of individual cells by separating them into nanoliter-sized aqueous droplets, associating a different barcode with each cell’s RNAs, and sequencing them all together. Drop-Seq analyzes mRNA transcripts from thousands of individual cells simultaneously while remembering transcripts’ cell of origin. We analyzed transcriptomes from 44,808 mouse retinal cells and identified 39 transcriptionally distinct cell populations, creating a molecular atlas of gene expression for known retinal cell classes and novel candidate cell subtypes. Drop-Seq will accelerate biological discovery by enabling routine transcriptional profiling at single-cell resolution. PMID:26000488

  20. Pulsed single-blow regenerator testing

    NASA Technical Reports Server (NTRS)

    Oldson, J. C.; Knowles, T. R.; Rauch, J.

    1992-01-01

    A pulsed single-blow method has been developed for testing of Stirling regenerator materials performance. The method uses a tubular flow arrangement with a steady gas flow passing through a regenerator matrix sample that packs the flow channel for a short distance. A wire grid heater spanning the gas flow channel is used to heat a plug of gas by approximately 2 K for approximately 350 ms. Foil thermocouples monitor the gas temperature entering and leaving the sample. Data analysis based on a 1D incompressible-flow thermal model allows the extraction of Stanton number. A figure of merit involving heat transfer and pressure drop is used to present results for steel screens and steel felt. The observations show a lower figure of merit for the materials tested than is expected based on correlations obtained by other methods.

  1. Nonlinear dynamics of drops and bubbles and chaotic phenomena

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.; Leal, L. G.; Feng, Z. C.; Holt, R. G.

    1994-01-01

    Nonlinear phenomena associated with the dynamics of free drops and bubbles are investigated analytically, numerically and experimentally. Although newly developed levitation and measurement techniques have been implemented, the full experimental validation of theoretical predictions has been hindered by interfering artifacts associated with levitation in the Earth gravitational field. The low gravity environment of orbital space flight has been shown to provide a more quiescent environment which can be utilized to better match the idealized theoretical conditions. The research effort described in this paper is a closely coupled collaboration between predictive and guiding theoretical activities and a unique experimental program involving the ultrasonic and electrostatic levitation of single droplets and bubbles. The goal is to develop and to validate methods based on nonlinear dynamics for the understanding of the large amplitude oscillatory response of single drops and bubbles to both isotropic and asymmetric pressure stimuli. The first specific area on interest has been the resonant coupling between volume and shape oscillatory modes isolated gas or vapor bubbles in a liquid host. The result of multiple time-scale asymptotic treatment, combined with domain perturbation and bifurcation methods, has been the prediction of resonant and near-resonant coupling between volume and shape modes leading to stable as well as chaotic oscillations. Experimental investigations of the large amplitude shape oscillation modes of centimeter-size single bubbles trapped in water at 1 G and under reduced hydrostatic pressure, have suggested the possibility of a low gravity experiment to study the direct coupling between these low frequency shape modes and the volume pulsation, sound-radiating mode. The second subject of interest has involved numerical modeling, using the boundary integral method, of the large amplitude shape oscillations of charged and uncharged drops in the presence of a static or time-varying electric field. Theoretically predicted non linearity in the resonant frequency of the fundamental quadrupole mode has been verified by the accompanying experimental studies. Additional phenomena such as hysteresis in the frequency response of ultrasoncially levitated droplets in the presence of a time varying electric field, and mode coupling in the oscillations of ultrasonically modulated droplets, have also been uncovered. One of the results of this ground-based research has been the identification and characterization of phenomena strictly associated with the influence of the gravitational field. This has also allowed us to identify the specific requirements for potential microgravity investigations yielding new information not obtainable on Earth.

  2. Nonlinear dynamics of drops and bubbles and chaotic phenomena

    NASA Astrophysics Data System (ADS)

    Trinh, Eugene H.; Leal, L. G.; Feng, Z. C.; Holt, R. G.

    1994-08-01

    Nonlinear phenomena associated with the dynamics of free drops and bubbles are investigated analytically, numerically and experimentally. Although newly developed levitation and measurement techniques have been implemented, the full experimental validation of theoretical predictions has been hindered by interfering artifacts associated with levitation in the Earth gravitational field. The low gravity environment of orbital space flight has been shown to provide a more quiescent environment which can be utilized to better match the idealized theoretical conditions. The research effort described in this paper is a closely coupled collaboration between predictive and guiding theoretical activities and a unique experimental program involving the ultrasonic and electrostatic levitation of single droplets and bubbles. The goal is to develop and to validate methods based on nonlinear dynamics for the understanding of the large amplitude oscillatory response of single drops and bubbles to both isotropic and asymmetric pressure stimuli. The first specific area on interest has been the resonant coupling between volume and shape oscillatory modes isolated gas or vapor bubbles in a liquid host. The result of multiple time-scale asymptotic treatment, combined with domain perturbation and bifurcation methods, has been the prediction of resonant and near-resonant coupling between volume and shape modes leading to stable as well as chaotic oscillations. Experimental investigations of the large amplitude shape oscillation modes of centimeter-size single bubbles trapped in water at 1 G and under reduced hydrostatic pressure, have suggested the possibility of a low gravity experiment to study the direct coupling between these low frequency shape modes and the volume pulsation, sound-radiating mode. The second subject of interest has involved numerical modeling, using the boundary integral method, of the large amplitude shape oscillations of charged and uncharged drops in the presence of a static or time-varying electric field. Theoretically predicted non linearity in the resonant frequency of the fundamental quadrupole mode has been verified by the accompanying experimental studies. Additional phenomena such as hysteresis in the frequency response of ultrasoncially levitated droplets in the presence of a time varying electric field, and mode coupling in the oscillations of ultrasonically modulated droplets, have also been uncovered. One of the results of this ground-based research has been the identification and characterization of phenomena strictly associated with the influence of the gravitational field. This has also allowed us to identify the specific requirements for potential microgravity investigations yielding new information not obtainable on Earth.

  3. Crystallization and preliminary X-ray analysis of Streptococcus mutans dextran glucosidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saburi, Wataru; Hondoh, Hironori, E-mail: hondoh@abs.agr.hokudai.ac.jp; Unno, Hideaki

    2007-09-01

    Dextran glucosidase from S. mutans was crystallized using the hanging-drop vapour-diffusion method. The crystals diffracted to 2.2 Å resolution. Dextran glucosidase from Streptococcus mutans is an exo-hydrolase that acts on the nonreducing terminal α-1,6-glucosidic linkage of oligosaccharides and dextran with a high degree of transglucosylation. Based on amino-acid sequence similarity, this enzyme is classified into glycoside hydrolase family 13. Recombinant dextran glucosidase was purified and crystallized by the hanging-drop vapour-diffusion technique using polyethylene glycol 6000 as a precipitant. The crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 72.72, b = 86.47, cmore » = 104.30 Å. A native data set was collected to 2.2 Å resolution from a single crystal.« less

  4. Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction

    PubMed Central

    Heymann, Michael; Opthalage, Achini; Wierman, Jennifer L.; Akella, Sathish; Szebenyi, Doletha M. E.; Gruner, Sol M.; Fraden, Seth

    2014-01-01

    An emulsion-based serial crystallographic technology has been developed, in which nanolitre-sized droplets of protein solution are encapsulated in oil and stabilized by surfactant. Once the first crystal in a drop is nucleated, the small volume generates a negative feedback mechanism that lowers the supersaturation. This mechanism is exploited to produce one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals. As proof of concept, the structure of glucose isomerase was solved to 2.1 Å, demonstrating the feasibility of high-throughput serial X-ray crystallography using synchrotron radiation. PMID:25295176

  5. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs.

    PubMed

    Ng, Wei Long; Goh, Min Hao; Yeong, Wai Yee; Naing, May Win

    2018-02-27

    Native tissues and/or organs possess complex hierarchical porous structures that confer highly-specific cellular functions. Despite advances in fabrication processes, it is still very challenging to emulate the hierarchical porous collagen architecture found in most native tissues. Hence, the ability to recreate such hierarchical porous structures would result in biomimetic tissue-engineered constructs. Here, a single-step drop-on-demand (DOD) bioprinting strategy is proposed to fabricate hierarchical porous collagen-based hydrogels. Printable macromolecule-based bio-inks (polyvinylpyrrolidone, PVP) have been developed and printed in a DOD manner to manipulate the porosity within the multi-layered collagen-based hydrogels by altering the collagen fibrillogenesis process. The experimental results have indicated that hierarchical porous collagen structures could be achieved by controlling the number of macromolecule-based bio-ink droplets printed on each printed collagen layer. This facile single-step bioprinting process could be useful for the structural design of collagen-based hydrogels for various tissue engineering applications.

  6. A Biomechanical Comparison of Single-Leg Landing and Unplanned Sidestepping.

    PubMed

    Chinnasee, Chamnan; Weir, Gillian; Sasimontonkul, Siriporn; Alderson, Jacqueline; Donnelly, Cyril

    2018-06-14

    Unplanned sidestepping and single-leg landing have both been used to screen athletes for injury risk in sport. The aim of this study was to directly compare the lower limb mechanics of three single-leg landing tasks and an unplanned sidestepping task. Thirteen elite female team sport athletes completed a series of non-contact single-leg drop landings, single-leg countermovement jumps, single-leg jump landings and unplanned sidestepping in a randomized counterbalanced design. Three dimensional kinematics (250 Hz) and ground reaction force (2,000 Hz) data with a participant specific lower limb skeletal model were used to calculate and compare hip, knee and ankle joint kinematics, peak joint moments, instantaneous joint power and joint work during the weight acceptance phase of each sporting task (α=0.05). Peak knee joint moments and relevant injury risk thresholds were used to classify each athlete's anterior cruciate ligament injury risk during unplanned sidestepping and single-leg jump landing. Results showed that peak joint moments, power and work were greater during the single-leg jump landing task when compared to the single-leg drop landings and single-leg countermovement jumps tasks. Peak frontal and sagittal plane knee joint moments, knee joint power, as well as hip and knee joint work were greater during unplanned sidestepping when compared to the landing tasks. Peak ankle joint moments, power and work were greater during the landing tasks when compared to unplanned sidestepping. For 4 of the 13 athletes tested, their anterior cruciate ligament injury risk classification changed depending on whether they performed an unplanned sidestepping or single-leg jump landing testing procedure. To summarize, a single-leg jump landing testing procedure places a larger mechanical on the ankle joint when compared to single-leg drop landings, single-leg countermovement jumps and unplanned sidestepping. An unplanned sidestepping testing procedure places a larger mechanical demand on the knee joint when compared to single-leg landing tasks. Both unplanned sidestepping and single-leg jump landing testing procedures are recommended for classifying an athlete's anterior cruciate ligament injury risk in sport. © Georg Thieme Verlag KG Stuttgart · New York.

  7. A laboratory measurement of drop impact on a water surface in the presence of wind

    NASA Astrophysics Data System (ADS)

    Liu, Xinan; Liu, Ren

    2014-11-01

    The impact of single water drops on a water surface was studied experimentally in a wind tunnel. Water drops were generated from a needle oriented vertically from the top of the wind tunnel test section. After leaving the needle, the drops move downward due to gravity and downstream due to the effect of the wind, eventually impinging obliquely on the surface of a pool of water on the bottom of the test section. The vertical velocities of drops were about 2.0 m/s and the wind speeds varied from 0 to 6.4 m/s. The drop impacts were recorded simultaneously from the side and above with two high-speed movie cameras with frame rates of 1,000 Hz. Our measurements show that both wind speed and initial drop size dramatically affect the drop impacts and subsequent generation of crowns, secondary drops, stalks and ring waves. In the presence of wind, an asymmetric crown forms after the drop hits the water surface and secondary drops are generated from the fragmentation of the leeward side of the crown rim. This is followed by a stalk formation and ring waves at the location of the water drop impact. It is found that the stalks tilt to leeward and the ring waves in the windward direction are stronger than that in those in the leeward. This work is supported by National Science Foundation, Division of Ocean Sciences.

  8. Final Technical Report: Electrohydrodynamic Tip Streaming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basaran, Osman

    2016-01-06

    When subjected to strong electric fields, liquid drops and films form conical tips and emit thin jets from their tips. Such electrodydrodynamic (EDH) tip streaming or cone-jetting phenomena, which are sometimes referred to as electrospraying, occur widely in nature, e.g., in ejection of streams of small charged drops from pointed tips of raindrops in thunderclouds, and technology, e.g., in electrospray mass spectrometry or electric field-driven solvent extraction. More recently, EHD cone-jetting has emerged as a powerful technique for direct printing of solar cells, micro- and nano- particle production, and microencapsulation for controlled release. In many of the aforementioned situations, ofmore » equal importance to the processes by which one drop disintegrates to form several drops are those by which (a) two drops come together and coalesce and (b) two drops are coupled to form a double droplet system (DDS) or a capillary switch (CS). the main objective of this research program is to advance through simulation, theory, and experiment the breakup, coalescence, and oscillatory dynamics of single and pairs of charged as well as uncharged drops.« less

  9. Motion of deformable drops through granular media and other confined geometries.

    PubMed

    Davis, Robert H; Zinchenko, Alexander Z

    2009-06-15

    This article features recent simulation studies of the flow of emulsions containing deformable drops through pores, constrictions, and granular media. The flow is assumed to be at low Reynolds number, so that viscous forces dominate, and boundary-integral methods are used to determine interfacial velocities and, hence, track the drop motion and shapes. A single drop in a flat channel migrates to the channel centerplane due to deformation-induced drift, which increases its steady-state velocity along the channel. A drop moving towards a smaller interparticle constriction squeezes through the constriction if the capillary number (ratio of viscous deforming forces and interfacial tension forces) is large enough, but it becomes trapped when the capillary number is below a critical value. These concepts then influence the flow of an emulsion through a granular medium, for which the drop phase moves faster than the suspending liquid at large capillary numbers but slower than the suspending liquid at smaller capillary numbers. The permeabilities of the granular medium to both phases increase with increasing capillary number, due to the reduced resistance to squeezing of easily deformed drops, though drop breakup must also be considered at large capillary numbers.

  10. Electrowetting-driven spreading and jumping of drops in oil

    NASA Astrophysics Data System (ADS)

    Hong, Jiwoo; Lee, Sang Joon

    2013-11-01

    Electrowetting-based practical applications include digital microfluidics, liquid lenses, and reflective displays. Most of them are performed in water/oil system, because oil medium reduces the contact-angle hysteresis and prevents drop evaporation. In this study, the effects of drop volume, oil viscosity, and applied voltage on the dynamic behaviors of spreading drops, such as transition of spreading pattern and response time, are investigated. Interestingly, jumping phenomena of drops are observed in oil when the applied voltage is turned off after reaching the electrowetted equilibrium radius of drops. A numerical model to predict the transient behavior of jumping drops is formulated based on the phase-field method. The numerical results for the transient deformation of jumping drops show quantitative agreement with the experimental results.

  11. National Authentication Framework Implementation Study

    DTIC Science & Technology

    2009-12-01

    Identifiers RA Registration Authority SAML Security Assertion Markup Language SFA Single-factor Authentication SMS Short Messaging System SOA ...written on  paper  disclosed;  passwords stored in electronic file  copied. 1,2,3,4 Eaves‐  dropping The token secret or authenticator is  revealed to...Internet 2.0 and the growing interest in systems developed based upon the Service- Oriented Architecture ( SOA ). While core specifications upon which

  12. The simulation and improved design of tunable channel drop filter using hexagonal photonic crystal ring resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com

    2014-10-15

    In this paper, we have proposed a new design of tunable two dimensional (2D) photonic crystal (PhC) channel drop filter (CDF) using ring resonators. The increasing interest in photonic integrated circuits (PIC's) and the increasing use of all-optical fiber networks as backbones for global communication systems have been based in large part on the extremely wide optical transmission bandwidth provided by dielectric materials. Based on the analysis we present novel photonic crystal channel drop filters. Simulations demonstrate that these filters exhibit ideal transfer characteristics. Channel dropping filters (CDF's) that access one channel of a wavelength division multiplexed (WDM) signal whilemore » leaving other channels undisturbed are essential components of PIC's and optical communication systems. In this paper we have investigated such parameters which have an effect on resonant wavelength in this Channel Drop Filter, such as dielectric constant of inner, coupling, adjacent and whole rods of the structure. The dimensions of these structures are taken as 20a×19a and the area of the proposed structure is about 125.6μm{sup 2}; therefore this structure can be used in the future photonic integrated circuits. While using this design the dropping efficiency at the resonance of single ring are 100%. The spectrum of the power transmission is obtained with finite difference time domain (FDTD) method. FDTD method is the most famous method for PhC analysis. In this paper the dielectric rods have a dielectric constant of 10.65, so the refractive index is 3.26 and radius r=0.213a is located in air, where a is a lattice constant. In this we have used five scatter rods for obtaining more coupling efficiency; radius of scatter rods is set to 0.215a. The proposed structure is simulated with OptiFDTD.v.8.0 software, the different dielectric constant of rods equal to ε{sub r}−0.4, ε{sub r} and ε{sub r}+0.4 at wavelength of 1570 nm.« less

  13. Combining spray nozzle simulators with meshes: characterization of rainfall intensity and drop properties

    NASA Astrophysics Data System (ADS)

    Carvalho, Sílvia C. P.; de Lima, João L. M. P.; de Lima, M. Isabel P.

    2013-04-01

    Rainfall simulators can be a powerful tool to increase our understanding of hydrological and geomorphological processes. Nevertheless, rainfall simulators' design and operation might be rather demanding, for achieving specific rainfall intensity distributions and drop characteristics. The pressurized simulators have some advantages over the non-pressurized simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed out under pressure; pressurized simulators also yield a broad range of drop sizes in comparison with drop-formers simulators. The main purpose of this study was to explore in the laboratory the potential of combining spray nozzle simulators with meshes in order to change rainfall characteristics (rainfall intensity and diameters and fall speed of drops). Different types of spray nozzles were tested, such as single full-cone and multiple full-cone nozzles. The impact of the meshes on the simulated rain was studied by testing different materials (i.e. plastic and steel meshes), square apertures and wire thicknesses, and different vertical distances between the nozzle and the meshes underneath. The diameter and fall speed of the rain drops were measured using a Laser Precipitation Monitor (Thies Clima). The rainfall intensity range and coefficients of uniformity of the sprays and the drop size distribution, fall speed and kinetic energy were analysed. Results show that when meshes intercept drop trajectories the spatial distribution of rainfall intensity and the drop size distribution are affected. As the spray nozzles generate typically small drop sizes and narrow drop size distributions, meshes can be used to promote the formation of bigger drops and random their landing positions.

  14. An Experimental Study of Pressure Oscillation in a Capillary Pumped Loop with Multiple Evaporators and Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jen-Tung; Hoang, Triem T.

    1998-01-01

    The heat transport capability of a capillary pumped loop (CPL) is limited by the pressure drop that its evaporator wick can sustain. The pressure drop in a CPL is not constant even under seemingly steady operation, but rather exhibits an oscillatory behavior. A hydrodynamic theory based on a mass-spring-dashpot model was previously developed to predict the pressure oscillation in a CPL with a single evaporator and a single condenser. The theory states that the pressure oscillation is a function of physical dimensions of the CPL components and operating conditions. Experimental data agreed very well with theoretical predictions. The hydrodynamic stability theory has recently been extended to predict the pressure oscillations in CPLs with multiple evaporators and multiple condensers. Concurrently, an experimental study was conducted to verify the theory and to investigate the effects of various parameters on the pressure oscillation. Four evaporators with different wick properties were tested using a test loop containing two condenser plates. The test loop allowed the four evaporators to be tested in a single-pump, two-pump or four-pump configuration, and the two condenser plates to be plumbed either in parallel or in series. Test conditions included varying the power input, the reservoir set point temperature, the condenser sink temperature, and the flow resistance between the reservoir and the loop. Experimental results agreed well with theoretical predictions.

  15. [Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].

    PubMed

    Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin

    2017-07-01

    In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.

  16. Transition from single to multiple axial potential structure in expanding helicon plasma

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumen; Chattopadhyay, P. K.; Ghosh, J.; Pal, R.; Bora, D.

    2017-02-01

    Transition from single to multiple axial potential structure (MAPS) formation is reported in expanding helicon plasma. This transition is created by forming a cusp magnetic field at the downstream after the expansion throat. Two distinct potential drops are separated by a uniform axial potential zone. Non-uniform axial density distribution exists in expanding helicon systems. A cusp-like field nourishes both the axial density gradients sufficient enough for the formation of these two distinct potential drops. It is also shown that both single and multiple axial potential structures are observed only when both geometric and magnetic expansions closely coincide with each other. Coexistence of these two expansions at the same location enhances plasma expansion which facilitates deviation from Boltzmann distribution and violates quasi-neutrality locally.

  17. The Role of Migration and Single Motherhood in Upper Secondary Education in Mexico

    ERIC Educational Resources Information Center

    Creighton, Mathew J.; Park, Hyunjoon; Teruel, Graciela M.

    2009-01-01

    We investigated the link between migration, family structure, and the risk of dropping out of upper secondary school in Mexico. Using two waves of the Mexican Family Life Survey, which includes 1,080 upper secondary students, we longitudinally modeled the role of family structure in the subsequent risk of dropping out, focusing on the role of…

  18. An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces.

    PubMed

    Bottiglione, F; Carbone, G

    2015-01-14

    The apparent contact angle of large 2D drops with randomly rough self-affine profiles is numerically investigated. The numerical approach is based upon the assumption of large separation of length scales, i.e. it is assumed that the roughness length scales are much smaller than the drop size, thus making it possible to treat the problem through a mean-field like approach relying on the large-separation of scales. The apparent contact angle at equilibrium is calculated in all wetting regimes from full wetting (Wenzel state) to partial wetting (Cassie state). It was found that for very large values of the roughness Wenzel parameter (r(W) > -1/ cos θ(Y), where θ(Y) is the Young's contact angle), the interface approaches the perfect non-wetting condition and the apparent contact angle is almost equal to 180°. The results are compared with the case of roughness on one single scale (sinusoidal surface) and it is found that, given the same value of the Wenzel roughness parameter rW, the apparent contact angle is much larger for the case of a randomly rough surface, proving that the multi-scale character of randomly rough surfaces is a key factor to enhance superhydrophobicity. Moreover, it is shown that for millimetre-sized drops, the actual drop pressure at static equilibrium weakly affects the wetting regime, which instead seems to be dominated by the roughness parameter. For this reason a methodology to estimate the apparent contact angle is proposed, which relies only upon the micro-scale properties of the rough surface.

  19. Efficacy of single or combined midodrine and pyridostigmine in orthostatic hypotension.

    PubMed

    Byun, Jung-Ick; Moon, Jangsup; Kim, Do-Yong; Shin, Hyerim; Sunwoo, Jun-Sang; Lim, Jung-Ah; Kim, Tae-Joon; Lee, Woo-Jin; Lee, Han Sang; Jun, Jin-Sun; Park, Kyung-Il; Lee, Soon-Tae; Jung, Keun-Hwa; Jung, Ki-Young; Lee, Sang Kun; Chu, Kon

    2017-09-05

    To evaluate the long-term (for up to 3 months) efficacy and safety of single or combined therapy with midodrine and pyridostigmine for neurogenic orthostatic hypotension (OH). This was a randomized, open-label clinical trial. In total, 87 patients with symptomatic neurogenic OH were enrolled and randomized to receive 1 of 3 treatments: midodrine only, pyridostigmine only, or midodrine + pyridostigmine. The patients were followed up at 1 and 3 months after treatment. The primary outcome measures were improvement in orthostatic blood pressure (BP) drop at 3 months. Secondary endpoints were improvement of the orthostatic BP drop at 1 month and amelioration of the questionnaire score evaluating OH-associated symptoms. Orthostatic systolic and diastolic BP drops improved significantly at 3 months after treatment in all treatment groups. Orthostatic symptoms were significantly ameliorated during the 3-month treatment, and the symptom severity was as follows: midodrine only < midodrine + pyridostigmine < pyridostigmine only group. Mild to moderate adverse events were reported by 11.5% of the patients. Single or combination treatment with midodrine and pyridostigmine was effective and safe in patients with OH for up to 3 months. Midodrine was better than pyridostigmine at improving OH-related symptoms. NCT02308124. This study provides Class IV evidence that for patients with neurogenic OH, long-term treatment with midodrine alone, pyridostigmine alone, or both midodrine and pyridostigmine is safe and has similar effects in improving orthostatic BP drop up to 3 months. © 2017 American Academy of Neurology.

  20. Drops moving along and across a filament

    NASA Astrophysics Data System (ADS)

    Sahu, Rakesh P.; Sinha-Ray, Suman; Yarin, Alexander; Pourdeyhimi, Behnam

    2013-11-01

    The present work is devoted to the experimental study of oil drop motion both along and across a filament due to the air jet blowing. In case of drop moving along the filament, phenomena such as drop stick-slip motion, shape oscillations, shedding of a tail along the filament, the tail capillary instability and drop recoil motion were observed which were rationalized in the framework of simplified models. Experiments with cross-flow of the surrounding gas relative to the filament with an oil drop on it were conducted, with air velocity in the range of 7.23 to 22.7 m s-1. The Weber number varied from 2 to 40 and the Ohnesorge number varied from 0.07 to 0.8. The lower and upper critical Weber numbers were introduced to distinguish between the beginning of the drop blowing off the filament and the onset of the bag-stamen breakup. The range of the Weber number between these two critical values is filled with three types of vibrational breakup: V1 (a balloon-like drop being blown off), V2 (a drop on a single stamen being blown off), and V3 (a drop on a double stamen being blown off). The Weber number/Ohnesorge number plane was delineated into domains of different breakup regimes. The work is supported by the Nonwovens Cooperative Research Center (NCRC).

  1. A Drop-Out Prevention Program for High-Risk Inner-City Youth

    ERIC Educational Resources Information Center

    Lever, Nancy; Sander, Mark A.; Lombardo, Sylvie; Randall, Camille; Axelrod, Jennifer; Rubenstein, Michelle; Weist, Mark D.

    2004-01-01

    Inner-city youth are at high risk for dropping out of high school. Within this article, risk factors associated with dropout and strategies for effective prevention and intervention are reviewed. An example of a school-based drop-out prevention program is highlighted. The FUTURES Program is a school-based drop-out prevention program designed to…

  2. Ion transport in sub-5-nm graphene nanopores.

    PubMed

    Suk, Myung E; Aluru, N R

    2014-02-28

    Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors.

  3. Microfluidic pressure sensing using trapped air compression.

    PubMed

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.

  4. Microfluidic pressure sensing using trapped air compression

    PubMed Central

    Srivastava, Nimisha; Burns, Mark A.

    2010-01-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid–air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d ~ 50 μm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700–100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions. PMID:17476384

  5. Research on SOI-based micro-resonator devices

    NASA Astrophysics Data System (ADS)

    Xiao, Xi; Xu, Haihua; Hu, Yingtao; Zhou, Liang; Xiong, Kang; Li, Zhiyong; Li, Yuntao; Fan, Zhongchao; Han, Weihua; Yu, Yude; Yu, Jinzhong

    2010-10-01

    SOI (silicon-on-insulator)-based micro-resonator is the key building block of silicon photonics, which is considered as a promising solution to alleviate the bandwidth bottleneck of on-chip interconnects. Silicon-based sub-micron waveguide, microring and microdisk devices are investigated in Institute of Semiconductors, Chinese Academy of Sciences. The main progress in recent years is presented in this talk, such as high Q factor single mode microdisk filters, compact thirdorder microring filters with the through/drop port extinctions to be ~ 30/40 dB, fast microring electro-optical switches with the switch time of < 400 ps and crosstalk < -23 dB, and > 10 Gbit/s high speed microring modulators.

  6. Jet atomization and cavitation induced by interactions between focused ultrasound and a water surfacea)

    NASA Astrophysics Data System (ADS)

    Tomita, Y.

    2014-09-01

    Atomization of a jet produced by the interaction of 1 MHz focused ultrasound with a water surface was investigated using high-speed photography. Viewing various aspects of jet behavior, threshold conditions were obtained necessary for water surface elevation and jet breakup, including drop separation and spray formation. In addition, the position of drop atomization, where a single drop separates from the tip of a jet without spraying, showed good correlation with the jet Weber number. For a set of specified conditions, multiple beaded water masses were formed, moving upwards to produce a vigorous jet. Cavitation phenomena occurred near the center of the primary drop-shaped water mass produced at the leading part of the jet; this was accompanied by fine droplets at the neck between the primary and secondary drop-shaped water masses, due to the collapse of capillary waves.

  7. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    PubMed

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Factors Controlling the Properties of Multi-Phase Arctic Stratocumulus Clouds

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann; Ackerman, Andrew; Menon, Surabi

    2005-01-01

    The 2004 Multi-Phase Arctic Cloud Experiment (M-PACE) IOP at the ARM NSA site focused on measuring the properties of autumn transition-season arctic stratus and the environmental conditions controlling them, including concentrations of heterogeneous ice nuclei. Our work aims to use a large-eddy simulation (LES) code with embedded size-resolved aerosol and cloud microphysics to identify factors controlling multi-phase arctic stratus. Our preliminary simulations of autumn transition-season clouds observed during the 1994 Beaufort and Arctic Seas Experiment (BASE) indicated that low concentrations of ice nuclei, which were not measured, may have significantly lowered liquid water content and thereby stabilized cloud evolution. However, cloud drop concentrations appeared to be virtually immune to changes in liquid water content, indicating an active Bergeron process with little effect of collection on drop number concentration. We will compare these results with preliminary simulations from October 8-13 during MPACE. The sensitivity of cloud properties to uncertainty in other factors, such as large-scale forcings and aerosol profiles, will also be investigated. Based on the LES simulations with M-PACE data, preliminary results from the NASA GlSS single-column model (SCM) will be used to examine the sensitivity of predicted cloud properties to changing cloud drop number concentrations for multi-phase arctic clouds. Present parametrizations assumed fixed cloud droplet number concentrations and these will be modified using M-PACE data.

  9. Using Single Drop Microextraction for Headspace Analysis with Gas Chromatography

    NASA Astrophysics Data System (ADS)

    Riccio, Daniel; Wood, Derrick C.; Miller, James M.

    2008-07-01

    Headspace (HS) gas chromatography (GC) is commonly used to analyze samples that contain non-volatiles. In 1996, a new sampling technique called single drop microextraction, SDME, was introduced, and in 2001 it was applied to HS analysis. It is a simple technique that uses equipment normally found in the undergraduate laboratory, making it ideal for instructional use, especially to illustrate HS analysis or as an alternative to solid-phase microextraction (SPME) to which it is very similar. The basic principles and practice of HS-GC using SDME are described, including a complete review of the literature. Some possible experiments are suggested using water and N -methylpyrrolidone (NMP) as solvents.

  10. Path selection rules for droplet trains in single-lane microfluidic networks

    NASA Astrophysics Data System (ADS)

    Amon, A.; Schmit, A.; Salkin, L.; Courbin, L.; Panizza, P.

    2013-07-01

    We investigate the transport of periodic trains of droplets through microfluidic networks having one inlet, one outlet, and nodes consisting of T junctions. Variations of the dilution of the trains, i.e., the distance between drops, reveal the existence of various hydrodynamic regimes characterized by the number of preferential paths taken by the drops. As the dilution increases, this number continuously decreases until only one path remains explored. Building on a continuous approach used to treat droplet traffic through a single asymmetric loop, we determine selection rules for the paths taken by the drops and we predict the variations of the fraction of droplets taking these paths with the parameters at play including the dilution. Our results show that as dilution decreases, the paths are selected according to the ascending order of their hydrodynamic resistance in the absence of droplets. The dynamics of these systems controlled by time-delayed feedback is complex: We observe a succession of periodic regimes separated by a wealth of bifurcations as the dilution is varied. In contrast to droplet traffic in single asymmetric loops, the dynamical behavior in networks of loops is sensitive to initial conditions because of extra degrees of freedom.

  11. Measuring the force of drag on air sheared sessile drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Amirfazli, Alidad

    2012-11-01

    To blow a drop along or off of a surface (i.e. to shed the drop), the drag force on the drop (based on flow conditions, drop shape, and fluid properties) must overcome the adhesion force between the drop and the surface (based on surface tension, drop shape, and contact angle). While the shedding of sessile drops by shear flow has been studied [Milne, A. J. B. & Amirfazli, A. Langmuir 25, 14155 (2009).], no independent measurements of the drag or adhesion forces have been made. Likewise, analytic predictions are limited to hemispherical drops and low air velocities. We present, therefore, measurements of the drag force on sessile drops at air velocities up to the point of incipient motion. Measurements were made using a modified floating element shear sensor in a laminar low speed wind tunnel to record drag force over the surface with the drop absent, and over the combined system of the surface and drop partially immersed in the boundary layer. Surfaces of different wettabilities were used to study the effects of drop shape and contact angles, with drop volume ranged between approximately 10 and 100 microlitres. The drag force for incipient motion (which by definition equals the maximum of the adhesion force) is compared to simplified models for drop adhesion such as that of Furmidge

  12. Effect of lipid-based dry eye supplements on the tear film in wearers of eye cosmetics.

    PubMed

    Wang, Michael T M; Cho, Irene Sung Hee; Jung, Soo Hee; Craig, Jennifer P

    2017-08-01

    To compare the effects on tear film parameters and contamination in cosmetic eyeliner wearers, after single application of two lipid-based dry eye treatments: a lipid-containing lubricant eye drop and a phospholipid liposomal spray. Fifty participants were enrolled in a prospective, randomised, paired-eye, investigator-masked trial. Pencil eyeliner (Body Shop ® Crayon Eye Definer) was applied to the upper eyelid periocular skin of both eyes, anterior to the lash line. Baseline tear film quality was assessed fifteen minutes after eyeliner application. A lubricant drop (Systane ® Balance) was then applied to one eye (randomised), and liposomal spray (Tears Again ® ) to the contralateral eye. Tear film contamination, lipid layer grade, non-invasive tear film break-up time and tear evaporation rate were evaluated fifteen minutes post-treatment and compared to pre-treatment values. Pre-treatment measurements did not differ between eyes assigned to lubricant drop and liposomal spray. Tear film contamination was observed in a greater proportion of eyes following both treatments (both p<0.05), with no significant difference between treatments (p=0.41). Both treatments improved lipid layer thickness (both p≤0.01), but effected no significant change in non-invasive tear film break-up time or tear evaporation rate (all p>0.05). Changes in tear film parameters did not differ between treatments (all p>0.05). Both the lipid-containing lubricant eye drop and phospholipid liposomal spray result in clinically apparent tear film contamination in eyeliner cosmetic wearers. Although both treatments effected an increase in lipid layer thickness, neither displayed clinical efficacy in improving tear film stability. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  13. Are the Stress Drops of Small Earthquakes Good Predictors of the Stress Drops of Larger Earthquakes?

    NASA Astrophysics Data System (ADS)

    Hardebeck, J.

    2017-12-01

    Uncertainty in PSHA could be reduced through better estimates of stress drop for possible future large earthquakes. Studies of small earthquakes find spatial variability in stress drop; if large earthquakes have similar spatial patterns, their stress drops may be better predicted using the stress drops of small local events. This regionalization implies the variance with respect to the local mean stress drop may be smaller than the variance with respect to the global mean. I test this idea using the Shearer et al. (2006) stress drop catalog for M1.5-3.1 events in southern California. I apply quality control (Hauksson, 2015) and remove near-field aftershocks (Wooddell & Abrahamson, 2014). The standard deviation of the distribution of the log10 stress drop is reduced from 0.45 (factor of 3) to 0.31 (factor of 2) by normalizing each event's stress drop by the local mean. I explore whether a similar variance reduction is possible when using the Shearer catalog to predict stress drops of larger southern California events. For catalogs of moderate-sized events (e.g. Kanamori, 1993; Mayeda & Walter, 1996; Boyd, 2017), normalizing by the Shearer catalog's local mean stress drop does not reduce the standard deviation compared to the unmodified stress drops. I compile stress drops of larger events from the literature, and identify 15 M5.5-7.5 earthquakes with at least three estimates. Because of the wide range of stress drop estimates for each event, and the different techniques and assumptions, it is difficult to assign a single stress drop value to each event. Instead, I compare the distributions of stress drop estimates for pairs of events, and test whether the means of the distributions are statistically significantly different. The events divide into 3 categories: low, medium, and high stress drop, with significant differences in mean stress drop between events in the low and the high stress drop categories. I test whether the spatial patterns of the Shearer catalog stress drops can predict the categories of the 15 events. I find that they cannot, rather the large event stress drops are uncorrelated with the local mean stress drop from the Shearer catalog. These results imply that the regionalization of stress drops of small events does not extend to the larger events, at least with current standard techniques of stress drop estimation.

  14. Tn5Prime, a Tn5 based 5' capture method for single cell RNA-seq.

    PubMed

    Cole, Charles; Byrne, Ashley; Beaudin, Anna E; Forsberg, E Camilla; Vollmers, Christopher

    2018-06-01

    RNA-sequencing (RNA-seq) is a powerful technique to investigate and quantify entire transcriptomes. Recent advances in the field have made it possible to explore the transcriptomes of single cells. However, most widely used RNA-seq protocols fail to provide crucial information regarding transcription start sites. Here we present a protocol, Tn5Prime, that takes advantage of the Tn5 transposase-based Smart-seq2 protocol to create RNA-seq libraries that capture the 5' end of transcripts. The Tn5Prime method dramatically streamlines the 5' capture process and is both cost effective and reliable. By applying Tn5Prime to bulk RNA and single cell samples, we were able to define transcription start sites as well as quantify transcriptomes at high accuracy and reproducibility. Additionally, similar to 3' end-based high-throughput methods like Drop-seq and 10× Genomics Chromium, the 5' capture Tn5Prime method allows the introduction of cellular identifiers during reverse transcription, simplifying the analysis of large numbers of single cells. In contrast to 3' end-based methods, Tn5Prime also enables the assembly of the variable 5' ends of the antibody sequences present in single B-cell data. Therefore, Tn5Prime presents a robust tool for both basic and applied research into the adaptive immune system and beyond.

  15. Two-phase gas-liquid flow characteristics inside a plate heat exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilpueng, Kitti; Wongwises, Somchai

    In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-watermore » mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)« less

  16. Indirect current control with separate IZ drop compensation for voltage source converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanetkar, V.R.; Dawande, M.S.; Dubey, G.K.

    1995-12-31

    Indirect Current Control (ICC) of boost type Voltage Source Converters (VSCs) using separate compensation of line IZ voltage drop is presented. A separate bi-directional VSC is used to produce the compensation voltage. This simplifies the ICC regulator scheme as the power flow is controlled through single modulation index. Experimental verification is provided for bi-directional control of the power flow.

  17. Identifying Impacts Using Adaptive Fiber Bragg Grating Demodulator for Structural Health Monitoring Applications

    NASA Astrophysics Data System (ADS)

    Kirikera, G. R.; Balogun, O.; Krishnaswamy, S.

    2008-02-01

    A network of Fiber-Bragg Grating (FBG) sensors is developed as part of a Structural Health Monitoring system to identify impact damage. The sensor signals are adaptively demodulated using two-wave mixing (TWM) technology. The signals from multiple FBG sensors are multiplexed into a single TWM demodulator. The FBG sensor network is mounted on a plate, and the structure is subjected to impacts generated by dropping small ball bearings. Impact locations are identified based on time frequency analysis.

  18. Studying the field induced breakup of acoustically levitated drops

    NASA Astrophysics Data System (ADS)

    Warschat, C.; Riedel, J.

    2017-10-01

    Coulomb fission of charged droplets (The terms drop and droplet are often used synonymous. Throughout this manuscript, to avoid confusion, the terms drop and droplet will be used for liquid spheres with radii in the millimeter range and the micrometer range, respectively. In our experiments, the first correspond to the parent drop while the latter describes the ejected progeny droplets.) is a well-studied natural phenomenon. Controlled droplet fission is already successfully employed in several technological applications. Still, since the occurring surface rupture relies on the exact understanding and description of the liquid gas boundary, some details are still under debate. Most empirical systematic studies observe falling micrometer droplets passing through the electric field inside a plate capacitor. This approach, although easily applicable and reliable, limits the experimental degrees of freedom regarding the observable time and the maximum size of the drops and can only be performed in consecutive individual observations of different subsequent drops. Here we present a novel setup to study the field induced breakup of acoustically levitated drops. The design does not bear any restrictions towards the temporal window of observation, and allows handling of drops of a tunable radius ranging from 10 μm to several millimeters and a real-time monitoring of one single drop. Our comprehensive study includes a time resolved visual inspection, laser shadowgraphy, laser induced fluorescence imaging, and ambient mass spectrometric interrogation of the nascent Taylor cone. The results shown for a millimeter sized drop, previously inaccessible for Coulomb fission experiments, are mostly comparable with previous results for smaller drops. The major difference is the time scale and the threshold potential of the drop rupture. Both values, however, resemble theoretically extrapolations to the larger radius. The technique allows for a systematic study of breakup behavior of drops of different charge, material, and size.

  19. Multifunctional picoliter droplet manipulation platform and its application in single cell analysis.

    PubMed

    Gu, Shu-Qing; Zhang, Yun-Xia; Zhu, Ying; Du, Wen-Bin; Yao, Bo; Fang, Qun

    2011-10-01

    We developed an automated and multifunctional microfluidic platform based on DropLab to perform flexible generation and complex manipulations of picoliter-scale droplets. Multiple manipulations including precise droplet generation, sequential reagent merging, and multistep solid-phase extraction for picoliter-scale droplets could be achieved in the present platform. The system precision in generating picoliter-scale droplets was significantly improved by minimizing the thermo-induced fluctuation of flow rate. A novel droplet fusion technique based on the difference of droplet interfacial tensions was developed without the need of special microchannel networks or external devices. It enabled sequential addition of reagents to droplets on demand for multistep reactions. We also developed an effective picoliter-scale droplet splitting technique with magnetic actuation. The difficulty in phase separation of magnetic beads from picoliter-scale droplets due to the high interfacial tension was overcome using ferromagnetic particles to carry the magnetic beads to pass through the phase interface. With this technique, multistep solid-phase extraction was achieved among picoliter-scale droplets. The present platform had the ability to perform complex multistep manipulations to picoliter-scale droplets, which is particularly required for single cell analysis. Its utility and potentials in single cell analysis were preliminarily demonstrated in achieving high-efficiency single-cell encapsulation, enzyme activity assay at the single cell level, and especially, single cell DNA purification based on solid-phase extraction.

  20. Experimental Investigation of Oscillatory Flow Pressure and Pressure Drop Through Complex Geometries

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Wang, Meng; Gedeon, David

    2005-01-01

    A series of experiments have been performed to investigate the oscillatory flow pressure and pressure drop through complex geometries. These experiments were conducted at the CSU-SLRE facility which is a horizontally opposed, two-piston, single-acting engine with a split crankshaft driving mechanism. Flow through a rectangular duct, with no insert (obstruction), was studied first. Then four different inserts were examined: Abrupt, Manifold, Diverging Short and Diverging Long. The inserts were mounted in the center of the rectangular duct to represent different type of geometries that could be encountered in Stirling machines. The pressure and pressure drop of the oscillating flow was studied for: 1) different inserts, 2) different phase angle between the two pistons of the engine (zero, 90 lead, 180, and 90 lag), and 3) for different piston frequencies (5, 10, 15, and 20 Hz). It was found that the pressure drop of the oscillatory flow increases with increasing Reynolds number. The pressure drop was shown to be mainly due to the gas inertia for the case of oscillatory flow through a rectangular duct with no insert. On the other hand, for the cases with different inserts into the rectangular duct, the pressure drop has three sources: inertia, friction, and local losses. The friction pressure drop is only a small fraction of the total pressure drop. It was also shown that the dimensionless pressure drop decreases with increasing kinetic Reynolds number.

  1. Electrical Contacts to Individual Colloidal Semiconductor Nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trudeau, Paul-Emile; Sheldon, Matt; Altoe, Virginia

    We report the results of charge transport studies on single CdTe nanocrystals contacted via evaporated Pd electrodes. Device charging energy, E{sub c}, monitored as a function of electrode separation drops suddenly at separations below {approx}55 nm. This drop can be explained by chemical changes induced by the metal electrodes. This explanation is corroborated by ensemble X-Ray photoelectron spectroscopy (XPS) studies of CdTe films as well as single particle measurements by transmission electron microscopy (TEM) and energy dispersive X-Rays (EDX). Similar to robust optical behavior obtained when Nanocrystals are coated with a protective shell, we find that a protective SiO2 layermore » deposited between the nanocrystal and the electrode prevents interface reactions and an associated drop in E{sub c,max}. This observation of interface reactivity and its effect on electrical properties has important implications for the integration of nanocrystals into conventional fabrication techniques and may enable novel nano-materials.« less

  2. Single-Drop Raman Imaging Exposes the Trace Contaminants in Milk.

    PubMed

    Tan, Zong; Lou, Ting-Ting; Huang, Zhi-Xuan; Zong, Jing; Xu, Ke-Xin; Li, Qi-Feng; Chen, Da

    2017-08-02

    Better milk safety control can offer important means to promote public health. However, few technologies can detect different types of contaminants in milk simultaneously. In this regard, the present work proposes a single-drop Raman imaging (SDRI) strategy for semiquantitation of multiple hazardous factors in milk solutions. By developing SDRI strategy that incorporates the coffee-ring effect (a natural phenomenon often presents in a condensed circle pattern after a drop evaporated) for sample pretreatment and discrete wavelet transform for spectra processing, the method serves well to expose typical hazardous molecular species in milk products, such as melamine, sodium thiocyanate and lincomycin hydrochloride, with little sample preparation. The detection sensitivity for melamine, sodium thiocyanate, and lincomycin hydrochloride are 0.1 mg kg -1 , 1 mg kg -1 , and 0.1 mg kg -1 , respectively. Theoretically, we establish that the SDRI represents a novel and environment-friendly method that screens the milk safety efficiently, which could be well extended to inspection of other food safety.

  3. A Cost-effective and Reliable Method to Predict Mechanical Stress in Single-use and Standard Pumps

    PubMed Central

    Dittler, Ina; Dornfeld, Wolfgang; Schöb, Reto; Cocke, Jared; Rojahn, Jürgen; Kraume, Matthias; Eibl, Dieter

    2015-01-01

    Pumps are mainly used when transferring sterile culture broths in biopharmaceutical and biotechnological production processes. However, during the pumping process shear forces occur which can lead to qualitative and/or quantitative product loss. To calculate the mechanical stress with limited experimental expense, an oil-water emulsion system was used, whose suitability was demonstrated for drop size detections in bioreactors1. As drop breakup of the oil-water emulsion system is a function of mechanical stress, drop sizes need to be counted over the experimental time of shear stress investigations. In previous studies, the inline endoscopy has been shown to be an accurate and reliable measurement technique for drop size detections in liquid/liquid dispersions. The aim of this protocol is to show the suitability of the inline endoscopy technique for drop size measurements in pumping processes. In order to express the drop size, the Sauter mean diameter d32 was used as the representative diameter of drops in the oil-water emulsion. The results showed low variation in the Sauter mean diameters, which were quantified by standard deviations of below 15%, indicating the reliability of the measurement technique. PMID:26274765

  4. A model of the evaporation of binary-fuel clusters of drops

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1991-01-01

    A formulation has been developed to describe the evaporation of dense or dilute clusters of binary-fuel drops. The binary fuel is assumed to be made of a solute and a solvent whose volatility is much lower than that of the solute. Convective flow effects, inducing a circulatory motion inside the drops, are taken into account, as well as turbulence external to the cluster volume. Results obtained with this model show that, similar to the conclusions for single isolated drops, the evaporation of the volatile is controlled by liquid mass diffusion when the cluster is dilute. In contrast, when the cluster is dense, the evaporation of the volatile is controlled by surface layer stripping, that is, by the regression rate of the drop, which is in fact controlled by the evaporation rate of the solvent. These conclusions are in agreement with existing experimental observations. Parametric studies show that these conclusions remain valid with changes in ambient temperature, initial slip velocity between drops and gas, initial drop size, initial cluster size, initial liquid mass fraction of the solute, and various combinations of solvent and solute. The implications of these results for computationally intensive combustor calculations are discussed.

  5. Bubble Jet agent release cartridge for chemical single cell stimulation.

    PubMed

    Wangler, N; Welsche, M; Blazek, M; Blessing, M; Vervliet-Scheebaum, M; Reski, R; Müller, C; Reinecke, H; Steigert, J; Roth, G; Zengerle, R; Paust, N

    2013-02-01

    We present a new method for the distinct specific chemical stimulation of single cells and small cell clusters within their natural environment. By single-drop release of chemical agents with droplets in size of typical cell diameters (d <30 μm) on-demand micro gradients can be generated for the specific manipulation of single cells. A single channel and a double channel agent release cartridge with integrated fluidic structures and integrated agent reservoirs are shown, tested, and compared in this publication. The single channel setup features a fluidic structure fabricated by anisotropic etching of silicon. To allow for simultaneous release of different agents even though maintaining the same device size, the second type comprises a double channel fluidic structure, fabricated by photolithographic patterning of TMMF. Dispensed droplet volumes are V = 15 pl and V = 10 pl for the silicon and the TMMF based setups, respectively. Utilizing the agent release cartridges, the application in biological assays was demonstrated by hormone-stimulated premature bud formation in Physcomitrella patens and the individual staining of one single L 929 cell within a confluent grown cell culture.

  6. Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer

    PubMed Central

    Ye, Congwang; Chen, Anthony; Colombo, Paolo; Martinez, Carlos

    2010-01-01

    We have developed a robust technique to fabricate monodispersed solid and porous ceramic particles and capsules from single and double emulsion drops composed of silsesquioxane preceramic polymer. A microcapillary microfluidic device was used to generate the monodispersed drops. In this device, two round capillaries are aligned facing each other inside a square capillary. Three fluids are needed to generate the double emulsions. The inner fluid, which flows through the input capillary, and the middle fluid, which flows through the void space between the square and inner fluid capillaries, form a coaxial co-flow in a direction that is opposite to the flow of the outer fluid. As the three fluids are forced through the exit capillary, the inner and middle fluids break into monodispersed double emulsion drops in a single-step process, at rates of up to 2000 drops s−1. Once the drops are generated, the silsesquioxane is cross-linked in solution and the cross-linked particles are dried and pyrolysed in an inert atmosphere to form oxycarbide glass particles. Particles with diameters ranging from 30 to 180 µm, shell thicknesses ranging from 10 to 50 µm and shell pore diameters ranging from 1 to 10 µm were easily prepared by changing fluid flow rates, device dimensions and fluid composition. The produced particles and capsules can be used in their polymeric state or pyrolysed to ceramic. This technique can be extended to other preceramic polymers and can be used to generate unique core–shell multimaterial particles. PMID:20484226

  7. Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer.

    PubMed

    Ye, Congwang; Chen, Anthony; Colombo, Paolo; Martinez, Carlos

    2010-08-06

    We have developed a robust technique to fabricate monodispersed solid and porous ceramic particles and capsules from single and double emulsion drops composed of silsesquioxane preceramic polymer. A microcapillary microfluidic device was used to generate the monodispersed drops. In this device, two round capillaries are aligned facing each other inside a square capillary. Three fluids are needed to generate the double emulsions. The inner fluid, which flows through the input capillary, and the middle fluid, which flows through the void space between the square and inner fluid capillaries, form a coaxial co-flow in a direction that is opposite to the flow of the outer fluid. As the three fluids are forced through the exit capillary, the inner and middle fluids break into monodispersed double emulsion drops in a single-step process, at rates of up to 2000 drops s(-1). Once the drops are generated, the silsesquioxane is cross-linked in solution and the cross-linked particles are dried and pyrolysed in an inert atmosphere to form oxycarbide glass particles. Particles with diameters ranging from 30 to 180 microm, shell thicknesses ranging from 10 to 50 microm and shell pore diameters ranging from 1 to 10 microm were easily prepared by changing fluid flow rates, device dimensions and fluid composition. The produced particles and capsules can be used in their polymeric state or pyrolysed to ceramic. This technique can be extended to other preceramic polymers and can be used to generate unique core-shell multimaterial particles.

  8. Hydrodynamic shrinkage of liquid CO2 Taylor drops in a straight microchannel

    NASA Astrophysics Data System (ADS)

    Qin, Ning; Wen, John Z.; Ren, Carolyn L.

    2018-03-01

    Hydrodynamic shrinkage of liquid CO2 drops in water under a Taylor flow regime is studied using a straight microchannel (length/width ~100). A general form of a mathematical model of the solvent-side mass transfer coefficient (k s) is developed first. Based on formulations of the surface area (A) and the volume (V) of a general Taylor drop in a rectangular microchannel, a specific form of k s is derived. Drop length and speed are experimentally measured at three specified positions of the straight channel, namely, immediately after drop generation (position 1), the midpoint of the channel (position 2) and the end of the channel (position 3). The reductions of drop length (L x , x  =  1, 2, 3) from position 1 to 2 and down to 3 are used to quantify the drop shrinkage. Using the specific model, k s is calculated mainly based on L x and drop flowing time (t). Results show that smaller CO2 drops produced by lower flow rate ratios ({{Q}LC{{O2}}}/{{Q}{{H2}O}} ) are generally characterized by higher (nearly three times) k s and Sherwood numbers than those produced by higher {{Q}LC{{O2}}}/{{Q}{{H2}O}} , which is essentially attributed to the larger effective portion of the smaller drop contributing in the mass transfer under same levels of the flowing time and the surface-to-volume ratio (~104 m-1) of all drops. Based on calculated pressure drops of the segmented flow in microchannel, the Peng-Robinson equation of state and initial pressures of drops at the T-junction in experiments, overall pressure drop (ΔP t) in the straight channel as well as the resulted drop volume change are quantified. ΔP t from position 1-3 is by average 3.175 kPa with a ~1.6% standard error, which only leads to relative drop volume changes of 0.3‰ to 0.52‰.

  9. The Digital Drag and Drop Pillbox: Design and Feasibility of a Skill-based Education Model to Improve Medication Management.

    PubMed

    Granger, Bradi B; Locke, Susan C; Bowers, Margaret; Sawyer, Tenita; Shang, Howard; Abernethy, Amy P; Bloomfield, Richard A; Gilliss, Catherine L

    We present the design and feasibility testing for the "Digital Drag and Drop Pillbox" (D-3 Pillbox), a skill-based educational approach that engages patients and providers, measures performance, and generates reports of medication management skills. A single-cohort convenience sample of patients hospitalized with heart failure was taught pill management skills using a tablet-based D-3 Pillbox. Medication reconciliation was conducted, and aptitude, performance (% completed), accuracy (% correct), and feasibility were measured. The mean age of the sample (n = 25) was 59 (36-89) years, 50% were women, 62% were black, 46% were uninsured, 46% had seventh-grade education or lower, and 31% scored very low for health literacy. However, most reported that the D-3 Pillbox was easy to read (78%), easy to repeat-demonstrate (78%), and comfortable to use (tablet weight) (75%). Accurate medication recognition was achieved by discharge in 98%, but only 25% reported having a "good understanding of my responsibilities." The D-3 Pillbox is a feasible approach for teaching medication management skills and can be used across clinical settings to reinforce skills and medication list accuracy.

  10. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.

    PubMed

    Basu, Amar S

    2013-05-21

    Emerging assays in droplet microfluidics require the measurement of parameters such as drop size, velocity, trajectory, shape deformation, fluorescence intensity, and others. While micro particle image velocimetry (μPIV) and related techniques are suitable for measuring flow using tracer particles, no tool exists for tracking droplets at the granularity of a single entity. This paper presents droplet morphometry and velocimetry (DMV), a digital video processing software for time-resolved droplet analysis. Droplets are identified through a series of image processing steps which operate on transparent, translucent, fluorescent, or opaque droplets. The steps include background image generation, background subtraction, edge detection, small object removal, morphological close and fill, and shape discrimination. A frame correlation step then links droplets spanning multiple frames via a nearest neighbor search with user-defined matching criteria. Each step can be individually tuned for maximum compatibility. For each droplet found, DMV provides a time-history of 20 different parameters, including trajectory, velocity, area, dimensions, shape deformation, orientation, nearest neighbour spacing, and pixel statistics. The data can be reported via scatter plots, histograms, and tables at the granularity of individual droplets or by statistics accrued over the population. We present several case studies from industry and academic labs, including the measurement of 1) size distributions and flow perturbations in a drop generator, 2) size distributions and mixing rates in drop splitting/merging devices, 3) efficiency of single cell encapsulation devices, 4) position tracking in electrowetting operations, 5) chemical concentrations in a serial drop dilutor, 6) drop sorting efficiency of a tensiophoresis device, 7) plug length and orientation of nonspherical plugs in a serpentine channel, and 8) high throughput tracking of >250 drops in a reinjection system. Performance metrics show that highest accuracy and precision is obtained when the video resolution is >300 pixels per drop. Analysis time increases proportionally with video resolution. The current version of the software provides throughputs of 2-30 fps, suggesting the potential for real time analysis.

  11. The effect of passive mixing on pressure drop and oxygen mass fraction using opposing channel flow field design in a Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Singh, Anant Bir

    This study investigates a flow field with opposing channel design. Previous studies on flow field designs have been focused on improving fuel utilization which often leads to increased pressure drop. This increased pressure drop is typical because standard designs employ either a single flow channel to clear blockages or dead end condition to force the flow through the gas diffusion layer. The disadvantage with these designs is the increased resistance to the flow which requires higher pressure, which becomes a parasitic loss that lowers the system efficiency. For this study the focus was to reduce the pressure drop by providing a less resistive path to the flow. To achieve a less resistive path, the inlet channel was split into two opposing channels. These channels are then recombined only to be split again for the next leg. Therefore, the split channel design should reduce the pressure drop which reduces the parasitic load and ultimately contributes to higher system efficiency. In addition the recombining of the streams at each leg should induce mixing. Having opposing channels should also increase cross flow under the lands to reduce mass transfer loses. The cathode side of the fuel cell is especially sensitive to the mass transport losses since air (oxygen mixed with nitrogen) is used for supplying oxygen unlike the anode side which uses pure hydrogen. To test the hypothesis of having benefits from an opposing channel design, both an experimental and analytical approach was taken. For the experiment, a serpentine flow field and opposing channel flow field plates were compared over several flow rates with compressed air. To test the hypothesis of increased mass transfer, the two flow fields were modeled using a CFD software package, COMSOL. It was found that the opposing channel configuration for high flow rate with multiple entry and exit conditions exhibited significant improvement over the single serpentine channel. Pressure drop was ⅓ less than the serpentine channel with similar conditions. Simulations for mass transfer show that recombining of the flow streams generate more uniform current density unlike the serpentine configuration where the current density was concentrated at the entrance of the flow stream. The background section provides a brief overview of the governing equations, the theory of flow field operation and previous bodies of work on flow field design. Recommendations are made for further verification of the design using a real working cell based on the results.

  12. Co-seismic Static Stress Drops for Earthquake Ruptures Nucleated on Faults After Progressive Strain Localization

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; Nielsen, S.; di Toro, G.; Pollard, D. D.; Pennacchioni, G.

    2007-12-01

    We estimate the coseismic static stress drop on small exhumed strike-slip faults in the Mt. Abbot quadrangle of the central Sierra Nevada (California). The sub-vertical strike-slip faults cut ~85 Ma granodiorite, were exhumed from 7-10 km depth, and were chosen because they are exposed along their entire lengths, ranging from 8 to 13 m. Net slip is estimated using offset aplite dikes and shallowly plunging slickenlines on the fault surfaces. The faults show a record of progressive strain localization: slip initially nucleated on joints and accumulated from ductile shearing (quartz-bearing mylonites) to brittle slipping (epidote-bearing cataclasites). Thin (< 1 mm) pseudotachylytes associated with the cataclasites have been identified along some faults, suggesting that brittle slip may have been seismic. The brittle contribution to slip may be distinguished from the ductile shearing because epidote-filled, rhombohedral dilational jogs opened at bends and step-overs during brittle slip, are distributed periodically along the length of the faults. We argue that brittle slip occurred along the measured fault lengths in single slip events based on several pieces of evidence. 1) Epidote crystals are randomly oriented and undeformed within dilational jogs, indicating they did not grow during aseismic slip and were not broken after initial opening and precipitation. 2) Opening-mode splay cracks are concentrated near fault tips rather than the fault center, suggesting that the reactivated faults ruptured all at once rather than in smaller slip patches. 3) The fact that the opening lengths of the dilational jogs vary systematically along the fault traces suggests that brittle reactivation occurred in a single slip event along the entire fault rather than in multiple slip events. This unique combination of factors distinguishes this study from previous attempts to estimate stress drop from exhumed faults because we can constrain the coseismic rupture length and slip. The static stress drop is calculated for a circular fault using the length of the mapped faults and their slip distributions as well as the shear modulus of the host granodiorite measured in the laboratory. Calculations yield stress drops on the order of 100-200 MPa, one to two orders of magnitude larger than typical seismological estimates. The studied seismic ruptures occurred along small, deep-seated faults (10 km depth), and, given the fault mineral filling (quartz-bearing mylonites) these were "strong" faults. Our estimates are consistent with static stress drops estimated by Nadeau and Johnson (1998) for small repeated earthquakes.

  13. The Digital Drag and Drop Pillbox

    PubMed Central

    Granger, Bradi B.; Locke, Susan C.; Bowers, Margaret; Sawyer, Tenita; Shang, Howard; Abernethy, Amy P.; Bloomfield, Richard A.; Gilliss, Catherine L.

    2017-01-01

    Objective: We present the design and feasibility testing for the “Digital Drag and Drop Pillbox” (D-3 Pillbox), a skill-based educational approach that engages patients and providers, measures performance, and generates reports of medication management skills. Methods: A single-cohort convenience sample of patients hospitalized with heart failure was taught pill management skills using a tablet-based D-3 Pillbox. Medication reconciliation was conducted, and aptitude, performance (% completed), accuracy (% correct), and feasibility were measured. Results: The mean age of the sample (n = 25) was 59 (36–89) years, 50% were women, 62% were black, 46% were uninsured, 46% had seventh-grade education or lower, and 31% scored very low for health literacy. However, most reported that the D-3 Pillbox was easy to read (78%), easy to repeat-demonstrate (78%), and comfortable to use (tablet weight) (75%). Accurate medication recognition was achieved by discharge in 98%, but only 25% reported having a “good understanding of my responsibilities.” Conclusions: The D-3 Pillbox is a feasible approach for teaching medication management skills and can be used across clinical settings to reinforce skills and medication list accuracy. PMID:28282304

  14. Flow in the human upper airway: work of breathing and the compliant soft palate and tongue

    NASA Astrophysics Data System (ADS)

    Jermy, Mark; Adams, Cletus; Aplin, Jonathan; Buchajczyk, Marcin; van Hove, Sibylle; Kabaliuk, Natalia; Geoghegan, Patrick; Cater, John

    2016-11-01

    The human upper airway (nasal cavity, pharynx and trachea) filters, heats and humidifies inspired air. Its pressure drop affects the work of breathing (WOB, energy expended to inspire and expire) to a degree which varies from person to person, and which is altered by breathing therapy devices. We report experimental studies using 3D printed models of the upper airway based on CT scans of single individuals (adult and paediatric), and average geometries based on PCA analysis of 150 individuals. Particle Image Velocimetry (PIV), gas concentration and pressure measurements, coupled with CFD simulation. These reveal the details of the washout of CO2 rich exhaled gas, the direction-dependent time-varying pressure drop, and the effect of high-flow nasal therapy (HFNT) on these phenomena. A 1D multi-compartment model is used to estimate the work of breathing. For the first time, soft (compliant) elements have been included in the model airways and show that the assumption of rigid tissue is acceptable for unassisted breathing, but unrealistic for therapy-assisted flows.

  15. Flame propagation in heterogeneous mixtures of fuel drops and air

    NASA Technical Reports Server (NTRS)

    Myers, G. D.; Lefebvre, A. H.

    1984-01-01

    Photographic methods are used to measure flame speeds in flowing mixtures of fuel props and air at atmospheric pressure. The fuels employed include a conventional fuel oil plus various blends JP 7 with stocks containing single-ring and mullti-ring aromatics. The results for stoichiometric mixtures show that flame propagation cannot occur in mixtures containing mean drop sizes larger than 300 to 400 microns, depending on the fuel type. For smaller drop sizes, down to around 60 microns, flame speed is inversely proportional to drop size, indicating that evaporation rates are limiting to flame speed. Below around 60 microns, the curves of flame speed versus mean drop size flatten out, thereby demonstrating that for finely atomized sprays flame speeds are much less dependent on evaporation rates, and are governed primarily by mixing and/or chemical reaction rates. The fuels exhibiting the highest flame speeds are those containing multi-ring aromatics. This is attributed to the higher radiative heat flux emanating from their soot-bearing flames which enhances the rate of evaporation of the fuel drops approaching the flame front.

  16. Tear film thickness after treatment with artificial tears in patients with moderate dry eye disease.

    PubMed

    Schmidl, Doreen; Schmetterer, Leopold; Witkowska, Katarzyna J; Unterhuber, Angelika; dos Santos, Valentin Aranha; Kaya, Semira; Nepp, Johannes; Baar, Carina; Rosner, Peter; Werkmeister, René M; Garhofer, Gerhard

    2015-04-01

    This study was designed to investigate the effect of a single-drop instillation of different lacrimal substitutes on tear film thickness (TFT) assessed with optical coherence tomography in patients with mild to moderate dry eye disease. The study was performed in a randomized, double-masked, controlled parallel group design. Patients received a single dose of either unpreserved trehalose 30 mg/mL and sodium hyaluronate 1.5 mg/mL (TH-SH, Thealoz Duo), unpreserved sodium hyaluronate, 0.15% (HA, Hyabak) or sodium chloride, 0.9% (NaCl, Hydrabak) eye drops. Sixty patients finished the study according to the protocol. TFT was measured with a custom-built ultrahigh-resolution Fourier domain optical coherence tomography system providing a resolution of 1.2 μm. The mean TFT before treatment was 2.5 ± 0.4 μm. Ten minutes after instillation, TFT significantly increased in the TH-SH group from 2.4 ± 0.4 to 3.1 ± 0.9 μm (P < 0.01) and in the HA group from 2.4 ± 0.3 to 2.9 ± 0.5 μm (P < 0.01), whereas no significant change was observed in the NaCl group (from 2.6 ± 0.4 to 2.7 ± 0.4 μm, P = 0.76). The increase in TFT remained statistically significant up to 240 minutes after administration of TH-SH. In contrast, the increase in TFT after administration of HA was only statistically significant at 10, 20, and 40 minutes after drop instillation. The findings of this study indicate that single instillation of TH-SH and HA eye drops increases TFT in patients with dry eye disease. The data also indicate longer corneal residence of the TH-containing eye drops. The effect of multiple instillation and long-term use of artificial tears on TFT warrants further investigation.

  17. Headspace single drop microextraction coupled with microwave extraction of essential oil from plant materials.

    PubMed

    Zhai, Yujuan; Sun, Shuo; Wang, Ziming; Zhang, Yupu; Liu, He; Sun, Ye; Zhang, Hanqi; Yu, Aimin

    2011-05-01

    Headspace single drop microextraction (HS-SDME) coupled with microwave extraction (ME) was developed and applied to the extraction of the essential oil from dried Syzygium aromaticum (L.) Merr. et Perry and Cuminum cyminum L. The operational parameters, such as microdrop volume, microwave absorption medium (MAM), extraction time, and microwave power were optimized. Ten microliters of decane was used as the microextraction solvent. Ionic liquid and carbonyl iron powder were used as MAM. The extraction time was less than 7 min at the microwave power of 440 W. The proposed method was compared with hydrodistillation (HD). There were no obvious differences in the constituents of essential oils obtained by the two methods.

  18. Sporadic frame dropping impact on quality perception

    NASA Astrophysics Data System (ADS)

    Pastrana-Vidal, Ricardo R.; Gicquel, Jean Charles; Colomes, Catherine; Cherifi, Hocine

    2004-06-01

    Over the past few years there has been an increasing interest in real time video services over packet networks. When considering quality, it is essential to quantify user perception of the received sequence. Severe motion discontinuities are one of the most common degradations in video streaming. The end-user perceives a jerky motion when the discontinuities are uniformly distributed over time and an instantaneous fluidity break is perceived when the motion loss is isolated or irregularly distributed. Bit rate adaptation techniques, transmission errors in the packet networks or restitution strategy could be the origin of this perceived jerkiness. In this paper we present a psychovisual experiment performed to quantify the effect of sporadically dropped pictures on the overall perceived quality. First, the perceptual detection thresholds of generated temporal discontinuities were measured. Then, the quality function was estimated in relation to a single frame dropping for different durations. Finally, a set of tests was performed to quantify the effect of several impairments distributed over time. We have found that the detection thresholds are content, duration and motion dependent. The assessment results show how quality is impaired by a single burst of dropped frames in a 10 sec sequence. The effect of several bursts of discarded frames, irregularly distributed over the time is also discussed.

  19. The shape of oxygen abundance profiles explored with MUSE

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Sánchez-Menguiano, L.; Pérez, I.

    2017-11-01

    We characterise the oxygen abundance radial distribution of a sample of 102 spiral galaxies observed with VLT/MUSE using the O3N2 calibrator. The high spatial resolution of the data allows us to detect 14345 HII regions with the same image quality as with photometric data, avoiding any dilution effect. We develop a new methodology to automatically fit the abundance radial profiles, finding that 55 galaxies of the sample exhibit a single negative gradient. The remaining 47 galaxies also display, as well as this negative trend, either an inner drop in the abundances (21), an outer flattening (10) or both (16), which suggests that these features are a common property of disc galaxies. The presence and depth of the inner drop depends on the stellar mass of the galaxies with the most massive systems presenting the deepest abundance drops, while there is no such dependence for the outer flattening. We find that the inner drop appears always around 0.5 r_e, while the position of the outer flattening varies over a wide range of galactocentric distances. Regarding the main negative gradient, we find a characteristic slope of α_{O/H} = - 0.10±0.03 dex/r_e. This slope is independent of the presence of bars and the density of the environment. However, when inner drops or outer flattenings are detected, slightly steeper gradients are observed. This suggests that radial motions might play an important role in shaping the abundance profiles. We define a new normalisation scale (r_{O/H}) for the radial profiles based on the characteristic abundance gradient, with which all the galaxies show a similar position for the inner drop (˜0.5 r_{O/H}) and the outer flattening (˜1.5 r_{O/H}).Finally, we find no significant dependence of the dispersion around the negative gradient with any galaxy property, with values compatible with the uncertainties of the derived abundances.

  20. A self-triggered picoinjector in microfluidics

    NASA Astrophysics Data System (ADS)

    Yang, Yiming; Liu, Songsheng; Jia, Chunping; Mao, Hongju; Jin, Qinghui; Zhao, Jianlong; Zhou, Hongbo

    2016-12-01

    Droplet-based microfluidics has recently emerged as a potential platform for studies of single-cell, directed evolution, and genetic sequencing. In droplet-based microfluidics, adding reagents into drops is one of the most important functions. In this paper, we develop a new self-triggered picoinjector to add controlled volumes of reagent into droplets at kilohertz rates. In the picoinjector, the reagent injecting is triggered by the coming droplet itself, without needing a droplet detection module. Meanwhile, the dosing volume can be precisely controlled. These features make the system more practical and reliable. We expect the new picoinjector will find important applications of droplet-based microfluidics in automated biological assay, directed evolution, enzyme assay, and so on.

  1. Performance analysis of signaling protocols on OBS switches

    NASA Astrophysics Data System (ADS)

    Kirci, Pinar; Zaim, A. Halim

    2005-10-01

    In this paper, Just-In-Time (JIT), Just-Enough-Time (JET) and Horizon signalling schemes for Optical Burst Switched Networks (OBS) are presented. These signaling schemes run over a core dWDM network and a network architecture based on Optical Burst Switches (OBS) is proposed to support IP, ATM and Burst traffic. In IP and ATM traffic several packets are assembled in a single packet called burst and the burst contention is handled by burst dropping. The burst length distribution in IP traffic is arbitrary between 0 and 1, and is fixed in ATM traffic at 0,5. Burst traffic on the other hand is arbitrary between 1 and 5. The Setup and Setup ack length distributions are arbitrary. We apply the Poisson model with rate λ and Self-Similar model with pareto distribution rate α to identify inter-arrival times in these protocols. We consider a communication between a source client node and a destination client node over an ingress and one or more multiple intermediate switches.We use buffering only in the ingress node. The communication is based on single burst connections in which, the connection is set up just before sending a burst and then closed as soon as the burst is sent. Our analysis accounts for several important parameters, including the burst setup, burst setup ack, keepalive messages and the optical switching protocol. We compare the performance of the three signalling schemes on the network under as burst dropping probability under a range of network scenarios.

  2. A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes

    NASA Astrophysics Data System (ADS)

    Spandan, Vamsi; Meschini, Valentina; Ostilla-Mónico, Rodolfo; Lohse, Detlef; Querzoli, Giorgio; de Tullio, Marco D.; Verzicco, Roberto

    2017-11-01

    In this paper we show and discuss how the deformation dynamics of closed liquid-liquid interfaces (for example drops and bubbles) can be replicated with use of a phenomenological interaction potential model. This new approach to simulate liquid-liquid interfaces is based on the fundamental principle of minimum potential energy where the total potential energy depends on the extent of deformation of a spring network distributed on the surface of the immersed drop or bubble. Simulating liquid-liquid interfaces using this model require computing ad-hoc elastic constants which is done through a reverse-engineered approach. The results from our simulations agree very well with previous studies on the deformation of drops in standard flow configurations such as a deforming drop in a shear flow or cross flow. The interaction potential model is highly versatile, computationally efficient and can be easily incorporated into generic single phase fluid solvers to also simulate complex fluid-structure interaction problems. This is shown by simulating flow in the left ventricle of the heart with mechanical and natural mitral valves where the imposed flow, motion of ventricle and valves dynamically govern the behaviour of each other. Results from these simulations are compared with ad-hoc in-house experimental measurements. Finally, we present a simple and easy to implement parallelisation scheme, as high performance computing is unavoidable when studying large scale problems involving several thousands of simultaneously deforming bodies in highly turbulent flows.

  3. Determination of bisphenol A in thermal printing papers treated by alkaline aqueous solution using the combination of single-drop microextraction and HPLC.

    PubMed

    Gao, Leihong; Zou, Jing; Liu, Haihong; Zeng, Jingbin; Wang, Yiru; Chen, Xi

    2013-04-01

    A method for the quantitative determination of bisphenol A in thermal printing paper was developed and validated. Bisphenol A was extracted from the paper samples using 2% NaOH solution, then the extracted analyte was enriched using single-drop microextraction followed by HPLC analysis. Several parameters relating to the single-drop microextraction efficiency including extraction solvent, extraction temperature and time, stirring rate, and pH of donor phase were studied and optimized. Spiked recovery of bisphenol A at 20 and 5 mg/g was found to be 95.8 and 108%, and the method detection limit and method quantification limit was 0.03 and 0.01 mg/g, respectively. Under the optimized conditions, the proposed method was applied to the determination of bisphenol A in seven types of thermal printing paper samples, and the concentration of bisphenol A was found in the range of 0.53-20.9 mg/g. The considerably minimum usage of organic solvents (5 μL 1-octanol) and high enrichment factor (189-197) in the sample preparation are the two highlighted advantages in comparison with previously published works. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Gender differences in knee kinematics and muscle activity during single limb drop landing.

    PubMed

    Nagano, Yasuharu; Ida, Hirofumi; Akai, Masami; Fukubayashi, Toru

    2007-06-01

    The likelihood of sustaining an ACL injury in a noncontact situation is two to eight times greater for females than for males. However, the mechanism and risk factors of ACL injury are still unknown. We compared knee kinematics as well as electromyographic activity during landing between male and female athletes. Eighteen male athletes and nineteen female athletes participated in the experiment. The angular displacements of flexion/extension, valgus/varus, and internal/external tibial rotation, as well as the translational displacements of anterior/posterior tibial translation during single limb drop landing were calculated. Simultaneous electromyographical activity of the rectus femoris (RF) and hamstrings (Ham) was taken. During landing, internal tibial rotation of the females was significantly larger than that of the males, while differences were not observed in flexion, varus, valgus, and anterior tibial translation. Hamstrings/quadriceps ratio (HQR) for the 50 ms time period before foot contact was greater in males than in females. The mechanism of noncontact ACL injury during a single limb drop landing would be internal tibial rotation combined with valgus rotation of the knee. Increased internal tibial rotation combined with greater quadriceps activity and a low HQR could be one reason female athletes have a higher incidence of noncontact ACL injuries.

  5. Pressure driven flow of superfluid 4He through a nanopipe

    NASA Astrophysics Data System (ADS)

    Botimer, Jeffrey; Taborek, Peter

    2016-09-01

    Pressure driven flow of superfluid helium through single high-aspect-ratio glass nanopipes into a vacuum has been studied for a wide range of pressure drop (0-30 bars), reservoir temperature (0.8-2.5 K), pipe lengths (1-30 mm), and pipe radii (131 and 230 nm). As a function of pressure drop we observe two distinct flow regimes above and below a critical pressure drop Pc. For P

  6. Transition from School-Based Training in VET

    ERIC Educational Resources Information Center

    Daehlen, Marianne

    2017-01-01

    Purpose: This paper assesses the drop-out rate among disadvantaged students within vocational education and training. The purpose of this paper is to examine the probability of dropping out after school-based training for child welfare clients--a particularly disadvantaged group of youth. Child welfare clients' drop-out rate is compared with…

  7. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes/polymer composite thin film.

    PubMed

    Rajanna, Pramod Mulbagal; Gilshteyn, Evgenia; Yagafarov, Timur; Alekseeva, Alena; Anisimov, Anton; Sergeev, Oleg; Neumueller, Alex; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert

    2018-01-09

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and a thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high quality SWCNTs with an enhanced conductivity by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with different SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit Jsc, open-circuit Voc, and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and efficiency of 3.4% under simulated one-sun AM 1.5G direct illumination. © 2018 IOP Publishing Ltd.

  8. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film.

    PubMed

    Rajanna, Pramod M; Gilshteyn, Evgenia P; Yagafarov, Timur; Aleekseeva, Alena K; Anisimov, Anton S; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G

    2018-01-31

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

  9. Observation of Spectral Signatures of 1/f Dynamics in Avalanches on Granular Piles

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.; Nishino, Thomas K.

    1997-03-01

    Granular piles of monodisperse glass spheres, 0.46+0.03 mm in diameter, have been studied. The base diameter of the pile has been varied from 3/8" to 2" in 1/8" increments. A single-grain dispenser with greater than 95consisting of a stepping motor-actuated reciprocating arm with a single-grain scoop. Each grain is dropped on the apex of the pile with lowest possible landing velocity at intervals at least 30longer than the duration of largest avalanches for each given pile. Each grain being added and being lost in avalanches from the pile is optically detected and recorded. The power spectrum of the net addition of grains to the pile as a function of time is found to be robustly 1/f for all base sizes. A wide variety of dynamical properties of 1/f systems, as obtained from the high precision data, will be presented.

  10. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film

    NASA Astrophysics Data System (ADS)

    Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.

    2018-03-01

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

  11. Miniature Biometric Sensor Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Terrier, Douglas; Clayton, Ronald; Hanson, Andrea; Cooper, Tommy; Downs, Meghan; Flint, Stephanie; Reyna, Baraquiel; Simon, Cory; Wilt, Grier

    2015-01-01

    Heart rate monitoring (HRM) is a critical need during exploration missions. Unlike the four separate systems used on ISS today, the single HRM system should perform as a diagnostic tool, perform well during exercise or high level activity, and be suitable for use during EVA. Currently available HRM technologies are dependent on uninterrupted contact with the skin and are prone to data drop-out and motion artifact when worn in the spacesuit or during exercise. Here, we seek an alternative to the chest strap and electrode based sensors currently in use on ISS today. This project aims to develop a single, high performance, robust biosensor with focused efforts on improved heart rate data quality collection during high intensity activity such as exercise or EVA.

  12. Intra-articular versus intravenous tranexamic acid application in total knee arthroplasty: a meta-analysis of randomized controlled trials.

    PubMed

    Mi, Bobin; Liu, Guohui; Zhou, Wu; Lv, Huijuan; Liu, Yi; Zha, Kun; Wu, Qipeng; Liu, Jing

    2017-07-01

    The purpose of this meta-analysis was to compare the blood loss and complications of intra-articular (IA) with intravenous (IV) tranexamic acid (TXA) for total knee arthroplasty (TKA). A comprehensive search of studies was conducted to identify related articles in Pubmed, Embase, Cochrane central Register of Controlled Trials, springerLink, OVID and the Research published from January 1980 to September 2016. All studies that compared IA TXA with IV TXA application on TKA were included. Main outcomes of the two methods were collected and analyzed by using Review Manager 5.3. There were 16 randomized controlled trials with 1308 cases met the criteria. Compared with IV TXA, IA TXA had similar blood volume of drainage, hidden blood loss, transfusion rate and complications (P > 0.05). IA TXA had lower total blood loss than IV TXA, and there was significant difference (P < 0.05). Subgroup analysis of total blood loss based on times of IV TXA administration showed that repeat dose of IV TXA had a higher total blood loss and postoperative hemoglobin drop (P < 0.05) than IA TXA. However, single dose of IV TXA had a similar efficacy on total blood loss and postoperative hemoglobin drop (P > 0.05) when compared with IA TXA. Both IA TXA and single dose of IV TXA are effective in reducing total blood loss and postoperative hemoglobin drop without increasing complications of DVT or PE. The current meta-analysis suggests that 1.5 g TXA by IA administration or 1 g TXA by IV administration 10 min before tourniquet deflation is effective and safe in patients undergoing TKA.

  13. Robotic printing and drug testing of 384-well tumor spheroids.

    PubMed

    Ham, Stephanie L; Thakuri, Pradip S; Tavana, Hossein

    2015-08-01

    A major impediment to anti-cancer drug development is the lack of a reliable and inexpensive tumor model to test the efficacy of candidate compounds. This need has emerged due to the insufficiency of widely-used monolayer cultures to predict drug efficacy in vivo. Spheroids, 3D compact clusters of cancer cells, mimic important characteristics of tumors and provide a tissue analog for drug testing. Here we present a novel spheroid formation microtechnology that is simple to use and allows high throughput drug screening in 384-microwell plates. This approach is based on a polymeric aqueous two-phase system. The denser aqueous phase is mixed with cancer cells at a desired density. Using a robotic liquid handler, a drop of this cell suspension is dispensed into each well of a 384-microwell plate containing the second, immersion aqueous phase. Cancer cells remain contained in the drop, which rests on the well bottom, and form a spheroid during incubation. The use of liquid handling robotics ensures precise dispensing of a single drop, resulting in a single spheroid per well and homogenously sized spheroids within each plate. We confirmed the consistency of production of spheroids and demonstrated their biological relevance to tumors. A proof of concept study with spheroids of triple negative breast cancer cells treated with a standard chemotherapeutic compound, doxorubicin, showed the potential of this method for drug testing. This spheroid culture microtechnology presents key advantages over existing methods such as the ease of drug and viability reagent addition, ability to analyze spheroids without transferring them to a new plate, and the elimination of the need for specialized plates or devices to form spheroids. Incorporating this technology in anti-cancer drug development pipeline will help examine the efficacy of drug candidates more effectively and expedite discovery of novel drugs.

  14. Effectiveness of Neuromuscular Training Based on the Neuromuscular Risk Profile.

    PubMed

    Hewett, Timothy E; Ford, Kevin R; Xu, Yingying Y; Khoury, Jane; Myer, Gregory D

    2017-07-01

    The effects of targeted neuromuscular training (TNMT) on movement biomechanics associated with the risk of anterior cruciate ligament (ACL) injuries are currently unknown. Purpose/Hypotheses: To determine the effectiveness of TNMT specifically designed to increase trunk control and hip strength. The hypotheses were that (1) TNMT would decrease biomechanical and neuromuscular factors related to an increased ACL injury risk and (2) TNMT would decrease these biomechanical and neuromuscular factors to a greater extent in athletes identified as being at a high risk for future ACL injuries. Controlled laboratory study. Female athletes who participated in jumping, cutting, and pivoting sports underwent 3-dimensional biomechanical testing before the season and after completing TNMT. During testing, athletes performed 3 different types of tasks: (1) drop vertical jump, (2) single-leg drop, and (3) single-leg cross drop. Analysis of covariance was used to examine the treatment effects of TNMT designed to enhance core and hip strength on biomechanical and neuromuscular characteristics. Differences were also evaluated by risk profile. Differences were considered statistically significant at P < .05. TNMT significantly increased hip external rotation moments and moment impulses, increased peak trunk flexion, and decreased peak trunk extension. Athletes with a high risk before the intervention (risk profile III) had a more significant treatment effect of TNMT than low-risk groups (risk profiles I and II). TNMT significantly improved proximal biomechanics, including increased hip external rotation moments and moment impulses, increased peak trunk flexion, and decreased peak trunk extension. TNMT that focuses exclusively on proximal leg and trunk risk factors is not, however, adequate to induce significant changes in frontal-plane knee loading. Biomechanical changes varied across the risk profile groups, with higher risk groups exhibiting greater improvements in their biomechanics.

  15. Motion of a Drop on a Solid Surface Due to a Wettability Gradient

    NASA Technical Reports Server (NTRS)

    Subramanian, R.; Moumen, Nadjoua; McLaughlin, John B.

    2005-01-01

    The hydrodynamic force experienced by a spherical-cap drop moving on a solid surface is obtained from two approximate analytical solutions and used to predict the quasi-steady speed of the drop in a wettability gradient. One solution is based on approximation of the shape of the drop as a collection of wedges, and the other is based on lubrication theory. Also, asymptotic results from both approximations for small contact angles, as well as an asymptotic result from lubrication theory that is good when the length scale of the drop is large compared with the slip length, are given. The results for the hydrodynamic force also can be used to predict the quasi-steady speed of a drop sliding down an incline.

  16. Surface characterization through shape oscillations of drops in microgravity and 1-g

    NASA Technical Reports Server (NTRS)

    Apfel, Robert E.; Holt, R. Glynn; Tian, Yuren; Shi, Tao; Zheng, Xiao-Yu

    1994-01-01

    The goal of these experiments is to determine the rheological properties of liquid drops of single or multiple components in the presence or absence of surface active materials by exciting drops into their quadrupole resonance and observing their free decay. The resulting data coupled with appropriate theory should give a better description of the physics of the underlying phenomena, providing a better foundation than earlier empirical results could. The space environment makes an idealized geometry available (spherical drops) so that theory and experiment can be properly compared, and allows a 'clean' environment, by which is meant an environment in which no solid surfaces come in contact with the drops during the test period. Moreover, by considering the oscillations of intentionally deformed drops in microgravity, a baseline is established for interpreting surface characterization experiments done on the ground by other groups and ours. Experiments performed on the United States Microgravity Laboratory Laboratory (USML-1) demonstrated that shape oscillation experiments could be performed over a wide parameter range, and with a variety of surfactant materials. Results, however, were compromised by an unexpected, slow drop tumbling, some problems with droplet injection, and the presence of bubbles in the drop samples. Nevertheless, initial data suggests that the space environment will be useful in providing baseline data that can serve to validate theory and permit quantitative materials characterization at 1-g.

  17. A Novel Acousto-Electric Levitator for Studies of Drop and Particle Clusters and Arrays

    NASA Technical Reports Server (NTRS)

    Tian, Yuren; Apfel, Robert E.; Zheng, Yibing

    1999-01-01

    A novel and compact instrumentation for studying the behavior of drop sprays and of clusters of drops now permits fundamental research into the behavior of reacting and non-reacting fluid and solid species. The new capability is made possible by simultaneous acousto-electric levitation and charging of "seed" droplets (10-30 microns in diameter) which come together in 2-D clusters (with up to 300 droplets). These clusters are interesting in their own right because of their crystalline and quasi-crystalline forms, which depend on the acoustic and electric field parameters. By varying the electric and acoustic field intensities, one can cause a cluster of droplets to condense into larger drops (e.g. 50-300 microns) which, because of their charge, form uniformly spaced 2-D arrays of monodispersed drops (e.g. 30-40 array drops in preliminary experiments). One or more layers of these 2-D arrays can form in the acoustic standing wave. Such a configuration permits a wide range of fundamental studies of drop evaporation, combustion, and nucleation. The drops can be single or multicomponent. Therefore, fundamental materials studies can also be performed. Using this same Cluster and Array Generation (CAG) instrumentation, it has been also possible in preliminary experiments to demonstrate the clustering and arraying of solid particles, both coated with an electrically conducting layer and uncoated, and both charged and uncharged.

  18. Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muley, A.; Manglik, R.M.

    1997-07-01

    Experimental data for isothermal pressure drop and heat transfer in single-phase water flows in a plate heat exchanger (PHE) with chevron plates are presented. A single-pass, U-type, counterflow PHE, with three different chevron plate arrangements is employed: two symmetric plate arrangements with {beta} = 30/30{degree} and 60/60{degree}, and a mixed-plate arrangement with {beta} = 30/60{degree}. With water flow rates in the turbulent flow regime (600 < Re < 10{sup 4} and 2 < Pr < 6), effects of the chevron corrugation inclination angle {beta} on Nu and f characteristics of the PHE are investigated. As {beta} increases and compared tomore » a flat-plate pack, up to 2 to 5 times higher Nu are obtained; the concomitant f, however, are 13 to 44 times higher. Based on the experimental data for Re {le} 1,000, predictive correlations of the form Nu = C{sub 1}{beta} Re{sup p1({beta})} Pr{sup 1/3} ({mu}/{mu}{sub w}){sup 0.14} and f = C{sub 2}{beta} Re{sup p2({beta})} are devised. Also, at constant pumping power and depending upon {beta}, the heat transfer is found to be enhanced over 1.8 times that in equivalent flat-plate channels.« less

  19. Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatkowski, G.; Cheban, S.; Dhanaraj, N.

    2015-01-01

    The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantagesmore » which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids« less

  20. Comparison of drop size data from ground and aerial application nozzles at three testing laboratories

    USDA-ARS?s Scientific Manuscript database

    Spray drop size is a critical factor in the performance of any agrochemical solution and is a function of spray solution, nozzle selection, and nozzle operation. Applicators generally base their selection of a particular nozzle based on the drop size reported by manufacturers and researchers. Like m...

  1. Outcome regimes of binary raindrop collisions

    NASA Astrophysics Data System (ADS)

    Testik, Firat Y.

    2009-11-01

    This study delineates the physical conditions that are responsible for the occurrence of main outcome regimes (i.e., bounce, coalescence, and breakup) for binary drop collisions with a precipitation microphysics perspective. Physical considerations based on the collision kinetic energy and the surface energies of the colliding drops lead to the development of a theoretical regime diagram for the drop/raindrop collision outcomes in the We- p plane ( We — Weber number, p — raindrop diameter ratio). This theoretical regime diagram is supported by laboratory experimental observations of drop collisions using high-speed imaging. Results of this fundamental study bring in new insights into the quantitative understanding of drop dynamics, applications of which extend beyond precipitation microphysics. In particular, results of this drop collision study are expected to give impetus to the physics-based dynamic modeling of the drop size distributions that is essential for various typical modern engineering applications, including numerical modeling of evolution of raindrop size distribution in rain shaft.

  2. Joint mobilization acutely improves landing kinematics in chronic ankle instability.

    PubMed

    Delahunt, Eamonn; Cusack, Kim; Wilson, Laura; Doherty, Cailbhe

    2013-03-01

    The objective of this study is to examine the acute effect of ankle joint mobilizations akin to those performed in everyday clinical practice on sagittal plane ankle joint kinematics during a single-leg drop landing in participants with chronic ankle instability (CAI). Fifteen participants with self-reported CAI (defined as <24 on the Cumberland Ankle Instability Tool) performed three single-leg drop landings under two different conditions: 1) premobilization and, 2) immediately, postmobilization. The mobilizations performed included Mulligan talocrural joint dorsiflexion mobilization with movement, Mulligan inferior tibiofibular joint mobilization, and Maitland anteroposterior talocrural joint mobilization. Three CODA cx1 units (Charnwood Dynamics Ltd., Leicestershire, UK) were used to provide information on ankle joint sagittal plane angular displacement. The dependent variable under investigation was the angle of ankle joint plantarflexion at the point of initial contact during the drop landing. There was a statistically significant acute decrease in the angle of ankle joint plantarflexion from premobilization (34.89° ± 4.18°) to postmobilization (31.90° ± 5.89°), t(14) = 2.62, P < 0.05 (two-tailed). The mean decrease in the angle of ankle joint plantarflexion as a result of the ankle joint mobilization was 2.98° with a 95% confidence interval ranging from 0.54 to 5.43. The eta squared statistic (0.32) indicated a large effect size. These results indicate that mobilization acted to acutely reduce the angle of ankle joint plantarflexion at initial contact during a single-leg drop landing. Mobilization applied to participants with CAI has a mechanical effect on the ankle joint, thus facilitating a more favorable positioning of the ankle joint when landing from a jump.

  3. Time series of ground reaction forces following a single leg drop jump landing in elite youth soccer players consist of four distinct phases.

    PubMed

    Fransz, Duncan P; Huurnink, Arnold; de Boode, Vosse A; Kingma, Idsart; van Dieën, Jaap H

    2016-10-01

    The single leg drop jump landing test may assess dynamic and static balance abilities in different phases of the landing. However objective definitions of different phases following landing and associated reliability are lacking. Therefore, we determined the existence of possible distinct phases of single leg drop jump landing on a force plate in 82 elite youth soccer players. Three outcome measures were calculated over moving windows of five sizes: center of pressure (COP) speed, COP sway and horizontal ground reaction force (GRF). Per outcome measure, a Factor Analysis was employed with all windows as input variables. It showed that four factors (patterns of variance) largely (>75%) explained the variance across subjects/trials along the 12s time series. Each factor was highly associated with a distinct phase of the time series signal: dynamic (0.4-2.7s), late dynamic (2.5-5.0s), static 1 (5.0-8.3s) and static 2 (8.1-11.7s). Intra-class correlations (ICC) between trials were lower for the dynamic phases (0.45-0.68) than for the static phases (0.60-0.86). The COP speed showed higher ICC's (0.63-0.86) than COP sway (0.45-0.61) and GRF (0.57-0.71) for all four phases. In conclusion, following a drop jump landing unique information is available in four distinct phases. The COP speed is most reliable, with higher reliability in the static phases compared to the dynamic phases. Future studies should assess the sensitivity of information from dynamic, late dynamic and static phases. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Gender differences in rotation of the shank during single-legged drop landing and its relation to rotational muscle strength of the knee.

    PubMed

    Kiriyama, Shinya; Sato, Haruhiko; Takahira, Naonobu

    2009-01-01

    Increased shank rotation during landing has been considered to be one of the factors for noncontact anterior cruciate ligament injuries in female athletes. There have been no known gender differences in rotational knee muscle strength, which is expected to inhibit exaggerated shank rotation. Women have less knee external rotator strength than do men. Lower external rotator strength is associated with increased internal shank rotation at the time of landing. Controlled laboratory study. One hundred sixty-nine healthy young subjects (81 female and 88 male; age, 17.0 +/- 1.0 years) volunteered to participate in this study. The subjects performed single-legged drop landings from a 20-cm height. Femoral and shank kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the joint angles around the knee (flexion/extension, valgus/varus, and internal/external rotation) were calculated. The maximal isometric rotational muscle strength of the knee was measured at 30 degrees of knee flexion in a supine position using a dynamometer. The female subjects had significantly less external shank rotation strength than did the male subjects (P < .001). Female subjects also exhibited significantly greater peak shank internal rotation angles than did males during landing (P < .05). Moderate but significant association was found between the maximum shank external rotation strength and the peak shank internal rotation angle during landing (r = -0.322, P < .01). Female subjects tended to have poor shank external rotator strength. This may lead to large shank internal rotation movement during the single-legged drop landing. Improving strength training of the external rotator muscle may help decrease the rates of anterior cruciate ligament injury in female athletes.

  5. Numerical study of the impact of a drop containing a bubble

    NASA Astrophysics Data System (ADS)

    Wei, Yu; Thoraval, Marie-Jean

    2017-11-01

    The impact of a drop has many applications from inkjet printing to the spreading of crops diseases. This fundamental phenomenon has therefore attracted a lot of interest from different fields. However, they have mostly focused on the simplest case of a drop containing a single fluid. In inkjet printing and in the deposition process of thermal barrier coatings, some bubbles can be present in the drop when it impacts on the solid surface. The presence of the bubble can produce some additional splashing, and affect the quality of the deposited material. Only a few studies have looked at this problem, and many questions still need to be investigated. Generally, there are three possibilities when a drop containing a bubble impacts onto a solid surface, namely the bubble stays in drop, the bubble bursts and a counter jet forms. We have performed axisymmetric numerical simulations with the open source code Gerris to study this vertical jet. We have systematically varied several parameters, including the impact velocity, the bubble size, the vertical position of the bubble, and the liquid properties. We were thus able to characterize under which condition the bubble leads to splashing and the velocity of the produced jet.

  6. Spread of pathogens through rain drop impact

    NASA Astrophysics Data System (ADS)

    Kim, Seungho; Gruszewski, Hope; Gidley, Todd; Schmale, David G., III; Jung, Sunghwan

    2017-11-01

    Rain drop impact can disperse micron-sized pathogenic particles over long distances. In this study, we aim to elucidate mechanisms for disease dispersal when a rain drop impacts a particle-laden solid surface. Three different dispersal types were observed depending on whether the dispersed glass particles were dry or wet. For a dry particle dispersal, the movement of contact line made the particles initially jump off the surface with relatively high velocity. Then, air vortex was formed due to the air current entrained along with the falling drop, and advected the particles with relatively low velocity. For a wet particle dispersal, the contact line of a spreading liquid became unstable due to the presence of the particles on the substrate. This caused splashing at the contact line and ejected liquid droplets carrying the particles. Finally, we released a drop onto wheat plants infected with the rust fungus, Puccinia triticina, and found that nearly all of the satellite droplets from a single drop contained at least one rust spore. Also, we visualized such novel dispersal dynamics with a high-speed camera and characterized their features by scaling models. This research was partially supported by National Science Foundation Grant CBET-1604424.

  7. Workers on the margin: who drops health coverage when prices rise?

    PubMed

    Okeke, Edward N; Hirth, Richard A; Grazier, Kyle

    2010-01-01

    We revisit the question of price elasticity of employer-sponsored insurance (ESI) take-up by directly examining changes in the take-up of ESI at a large firm in response to exogenous changes in employee premium contributions. We find that, on average, a 10% increase in the employee's out-of-pocket premium increases the probability of dropping coverage by approximately 1%. More importantly, we find heterogeneous impacts: married workers are much more price-sensitive than single employees, and lower-paid workers are disproportionately more likely to drop coverage than higher-paid workers. Elasticity estimates for employees below the 25th percentile of salary distribution in our sample are nearly twice the average.

  8. Self-consistent quasi-static parallel electric field associated with substorm growth phase

    NASA Astrophysics Data System (ADS)

    Le Contel, O.; Pellat, R.; Roux, A.

    2000-06-01

    A new approach is proposed to calculate the self-consistent parallel electric field associated with the response of a plasma to quasi-static electromagnetic perturbations (ωωd<ω and ωd>ω (ωd being the bounce averaged magnetic drift frequency equal to kyvd, where ky is the wave number in the y direction and vd the bounce averaged magnetic drift velocity). The first regime (ωd<ω) corresponds to small particle energy and/or small ky, while the second regime (ωd>ω) is adapted to large energies and/or large ky. In particular, in the limit ωd<ω and |vd|<|uy|, where uy is the diamagnetic velocity proportional to the pressure gradient, we find a parallel electric field proportional to the pressure gradient and directed toward the ionosphere in the dusk sector and toward the equator in the dawn sector. This parallel electric field corresponds to a potential drop of a few hundred volts that can accelerate electrons and produce a differential drift between electrons and ions.

  9. Assembly of acid-functionalized single-walled carbon nanotubes at oil/water interfaces.

    PubMed

    Feng, Tao; Hoagland, David A; Russell, Thomas P

    2014-02-04

    The efficient segregation of water-soluble, acid-functionalized, single-walled carbon nanotubes (SWCNTs) at the oil/water interface was induced by dissolving low-molecular-weight amine-terminated polystyrene (PS-NH2) in the oil phase. Salt-bridge interactions between carboxylic acid groups of SWCNTs and amine groups of PS drove the assembly of SWCNTs at the interface, monitored by pendant drop tensiometry and laser scanning confocal microscopy. The impact of PS end-group functionality, PS and SWCNT concentrations, and the degree of SWCNT acid modification on the interfacial activity was assessed, and a sharp drop in interfacial tension was observed above a critical SWCNT concentration. Interfacial tensions were low enough to support stable oil/water emulsions. Further experiments, including potentiometric titrations and the replacement of SWCNTs by other carboxyl-containing species, demonstrated that the interfacial tension drop reflects the loss of SWCNT charge as the pH falls near/below the intrinsic carboxyl dissociation constant; species lacking multivalent carboxylic acid groups are inactive. The trapped SWCNTs appear to be neither ordered nor oriented.

  10. Single-cell barcoding and sequencing using droplet microfluidics.

    PubMed

    Zilionis, Rapolas; Nainys, Juozas; Veres, Adrian; Savova, Virginia; Zemmour, David; Klein, Allon M; Mazutis, Linas

    2017-01-01

    Single-cell RNA sequencing has recently emerged as a powerful tool for mapping cellular heterogeneity in diseased and healthy tissues, yet high-throughput methods are needed for capturing the unbiased diversity of cells. Droplet microfluidics is among the most promising candidates for capturing and processing thousands of individual cells for whole-transcriptome or genomic analysis in a massively parallel manner with minimal reagent use. We recently established a method called inDrops, which has the capability to index >15,000 cells in an hour. A suspension of cells is first encapsulated into nanoliter droplets with hydrogel beads (HBs) bearing barcoding DNA primers. Cells are then lysed and mRNA is barcoded (indexed) by a reverse transcription (RT) reaction. Here we provide details for (i) establishing an inDrops platform (1 d); (ii) performing hydrogel bead synthesis (4 d); (iii) encapsulating and barcoding cells (1 d); and (iv) RNA-seq library preparation (2 d). inDrops is a robust and scalable platform, and it is unique in its ability to capture and profile >75% of cells in even very small samples, on a scale of thousands or tens of thousands of cells.

  11. Direct immersion single drop micro-extraction method for multi-class pesticides analysis in mango using GC-MS.

    PubMed

    Pano-Farias, Norma S; Ceballos-Magaña, Silvia G; Muñiz-Valencia, Roberto; Jurado, Jose M; Alcázar, Ángela; Aguayo-Villarreal, Ismael A

    2017-12-15

    Due the negative effects of pesticides on environment and human health, more efficient and environmentally friendly methods are needed. In this sense, a simple, fast, free from memory effects and economical direct-immersion single drop micro-extraction (SDME) method and GC-MS for multi-class pesticides determination in mango samples was developed. Sample pre-treatment using ultrasound-assisted solvent extraction and factors affecting the SDME procedure (extractant solvent, drop volume, stirring rate, ionic strength, time, pH and temperature) were optimized using factorial experimental design. This method presented high sensitive (LOD: 0.14-169.20μgkg -1 ), acceptable precision (RSD: 0.7-19.1%), satisfactory recovery (69-119%) and high enrichment factors (20-722). Several obtained LOQs are below the MRLs established by the European Commission; therefore, the method could be applied for pesticides determination in routing analysis and custom laboratories. Moreover, this method has shown to be suitable for determination of some of the studied pesticides in lime, melon, papaya, banana, tomato, and lettuce. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparative Analysis of Single-Cell RNA Sequencing Methods.

    PubMed

    Ziegenhain, Christoph; Vieth, Beate; Parekh, Swati; Reinius, Björn; Guillaumet-Adkins, Amy; Smets, Martha; Leonhardt, Heinrich; Heyn, Holger; Hellmann, Ines; Enard, Wolfgang

    2017-02-16

    Single-cell RNA sequencing (scRNA-seq) offers new possibilities to address biological and medical questions. However, systematic comparisons of the performance of diverse scRNA-seq protocols are lacking. We generated data from 583 mouse embryonic stem cells to evaluate six prominent scRNA-seq methods: CEL-seq2, Drop-seq, MARS-seq, SCRB-seq, Smart-seq, and Smart-seq2. While Smart-seq2 detected the most genes per cell and across cells, CEL-seq2, Drop-seq, MARS-seq, and SCRB-seq quantified mRNA levels with less amplification noise due to the use of unique molecular identifiers (UMIs). Power simulations at different sequencing depths showed that Drop-seq is more cost-efficient for transcriptome quantification of large numbers of cells, while MARS-seq, SCRB-seq, and Smart-seq2 are more efficient when analyzing fewer cells. Our quantitative comparison offers the basis for an informed choice among six prominent scRNA-seq methods, and it provides a framework for benchmarking further improvements of scRNA-seq protocols. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Dynamics of contracting surfactant-covered filaments

    NASA Astrophysics Data System (ADS)

    Kamat, Pritish; Thete, Sumeet; Xu, Qi; Basaran, Osman

    2013-11-01

    When drops are produced from a nozzle, a thin liquid thread connects the primary drop that is about to form to the rest of the liquid in the nozzle. Often, the thread becomes disconnected from both the primary drop and the remnant liquid mass hanging from the nozzle and thereby gives rise to a free filament. Due to surface tension, the free filament then contracts or recoils. During recoil, the filament can either contract into a single satellite droplet or break up into several small satellites. Such satellite droplets are undesirable in applications where they can, for example, cause misting in a manufacturing environment and mar product quality in ink-jet printing. In many applications, the filaments are coated with a monolayer of surfactant. In this work, we study the dynamics of contraction of slender filaments of a Newtonian fluid that are covered with a monolayer of surfactant when the surrounding fluid is a passive gas. Taking advantage of the fact that the filaments are long and slender, we use a 1D-slender-jet approximation of the governing system of equations consisting of the Navier-Stokes system and the convection-diffusion equation for surfactant transport. We solve the 1D system of equations by a finite element based numerical method.

  14. Cell dispensing in low-volume range with the immediate drop-on-demand technology (I-DOT).

    PubMed

    Schober, Lena; Büttner, Evy; Laske, Christopher; Traube, Andrea; Brode, Tobias; Traube, Andreas Florian; Bauernhansl, Thomas

    2015-04-01

    Handling and dosing of cells comprise the most critical step in the microfabrication of cell-based assay systems for screening and toxicity testing. Therefore, the immediate drop-on-demand technology (I-DOT) was developed to provide a flexible noncontact liquid handling system enabling dispensing of cells and liquid without the risk of cross-contamination down to a precise volume in the nanoliter range. Liquid is dispensed from a source plate within nozzles at the bottom by a short compressed air pulse that is given through a quick release valve into the well, thus exceeding the capillary pressure in the nozzle. Droplets of a defined volume can be spotted directly onto microplates or other cell culture devices. We present a study on the performance and biological impact of this technology by applying the cell line MCF-7, human fibroblasts, and human mesenchymal stem cells (hMSCs). For all cell types tested, viability after dispensing is comparable to the control and exhibits similar proliferation rates in the absence of apoptotic cells, and the differentiation potential of hMSCs is not impaired. The immediate drop-on-demand technology enables accurate cell dosage and offers promising potential for single-cell applications. © 2014 Society for Laboratory Automation and Screening.

  15. Factors Contributing to Pelvis Instability in Female Adolescent Athletes During Unilateral Repeated Partial Squat Activity

    PubMed Central

    Scarborough, Donna Moxley; Linderman, Shannon; Berkson, Eric M.; Oh, Luke S.

    2017-01-01

    Objectives: Unilateral partial squat tasks are often used to assess athletes’ lower extremity (LE) neuromuscular control. Single squat biomechanics such as lateral drop of the non-stance limb’s pelvis have been linked to knee injury risk. Yet, there are limited studies on the factors contributing to pelvic instability during the unilateral partial squat such as anatomical alignment of the knee and hip strength. The purpose of this study was 1) to assess the influence of leg dominance on pelvic drop among female athletes during the repeated unilateral partial squat activity and 2) to investigate the contributions that lower limb kinematics and hip strength have on pelvis drop. Methods: 42 female athletes (27= softball pitchers, 15=gymnasts, avg age=16.48 ± 2.54 years) underwent lower limb assessment. The quadriceps angle (Q angle) and the average of 3 trials for hip abduction and extension strength (handheld dynamometer measurements) were used for analyses. 3D biomechanical analysis of the repeated unilateral partial squat activity followed using a 20 motion capture camera system which created a 15 segment model of each subject. The subject stood on one leg at the lateral edge of a 17.78 cm box with hands placed on the hips and squatted so that the free hanging contralateral limb came as close to the ground without contact for 5 continuous repetitions. One trial for each limb was performed. Peak pelvic drop and ankle, knee and hip angles and torques (normalized by weight) at this time point were calculated using Visual 3D (C-Motion) biomechanical software. Paired T-test, Spearman correlations and multiple regression model statistical analyses were performed. Results: Peak pelvic drop during the unilateral partial squat did not differ significantly on the basis of limb dominance (p=0.831, Dom: -3.40 ± 5.10° , ND: -3.46 ± 4.44°). Peak pelvic drop displayed a Spearman correlation with the functional measure of hip abduction/adduction (ABD/ADD) angle (rs= 0.627, p< 0.001) (Figure 1). No association was noted between peak pelvic drop and anatomical measures of Q angle or isometric hip extension strength. A multiple regression was performed to predict pelvis drop angle from the following 6 variables: isometric hip ABD strength, hip ABD/ADD angle, hip internal/external rotation angle, ankle supination/pronation (S/P) angle, height and weight. These variables statistically predicted pelvis drop, F(6,73) = 17.848, p < .0005, R2 = 0.595. The strongest combined predictor variables for pelvic drop in the female athletes were hip abduction/ adduction angle and strength followed by subject’s weight and ankle S/P angle (Table 1). Conclusion: Peak pelvic drop during the repeated unilateral partial squat activity did not correlate significantly with Q angle and hip extension strength. Instead, peak pelvic drop appears more related to a combination of biomechanical limb positioning, hip ABD strength and subject demographics. The regression model run on the repeated unilateral partial squat demonstrates predictive power of this dynamic assessment tool based on kinematic measures across multiple joints. Results could guide clinician screening for excessive pelvic drop in female athletes and based on the predictive model make recommendations for corrective conditioning to help prevent knee injury and guide return to sport following LE surgery. Table 1: Multivariate linear regression model for pelvic drop, Isometric hip strength and lower extremity kinematics during repeated partial squat activity among female athletes. Variable P Isometric hip abduction strength 0.034* Hip Abduction/Adduction Angle <0.001* Hip Internal/External Rotation Angle 0.936 Ankle Internal/External Rotation Angle 0.072 Height 0.398 Weight 0.011* * Level of significance established at p<0.05

  16. The critical pressure drop for the purge process in the anode of a fuel cell

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Pingwen, Ming; Ming, Hou; Baolian, Yi; Shao, Zhi-Gang

    Purge operation is an effective way to remove the accumulated liquid water in the anode of proton exchange membrane fuel cells (PEMFCs). This paper studies the phenomenon of the two-phase flow as well as the pressure drop fluctuation inside the flow field of a single cell during the purge process. The flow patterns are identified as intermittent purge and annular purge, and the two purge processes are contrastively analyzed and discussed. The intermittent purge greatly affects the fuel cell performance and thus it is not suitable for the in situ application. The annular purge process requires a higher pressure drop, and the critical pressure drop is calculated from the annular purge model. Furthermore, this value is quantitatively analyzed and validated by experiments. The results show that the annular purge is appropriate for removing liquid water out of the anode in the fuel cell.

  17. Network embedding-based representation learning for single cell RNA-seq data.

    PubMed

    Li, Xiangyu; Chen, Weizheng; Chen, Yang; Zhang, Xuegong; Gu, Jin; Zhang, Michael Q

    2017-11-02

    Single cell RNA-seq (scRNA-seq) techniques can reveal valuable insights of cell-to-cell heterogeneities. Projection of high-dimensional data into a low-dimensional subspace is a powerful strategy in general for mining such big data. However, scRNA-seq suffers from higher noise and lower coverage than traditional bulk RNA-seq, hence bringing in new computational difficulties. One major challenge is how to deal with the frequent drop-out events. The events, usually caused by the stochastic burst effect in gene transcription and the technical failure of RNA transcript capture, often render traditional dimension reduction methods work inefficiently. To overcome this problem, we have developed a novel Single Cell Representation Learning (SCRL) method based on network embedding. This method can efficiently implement data-driven non-linear projection and incorporate prior biological knowledge (such as pathway information) to learn more meaningful low-dimensional representations for both cells and genes. Benchmark results show that SCRL outperforms other dimensional reduction methods on several recent scRNA-seq datasets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Prospective, randomized, controlled comparison of SYSTANE UD eye drops versus VISINE INTENSIV 1% EDO eye drops for the treatment of moderate dry eye.

    PubMed

    Jacobi, Christina; Kruse, Friedrich E; Cursiefen, Claus

    2012-12-01

    The aim of this prospective, randomized, clinical, single-center study was to compare the safety and efficacy of 2 ocular surface lubricant eye drops: preservative-free hydroxypropyl (HP)-Guar (SYSTANE UD(®)) eye drops versus preservative-free Tamarindus indica seed polysaccharide (TSP) 1% (VISINE INTENSIV 1% EDO(®)) eye drops. Fifty-six eyes of 28 patients with moderate keratoconjunctivitis sicca (DEWS severity level 2) were enrolled in the trial. Patients were randomized for 2 treatment groups (SYSTANE UD eye drops vs. VISINE INTENSIV 1% EDO eye drops). The eye drops in both groups were applied 5 times per day for 3 months. Statistical analyses were performed using Statistica™ software (Mann-Whitney U-test and Wilcoxon test). P-Values<0.05 were considered significant. After 3 months of treatment the patients of both groups had subjective benefit in the relief of symptoms of dry eye disease evaluated by the Ocular Surface Disease Index (OSDI) questionnaire score. Patients treated with HP-Guar and TSP showed improvements in tear film stability measured by tear break-up time (TBUT), which are statistically significant in the HP-Guar group (P=0.02). The results of this clinical trial show improvements of symptoms and signs in patients with moderate dry eye after the consistent use of preservative-free HP-Guar and TSP lubricant eye drops. Both artificial tear formulations produce amelioration in tear film stability improving eye conditions and patient quality of life. HP-Guar seems to be slightly more effective in improving ocular surface protection by decreasing tear film evaporation.

  19. Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide.

    PubMed

    Shinya, Akihiko; Mitsugi, Satoshi; Kuramochi, Eiichi; Notomi, Masaya

    2005-05-30

    We have devised an ultra-small multi-channel drop filter based on a two-port resonant tunneling system in a two-dimensional photonic crystal with a triangular air-hole lattice. This filter does not require careful consideration of the interference process to achieve a high dropping efficiency. First we develop three-port systems based on a two-port resonant tunneling filter. Next we devise a multi-port channel drop filter by cascading these three-port systems. In this paper, we demonstrate a ten-channel drop filter with an 18 mum device size by 2D-FDTD calculation, and a three-port resonant tunneling filter with 65+/- 20 % dropping efficiency by experiment.

  20. A highly accurate dynamic contact angle algorithm for drops on inclined surface based on ellipse-fitting.

    PubMed

    Xu, Z N; Wang, S Y

    2015-02-01

    To improve the accuracy in the calculation of dynamic contact angle for drops on the inclined surface, a significant number of numerical drop profiles on the inclined surface with different inclination angles, drop volumes, and contact angles are generated based on the finite difference method, a least-squares ellipse-fitting algorithm is used to calculate the dynamic contact angle. The influences of the above three factors are systematically investigated. The results reveal that the dynamic contact angle errors, including the errors of the left and right contact angles, evaluated by the ellipse-fitting algorithm tend to increase with inclination angle/drop volume/contact angle. If the drop volume and the solid substrate are fixed, the errors of the left and right contact angles increase with inclination angle. After performing a tremendous amount of computation, the critical dimensionless drop volumes corresponding to the critical contact angle error are obtained. Based on the values of the critical volumes, a highly accurate dynamic contact angle algorithm is proposed and fully validated. Within nearly the whole hydrophobicity range, it can decrease the dynamic contact angle error in the inclined plane method to less than a certain value even for different types of liquids.

  1. Electromagnetic DM technology meets future AO demands

    NASA Astrophysics Data System (ADS)

    Hamelinck, Roger; Rosielle, Nick; Steinbuch, Maarten; Doelman, Niek

    New deformable mirror technology is developed by the Technische Universiteit Eindhoven, Delft University of Technology and TNO Science and Industry. Several prototype adaptive deformable mirrors are realized mirrors, up to 427 actuators and ∅150mm diameter, with characteristics suitable for future AO systems. The prototypes consist of a 100µm thick, continuous facesheet on which low voltage, electromagnetic, push-pull actuators impose out-of-plane displacements. The variable reluctance actuators with ±10µm stroke and nanometer resolution are located in a standard actuator module. Each module with 61 actuators connects to a single PCB with dedicated, 16 bit, PWM based, drivers. A LVDS multi-drop cable connects up to 32 actuator modules. With the actuator module, accompanying PCB and multi-drop system the deformable mirror technology is made modular in its mechanics and electronics. An Ethernet-LVDS bridge enables any commercial PC to control the mirror using the UDP standard. Latest results of the deformable mirror technology development are presented.

  2. The role of atmospheric nuclear explosions on the stagnation of global warming in the mid 20th century

    NASA Astrophysics Data System (ADS)

    Fujii, Yoshiaki

    2011-04-01

    This study suggests that the cause of the stagnation in global warming in the mid 20th century was the atmospheric nuclear explosions detonated between 1945 and 1980. The estimated GST drop due to fine dust from the actual atmospheric nuclear explosions based on the published simulation results by other researchers (a single column model and Atmosphere-Ocean General Circulation Model) has served to explain the stagnation in global warming. Atmospheric nuclear explosions can be regarded as full-scale in situ tests for nuclear winter. The non-negligible amount of GST drop from the actual atmospheric explosions suggests that nuclear winter is not just a theory but has actually occurred, albeit on a small scale. The accuracy of the simulations of GST by IPCC would also be improved significantly by introducing the influence of fine dust from the actual atmospheric nuclear explosions into their climate models; thus, global warming behavior could be more accurately predicted.

  3. Scaling of Two-Phase Flows to Partial-Earth Gravity

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn M.; Witte, Larry C.

    2003-01-01

    A report presents a method of scaling, to partial-Earth gravity, of parameters that describe pressure drops and other characteristics of two-phase (liquid/ vapor) flows. The development of the method was prompted by the need for a means of designing two-phase flow systems to operate on the Moon and on Mars, using fluid-properties and flow data from terrestrial two-phase-flow experiments, thus eliminating the need for partial-gravity testing. The report presents an explicit procedure for designing an Earth-based test bed that can provide hydrodynamic similarity with two-phase fluids flowing in partial-gravity systems. The procedure does not require prior knowledge of the flow regime (i.e., the spatial orientation of the phases). The method also provides for determination of pressure drops in two-phase partial-gravity flows by use of a generalization of the classical Moody chart (previously applicable to single-phase flow only). The report presents experimental data from Mars- and Moon-activity experiments that appear to demonstrate the validity of this method.

  4. Spatially resolved resistivity near the vortex lattice phase transition in Bi 2Sr 2CaCu 2O 8+δ single crystals

    NASA Astrophysics Data System (ADS)

    Berseth, V.; Indenbom, M. V.; van der Beek, C. J.; D'Anna, G.; Benoit, W.

    1997-08-01

    Using a multiterminal contact configuration, we investigate the local variations of the resistivity drop near the vortex lattice first order phase transition in a very homogeneous Bi2Sr2CaCu2O8+δ (BSCCO) single crystal.

  5. 12. INTERIOR VIEW OF SINGLE BAY SLOTTED TYPE FURNACE (LEFT) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. INTERIOR VIEW OF SINGLE BAY SLOTTED TYPE FURNACE (LEFT) AND CHAMBERSBURG DROP HAMMER OPERATED BY JEFF HOHMAN (RIGHT); THE FURNACE IS USED TO PRE-HEAT THE STEEL PRIOR TO FORGING, TOOL IS POST HOLE DIGGER WITH TAMPING BAR - Warwood Tool Company, Foot of Nineteenth Street, Wheeling, Ohio County, WV

  6. Spontaneous Mass and Charge Losses from Single Multi-Megadalton Ions Studied by Charge Detection Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Keifer, David Z.; Alexander, Andrew W.; Jarrold, Martin F.

    2017-03-01

    Spontaneous mass and charge losses from individual multi-megadalton ions have been observed with charge detection mass spectrometry (CDMS) by trapping single hepatitis B virus (HBV) capsids for 3 s. Gradual increases in the oscillation frequency of single ions in the ion trap are attributed mainly to mass loss (probably solvent, water, and/or salt). The total mass lost during the 3 s trapping period peaks at around 20 kDa for 4 MDa HBV T = 4 capsids. Discrete frequency drops punctuate the gradual increases in the oscillation frequencies. The drops are attributed to a sudden loss of charge. In most cases a single positive charge is lost along with some mass (on average around 1000 Da). Charge loss occurs for over 40% of the trapped ions. It usually occurs near the beginning of the trapping event, and it occurs preferentially in regions of the trap with strong electric fields, indicating that external electric fields promote charge loss. This process may contribute to the decrease in m/ z resolution that often occurs with megadalton ions.

  7. Drop short control of electrode gap

    DOEpatents

    Fisher, Robert W.; Maroone, James P.; Tipping, Donald W.; Zanner, Frank J.

    1986-01-01

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  8. Pendant-Drop Surface-Tension Measurement On Molten Metal

    NASA Technical Reports Server (NTRS)

    Man, Kin Fung; Thiessen, David

    1996-01-01

    Method of measuring surface tension of molten metal based on pendant-drop method implemented in quasi-containerless manner and augmented with digital processing of image data. Electrons bombard lower end of sample rod in vacuum, generating hanging drop of molten metal. Surface tension of drop computed from its shape. Technique minimizes effects of contamination.

  9. A highly accurate boundary integral equation method for surfactant-laden drops in 3D

    NASA Astrophysics Data System (ADS)

    Sorgentone, Chiara; Tornberg, Anna-Karin

    2018-05-01

    The presence of surfactants alters the dynamics of viscous drops immersed in an ambient viscous fluid. This is specifically true at small scales, such as in applications of droplet based microfluidics, where the interface dynamics become of increased importance. At such small scales, viscous forces dominate and inertial effects are often negligible. Considering Stokes flow, a numerical method based on a boundary integral formulation is presented for simulating 3D drops covered by an insoluble surfactant. The method is able to simulate drops with different viscosities and close interactions, automatically controlling the time step size and maintaining high accuracy also when substantial drop deformation appears. To achieve this, the drop surfaces as well as the surfactant concentration on each surface are represented by spherical harmonics expansions. A novel reparameterization method is introduced to ensure a high-quality representation of the drops also under deformation, specialized quadrature methods for singular and nearly singular integrals that appear in the formulation are evoked and the adaptive time stepping scheme for the coupled drop and surfactant evolution is designed with a preconditioned implicit treatment of the surfactant diffusion.

  10. A Comparison of Mechanical Parameters Between the Counter Movement Jump and Drop Jump in Biathletes

    PubMed Central

    Król, Henryk; Mynarski, Władysław

    2012-01-01

    The main objective of the study was to determine to what degree higher muscular activity, achieved by increased load in the extension phase (eccentric muscle action) of the vertical jump, affects the efficiency of the vertical jump. Sixteen elite biathletes participated in this investigation. The biathletes performed tests that consisted of five, single “maximal” vertical jumps (counter movement jump – CMJ) and five, single vertical jumps, in which the task was to touch a bar placed over the jumping biathletes (specific task counter movement jump – SCMJ). Then, they performed five, single drop jumps from an elevation of 0.4m (DJ). Ground reaction forces were registered using the KISTLER 9182C force platform. MVJ software was used for signal processing (Król, 1999) and enabling calculations for kinematic and kinetic parameters of the subject’s jump movements (on-line system). The results indicate that only height of the jump (h) and mean power (Pmean) during the takeoff are statistically significant. Both h and Pmean are higher in the DJ. The results of this study may indicate that elite biathletes are well adapted to eccentric work of the lower limbs, thus reaching greater values of power during the drop jump. These neuromuscular adaptive changes may allow for a more dynamic and efficient running technique. PMID:23487157

  11. Electrodialytic extraction of anionic pharmaceutical compounds from a single drop of whole blood using a supported liquid membrane.

    PubMed

    Imoto, Yurika; Nishiyama, Hiroka; Nakamura, Yukihide; Ohira, Shin-Ichi; Toda, Kei

    2018-05-01

    A method to introduce target analytes to a chromatograph from a single drop of whole blood was investigated for minimally invasive monitoring of anionic pharmaceuticals. In this work, salicylate and loxoprofen were examined as organic anions. A micro ion extractor (MIE) has been developed for extraction of inorganic trace anions from whole blood, but this device is not suitable for extraction of pharmaceuticals. In the present study, we improved and optimized the MIE device for organic anion extraction. Various supported liquid membranes were evaluated for use as the ion transfer membrane, with each membrane placed between a droplet sample (donor) and an acceptor solution. A supported liquid membrane of porous polypropylene impregnated with 1-butanol was selected. In addition, the methods for electric field creation and electrode contact were examined to improve the characteristics of the MIE device. The current and extraction time were also optimized. With the optimized method, salicylate and loxoprofen were successfully extracted from a single drop of whole blood. Changes in the concentrations of these pharmaceuticals in blood over time were monitored after administration. As only 25μL of whole blood was required for analysis, repeat measurements could be conducted to monitor changes in the concentrations. This MIE will be useful for monitoring pharmaceutical concentrations in blood. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator.

    PubMed

    Fujiwara, Mikio; Wakabayashi, Ryota; Sasaki, Masahide; Takeoka, Masahiro

    2017-02-20

    We report a wavelength division multiplexed time-bin entangled photon pair source in telecom wavelength using a 10 μm radius Si ring resonator. This compact resonator has two add ports and two drop ports. By pumping one add port by a continuous laser, we demonstrate an efficient generation of two-wavelength division multiplexed time-bin entangled photon pairs in the telecom C-band, which come out of one drop port, and are then split into the signal and idler photons via a wavelength filter. The resonator structure enhances four-wave mixing for pair generation. Moreover, we demonstrate the double-port pumping where two counter propagating pump lights are injected to generate entanglement from the two drop ports simultaneously. We successfully observe the highly entangled outputs from both two drop ports. Surprisingly, the count rate at each drop port is even increased by twice that of the single-port pumping. Possible mechanisms of this observation are discussed. Our technique allows for the efficient use of the Si ring resonator and widens its functionality for variety of applications.

  13. Single-limb drop landing biomechanics in active individuals with and without a history of anterior cruciate ligament reconstruction: A total support analysis.

    PubMed

    Pozzi, Federico; Di Stasi, Stephanie; Zeni, Joseph A; Barrios, Joaquin A

    2017-03-01

    The purpose of this study was to characterize the magnitude and distribution of the total support moment during single-limb drop landings in individuals after anterior cruciate ligament reconstruction compared to a control group. Twenty participants after reconstruction and twenty control participants matched on sex, limb dominance and activity level were recruited. Motion analysis was performed during a single-limb drop landing task. Total support moment was determined by summing the internal extensor moments at the ankle, knee, and hip. Each relative joint contribution to the total support moment was calculated by dividing each individual contribution by the total support moment. Data were captured during a landing interval that started at initial contact and ended at the lowest vertical position of the pelvis. Data were then time-normalized and indexed at 25, 50, 75, and 100% of the landing interval. No between-group differences for total support moment magnitude were observed. At both 75% and 100% of the landing, the relative contribution of the knee joint was lower in those with a history of surgery (p<0.001). At the same instances, the relative contribution to the total support moment by the hip joint was greater in those with a history of surgery (p=0.004). In active participants after anterior cruciate ligament reconstruction, relative contributions to anti-gravity support of the center of mass shifted from the knee to the hip joint during single-limb landing, which became evident towards the end of the landing interval. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Controlled Release of Multiple Therapeutics from Silicone Hydrogel Contact Lenses.

    PubMed

    White, Charles James; DiPasquale, Stephen Anthony; Byrne, Mark Edward

    2016-04-01

    The majority of contact lens wearers experience a significant level of ocular discomfort associated with lens wear, often within hours of wear, related to dry lenses, inflammation, protein adhesion to the lens surface, etc. Application of controlled drug release techniques has focused on the incorporation and/or release of a single comfort molecule from a lens including high molecular weight comfort agents or pharmaceutical agents. Previous studies have sought to mitigate the occurrence of only single propagators of discomfort. Clinical studies with eye drop solutions have shown that a mixture of diverse comfort agents selected to address multiple propagators of discomfort provide the greatest and longest lasting sensations of comfort for the patient. In this paper, multiple propagators of discomfort are addressed through the simultaneous release of four molecules from a novel contact lens to ensure high level of lens wear comfort. Silicone hydrogel contact lenses were engineered via molecular imprinting strategies to simultaneously release up to four template molecules including hydropropyl methylcellulose (HPMC), trehalose, ibuprofen, and prednisolone. By adjusting the ratio of functional monomer to comfort molecule, a high level of control was demonstrated over the release rate. HPMC, trehalose, ibuprofen, and prednisolone were released at therapeutically relevant concentrations with varying rates from a single lens. The results indicate use as daily disposable lenses for single day release or extended-wear lenses with multiple day release. Imprinted lenses are expected to lead to higher efficacy for patients compared to topical eye drops by improving compliance and mitigating concentration peaks and valleys associated with multiple drops.

  15. Controlled Release of Multiple Therapeutics from Silicone Hydrogel Contact Lenses

    PubMed Central

    White, Charles J.; DiPasquale, Stephen A.; Byrne, Mark E.

    2016-01-01

    Purpose The majority of contact lens wearers experience a significant level of ocular discomfort associated with lens wear, often within hours of wear, related to dry lenses, inflammation, protein adhesion to the lens surface, etc. Application of controlled drug release techniques has focused on the incorporation and/or release of a single comfort molecule from a lens including high molecular weight comfort agents or pharmaceutical agents. Previous studies have sought to mitigate the occurrence of only single propagators of discomfort. Clinical studies with eye drop solutions have shown that a mixture of diverse comfort agents selected to address multiple propagators of discomfort provide the greatest and longest lasting sensations of comfort for the patient. In this paper, multiple propagators of discomfort are addressed through the simultaneous release of four molecules from a novel contact lens to ensure high level of lens wear comfort. Methods Silicone hydrogel contact lenses were engineered via molecular imprinting strategies to simultaneously release up to four template molecules including hydropropyl methylcellulose (HPMC), trehalose, ibuprofen, and prednisolone. Results By adjusting the ratio of functional monomer to comfort molecule, a high level of control was demonstrated over the release rate. HPMC, trehalose, ibuprofen, and prednisolone were released at therapeutically relevant concentrations with varying rates from a single lens. Conclusions The results indicate use as daily disposable lenses for single day release or extended-wear lenses with multiple day release. Imprinted lenses are expected to lead to higher efficacy for patients compared to topical eye drops by improving compliance and mitigating concentration peaks and valleys associated with multiple drops. PMID:26945177

  16. A 4DCT imaging-based breathing lung model with relative hysteresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.

    To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for bothmore » models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. - Highlights: • We developed a breathing human lung CFD model based on 4D-dynamic CT images. • The 4DCT-based breathing lung model is able to capture lung relative hysteresis. • A new boundary condition for lung model based on one static CT image was proposed. • The difference between lung models based on 4D and static CT images was quantified.« less

  17. Drop-to-drop solvent microextraction coupled with gas chromatography/mass spectrometry for rapid determination of trimeprazine in urine and blood of rats: application to pharmacokinetic studies.

    PubMed

    Agrawal, Kavita; Wu, Hui-Fen

    2007-01-01

    A simple and rapid method based on drop-to-drop solvent microextraction (DDSME) coupled with gas chromatography/mass spectrometry (GC/MS) has been successfully applied for the pharmacokinetic studies of trimeprazine in 8 microL of urine and blood samples of rats. Several factors that influenced the extraction efficiency of DDSME, such as selection of organic solvent, extraction time, exposure volume of organic phase, addition of salt and pH, were optimized. Linearity was obtained over the concentration ranges of 0.2-10, 0.25-7.0 and 0.5-6.0 microg/mL with correlation coefficients of 0.998, 0.996 and 0.993 in deionized water, urine and blood samples of rats, respectively. The limits of detection (LODs) of trimeprazine were 0.05, 0.06 and 0.1 microg/mL in deionized water, urine and blood samples. The concentrations of trimeprazine obtained in urine and blood samples of rats were 0.21-1.25 and 2.72-0.22 microg/mL, respectively, after a single intravenous administration of this drug. The enrichment factors and LOD values obtained by DDSME coupled to GC/MS were compared with those of hollow fiber liquid-phase microextraction (HF-LPME) combined with GC/MS. We believe that this novel approach can be very useful in clinical application since only one microdrop of biological samples was required to perform the pharmacokinetic studies from rats, so the sample pretreatments for animal experiments can be very easy too. Copyright (c) 2007 John Wiley & Sons, Ltd.

  18. Channel add-drop filter based on dual photonic crystal cavities in push-pull mode.

    PubMed

    Poulton, Christopher V; Zeng, Xiaoge; Wade, Mark T; Popović, Miloš A

    2015-09-15

    We demonstrate an add-drop filter based on a dual photonic crystal nanobeam cavity system that emulates the operation of a traveling wave resonator, and, thus, provides separation of the through and drop port transmission from the input port. The device is on a 3×3  mm chip fabricated in an advanced microelectronics silicon-on-insulator complementary metal-oxide semiconductor (SOI CMOS) process (IBM 45 nm SOI) without any foundry process modifications. The filter shows 1 dB of insertion loss in the drop port with a 3 dB bandwidth of 64 GHz, and 16 dB extinction in the through port. To the best of our knowledge, this is the first implementation of a port-separating, add-drop filter based on standing wave cavities coupled to conventional waveguides, and demonstrates a performance that suggests potential for photonic crystal devices within optical immersion lithography-based advanced CMOS electronics-photonics integration.

  19. Interventions for the prevention of postoperative ear discharge after insertion of ventilation tubes (grommets) in children.

    PubMed

    Syed, Mohammed Iqbal; Suller, Sharon; Browning, George G; Akeroyd, Michael A

    2013-04-30

    Grommets are frequently inserted in children's ears for acute otitis media and otitis media with effusion. A common complication is postoperative ear discharge (otorrhoea). A wide range of treatments are used to prevent the discharge, but there is no consensus on whether or not intervention is necessary nor which is the most effective intervention. To assess the effectiveness of prophylactic interventions, both topical and systemic, in reducing the incidence of otorrhoea following the surgical insertion of grommets in children. We searched the Cochrane Ear, Nose and Throat Disorders Group Trials Register; the Cochrane Central Register of Controlled Trials (CENTRAL); PubMed; EMBASE; CINAHL; Web of Science; BIOSIS Previews; Cambridge Scientific Abstracts; ICTRP and additional sources for published and unpublished trials. The date of the search was 3 July 2012. We included randomised controlled trials (RCTs) that compared the efficacy of prophylactic interventions against placebo/control and/or with other prophylactic interventions for postoperative otorrhoea in children. Two review authors independently assessed study eligibility and risk of bias, and extracted data. The outcome data were dichotomous for all the included trials. We calculated individual and pooled risk ratios (RR) using the Mantel-Haenszel fixed-effect method. We also calculated the numbers needed to treat to benefit (NNTB). We found 15 eligible RCTs (2476 children, aged from four months to 17 years). We graded seven RCTs as being at a low risk of bias (n = 926 children) and for an eighth RCT we also graded two of the arms as being at a low risk of bias. We graded the other seven trials as being at a high risk of bias.For a single application at surgery, there was evidence from two low risk of bias trials that at two weeks postoperatively the risk of otorrhoea was reduced by multiple saline washouts (from 30% to 16%; RR 0.52, 95% confidence interval (CI) 0.27 to 1.00; NNTB 7; one RCT; 140 children) and antibiotic/steroid ear drops (from 9% to 1%; RR 0.13, 95% CI 0.03 to 0.57; NNTB 13; one RCT; 322 ears). A meta-analysis of two low risk of bias trials (222 ears) failed to find an effect of a single application of antibiotic/steroid ear drops at four to six weeks postoperatively.For a prolonged application of an intervention, there was evidence from four low risk of bias trials that the risk of otorrhoea was reduced two weeks postoperatively by antibiotic ear drops (from 15% to 8%; RR 0.54, 95% CI 0.30 to 0.97; NNTB 15; one RCT; 372 children), antibiotic/steroid ear drops (from 39% to 5%; RR 0.13, 95% CI 0.05 to 0.31; NNTB 3; one RCT; 200 children), aminoglycoside/steroid ear drops (from 15% to 5%; RR 0.37, 95% CI 0.18 to 0.74; NNTB 11; one RCT; 356 children) or oral antibacterial agents/steroids (from 39% to 5%; RR 0.13, 95% CI 0.03 to 0.51; NNTB 3; one RCT; 77 children).Only one trial assessed the secondary outcome of ototoxicity, but no effect was found. There were no trials that assessed quality of life. Our review found that each of the following were effective at reducing the rate of otorrhoea up to two weeks following surgery: (1) multiple saline washouts at surgery, (2) a single application of topical antibiotic/steroid drops at surgery, (3) a prolonged application of topical drops (namely antibiotic ear drops, antibiotic/steroid eardrops or aminoglycoside/steroid ear drops) and (4) a prolonged application of oral antibacterial agents/steroids. However, the rate of otorrhoea between RCTs varied greatly and the higher the rates of otorrhoea within a RCT, the smaller the NNTB for therapy.We conclude that if a surgeon has a high rate of postoperative otorrhoea in children then either saline irrigation or antibiotic ear drops at the time of surgery would significantly reduce that rate. If topical drops are chosen, it is suggested that to reduce the cost and potential for ototoxic damage this be a single application at the time of surgery and not prolonged thereafter.

  20. Comparison of hemagglutination inhibition test and ELISA in quantification of antibodies to egg drop syndrome virus.

    PubMed

    Raj, G Dhinakar; Ratnapraba, S; Matheswaran, K; Nachimuthu, K

    2004-01-01

    A single-serum dilution ELISA for egg drop syndrome (EDS) virus-specific antibodies was developed. In testing 425 chicken sera it was found to have a 93.6% sensitivity and 98.7% specificity relative to a hemagglutination inhibition (HI) test. The correlation coefficient for ELISA and HI titers was 0.793. The ELISA was efficacious in quantification of both vaccinal and infection antibodies and could routinely be used for screening large numbers of field sera.

  1. Comment on "Flexible Asymmetric Supercapacitors Based on Nitrogen-Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates".

    PubMed

    Vongehr, Sascha

    2017-05-22

    It is argued that the main claims of "Flexible Asymmetric Supercapacitors Based on Nitrogen-Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates" are strongly exaggerated. By selecting first a subregion (ΔV) of the total voltage drop, the capacitance (C ΔV ) is inflated by 30 %. Then, by selecting different regions for different properties and using different ΔV values in different terms of a single expression for the energy density (E ΔV ), the value is doubled. A bending angle of only 45° is instead claimed to be 180°. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ribavirin has a Demonstrable Effect on Crimean-Congo Hemorrhagic Fever Viral Populations and Viral Load during Patient Treatment.

    PubMed

    Espy, Nicole; Pérez-Sautu, Unai; Ramírez de Arellano, Eva; Negredo, Anabel; Wiley, Michael R; Bavari, Sina; Díaz Menendez, Marta; Paz Sánchez-Seco, María; Palacios, Gustavo

    2018-03-23

    The use of ribavirin to treat infections of Crimean-Congo Hemorrhagic Fever virus (CCHFV) has been controversial based on uncertainties on its antiviral efficacy in clinical case studies. We studied the effect of ribavirin treatment on viral populations in a recent case by deep sequencing plasma samples taken from a CCHFV-infected patient before, during, and after a five-day regimen of ribavirin. CCHFV viral load dropped during ribavirin treatment and subclonal diversity (transitions) and indels increased in viral genomes during treatment. Although the results are based on a single case, these data demonstrate the mutagenic effect of ribavirin on CCHFV in vivo. (Word Count: 100).

  3. Young Athletes With Quadriceps Femoris Strength Asymmetry at Return to Sport After Anterior Cruciate Ligament Reconstruction Demonstrate Asymmetric Single-Leg Drop-Landing Mechanics.

    PubMed

    Ithurburn, Matthew P; Paterno, Mark V; Ford, Kevin R; Hewett, Timothy E; Schmitt, Laura C

    2015-11-01

    Young athletes who have had anterior cruciate ligament (ACL) reconstruction demonstrate suboptimal rates of return to sport, high rates of second ACL injuries, and persistent movement asymmetries. Therefore, the influence of musculoskeletal impairments on movement mechanics in this population needs to be further evaluated. The primary hypothesis was that among young athletes who have had ACL reconstruction, those with greater quadriceps strength asymmetry would demonstrate altered single-leg drop-landing mechanics at return to sport compared with individuals with more symmetric quadriceps strength and also compared with healthy controls (ie, those with no ACL reconstruction). A second hypothesis was that quadriceps strength symmetry would predict single-leg drop-landing symmetry in individuals who have undergone ACL reconstruction. Controlled laboratory study. The study entailed a total of 103 participants (age, 17.4 years) at the time of return to sport after ACL reconstruction and 47 control participants (age, 17.0 years). The quadriceps index (QI) was calculated for isometric quadriceps strength, which was then used to divide the ACL reconstruction participants into high-quadriceps (QI ≥90%; n = 52) and low-quadriceps (QI <85%; n = 41) subgroups. Biomechanical data were collected by use of 3-dimensional motion analysis during a single-leg drop-landing task. The LSI was calculated for kinematic and kinetic sagittal-plane variables of interest during landing. Group differences were compared by use of 1-way analysis of variance and linear regression analyses (α < .05). Both the low- and high-quadriceps groups demonstrated greater limb asymmetry during landing compared with the control group in knee flexion excursion (mean LSI ± SD: low quadriceps, 85.8% ± 15.5% [P < .001]; high quadriceps, 94.2% ± 15.6% [P = .019]; control, 102.7% ± 14.1%), peak trunk flexion angle (low quadriceps, 129.2% ± 36.6% [P < .001]; high quadriceps, 110.5% ± 22.6% [P = .03]; control, 95.5% ± 26.2%), and peak knee extension moment (low quadriceps, 79.5% ± 25.2% [P < .001]; high quadriceps, 89.9% ± 19.8% [P = .005]; control, 102.2% ± 10.9%). Compared with the high-quadriceps group, the low-quadriceps group also demonstrated greater asymmetry during landing in knee flexion excursion (P = .026), peak trunk flexion angle (P = .006), and peak knee extension moment (P = .034). In the ACL reconstruction group, quadriceps strength symmetry predicted symmetry in knee flexion excursion, peak trunk flexion, and peak knee extension moment (all P < .001) and predicted symmetry in peak trunk flexion angle (P < .001) after controlling for graft type, knee-related pain, function with activities of daily living, and sport function. At the time of return to sport, athletes who had undergone ACL reconstruction, including those in both the high- and low-quadriceps groups, demonstrated asymmetry during a single-leg drop-landing task compared with controls. Compensations included increased trunk flexion, decreased knee flexion excursion, and decreased knee extension moments on the involved limb. In addition, individuals in the low-quadriceps group demonstrated greater movement asymmetry compared with individuals in the high-quadriceps group. Restoration of symmetric quadriceps strength after ACL reconstruction is associated with more symmetric mechanics during a single-leg drop-landing movement. However, this appears to be multifactorial, as the high-quadriceps group also demonstrated landing asymmetries. Restoration of symmetric quadriceps strength may improve postoperative athletic participation; however, future study is warranted. © 2015 The Author(s).

  4. Is Drop-Out from University Dependent on National Culture and Policy? The Case of Denmark

    ERIC Educational Resources Information Center

    Troelsen, Rie; Laursen, Per F.

    2014-01-01

    National cultures are known to influence educational institutions and practices in many ways. It therefore seems reasonable to assume that drop-out from university is also influenced by differences in national cultures. In this article, we compare drop-out from Danish universities with drop-out from European universities. Based on Danish national…

  5. Dropping out from School. Policy Brief Number 8

    ERIC Educational Resources Information Center

    Hunt, Frances

    2009-01-01

    While initial access to education is increasing in many countries, drop out rates continue to be high. This seriously affects MDG and EFA goals around educational access. This briefing paper looks at the issue of dropping out from school. It is based on the CREATE Pathways to Access Research Monograph, "Dropping out from school: a cross…

  6. Relativistic Brueckner-Hartree-Fock theory for neutron drops

    NASA Astrophysics Data System (ADS)

    Shen, Shihang; Liang, Haozhao; Meng, Jie; Ring, Peter; Zhang, Shuangquan

    2018-05-01

    Neutron drops confined in an external field are studied in the framework of relativistic Brueckner-Hartree-Fock theory using the bare nucleon-nucleon interaction. The ground-state energies and radii of neutron drops with even numbers from N =4 to N =50 are calculated and compared with results obtained from other nonrelativistic ab initio calculations and from relativistic density functional theory. Special attention has been paid to the magic numbers and to the subshell closures. The single-particle energies are investigated and the monopole effect of the tensor force on the evolutions of the spin-orbit and the pseudospin-orbit splittings is discussed. The results provide interesting insights into neutron-rich systems and can form an important guide for future density functionals.

  7. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter.

    PubMed

    Schmid, Lothar; Weitz, David A; Franke, Thomas

    2014-10-07

    We describe a versatile microfluidic fluorescence-activated cell sorter that uses acoustic actuation to sort cells or drops at ultra-high rates. Our acoustic sorter combines the advantages of traditional fluorescence-activated cell (FACS) and droplet sorting (FADS) and is applicable for a multitude of objects. We sort aqueous droplets, at rates as high as several kHz, into two or even more outlet channels. We can also sort cells directly from the medium without prior encapsulation into drops; we demonstrate this by sorting fluorescently labeled mouse melanoma cells in a single phase fluid. Our acoustic microfluidic FACS is compatible with standard cell sorting cytometers, yet, at the same time, enables a rich variety of more sophisticated applications.

  8. Physical phenomena in containerless glass processing

    NASA Technical Reports Server (NTRS)

    Subramanian, R. Shankar; Cole, Robert

    1988-01-01

    Flight experiments are planned on drops containing bubbles. The experiments involve stimulating the drop via non-uniform heating and rotation. The resulting trajectories of the bubbles as well as the shapes of the drops and bubble will be videotaped and analyzed later frame-by-frame on the ground. Supporting ground based experiments are planned in the area of surface tension driven motion of bubbles, the behavior of compound drops settling in an immiscible liquid and the shapes and trajectories of large bubbles and drops in a rotating liquid. Theoretical efforts will be directed at thermocapillary migration of drops and bubbles, surfactant effects on such migration, and the behavior of compound drops.

  9. Ionic liquid-based single-drop microextraction followed by liquid chromatography-ultraviolet spectrophotometry detection to determine typical UV filters in surface water samples.

    PubMed

    Vidal, Lorena; Chisvert, Alberto; Canals, Antonio; Salvador, Amparo

    2010-04-15

    A user-friendly and inexpensive ionic liquid-based single-drop microextraction (IL-SDME) procedure has been developed to preconcentrate trace amounts of six typical UV filters extensively used in cosmetic products (i.e., 2-hydroxy-4-methoxybenzophenone, isoamyl 4-methoxycinnamate, 3-(4'-methylbenzylidene)camphor, 2-ethylhexyl 2-cyano-3,3-diphenylacrylate, 2-ethylhexyl 4-dimethylaminobenzoate and 2-ethylhexyl 4-methoxycinnamate) from surface water samples prior to analysis by liquid chromatography-ultraviolet spectrophotometry detection (LC-UV). A two-stage multivariate optimization approach was developed by means of a Plackett-Burman design for screening and selecting the significant variables involved in the SDME procedure, which were later optimized by means of a circumscribed central composite design. The studied variables were drop volume, sample volume, agitation speed, ionic strength, extraction time and ethanol quantity. Owing to particularities, ionic liquid type and pH of the sample were optimized separately. Under optimized experimental conditions (i.e., 10 microL of 1-hexyl-3-methylimidazolium hexafluorophosphate, 20 mL of sample containing 1% (v/v) ethanol and NaCl free adjusted to pH 2, 37 min extraction time and 1300 rpm agitation speed) enrichment factors up to ca. 100-fold were obtained depending on the target analyte. The method gave good levels of repeatability with relative standard deviations varying between 2.8 and 8.8% (n=6). Limits of detection were found in the low microg L(-1) range, varying between 0.06 and 3.0 microg L(-1) depending on the target analyte. Recovery studies from different types of surface water samples collected during the winter period, which were analysed and confirmed free of all target analytes, ranged between 92 and 115%, showing that the matrix had a negligible effect upon extraction. Finally, the proposed method was applied to the analysis of different water samples (taken from two beaches, two swimming pools and a river) collected during the summer period. (c) 2009 Elsevier B.V. All rights reserved.

  10. Drop Tower Workshop

    NASA Technical Reports Server (NTRS)

    Urban, David

    2013-01-01

    Ground based microgravity facilities are an important proving ground for space experiments, ground-based research and space hardware risk mitigation. An overview of existing platforms will be discussed with an emphasis on drop tower capabilities. The potential for extension to partial gravity conditions will be discussed. Input will be solicited from attendees for their potential to use drop towers in the future and the need for enhanced capabilities (e.g. partial gravity)

  11. Method and apparatus for controlling electrode gap during vacuum consumable arc remelting

    DOEpatents

    Fisher, R.W.; Maroone, J.P.; Tipping, D.W.; Zanner, F.J.

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  12. Phase segregation due to simultaneous migration and coalescence

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.; Wang, Hua; Hawker, Debra

    1994-01-01

    Ground-based modeling and experiments have been performed on the interaction and coalescence of drops leading to macroscopic phase separation. The focus has been on gravity-induced motion, with research also initiated on thermocapillary motion of drops. The drop size distribution initially shifts toward larger drops with time due to coalescence, and then a back towards smaller drops due to the larger preferentially settling out. As a consequence, the phase separation rate initially increases with time and then decreases.

  13. Dynamic postural stability for double-leg drop landing.

    PubMed

    Niu, Wenxin; Zhang, Ming; Fan, Yubo; Zhao, Qinping

    2013-01-01

    Dynamic postural stability has been widely studied for single-leg landing, but seldom considered for double-leg landing. This study aimed to evaluate the dynamic postural stability and the influence mechanism of muscle activities during double-leg drop landing. Eight recreationally active males and eight recreationally active females participated in this study and dropped individually from three heights (0.32 m, 0.52 m, and 0.72 m). Ground reaction force was recorded to calculate the time to stabilisation. Electromyographic activities were recorded for selected lower-extremity muscles. A multivariate analysis of variance was carried out and no significant influence was found in time to stabilisation between genders or limb laterals (P > 0.05). With increasing drop height, time to stabilisation decreased significantly in two horizontal directions and the lower-extremity muscle activities were enhanced. Vertical time to stabilisation was not significantly influenced by drop height. Dynamic postural stability improved by neuromuscular change more than that required due to the increase of drop height. Double-leg landing on level ground is a stable movement, and the body would often be injured before dynamic postural stability is impaired. It is understandable to protect tissues from mechanical injuries by the sacrifice of certain dynamic postural stability in the design of protective devices or athlete training.

  14. Effect of soil moisture content on the splash phenomenon reproducibility.

    PubMed

    Ryżak, Magdalena; Bieganowski, Andrzej; Polakowski, Cezary

    2015-01-01

    One of the methods for testing splash (the first phase of water erosion) may be an analysis of photos taken using so-called high-speed cameras. The aim of this study was to determine the reproducibility of measurements using a single drop splash of simulated precipitation. The height from which the drops fell resulted in a splash of 1.5 m. Tests were carried out using two types of soil: Eutric Cambisol (loamy silt) and Orthic Luvisol (sandy loam); three initial pressure heads were applied equal to 16 kPa, 3.1 kPa, and 0.1 kPa. Images for one, five, and 10 drops were recorded at a rate of 2000 frames per second. It was found that (i) the dispersion of soil caused by the striking of the 1st drop was significantly different from the splash impact caused by subsequent drops; (ii) with every drop, the splash phenomenon proceeded more reproducibly, that is, the number of particles of soil and/or water that splashed were increasingly close to each other; (iii) the number of particles that were detached during the splash were strongly correlated with its surface area; and (iv) the higher the water film was on the surface the smaller the width of the crown was.

  15. Effect of Soil Moisture Content on the Splash Phenomenon Reproducibility

    PubMed Central

    Ryżak, Magdalena; Bieganowski, Andrzej; Polakowski, Cezary

    2015-01-01

    One of the methods for testing splash (the first phase of water erosion) may be an analysis of photos taken using so-called high-speed cameras. The aim of this study was to determine the reproducibility of measurements using a single drop splash of simulated precipitation. The height from which the drops fell resulted in a splash of 1.5 m. Tests were carried out using two types of soil: Eutric Cambisol (loamy silt) and Orthic Luvisol (sandy loam); three initial pressure heads were applied equal to 16 kPa, 3.1 kPa, and 0.1 kPa. Images for one, five, and 10 drops were recorded at a rate of 2000 frames per second. It was found that (i) the dispersion of soil caused by the striking of the 1st drop was significantly different from the splash impact caused by subsequent drops; (ii) with every drop, the splash phenomenon proceeded more reproducibly, that is, the number of particles of soil and/or water that splashed were increasingly close to each other; (iii) the number of particles that were detached during the splash were strongly correlated with its surface area; and (iv) the higher the water film was on the surface the smaller the width of the crown was. PMID:25785859

  16. Voltage Drop in a Ferroelectric Single Layer Capacitor by Retarded Domain Nucleation.

    PubMed

    Kim, Yu Jin; Park, Hyeon Woo; Hyun, Seung Dam; Kim, Han Joon; Kim, Keum Do; Lee, Young Hwan; Moon, Taehwan; Lee, Yong Bin; Park, Min Hyuk; Hwang, Cheol Seong

    2017-12-13

    Ferroelectric (FE) capacitor is a critical electric component in microelectronic devices. Among many of its intriguing properties, the recent finding of voltage drop (V-drop) across the FE capacitor while the positive charges flow in is especially eye-catching. This finding was claimed to be direct evidence that the FE capacitor is in negative capacitance (NC) state, which must be useful for (infinitely) high capacitance and ultralow voltage operation of field-effect transistors. Nonetheless, the NC state corresponds to the maximum energy state of the FE material, so it has been widely accepted in the community that the material alleviates that state by forming ferroelectric domains. This work reports a similar V-drop effect from the 150 nm thick epitaxial BaTiO 3 ferroelectric thin film, but the interpretation was completely disparate; the V-drop can be precisely simulated by the reverse domain nucleation and propagation of which charge effect cannot be fully compensated for by the supplied charge from the external charge source. The disappearance of the V-drop effect was also observed by repeated FE switching only up to 10 cycles, which can hardly be explained by the involvement of the NC effect. The retained reverse domain nuclei even after the subsequent poling can explain such behavior.

  17. Topical drug delivery to the eye: dorzolamide.

    PubMed

    Loftsson, Thorsteinn; Jansook, Phatsawee; Stefánsson, Einar

    2012-11-01

    Topically applied carbonic anhydrase inhibitors (CAIs) in eye drop solutions are commonly used to treat glaucoma. However, local eye irritation and multiple daily administrations may hamper their clinical usefulness. Aqueous eye drop formulations that improve their topical bioavailability and reduce their eye irritation can improve their clinical efficacy. Earlier studies showed that dorzolamide and closely related CAIs are more effectively delivered into the eye from acidic eye drop solutions than from comparable neutral solutions. Consequently, dorzolamide was marketed as an aqueous pH 5.6 eye drop solution (Trusopt(®) , Merck). Later, it was shown that increasing the pH of the eye drops from pH 5.6 to physiologic pH significantly reduced their local irritation. Earlier attempts to use cyclodextrins (CDs) as ocular penetration enhancers in dorzolamide eye drop solutions failed since; although the CDs were able to enhance the aqueous solubility of dorzolamide, increasing the pH from 5.6 to physiologic pH reduced the ability of the drug to permeate into the eye. Later, it was discovered that formulating the drug as aqueous dorzolamide/γCD eye drop microparticle suspension resulted in significant bioavailability enhancement. The solid dorzolamide/γCD microparticles are mucoadhesive and release dorzolamide into the aqueous tear fluid for extended time period. Consequently, sustained high dorzolamide concentrations in aqueous humour and various eye tissues were observed after single administration of the aqueous dorzolamide/γCD eye drop microsuspension. The microsuspension has a potential of being developed into a once-a-day eye drop product. This article reviews the physicochemical properties of dorzolamide, its permeation characteristics and topical bioavailability. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  18. Direct Numerical Simulation of Transitional Multicomponent-Species Gaseous and Multicomponent-Liquid Drop-Laden Mixing

    NASA Technical Reports Server (NTRS)

    Selle, Laurent C.; Bellan, Josette

    2006-01-01

    A model of multicomponent-liquid (MC-liquid) drop evaporation in a three-dimensional mixing layer is here exercised at larger Reynolds numbers than in a previous study, and transitional states are obtained. The gas phase is followed in an Eulerian frame and the multitude of drops is described in a Lagrangian frame. Complete coupling between phases is included with source terms in the gas conservation equations accounting for the drop/flow interaction in terms of drop drag, drop heating and species evaporation. The liquid composition, initially specified as a single-Gamma (SG) probability distribution function (PDF) depending on the molar mass is allowed to evolve into a linear combination of two SGPDFs, called the double-Gamma PDF (DGPDF). The compositions of liquid and vapor emanating from the drops are calculated through four moments of the DGPDFs, which are drop-specific and location-specific, respectively. The mixing layer is initially excited to promote the double pairing of its four initial spanwise vortices into an ultimate vortex in which small scales proliferate. Simulations are performed for four liquids of different compositions and the effect of the initial mass loading and initial free-stream gas temperature are explored. For reference, Simulations are also performed for gaseous multicomponent mixing layers for which the effect of Reynolds number is investigated. The results encompass examination of the global layer characteristics, flow visualizations and homogeneous-plane statistics at transition. Comparisons are performed with previous pre-transitional MC-liquid simulations and with transitional single-component (SC) liquid studies. It is found that MCC flows at transition, the classical energy cascade is of similar strength, but that the smallest scales contain orders of magnitude less energy than SC flows, which is confirmed by the larger viscous dissipation in the former case. Contrasting to pre-transitional MC flows, the vorticity and drop organization depend on the initial gas temperature, this being due to the drop/turbulence coupling. The vapor-composition mean molar mass and standard deviation distributions strongly correlate with the initial liquid-composition PDF; such a correlation only exists for the magnitude of the mean but not for that of the standard deviation. Unlike in pre-transitional situations, regions of large composition standard deviation no longer necessarily coincide with regions of large mean molar mass. The kinetic energy, rotational and composition characteristics, and dissipation are liquid specific and the variation among liquids is amplified with increasing free-stream gas temperature. Eulerian and Lagrangian statistics of gas-phase quantities show that the different. Observation framework may affect the perception of the flow characteristics. The gas composition, of which the first four moments are calculated, is shown to be close to, but distinct from a SGPDF. The PDF of the scalar dissipation rate is calculated for drop-laden layers and is shown to depart more significantly from the typically assumed Gaussian in gaseous flows than experimentally measured gaseous scalar dissipation rates, this being attributed to the increased heterogeneity due to drop/flow interactions.

  19. An unusual metallic behavior in a Ag4SSe single crystal

    NASA Astrophysics Data System (ADS)

    Matteppanavar, Shidaling; Bui, Nguyen Hai An; van Smaalen, Sander; Thamizhavel, A.; Ramakrishnan, S.

    2018-04-01

    We report the magnetic susceptibility, resistivity and heat capacity measurements on high quality single crystalline tetra silver sulphoselenide (Ag4SSe). The magnetic susceptibility and resistivity measurements show anomalies around 260 K. The large diamagnetic drop with hysteresis at the transition implies a first order transition. Such a diamagnetic drop cannot be ascribed to the formation of charge density wave (CDW) since the temperature dependence of the resistivity shows no upturn at this transition. Infact the resistivity is decreasing with decreasing temperature, indicating a metallic behavior. However, unlike normal metals, the resistivity is almost temperature independent in the temperature range from 4-180 K. Usually, when one observes a diamagnetic transition, it is assumed to be due to a drop in the density of states at the Fermi level which leads to the decrease in the Pauli paramagnetic susceptibility. Such a decrease in the density of states often results in an increase in resistivity unless mobility of the charge carriers changes significantly. Hence, we believe that in Ag4SSe, the structural transition causes an unusual Fermi surface reconstruction which in turn leads to a strange metallic behavior at low temperatures.

  20. Maximizing the performance of a multiple-stage variable-throat venturi scrubber for particle collection

    NASA Astrophysics Data System (ADS)

    Muir, D. M.; Akeredolu, F.

    The high collection efficiencies that are required nowadays to meet the stricter pollution control standards necessitate the use of high-energy scrubbers, such as the venturi scrubber, for the arrestment of fine particulate matter from exhaust gas streams. To achieve more energy-efficient particle collection, several venturi stages may be used in series. This paper is principally a theoretical investigation of the performance of a multiple-stage venturi scrubber, the main objective of the study being to establish the best venturi design configuration for any given set of operating conditions. A mathematical model is used to predict collection efficiency vs pressure drop relationships for particle sizes in the range 0.2-5.0 μm for one-, two-, three- and four-stage scrubbers. The theoretical predictions are borne out qualitatively by experimental work. The paper shows that the three-stage venturi produces the highest collection efficiencies over the normal operating range except for the collection of very fine particles at low pressure drops, when the single-stage venturi is best. The significant improvement in performance achieved by the three-stage venturi when compared with conventional single-stage operation increases as both the particle size and system pressure drop increase.

  1. Direct numerical simulations of fluid flow, heat transfer and phase changes

    NASA Technical Reports Server (NTRS)

    Juric, D.; Tryggvason, G.; Han, J.

    1997-01-01

    Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.

  2. Universal slow dynamics in granular solids

    PubMed

    TenCate; Smith; Guyer

    2000-07-31

    Experimental properties of a new form of creep dynamics are reported, as manifest in a variety of sandstones, limestone, and concrete. The creep is a recovery behavior, following the sharp drop in elastic modulus induced either by nonlinear acoustic straining or rapid temperature change. The extent of modulus recovery is universally proportional to the logarithm of the time after source discontinuation in all samples studied, over a scaling regime covering at least 10(3) s. Comparison of acoustically and thermally induced creep suggests a single origin based on internal strain, which breaks the symmetry of the inducing source.

  3. Polymer based organic solar cells using ink-jet printed active layers

    NASA Astrophysics Data System (ADS)

    Aernouts, T.; Aleksandrov, T.; Girotto, C.; Genoe, J.; Poortmans, J.

    2008-01-01

    Ink-jet printing is used to deposit polymer:fullerene blends suitable as active layer for organic solar cells. We show that merging of separately deposited ink droplets into a continuous, pinhole-free organic thin film results from a balance between ink viscosity and surface wetting, whereas for certain of the studied solutions clear coffee drop effect occurs for single droplets; this can be minimized for larger printed areas, yielding smooth layers with minimal surface roughness. Resulting organic films are used as active layer for solar cells with power conversion efficiency of 1.4% under simulated AM1.5 solar illumination.

  4. Controls on valley spacing in landscapes subject to rapid base-level fall

    USGS Publications Warehouse

    McGuire, Luke; Pelletier, John D.

    2015-01-01

    What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage-network morphology in transient landscapes are relatively unknown. In this paper we exploit natural experiments in drainage network development in incised Plio-Quaternary alluvial fan surfaces in order to understand and quantify drainage network development in highly transient landscapes, i.e. initially unincised low-relief surfaces that experience a pulse of rapid base-level drop followed by relative base-level stasis. Parallel drainage networks formed on incised alluvial-fan surfaces tend to have a drainage spacing that is approximately proportional to the magnitude of the base-level drop. Numerical experiments suggest that this observed relationship between the magnitude of base-level drop and mean drainage spacing is the result of feedbacks among the depth of valley incision, mass wasting and nonlinear increases in the rate of colluvial sediment transport with slope gradient on steep valley side slopes that lead to increasingly wide valleys in cases of larger base-level drop. We identify a threshold magnitude of base-level drop above which side slopes lengthen sufficiently to promote increases in contributing area and fluvial incision rates that lead to branching and encourage drainage networks to transition from systems of first-order valleys to systems of higher-order, branching valleys. The headward growth of these branching tributaries prevents the development of adjacent, ephemeral drainages and promotes a higher mean valley spacing relative to cases in which tributaries do not form. Model results offer additional insights into the response of initially unincised landscapes to rapid base-level drop and provide a preliminary basis for understanding how varying amounts of base-level change influence valley network morphology.

  5. Improving Vortex Generators to Enhance the Performance of Air-Cooled Condensers in a Geothermal Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohar S. Sohal

    2005-09-01

    This report summarizes work at the Idaho National Laboratory to develop strategies to enhance air-side heat transfer in geothermal air-cooled condensers such that it should not significantly increase pressure drop and parasitic fan pumping power. The work was sponsored by the U.S. Department of Energy, NEDO (New Energy and Industrial Technology Development Organization) of Japan, Yokohama National University, and the Indian Institute of Technology, Kanpur, India. A combined experimental and numerical investigation was performed to investigate heat transfer enhancement techniques that may be applicable to largescale air-cooled condensers such as those used in geothermal power applications. A transient heat transfermore » visualization and measurement technique was employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements were obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that included four tube rows in a staggered array. Heat transfer and pressure drop measurements were also acquired in a separate multiple-tube row apparatus in the Single Blow Test Facility. In addition, a numerical modeling technique was developed to predict local and average heat transfer for these low-Reynolds number flows, with and without winglets. Representative experimental and numerical results were obtained that reveal quantitative details of local finsurface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. Heat transfer and pressure-drop results were obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500. The winglets were of triangular (delta) shape with a 1:2 or 1:3 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface heat transfer results indicate a significant level of heat transfer enhancement (in terms of Colburn j-factor) associated with deployment of the winglets with circular as well as oval tubes. In general, toe-in (common flow up) type winglets appear to have better performance than the toe-out (common flow down) type winglets. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. During the course of their independent research, all of the researchers have established that about 10 to 30% enhancement in Colburn j-factor is expected. However, actual increase in heat transfer rate from a heat exchanger employing finned tubes with winglets may be smaller, perhaps on the order of 2 to 5%. It is also concluded that for any specific application, more full-size experimentation is needed to optimize the winglet design for a specific heat exchanger application. If in place of a circular tube, an oval tube can be economically used in a bundle, it is expected that the pressure drop across the tube bundle with the application of vortex generators (winglets) will be similar to that in a conventional circular tube bundle. It is hoped that the results of this research will demonstrate the benefits of applying vortex generators (winglets) on the fins to improve the heat transfer from the air-side of the tube bundle.« less

  6. Yielding and deformation behavior of the single crystal nickel-base superalloy PWA 1480

    NASA Technical Reports Server (NTRS)

    Milligan, W. W., Jr.

    1986-01-01

    Interrupted tensile tests were conducted to fixed plastic strain levels in 100 ordered single crystals of the nickel based superalloy PWA 1480. Testing was done in the range of 20 to 1093 C, at strain rate of 0.5 and 50%/min. The yield strength was constant from 20 to 760 C, above which the strength dropped rapidly and became a stong function of strain rate. The high temperature data were represented very well by an Arrhenius type equation, which resulted in three distinct temperature regimes. The deformation substructures were grouped in the same three regimes, indicating that there was a fundamental relationship between the deformation mechanisms and activation energies. Models of the yielding process were considered, and it was found that no currently available model was fully applicable to this alloy. It was also demonstrated that the initial deformation mechanism (during yielding) was frequently different from that which would be inferred by examining specimens which were tested to failure.

  7. Effect of reservoir zones and hedging factor dynamism on reservoir adaptive capacity for climate change impacts

    NASA Astrophysics Data System (ADS)

    Adeloye, Adebayo J.; Soundharajan, Bankaru-Swamy

    2018-06-01

    When based on the zones of available water in storage, hedging has traditionally used a single hedged zone and a constant rationing ratio for constraining supply during droughts. Given the usual seasonality of reservoir inflows, it is also possible that hedging could feature multiple hedged zones and temporally varying rationing ratios but very few studies addressing this have been reported especially in relation to adaptation to projected climate change. This study developed and tested Genetic Algorithms (GA) optimised zone-based operating policies of various configurations using data for the Pong reservoir, Himachal Pradesh, India. The results show that hedging does lessen vulnerability, which dropped from ≥ 60 % without hedging to below 25 % with the single stage hedging. More complex hedging policies, e.g. two stage and/or temporally varying rationing ratios only produced marginal improvements in performance. All this shows that water hedging policies do not have to be overly complex to effectively offset reservoir vulnerability caused by water shortage resulting from e.g. projected climate change.

  8. LOX/Hydrogen Coaxial Injector Atomization Test Program

    NASA Technical Reports Server (NTRS)

    Zaller, M.

    1990-01-01

    Quantitative information about the atomization of injector sprays is needed to improve the accuracy of computational models that predict the performance and stability margin of liquid propellant rocket engines. To obtain this data, a facility for the study of spray atomization is being established at NASA-Lewis to determine the drop size and velocity distributions occurring in vaporizing liquid sprays at supercritical pressures. Hardware configuration and test conditions are selected to make the cold flow simulant testing correspond as closely as possible to conditions in liquid oxygen (LOX)/gaseous H2 rocket engines. Drop size correlations from the literature, developed for liquid/gas coaxial injector geometries, are used to make drop size predictions for LOX/H2 coaxial injectors. The mean drop size predictions for a single element coaxial injector range from 0.1 to 2000 microns, emphasizing the need for additional studies of the atomization process in LOX/H2 engines. Selection of cold flow simulants, measured techniques, and hardware for LOX/H2 atomization simulations are discussed.

  9. Jumping and trampolining of drops on hydrophobic surfaces, controlling energy transfer by timed electric actuation

    NASA Astrophysics Data System (ADS)

    Wang, Zhantao; Ende, Dirk Van Den; Pit, Arjen; Lagraauw, Rudy; Wijnperle, Daniel; Mugele, Frieder

    2017-11-01

    Electrowetting as a fast and efficient approach of manipulating droplet has found wide applications in microfluidics, and recently the potential of using electrowetting for 3-dimensional microfluidics was also demonstrated. Here the electrowetting-induced jumping of a single droplet on a superhydrophobic surface was studied in both air and ambient decane. The jumping height of the droplet was found to be not only voltage-dependent but also oscillating with the AC-pulse duration. We identify the electrowetting number as a crucial parameter in defining the resonant frequency of the droplet under actuation. Representing the drop by a simple oscillator, we establish a relation between the Eigen frequency of the drop and the optimum actuation time required for most efficient energy conversion. From a general perspective, our experiments illustrate a generic concept how timed actuation in combination with inertia can enhance the flexibility and efficiency of drop manipulation operations. Dutch Technology Foundation (STW) is acknowledged.

  10. An Analytic Tool to Investigate the Effect of Binder on the Sensitivity of HMX-Based Plastic Bonded Explosives in the Skid Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayden, D. W.

    This project will develop an analytical tool to calculate performance of HMX based PBXs in the skid test. The skid-test is used as a means to measure sensitivity for large charges in handling situations. Each series of skid tests requires dozens of drops of large billets. It is proposed that the reaction (or lack of one) of PBXs in the skid test is governed by the mechanical properties of the binder. If true, one might be able to develop an analytical tool to estimate skid test behavior for new PBX formulations. Others over the past 50 years have tried tomore » develop similar models. This project will research and summarize the works of others and couple the work of 3 into an analytical tool that can be run on a PC to calculate drop height of HMX based PBXs. Detonation due to dropping a billet is argued to be a dynamic thermal event. To avoid detonation, the heat created due to friction at impact, must be conducted into the charge or the target faster than the chemical kinetics can create additional energy. The methodology will involve numerically solving the Frank-Kamenetskii equation in one dimension. The analytical problem needs to be bounded in terms of how much heat is introduced to the billet and for how long. Assuming an inelastic collision with no rebound, the billet will be in contact with the target for a short duration determined by the equations of motion. For the purposes of the calculations, it will be assumed that if a detonation is to occur, it will transpire within that time. The surface temperature will be raised according to the friction created using the equations of motion of dropping the billet on a rigid surface. The study will connect the works of Charles Anderson, Alan Randolph, Larry Hatler, Alfonse Popolato, and Charles Mader into a single PC based analytic tool. Anderson's equations of motion will be used to calculate the temperature rise upon impact, the time this temperature is maintained (contact time) will be obtained from the work of Hatler et. al., and the reactive temperature rise will be obtained from Mader's work. Finally, the assessment of when a detonation occurs will be derived from Bowden and Yoffe's thermal explosion theory (hot spot).« less

  11. A new injury prevention programme for children's football--FIFA 11+ Kids--can improve motor performance: a cluster-randomised controlled trial.

    PubMed

    Rössler, R; Donath, L; Bizzini, M; Faude, O

    2016-01-01

    The present study evaluated the effects of a newly developed injury prevention programme for children's football ("FIFA 11+ Kids") on motor performance in 7-12-year-old children. We stratified 12 football teams (under-9/-11/-13 age categories) into intervention (INT, N = 56 players) and control groups (CON, N = 67). INT conducted the 15-min warm-up programme "FIFA 11+ Kids" twice a week for 10 weeks. CON followed a standard warm-up (sham treatment). Pre- and post-tests were conducted using: single leg stance; Y-balance test; drop and countermovement jump; standing long jump; 20-m sprint; agility run; slalom dribble; and wall volley test. We used magnitude-based inferences and linear mixed-effects models to analyse performance test results. We observed likely beneficial effects favouring INT in Y-balance (right leg; +3.2%; standardised mean difference (SMD) = 0.34; P = 0.58) and agility run (+3.6%; SMD = 0.45; P = 0.008). Possibly beneficial effects were found in Y-balance, drop jump reactive strength index, drop jump height, countermovement jump, standing long jump, slalom dribble and wall volley test. At least possibly beneficial improvements in favour of "FIFA 11+ Kids" were observed in nearly all parameters. Most effects were small, but slight improvements in motor performance may potentially contribute to a reduction of injury risk.

  12. Single-cell forensic short tandem repeat typing within microfluidic droplets.

    PubMed

    Geng, Tao; Novak, Richard; Mathies, Richard A

    2014-01-07

    A short tandem repeat (STR) typing method is developed for forensic identification of individual cells. In our strategy, monodisperse 1.5 nL agarose-in-oil droplets are produced with a high frequency using a microfluidic droplet generator. Statistically dilute single cells, along with primer-functionalized microbeads, are randomly compartmentalized in the droplets. Massively parallel single-cell droplet polymerase chain reaction (PCR) is performed to transfer replicas of desired STR targets from the single-cell genomic DNA onto the coencapsulated microbeads. These DNA-conjugated beads are subsequently harvested and reamplified under statistically dilute conditions for conventional capillary electrophoresis (CE) STR fragment size analysis. The 9-plex STR profiles of single cells from both pure and mixed populations of GM09947 and GM09948 human lymphoid cells show that all alleles are correctly called and allelic drop-in/drop-out is not observed. The cell mixture study exhibits a good linear relationship between the observed and input cell ratios in the range of 1:1 to 10:1. Additionally, the STR profile of GM09947 cells could be deduced even in the presence of a high concentration of cell-free contaminating 9948 genomic DNA. Our method will be valuable for the STR analysis of samples containing mixtures of cells/DNA from multiple contributors and for low-concentration samples.

  13. Ascorbic Acid

    MedlinePlus

    C-500® Chewable Tablet ... C-Time® ... Centrum® Singles-Vitamin C ... Sunkist® Vitamin C ... Vicks® Vitamin C Drops ... a disease caused by a lack of vitamin C in the body.This medication is sometimes prescribed ...

  14. LCP crystallization and X-ray diffraction analysis of VcmN, a MATE transporter from Vibrio cholerae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusakizako, Tsukasa; Tanaka, Yoshiki; Hipolito, Christopher J.

    A V. cholerae MATE transporter was crystallized using the lipidic cubic phase (LCP) method. X-ray diffraction data sets were collected from single crystals obtained in a sandwich plate and a sitting-drop plate to resolutions of 2.5 and 2.2 Å, respectively. Multidrug and toxic compound extrusion (MATE) transporters, one of the multidrug exporter families, efflux xenobiotics towards the extracellular side of the membrane. Since MATE transporters expressed in bacterial pathogens contribute to multidrug resistance, they are important therapeutic targets. Here, a MATE-transporter homologue from Vibrio cholerae, VcmN, was overexpressed in Escherichia coli, purified and crystallized in lipidic cubic phase (LCP). X-raymore » diffraction data were collected to 2.5 Å resolution from a single crystal obtained in a sandwich plate. The crystal belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 52.3, b = 93.7, c = 100.2 Å. As a result of further LCP crystallization trials, crystals of larger size were obtained using sitting-drop plates. X-ray diffraction data were collected to 2.2 Å resolution from a single crystal obtained in a sitting-drop plate. The crystal belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 61.9, b = 91.8, c = 100.9 Å. The present work provides valuable insights into the atomic resolution structure determination of membrane transporters.« less

  15. Distribution of stress drop, stiffness, and fracture energy over earthquake rupture zones

    USGS Publications Warehouse

    Fletcher, Joe B.; McGarr, A.

    2006-01-01

    Using information provided by slip models and the methodology of McGarr and Fletcher (2002), we map static stress drop, stiffness (k = ????/u, where ???? is static stress drop and u is slip), and fracture energy over the slip surface to investigate the earthquake rupture process and energy budget. For the 1994 M6.7 Northridge, 1992 M7.3 Landers, and 1995 M6.9 Kobe earthquakes, the distributions of static stress drop show strong heterogeneity, emphasizing the importance of asperities in the rupture process. Average values of static stress drop are 17, 11, and 4 Mpa for Northridge, Landers, and Kobe, respectively. These values are substantially higher than estimates based on simple crack models, suggesting that the failure process involves the rupture of asperities within the larger fault zone. Stress drop as a function of depth for the Northridge and Landers earthquakes suggests that stress drops are limited by crustal strength. For these two earthquakes, regions of high slip are surrounded by high values of stiffness. Particularly for the Northridge earthquake, the prominent patch of high slip in the central part of the fault is bordered by a ring of high stiffness and is consistent with expectations based on the failure of an asperity loaded at its edge due to exterior slip. Stiffness within an asperity is inversely related to its dimensions. Estimates of fracture energy, based on static stress drop, slip, and rupture speed, were used to investigate the nature of slip weakening at four locations near the hypocenter of the Kobe earthquake for comparison with independent results based on a dynamic model of this earthquake. One subfault updip and to the NE of the hypocenter has a fracture energy of 1.1 MJ/m2 and a slip-weakening distance, Dc, of 0.66 m. Right triangles, whose base and height are Dc and the dynamic stress drop, respectively, approximately overlie the slip-dependent stress given by Ide and Takeo (1997) for the same locations near the hypocenter. The total fracture energy for the Kobe earthquake, 3.7 ?? 1014 J, is about the same as the seismic energy (Ea = 3.2 ?? 1014 J.

  16. Use of Drop-In Clinic Versus Appointment-Based Care for LGBT Youth: Influences on the Likelihood to Access Different Health-Care Structures.

    PubMed

    Newman, Bernie S; Passidomo, Kim; Gormley, Kate; Manley, Alecia

    2014-06-01

    The structure of health-care service delivery can address barriers that make it difficult for lesbian, gay, bisexual, and transgender (LGBT) adolescents to use health services. This study explores the differences among youth who access care in one of two service delivery structures in an LGBT health-care center: the drop-in clinic or the traditional appointment-based model. Analysis of 578 records of LGBT and straight youth (aged 14-24) who accessed health care either through a drop-in clinic or appointment-based care within the first year of offering the drop-in clinic reveals patterns of use when both models are available. We studied demographic variables previously shown to be associated with general health-care access to determine how each correlated with a tendency to use the drop-in structure versus routine appointments. Once the covariates were identified, we conducted a logistic regression analysis to identify its association with likelihood of using the drop-in clinic. Insurance status, housing stability, education, race, and gender identity were most strongly associated with the type of clinic used. Youth who relied on Medicaid, those in unstable housing, and African Americans were most likely to use the drop-in clinic. Transgender youth and those with higher education were more likely to use the appointment-based clinic. Although sexual orientation and HIV status were not related to type of clinic used, youth who were HIV positive used the appointment-based clinic more frequently. Both routes to health care served distinct populations who often experience barriers to accessible, affordable, and knowledgeable care. Further study of the factors related to accessing health care may clarify the extent to which drop-in hours in a youth-friendly context may increase the use of health care by the most socially marginalized youth.

  17. Novel all-optical logic gate using an add/drop filter and intensity switch.

    PubMed

    Threepak, T; Mitatha, S; Yupapin, P P

    2011-12-01

    A novel design of all-optical logic device is proposed. An all-optical logic device system composes of an optical intensity switch and add/drop filter. The intensity switch is formed to switch signal by using the relationship between refraction angle and signal intensity. In operation, two input signals are coupled into one with some coupling loss and attenuation, in which the combination of add/drop with intensity switch produces the optical logic gate. The advantage is that the proposed device can operate the high speed logic function. Moreover, it uses low power consumption. Furthermore, by using the extremely small component, this design can be put into a single chip. Finally, we have successfully produced the all-optical logic gate that can generate the accurate AND and NOT operation results.

  18. Magnetophoretic Conductors and Diodes in a 3D Magnetic Field.

    PubMed

    Abedini-Nassab, Roozbeh; Joh, Daniel Y; Van Heest, Melissa; Baker, Cody; Chilkoti, Ashutosh; Murdoch, David M; Yellen, Benjamin B

    2016-06-14

    We demonstrate magnetophoretic conductor tracks that can transport single magnetized beads and magnetically labeled single cells in a 3-dimensional time-varying magnetic field. The vertical field bias, in addition to the in-plane rotating field, has the advantage of reducing the attraction between particles, which inhibits the formation of particle clusters. However, the inclusion of a vertical field requires the re-design of magnetic track geometries which can transport magnetized objects across the substrate. Following insights from magnetic bubble technology, we found that successful magnetic conductor geometries defined in soft magnetic materials must be composed of alternating sections of positive and negative curvature. In addition to the previously studied magnetic tracks taken from the magnetic bubble literature, a drop-shape pattern was found to be even more adept at transporting small magnetic beads and single cells. Symmetric patterns are shown to achieve bi-directional conduction, whereas asymmetric patterns achieve unidirectional conduction. These designs represent the electrical circuit corollaries of the conductor and diode, respectively. Finally, we demonstrate biological applications in transporting single cells and in the size based separation of magnetic particles.

  19. Fragment size distribution in viscous bag breakup of a drop

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varun; Bulusu, Kartik V.; Plesniak, Michael W.; Sojka, Paul E.

    2015-11-01

    In this study we examine the drop size distribution resulting from the fragmentation of a single drop in the presence of a continuous air jet. Specifically, we study the effect of Weber number, We, and Ohnesorge number, Oh on the disintegration process. The regime of breakup considered is observed between 12 <= We <= 16 for Oh <= 0.1. Experiments are conducted using phase Doppler anemometry. Both the number and volume fragment size probability distributions are plotted. The volume probability distribution revealed a bi-modal behavior with two distinct peaks: one corresponding to the rim fragments and the other to the bag fragments. This behavior was suppressed in the number probability distribution. Additionally, we employ an in-house particle detection code to isolate the rim fragment size distribution from the total probability distributions. Our experiments showed that the bag fragments are smaller in diameter and larger in number, while the rim fragments are larger in diameter and smaller in number. Furthermore, with increasing We for a given Ohwe observe a large number of small-diameter drops and small number of large-diameter drops. On the other hand, with increasing Oh for a fixed We the opposite is seen.

  20. Molecular dynamics study of the vaporization of an ionic drop.

    PubMed

    Galamba, N

    2010-09-28

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (Na(n)Cl(n))(n=2-4). The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  1. Studies of earthquakes stress drops, seismic scattering, and dynamic triggering in North America

    NASA Astrophysics Data System (ADS)

    Escudero Ayala, Christian Rene

    I use the Relative Source Time Function (RSTF) method to determine the source properties of earthquakes within southeastern Alaska-northwestern Canada in a first part of the project, and earthquakes within the Denali fault in a second part. I deconvolve a small event P-arrival signal from a larger event by the following method: select arrivals with a tapered cosine window, fast fourier transform to obtain the spectrum, apply water level deconvolution technique, and bandpass filter before inverse transforming the result to obtain the RSTF. I compare the source processes of earthquakes within the area to determine stress drop differences to determine their relation with the tectonic setting of the earthquakes location. Results show an consistency with previous results, stress drop independent of moment implying self-similarity, correlation of stress drop with tectonic regime, stress drop independent of depth, stress drop depends of focal mechanism where strike-slip present larger stress drops, and decreasing stress drop as function of time. I determine seismic wave attenuation in the central western United States using coda waves. I select approximately 40 moderate earthquakes (magnitude between 5.5 and 6.5) located alocated along the California-Baja California, California-Nevada, Eastern Idaho, Gulf of California, Hebgen Lake, Montana, Nevada, New Mexico, off coast of Northern California, off coast of Oregon, southern California, southern Illinois, Vancouver Island, Washington, and Wyoming regions. These events were recorded by the EarthScope transportable array (TA) network from 2005 to 2009. We obtain the data from the Incorporated Research Institutions for Seismology (IRIS). In this study we implement a method based on the assumption that coda waves are single backscattered waves from randomly distributed heterogeneities to calculate the coda Q. The frequencies studied lie between 1 and 15 Hz. The scattering attenuation is calculated for frequency bands centered at 1.5, 3, 5, 7.5, 10.5, and 13.5 Hz. Coda Q present a great correlation with tectonic and geology setting, as well as the crustal thickness. I analyze global and Middle American Subduction Zone (MASZ) seismicity from 1998 to 2008 to quantify the transient stresses effects at teleseismic distances. I use the Bulletin of the International Seismological Centre Catalog (ISCCD) published by the Incorporated Research Institutions for Seismology (IRIS). To identify MASZ seismicity changes due to distant, large (Mw ¿ 7) earthquakes, I first identify local earthquakes that occurred before and after the mainshocks. I then group the local earthquakes within a cluster radius between 75 to 200 km. I obtain statistics based on characteristics of both mainshocks and local earthquakes clusters, such as cluster-mainshock azimuth, mainshock focal mechanism, and local earthquakes clusters within the MASZ. Based on the lateral variations of the dip along the subducted oceanic plate, I divide the Mexican subduction zone into four segments. I then apply the Paired Samples Statistical Test (PSST) to the sorted data to identify increment, decrement or either in the local seismicity associated with distant large earthquakes passage of surface waves. I identify dynamic triggering for all MASZ segments produced by large earthquakes emerging from specific azimuths, as well as, a decrease for some cases. I find no dependence of seismicity changes on mainshock focal mechanism.

  2. The effect of surface conditions on the work function of insulators and semiconductors

    NASA Technical Reports Server (NTRS)

    George, A.

    1973-01-01

    Ionization energies of organic semiconductors were determined using single crystals of the material. The theory of the method is essentially that of Millikan's oil drop experiment. The technique employed in the experiment is based on the electrostatic method of balancing a charged particle in an electric field against the force of gravity for different excitation energies above the threshold value, and from an estimate of the balancing voltages, read off the ionization energy from the intercept of the energy axis in a plot wavelength corresponding to the balancing potential for the incident radiation of wavelength. In the modified technique which is adopted in the present experimental investigation, a small single crystal is suspended by a fine quartz fiber between two vertical capacitor plates to which a suitable high voltage is applied.

  3. Statistical Modeling of Single Target Cell Encapsulation

    PubMed Central

    Moon, SangJun; Ceyhan, Elvan; Gurkan, Umut Atakan; Demirci, Utkan

    2011-01-01

    High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems. PMID:21814548

  4. Evaporation of droplets in a Champagne wine aerosol

    NASA Astrophysics Data System (ADS)

    Ghabache, Elisabeth; Liger-Belair, Gérard; Antkowiak, Arnaud; Séon, Thomas

    2016-04-01

    In a single glass of champagne about a million bubbles nucleate on the wall and rise towards the surface. When these bubbles reach the surface and rupture, they project a multitude of tiny droplets in the form of a particular aerosol holding a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in idealized champagnes, the key features of the champagne aerosol are identified. In particular, we show that film drops, critical in sea spray for example, are here nonexistent. We then demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. There, conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of flavor release during sparkling wine tasting, a major issue for the sparkling wine industry.

  5. Evaporation of droplets in a Champagne wine aerosol.

    PubMed

    Ghabache, Elisabeth; Liger-Belair, Gérard; Antkowiak, Arnaud; Séon, Thomas

    2016-04-29

    In a single glass of champagne about a million bubbles nucleate on the wall and rise towards the surface. When these bubbles reach the surface and rupture, they project a multitude of tiny droplets in the form of a particular aerosol holding a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in idealized champagnes, the key features of the champagne aerosol are identified. In particular, we show that film drops, critical in sea spray for example, are here nonexistent. We then demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. There, conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of flavor release during sparkling wine tasting, a major issue for the sparkling wine industry.

  6. Feasibility study of a take-home array-based functional electrical stimulation system with automated setup for current functional electrical stimulation users with foot-drop.

    PubMed

    Prenton, Sarah; Kenney, Laurence P; Stapleton, Claire; Cooper, Glen; Reeves, Mark L; Heller, Ben W; Sobuh, Mohammad; Barker, Anthony T; Healey, Jamie; Good, Timothy R; Thies, Sibylle B; Howard, David; Williamson, Tracey

    2014-10-01

    To investigate the feasibility of unsupervised community use of an array-based automated setup functional electrical stimulator for current foot-drop functional electrical stimulation (FES) users. Feasibility study. Gait laboratory and community use. Participants (N=7) with diagnosis of unilateral foot-drop of central neurologic origin (>6mo) who were regular users of a foot-drop FES system (>3mo). Array-based automated setup FES system for foot-drop (ShefStim). Logged usage, logged automated setup times for the array-based automated setup FES system and diary recording of problems experienced, all collected in the community environment. Walking speed, ankle angles at initial contact, foot clearance during swing, and the Quebec User Evaluation of Satisfaction with Assistive Technology version 2.0 (QUEST version 2.0) questionnaire, all collected in the gait laboratory. All participants were able to use the array-based automated setup FES system. Total setup time took longer than participants' own FES systems, and automated setup time was longer than in a previous study of a similar system. Some problems were experienced, but overall, participants were as satisfied with this system as their own FES system. The increase in walking speed (N=7) relative to no stimulation was comparable between both systems, and appropriate ankle angles at initial contact (N=7) and foot clearance during swing (n=5) were greater with the array-based automated setup FES system. This study demonstrates that an array-based automated setup FES system for foot-drop can be successfully used unsupervised. Despite setup's taking longer and some problems, users are satisfied with the system and it would appear as effective, if not better, at addressing the foot-drop impairment. Further product development of this unique system, followed by a larger-scale and longer-term study, is required before firm conclusions about its efficacy can be reached. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Ground Based Studies of Thermocapillary Flows in Levitated Drops

    NASA Technical Reports Server (NTRS)

    Sadhal, Satwindar Singh; Trinh, Eugene H.

    1996-01-01

    Ground-based experiments together with analytical studies are presently being conducted for levitated drops. Both acoustic and electrostatic techniques are being employed to achieve levitation of drops in a gaseous environment. The scientific effort is principally on the thermal and the fluid phenomena associated with the local heating of levitated drops, both at 1-g and at low-g. In particular, the thermocapillary flow associated with local spot heating is being studied. Fairly stable acoustic levitation of drops has been achieved with some exceptions when random rotational motion of the drop persists. The flow visualization has been carried out by light scattering from smoke particles for the exterior flow and fluorescent tracer particles in the drop. The results indicate a lack of axial symmetry in the internal flow even though the apparatus and the heating are symmetric. The theoretical studies for the past year have included fundamental analyses of acoustically levitated spherical drops. The flow associated with a particle near the velocity antinode is being investigated by the singular perturbation technique. As a first step towards understanding the effect of the particle displacement from the antinode, the flow field about the node has been calculated for the first time. The effect of the acoustic field on the interior of a liquid drop has also been investigated. The results predict that the internal flow field is very weak.

  8. Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfu enumeration and single colony isolation from diverse samples.

    PubMed

    Thomas, Pious; Sekhar, Aparna C; Upreti, Reshmi; Mujawar, Mohammad M; Pasha, Sadiq S

    2015-12-01

    We propose a simple technique for bacterial and yeast cfu estimations from diverse samples with no prior idea of viable counts, designated as single plate-serial dilution spotting (SP-SDS) with the prime recommendation of sample anchoring (10 0 stocks). For pure cultures, serial dilutions were prepared from 0.1 OD (10 0 ) stock and 20 μl aliquots of six dilutions (10 1 -10 6 ) were applied as 10-15 micro-drops in six sectors over agar-gelled medium in 9-cm plates. For liquid samples 10 0 -10 5 dilutions, and for colloidal suspensions and solid samples (10% w/v), 10 1 -10 6 dilutions were used. Following incubation, at least one dilution level yielded 6-60 cfu per sector comparable to the standard method involving 100 μl samples. Tested on diverse bacteria, composite samples and Saccharomyces cerevisiae , SP-SDS offered wider applicability over alternative methods like drop-plating and track-dilution for cfu estimation, single colony isolation and culture purity testing, particularly suiting low resource settings.

  9. Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap.

    PubMed

    Mojarad, Nassiredin; Krishnan, Madhavi

    2012-06-24

    Measuring the size and charge of objects suspended in solution, such as dispersions of colloids or macromolecules, is a significant challenge. Measurements based on light scattering are inherently biased to larger entities, such as aggregates in the sample, because the intensity of light scattered by a small object scales as the sixth power of its size. Techniques that rely on the collective migration of species in response to external fields (electric or hydrodynamic, for example) are beset with difficulties including low accuracy and dispersion-limited resolution. Here, we show that the size and charge of single nanoscale objects can be directly measured with high throughput by analysing their thermal motion in an array of electrostatic traps. The approach, which is analogous to Millikan's oil drop experiment, could in future be used to detect molecular binding events with high sensitivity or carry out dynamic single-charge resolved measurements at the solid/liquid interface.

  10. Ratiometric Raman Spectroscopy for Quantification of Protein Oxidative Damage

    PubMed Central

    Jiang, Dongping; Yanney, Michael; Zou, Sige; Sygula, Andrzej

    2009-01-01

    A novel ratiometric Raman spectroscopic (RMRS) method has been developed for quantitative determination of protein carbonyl levels. Oxidized bovine serum albumin (BSA) and oxidized lysozyme were used as model proteins to demonstrate this method. The technique involves conjugation of protein carbonyls with dinitrophenyl hydrazine (DNPH), followed by drop coating deposition Raman spectral acquisition (DCDR). The RMRS method is easy to implement as it requires only one conjugation reaction, a single spectral acquisition, and does not require sample calibration. Characteristic peaks from both protein and DNPH moieties are obtained in a single spectral acquisition, allowing the protein carbonyl level to be calculated from the peak intensity ratio. Detection sensitivity for the RMRS method is ~0.33 pmol carbonyl/measurement. Fluorescence and/or immunoassay based techniques only detect a signal from the labeling molecule and thus yield no structural or quantitative information for the modified protein while the RMRS technique provides for protein identification and protein carbonyl quantification in a single experiment. PMID:19457432

  11. First results from different investigations on MHD flow in multichannel U-Bends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimann, J.; Barleon, L.; Molokov, S.

    1995-04-01

    In electrically coupled multichannel ducts with a U-bend geometry, MHD effects can result in strongly non-uniform distributions of flow rates Q{sub i} and pressure drops {Delta}p{sub i} in the individual channels. A multichannel U-bend geometry is part of the KfK self-cooled Pb-17Li blanket design for a fusion reactor (radial-toroidal-radial channels). However, inserts are proposed which decouple electrically the radial channels. The multi-channel effects (MCDs) were investigated by (i) Screening test with InGaSn at LAS, Riga, and (ii) more detailed experiments with NaK at KfK, Karlsruhe. Different flow channel geometries and channel numbers between 1 and 5 were used. Hartmann numbersmore » and interaction parameters were varied between O {le} M {le} 2300 and O {le} N {le} 40000. In parallel, a theoretical analysis was performed, based on the method of core flow approximation (CFA) which is valid for M {r_arrow} {infinity} and N {r_arrow} {infinity}. Significant MCEs occur in all ducts with totally electrically coupled channels. For the mode {Delta}p{sub i} = const, the flow rates in the outer channels can become significantly larger than those in the inner channels. For Q{sub i} = const, the highest pressure drop occurs in the middle channel and the lowest in the outer channels. The CFA predicts correctly the ratios of the pressure drops of the single channels but gives lower values than observed experimentally. No marked MCE was found for flow geometry which is similar to the KfK design, i.e., a fairly uniform flow rate and pressure drop distribution was observed for all values of M and N.« less

  12. Laser dissection sampling modes for direct mass spectral analysis [using a hybrid optical microscopy/laser ablation liquid vortex capture/electrospray ionization system

    DOE PAGES

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2016-02-01

    Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less

  13. Laser dissection sampling modes for direct mass spectral analysis [using a hybrid optical microscopy/laser ablation liquid vortex capture/electrospray ionization system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less

  14. Single Droplet Studies in a Hot, High Pressure Environment

    DTIC Science & Technology

    1988-03-01

    multiple drop sizes on one plot. However, the 240-240 irm data, acquired as a systematic set, show a good trend with reasonable scatter except for the...away from the fiber. Ill order to minimize the fiber influence a 390 irm d’ameter drop was mounted on a 20 pirm Fi~ber and subjficted •o a flow of 480°C...Florida "California Institute of Dept. of Chemistry Technology ATTN: J. Wine fordner ATTN: F.E.C. Culick/ Gainesville, FL 32611 MC 301-46 204 K-irman

  15. 4D radiobiological modelling of the interplay effect in conventionally and hypofractionated lung tumour IMRT.

    PubMed

    Selvaraj, J; Uzan, J; Baker, C; Nahum, A

    2015-01-01

    To study the impact of the interplay between respiration-induced tumour motion and multileaf collimator leaf movements in intensity-modulated radiotherapy (IMRT) as a function of number of fractions, dose rate on population mean tumour control probability ([Formula: see text]) using an in-house developed dose model. Delivered dose was accumulated in a voxel-by-voxel basis inclusive of tumour motion over the course of treatment. The effect of interplay on dose and [Formula: see text] was studied for conventionally and hypofractionated treatments using digital imaging and communications in medicine data sets. Moreover, the effect of dose rate on interplay was also studied for single-fraction treatments. Simulations were repeated several times to obtain [Formula: see text] for each plan. The average variation observed in mean dose to the target volumes were -0.76% ± 0.36% for the 20-fraction treatment and -0.26% ± 0.68% and -1.05% ± 0.98% for the three- and single-fraction treatments, respectively. For the 20-fraction treatment, the drop in [Formula: see text] was -1.05% ± 0.39%, whereas for the three- and single-fraction treatments, it was -2.80% ± 1.68% and -4.00% ± 2.84%, respectively. By reducing the dose rate from 600 to 300 MU min(-1) for the single-fraction treatments, the drop in [Formula: see text] was reduced by approximately 1.5%. The effect of interplay on [Formula: see text] is negligible for conventionally fractionated treatments, whereas considerable drop in [Formula: see text] is observed for the three- and single-fraction treatments. Reduced dose rate could be used in hypofractionated treatments to reduce the interplay effect. A novel in silico dose model is presented to determine the impact of interplay effect in IMRT treatments on [Formula: see text].

  16. 4D radiobiological modelling of the interplay effect in conventionally and hypofractionated lung tumour IMRT

    PubMed Central

    Uzan, J; Baker, C; Nahum, A

    2015-01-01

    Objective: To study the impact of the interplay between respiration-induced tumour motion and multileaf collimator leaf movements in intensity-modulated radiotherapy (IMRT) as a function of number of fractions, dose rate on population mean tumour control probability () using an in-house developed dose model. Methods: Delivered dose was accumulated in a voxel-by-voxel basis inclusive of tumour motion over the course of treatment. The effect of interplay on dose and was studied for conventionally and hypofractionated treatments using digital imaging and communications in medicine data sets. Moreover, the effect of dose rate on interplay was also studied for single-fraction treatments. Simulations were repeated several times to obtain for each plan. Results: The average variation observed in mean dose to the target volumes were −0.76% ± 0.36% for the 20-fraction treatment and −0.26% ± 0.68% and −1.05% ± 0.98% for the three- and single-fraction treatments, respectively. For the 20-fraction treatment, the drop in was −1.05% ± 0.39%, whereas for the three- and single-fraction treatments, it was −2.80% ± 1.68% and −4.00% ± 2.84%, respectively. By reducing the dose rate from 600 to 300 MU min−1 for the single-fraction treatments, the drop in was reduced by approximately 1.5%. Conclusion: The effect of interplay on is negligible for conventionally fractionated treatments, whereas considerable drop in is observed for the three- and single-fraction treatments. Reduced dose rate could be used in hypofractionated treatments to reduce the interplay effect. Advances in knowledge: A novel in silico dose model is presented to determine the impact of interplay effect in IMRT treatments on . PMID:25251400

  17. Large charged drop levitation against gravity

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang Kun; Hyson, Michael T.; Trinh, Eugene H.; Elleman, Daniel D.

    1987-01-01

    A hybrid electrostatic-acoustic levitator that can levitate and manipulate a large liquid drop in one gravity is presented. To the authors' knowledge, this is the first time such large drops (up to 4 mm in diameter in the case of water) have been levitated against 1-gravity. This makes possible, for the first time, many new experiments both in space and in ground-based laboratories, such as 1)supercooling and superheating, 2) containerless crystal growth from various salt solutions or melts, 3) drop dynamics of oscillating or rotating liquid drops, 4) drop evaporation and Rayleigh bursting, and 5) containerless material processing in space. The digital control system, liquid drop launch process, principles of electrode design, and design of a multipurpose room temperature levitation chamber are described. Preliminary results that demonstrate drop oscillation and rotation, and crystal growth from supersaturated salt solutions are presented.

  18. Father's role in parent training for children with developmental delay.

    PubMed

    Bagner, Daniel M

    2013-08-01

    The current pilot study was a quasi-experimental examination of the impact of father involvement in parent training among 44 families with a young child who presented with elevated externalizing behavior problems and developmental delay. All families were offered to receive Parent-Child Interaction Therapy (PCIT), an evidence-based parent-training intervention, at a hospital-based outpatient clinic. Single-mother families were significantly more likely to drop out of treatment than two-parent families. Of the families that completed treatment, children from families in which a father participated in treatment had lower levels of parent-reported externalizing behavior problems than children from single-mother families and children from two-parent families in which the father did not participate in treatment. Additionally, children from father-involved families were significantly more compliant during a cleanup task than children from single-mother families following treatment. The current study is consistent with the limited research examining father involvement in parent training and extends the findings to children with developmental delay. These findings highlight the importance of involving fathers in parent training, particularly when working with children with developmental delay. © 2013 American Psychological Association

  19. A novel generation of 3D SAR-based passive micromixer: efficient mixing and low pressure drop at a low Reynolds number

    NASA Astrophysics Data System (ADS)

    Viktorov, Vladimir; Nimafar, Mohammad

    2013-05-01

    This study introduces a novel generation of 3D splitting and recombination (SAR) passive micromixer with microstructures placed on the top and bottom floors of microchannels called a ‘chain mixer’. Both experimental verification and numerical analysis of the flow structure of this type of passive micromixer have been performed to evaluate the mixing performance and pressure drop of the microchannel, respectively. We propose here two types of chain mixer—chain 1 and chain 2—and compare their mixing performance and pressure drop with other micromixers, T-, o- and tear-drop micromixers. Experimental tests carried out in the laminar flow regime with a low Reynolds number range, 0.083 ≤ Re ≤ 4.166, and image-based techniques are used to evaluate the mixing efficiency. Also, the computational fluid dynamics code, ANSYS FLUENT-13.0 has been used to analyze the flow and pressure drop in the microchannel. Experimental results show that the chain and tear-drop mixer's efficiency is very high because of the SAR process: specifically, an efficiency of up to 98% can be achieved at the tested Reynolds number. The results also show that chain mixers have a lower required pressure drop in comparison with a tear-drop micromixer.

  20. Numerical study of viscous dissipation during single drop impact on wetted surfaces

    NASA Astrophysics Data System (ADS)

    An, Yi; Yang, Shihao; Liu, Qingquan

    2017-11-01

    The splashing crown by the impact of a drop on a liquid film has been studied extensively since Yarin and Weiss (JFM 1995). The motion of the crown base is believed to be kinematic which results in the equation R =(2/3H)1/4(T-T0)1/2. This equation is believed to overestimate the crown size by about 15%. While Trojillo and Lee (PoF 2001) find the influence of the Re not notable. Considering the dissipation in the initial stage of the impact, Gao and Li (PRE, 2015) obtained a well-validated equation. However, how to estimate the dissipation is still worth some detailed discussion. We carried out a series of VOF simulations with special focusing on the influence of viscosity. The simulation is based on the Basilisk code to utilize adaptive mesh refinement. We found that the role of dissipation could be divided into three stages. When T> 1, the commonly used shallow water equation provides a good approximation while the initial condition should be considered properly. Between this two stages, the viscous dissipation is the governing factor and thus causes inaccurate estimation of the crown base motion in the third stage. This work was financially supported by the National Natural Science Foundation of China (No. 11672310, No. 11372326).

  1. Membrane Bioprobe Electrodes

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1975-01-01

    Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)

  2. Effects of wind on the dynamics of the central jet during drop impact onto a deep-water surface

    NASA Astrophysics Data System (ADS)

    Liu, Xinan; Wang, An; Wang, Shuang; Dai, Dejun

    2018-05-01

    The cavity and central jet generated by the impact of a single water drop on a deep-water surface in a wind field are experimentally studied. Different experiments are performed by varying the impacting drop diameter and wind speed. The contour profile histories of the cavity (also called crater) and central jet (also called stalk) are measured in detail with a backlit cinematic shadowgraph technique. The results show that shortly after the drop hits the water surface an asymmetrical cavity appears along the wind direction, with a train of capillary waves on the cavity wall. This is followed by the formation of an inclined central jet at the location of the drop impact. It is found that the wind has little effect on the penetration depth of the cavity at the early stage of the cavity expansion, but markedly changes the capillary waves during the retraction of the cavity. The capillary waves in turn shift the position of the central jet formation leeward. The dynamics of the central jet are dominated by two mechanisms: (i) the oblique drop impact produced by the wind and (ii) the wind drag force directly acting on the jet. The maximum height of the central jet, called the stalk height, is drastically affected by the wind, and the nondimensional stalk height H /D decreases with increasing θ Re-1 , where D is the drop diameter, θ is the impingement angle of drop impact, and Re=ρaUwD /μa is the Reynolds number with air density ρa, wind speed Uw, and air viscosity μa.

  3. Joint optic disc and cup boundary extraction from monocular fundus images.

    PubMed

    Chakravarty, Arunava; Sivaswamy, Jayanthi

    2017-08-01

    Accurate segmentation of optic disc and cup from monocular color fundus images plays a significant role in the screening and diagnosis of glaucoma. Though optic cup is characterized by the drop in depth from the disc boundary, most existing methods segment the two structures separately and rely only on color and vessel kink based cues due to the lack of explicit depth information in color fundus images. We propose a novel boundary-based Conditional Random Field formulation that extracts both the optic disc and cup boundaries in a single optimization step. In addition to the color gradients, the proposed method explicitly models the depth which is estimated from the fundus image itself using a coupled, sparse dictionary trained on a set of image-depth map (derived from Optical Coherence Tomography) pairs. The estimated depth achieved a correlation coefficient of 0.80 with respect to the ground truth. The proposed segmentation method outperformed several state-of-the-art methods on five public datasets. The average dice coefficient was in the range of 0.87-0.97 for disc segmentation across three datasets and 0.83 for cup segmentation on the DRISHTI-GS1 test set. The method achieved a good glaucoma classification performance with an average AUC of 0.85 for five fold cross-validation on RIM-ONE v2. We propose a method to jointly segment the optic disc and cup boundaries by modeling the drop in depth between the two structures. Since our method requires a single fundus image per eye during testing it can be employed in the large-scale screening of glaucoma where expensive 3D imaging is unavailable. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effects of drop acceleration and deceleration on particle capture in a cross-flow gravity tower at intermediate drop Reynolds numbers.

    PubMed

    Kumar, Anoop; Gupta, S K; Kale, S R

    2007-04-01

    Cross-flow gravity towers are particle scrubbing devices in which water is sprayed from the top into particle-laden flow moving horizontally. Models for predicting particle capture assume drops traveling at terminal velocity and potential flow (ReD > 1000) around it, however, Reynolds numbers in the intermediate range of 1 to 1000 are common in gravity towers. Drops are usually injected at velocities greater than their terminal velocities (as in nozzles) or from near rest (perforated tray) and they accelerate/decelerate to their terminal velocity in the tower. Also, the effects of intermediate drop Reynolds number on capture efficiency have been simulated for (a) drops at their terminal velocity and (b) drops accelerating/decelerating to their terminal velocity. Tower efficiency based on potential flow about the drop is 40%-50% greater than for 200 mm drops traveling at their terminal velocity. The corresponding values for 500 mm drops are about 10%-20%. The drop injection velocity is important operating parameter. Increase in tower efficiency by about 40% for particles smaller than 5 mm is observed for increase in injection velocity from 0 to 20 m/s for 200 and 500mm drops.

  5. No Bridge Too High: Infants Decide Whether to Cross Based on the Probability of Falling not the Severity of the Potential Fall

    ERIC Educational Resources Information Center

    Kretch, Kari S.; Adolph, Karen E.

    2013-01-01

    Do infants, like adults, consider both the probability of falling and the severity of a potential fall when deciding whether to cross a bridge? Crawling and walking infants were encouraged to cross bridges varying in width over a small drop-off, a large drop-off, or no drop-off. Bridge width affects the probability of falling, whereas drop-off…

  6. Droplet-air collision dynamics: Evolution of the film thickness

    NASA Astrophysics Data System (ADS)

    Opfer, L.; Roisman, I. V.; Venzmer, J.; Klostermann, M.; Tropea, C.

    2014-01-01

    This study is devoted to the experimental and theoretical investigation of aerodynamic drop breakup phenomena. We show that the phenomena of drop impact onto a rigid wall, drop binary collisions, and aerodynamic drop deformation are similar if the correct scaling is applied. Then we use observations of the deforming drop to estimate the evolution of the film thickness of the bag, the value that determines the size of the fine child drops produced by bag breakup. This prediction of film thickness, based on film kinematics, is validated for the initial stage by direct drop thickness measurements and at the latest stage by the data obtained from the velocity of hole expansion in the film. It is shown that the film thickness correlates well with the dimensionless position of the bag apex.

  7. Oscillations of a deformed liquid drop in an acoustic field

    NASA Astrophysics Data System (ADS)

    Shi, Tao; Apfel, Robert E.

    1995-07-01

    The oscillations of an axially symmetric liquid drop in an acoustic standing wave field in air have been studied using the boundary integral method. The interaction between the drop oscillation and sound field has been included in this analysis. Our computations focus on the frequency shift of small-amplitude oscillations of an acoustically deformed drop typical of a drop levitated in air. In the presence or absence of gravity, the trend and the magnitude of the frequency shift have been given in terms of drop size, drop deformation, and the strength of the sound field. Our calculations are compared with experiments performed on the United States Microgravity Laboratory (USML-1) and with ground-based measurements, and are found to be in good agreement within the accuracy of the experimental data.

  8. The passive cable properties of hair cell stereocilia and their contribution to somatic capacitance measurements.

    PubMed

    Breneman, Kathryn D; Highstein, Stephen M; Boyle, Richard D; Rabbitt, Richard D

    2009-01-01

    Somatic measurements of whole-cell capacitance are routinely used to understand physiologic events occurring in remote portions of cells. These studies often assume the intracellular space is voltage-clamped. We questioned this assumption in auditory and vestibular hair cells with respect to their stereocilia based on earlier studies showing that neurons, with radial dimensions similar to stereocilia, are not always isopotential under voltage-clamp. To explore this, we modeled the stereocilia as passive cables with transduction channels located at their tips. We found that the input capacitance measured at the soma changes when the transduction channels at the tips of the stereocilia are open compared to when the channels are closed. The maximum capacitance is felt with the transducer closed but will decrease as the transducer opens due to a length-dependent voltage drop along the stereocilium length. This potential drop is proportional to the intracellular resistance and stereocilium tip conductance and can produce a maximum capacitance error on the order of fF for single stereocilia and pF for the bundle.

  9. RECENT DEVELOPMENTS IN SRF CAVITY SCIENCE AND PERFORMANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianluigi Ciovati

    A recipe based on centrifugal barrel polishing (CBP) and electropolishing (EP), applied on newly designed single-cells, led to the achievement of B{sub p} values close to the thermodynamic critical field of Nb and to new records in terms of accelerating gradients The fabrication of cavities made of large-grain Nb is emerging as a viable option to reduce the material cost without sacrificing the performance. The Q-drop is not caused exclusively by losses at grain boundaries in Nb. Baking is the only known remedy against the Q-drop and its effect seems to be related to a change of the properties ofmore » the Nb up to a depth of about 20 nm. 120 C is the optimum temperature and the baking time can be reduced to 12 h. Cleaning techniques such as high-pressure rinse (HPR) are being studied in detail in order to be optimized for mass-production. Dry-ice cleaning may become a complementary cleaning method. Work is being done to better understand and to improve the EP process.« less

  10. The measured temperature and pressure of EDC37 detonation products

    NASA Astrophysics Data System (ADS)

    Ferguson, J. W.; Richley, J. C.; Sutton, B. D.; Price, E.; Ota, T. A.

    2017-01-01

    We present the experimentally determined temperature and pressure of the detonation products of EDC37; a HMX based conventional high explosive. These measurements were performed on a series of cylinder tests. The temperature measurements were undertaken at the end of the cylinder with optical fibres observing the bare explosive through a LiF window. The temperature of the products was measured for approximately 2 µs using single colour pyrometry, multicolour pyrometry and also using time integrated optical emission spectroscopy with the results from all three methods being broadly consistent. The peak temperature was found to be ≈ 3600 K dropping to ≈ 2400 K at the end of the measurement window. The spectroscopy was time integrated and showed that the emission spectra can be approximated using a grey body curve between 520 - 800 nm with no emission or absorption lines being observed. The pressure was obtained using an analytical method which requires the velocity of the expanding cylinder wall and the velocity of detonation. The pressure drops from an initial CJ value of ≈ 38 GPa to ≈ 4 GPa after 2 µs.

  11. Solution of mixed convection heat transfer from isothermal in-line fins

    NASA Technical Reports Server (NTRS)

    Khalilollahi, Amir

    1993-01-01

    Transient and steady state combined natural and forced convective flows over two in-line finite thickness fins (louvers) in a vertical channel are numerically solved using two methods. The first method of solution is based on the 'Simple Arbitrary Lagrangian Eulerian' (SALE) technique which incorporates mainly two computational phases: (1) a Lagrangian phase in which the velocity field is updated by the effects of all forces, and (2) an Eulerian phase that executes all advective fluxes of mass, momentum and energy. The second method of solution uses the finite element code entitled FIDAP. In the first part, comparison of the results by FIDAP, SALE, and available experimental work were done and discussed for steady state forced convection over louvered fins. Good agreements were deduced between the three sets of results especially for the flow over a single fin. In the second part and in the absence of experimental literature, the numerical predictions were extended to the transient transports and to the opposing flow where pressure drop is reversed. Results are presented and discussed for heat transfer and pressure drop in assisting and opposing mixed convection flows.

  12. Tapered Optical Fiber Functionalized with Palladium Nanoparticles by Drop Casting and Laser Radiation for H2 and Volatile Organic Compounds Sensing Purposes

    PubMed Central

    González-Sierra, Nancy Elizabeth; Gómez-Pavón, Luz del Carmen; Pérez-Sánchez, Gerardo Francisco; Luis-Ramos, Arnulfo; Zaca-Morán, Plácido; Chávez-Ramírez, Fernando

    2017-01-01

    A comparative study on the sensing properties of a tapered optical fiber pristine and functionalized with the palladium nanoparticles to hydrogen and volatile organic compounds (VOCs), is presented. The sensor response and, response/recovery times were extracted from the measurements of the transient response of the device. The tapered optical fiber sensor was fabricated using a single-mode optical fiber by the flame-brushing technique. Functionalization of the optical fiber was performed using an aqueous solution of palladium chloride by drop-casting technique assisted for laser radiation. The detection principle of the sensor is based on the changes in the optical properties of palladium nanoparticles when exposed to reducing gases, which causes a variation in the absorption of evanescent waves. A continuous wave laser diode operating at 1550 nm is used for the sensor characterization. The sensor functionalized with palladium nanoparticles by this technique is viable for the sensing of hydrogen and VOCs, since it shows an enhancement in sensor response and response time compared to the sensor based on the pristine optical microfiber. The results show that the fabricated sensor is competitive with other fiber optic sensors functionalized with palladium nanoparticles to the hydrogen. PMID:28878161

  13. Tapered Optical Fiber Functionalized with Palladium Nanoparticles by Drop Casting and Laser Radiation for H₂ and Volatile Organic Compounds Sensing Purposes.

    PubMed

    González-Sierra, Nancy Elizabeth; Gómez-Pavón, Luz Del Carmen; Pérez-Sánchez, Gerardo Francisco; Luis-Ramos, Arnulfo; Zaca-Morán, Plácido; Muñoz-Pacheco, Jesús Manuel; Chávez-Ramírez, Francisco

    2017-09-06

    A comparative study on the sensing properties of a tapered optical fiber pristine and functionalized with the palladium nanoparticles to hydrogen and volatile organic compounds (VOCs), is presented. The sensor response and, response/recovery times were extracted from the measurements of the transient response of the device. The tapered optical fiber sensor was fabricated using a single-mode optical fiber by the flame-brushing technique. Functionalization of the optical fiber was performed using an aqueous solution of palladium chloride by drop-casting technique assisted for laser radiation. The detection principle of the sensor is based on the changes in the optical properties of palladium nanoparticles when exposed to reducing gases, which causes a variation in the absorption of evanescent waves. A continuous wave laser diode operating at 1550 nm is used for the sensor characterization. The sensor functionalized with palladium nanoparticles by this technique is viable for the sensing of hydrogen and VOCs, since it shows an enhancement in sensor response and response time compared to the sensor based on the pristine optical microfiber. The results show that the fabricated sensor is competitive with other fiber optic sensors functionalized with palladium nanoparticles to the hydrogen.

  14. Simultaneous genomic identification and profiling of a single cell using semiconductor-based next generation sequencing.

    PubMed

    Watanabe, Manabu; Kusano, Junko; Ohtaki, Shinsaku; Ishikura, Takashi; Katayama, Jin; Koguchi, Akira; Paumen, Michael; Hayashi, Yoshiharu

    2014-09-01

    Combining single-cell methods and next-generation sequencing should provide a powerful means to understand single-cell biology and obviate the effects of sample heterogeneity. Here we report a single-cell identification method and seamless cancer gene profiling using semiconductor-based massively parallel sequencing. A549 cells (adenocarcinomic human alveolar basal epithelial cell line) were used as a model. Single-cell capture was performed using laser capture microdissection (LCM) with an Arcturus® XT system, and a captured single cell and a bulk population of A549 cells (≈ 10(6) cells) were subjected to whole genome amplification (WGA). For cell identification, a multiplex PCR method (AmpliSeq™ SNP HID panel) was used to enrich 136 highly discriminatory SNPs with a genotype concordance probability of 10(31-35). For cancer gene profiling, we used mutation profiling that was performed in parallel using a hotspot panel for 50 cancer-related genes. Sequencing was performed using a semiconductor-based bench top sequencer. The distribution of sequence reads for both HID and Cancer panel amplicons was consistent across these samples. For the bulk population of cells, the percentages of sequence covered at coverage of more than 100 × were 99.04% for the HID panel and 98.83% for the Cancer panel, while for the single cell percentages of sequence covered at coverage of more than 100 × were 55.93% for the HID panel and 65.96% for the Cancer panel. Partial amplification failure or randomly distributed non-amplified regions across samples from single cells during the WGA procedures or random allele drop out probably caused these differences. However, comparative analyses showed that this method successfully discriminated a single A549 cancer cell from a bulk population of A549 cells. Thus, our approach provides a powerful means to overcome tumor sample heterogeneity when searching for somatic mutations.

  15. The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs

    NASA Astrophysics Data System (ADS)

    Hoag, Katherine J.; Collett, Jeffrey L., Jr.; Pandis, Spyros N.

    Drop size-resolved measurements of fog chemistry in California's San Joaquin Valley during the 1995 Integrated Monitoring Study reveal that fog composition varies with drop size. Small fog drops were less alkaline and typically contained higher major ion (nitrate, sulfate, ammonium) concentrations than large drops. Small drops often contained higher concentrations of Fe and Mn than large drops while H 2O 2 concentrations exhibited no strong drop size dependence. Simulation of an extended fog episode in Fresno, California revealed the capability of a drop size-resolved fog chemistry model to reproduce the measured (based on two drop size categories) drop size dependence of several key species. The model was also able to satisfactorily reproduce measured species-dependent deposition rates (ammonium>sulfate>nitrate) resulting from fog drop sedimentation. Both the model simulation and direct analysis of size-resolved fog composition observations and measured gas-phase oxidant concentrations indicate the importance of ozone as an aqueous-phase S(IV) oxidant in these high pH fogs. Due to the nonlinear dependence of the rate law for the ozone pathway on the hydrogen ion concentration, use of the average fog drop composition can lead to significant underprediction of aqueous phase sulfate production rates in these chemically heterogeneous fogs.

  16. Fast H-DROP: A thirty times accelerated version of H-DROP for interactive SVM-based prediction of helical domain linkers

    NASA Astrophysics Data System (ADS)

    Richa, Tambi; Ide, Soichiro; Suzuki, Ryosuke; Ebina, Teppei; Kuroda, Yutaka

    2017-02-01

    Efficient and rapid prediction of domain regions from amino acid sequence information alone is often required for swift structural and functional characterization of large multi-domain proteins. Here we introduce Fast H-DROP, a thirty times accelerated version of our previously reported H-DROP (Helical Domain linker pRediction using OPtimal features), which is unique in specifically predicting helical domain linkers (boundaries). Fast H-DROP, analogously to H-DROP, uses optimum features selected from a set of 3000 ones by combining a random forest and a stepwise feature selection protocol. We reduced the computational time from 8.5 min per sequence in H-DROP to 14 s per sequence in Fast H-DROP on an 8 Xeon processor Linux server by using SWISS-PROT instead of Genbank non-redundant (nr) database for generating the PSSMs. The sensitivity and precision of Fast H-DROP assessed by cross-validation were 33.7 and 36.2%, which were merely 2% lower than that of H-DROP. The reduced computational time of Fast H-DROP, without affecting prediction performances, makes it more interactive and user-friendly. Fast H-DROP and H-DROP are freely available from http://domserv.lab.tuat.ac.jp/.

  17. Topically applied 1% voriconazole induces dysplastic changes on the ocular surface: animal study.

    PubMed

    Arikan, Gul; Karatas, Ezgi; Lebe, Banu; Ayhan, Ziya; Utine, Canan Asli; Kutsoylu, Oya Eren; Gunenc, Uzeyir; Yilmaz, Osman

    2018-04-26

    To identify the risk of inducing ocular surface dysplasia following topical administration of 1% voriconazole eye drop. Fourteen noninflamed healthy eyes of 14 white adult New Zealand rabbits were included in the study. The rabbits were randomly divided into two groups comprised of 7 rabbits each. Group 1 received topical 1% voriconazole and Group 2 received topical saline as the control group. In all animals, right eye was selected for the study. In Group 1 (Voriconazole Group), single drop of voriconazole was instilled every 10 min consecutively for 17 times a day for 60 days. In Group 2 (Control Group), single drop of saline was instilled every 10 min consecutively for 17 times a day for 60 days. At two months, animals were sacrificed and study eyes were enucleated with the eyelids. The specimens were stained with hematoxylin-eosin and histopathologic changes in cornea, bulbar and palpebral conjunctiva were evaluated under light microscope. There were no macroscopically visible lesions on the ocular surface of any rabbits. Histopathological evaluation showed mild to moderate dysplasia localized mainly in the limbus and extending to the adjacent cornea and bulbar conjunctiva in all rabbits in Voriconazole Group. Severe dysplasia or carcinoma in situ was not observed. In the Control Group, dysplasia was not observed, at all. This animal study provides a possible relationship between topically administered 1% voriconazole and ocular surface dysplasia. We recommend ophthalmologists to be aware of the risk of ocular surface dysplasia in patients received voriconazole eye drop.

  18. Informational basis of sensory adaptation: entropy and single-spike efficiency in rat barrel cortex.

    PubMed

    Adibi, Mehdi; Clifford, Colin W G; Arabzadeh, Ehsan

    2013-09-11

    We showed recently that exposure to whisker vibrations enhances coding efficiency in rat barrel cortex despite increasing correlations in variability (Adibi et al., 2013). Here, to understand how adaptation achieves this improvement in sensory representation, we decomposed the stimulus information carried in neuronal population activity into its fundamental components in the framework of information theory. In the context of sensory coding, these components are the entropy of the responses across the entire stimulus set (response entropy) and the entropy of the responses conditional on the stimulus (conditional response entropy). We found that adaptation decreased response entropy and conditional response entropy at both the level of single neurons and the pooled activity of neuronal populations. However, the net effect of adaptation was to increase the mutual information because the drop in the conditional entropy outweighed the drop in the response entropy. The information transmitted by a single spike also increased under adaptation. As population size increased, the information content of individual spikes declined but the relative improvement attributable to adaptation was maintained.

  19. The structure of dilute combusting sprays

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Faeth, F. M.

    1985-01-01

    An experimental and theoretical study of drop processes in a turbulent flame is described. The experiments involved a monodisperse (105 and 180 micro m initial diameter) stream of methanol drops injected at the base of a turbulent methane-fueled diffusion flame burning in still air. The following measurements were made: mean and fluctuating phase velocities, mean drop number flux, drop-size distributions and mean gas-phase temperatures. Measurements were compared with predictions of two separated flow models: (1) deterministic separated flow, where drop-turbulence interactions are ignored; and (2) stochastic separated flow, where drop-turbulence interactions are considered using random-walk computations. The stochastic separated flow analysis yielded best agreement with measurements, since it provides for turbulent dispersion of drops which was important for present test conditions (and probably for most combusting sprays as well). Distinguishing the presence or absence of envelope flames around the drops, however, was relatively unimportant for present test conditions, since the drops spent most of their lifetime in fuel-rich regions of the flow where this distinction is irrelevant.

  20. Ultra-compact channel drop filter based on photonic crystal nanobeam cavities utilizing a resonant tunneling effect.

    PubMed

    Ge, Xiaochen; Shi, Yaocheng; He, Sailing

    2014-12-15

    The design, fabrication, and characterization of a compact photonic crystal nanobeam drop filter based on the tunneling effect of the degenerate modes are presented. The degeneracy was achieved by tuning the coupling distance between the nanobeam and input/output waveguides. The tunneling effect of degenerate resonances with different symmetries has been verified experimentally. Channel drop filters with an extinction ratio larger than 10 dB and a quality factor of ∼5000 have been experimentally demonstrated.

  1. Commensurability-driven structural defects in double emulsions produced with two-step microfluidic techniques.

    PubMed

    Schmit, Alexandre; Salkin, Louis; Courbin, Laurent; Panizza, Pascal

    2014-07-14

    The combination of two drop makers such as flow focusing geometries or ┬ junctions is commonly used in microfluidics to fabricate monodisperse double emulsions and novel fluid-based materials. Here we investigate the physics of the encapsulation of small droplets inside large drops that is at the core of such processes. The number of droplets per drop studied over time for large sequences of consecutive drops reveals that the dynamics of these systems are complex: we find a succession of well-defined elementary patterns and defects. We present a simple model based on a discrete approach that predicts the nature of these patterns and their non-trivial scheme of arrangement in a sequence as a function of the ratio of the two timescales of the problem, the production times of droplets and drops. Experiments validate our model as they concur very well with predictions.

  2. Analysis of preparation of Chinese traditional medicine based on the fiber fingerprint drop trace

    NASA Astrophysics Data System (ADS)

    Zhang, Zhilin; Wang, Jialu; Sun, Weimin; Yan, Qi

    2010-11-01

    The purpose of the fiber micro-drop analyzing technique is to measure the characteristics of liquids using optical methods. The fiber fingerprint drop trace (FFDT) is a curve of light intensity vs. time. This curve indicates the forming, growing and dripping processes of the liquid drops. A pair of fibers was used to monitor the dripping process. The FFDTs are acquired and analyzed by a computer. Different liquid samples of many kinds of preparation of Chinese traditional medicines were tested by using the fiber micro-drop sensor in the experiments. The FFDTs of preparation of Chinese traditional medicines with different concentrations were analyzed in different ways. Considering the characters of the FFDTs, a novel method is proposed to measure the different preparation of Chinese traditional medicines and its concentration based on the corresponding relationship of FFDTs and the physical and chemical parameters of the liquids.

  3. Two-phase pressure drop in a helical coil flow boiling system

    NASA Astrophysics Data System (ADS)

    Hardik, B. K.; Prabhu, S. V.

    2018-05-01

    The objective of the present work is to study the two-phase pressure drop in helical coils. Literature on the two-phase pressure drop in a helical coil suggests the complexity in flow boiling inside a helical coil due to secondary flow. Most of correlations reported in the literature on the two-phase pressure drop in a helical coil are limited to a specific operating range. No general correlation is available for a helical coil which is applicable for all fluids. In the present study, an experimental databank collected containing a total of 832 data points includes the data from the present study and from the literature. The data includes diabatic pressure drop of two fluids namely water and R123. Data covers a range of parameters namely a mass flux of 120-2058 kg/m2 s, a heat flux of 18-2831 kW/m2, an exit quality of 0.03-1, a density ratio of 32-1404 and a coil to tube diameter ratio of 14-58. The databank is compared with eighteen empirical correlations which include well referred correlations of straight tubes and the available correlations of helical coils. The straight tube correlations are not working well for the present data set. The helical coil correlations work reasonably well for the present databank. A correlation is suggested to predict the two-phase pressure drop in helical coils. The present study suggests that the influence of a helical coil is completely included in the single phase pressure drop correlation for helical coils.

  4. 23. VIEW OF SHOP LATRINE (THRONE) AT LOWER LEVEL BETWEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW OF SHOP LATRINE (THRONE) AT LOWER LEVEL BETWEEN EAST AND CENTER BUILDINGS. SINGLE HOLE DROPPED DIRECTLY INTO THE RIVER UNDER THE BUILDING. - Lowell's Boat Shop, 459 Main Street, Amesbury, Essex County, MA

  5. Pathological gait in children with Legg-Calvé-Perthes disease and proposal for gait modification to decrease the hip joint loading.

    PubMed

    Svehlík, Martin; Kraus, Tanja; Steinwender, Gerhard; Zwick, Ernst B; Linhart, Wolfgang E

    2012-06-01

    Legg-Calvé-Perthes disease (LCP) severely limits the range of hip motion and hinders a normal gait. Loading of the hip joint is a major consideration in LCP treatment. The aim of this study was to evaluate gait patterns in LCP and identify gait modifications to decrease the load on the affected hip. Forty children with unilateral LCP were divided into three groups based on the time base integral of the hip abductor moments during single stance on the affected side acquired during instrumented 3D gait analysis. X-rays of the affected hip were classified according to Herring and Catterall. Children in the "unloading" group spontaneously adopted a Duchenne-like gait with pelvis elevation, hip abduction and external rotation during single support phase. The "normal-loading" group showed pelvis elevation with a neutral hip position in the frontal plane. In the "overloading" group the pelvis dropped to the swinging limb at the beginning of stance accompanied by prolonged hip adduction. The time base integral of the hip abductor moments during single stance correlated positively with the X-ray classifications of Herring and Catterall, hip abduction angle and age. Older children preferred to walk in hip adduction during single stance, had more impaired hips and tended to overload them. The hip overloading pattern should be avoided in children with LCP. Gait training to unload the hip might become an integral component of conservative treatment in children with LCP.

  6. Headspace Single-Drop Microextraction Gas Chromatography Mass Spectrometry for the Analysis of Volatile Compounds from Herba Asari

    PubMed Central

    Wang, Guan-Jie; Tian, Li; Fan, Yu-Ming; Qi, Mei-Ling

    2013-01-01

    A rapid headspace single-drop microextraction gas chromatography mass spectrometry (SDME-GC-MS) for the analysis of the volatile compounds in Herba Asari was developed in this study. The extraction solvent, extraction temperature and time, sample amount, and particle size were optimized. A mixed solvent of n-tridecane and butyl acetate (1 : 1) was finally used for the extraction with sample amount of 0.750 g and 100-mesh particle size at 70°C for 15 min. Under the determined conditions, the pound samples of Herba Asari were directly applied for the analysis. The result showed that SDME-GC–MS method was a simple, effective, and inexpensive way to measure the volatile compounds in Herba Asari and could be used for the analysis of volatile compounds in Chinese medicine. PMID:23607049

  7. Patellofemoral pain syndrome and its association with hip, ankle, and foot function in 16- to 18-year-old high school students: a single-blind case-control study.

    PubMed

    Mølgaard, Carsten; Rathleff, Michael Skovdal; Simonsen, Ole

    2011-01-01

    An increased pronated foot posture is believed to contribute to patellofemoral pain syndrome (PFPS), but the relationship between these phenomena is still controversial. The objectives of this study were to investigate the prevalence of PFPS in high school students and to compare passive internal and external hip rotation, passive dorsiflexion, and navicular drop and drift between healthy high school students and students with PFPS. All 16- to 18-year-old students in a Danish high school were invited to join this single-blind case-control study (N = 299). All of the students received a questionnaire regarding knee pain. The main outcome measurements were prevalence of PFPS, navicular drop and drift, passive ankle dorsiflexion, passive hip rotation in the prone position, and activity level. The case group consisted of all students with PFPS. From the same population, a randomly chosen control group was formed. The prevalence of knee pain was 25%. Of the 24 students with knee pain, 13 were diagnosed as having PFPS. This corresponds to a PFPS prevalence of 6%. Mean navicular drop and drift were higher in the PFPS group versus the control group (navicular drop: 4.2 mm [95% confidence interval (CI), 3.2-5.3 mm] versus 2.9 mm [95% CI, 2.5-3.3 mm]; and navicular drift: 2.6 mm [95% CI, 1.6-3.7 mm] versus 1.4 mm [95% CI, 0.9-2.0 mm]). Higher passive ankle dorsiflexion was also identified in the PFPS group (22.2° [95% CI, 18°-26°] versus 17.7° [95% CI, 15°-20°]). This study demonstrated greater navicular drop, navicular drift, and dorsiflexion in high school students with PFPS compared with healthy students and highlights that foot posture is important to consider as a factor where patients with PFPS diverge from healthy individuals.

  8. The Drop Tower Bremen -Experiment Operation

    NASA Astrophysics Data System (ADS)

    Könemann, Thorben; von Kampen, Peter; Rath, Hans J.

    The idea behind the drop tower facility of the Center of Applied Space Technology and Micro-gravity (ZARM) in Bremen is to provide an inimitable technical opportunity of a daily access to short-term weightlessness on earth. In this way ZARM`s european unique ground-based microgravity laboratory displays an excellent economic alternative for research in space-related conditions at low costs comparable to orbital platforms. Many national and international ex-perimentalists motivated by these prospects decide to benefit from the high-quality and easy accessible microgravity environment only provided by the Drop Tower Bremen. Corresponding experiments in reduced gravity could open new perspectives of investigation methods and give scientists an impressive potential for a future technology and multidisciplinary applications on different research fields like Fundamental Physics, Astrophysics, Fluid Dynamics, Combus-tion, Material Science, Chemistry and Biology. Generally, realizing microgravity experiments at ZARM`s drop tower facility meet new requirements of the experimental hardware and may lead to some technical constraints in the setups. In any case the ZARM Drop Tower Operation and Service Company (ZARM FAB mbH) maintaining the drop tower facility is prepared to as-sist experimentalists by offering own air-conditioned laboratories, clean rooms, workshops and consulting engineers, as well as scientific personal. Furthermore, ZARM`s on-site apartment can be used for accommodations during the experiment campaigns. In terms of approaching drop tower experimenting, consulting of experimentalists is mandatory to successfully accomplish the pursued drop or catapult capsule experiment. For this purpose there will be a lot of expertise and help given by ZARM FAB mbH in strong cooperation to-gether with the experimentalists. However, in comparison to standard laboratory setups the drop or catapult capsule setup seems to be completely different at first view. While defining a microgravity project at the Drop Tower Bremen, interesting experimentalists should keep in mind generally reducing dimensions and masses of their common laboratory setups to meet the capsule constraints: overall payload height 980mm/1730mm (short/long drop capsule) and 950mm (catapult capsule); area of each capsule platform 0,359sqm; maximum payload mass 274kg/234kg (short/long drop capsule) and 163,8kg (catapult capsule). The base equipments of each capsule are the Capsule Control System (CCS) to remote control the experiment and the rechargeable battery pack (24V/40A) for the experiment operation. Moreover, the exper-iment components must be able to withstand maximum decelerations of 50g while the short capsule impact of about 200ms, and maximum accelerations of 30g while catapult launch with a duration of about 300ms. In our second talk concerning ZARM`s drop tower facility we will go on with detailed infor-mations about the technical base setups of the drop and the catapult capsule structure to completely handle a freely falling experiment. Furthermore, we will summarize interesting current drop tower projects as an outlook to present you the range of opportunities at the ground-based short-term microgravity laboratory of ZARM.

  9. Glaucoma Medication Adherence among African Americans: Program Development

    PubMed Central

    Dreer, Laura E.; Girkin, Christopher A.; Campbell, Lisa; Wood, Andy; Gao, Liyan; Owsley, Cynthia

    2014-01-01

    Purpose To elucidate barriers and facilitators related to glaucoma medication adherence among African Americans (AA) with glaucoma and to elicit input from a community-based participatory research team in order to guide the development of a culturally informed, health promotion program for improving glaucoma medication adherence among AA’s. Methods The nominal group technique (NGT), a highly structured focus group methodology, was implemented with 12 separate groups of AA’s patients with glaucoma (N = 89) to identify barriers and facilitators related to glaucoma medication usage. Participant rank-ordering votes were summed across groups and categorized into themes. Next, an individually and culturally targeted health promotion program promoting appropriate medication adherence was developed based on focus group results and input from a community-based participatory research team. Results The top five barriers included problems with 1) forgetfulness, 2) side effects, 3) cost/affordability, 4) eye drop administration, and 5) the eye drop schedule. The most salient top five facilitators were 1) fear or thoughts about the consequences of not taking eye drops, 2) use of memory aids, cues, or strategies, 3) maintaining a regular routine or schedule for eye drop administration, 4) ability to afford eye drops, and 5) keeping eye drops in the same area. The resulting health promotion program was based on a multi-component empowerment framework that included glaucoma education, motivational interviewing, and problem-solving training to improve glaucoma medication adherence. Conclusions Barriers and facilitators related to glaucoma medication adherence among AA’s are multifactorial. Based on the NGT themes and input from the community-based participatory research team, a culturally informed, health promotion program was designed and holds great promise for improving medication adherence among this vulnerable population. PMID:23873033

  10. Estimating the irreversible pressure drop across a stenosis by quantifying turbulence production using 4D Flow MRI

    PubMed Central

    Ha, Hojin; Lantz, Jonas; Ziegler, Magnus; Casas, Belen; Karlsson, Matts; Dyverfeldt, Petter; Ebbers, Tino

    2017-01-01

    The pressure drop across a stenotic vessel is an important parameter in medicine, providing a commonly used and intuitive metric for evaluating the severity of the stenosis. However, non-invasive estimation of the pressure drop under pathological conditions has remained difficult. This study demonstrates a novel method to quantify the irreversible pressure drop across a stenosis using 4D Flow MRI by calculating the total turbulence production of the flow. Simulation MRI acquisitions showed that the energy lost to turbulence production can be accurately quantified with 4D Flow MRI within a range of practical spatial resolutions (1–3 mm; regression slope = 0.91, R2 = 0.96). The quantification of the turbulence production was not substantially influenced by the signal-to-noise ratio (SNR), resulting in less than 2% mean bias at SNR > 10. Pressure drop estimation based on turbulence production robustly predicted the irreversible pressure drop, regardless of the stenosis severity and post-stenosis dilatation (regression slope = 0.956, R2 = 0.96). In vitro validation of the technique in a 75% stenosis channel confirmed that pressure drop prediction based on the turbulence production agreed with the measured pressure drop (regression slope = 1.15, R2 = 0.999, Bland-Altman agreement = 0.75 ± 3.93 mmHg). PMID:28425452

  11. Stability analysis applied to the early stages of viscous drop breakup by a high-speed gas stream

    NASA Astrophysics Data System (ADS)

    Padrino, Juan C.; Longmire, Ellen K.

    2013-11-01

    The instability of a liquid drop suddenly exposed to a high-speed gas stream behind a shock wave is studied by considering the gas-liquid motion at the drop interface. The discontinuous velocity profile given by the uniform, parallel flow of an inviscid, compressible gas over a viscous liquid is considered, and drop acceleration is included. Our analysis considers compressibility effects not only in the base flow, but also in the equations of motion for the perturbations. Recently published high-resolution images of the process of drop breakup by a passing shock have provided experimental evidence supporting the idea that a critical gas dynamic pressure can be found above which drop piercing by the growth of acceleration-driven instabilities gives way to drop breakup by liquid entrainment resulting from the gas shearing action. For a set of experimental runs from the literature, results show that, for shock Mach numbers >= 2, a band of rapidly growing waves forms in the region well upstream of the drop's equator at the location where the base flow passes from subsonic to supersonic, in agreement with experimental images. Also, the maximum growth rate can be used to predict the transition of the breakup mode from Rayleigh-Taylor piercing to shear-induced entrainment. The authors acknowledge support of the NSF (DMS-0908561).

  12. Hanging drop monoculture for selection of optimal antioxidants during in vitro maturation of porcine oocytes.

    PubMed

    Ishikawa, S; Machida, R; Hiraga, K; Hiradate, Y; Suda, Y; Tanemura, K

    2014-04-01

    We analysed the effect of three antioxidants that have different functional mechanisms on the in vitro maturation (IVM) of porcine oocytes. Single oocyte monoculture using the hanging drop (HD) system has some advantages such as improving analysis efficiency brought by the smaller number of samples than the number of oocytes cultured in one drop. Direct effects of ligands on single oocytes could also be detected without considering the effects of paracrine factors from other oocytes. After 22 h of pre-culture, denuded oocytes were cultured for 22 h with 0.01 and 0.1 μg/ml of L-carnitine (LC), lactoferrin (LF) or sulforaphane (SF) in the presence/non-presence of oxidant stress induced by H2O2 supplementation to evaluate the reducing effects against oxidative stress on nuclear maturation. As a result, compared with LC and SF, LF showed effective reduction in oxidative stress at a lower concentration (0.01 μg/ml), suggesting that LF is a more effective antioxidant in porcine oocyte IVM. Additionally, LF also increased maturation rate even in culture without H2O2. Our results clearly suggest that the HD monoculture system is useful for screening the substances that affect porcine oocyte culture. © 2014 Blackwell Verlag GmbH.

  13. Formation and Levitation of Unconfined Droplet Clusters

    NASA Technical Reports Server (NTRS)

    Liu, S.; Ruff, G. A.

    1999-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the confounding effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. The overall objective of this research is to study the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would fill a large gap in our current understanding of droplet and spray combustion and provide unique experimental data for the verification and improvement of spray combustion models. This paper describes current work on the design and performance of an apparatus to generate and stabilize droplet clusters using acoustic and electrostatic forces.

  14. Ground based research in microgravity materials processing

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Rathz, Tom

    1994-01-01

    The core activities performed during this time period have been concerned with tracking the TEMPEST experiments on the shuttle with drops of Zr, Ni, and Nb alloys. In particular a lot of Zr drops are being made to better define the recalescence characteristics of that system so that accurate comparisons of the drop tube results with Tempest can be made. A new liner, with minimal reflectivity characteristics, has been inserted into the drop tube in order to improve the recalescence measurements of the falling drops. The first installation to make the geometric measurements to ensure a proper fit has been made. The stovepipe sections are currently in the shop at MSFC being painted with low reflectivity black paint. Work has also continued on setting up the MEL apparatus obtained from Oak Ridge in the down stairs laboratory at the Drop Tube Facilities. Some ground-based experiments on the same metals as are being processed on TEMPEST are planned for the MEL. The flight schedules for the KC-135 experiments are still to be determined in the near future.

  15. Experimental study of turbulent flow heat transfer and pressure drop in plate heat exchanger with chevron plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muley, A.; Manglik, R.M.

    1999-02-01

    Experimental heat transfer and isothermal pressure drop data for single-phase water flows in a plate heat exchanger (PHE) with chevron plates are presented. In a single-pass U-type counterflow PHE, three different chevron plate arrangements are considered: two symmetric plate arrangements with {beta} = 30 deg/30 deg and 60 deg/60 deg, and one mixed-plate arrangement with {beta} = 30 deg/60 deg. For water (2 < Pr < 6) flow rates in the 600 < Re < 10{sup 4} regime, data for Nu and f are presented. The results show significant effects of both the chevron angle {beta} and surface area enlargementmore » factor {phi}. As {beta} increases, and compared to a flat-plate pack, up to two to five times higher Nu are obtained; the concomitant f, however, are 13 to 44 times higher. Increasing {phi} also has a similar, though smaller effect. Based on experimental data for Re {ge} 1000 and 30 deg {le} {beta} {le} 60 deg, predictive correlations of the form Nu = C{sub 1}({beta}) D{sub 1}({phi}) Re{sup p1({beta})} Pr{sup 1/3} ({mu}/{mu}{sub w}){sup 0.14} and f = C{sub 2}({beta}) D{sub 2}({phi}) Re{sup p2({beta})} are devised. Finally, at constant pumping power, and depending upon Re, {beta}, and {phi}, the heat transfer is found to be enhanced by up to 2.8 times that in an equivalent flat-plate channel.« less

  16. Lecithin-linker formulations for self-emulsifying delivery of nutraceuticals.

    PubMed

    Chu, Jacquelene; Cheng, Yu-Ling; Rao, A Venketeshwer; Nouraei, Mehdi; Zarate-Muñoz, Silvia; Acosta, Edgar J

    2014-08-25

    Lecithin-linker microemulsions are formulations produced with soybean lecithin in combination with a highly lipophilic (lipophilic linker) and highly hydrophilic (hydrophilic linkers) surfactant-like additives. In this work, lecithin-linker systems were formulated to produce self-emulsifying delivery systems for β-carotene and β-sitosterol. The concentration of the lipophilic linker, sorbitan monooleate, was adjusted to minimize the formation of liquid crystals. The concentration of hydrophilic linkers, decaglyceryl caprylate/caprate and PEG-6-caprylic/capric glycerides, was gradually increased (scanned) until single phase clear microemulsions were obtained. For these scans, the oil (ethyl caprate) to water ratio was set to 1. The single phase, clear microemulsions were diluted with fed-state simulated intestinal fluid (FeSSIF) and produced stable emulsions, with drop sizes close to 200 nm. Using pseudo-ternary phase diagrams to evaluate the process of dilution of microemulsion preconcentrates (mixtures of oil, lecithin and linkers with little or no water) with FeSSIF, it was determined that self-emulsifying systems are obtained when the early stages of the dilution produce single phase microemulsions. If liquid crystals or multiple phase systems are obtained during those early stages, then the emulsification yields unstable emulsions with large drop sizes. An in vitro permeability study conducted using a Flow-Thru Dialyzer revealed that stable emulsions with drop sizes of 150-300 nm produce large and irreversible permeation of β-carotene to sheep intestine. On the other hand, unstable emulsions produced without the linker combination separated in the dialyzer chamber. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The effect of leg dominance and landing height on ACL loading among female athletes.

    PubMed

    Mokhtarzadeh, Hossein; Ewing, Katie; Janssen, Ina; Yeow, Chen-Hua; Brown, Nicholas; Lee, Peter Vee Sin

    2017-07-26

    Female athletes are more prone to anterior cruciate ligament (ACL) injury. A neuromuscular imbalance called leg dominance may provide a biomechanical explanation. Therefore, the purpose of this study was to compare the side-to-side lower limb differences in movement patterns, muscle forces and ACL forces during a single-leg drop-landing task from two different heights. We hypothesized that there will be significant differences in lower limb movement patterns (kinematics), muscle forces and ACL loading between the dominant and non-dominant limbs. Further, we hypothesized that significant differences between limbs will be present when participants land from a greater drop-landing height. Eight recreational female participants performed dominant and non-dominant single-leg drop landings from 30 to 60cm. OpenSim software was used to develop participant-specific musculoskeletal models and to calculate muscle forces. We also predicted ACL loading using our previously established method. There were no significant differences between dominant and non-dominant leg landing except in ankle dorsiflexion and GMED muscle forces at peak GRF. Landing from a greater height resulted in significant differences among most kinetics and kinematics variables and ACL forces. Minimal differences in lower-limb muscle forces and ACL loading between the dominant and non-dominant legs during single-leg landing may suggest similar risk of injury across limbs in this cohort. Further research is required to confirm whether limb dominance may play an important role in the higher incidence of ACL injury in female athletes with larger and sport-specific cohorts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ultrasonication followed by single-drop microextraction combined with GC/MS for rapid determination of organochlorine pesticides from fish.

    PubMed

    Shrivas, Kamlesh; Wu, Hui-Fen

    2008-02-01

    A novel, rapid and simple sample pretreatment technique termed ultrasonication followed by single-drop micro-extraction (U-SDME) has been developed and combined with GC/MS for the determination of organochlorine pesticides (OCPs) in fish. In the present work, the lengthy procedures generally used in the conventional methods like, Soxhlet extraction, supercritical fluid extraction, pressurized liquid extraction and microwave assisted solvent extraction for extraction of OCPs from fish tissues are minimized by the use of two simple extraction procedures. Firstly, OCPs from fish were extracted in organic solvent with ultrasonication and then subsequently preconcentrated by single-drop micro-extraction (SDME). Extraction parameters of ultrasonication and SDME were optimized in spiked sample solution in order to obtain efficient extraction of OCPs from fish tissues. The calibration curves for OCPs were found to be linear between 10-1000 ng/g with correlation of estimations in the range 0.990-0.994. The recoveries obtained in blank fish tissues were ranged from 82.1 to 95.3%. The LOD and RSD for determination of OCPs in fish were 0.5 ng/g and 9.4-10.0%, respectively. The proposed method was applied for the determination of bioconcentration factor in fish after exposure to different concentrations of OCPs in cultured water. The present method avoids the co-extraction of lipids, long extraction steps (>12 h) and large amount of organic solvent for the separation of OCPs. The main advantages of the present method are rapid, selective, sensitive and low cost for the determination of OCPs in fish.

  19. Cutting a Drop of Water Pinned by Wire Loops Using a Superhydrophobic Surface and Knife

    PubMed Central

    Yanashima, Ryan; García, Antonio A.; Aldridge, James; Weiss, Noah; Hayes, Mark A.; Andrews, James H.

    2012-01-01

    A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation. PMID:23029297

  20. Electrohydrodynamic generation of millimetric drops and control of electrification

    NASA Astrophysics Data System (ADS)

    Yun, Sungchan

    2017-07-01

    We report a simple method for millimetric drop generation by electrohydrodynamic (EHD) detachment using a conventional nozzle-ring device. The EHD detachment method provides distinct features of uniform-size and controlled electrification of millimetric drops. The drop dynamics of detachment and shape oscillation are recorded using a high-speed camera and analyzed for several dc voltages applied to the electrode. Experimental studies show that an oscillation frequency can be closely related to the amount of electric charge, which can be explained based on both effective interfacial tension and inviscid Rayleigh and Lamb frequency. Furthermore, we present a concept to generate a neutral drop by adjusting the duration time of a pulse signal and discuss a drop oscillation induced by the detachment. This study can provide potential implications for drop manipulation, such as transporting, merging, and mixing, in microfluidic platforms.

  1. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping.

    PubMed

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    1987-08-01

    In the literature, athletes preparing for explosive activities are recommended to include drop jumping in their training programs. For the execution of drop jumps, different techniques and different dropping heights can be used. This study was designed to investigate for the performance of bounce drop jumps the influence of dropping height on the biomechanics of the jumps. Six subjects executed bounce drop jumps from heights of 20 cm (designated here as DJ20), 40 cm (designated here as DJ40), and 60 cm (designated here as DJ60). During jumping, they were filmed, and ground reaction forces were recorded. The results of a biomechanical analysis show no difference between DJ20 and DJ40 in mechanical output about the joints during the push-off phase. Peak values of moment and power output about the ankles during the push-off phase were found to be smaller in DJ60 than in DJ40 (DJ20 = DJ60). The amplitude of joint reaction forces increased with dropping height. During DJ60, the net joint reaction forces showed a sharp peak on the instant that the heels came down on the ground. Based on the results, researchers are advised to limit dropping height to 20 or 40 cm when investigating training effects of the execution of bounce drop jumps.

  2. The wavelength dependent model of extinction in fog and haze for free space optical communication.

    PubMed

    Grabner, Martin; Kvicera, Vaclav

    2011-02-14

    The wavelength dependence of the extinction coefficient in fog and haze is investigated using Mie single scattering theory. It is shown that the effective radius of drop size distribution determines the slope of the log-log dependence of the extinction on wavelengths in the interval between 0.2 and 2 microns. The relation between the atmospheric visibility and the effective radius is derived from the empirical relationship of liquid water content and extinction. Based on these results, the model of the relationship between visibility and the extinction coefficient with different effective radii for fog and for haze conditions is proposed.

  3. Oral Tranexamic Acid Reduces Transfusions in Total Knee Arthroplasty.

    PubMed

    Perreault, Roger E; Fournier, Christine A; Mattingly, David A; Junghans, Richard P; Talmo, Carl T

    2017-10-01

    Tranexamic acid (TXA) reduces intraoperative blood loss and transfusions in patients undergoing total knee arthroplasty. Although numerous studies demonstrate the efficacy of intravenous and topical TXA in these patients, few demonstrate the effectiveness and appropriate dosing recommendations of oral formulations. A retrospective cohort study was performed to evaluate differences in transfusion requirements in patients undergoing primary unilateral total knee arthroplasty with either no TXA (n = 866), a single-dose of oral TXA (n = 157), or both preoperative and postoperative oral TXA (n = 1049). Secondary outcomes included postoperative hemoglobin drop, total units transfused, length of stay, drain output, and cell salvage volume. Transfusion rates decreased from 15.4% in the no-oral tranexamic acid (OTA) group to 9.6% in the single-dose OTA group (P < .001) and 7% in the 2-dose group (P < .001), with no difference in transfusion rates between the single- and 2-dose groups (P = .390). In addition, postoperative hemoglobin drop was reduced from 4.2 g/dL in the no-OTA group to 3.5 g/dL in the single-dose group (P < .01) and to 3.4 g/dL in the 2-dose group (P < .01), without a difference between the single- and 2-dose groups (P = .233). OTA reduces transfusions, with greater ease of administration and improved cost-effectiveness relative to other forms of delivery. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Drop-out phagemid vector for switching from phage displayed affinity reagents to expression formats.

    PubMed

    Pershad, Kritika; Sullivan, Mark A; Kay, Brian K

    2011-05-15

    Affinity reagents that are generated by phage display are typically subcloned into an expression vector for further biochemical characterization. This insert transfer process is time consuming and laborious especially if many inserts are to be subcloned. To simplify the transfer process, we have constructed a "drop-out" phagemid vector that can be rapidly converted to an expression vector by a simple restriction enzyme digestion with MfeI (to "drop-out" the gene III coding sequence), which generates alkaline phosphatase (AP) fusions of the affinity reagents on religation. Subsequently, restriction digestion with AscI drops out the AP coding region and religation generates affinity reagents with a C-terminal six-histidine tag. To validate the usefulness of this vector, four different human single chain Fragments of variable regions (scFv) were tested, three of which show specific binding to three zebrafish (Danio rerio) proteins, namely suppression of tumorigenicity 13, recoverin, and Ppib and the fourth binds to human Lactoferrin protein. For each of the constructs tested, the gene III and AP drop-out efficiency was between 90% and 100%. This vector is especially useful in speeding up the downstream screening of affinity reagents and bypassing the time-consuming subcloning experiments. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Heat transfer and pressure drop of condensation of hydrocarbons in tubes

    NASA Astrophysics Data System (ADS)

    Fries, Simon; Skusa, Severin; Luke, Andrea

    2018-03-01

    The heat transfer coefficient and pressure drop are investigated for propane. Two different mild steel plain tubes and saturation pressures are considered for varying mass flux and vapour quality. The pressure drop is compared to the Friedel-Correlation with two different approaches to determine the friction factor. The first is calculation as proposed by Friedel and the second is through single phase pressure drop investigations. For lower vapour qualities the experimental results are in better agreement with the approach of the calculated friction factor. For higher vapour qualities the experimental friction factor is more precise. The pressure drop increases for a decreasing tube diameter and saturation pressure. The circumferential temperature profile and heat transfer coefficients are shown for a constant vapour quality at varying mass fluxes. The subcooling is highest for the bottom of the tube and lowest for the top. The average subcooling as well as the circumferential deviation decreases for rising mass fluxes. The averaged heat transfer coefficients are compared to the model proposed by Thome and Cavallini. The experimental results are in good agreement with both correlations, however the trend is better described with the correlation from Thome. The experimental heat transfer coefficients are under predicted by Thome and over predicted by Cavallini.

  6. Evaporation of droplets in a Champagne wine aerosol

    PubMed Central

    Ghabache, Elisabeth; Liger-Belair, Gérard; Antkowiak, Arnaud; Séon, Thomas

    2016-01-01

    In a single glass of champagne about a million bubbles nucleate on the wall and rise towards the surface. When these bubbles reach the surface and rupture, they project a multitude of tiny droplets in the form of a particular aerosol holding a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in idealized champagnes, the key features of the champagne aerosol are identified. In particular, we show that film drops, critical in sea spray for example, are here nonexistent. We then demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. There, conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of flavor release during sparkling wine tasting, a major issue for the sparkling wine industry. PMID:27125240

  7. Effects of adaptive degrees of trust on coevolution of quantum strategies on scale-free networks.

    PubMed

    Li, Qiang; Chen, Minyou; Perc, Matjaž; Iqbal, Azhar; Abbott, Derek

    2013-10-15

    We study the impact of adaptive degrees of trust on the evolution of cooperation in the quantum prisoner's dilemma game. In addition to the strategies, links between players are also subject to evolution. Starting with a scale-free interaction network, players adjust trust towards their neighbors based on received payoffs. The latter governs the strategy adoption process, while trust governs the rewiring of links. As soon as the degree of trust towards a neighbor drops to zero, the link is rewired to another randomly chosen player within the network. We find that for small temptations to defect cooperators always dominate, while for intermediate and strong temptations a single quantum strategy is able to outperform all other strategies. In general, reciprocal trust remains within close relationships and favors the dominance of a single strategy. Due to coevolution, the power-law degree distributions transform to Poisson distributions.

  8. Effects of adaptive degrees of trust on coevolution of quantum strategies on scale-free networks

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Chen, Minyou; Perc, Matjaž; Iqbal, Azhar; Abbott, Derek

    2013-10-01

    We study the impact of adaptive degrees of trust on the evolution of cooperation in the quantum prisoner's dilemma game. In addition to the strategies, links between players are also subject to evolution. Starting with a scale-free interaction network, players adjust trust towards their neighbors based on received payoffs. The latter governs the strategy adoption process, while trust governs the rewiring of links. As soon as the degree of trust towards a neighbor drops to zero, the link is rewired to another randomly chosen player within the network. We find that for small temptations to defect cooperators always dominate, while for intermediate and strong temptations a single quantum strategy is able to outperform all other strategies. In general, reciprocal trust remains within close relationships and favors the dominance of a single strategy. Due to coevolution, the power-law degree distributions transform to Poisson distributions.

  9. Biosensor based on tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode for detection of epinephrine

    PubMed Central

    Apetrei, Irina Mirela; Apetrei, Constantin

    2013-01-01

    A biosensor comprising tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode has been developed. The sensitive element, ie, tyrosinase, was immobilized using a drop-and-dry method followed by cross-linking. Tyrosinase maintained high bioactivity on this nanomaterial, catalyzing the oxidation of epinephrine to epinephrine-quinone, which was electrochemically reduced (−0.07 V versus Ag/AgCl) on the biosensor surface. Under optimum conditions, the biosensor showed a linear response in the range of 10–110 μM. The limit of detection was calculated to be 2.54 μM with a correlation coefficient of 0.977. The repeatability, expressed as the relative standard deviation for five consecutive determinations of 10−5 M epinephrine solution was 3.4%. A good correlation was obtained between results obtained by the biosensor and those obtained by ultraviolet spectrophotometric methods. PMID:24348034

  10. Pre-analytic evaluation of volumetric absorptive microsampling and integration in a mass spectrometry-based metabolomics workflow.

    PubMed

    Volani, Chiara; Caprioli, Giulia; Calderisi, Giovanni; Sigurdsson, Baldur B; Rainer, Johannes; Gentilini, Ivo; Hicks, Andrew A; Pramstaller, Peter P; Weiss, Guenter; Smarason, Sigurdur V; Paglia, Giuseppe

    2017-10-01

    Volumetric absorptive microsampling (VAMS) is a novel approach that allows single-drop (10 μL) blood collection. Integration of VAMS with mass spectrometry (MS)-based untargeted metabolomics is an attractive solution for both human and animal studies. However, to boost the use of VAMS in metabolomics, key pre-analytical questions need to be addressed. Therefore, in this work, we integrated VAMS in a MS-based untargeted metabolomics workflow and investigated pre-analytical strategies such as sample extraction procedures and metabolome stability at different storage conditions. We first evaluated the best extraction procedure for the polar metabolome and found that the highest number and amount of metabolites were recovered upon extraction with acetonitrile/water (70:30). In contrast, basic conditions (pH 9) resulted in divergent metabolite profiles mainly resulting from the extraction of intracellular metabolites originating from red blood cells. In addition, the prolonged storage of blood samples at room temperature caused significant changes in metabolome composition, but once the VAMS devices were stored at - 80 °C, the metabolome remained stable for up to 6 months. The time used for drying the sample did also affect the metabolome. In fact, some metabolites were rapidly degraded or accumulated in the sample during the first 48 h at room temperature, indicating that a longer drying step will significantly change the concentration in the sample. Graphical abstract Volumetric absorptive microsampling (VAMS) is a novel technology that allows single-drop blood collection and, in combination with mass spectrometry (MS)-based untargeted metabolomics, represents an attractive solution for both human and animal studies. In this work, we integrated VAMS in a MS-based untargeted metabolomics workflow and investigated pre-analytical strategies such as sample extraction procedures and metabolome stability at different storage conditions. The latter revealed that prolonged storage of blood samples at room temperature caused significant changes in metabolome composition, but if VAMS devices were stored at - 80 °C, the metabolome remained stable for up to 6 months.

  11. Meso-scale controlled motion for a microfluidic drop ejector.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galambos, Paul C.; Givler, Richard C.; Pohl, Kenneth Roy

    2004-12-01

    The objective of this LDRD was to develop a uniquely capable, novel droplet solution based manufacturing system built around a new MEMS drop ejector. The development all the working subsystems required was completed, leaving the integration of these subsystems into a working prototype still left to accomplish. This LDRD report will focus on the three main subsystems: (1) MEMS drop ejector--the MEMS ''sideshooter'' effectively ejected 0.25 pl drops at 10 m/s, (2) packaging--a compact ejector package based on a modified EMDIP (Electro-Microfluidic Dual In-line Package--SAND2002-1941) was fabricated, and (3) a vision/stage system allowing precise ejector package positioning in 3 dimensionsmore » above a target was developed.« less

  12. Influence of dislocations and second phases on the magnetostrictive behavior of iron-gallium and other iron alloy single crystals

    NASA Astrophysics Data System (ADS)

    Saha, Biswadeep

    Rare-earth-free Fe-Ga magnetostrictive alloys exhibit an excellent combination of large low-field magnetostriction, strength, ductility, wide operating temperature range, and low cost. Various observations in these and other alpha-Fe-based magnetostrictive alloys suggest that lattice strain modulations that are influenced by solute elements, near neighbor atomic environments around Fe atoms, coherent and incoherent precipitates, and structural defects such as dislocations likely play an important role in their magnetostrictive behavior. In the first part, the effect of dislocations on the magnetostriction of Fe-Ga single crystals was examined. The [001]- and [126]-oriented Fe-20 at.% Ga single crystal samples were deformed in a controlled way to introduce dislocation arrays with two different array geometries. Magnetostriction values showed a much lower decrease after deformation for the case of a [001]-oriented crystal, where eight different slip systems were operative and consequently eight different sets of dislocation arrays are expected. A drastic drop in magnetostriction measured along the sample axis is observed in the sample subjected to a small strain by deformation of a [126]-oriented crystal during which slip occurred on only one slip system. The nature of strain modulation introduced in this case was spatially asymmetric. The [126] deformation was accompanied by an acoustic emission during the formation of slip band. Transmission electron microscopy was carried out to examine the nature of dislocation distribution. The results show that the nature of strain modulation introduced by the dislocation arrays has a strong influence on the magnetostrictive behavior of magnetostrictive alloys. In the second part of this research, the effect of Mo addition to Fe was examined in detail. Addition of Mo to Fe increased the magnetostriction (3/2)lambda100 Fe very rapidly to 137 ppm at 10 at.% Mo, the highest value observed in these alloys. Further Mo additions decreased the magnetostriction. Magnetization data show a drastic drop in magnetization to 63 emu/gm for Fe-20 at.% Mo from 176 emu/gm for Fe-10 at.% Mo suggesting the formation large amounts of nonmagnetic second phase and reduction in total Fe content of the alloy. The drop in magnetostriction at higher Mo contents is associated with the formation of a second phase.

  13. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays

    PubMed Central

    Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu

    2017-01-01

    The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to deposit the Au-Ag triangle hexagonal periodic nanoparticle arrays. The SEM images showed that as the single-layer PS nanosphere mask was well controlled, the thermal evaporation could deposit the Au-Ag triangle hexagonal nanoparticle arrays with a higher quality than the other two methods. PMID:28772741

  14. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays.

    PubMed

    Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu

    2017-04-03

    The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to deposit the Au-Ag triangle hexagonal periodic nanoparticle arrays. The SEM images showed that as the single-layer PS nanosphere mask was well controlled, the thermal evaporation could deposit the Au-Ag triangle hexagonal nanoparticle arrays with a higher quality than the other two methods.

  15. Dynamics of ions in a water drop using the AMOEBA polarizable force field

    NASA Astrophysics Data System (ADS)

    Thaunay, Florian; Ohanessian, Gilles; Clavaguéra, Carine

    2017-03-01

    Various ions carrying a charge from -2 to +3 were confined in a drop of 100 water molecules as a way to model coordination properties inside the cluster and at the interface. The behavior of the ions has been followed by molecular dynamics with the AMOEBA polarizable force field. Multiply charged ions and small singly charged ions are found to lie inside the droplet, while bigger monovalent ions sit near the surface. The results provide a coherent picture of average structural properties as well as residence times for which a general trend is proposed, especially for the anions.

  16. Jetting from impact of a spherical drop with a deep layer

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Toole, Jameson; Fazzaa, Kamel; Deegan, Robert; Deegan Group Team; X-Ray Science Division, Advanced Photon Source Collaboration

    2011-11-01

    We performed an experimental study of jets during the impact of a spherical drop with a deep layer of same liquid. Using high speed optical and X-ray imaging, we observe two types of jets: the so-called ejecta sheet which emerges almost immediately after impact and the lamella which emerges later. For high Reynolds number the two jets are distinct, while for low Reynolds number the two jets combine into a single continuous jet. We also measured the emergence time, speed, and position of the ejecta sheet and found simple scaling relations for these quantities.

  17. Electrowetting on semiconductors

    NASA Astrophysics Data System (ADS)

    Palma, Cesar; Deegan, Robert

    2015-01-01

    Applying a voltage difference between a conductor and a sessile droplet sitting on a thin dielectric film separating it from the conductor will cause the drop to spread. When the conductor is a good metal, the change of the drop's contact angle due to the voltage is given by the Young-Lippmann (YL) equation. Here, we report experiments with lightly doped, single crystal silicon as the conductive electrode. We derive a modified YL equation that includes effects due to the semiconductor and contact line pinning. We show that light induces a non-reversible wetting transition, and that our model agrees well with our experimental results.

  18. Search for free fractional electric charge elementary particles using an automated millikan oil drop technique

    PubMed

    Halyo; Kim; Lee; Lee; Loomba; Perl

    2000-03-20

    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied-about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0. 16e ( e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71x10(-22) particles per nucleon with 95% confidence.

  19. VARIATION IN CHOLINESTERASE ACTIVITY IN TISSUES OF RATS AT DIFFERENT TIMES AFTER IRRADIATION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubkova, S.R.; Chernavskaya, N.M.

    1959-06-11

    It was found that a single lethal dose (1000 r) changes the cholinesterase activity in the brain, liver, and blood serum. After 5 hr and 45 min the cholinesterase activity in tissues drops from the normal level (15.9% in blood serum, 20.6% in the brain, and 18.4% in the liver). After three days the activity changes in various tissues: in the liver it continues to drop, in the brain it rises but does not reach the standard level, and it increases sharply in the blood serum. (R.V.J.)

  20. Cell fixation and preservation for droplet-based single-cell transcriptomics.

    PubMed

    Alles, Jonathan; Karaiskos, Nikos; Praktiknjo, Samantha D; Grosswendt, Stefanie; Wahle, Philipp; Ruffault, Pierre-Louis; Ayoub, Salah; Schreyer, Luisa; Boltengagen, Anastasiya; Birchmeier, Carmen; Zinzen, Robert; Kocks, Christine; Rajewsky, Nikolaus

    2017-05-19

    Recent developments in droplet-based microfluidics allow the transcriptional profiling of thousands of individual cells in a quantitative, highly parallel and cost-effective way. A critical, often limiting step is the preparation of cells in an unperturbed state, not altered by stress or ageing. Other challenges are rare cells that need to be collected over several days or samples prepared at different times or locations. Here, we used chemical fixation to address these problems. Methanol fixation allowed us to stabilise and preserve dissociated cells for weeks without compromising single-cell RNA sequencing data. By using mixtures of fixed, cultured human and mouse cells, we first showed that individual transcriptomes could be confidently assigned to one of the two species. Single-cell gene expression from live and fixed samples correlated well with bulk mRNA-seq data. We then applied methanol fixation to transcriptionally profile primary cells from dissociated, complex tissues. Low RNA content cells from Drosophila embryos, as well as mouse hindbrain and cerebellum cells prepared by fluorescence-activated cell sorting, were successfully analysed after fixation, storage and single-cell droplet RNA-seq. We were able to identify diverse cell populations, including neuronal subtypes. As an additional resource, we provide 'dropbead', an R package for exploratory data analysis, visualization and filtering of Drop-seq data. We expect that the availability of a simple cell fixation method will open up many new opportunities in diverse biological contexts to analyse transcriptional dynamics at single-cell resolution.

  1. [Preliminary exploration on knockout drops (Meng Han Agents)].

    PubMed

    Zhang, Z

    1996-05-01

    This author points out, based on relevant materials, that knockout drops were vertigo powder. Due to homophonic reasons in Chinese language, the term "mingxuan" was transliterated into the former Chinese term (menghan). Knockout drops for medicinal use were merely made up of compound recipes containing stramonium flowers. The knockout drops in old fictions and opera books were powder of stramonium flower. The ingredients and application of such recipes are discussed here, the anti-remedies for such recipes are also mentioned.

  2. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrelmore » of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).« less

  3. Spreading dynamics of superposed liquid drops on a spinning disk

    NASA Astrophysics Data System (ADS)

    Sahoo, Subhadarshinee; Orpe, Ashish V.; Doshi, Pankaj

    2018-01-01

    We have experimentally studied simultaneous spreading of superposed drops of two Newtonian liquids on top of a horizontal spinning disk using the flow visualization technique. An inner drop of high surface tension liquid is placed centrally on the disk followed by a drop of outer liquid (lower surface tension) placed exactly above that. The disk is then rotated at a desired speed for a range of volume ratios of two liquids. Such an arrangement of two superposed liquid drops does not affect the spreading behavior of the outer liquid but influences that of the inner liquid significantly. The drop spreads to a larger extent and breaks into more fingers (Nf) as compared to the case where the same liquid is spreading in the absence of outer liquid. The experimentally observed number of fingers is compared with the prediction using available theory for single liquid. It is found that the theory over-predicts the value of Nf for the inner liquid while it is covered by an outer liquid. We provide a theoretical justification for this observation using linear stability analysis. Our analysis demonstrates that for small but finite surface tension ratio of the two liquids, the presence of the outer interface reduces the value of the most unstable wave number which is equivalent to the decrease in the number of fingers observed experimentally. Finally, sustained rotation of the disk leads to the formation of droplets at the tip of the fingers traveling outwards.

  4. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2012-08-10

    The pressure drop and temperature drop on columns packed with 3- and 5-micron particles were measured using neat CO(2) at a flow rate of 5 mL/min, at temperatures from 20°C to 100°C, and outlet pressures from 80 to 300 bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath either bare or covered with foam insulation. The results show that the pressure drop depends on the outlet pressure, the operating temperature, and the thermal environment. A temperature drop was observed for all conditions studied. The temperature drop was relatively small (less than 3°C) for combinations of low temperature and high pressure. Larger temperature drops and density drops occurred at higher temperatures and low to moderate pressures. Covering the column with thermal insulation resulted in larger temperature drops and corresponding smaller density drops. At 20°C the temperature drop was never more than a few degrees. The largest temperature drops occurred for both columns when insulated at 80°C and 80 bar, reaching a maximum value of 21°C for the 5-micron column, and 26°C for the 3-micron column. For an adiabatic column, the temperature drop depends on the pressure drop, the thermal expansion coefficient, and the density and the heat capacity of the mobile phase fluid, and can be described by a simple mathematical relationship. For a fixed operating temperature and outlet pressure, the temperature drop increases monotonically with the pressure drop. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Why Doesn't the "High School Drop Out Rate" Drop?

    ERIC Educational Resources Information Center

    Truby, William F.

    2016-01-01

    This article provides information, questions, and answers about current approaches to dropping the dropout rate of our students. For example, our current model of education is based on the mass production or assembly line model promoted by Henry Ford back in early years of the 1900s (1900-1920). This model served both factory production and…

  6. Fabrication and Operation of Microfluidic Hanging-Drop Networks.

    PubMed

    Misun, Patrick M; Birchler, Axel K; Lang, Moritz; Hierlemann, Andreas; Frey, Olivier

    2018-01-01

    The hanging-drop network (HDN) is a technology platform based on a completely open microfluidic network at the bottom of an inverted, surface-patterned substrate. The platform is predominantly used for the formation, culturing, and interaction of self-assembled spherical microtissues (spheroids) under precisely controlled flow conditions. Here, we describe design, fabrication, and operation of microfluidic hanging-drop networks.

  7. Soft Listeria: actin-based propulsion of liquid drops.

    PubMed

    Boukellal, Hakim; Campás, Otger; Joanny, Jean-François; Prost, Jacques; Sykes, Cécile

    2004-06-01

    We study the motion of oil drops propelled by actin polymerization in cell extracts. Drops deform and acquire a pearlike shape under the action of the elastic stresses exerted by the actin comet, a tail of cross-linked actin filaments. We solve this free boundary problem and calculate the drop shape taking into account the elasticity of the actin gel and the variation of the polymerization velocity with normal stress. The pressure balance on the liquid drop imposes a zero propulsive force if gradients in surface tension or internal pressure are not taken into account. Quantitative parameters of actin polymerization are obtained by fitting theory to experiment.

  8. Spreading of Electrolyte Drops on Charged Surfaces: Electric Double Layer Effects on Drop Dynamics

    NASA Astrophysics Data System (ADS)

    Bae, Kyeong; Sinha, Shayandev; Chen, Guang; Das, Siddhartha

    2015-11-01

    Drop spreading is one of the most fundamental topics of wetting. Here we study the spreading of electrolyte drops on charged surfaces. The electrolyte solution in contact with the charged solid triggers the formation of an electric double layer (EDL). We develop a theory to analyze how the EDL affects the drop spreading. The drop dynamics is studied by probing the EDL effects on the temporal evolution of the contact angle and the base radius (r). The EDL effects are found to hasten the spreading behaviour - this is commensurate to the EDL effects causing a ``philic'' tendency in the drops (i.e., drops attaining a contact angle smaller than its equilibrium value), as revealed by some of our recent papers. We also develop scaling laws to illustrate the manner in which the EDL effects make the r versus time (t) variation deviate from the well known r ~tn variation, thereby pinpointing the attainment of different EDL-mediated spreading regimes.

  9. Clustering of particles and pathogens within evaporating drops

    NASA Astrophysics Data System (ADS)

    Park, Jaebum; Kim, Ho-Young

    2017-11-01

    The evaporation of sessile suspension drops leads to accumulation of the particles around the pinned contact line, which is widely termed the coffee ring effect. However, the evaporation behavior of a liquid drop containing a small number of particles with the size comparable to the host drop is unclear yet. Thus, here we investigate the motion and spatial distribution of large particles within a sessile drop. The spherical particles cluster only when their initial distance is below a critical value, which is a function of the diameter and wettability of particle as well as the surface tension and size of the host drop. We rationalize such a critical distance for self-assembly based on the balance of the capillary force and the frictional resistance to sliding and rolling of the particles on a solid substrate. We further discuss the physical significance of this drop-mediated ``Cheerios effect'' in connection with the fate of pathogens residing in drops as a result of sneezing and coughing.

  10. Impact of Microorganisms on the Dynamics of Unsaturated Flow Within Fractures

    NASA Astrophysics Data System (ADS)

    Stoner, D. L.; Stedtfeld, R. D.; Tyler, T. L.; White, F. J.; McJunkin, T. R.

    2002-12-01

    Understanding the impact of microorganisms on fluid flow in groundwater and subsurface environments is of significance because of the importance of natural water resources, contaminant transport, and in situ bioprocesses such as mineral dissolution and recovery, enhanced oil recovery, and remediation. In this study, the impact of microorganisms and nutrient amendments on the behavior of water within a fracture system was evaluated using an experimental system comprised of limestone blocks and a groundwater isolate, {\\ it Sphingomonas} sp. Four blocks (25 cm x 6.6 cm x 5 cm) were configured to make a vertical fracture (50.2 x 5 x 0.07 cm) that was intersected by a horizontal fracture (13.4 x 5 x 0.1 cm). To monitor the behavior of water within the fracture, 5 optical sensors each consisting of a light emitting diode and photocell were installed external to the vertical fracture. Two were installed above the fracture intersection, two below and one at the intersection. The presence of fluid in the fracture was detected as a decrease in light transmission as the fluid passed by each detector. Drop interval (the period of time between succeeding drops at the same detector) and drop width (the period of time it took for a water drop or stream to pass by each detector) data were collected for each of the five detectors. Liquids were introduced via a single needle at the top of the fracture at a rate of 0.5 ml/min. Deionized water, which had been chemically equilibrated with the limestone rock, was the control medium to which 1) cells; 2) cells with 0.01% yeast extract; 3) cells with 0.1% yeast extract; and 4) cells with 0.1% yeast extract and 30 mM urea were added. For the equilibrated water, drop intervals and drop widths above the fracture intersection were ~1 s and <0.1 s, respectively. Drop intervals and drop widths at and below the intersection were ~100 s and ~10 s, respectively. Above the fracture intersection, the addition of cells or cells with 0.01% yeast extract had little effect on drop intervals and drop widths. At and below the intersection, however, drop intervals increased to ~500 s and drop widths to ~10 s. Later with the addition of 0.1% yeast extract or 0.1% yeast extract with urea, drop interval and drop width immediately increased at locations above the fracture intersection and within 24 hours, continuous streaming was observed. For the lower sensors, drop interval and drop width initially decreased, followed by continuous streaming the day after the 0.1% yeast extract and urea was added to the system. In conclusion, the dynamics of drop behavior in fracture systems is a complex process that is impacted by the presence of bacteria and nutrient amendments as well as the fracture configuration.

  11. All solid-state high power microwave source with high repetition frequency.

    PubMed

    Bragg, J-W B; Sullivan, W W; Mauch, D; Neuber, A A; Dickens, J C

    2013-05-01

    An all solid-state, megawatt-class high power microwave system featuring a silicon carbide (SiC) photoconductive semiconductor switch (PCSS) and a ferrimagnetic-based, coaxial nonlinear transmission line (NLTL) is presented. A 1.62 cm(2), 50 kV 4H-SiC PCSS is hard-switched to produce electrical pulses with 7 ns full width-half max (FWHM) pulse widths at 2 ns risetimes in single shot and burst-mode operation. The PCSS resistance drops to sub-ohm when illuminated with approximately 3 mJ of laser energy at 355 nm (tripled Nd:YAG) in a single pulse. Utilizing a fiber optic based optical delivery system, a laser pulse train of four 7 ns (FWHM) signals was generated at 65 MHz repetition frequency. The resulting electrical pulse train from the PCSS closely follows the optical input and is utilized to feed the NLTL generating microwave pulses with a base microwave-frequency of about 2.1 GHz at 65 MHz pulse repetition frequency (prf). Under typical experimental conditions, the NLTL produces sharpened output risetimes of 120 ps and microwave oscillations at 2-4 GHz that are generated due to damped gyromagnetic precession of the ferrimagnetic material's axially pre-biased magnetic moments. The complete system is discussed in detail with its output matched into 50 Ω, and results covering MHz-prf in burst-mode operation as well as frequency agility in single shot operation are discussed.

  12. Full-duplex lightwave transport systems based on long-haul SMF and optical free-space transmissions.

    PubMed

    Chen, Chia-Yi; Lu, Hai-Han; Lin, Ying-Pyng; Wu, Po-Yi; Wu, Kuan-Hung; Yaug, Wei-Yuan

    2013-10-07

    A full-duplex lightwave transport system employing wavelength-division-multiplexing (WDM) and optical add-drop multiplexing techniques, as well as optical free-space transmission scheme is proposed and experimentally demonstrated. Over an 80-km single-mode fiber (SMF) and 2.4 m optical free-space transmissions, impressive bit error rate (BER) performance is obtained for long-haul fiber link and finite free-space transmission distance. Such a full-duplex lightwave transport system based on long-haul SMF and optical free-space transmissions has been successfully demonstrated, which cannot only present its advancement in lightwave application, but also reveal its simplicity and convenience for the real implementation. Our proposed systems are suitable for the lightwave communication systems in wired and wireless transmissions.

  13. Effect of the pool depth on drop impact splashing

    NASA Astrophysics Data System (ADS)

    Chizari, Hossain; Thoraval, Marie-Jean

    2017-11-01

    We investigate the effect of the pool depth on the splashing dynamics of drop impact. The splashing of a single drop impacting into a deep pool or on wet surface has been investigated for many years both numerically and experimentally. However, recent results have demonstrated the importance of the vorticity produced during the impact on the splashing behavior. More specifically, the shedding of a vortex ring inside the liquid during the impact can separate the splash jet into several parts. The shedding of the vorticity can be influenced by the proximity of the bottom of the pool, if the pool depth is small enough. We study here how the pool depth can affect the vorticity shedding and the resulting splashing jets. We perform axisymmetric numerical simulations of the impacts with the open sources codes Gerris and Basilisk, and systematically vary the impact conditions, focusing on the effect of pool depth in the splashing regimes.

  14. Teaching DNA Fingerprinting using a Hands-on Simulation.

    ERIC Educational Resources Information Center

    Schug, Thatcher

    1998-01-01

    Presents an inexpensive hands-on lesson in DNA fingerprinting that can be completed in a single class period. Involves students in solving a murder in which a drop of blood is fingerprinted and matched with the blood of the murderer. (DDR)

  15. Numerical Simulations of the Digital Microfluidic Manipulation of Single Microparticles.

    PubMed

    Lan, Chuanjin; Pal, Souvik; Li, Zhen; Ma, Yanbao

    2015-09-08

    Single-cell analysis techniques have been developed as a valuable bioanalytical tool for elucidating cellular heterogeneity at genomic, proteomic, and cellular levels. Cell manipulation is an indispensable process for single-cell analysis. Digital microfluidics (DMF) is an important platform for conducting cell manipulation and single-cell analysis in a high-throughput fashion. However, the manipulation of single cells in DMF has not been quantitatively studied so far. In this article, we investigate the interaction of a single microparticle with a liquid droplet on a flat substrate using numerical simulations. The droplet is driven by capillary force generated from the wettability gradient of the substrate. Considering the Brownian motion of microparticles, we utilize many-body dissipative particle dynamics (MDPD), an off-lattice mesoscopic simulation technique, in this numerical study. The manipulation processes (including pickup, transport, and drop-off) of a single microparticle with a liquid droplet are simulated. Parametric studies are conducted to investigate the effects on the manipulation processes from the droplet size, wettability gradient, wetting properties of the microparticle, and particle-substrate friction coefficients. The numerical results show that the pickup, transport, and drop-off processes can be precisely controlled by these parameters. On the basis of the numerical results, a trap-free delivery of a hydrophobic microparticle to a destination on the substrate is demonstrated in the numerical simulations. The numerical results not only provide a fundamental understanding of interactions among the microparticle, the droplet, and the substrate but also demonstrate a new technique for the trap-free immobilization of single hydrophobic microparticles in the DMF design. Finally, our numerical method also provides a powerful design and optimization tool for the manipulation of microparticles in DMF systems.

  16. Falling drops skating on a film of air

    NASA Astrophysics Data System (ADS)

    Rubinstein, Shmuel

    2012-02-01

    When a raindrop hits a window, the surface immediately becomes wet as the water spreads. Indeed, this common observation of a drop impacting a surface is ubiquitous in our everyday experience. I will show that the impact of a drop on a surface is a much richer, more complex phenomenon than our simple experience may suggests: To completely wet the surface the drop must first expel all the air beneath it; however, this does not happened instantaneously. Instead, a very thin film of air, only a few tens of nanometers thick, remains trapped between the falling drop and the surface as the fluid spreads. The thin film of air serves to lubricate the drop enabling the fluid to skate laterally outward at strikingly high velocities. Simultaneously, the wetting fluid spreads inward at a much slower velocity, trapping a bubble of air within the drop. However, these events occur at diminutive length scales and fleeting time scales; therefore, to visualize them we develop new imaging modalities that are sensitive to the behavior right at the surface and that have time resolution superior to even the very fastest cameras. These imaging techniques reveal that the ultimate wetting of the surface occurs through a completely new mechanism, the breakup of the thin film of air through a spinodal like dewetting process that breaks the cylindrical symmetry of the impact and drives an anomalously rapid spreading of a wetting front. These results are in accord with recent theoretical predictions and challenge the prevailing paradigm in which contact between the liquid and solid occurs immediately, and spreading is dominated by the dynamics of a single contact line.

  17. Stable stress‐drop measurements and their variability: Implications for ground‐motion prediction

    USGS Publications Warehouse

    Hanks, Thomas C.; Baltay, Annemarie S.; Beroza, Gregory C.

    2013-01-01

    We estimate the arms‐stress drop, Graphic, (Hanks, 1979) using acceleration time records of 59 earthquakes from two earthquake sequences in eastern Honshu, Japan. These acceleration‐based static stress drops compare well to stress drops calculated for the same events by Baltay et al. (2011) using an empirical Green’s function (eGf) approach. This agreement supports the assumption that earthquake acceleration time histories in the bandwidth between the corner frequency and a maximum observed frequency can be considered white, Gaussian, noise. Although the Graphic is computationally simpler than the eGf‐based Graphic‐stress drop, and is used as the “stress parameter” to describe the earthquake source in ground‐motion prediction equations, we find that it only compares well to the Graphic at source‐station distances of ∼20  km or less because there is no consideration of whole‐path anelastic attenuation or scattering. In these circumstances, the correlation between the Graphic and Graphic is strong. Events with high and low stress drops obtained through the eGf method have similarly high and low Graphic. We find that the inter‐event standard deviation of stress drop, for the population of earthquakes considered, is similar for both methods, 0.40 for the Graphic method and 0.42 for the Graphic, in log10 units, provided we apply the ∼20  km distance restriction to Graphic. This indicates that the observed variability is inherent to the source, rather than attributable to uncertainties in stress‐drop estimates

  18. Experimental Measurements of Spreading of Volatile Liquid Droplets

    NASA Technical Reports Server (NTRS)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    Based on the laser shadowgraphic system used by the first author of the present paper, a simple optical system, which combined the laser shadowgraphy and the direct magnified-photography, has been developed to measure the contact angle, the spreading speed, and the evaporation rate. Additionally, the system can also visualize thermocapillary convection inside of a sessile drop simultaneously. The experimental results show that evaporation/condensation and thermocapillary convection in the sessile drop induced by the evaporation strongly affects the wetting and spreading of the drop. Condensation always promotes the wetting and spreading of the drop. Evaporation may increase or decrease the contact angle of the evaporating sessile drops, depending on the evaporation rate. The thermocapillary convection in the drop induced by the evaporation enhances the effects of evaporation to suppress the spreading.

  19. The effect of vision on knee biomechanics during functional activities - A systematic review.

    PubMed

    Louw, Quinette; Gillion, Nadia; van Niekerk, Sjan-Mari; Morris, Linzette; Baumeister, Jochen

    2015-07-01

    The objective of this study was to assess the effect of occluded vision on lower limb kinematics and kinetics of the knee joint during functional tasks including drop landing (single or double leg), squatting (single or double leg), stepping down, cutting movement and hopping in healthy individuals, or individuals who had an ACL reconstruction or deficiency with no vision impairments. A systematic review was conducted. A systematic review was conducted and electronic databases were searched between March 2012 and April 2013 for eligible papers. Methodological quality of each study was assessed using the Downs and Black revised checklist. Six studies met the eligibility criteria and a wide variation in methodological approaches was reported. This small evidence base indicated equivocal evidence about the effect of vision on knee biomechanics in individuals with healthy and compromised somatosensory function post an ACL reconstruction or injury. Clinicians should consider innovative, individualised ACL rehabilitation strategies when prescribing exercises which involve visual occlusion. Further research to increase the relatively small evidence base for the effect of vision on knee biomechanics is warranted. Copyright © 2014 Sports Medicine Australia. All rights reserved.

  20. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping.

    PubMed

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    1987-08-01

    In the literature, drop jumping is advocated as an effective exercise for athletes who prepare themselves for explosive activities. When executing drop jumps, different jumping techniques can be used. In this study, the influence of jumping technique on the biomechanics of jumping is investigated. Ten subjects executed drop jumps from a height of 20 cm and counter-movement jumps. For the execution of the drop jumps, two different techniques were adopted. The first technique, referred to as bounce drop jump, required the subjects to reverse the downward velocity into an upward one as soon as possible after landing. The second technique, referred to as counter-movement drop jump, required them to do this more gradually by making a larger downward movement. During jumping, the subjects were filmed, ground reaction forces were registered, and electromyograms were recorded. The results of a biomechanical analysis show that moments and power output about knee and ankle joints reach larger values during the drop jumps than during counter-movement jumps. The largest values were attained during bounce drop jumps. Based on this finding, it was hypothesized that bounce drop jump is better suited than counter-movement drop jump for athletes who seek to improve the mechanical output of knee extensors and plantar flexors. Researchers are, therefore, advised to control jumping technique when investigating training effects of executing drop jumps.

  1. Radar-based rainfall estimation: Improving Z/R relations through comparison of drop size distributions, rainfall rates and radar reflectivity patterns

    NASA Astrophysics Data System (ADS)

    Neuper, Malte; Ehret, Uwe

    2014-05-01

    The relation between the measured radar reflectivity factor Z and surface rainfall intensity R - the Z/R relation - is profoundly complex, so that in general one speaks about radar-based quantitative precipitation estimation (QPE) rather than exact measurement. Like in Plato's Allegory of the Cave, what we observe in the end is only the 'shadow' of the true rainfall field through a very small backscatter of an electromagnetic signal emitted by the radar, which we hope has been actually reflected by hydrometeors. The meteorological relevant and valuable Information is gained only indirectly by more or less justified assumptions. One of these assumptions concerns the drop size distribution, through which the rain intensity is finally associated with the measured radar reflectivity factor Z. The real drop size distribution is however subject to large spatial and temporal variability, and consequently so is the true Z/R relation. Better knowledge of the true spatio-temporal Z/R structure therefore has the potential to improve radar-based QPE compared to the common practice of applying a single or a few standard Z/R relations. To this end, we use observations from six laser-optic disdrometers, two vertically pointing micro rain radars, 205 rain gauges, one rawindsonde station and two C-band Doppler radars installed or operated in and near the Attert catchment (Luxembourg). The C-band radars and the rawindsonde station are operated by the Belgian and German Weather Services, the rain gauge data was partly provided by the French, Dutch, Belgian, German Weather Services and the Ministry of Agriculture of Luxembourg and the other equipment was installed as part of the interdisciplinary DFG research project CAOS (Catchment as Organized Systems). With the various data sets correlation analyzes were executed. In order to get a notion on the different appearance of the reflectivity patterns in the radar image, first of all various simple distribution indices (for example the Gini index, Rosenbluth index) were calculated and compared to the synoptic situation in general and the atmospheric stability in special. The indices were then related to the drop size distributions and the rain rate. Special emphasis was laid in an objective distinction between stratiform and convective precipitation and hereby altered droplet size distribution, respectively Z/R relationship. In our presentation we will show how convective and stratiform precipitation becomes manifest in the different distribution indices, which in turn are thought to represent different patterns in the radar image. We also present and discuss the correlation between these distribution indices and the evolution of the drop size distribution and the rain rate and compare a dynamically adopted Z/R relation to the standard Marshall-Palmer Z/R relation.

  2. 384 hanging drop arrays give excellent Z-factors and allow versatile formation of co-culture spheroids.

    PubMed

    Hsiao, Amy Y; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R; Pienta, Kenneth J; Takayama, Shuichi

    2012-05-01

    We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through Z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. Copyright © 2011 Wiley Periodicals, Inc.

  3. 384 Hanging Drop Arrays Give Excellent Z-factors and Allow Versatile Formation of Co-culture Spheroids

    PubMed Central

    Hsiao, Amy Y.; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R.; Pienta, Kenneth J.; Takayama, Shuichi

    2012-01-01

    We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. PMID:22161651

  4. Fiber optic interconnect and optoelectronic packaging challenges for future generation avionics

    NASA Astrophysics Data System (ADS)

    Beranek, Mark W.

    2007-02-01

    Forecasting avionics industry fiber optic interconnect and optoelectronic packaging challenges that lie ahead first requires an assumption that military avionics architectures will evolve from today's centralized/unified concept based on gigabit laser, optical-to-electrical-to-optical switching and optical backplane technology, to a future federated/distributed or centralized/unified concept based on gigabit tunable laser, electro-optical switch and add-drop wavelength division multiplexing (WDM) technology. The requirement to incorporate avionics optical built-in test (BIT) in military avionics fiber optic systems is also assumed to be correct. Taking these assumptions further indicates that future avionics systems engineering will use WDM technology combined with photonic circuit integration and advanced packaging to form the technical basis of the next generation military avionics onboard local area network (LAN). Following this theme, fiber optic cable plants will evolve from today's multimode interconnect solution to a single mode interconnect solution that is highly installable, maintainable, reliable and supportable. Ultimately optical BIT for fiber optic fault detection and isolation will be incorporated as an integral part of a total WDM-based avionics LAN solution. Cost-efficient single mode active and passive photonic component integration and packaging integration is needed to enable reliable operation in the harsh military avionics application environment. Rugged multimode fiber-based transmitters and receivers (transceivers) with in-package optical BIT capability are also needed to enable fully BIT capable single-wavelength fiber optic links on both legacy and future aerospace platforms.

  5. Spreading of blood drops over dry porous substrate: complete wetting case.

    PubMed

    Chao, Tzu Chieh; Arjmandi-Tash, Omid; Das, Diganta B; Starov, Victor M

    2015-05-15

    The process of dried blood spot sampling involves simultaneous spreading and penetration of blood into a porous filter paper with subsequent evaporation and drying. Spreading of small drops of blood, which is a non-Newtonian liquid, over a dry porous layer is investigated from both theoretical and experimental points of view. A system of two differential equations is derived, which describes the time evolution of radii of both the drop base and the wetted region inside the porous medium. The system of equations does not include any fitting parameters. The predicted time evolutions of both radii are compared with experimental data published earlier. For a given power law dependency of viscosity of blood with different hematocrit level, radii of both drop base and wetted region, and contact angle fell on three universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and the wetted region inside the porous layer and dynamic contact angle on dimensionless time. The predicted theoretical relationships are three universal curves accounting satisfactorily for the experimental data. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Continuously tunable microdroplet-laser in a microfluidic channel.

    PubMed

    Tang, Sindy K Y; Derda, Ratmir; Quan, Qimin; Lončar, Marko; Whitesides, George M

    2011-01-31

    This paper describes the generation and optical characterization of a series of dye-doped droplet-based optical microcavities with continuously decreasing radius in a microfluidic channel. A flow-focusing nozzle generated the droplets (~21 μm in radius) using benzyl alcohol as the disperse phase and water as the continuous phase. As these drops moved down the channel, they dissolved, and their size decreased. The emission characteristics from the drops could be matched to the whispering gallery modes from spherical micro-cavities. The wavelength of emission from the drops changed from 700 to 620 nm as the radius of the drops decreased from 21 μm to 7 μm. This range of tunability in wavelengths was larger than that reported in previous work on droplet-based cavities.

  7. Why Did They Not Drop Out? Narratives from Resilient Students

    ERIC Educational Resources Information Center

    Lessard, Anne; Fortin, Laurier; Marcotte, Diane; Potvin, Pierre; Royer, Egide

    2009-01-01

    There is much to be learned from students who were at-risk for dropping out of school but persevered and graduated. The purpose of the study on which this article is based, was to describe how students who were at-risk for dropping out of school persevered and graduated. The voices of two students are introduced, highlighting the challenges they…

  8. Young People's Use and Views of a School-Based Sexual Health Drop-In Service in Areas of High Deprivation

    ERIC Educational Resources Information Center

    Ingram, Jenny; Salmon, Debra

    2010-01-01

    Objective: To describe patterns and reasons of attendance and young people's views of the drop-in service. Design: Analysis of a prospective database, questionnaire survey and qualitative interviews and discussions. Setting: Sexual health drop-in clinics in 16 secondary schools (including three pupil-referral units) in deprived areas of a city in…

  9. Pressure drop in tubing in aircraft instrument installations

    NASA Technical Reports Server (NTRS)

    Wildhack, W A

    1937-01-01

    The theoretical basis of calculation of pressure drop in tubing is reviewed briefly. The effect of pressure drop in connecting tubing upon the operation and indication of aircraft instruments is discussed. Approximate equations are developed, and charts and tables based upon them are presented for use in designing installations of altimeters, air-speed indicators, rate-of-climb indicators, and air-driven gyroscopic instruments.

  10. 3D Drop Size Distribution Extrapolation Algorithm Using a Single Disdrometer

    NASA Technical Reports Server (NTRS)

    Lane, John

    2012-01-01

    Determining the Z-R relationship (where Z is the radar reflectivity factor and R is rainfall rate) from disdrometer data has been and is a common goal of cloud physicists and radar meteorology researchers. The usefulness of this quantity has traditionally been limited since radar represents a volume measurement, while a disdrometer corresponds to a point measurement. To solve that problem, a 3D-DSD (drop-size distribution) method of determining an equivalent 3D Z-R was developed at the University of Central Florida and tested at the Kennedy Space Center, FL. Unfortunately, that method required a minimum of three disdrometers clustered together within a microscale network (.1-km separation). Since most commercial disdrometers used by the radar meteorology/cloud physics community are high-cost instruments, three disdrometers located within a microscale area is generally not a practical strategy due to the limitations of these kinds of research budgets. A relatively simple modification to the 3D-DSD algorithm provides an estimate of the 3D-DSD and therefore, a 3D Z-R measurement using a single disdrometer. The basis of the horizontal extrapolation is mass conservation of a drop size increment, employing the mass conservation equation. For vertical extrapolation, convolution of a drop size increment using raindrop terminal velocity is used. Together, these two independent extrapolation techniques provide a complete 3DDSD estimate in a volume around and above a single disdrometer. The estimation error is lowest along a vertical plane intersecting the disdrometer position in the direction of wind advection. This work demonstrates that multiple sensors are not required for successful implementation of the 3D interpolation/extrapolation algorithm. This is a great benefit since it is seldom that multiple sensors in the required spatial arrangement are available for this type of analysis. The original software (developed at the University of Central Florida, 1998.- 2000) has also been modified to read standardized disdrometer data format (Joss-Waldvogel format). Other modifications to the software involve accounting for vertical ambient wind motion, as well as evaporation of the raindrop during its flight time.

  11. High Performance Proton-Conducting Solid Oxide Fuel Cells with a Layered Perovskite GdBaCuCoO5+ x Cathode

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaozhen; Jiang, Yuhua; Hu, Xuebing; Sun, Liangliang; Ling, Yihan

    2018-03-01

    Proton-conducting solid oxide fuel cell (H-SOFC) based on layered perovskite type GdBaCuCoO5+x (GBCC) cathode was fabricated with in situ drop-coating BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte membrane. The influences of Cu doping into Co sites of GdBaCo2O5+ x on the electrical conductivity and conduction mechanism, thermal expansion property and electrochemical performance of cathode materials and corresponding single cell were investigated. Results show that the electrical conductivity decreased and the conduction mechanism would gradually transform to the semiconductor-like behavior. A high maximum power density of 480 mW cm-2 was obtained for the anode supported NiO-BZCY/NiO-BZCY/BZCY/GBCC single cells with wet H2 fuel at 700 °C. The corresponding polarization resistance was as low as 0.17 Ω cm2. The excellent electrochemical performance of as-prepared single cell indicates that GBCC is a good candidate of cathode materials for H-SOFCs.

  12. Dangerous student car drop-off behaviors and child pedestrian-motor vehicle collisions: An observational study.

    PubMed

    Rothman, Linda; Howard, Andrew; Buliung, Ron; Macarthur, Colin; Macpherson, Alison

    2016-07-03

    The objective of this study was to examine the association between dangerous student car drop-off behaviors and historical child pedestrian-motor vehicle collisions (PMVCs) near elementary schools in Toronto, Canada. Police-reported child PMVCs during school travel times from 2000 to 2011 were mapped within 200 m of 118 elementary schools. Observers measured dangerous student morning car drop-off behaviors and number of children walking to school during one day in 2011. A composite score of school social disadvantage was obtained from the Toronto District School Board. Built environment and traffic features were mapped and included as covariates. A multivariate Poisson regression was used to model the rates of PMVC/number of children walking and dangerous student car drop-off behaviors, adjusting for the built environment and social disadvantage. There were 45 child PMVCs, with 29 (64%) sustaining minor injuries resulting in emergency department visits. The mean collision rate was 2.9/10,000 children walking/year (SD = 6.7). Dangerous drop-off behaviors were observed in 104 schools (88%). In the multivariate analysis, each additional dangerous drop-off behavior was associated with a 45% increase in collision rates (incident rate ratio [IRR] = 1.45, 95% confidence interval [CI], 1.02, 2.07). Higher speed roads (IRR = 1.27, 95% CI, 1.13, 1.44) and social disadvantage (IRR = 2.99, 95% CI, 1.03, 8.68) were associated with higher collision rates. Dangerous student car drop-off behaviors were associated with historical nonfatal child PMVC rates during school travel times near schools. Some caution must be taken in interpreting these results due small number of events and limitations in the data collection, because collision data were collected historically over a 12-year period, whereas driving behavior was only observed on a single day in 2011. Targeted multifaceted intervention approaches related to the built environment, enforcement, and education could address dangerous drop-off behaviors near schools to reduce child PMVCs and promote safe walking to school.

  13. Second Thoughts at Women's Colleges.

    ERIC Educational Resources Information Center

    Gose, Ben

    1995-01-01

    Despite a rise in enrollments at women's colleges nationwide, there is concern that the applicant pool is weakening. Average college entrance test scores of freshmen have dropped considerably since 1968. Some see research comparing women's performance at single-sex and coeducational colleges as unreliable. (MSE)

  14. Fatigue influences lower extremity angular velocities during a single-leg drop vertical jump.

    PubMed

    Tamura, Akihiro; Akasaka, Kiyokazu; Otsudo, Takahiro; Shiozawa, Junya; Toda, Yuka; Yamada, Kaori

    2017-03-01

    [Purpose] Fatigue alters lower extremity landing strategies and decreases the ability to attenuate impact during landing. The purpose of this study was to reveal the influence of fatigue on dynamic alignment and joint angular velocities in the lower extremities during a single leg landing. [Subjects and Methods] The 34 female college students were randomly assigned to either the fatigue or control group. The fatigue group performed single-leg drop vertical jumps before, and after, the fatigue protocol, which was performed using a bike ergometer. Lower extremity kinematic data were acquired using a three-dimensional motion analysis system. The ratio of each variable (%), for the pre-fatigue to post-fatigue protocols, were calculated to compare differences between each group. [Results] Peak hip and knee flexion angular velocities increased significantly in the fatigue group compared with the control group. Furthermore, hip flexion angular velocity increased significantly between each group at 40 milliseconds after initial ground contact. [Conclusion] Fatigue reduced the ability to attenuate impact by increasing angular velocities in the direction of hip and knee flexion during landings. These findings indicate a requirement to evaluate movement quality over time by measuring hip and knee flexion angular velocities in landings during fatigue conditions.

  15. Rat pancreatic islet size standardization by the "hanging drop" technique.

    PubMed

    Cavallari, G; Zuellig, R A; Lehmann, R; Weber, M; Moritz, W

    2007-01-01

    Rejection and hypoxia are the main factors that limit islet engraftment in the recipient liver in the immediate posttransplant period. Recently authors have reported a negative relationship of graft function and islet size, concluding that small islets are superior to large islets. Islets can be dissociated into single cells and reaggregated into so called "pseudoislets," which are functionally equivalent to intact islets but exhibit reduced immunogenicity. The aim of our study was develop a technique that enabled one to obtain pseudoislets of defined, preferably small, dimensions. Islets were harvested from Lewis rats by the collagenase digestion procedure. After purification, the isolated islets were dissociated into single cells by trypsin digestion. Fractions with different cell numbers were seeded into single drops onto cell culture dishes, which were inverted and incubated for 5 to 8 days under cell culture conditions. Newly formed pseudoislets were analyzed for dimension, morphology, and cellular composition. The volume of reaggregated pseudoislets strongly correlated with the cell number (r(2) = .995). The average diameter of a 250-cell aggregate was 95 +/- 8 microm (mean +/- SD) compared with 122 +/- 46 microm of freshly isolated islets. Islet cell loss may be minimized by performing reaggregation in the presence of medium glucose (11 mmol/L) and the GLP-1 analogue Exendin-4. Morphology, cellular composition, and architecture of reaggregated islets were comparable to intact islets. The "hanging drop" culture method allowed us to obtain pseudoislets of standardized size and regular shape, which did not differ from intact islets in terms of cellular composition or architecture. Further investigations are required to minimize cell loss and test in vivo function of transplanted pseudoislets.

  16. Paradoxical drop in circulating neutrophil count following granulocyte-colony stimulating factor and stem cell factor administration in rhesus macaques.

    PubMed

    Gordon, Brent C; Revenis, Amy M; Bonifacino, Aylin C; Sander, William E; Metzger, Mark E; Krouse, Allen E; Usherson, Tatiana N; Donahue, Robert E

    2007-06-01

    Granulocyte colony-stimulating factor (G-CSF) is frequently used therapeutically to treat chronic or transient neutropenia and to mobilize hematopoietic stem cells. Shortly following G-CSF administration, we observed a dramatic transient drop in circulating neutrophil number. This article characterizes this effect in a rhesus macaque animal model. Hematologic changes were monitored following subcutaneous (SQ) administration of G-CSF. G-CSF was administered as a single SQ dose at 10 microg/kg or 50 microg/kg. It was also administered (10 microg/kg) in combination with stem cell factor (SCF; 200 microg/kg) over 5 days. Flow cytometry was performed on serial blood samples to detect changes in cell surface adhesion protein expression. Neutrophil count dramatically declined 30 minutes after G-CSF administration. This decline was observed whether 10 microg/kg G-CSF was administered in combination with SCF over 5 days, or given as a single 10 microg/kg dose. At a single 50 microg/kg dose, the decline accelerated to 15 minutes. Neutrophil count returned to baseline after 120 minutes and rapidly increased thereafter. An increase in CD11a and CD49d expression coincided with the drop in neutrophil count. A transient paradoxical decline in neutrophil count was observed following administration of G-CSF either alone or in combination with SCF. This decline accelerated with the administration of a higher dose of G-CSF and was associated with an increase in CD11a and CD49d expression. It remains to be determined whether this decline in circulating neutrophils is associated with an increase in endothelial margination and/or entrance into extravascular compartments.

  17. Validation of a Quantitative Single-Subject Based Evaluation for Rehabilitation-Induced Improvement Assessment.

    PubMed

    Gandolla, Marta; Molteni, Franco; Ward, Nick S; Guanziroli, Eleonora; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2015-11-01

    The foreseen outcome of a rehabilitation treatment is a stable improvement on the functional outcomes, which can be longitudinally assessed through multiple measures to help clinicians in functional evaluation. In this study, we propose an automatic comprehensive method of combining multiple measures in order to assess a functional improvement. As test-bed, a functional electrical stimulation based treatment for foot drop correction performed with chronic post-stroke participants is presented. Patients were assessed on five relevant outcome measures before, after intervention, and at a follow-up time-point. A novel algorithm based on variables minimum detectable change is proposed and implemented in a custom-made software, combining the outcome measures to obtain a unique parameter: capacity score. The difference between capacity scores at different timing is three holded to obtain improvement evaluation. Ten clinicians evaluated patients on the Improvement Clinical Global Impression scale. Eleven patients underwent the treatment, and five resulted to achieve a stable functional improvement, as assessed by the proposed algorithm. A statistically significant agreement between intra-clinicians and algorithm-clinicians evaluations was demonstrated. The proposed method evaluates functional improvement on a single-subject yes/no base by merging different measures (e.g., kinematic, muscular) and it is validated against clinical evaluation.

  18. Implementation of a protocol for assembling DNA in a Teflon tube

    NASA Astrophysics Data System (ADS)

    Walsh, Edmond J.; Feuerborn, Alexander; Cook, Peter R.

    2017-02-01

    Droplet based microfluidics continues to grow as a platform for chemical and biological reactions using small quantities of fluids, however complex protocols are rarely possible in existing devices. This paper implements a new approach to merging of drops, combined with magnetic bead manipulation, for the creation of ligated double-stranded DNA molecule using "Gibson assembly" chemistry. DNA assembly is initially accomplished through the merging, and mixing, of five drops followed by a thermal cycle. Then, integrating this drop merging method with magnetic beads enable the implementation of amore complete protocol consisting of nine wash steps,merging of four drop, transport of selective reagents between twelve drops using magnetic particles, followed by a thermal cycle and finally the deposition of a purified drop into an Eppendorf for downstream analysis. Gel electrophoresis is used to confirm successful DNA assembly.

  19. Airborne chemistry: acoustic levitation in chemical analysis.

    PubMed

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.

  20. An ionic liquid as a solvent for headspace single drop microextraction of chlorobenzenes from water samples.

    PubMed

    Vidal, Lorena; Psillakis, Elefteria; Domini, Claudia E; Grané, Nuria; Marken, Frank; Canals, Antonio

    2007-02-12

    A headspace single-drop microextraction (HS-SDME) procedure using room temperature ionic liquid and coupled to high-performance liquid chromatography capable of quantifying trace amounts of chlorobenzenes in environmental water samples is proposed. A Plackett-Burman design for screening was carried out in order to determine the significant experimental conditions affecting the HS-SDME process (namely drop volume, aqueous sample volume, stirring speed, ionic strength, extraction time and temperature), and then a central composite design was used to optimize the significant conditions. The optimum experimental conditions found from this statistical evaluation were: a 5 microL microdrop of 1-butyl-3-methylimidazolium hexafluorophosphate, exposed for 37 min to the headspace of a 10 mL aqueous sample placed in a 15 mL vial, stirred at 1580 rpm at room temperature and containing 30% (w/v) NaCl. The calculated calibration curves gave a high level of linearity for all target analytes with correlation coefficients ranging between 0.9981 and 0.9997. The repeatability of the proposed method, expressed as relative standard deviation, varied between 1.6 and 5.1% (n=5). The limits of detection ranged between 0.102 and 0.203 microg L(-1). Matrix effects upon extraction were evaluated by analysing spiked tap and river water as well as effluent water samples originating from a municipal wastewater treatment plant.

  1. Leidenfrost drops on a heated liquid pool

    NASA Astrophysics Data System (ADS)

    Maquet, L.; Sobac, B.; Darbois-Texier, B.; Duchesne, A.; Brandenbourger, M.; Rednikov, A.; Colinet, P.; Dorbolo, S.

    2016-09-01

    We show that a volatile liquid drop placed at the surface of a nonvolatile liquid pool warmer than the boiling point of the drop can be held in a Leidenfrost state even for vanishingly small superheats. Such an observation points to the importance of the substrate roughness, negligible in the case considered here, in determining the threshold Leidenfrost temperature. A theoretical model based on the one proposed by Sobac et al. [Phys. Rev. E 90, 053011 (2014), 10.1103/PhysRevE.90.053011] is developed in order to rationalize the experimental data. The shapes of the drop and of the liquid substrate are analyzed. The model notably provides scalings for the vapor film thickness profile. For small drops, these scalings appear to be identical to the case of a Leidenfrost drop on a solid substrate. For large drops, in contrast, they are different, and no evidence of chimney formation has been observed either experimentally or theoretically in the range of drop sizes considered in this study. Concerning the evaporation dynamics, the radius is shown to decrease linearly with time whatever the drop size, which differs from the case of a Leidenfrost drop on a solid substrate. For high superheats, the characteristic lifetime of the drops versus the superheat follows a scaling law that is derived from the model, but, at low superheats, it deviates from this scaling by rather saturating.

  2. Rotating Molten Metallic Drops and Related Phenomena: A New Approach to the Surface Tension Measurement

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Ishikawa, Takehiko

    2000-01-01

    Molten aluminum and tin drops were levitated in a high vacuum by controlled electric fields, and they were systematically rotated by applying by a rotating magnetic field. When the evolution of the drop shape was measured as a function of rotation frequency, it agreed quantitatively well with the Brown and Scriven's theoretical prediction. The normalized rotation frequencies at the bifurcation point agreed with the predicted value 0.559, within 2%. An anomalous phenomenon which totally deviated from the prediction was observed in rotating molten tin drops when they were kept in a high rotation rate for several hours. No anomaly was observed in aluminum drops when they underwent similar condition. It was speculated that under the strong centrifugal force in the drop the tin isotopes must be separating. Since Al-27 is essentially the only naturally abundant isotope in the aluminum drops, the same anomaly is not expected. Based on the shape deformation of a rotating drop, an alternate approach to the surface tension measurement was verified. This new surface tension measurement technique was applied to a glassforming alloy, Zr(41.2)Ti(13.8)Cu(12.5)Ni(10.0)Be(22.5) in its highly viscous states. Also demonstrated in the paper was a use of a molten aluminum drop to verify the Busse's prediction of the influence of the drop rotation on the drop oscillation frequency.

  3. Full Genome Sequence of Egg Drop Syndrome Virus Strain FJ12025 Isolated from Muscovy Duckling.

    PubMed

    Fu, Guanghua; Chen, Hongmei; Huang, Yu; Cheng, Longfei; Fu, Qiuling; Shi, Shaohua; Wan, Chunhe; Chen, Cuiteng; Lin, Jiansheng

    2013-08-22

    Egg drop syndrome virus (EDSV) strain FJ12025 was isolated from a 9-day-old Muscovy duckling. The results of the sequence showed that the genome of strain FJ12025 is 33,213 bp in length, with a G+C content of 43.03%. When comparing the genome sequence of strain FJ12025 to that of laying duck original strain AV-127, we found 50 single-nucleotide polymorphisms (SNPs) between the two viral genome sequences. A genomic sequence comparison of FJ12025 and AV-127 will help to understand the phenotypic differences between the two viruses.

  4. Evaporation Flux Distribution of Drops on a Hydrophilic or Hydrophobic Flat Surface by Molecular Simulations.

    PubMed

    Xie, Chiyu; Liu, Guangzhi; Wang, Moran

    2016-08-16

    The evaporation flux distribution of sessile drops is investigated by molecular dynamic simulations. Three evaporating modes are classified, including the diffusion dominant mode, the substrate heating mode, and the environment heating mode. Both hydrophilic and hydrophobic drop-substrate interactions are considered. To count the evaporation flux distribution, which is position dependent, we proposed an azimuthal-angle-based division method under the assumption of spherical crown shape of drops. The modeling results show that the edge evaporation, i.e., near the contact line, is enhanced for hydrophilic drops in all the three modes. The surface diffusion of liquid molecular absorbed on solid substrate for hydrophilic cases plays an important role as well as the space diffusion on the enhanced evaporation rate at the edge. For hydrophobic drops, the edge evaporation flux is higher for the substrate heating mode, but lower than elsewhere of the drop for the diffusion dominant mode; however, a nearly uniform distribution is found for the environment heating mode. The evidence shows that the temperature distribution inside drops plays a key role in the position-dependent evaporation flux.

  5. Drop-in Services: Findings from an Evaluation of the Healthy Living Centre Programme in Scotland

    ERIC Educational Resources Information Center

    Truman, J.; Rankin, D.; Backett-Milburn, K.; Platt, S.

    2007-01-01

    Objective: To explore the diverse roles of drop-in services in the HLC sector; to develop further the classification of drop-in services offered by earlier studies; and to provide an example of some the challenges faced by HLCs in their attempts to tackle poor health using area-based methods with vulnerable, hard-to-reach users. Setting: Scottish…

  6. Development and Validation of the Delinquency Reduction Outcome Profile (DROP) in a Sample of Incarcerated Juveniles: A Multiconstruct/Multisituational Scoring Approach

    ERIC Educational Resources Information Center

    Barbot, Baptiste; Haeffel, Gerald J.; Macomber, Donna; Hart, Lesley; Chapman, John; Grigorenko, Elena L.

    2012-01-01

    The "Delinquency Reduction Outcome Profile" ("DROP") is a novel situational-judgment test (SJT) designed to measure social decision making in delinquent youth. The DROP includes both a typical SJT scoring method, which captures the deviation of an individual response from an "ideal" expert-based response pattern, as well as a novel…

  7. Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Tsilipakos, Odysseas; Kriezis, Emmanouil E.; Bozhevolnyi, Sergey I.

    2011-04-01

    Thermo-optic switching elements made of dielectric-loaded plasmonic (DLSPP) waveguides are theoretically investigated by utilizing the three-dimensional vector finite element method. The configurations considered employ microring resonators, whose resonant frequency is varied by means of thermal tuning. First, a classic add-drop filter with parallel access waveguides is examined. Such a component features very poor drop port extinction ratio (ER). We therefore extend the analysis to add-drop filters with perpendicular access waveguides, which are found to exhibit superior drop port ERs, due to interference effects associated with the drop port transmission. In the process, the performance of a DLSPP waveguide crossing is also assessed, since it is a building block of those filters whose bus waveguides intersect. An elliptic tapering scheme is proposed for minimizing cross talk and its effect on the filter performance is explored. The dual-resonator add-drop filter with perpendicular bus waveguides and an untreated waveguide crossing of Sec. V can act as an efficient 2×2 switching element (the single-resonator variant can only act as a 1×2 switch due to structure asymmetry), possessing two equivalent input ports and featuring high ERs for both output ports over a broad wavelength range. Specifically, an extinction ratio of at least 8 dB can be attained for both output ports over a wavelength range of 3.2 nm, accommodating four 100-GHz-spaced channels. Switching times are in the order of a few microseconds, rendering the aforementioned structure capable of handling real-world routing scenarios.

  8. Camphor-Crataegus berry extract combination dose-dependently reduces tilt induced fall in blood pressure in orthostatic hypotension.

    PubMed

    Belz, G G; Butzer, R; Gaus, W; Loew, D

    2002-10-01

    In order to test the efficacy of a combination of natural D-camphor and an extract of fresh crataegus berries (Korodin Herz-Kreislauf-Tropfen) on orthostatic hypotension, two similar, controlled, randomized studies were carried out in a balanced crossover design in 24 patients each with orthostatic dysregulation. The camphor-crataegus berry combination (CCC) was orally administered as a single regimen in 3 different dosages of 5 drops, 20 drops and 80 drops; a placebo with 20 drops of a 60% alcoholic solution served as control. Orthostatic hypotension was assessed with the tilt table test before and after medication. Source data of both studies were pooled and meta-analytically evaluated for all 48 patients. CCC drops decreased the orthostatic fall in blood pressure versus placebo, as almost uniformly established at all times by mean arterial pressure and diastolic blood pressure. Mean arterial pressure demonstrated the very fast onset of action by a clearly dose-dependent statistically significant effect even after 1-minute orthostasis. Increase of mean arterial pressure as compared to the orthostasis test before medication was on average 4.5 mmHg. CCC affected diastolic blood pressure after 1 minute of orthostasis in all dosages as compared to placebo. A statistically significant effect of the highest dose of 80 drops on diastolic blood pressure could be demonstrated after 1-, 3-, and 5-minute orthostasis. The hemodynamic findings of a stabilizing effect on arterial pressure in orthostasis corroborate the long-term medical experience with CCC and justify the indication orthostatic hypotension.

  9. Simulations of Evaporating Multicomponent Fuel Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Le Clercq, Patrick

    2005-01-01

    A paper presents additional information on the subject matter of Model of Mixing Layer With Multicomponent Evaporating Drops (NPO-30505), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 55. To recapitulate: A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The model is used to perform direct numerical simulations in continuing studies directed toward understanding the behaviors of sprays of liquid petroleum fuels in furnaces, industrial combustors, and engines. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and drops, respectively, and incorporates a concept of continuous thermodynamics, according to which the chemical composition of a fuel is described by use of a distribution function. In this investigation, the distribution function depends solely on the species molar weight. The present paper reiterates the description of the model and discusses further in-depth analysis of the previous results as well as results of additional numerical simulations assessing the effect of the mass loading. The paper reiterates the conclusions reported in the cited previous article, and states some new conclusions. Some new conclusions are: 1. The slower evaporation and the evaporation/ condensation process for multicomponent-fuel drops resulted in a reduced drop-size polydispersity compared to their single-component counterpart. 2. The inhomogeneity in the spatial distribution of the species in the layer increases with the initial mass loading. 3. As evaporation becomes faster, the assumed invariant form of the molecular- weight distribution during evaporation becomes inaccurate.

  10. An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis.

    PubMed

    Xu, Z N

    2014-12-01

    In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop images with different hydrophobicity values and volumes.

  11. Control group design, contamination and drop-out in exercise oncology trials: a systematic review.

    PubMed

    Steins Bisschop, Charlotte N; Courneya, Kerry S; Velthuis, Miranda J; Monninkhof, Evelyn M; Jones, Lee W; Friedenreich, Christine; van der Wall, Elsken; Peeters, Petra H M; May, Anne M

    2015-01-01

    Important considerations for exercise trials in cancer patients are contamination and differential drop-out among the control group members that might jeopardize the internal validity. This systematic review provides an overview of different control groups design characteristics of exercise-oncology trials and explores the association with contamination and drop-out rates. Randomized controlled exercise-oncology trials from two Cochrane reviews were included. Additionally, a computer-aided search using Medline (Pubmed), Embase and CINAHL was conducted after completion date of the Cochrane reviews. Eligible studies were classified according to three control group design characteristics: the exercise instruction given to controls before start of the study (exercise allowed or not); and the intervention the control group was offered during (any (e.g., education sessions or telephone contacts) or none) or after (any (e.g., cross-over or exercise instruction) or none) the intervention period. Contamination (yes or no) and excess drop-out rates (i.e., drop-out rate of the control group minus the drop-out rate exercise group) were described according to the three design characteristics of the control group and according to the combinations of these three characteristics; so we additionally made subgroups based on combinations of type and timing of instructions received. 40 exercise-oncology trials were included based on pre-specified eligibility criteria. The lowest contamination (7.1% of studies) and low drop-out rates (excess drop-out rate -4.7±9.2) were found in control groups offered an intervention after the intervention period. When control groups were offered an intervention both during and after the intervention period, contamination (0%) and excess drop-out rates (-10.0±12.8%) were even lower. Control groups receiving an intervention during and after the study intervention period have lower contamination and drop-out rates. The present findings can be considered when designing future exercise-oncology trials.

  12. Quantitative Species Measurements in Microgravity Combustion Flames using Near-Infrared Diode Lasers

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.

    1999-01-01

    Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as for characterizing dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Unfortunately, combustion is highly complicated by fluid mechanical and chemical kinetic processes, requiring the use of numerical modeling to compare with carefully designed experiments. More sophisticated diagnostic methods are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion as well as provide accurate feedback to improve the predictive capabilities of the models. Diode lasers are a natural choice for use under the severe conditions of low gravity experiments. Reliable, simple solid state operation at low power satisfies the operational restrictions imposed by drop towers, aircraft and space-based studies. Modulation wavelength absorption spectroscopy (WMS) provides a means to make highly sensitive and quantitative measurements of local gas concentration and, in certain cases, temperature. With near-infrared diode lasers, detection of virtually all major combustion species with extremely rapid response time is possible in an inexpensive package. Advancements in near-infrared diode laser fabrication technology and concurrent development of optical fibers for these lasers led to their use in drop towers. Since near-infrared absorption line strengths for overtone and combination vibrational transitions are weaker than the mid-infrared fundamental bands, WMS techniques are applied to increase detection sensitivity and allow measurement of the major combustion gases. In the first microgravity species measurement, Silver et al. mounted a fiber-coupled laser at the top of the NASA 2.2-sec drop tower and piped the light through a single-mode fiber to the drop rig. A fiber splitter divided the light into eight channels that directed the laser beam across a methane or propane diffusion jet flame. The light beams were recaptured by a set of gradient index lenses, coupled back into separate fiber optic lines, and transmitted back to detectors and electronics in the instrument package. In these experiments a 6-mm od fiber cable (containing the nine optical fibers) fell with the drop rig. Using separate detection and demodulation channels, spatial and temporal (up to 20 Hz) maps of water vapor and methane concentrations were obtained at differing heights in the flames. While this apparatus was useful from a demonstration standpoint, several drawbacks needed attention before useful scientific measurements could be obtained. First, eight lines of sight are somewhat insufficient for detailing the spatial profiles of the gas. Second, multiple detection channels operating in parallel are both expensive and present a challenge for accurate calibration. As a result, a newer scanning system was developed in our first contract under this program. The primary characteristic of this system is that it contains a single detection channel and achieves "continuous" spatial resolution by scanning the laser beam across the flame region, then directing this beam onto a single detector. Thus spatial measurements are converted to a temporal series of data. The true spatial resolution is limited only by the beam diameter and width of the sweep. In these experiments the beam is focused to about 1-mm diameter and scans across a region up to 4-cm wide.

  13. Single and multidose ocular kinetics and stability analysis of extemporaneous formulation of topical voriconazole in humans.

    PubMed

    Senthilkumari, Srinivasan; Lalitha, Prajna; Prajna, Namperumalsamy Venkatesh; Haripriya, Aravind; Nirmal, Jeyabalan; Gupta, Pankaj; Velpandian, Thirumurthy

    2010-11-01

    The purpose of the present study was to evaluate the kinetics of single and multiple doses of topical, non-preserved voriconazole (VZ) in human eyes. For single dose kinetics, 119 patients undergoing cataract surgery were divided into group I and group II and each group received a single drop (30 µl) of either 1% or 0.1% VZ formulation. Aqueous humor was collected at designated time intervals. For multidose kinetics, a single drop of 1% VZ was instilled 5 times either hourly or every 2 hr. The aqueous humor was tested for VZ at the 5th hr and 9th hr, respectively, after initial instillation. The stability and efficacy of the reconstituted VZ formulations were also evaluated after 30 days. Single dose ocular kinetics of 1% VZ resulted in a maximum mean aqueous concentration of 3.333 ± 1.61 µg/ml in 30 min whereas 0.1% showed a maximum mean aqueous concentration of 0.817 ±.36 µg/ml. In the multidose kinetic study, hourly and bi-hourly dosing resulted in mean aqueous concentrations of 7.47 ± 2.14 µg/ml and 4.69 ± 2.7 µg/ml, respectively. The reconstituted VZ formulations were stable at all studied temperatures, and their efficacy was maintained throughout the study period. The present study showed that the achieved mean concentration of VZ in both single dose and multi dose kinetic studies satisfactorily met the MIC(90) for almost all causative fungal organisms. The frequency of instillation may be designed for an "every 2 hr regimen" to maintain a therapeutic concentration for successful therapy.

  14. Calculation of nanodrop profile from fluid density distribution.

    PubMed

    Berim, Gersh O; Ruckenstein, Eli

    2016-05-01

    Two approaches are examined, which can be used to determine the drop profile from the fluid density distributions (FDDs) obtained on the basis of microscopic theories. For simplicity, only two-dimensional (cylindrical, or axisymmetrical) distributions are examined and it is assumed that the fluid is either in contact with a smooth solid or separated from the smooth solid by a lubricating liquid film. The first approach is based on the sharp-kink interface approximation in which the density of the liquid inside and the density of the vapor outside the drop are constant with the exception of the surface layer of the drop where the density is different from the above ones. In this case, the drop profile was calculated by minimizing the total potential energy of the system. The second approach is based on a nonuniform FDD obtained either by the density functional theory or molecular dynamics simulations. To determine the drop profile from such an FDD, which does not contain sharp interfaces, three procedures can be used. In the first two procedures, P1 and P2, the one-dimensional FDDs along straight lines which are parallel to the surface of the solid are extracted from the two-dimensional FDD. Each of those one-dimensional FDDs has a vapor-liquid interface at which the fluid density changes from vapor-like to liquid-like values. Procedure P1 uses the locations of the equimolar dividing surfaces for the one-dimensional FDDs as points of the drop profile. Procedure P2 is based on the assumption that the fluid density is constant on the surface of the drop, that density being selected either arbitrarily or as a fluid density at the location of the equimolar dividing surface for one of the one-dimensional FDDs employed in procedure P1. In the third procedure, P3, which is suggested for the first time in this paper, the one-dimensional FDDs are taken along the straight lines passing through a selected point inside the drop (radial line). Then, the drop profile is calculated like in procedure P1. It is shown, that procedure P3 provides a drop profile which is more reasonable than the other ones. Relationship of the discussed procedures to those used in image analysis is briefly discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. 14 CFR 234.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: Cancelled flight means a flight operation that was not operated, but was listed in a carrier's computer... dropped from a carrier's computer reservation system more than seven calendar days before its scheduled... reporting to computer reservations system vendors, flight also means one-stop or multi-stop single plane...

  16. 14 CFR 234.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: Cancelled flight means a flight operation that was not operated, but was listed in a carrier's computer... dropped from a carrier's computer reservation system more than seven calendar days before its scheduled... reporting to computer reservations system vendors, flight also means one-stop or multi-stop single plane...

  17. 14 CFR 234.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: Cancelled flight means a flight operation that was not operated, but was listed in a carrier's computer... dropped from a carrier's computer reservation system more than seven calendar days before its scheduled... reporting to computer reservations system vendors, flight also means one-stop or multi-stop single plane...

  18. 14 CFR 234.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: Cancelled flight means a flight operation that was not operated, but was listed in a carrier's computer... dropped from a carrier's computer reservation system more than seven calendar days before its scheduled... reporting to computer reservations system vendors, flight also means one-stop or multi-stop single plane...

  19. 14 CFR 234.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: Cancelled flight means a flight operation that was not operated, but was listed in a carrier's computer... dropped from a carrier's computer reservation system more than seven calendar days before its scheduled... reporting to computer reservations system vendors, flight also means one-stop or multi-stop single plane...

  20. Unusual Contact-Line Dynamics of Thick Films and Drops

    NASA Technical Reports Server (NTRS)

    Veretennikov, Igor; Agarwal, Abhishek; Indeikina, Alexandra; Chang, Hsueh-Chia

    1999-01-01

    We report several novel phenomena In contact-line and fingering dynamics of macroscopic spinning drops and gravity-driven films with dimensions larger than the capillary length. It is shown through experimental and theoretical analysis that such macroscopic films can exhibit various interfacial shapes, including multi valued ones, near the contact line due to a balance between the external body forces with capillarity. This rich variety of front shapes couples with the usual capillary, viscous, and intermolecular forces at the contact line to produce a rich and unexpected spectrum of contact-line dynamics. A single finger develops when part of the front becomes multivalued on a partially wetting macroscopic spinning drop in contrast to a different mechanism for microscopic drops of completely wetting fluids. Contrary to general expectation, we observe that, at high viscosity and low frequencies of rotation, the speed of a glycerine finger increases with increasing viscosity. Completely wetting Dow Corning 200 Fluid spreads faster over a dry inclined plane than a prewetted one. The presence of a thin prewetted film suppresses fingering both for gravity-driven flow and for spin coating. We analyze some of these unique phenomena in detail and offer qualitative physical explanations for the others.

  1. Break-up of droplets in a concentrated emulsion flowing through a narrow constriction

    NASA Astrophysics Data System (ADS)

    Kim, Minkyu; Rosenfeld, Liat; Tang, Sindy; Tang Lab Team

    2014-11-01

    Droplet microfluidics has enabled a wide range of high throughput screening applications. Compared with other technologies such as robotic screening technology, droplet microfluidics has 1000 times higher throughput, which makes the technology one of the most promising platforms for the ultrahigh throughput screening applications. Few studies have considered the throughput of the droplet interrogation process, however. In this research, we show that the probability of break-up increases with increasing flow rate, entrance angle to the constriction, and size of the drops. Since single drops do not break at the highest flow rate used in the system, break-ups occur primarily from the interactions between highly packed droplets close to each other. Moreover, the probabilistic nature of the break-up process arises from the stochastic variations in the packing configuration. Our results can be used to calculate the maximum throughput of the serial interrogation process. For 40 pL-drops, the highest throughput with less than 1% droplet break-up was measured to be approximately 7,000 drops per second. In addition, the results are useful for understanding the behavior of concentrated emulsions in applications such as mobility control in enhanced oil recovery.

  2. Experimental and numerical study of drill bit drop tests on Kuru granite

    NASA Astrophysics Data System (ADS)

    Fourmeau, Marion; Kane, Alexandre; Hokka, Mikko

    2017-01-01

    This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit-rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist-Johnson-Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  3. Partial coalescence of drops at liquid interfaces

    NASA Astrophysics Data System (ADS)

    Blanchette, François; Bigioni, Terry P.

    2006-04-01

    When two separate masses of the same fluid are brought gently into contact, they are expected to fully merge into a single larger mass to minimize surface energy. However, when a stationary drop coalesces with an underlying reservoir of identical fluid, merging does not always proceed to completion. Occasionally, a drop in the process of merging apparently defies surface tension by `pinching off' before total coalescence occurs, leaving behind a smaller daughter droplet. Moreover, this process can repeat itself for subsequent generations of daughter droplets, resulting in a cascade of self-similar events. Such partial coalescence behaviour has implications for the dynamics of a variety of systems, including the droplets in clouds, ocean mist and airborne salt particles, emulsions, and the generation of vortices near an interface. Although it was first observed almost half a century ago, little is known about its precise mechanism. Here, we combine high-speed video imaging with numerical simulations to determine the conditions under which partial coalescence occurs, and to reveal a dynamic pinch-off mechanism. This mechanism is critically dependent on the ability of capillary waves to vertically stretch the drop by focusing energy on its summit.

  4. Effects of inertia on the steady shear rheology of concentrated emulsions: sign reversal of normal stress differences

    NASA Astrophysics Data System (ADS)

    Srivastava, Priyesh; Sarkar, Kausik

    2012-11-01

    The shear rheology of moderately concentrated emulsions (5-27% volume fraction) in the presence of inertia is numerically investigated. Typically, an emulsion of viscous drops experiences positive first normal stress difference (N1) and negative second normal stress difference (N2) , as has also been predicted by perturbative analysis (Choi-Schowalter model) and numerical simulation. However, recently using single drop results we have shown [Li and Sarkar, 2005, J. Rheo, 49, 1377] that introduction of inertia reverses the signs of the normal stress difference in the dilute limit. Here, we numerically investigate the effects of interactions between drops in a concentrated system. The simulation is validated against the dilute results as well as analytical relations. It also shows the reversal of signs for N1 and N2 for small Capillary numbers above a critical Reynolds number. The physics is explained by the inertia-induced orientation of the individual drops in shear. Increasing volume fraction increases the critical Reynolds number at which N1 and N2change sign. The breakdown of linearity with volume fraction with increasing concentration is also analyzed. Partially supported by NSF.

  5. Assessment of the mechanical performance of titanium cranial prostheses manufactured by super plastic forming and single point incremental forming

    NASA Astrophysics Data System (ADS)

    Sgambitterra, Emanuele; Piccininni, Antonio; Guglielmi, Pasquale; Ambrogio, Giuseppina; Fragomeni, Gionata; Villa, Tomaso; Palumbo, Gianfranco

    2018-05-01

    Cranial implants are custom prostheses characterized by quite high geometrical complexity and small thickness; at the same time aesthetic and mechanical requirements have to be met. Titanium alloys are largely adopted for such prostheses, as they can be processed via different manufacturing technologies. In the present work cranial prostheses have been manufactured by Super Plastic Forming (SPF) and Single Point Incremental Forming (SPIF). In order to assess the mechanical performance of the cranial prostheses, drop tests under different load conditions were conducted on flat samples to investigate the effect of the blank thickness. Numerical simulations were also run for comparison purposes. The mechanical performance of the cranial implants manufactured by SPF and SPIF could be predicted using drop test data and information about the thickness evolution of the formed parts: the SPIFed prosthesis revealed to have a lower maximum deflection and a higher maximum force, while the SPFed prostheses showed a lower absorbed energy.

  6. Initial comparison of single cylinder Stirling engine computer model predictions with test results

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.; Thieme, L. G.; Miao, D.

    1979-01-01

    A NASA developed digital computer code for a Stirling engine, modelling the performance of a single cylinder rhombic drive ground performance unit (GPU), is presented and its predictions are compared to test results. The GPU engine incorporates eight regenerator/cooler units and the engine working space is modelled by thirteen control volumes. The model calculates indicated power and efficiency for a given engine speed, mean pressure, heater and expansion space metal temperatures and cooler water inlet temperature and flow rate. Comparison of predicted and observed powers implies that the reference pressure drop calculations underestimate actual pressure drop, possibly due to oil contamination in the regenerator/cooler units, methane contamination in the working gas or the underestimation of mechanical loss. For a working gas of hydrogen, the predicted values of brake power are from 0 to 6% higher than experimental values, and brake efficiency is 6 to 16% higher, while for helium the predicted brake power and efficiency are 2 to 15% higher than the experimental.

  7. Observation of ice nucleation in acoustically levitated water drops

    NASA Astrophysics Data System (ADS)

    Lü, Y. J.; Xie, W. J.; Wei, B.

    2005-10-01

    The supercooling and nucleation of acoustically levitated water drops were investigated at two different sound pressure levels (SPL). These water drops were supercooled by 13to16K at the low SPL of 160.6dB, whereas their supercoolings varied from 5to11K at the high SPL of 164.4dB. The maximum supercooling obtained in the experiments is 32K. Statistical analyses based on the classical nucleation theory reveal that the occurrence of ice nucleation in water drops is mainly confined to the surface region under acoustic levitation conditions and the enlargement of drop surface area caused by the acoustic radiation pressure reduces water supercoolability remarkably. A comparison of the nucleation rates at the two SPLs indicates that the sound pressure can strengthen the surface-dominated nucleation of water drops. The acoustic stream around levitated water drops and the cavitation effect associated with ultrasonic field are the main factors that induce surface-dominated nucleation.

  8. Algorithm Building and Learning Programming Languages Using a New Educational Paradigm

    NASA Astrophysics Data System (ADS)

    Jain, Anshul K.; Singhal, Manik; Gupta, Manu Sheel

    2011-08-01

    This research paper presents a new concept of using a single tool to associate syntax of various programming languages, algorithms and basic coding techniques. A simple framework has been programmed in Python that helps students learn skills to develop algorithms, and implement them in various programming languages. The tool provides an innovative and a unified graphical user interface for development of multimedia objects, educational games and applications. It also aids collaborative learning amongst students and teachers through an integrated mechanism based on Remote Procedure Calls. The paper also elucidates an innovative method for code generation to enable students to learn the basics of programming languages using drag-n-drop methods for image objects.

  9. An experimental study on the numbering-up of microchannels for liquid mixing.

    PubMed

    Su, Yuanhai; Chen, Guangwen; Kenig, Eugeny Y

    2015-01-07

    The numbering-up of zigzag-form microchannels for liquid mixing was experimentally investigated in a multichannel micromixer including 8 parallel channels, based on the Villermaux-Dushman reaction system, with an appropriate sulphuric acid concentration. The results showed that the micromixing performance in such micromixers could reach the same quality as in a single microchannel, when flat constructal distributors with bifurcation configurations were used. The mixing performance did not depend on whether a vertical or horizontal micromixer position was selected. Surprisingly, the channel blockage somewhat increased the micromixing performance in the multichannel micromixer due to the fluid redistribution effect of the constructal distributors. This effect could also be confirmed by CFD simulations. However, the channel blockage resulted in a higher pressure drop and thus higher specific energy dissipation in the multichannel micromixer. The local pressure drop caused by fluid splitting and re-combination in the numbering-up technique could be neglected at low Reynolds numbers, but it became larger with increasing flow rates. The operational zone for the mixing process in multichannel micromixers was sub-divided into two parts according to the specific energy dissipation and the mixing mechanisms.

  10. Solvent exchange method: a novel microencapsulation technique using dual microdispensers.

    PubMed

    Yeo, Yoon; Chen, Alvin U; Basaran, Osman A; Park, Kinam

    2004-08-01

    A new microencapsulation method called the "solvent exchange method" was developed using a dual microdispenser system. The objective of this research is to demonstrate the new method and understand how the microcapsule size is controlled by different instrumental parameters. The solvent exchange method was carried out using a dual microdispenser system consisting of two ink-jet nozzles. Reservoir-type microcapsules were generated by collision of microdrops of an aqueous and a polymer solution and subsequent formation of polymer films at the interface between the two solutions. The prepared microcapsules were characterized by microscopic methods. The ink-jet nozzles produced drops of different sizes with high accuracy according to orifice size of a nozzle, flow rate of the jetted solutions, and forcing frequency of the piezoelectric transducers. In an individual microcapsule, an aqueous core was surrounded by a thin polymer membrane; thus, the size of the collected microcapsules was equivalent to that of single drops. The solvent exchange method based on a dual microdispenser system produces reservoir-type microcapsules in a homogeneous and predictable manner. Given the unique geometry of the microcapsules and mildness of the encapsulation process, this method is expected to provide a useful alternative to existing techniques in protein microencapsulation.

  11. The effects of resonant magnetic perturbations on fast ion confinement in the Mega Amp Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    McClements, K. G.; Akers, R. J.; Boeglin, W. U.; Cecconello, M.; Keeling, D.; Jones, O. M.; Kirk, A.; Klimek, I.; Perez, R. V.; Shinohara, K.; Tani, K.

    2015-07-01

    The effects of resonant magnetic perturbations (RMPs) on the confinement of energetic (neutral beam) ions in the Mega Amp Spherical Tokamak (MAST) are assessed experimentally using measurements of neutrons, fusion protons and fast ion Dα (FIDA) light emission. In single null-diverted (SND) MAST pulses with relatively low plasma current (400 kA), the total neutron emission dropped by approximately a factor of two when RMPs with toroidal mode number n = 3 were applied. The measured neutron rate during RMPs was much lower than that calculated using the TRANSP plasma simulation code, even when non-classical (but axisymmetric) ad hoc fast ion transport was taken into account in the latter. Sharp drops in spatially-resolved neutron rates, fusion proton rates and FIDA emission were also observed. First principles-based simulations of RMP-induced fast ion transport in MAST, using the F3D-OFMC code, show similar losses for two alternative representations of the MAST first wall, with and without full orbit effects taken into account; for n = 6 RMPs in a 600 kA plasma, the additional loss of beam power due to the RMPs was found in the simulations to be approximately 11%.

  12. An Assessment of Helium Evolution from Helium-Saturated Propellant Depressurization in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich N.; Best, Frederick; Wong, Tony; Kurwitz, Cable; McConnaughey, H. (Technical Monitor)

    2001-01-01

    Helium evolution from the transfer of helium-saturated propellant in space is quantified to assess its impacts from creating two-phase gas/liquid flow from the supply tank, gas injection into the receiving tank, and liquid discharge from the receiving tank. Propellant transfer takes place between two similar tanks whose maximum storage capacity is approximately 2.55 cubic meters each. The maximum on-orbit propellants transfer capability is 9000 lbm (fuel and oxidizer). The transfer line is approximately 1.27 cm in diameter and 6096 cm in length and comprised of the fluid interconnect system (FICS), the orbiter propellant transfer system (OPTS), and the International Space Station (ISS) propulsion module (ISSPM). The propellant transfer rate begins at approximately 11 liter per minute (lpm) and subsequently drops to approximately 0.5 lpm. The tank nominal operating pressure is approximately 1827 kPa (absolute). The line pressure drops for Monomethy1hydrazine (MMH) and Nitrogen tetroxide (NTO) at 11.3 lpm are approximately 202 kPa and 302 kPa, respectively. The pressure-drop results are based on a single-phase flow. The receiving tank is required to vent from approximately 1827 kPa to a lower pressure to affect propellant transfer. These pressure-drop scenarios cause the helium-saturated propellants to release excess helium. For tank ullage venting, the maximum volumes of helium evolved at tank pressure are approximately 0.5 ft3 for MMH and 2 ft3 for NTO. In microgravity environment, due to lack of body force, the helium evolution from a liquid body acts to propel it, which influences its fluid dynamics. For propellant transfer, the volume fractions of helium evolved at line pressure are 0.1% by volume for MMH and 0.6 % by volume for NTO at 11.3 lpm. The void fraction of helium evolved varies as an approximate second order power function of flow rate.

  13. Development of a Methodology to Conduct Usability Evaluation for Hand Tools that May Reduce the Amount of Small Parts that are Dropped During Installation while Processing Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Miller, Darcy

    2000-01-01

    Foreign object debris (FOD) is an important concern while processing space flight hardware. FOD can be defined as "The debris that is left in or around flight hardware, where it could cause damage to that flight hardware," (United Space Alliance, 2000). Just one small screw left unintentionally in the wrong place could delay a launch schedule while it is retrieved, increase the cost of processing, or cause a potentially fatal accident. At this time, there is not a single solution to help reduce the number of dropped parts such as screws, bolts, nuts, and washers during installation. Most of the effort is currently focused on training employees and on capturing the parts once they are dropped. Advances in ergonomics and hand tool design suggest that a solution may be possible, in the form of specialty hand tools, which secure the small parts while they are being handled. To assist in the development of these new advances, a test methodology was developed to conduct a usability evaluation of hand tools, while performing tasks with risk of creating FOD. The methodology also includes hardware in the form of a testing board and the small parts that can be installed onto the board during a test. The usability of new hand tools was determined based on efficiency and the number of dropped parts. To validate the methodology, participants were tested while performing a task that is representative of the type of work that may be done when processing space flight hardware. Test participants installed small parts using their hands and two commercially available tools. The participants were from three groups: (1) students, (2) engineers / managers and (3) technicians. The test was conducted to evaluate the differences in performance when using the three installation methods, as well as the difference in performance of the three participant groups.

  14. Quantification of nimesulide in human plasma by high-performance liquid chromatography/tandem mass spectrometry. Application to bioequivalence studies.

    PubMed

    Barrientos-Astigarraga, R E; Vannuchi, Y B; Sucupira, M; Moreno, R A; Muscará, M N; De Nucci, G

    2001-12-01

    A method based on liquid chromatography with negative ion electrospray ionization and tandem mass spectrometry is described for the determination of nimesulide in human plasma. Liquid-liquid extraction using a mixture of diethyl ether and dichloromethane was employed and celecoxib was used as an internal standard. The chromatographic run time was 4.5 min and the weighted (1/x) calibration curve was linear in the range 10.0-2000 ng x ml(-1). The limit of quantification was 10 ng x ml(-1), the intra-batch precision was 6.3, 2.1 and 2.1% and the intra-batch accuracy was 3.2, 0.3 and 0.1% for 30, 300 and 1200 ng x ml(-1) respectively. The inter-batch precision was 2.3, 2.8 and 2.7% and the accuracy was 3.3, 0.3 and 0.1% for 30, 300 and 1200 ng x ml(-1) respectively. This method was employed in a bioequivalence study of one nimesulide drop formulation (nimesulide 50 mg x ml(-1) drop, Medley S/A Indústria Farmacêutica, Brazil) against one standard nimesulide drop formulation (Nisulid, 50 mg x ml(-1) drop, Astra Médica, Brazil). Twenty-four healthy volunteers (both sexes) took part in the study and received a single oral dose of nimesulide (100 mg, equivalent to 2 ml of either formulation) in an open, randomized, two-period crossover way, with a 2-week washout interval between periods. The 90% confidence interval (CI) for geometric mean ratios between nimesulide and Nisulid were 93.1-109.6% for C(max), 87.7-99.8% for AUC(last) and 88.1-99.7% for AUC(0-infinity). Since the 90% CI for the above-mentioned parameters were included in the 80-125% interval proposed by the US Food and Drug Administration, the two formulations were considered bioequivalent in terms of both rate and extent of absorption. Copyright 2001 John Wiley & Sons, Ltd.

  15. Elucidating the diet of the island flying fox (Pteropus hypomelanus) in Peninsular Malaysia through Illumina Next-Generation Sequencing.

    PubMed

    Aziz, Sheema Abdul; Clements, Gopalasamy Reuben; Peng, Lee Yin; Campos-Arceiz, Ahimsa; McConkey, Kim R; Forget, Pierre-Michel; Gan, Han Ming

    2017-01-01

    There is an urgent need to identify and understand the ecosystem services of pollination and seed dispersal provided by threatened mammals such as flying foxes. The first step towards this is to obtain comprehensive data on their diet. However, the volant and nocturnal nature of bats presents a particularly challenging situation, and conventional microhistological approaches to studying their diet can be laborious and time-consuming, and provide incomplete information. We used Illumina Next-Generation Sequencing (NGS) as a novel, non-invasive method for analysing the diet of the island flying fox ( Pteropus hypomelanus ) on Tioman Island, Peninsular Malaysia. Through DNA metabarcoding of plants in flying fox droppings, using primers targeting the rbcL gene, we identified at least 29 Operationally Taxonomic Units (OTUs) comprising the diet of this giant pteropodid. OTU sequences matched at least four genera and 14 plant families from online reference databases based on a conservative Least Common Ancestor approach, and eight species from our site-specific plant reference collection. NGS was just as successful as conventional microhistological analysis in detecting plant taxa from droppings, but also uncovered six additional plant taxa. The island flying fox's diet appeared to be dominated by figs ( Ficus sp.), which was the most abundant plant taxon detected in the droppings every single month. Our study has shown that NGS can add value to the conventional microhistological approach in identifying food plant species from flying fox droppings. At this point in time, more accurate genus- and species-level identification of OTUs not only requires support from databases with more representative sequences of relevant plant DNA, but probably necessitates in situ collection of plant specimens to create a reference collection. Although this method cannot be used to quantify true abundance or proportion of plant species, nor plant parts consumed, it ultimately provides a very important first step towards identifying plant taxa and spatio-temporal patterns in flying fox diets.

  16. Elucidating the diet of the island flying fox (Pteropus hypomelanus) in Peninsular Malaysia through Illumina Next-Generation Sequencing

    PubMed Central

    Clements, Gopalasamy Reuben; Peng, Lee Yin; Campos-Arceiz, Ahimsa; McConkey, Kim R.; Forget, Pierre-Michel; Gan, Han Ming

    2017-01-01

    There is an urgent need to identify and understand the ecosystem services of pollination and seed dispersal provided by threatened mammals such as flying foxes. The first step towards this is to obtain comprehensive data on their diet. However, the volant and nocturnal nature of bats presents a particularly challenging situation, and conventional microhistological approaches to studying their diet can be laborious and time-consuming, and provide incomplete information. We used Illumina Next-Generation Sequencing (NGS) as a novel, non-invasive method for analysing the diet of the island flying fox (Pteropus hypomelanus) on Tioman Island, Peninsular Malaysia. Through DNA metabarcoding of plants in flying fox droppings, using primers targeting the rbcL gene, we identified at least 29 Operationally Taxonomic Units (OTUs) comprising the diet of this giant pteropodid. OTU sequences matched at least four genera and 14 plant families from online reference databases based on a conservative Least Common Ancestor approach, and eight species from our site-specific plant reference collection. NGS was just as successful as conventional microhistological analysis in detecting plant taxa from droppings, but also uncovered six additional plant taxa. The island flying fox’s diet appeared to be dominated by figs (Ficus sp.), which was the most abundant plant taxon detected in the droppings every single month. Our study has shown that NGS can add value to the conventional microhistological approach in identifying food plant species from flying fox droppings. At this point in time, more accurate genus- and species-level identification of OTUs not only requires support from databases with more representative sequences of relevant plant DNA, but probably necessitates in situ collection of plant specimens to create a reference collection. Although this method cannot be used to quantify true abundance or proportion of plant species, nor plant parts consumed, it ultimately provides a very important first step towards identifying plant taxa and spatio-temporal patterns in flying fox diets. PMID:28413729

  17. Rural Creativity: A Study of District Mandated Online Professional Development

    ERIC Educational Resources Information Center

    Johnson, Cynthia; Summerville, Jennifer

    2004-01-01

    According to the annual industry report in "Training" magazine, money spent on employee training dropped approximately six percent--the first time that training expenditures have dropped since the mid 1990's. At the same time, web-based training increased from 48% of all computer-based training to 61% in just one year (2002-2003). The…

  18. Individual Differences in the Effects of Academic Motivation on Higher Education Students' Intention to Drop Out

    ERIC Educational Resources Information Center

    Rump, Markus; Esdar, Wiebke; Wild, Elke

    2017-01-01

    The present study investigated individual differences in the effects of academic motivation based on self-determination theory (SDT), particularly intrinsic motivation, as well as identified, introjected, and external regulation on higher education students' intention to drop out. Based on previous research, we challenged the assumption of a…

  19. Who Drops out of Early Head Start Home Visiting Programs?

    ERIC Educational Resources Information Center

    Roggman, Lori A.; Cook, Gina A.; Peterson, Carla A.; Raikes, Helen H.

    2008-01-01

    Research Findings: Early Head Start home-based programs provide services through weekly home visits to families with children up to age 3, but families vary in how long they remain enrolled. In this study of 564 families in home-based Early Head Start programs, "dropping out" was predicted by specific variations in home visits and certain family…

  20. The Observed Behavior of the Bias in MODIS-retrieved Cloud Droplet Effective Radius through MISR-MODIS Data Fusion

    NASA Astrophysics Data System (ADS)

    Fu, D.; Di Girolamo, L.; Liang, L.; Zhao, G.

    2017-12-01

    Listed as one of the Essential Climate Variables by the Global Climate Observing System, the effective radius (Re) of the cloud drop size distribution plays an important role in the energy and water cycles of the Earth system. Re is retrieved from several passive sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), based on a visible and near-infrared bi-spectral technique that had its foundation more than a quarter century ago. This technique makes a wide range of assumptions, including 1-D radiative transfer, assumed single-mode drop size distribution, and cloud horizontal and vertical homogeneity. It is well known that deviations from these assumptions lead to bias in the retrieved Re. Recently, an effort to characterize the bias in MODIS-retrieved Re through MISR-MODIS data fusion revealed biases in the zonal-mean values of MODIS-retrieved Re that varied from 2 to 11 µm, depending on latitude (Liang et al., 2015). Here, in a push towards bias-correction of MODIS-retrieved Re, we further examine the bias with MISR-MODIS data fusion as it relates to other observed cloud properties, such as cloud-top height and the spatial variability of the radiance field, sun-view geometry, and the driving meteorology had from reanalysis data. Our results show interesting relationships in Re bias behavior with these observed properties, revealing that while Re bias do show a certain degree of dependence on some properties, no single property dominates the behavior in MODIS-retrieved Re bias.

Top