Sample records for based snow model

  1. A conceptual snow model with an analytic resolution of the heat and phase change equations

    NASA Astrophysics Data System (ADS)

    Riboust, Philippe; Le Moine, Nicolas; Thirel, Guillaume; Ribstein, Pierre

    2017-04-01

    Compared to degree-day snow models, physically-based snow models resolve more processes in an attempt to achieve a better representation of reality. Often these physically-based models resolve the heat transport equations in snow using a vertical discretization of the snowpack. The snowpack is decomposed into several layers in which the mechanical and thermal states of the snow are calculated. A higher number of layers in the snowpack allow for better accuracy but it also tends to increase the computational costs. In order to develop a snow model that estimates the temperature profile of snow with a lower computational cost, we used an analytical decomposition of the vertical profile using eigenfunctions (i.e. trigonometric functions adapted to the specific boundary conditions). The mass transfer of snow melt has also been estimated using an analytical conceptualization of runoff fingering and matrix flow. As external meteorological forcing, the model uses solar and atmospheric radiation, air temperature, atmospheric humidity and precipitations. It has been tested and calibrated at point scale at two different stations in the Alps: Col de Porte (France, 1325 m) and Weissfluhjoch (Switzerland, 2540 m). A sensitivity analysis of model parameters and model inputs will be presented together with a comparison with measured snow surface temperature, SWE, snow depth, temperature profile and snow melt data. The snow model is created in order to be ultimately coupled with hydrological models for rainfall-runoff modeling in mountainous areas. We hope to create a model faster than physically-based models but capable to estimate more physical processes than degree-day snow models. This should help to build a more reliable snow model capable of being easily calibrated by remote sensing and in situ observation or to assimilate these data for forecasting purposes.

  2. Snow specific surface area simulation using the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS)

    NASA Astrophysics Data System (ADS)

    Roy, A.; Royer, A.; Montpetit, B.; Bartlett, P. A.; Langlois, A.

    2012-12-01

    Snow grain size is a key parameter for modeling microwave snow emission properties and the surface energy balance because of its influence on the snow albedo, thermal conductivity and diffusivity. A model of the specific surface area (SSA) of snow was implemented in the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS) version 3.4. This offline multilayer model (CLASS-SSA) simulates the decrease of SSA based on snow age, snow temperature and the temperature gradient under dry snow conditions, whereas it considers the liquid water content for wet snow metamorphism. We compare the model with ground-based measurements from several sites (alpine, Arctic and sub-Arctic) with different types of snow. The model provides simulated SSA in good agreement with measurements with an overall point-to-point comparison RMSE of 8.1 m2 kg-1, and a RMSE of 4.9 m2 kg-1 for the snowpack average SSA. The model, however, is limited under wet conditions due to the single-layer nature of the CLASS model, leading to a single liquid water content value for the whole snowpack. The SSA simulations are of great interest for satellite passive microwave brightness temperature assimilations, snow mass balance retrievals and surface energy balance calculations with associated climate feedbacks.

  3. Improving snow density estimation for mapping SWE with Lidar snow depth: assessment of uncertainty in modeled density and field sampling strategies in NASA SnowEx

    NASA Astrophysics Data System (ADS)

    Raleigh, M. S.; Smyth, E.; Small, E. E.

    2017-12-01

    The spatial distribution of snow water equivalent (SWE) is not sufficiently monitored with either remotely sensed or ground-based observations for water resources management. Recent applications of airborne Lidar have yielded basin-wide mapping of SWE when combined with a snow density model. However, in the absence of snow density observations, the uncertainty in these SWE maps is dominated by uncertainty in modeled snow density rather than in Lidar measurement of snow depth. Available observations tend to have a bias in physiographic regime (e.g., flat open areas) and are often insufficient in number to support testing of models across a range of conditions. Thus, there is a need for targeted sampling strategies and controlled model experiments to understand where and why different snow density models diverge. This will enable identification of robust model structures that represent dominant processes controlling snow densification, in support of basin-scale estimation of SWE with remotely-sensed snow depth datasets. The NASA SnowEx mission is a unique opportunity to evaluate sampling strategies of snow density and to quantify and reduce uncertainty in modeled snow density. In this presentation, we present initial field data analyses and modeling results over the Colorado SnowEx domain in the 2016-2017 winter campaign. We detail a framework for spatially mapping the uncertainty in snowpack density, as represented across multiple models. Leveraging the modular SUMMA model, we construct a series of physically-based models to assess systematically the importance of specific process representations to snow density estimates. We will show how models and snow pit observations characterize snow density variations with forest cover in the SnowEx domains. Finally, we will use the spatial maps of density uncertainty to evaluate the selected locations of snow pits, thereby assessing the adequacy of the sampling strategy for targeting uncertainty in modeled snow density.

  4. Evaluation of distributed hydrologic impacts of temperature-index and energy-based snow models

    USDA-ARS?s Scientific Manuscript database

    Proper characterizations of snow melt and accumulation processes in the snow-dominated mountain environment are needed to understand and predict spatiotemporal distribution of water cycle components. Two commonly used strategies in modeling of snow accumulation and melt are the full energy based and...

  5. The Goddard Snow Radiance Assimilation Project: An Integrated Snow Radiance and Snow Physics Modeling Framework for Snow/cold Land Surface Modeling

    NASA Technical Reports Server (NTRS)

    Kim, E.; Tedesco, M.; Reichle, R.; Choudhury, B.; Peters-Lidard C.; Foster, J.; Hall, D.; Riggs, G.

    2006-01-01

    Microwave-based retrievals of snow parameters from satellite observations have a long heritage and have so far been generated primarily by regression-based empirical "inversion" methods based on snapshots in time. Direct assimilation of microwave radiance into physical land surface models can be used to avoid errors associated with such retrieval/inversion methods, instead utilizing more straightforward forward models and temporal information. This approach has been used for years for atmospheric parameters by the operational weather forecasting community with great success. Recent developments in forward radiative transfer modeling, physical land surface modeling, and land data assimilation are converging to allow the assembly of an integrated framework for snow/cold lands modeling and radiance assimilation. The objective of the Goddard snow radiance assimilation project is to develop such a framework and explore its capabilities. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. In fact, multiple models are available for each element enabling optimization to match the needs of a particular study. Together these form a modular and flexible framework for self-consistent, physically-based remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster. Capabilities for assimilation of snow retrieval products are already under development for LIS. We will describe plans to add radiance-based assimilation capabilities. Plans for validation activities using field measurements will also be discussed.

  6. Simulating polarized light scattering in terrestrial snow based on bicontinuous random medium and Monte Carlo ray tracing

    NASA Astrophysics Data System (ADS)

    Xiong, Chuan; Shi, Jiancheng

    2014-01-01

    To date, the light scattering models of snow consider very little about the real snow microstructures. The ideal spherical or other single shaped particle assumptions in previous snow light scattering models can cause error in light scattering modeling of snow and further cause errors in remote sensing inversion algorithms. This paper tries to build up a snow polarized reflectance model based on bicontinuous medium, with which the real snow microstructure is considered. The accurate specific surface area of bicontinuous medium can be analytically derived. The polarized Monte Carlo ray tracing technique is applied to the computer generated bicontinuous medium. With proper algorithms, the snow surface albedo, bidirectional reflectance distribution function (BRDF) and polarized BRDF can be simulated. The validation of model predicted spectral albedo and bidirectional reflectance factor (BRF) using experiment data shows good results. The relationship between snow surface albedo and snow specific surface area (SSA) were predicted, and this relationship can be used for future improvement of snow specific surface area (SSA) inversion algorithms. The model predicted polarized reflectance is validated and proved accurate, which can be further applied in polarized remote sensing.

  7. The Impact of Detailed Snow Physics on the Simulation of Snow Cover and Subsurface Thermodynamics at Continental Scales

    NASA Technical Reports Server (NTRS)

    Stieglitz, Marc; Ducharne, Agnes; Koster, Randy; Suarez, Max; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The three-layer snow model is coupled to the global catchment-based Land Surface Model (LSM) of the NASA Seasonal to Interannual Prediction Project (NSIPP) project, and the combined models are used to simulate the growth and ablation of snow cover over the North American continent for the period 1987-1988. The various snow processes included in the three-layer model, such as snow melting and re-freezing, dynamic changes in snow density, and snow insulating properties, are shown (through a comparison with the corresponding simulation using a much simpler snow model) to lead to an improved simulation of ground thermodynamics on the continental scale.

  8. Testing a blowing snow model against distributed snow measurements at Upper Sheep Creek, Idaho, United States of America

    Treesearch

    Rajiv Prasad; David G. Tarboton; Glen E. Liston; Charles H. Luce; Mark S. Seyfried

    2001-01-01

    In this paper a physically based snow transport model (SnowTran-3D) was used to simulate snow drifting over a 30 m grid and was compared to detailed snow water equivalence (SWE) surveys on three dates within a small 0.25 km2 subwatershed, Upper Sheep Creek. Two precipitation scenarios and two vegetation scenarios were used to carry out four snow transport model runs in...

  9. Mapping the spatial distribution and time evolution of snow water equivalent with passive microwave measurements

    USGS Publications Warehouse

    Guo, J.; Tsang, L.; Josberger, E.G.; Wood, A.W.; Hwang, J.-N.; Lettenmaier, D.P.

    2003-01-01

    This paper presents an algorithm that estimates the spatial distribution and temporal evolution of snow water equivalent and snow depth based on passive remote sensing measurements. It combines the inversion of passive microwave remote sensing measurements via dense media radiative transfer modeling results with snow accumulation and melt model predictions to yield improved estimates of snow depth and snow water equivalent, at a pixel resolution of 5 arc-min. In the inversion, snow grain size evolution is constrained based on pattern matching by using the local snow temperature history. This algorithm is applied to produce spatial snow maps of Upper Rio Grande River basin in Colorado. The simulation results are compared with that of the snow accumulation and melt model and a linear regression method. The quantitative comparison with the ground truth measurements from four Snowpack Telemetry (SNOTEL) sites in the basin shows that this algorithm is able to improve the estimation of snow parameters.

  10. The AMSR2 Satellite-based Microwave Snow Algorithm (SMSA) to estimate regional to global snow depth and snow water equivalent

    NASA Astrophysics Data System (ADS)

    Kelly, R. E. J.; Saberi, N.; Li, Q.

    2017-12-01

    With moderate to high spatial resolution (<1 km) regional to global snow water equivalent (SWE) observation approaches yet to be fully scoped and developed, the long-term satellite passive microwave record remains an important tool for cryosphere-climate diagnostics. A new satellite microwave remote sensing approach is described for estimating snow depth (SD) and snow water equivalent (SWE). The algorithm, called the Satellite-based Microwave Snow Algorithm (SMSA), uses Advanced Microwave Scanning Radiometer - 2 (AMSR2) observations aboard the Global Change Observation Mission - Water mission launched by the Japan Aerospace Exploration Agency in 2012. The approach is unique since it leverages observed brightness temperatures (Tb) with static ancillary data to parameterize a physically-based retrieval without requiring parameter constraints from in situ snow depth observations or historical snow depth climatology. After screening snow from non-snow surface targets (water bodies [including freeze/thaw state], rainfall, high altitude plateau regions [e.g. Tibetan plateau]), moderate and shallow snow depths are estimated by minimizing the difference between Dense Media Radiative Transfer model estimates (Tsang et al., 2000; Picard et al., 2011) and AMSR2 Tb observations to retrieve SWE and SD. Parameterization of the model combines a parsimonious snow grain size and density approach originally developed by Kelly et al. (2003). Evaluation of the SMSA performance is achieved using in situ snow depth data from a variety of standard and experiment data sources. Results presented from winter seasons 2012-13 to 2016-17 illustrate the improved performance of the new approach in comparison with the baseline AMSR2 algorithm estimates and approach the performance of the model assimilation-based approach of GlobSnow. Given the variation in estimation power of SWE by different land surface/climate models and selected satellite-derived passive microwave approaches, SMSA provides SWE estimates that are independent of real or near real-time in situ and model data.

  11. Distributed snow modeling suitable for use with operational data for the American River watershed.

    NASA Astrophysics Data System (ADS)

    Shamir, E.; Georgakakos, K. P.

    2004-12-01

    The mountainous terrain of the American River watershed (~4300 km2) at the Western slope of the Northern Sierra Nevada is subject to significant variability in the atmospheric forcing that controls the snow accumulation and ablations processes (i.e., precipitation, surface temperature, and radiation). For a hydrologic model that attempts to predict both short- and long-term streamflow discharges, a plausible description of the seasonal and intermittent winter snow pack accumulation and ablation is crucial. At present the NWS-CNRFC operational snow model is implemented in a semi distributed manner (modeling unit of about 100-1000 km2) and therefore lump distinct spatial variability of snow processes. In this study we attempt to account for the precipitation, temperature, and radiation spatial variability by constructing a distributed snow accumulation and melting model suitable for use with commonly available sparse data. An adaptation of the NWS-Snow17 energy and mass balance that is used operationally at the NWS River Forecast Centers is implemented at 1 km2 grid cells with distributed input and model parameters. The input to the model (i.e., precipitation and surface temperature) is interpolated from observed point data. The surface temperature was interpolated over the basin based on adiabatic lapse rates using topographic information whereas the precipitation was interpolated based on maps of climatic mean annual rainfall distribution acquired from PRISM. The model parameters that control the melting rate due to radiation were interpolated based on aspect. The study was conducted for the entire American basin for the snow seasons of 1999-2000. Validation of the Snow Water Equivalent (SWE) prediction is done by comparing to observation from 12 snow Sensors. The Snow Cover Area (SCA) prediction was evaluated by comparing to remotely sensed 500m daily snow cover derived from MODIS. The results that the distribution of snow over the area is well captured and the quantity compared to the snow gauges are well estimated in the high elevation.

  12. Combining point and distributed snowpack data with landscape-based discretization for hydrologic modeling of the snow-dominated Maipo River basin, in the semi-arid Andes of Central Chile.

    NASA Astrophysics Data System (ADS)

    McPhee, James; Videla, Yohann

    2014-05-01

    The 5000-km2 upper Maipo River Basin, in central Chile's Andes, has an adequate streamgage network but almost no meteorological or snow accumulation data. Therefore, hydrologic model parameterization is strongly subject to model errors stemming from input and model-state uncertainty. In this research, we apply the Cold Regions Hydrologic Model (CRHM) to the basin, force it with reanalysis data downscaled to an appropriate resolution, and inform a parsimonious basin discretization, based on the hydrologic response unit concept, with distributed data on snowpack properties obtained through snow surveys for two seasons. With minimal calibration the model is able to reproduce the seasonal accumulation and melt cycle as recorded in the one snow pillow available for the basin, and although a bias in maximum accumulation persists, snowpack persistence in time is appropriately simulated based on snow water equivalent and snow covered area observations. Blowing snow events were simulated by the model whenever daily wind speed surpassed 8 m/s, although the use of daily instead of hourly data to force the model suggests that this phenomenon could be underestimated. We investigate the representation of snow redistribution by the model, and compare it with small-scale observations of wintertime snow accumulation on glaciers, in a first step towards characterizing ice distribution within a HRU spatial discretization. Although built at a different spatial scale, we present a comparison of simulated results with distributed snow depth data obtained within a 40 km2 sub-basin of the main Maipo watershed in two snow surveys carried out at the end of winter seasons 2011 and 2012, and compare basin-wide SWE estimates with a regression tree extrapolation of the observed data.

  13. A Physical Based Formula for Calculating the Critical Stress of Snow Movement

    NASA Astrophysics Data System (ADS)

    He, S.; Ohara, N.

    2016-12-01

    In snow redistribution modeling, one of the most important parameters is the critical stress of snow movement, which is difficult to estimate from field data because it is influenced by various factors. In this study, a new formula for calculating critical stress of snow movement was derived based on the ice particle sintering process modeling and the moment balance of a snow particle. Through this formula, the influences of snow particle size, air temperature, and deposited time on the critical stress were explicitly taken into consideration. It was found that some of the model parameters were sensitive to the critical stress estimation through the sensitivity analysis using Sobol's method. The two sensitive parameters of the sintering process modeling were determined by a calibration-validation procedure using the observed snow flux data via FlowCapt. Based on the snow flux and metrological data observed at the ISAW stations (http://www.iav.ch), it was shown that the results of this formula were able to describe very well the evolution of the minimum friction wind speed required for the snow motion. This new formula suggested that when the snow just reaches the surface, the smaller snowflake can move easier than the larger particles. However, smaller snow particles require more force to move as the sintering between the snowflakes progresses. This implied that compact snow with small snow particles may be harder to erode by wind although smaller particles may have a higher chance to be suspended once they take off.

  14. Modeling multi-layer effects in passive microwave remote sensing of dry snow using Dense Media Radiative Transfer Theory (DMRT) based on quasicrystalline approximation

    USGS Publications Warehouse

    Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.

    2008-01-01

    The Dense Media Radiative Transfer theory (DMRT) of Quasicrystalline Approximation of Mie scattering by sticky particles is used to study the multiple scattering effects in layered snow in microwave remote sensing. Results are illustrated for various snow profile characteristics. Polarization differences and frequency dependences of multilayer snow model are significantly different from that of the single-layer snow model. Comparisons are also made with CLPX data using snow parameters as given by the VIC model. ?? 2007 IEEE.

  15. The DMRT-ML Model: Numerical Simulations of the Microwave Emission of Snowpacks Based on the Dense Media Radiative Transfer Theory

    NASA Technical Reports Server (NTRS)

    Picard, Ghislain; Brucker, Ludovic; Roy, Alexandre; DuPont, FLorent; Champollion, Nicolas; Morin, Samuel

    2014-01-01

    Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer).

  16. Modelling technical snow production for skiing areas in the Austrian Alps with the physically based snow model AMUNDSEN

    NASA Astrophysics Data System (ADS)

    Hanzer, F.; Marke, T.; Steiger, R.; Strasser, U.

    2012-04-01

    Tourism and particularly winter tourism is a key factor for the Austrian economy. Judging from currently available climate simulations, the Austrian Alps show a particularly high vulnerability to climatic changes. To reduce the exposure of ski areas towards changes in natural snow conditions as well as to generally enhance snow conditions at skiing sites, technical snowmaking is widely utilized across Austrian ski areas. While such measures result in better snow conditions at the skiing sites and are important for the local skiing industry, its economic efficiency has also to be taken into account. The current work emerges from the project CC-Snow II, where improved future climate scenario simulations are used to determine future natural and artificial snow conditions and their effects on tourism and economy in the Austrian Alps. In a first step, a simple technical snowmaking approach is incorporated into the process based snow model AMUNDSEN, which operates at a spatial resolution of 10-50 m and a temporal resolution of 1-3 hours. Locations of skiing slopes within a ski area in Styria, Austria, were digitized and imported into the model environment. During a predefined time frame in the beginning of the ski season, the model produces a maximum possible amount of technical snow and distributes the associated snow on the slopes, whereas afterwards, until to the end of the ski season, the model tries to maintain a certain snow depth threshold value on the slopes. Due to only few required input parameters, this approach is easily transferable to other ski areas. In our poster contribution, we present first results of this snowmaking approach and give an overview of the data and methodology applied. In a further step in CC-Snow, this simple bulk approach will be extended to consider actual snow cannon locations and technical specifications, which will allow a more detailed description of technical snow production as well as cannon-based recordings of water and energy consumption.

  17. Merging a Terrain-Based Parameter and Snow Particle Counter Data for the Assessment of Snow Redistribution in the Col du Lac Blanc Area

    NASA Astrophysics Data System (ADS)

    Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Vionnet, Vincent; Guyomarc'h, Gilbert; Heiser, Micha; Nishimura, Kouichi

    2015-04-01

    Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns. It does not, however, provide a quantitative estimate of changes in snow depths. The objective of our research was to introduce a new parameter to quantify changes in snow depths in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its consistently bi-modal wind directions. Our work focused on two pronounced, approximately 10 m high terrain breaks, and we worked with 1 m resolution digital snow surface models (DSM). The DSM and measured changes in snow depths were obtained with high-accuracy terrestrial laser scan (TLS) measurements. First we calculated the terrain-based parameter Sx on a digital snow surface model and correlated Sx with measured changes in snow-depths (Δ SH). Results showed that Δ SH can be approximated by Δ SHestimated = α * Sx, where α is a newly introduced parameter. The parameter α has shown to be linked to the amount of snow deposited influenced by blowing snow flux. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter α . To simulate the development of the snow surface in dependency of Sx, SPC flux and time, we apply a simple cellular automata system. The system consists of raster cells that develop through discrete time steps according to a set of rules. The rules are based on the states of neighboring cells. Our model assumes snow transport in dependency of Sx gradients between neighboring cells. The cells evolve based on difference quotients between neighbouring cells. Our analyses and results are steps towards using the terrain-based parameter Sx, coupled with SPC data, to quantitatively estimate changes in snow depths, using high raster resolutions of 1 m.

  18. Snow multivariable data assimilation for hydrological predictions in Alpine sites

    NASA Astrophysics Data System (ADS)

    Piazzi, Gaia; Thirel, Guillaume; Campo, Lorenzo; Gabellani, Simone; Stevenin, Hervè

    2017-04-01

    Snowpack dynamics (snow accumulation and ablation) strongly impacts on hydrological processes in Alpine areas. During the winter season the presence of snow cover (snow accumulation) reduces the drainage in the basin with a resulting lower watershed time of concentration in case of possible rainfall events. Moreover, the release of the significant water volume stored in winter (snowmelt) considerably contributes to the total discharge during the melting period. Therefore when modeling hydrological processes in snow-dominated catchments the quality of predictions deeply depends on how the model succeeds in catching snowpack dynamics. The integration of a hydrological model with a snow module allows improving predictions of river discharges. Besides the well-known modeling limitations (uncertainty in parameterizations; possible errors affecting both meteorological forcing data and initial conditions; approximations in boundary conditions), there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine several independent snow-related data sources (model simulations, ground-based measurements and remote sensed observations) in order to obtain the most likely estimate of snowpack state. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model strengthened by a multivariable DA framework for hydrological purposes. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide a complete estimate of snowpack state. The implementation of a DA scheme enables to assimilate simultaneously ground-based observations of different snow-related variables (snow depth, snow density, surface temperature and albedo). SMASH performances are evaluated by using observed data supplied by meteorological stations located in three experimental Alpine sites: Col de Porte (1325 m, France); Torgnon (2160 m, Italy); Weissfluhjoch (2540 m, Switzerland). A comparison analysis between the resulting performaces of Particle Filter and Ensemble Kalman Filter schemes is shown.

  19. The DMRT-ML Model: Numerical Simulations of the Microwave Emission of Snowpacks Based on the Dense Media Radiative Transfer Theory

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Picard, Ghislain; Roy, Alexandre; Dupont, Florent; Fily, Michel; Royer, Alain

    2014-01-01

    Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer), and is available at http:lgge.osug.frpicarddmrtml.

  20. A Comparison of the SNICAR Radiative Transfer Model to In Situ Snow Characterization Measurements at Sites in New England, USA

    NASA Astrophysics Data System (ADS)

    Adolph, A. C.; Albert, M. R.; Dibb, J. E.; Lazarcik, J.; Amante, J.

    2016-12-01

    As a highly reflective material, snow serves as an important control on surface energy balance. Given the current changes in climate and the sensitivity of snow cover to rising temperatures, it is critical that we understand the role of snow and its associated feedbacks in the climate system. Much of snow albedo research has focused on polar or high altitude snow packs, but rapid changes are also occurring in temperate regions; in the northeastern United States of America, changing climate has resulted in shallower snow packs and fewer days of snow cover. As these changes occur and we seek to understand the associated implications for snow albedo within climate dynamics, it is imperative that we are able to accurately represent snow in models. The SNow, ICe, and Aerosol Radiation model (SNICAR), developed by Flanner and Zender (2005) and used in the IPCC assessments, provides upward and downward radiative fluxes of one or many snow layers based on the following inputs: snow depth, density, grain size, and impurity content; solar zenith angle; lighting conditions; and albedo of the surface beneath the snowpack. To our knowledge, the SNICAR model has not been validated with data from a mid-latitude temperate region. Through a measurement campaign that occurred from winter 2013-2016, we have collected over 400 independent observations of a suite of snow characterization measurements and spectral snow albedo from three different sites in New Hampshire, USA. Comparison of our spectral albedo measurements to the SNICAR albedo derived from measured snow properties and illumination conditions will allow for validation of the model or recommendations for improvement based on the sensitivities found in the data.

  1. What Does a Multilayer Canopy Model Tell Us About Our Current Understanding of Snow-Canopy Unloading?

    NASA Astrophysics Data System (ADS)

    McGowan, L. E.; Paw U, K. T.; Dahlke, H. E.

    2017-12-01

    In the Western U.S., future water resources depend on the forested mountain snowpack. The variations in and estimates of forest mountain snow volume are vital to projecting annual water availability; yet, snow forest processes are not fully known. Most snow models calculate snow-canopy unloading based on time, temperature, Leaf Area Index (LAI), and/or wind speed. While models crudely consider the canopy shape via LAI, current models typically do not consider the vertical canopy structure or varied energetics within multiple canopy layers. Vertical canopy structure influences the spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability. Within the canopy both the snowpack and energetic exposures to the snowpack (wind, shortwave and longwave radiation, turbulent heat fluxes etc.) vary widely in the vertical. The water and energy balance in each layer is dependent on all other layers. For example, increased snow canopy content in the top of the canopy will reduce available shortwave radiation at the bottom and snow unloading in a mid-layer can cascade and remove snow from all the lower layers. We examined vertical interactions and structures of the forest canopy on the impact of unloading utilizing the Advanced Canopy-Atmosphere-Soil-Algorithm (ACASA), a multilayer soil-vegetation-atmosphere numerical model based on higher-order closure of turbulence equations. Our results demonstrate how a multilayer model can be used to elucidate the physical processes of snow unloading, and could help researchers better parameterize unloading in snow-hydrology models.

  2. Snow Water Equivalent Retrieval By Markov Chain Monte Carlo Based on Memls and Hut Snow Emission Model

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Vanderjagt, B. J.

    2014-12-01

    The Markov chain Monte Carlo (MCMC) method had been proved to be successful in snow water equivalent retrieval based on synthetic point-scale passive microwave brightness temperature (TB) observations. This method needs only general prior information about distribution of snow parameters, and could estimate layered snow properties, including the thickness, temperature, density and snow grain size (or exponential correlation length) of each layer. In this study, the multi-layer HUT (Helsinki University of Technology) model and the MEMLS (Microwave Emission Model of Layered Snowpacks) will be used as observation models to assimilate the observed TB into snow parameter prediction. Previous studies had shown that the multi-layer HUT model tends to underestimate TB at 37 GHz for deep snow, while the MEMLS does not show sensitivity of model bias to snow depth. Therefore, results using HUT model and MEMLS will be compared to see how the observation model will influence the retrieval of snow parameters. The radiometric measurements at 10.65, 18.7, 36.5 and 90 GHz at Sodankyla, Finland will be used as MCMC input, and the statistics of all snow property measurement will be used to calculate the prior information. 43 dry snowpits with complete measurements of all snow parameters will be used for validation. The entire dataset are from NorSREx (Nordic Snow Radar Experiment) experiments carried out by Juha Lemmetyinen, Anna Kontu and Jouni Pulliainen in FMI in 2009-2011 winters, and continued two more winters from 2011 to Spring of 2013. Besides the snow thickness and snow density that are directly related to snow water equivalent, other parameters will be compared with observations, too. For thin snow, the previous studies showed that influence of underlying soil is considerable, especially when the soil is half frozen with part of unfrozen liquid water and part of ice. Therefore, this study will also try to employ a simple frozen soil permittivity model to improve the performance of retrieval. The behavior of the Markov chain in soil parameters will be studied.

  3. Remote sensing, hydrological modeling and in situ observations in snow cover research: A review

    NASA Astrophysics Data System (ADS)

    Dong, Chunyu

    2018-06-01

    Snow is an important component of the hydrological cycle. As a major part of the cryosphere, snow cover also represents a valuable terrestrial water resource. In the context of climate change, the dynamics of snow cover play a crucial role in rebalancing the global energy and water budgets. Remote sensing, hydrological modeling and in situ observations are three techniques frequently utilized for snow cover investigations. However, the uncertainties caused by systematic errors, scale gaps, and complicated snow physics, among other factors, limit the usability of these three approaches in snow studies. In this paper, an overview of the advantages, limitations and recent progress of the three methods is presented, and more effective ways to estimate snow cover properties are evaluated. The possibility of improving remotely sensed snow information using ground-based observations is discussed. As a rapidly growing source of volunteered geographic information (VGI), web-based geotagged photos have great potential to provide ground truth data for remotely sensed products and hydrological models and thus contribute to procedures for cloud removal, correction, validation, forcing and assimilation. Finally, this review proposes a synergistic framework for the future of snow cover research. This framework highlights the cross-scale integration of in situ and remotely sensed snow measurements and the assimilation of improved remote sensing data into hydrological models.

  4. Optimizing placements of ground-based snow sensors for areal snow cover estimation using a machine-learning algorithm and melt-season snow-LiDAR data

    NASA Astrophysics Data System (ADS)

    Oroza, C.; Zheng, Z.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2016-12-01

    We present a structured, analytical approach to optimize ground-sensor placements based on time-series remotely sensed (LiDAR) data and machine-learning algorithms. We focused on catchments within the Merced and Tuolumne river basins, covered by the JPL Airborne Snow Observatory LiDAR program. First, we used a Gaussian mixture model to identify representative sensor locations in the space of independent variables for each catchment. Multiple independent variables that govern the distribution of snow depth were used, including elevation, slope, and aspect. Second, we used a Gaussian process to estimate the areal distribution of snow depth from the initial set of measurements. This is a covariance-based model that also estimates the areal distribution of model uncertainty based on the independent variable weights and autocorrelation. The uncertainty raster was used to strategically add sensors to minimize model uncertainty. We assessed the temporal accuracy of the method using LiDAR-derived snow-depth rasters collected in water-year 2014. In each area, optimal sensor placements were determined using the first available snow raster for the year. The accuracy in the remaining LiDAR surveys was compared to 100 configurations of sensors selected at random. We found the accuracy of the model from the proposed placements to be higher and more consistent in each remaining survey than the average random configuration. We found that a relatively small number of sensors can be used to accurately reproduce the spatial patterns of snow depth across the basins, when placed using spatial snow data. Our approach also simplifies sensor placement. At present, field surveys are required to identify representative locations for such networks, a process that is labor intensive and provides limited guarantees on the networks' representation of catchment independent variables.

  5. An Integrated Uncertainty Analysis and Ensemble-based Data Assimilation Framework for Operational Snow Predictions

    NASA Astrophysics Data System (ADS)

    He, M.; Hogue, T. S.; Franz, K.; Margulis, S. A.; Vrugt, J. A.

    2009-12-01

    The National Weather Service (NWS), the agency responsible for short- and long-term streamflow predictions across the nation, primarily applies the SNOW17 model for operational forecasting of snow accumulation and melt. The SNOW17-forecasted snowmelt serves as an input to a rainfall-runoff model for streamflow forecasts in snow-dominated areas. The accuracy of streamflow predictions in these areas largely relies on the accuracy of snowmelt. However, no direct snowmelt measurements are available to validate the SNOW17 predictions. Instead, indirect measurements such as snow water equivalent (SWE) measurements or discharge are typically used to calibrate SNOW17 parameters. In addition, the forecast practice is inherently deterministic, lacking tools to systematically address forecasting uncertainties (e.g., uncertainties in parameters, forcing, SWE and discharge observations, etc.). The current research presents an Integrated Uncertainty analysis and Ensemble-based data Assimilation (IUEA) framework to improve predictions of snowmelt and discharge while simultaneously providing meaningful estimates of the associated uncertainty. The IUEA approach uses the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) to simultaneously estimate uncertainties in model parameters, forcing, and observations. The robustness and usefulness of the IUEA-SNOW17 framework is evaluated for snow-dominated watersheds in the northern Sierra Mountains, using the coupled IUEA-SNOW17 and an operational soil moisture accounting model (SAC-SMA). Preliminary results are promising and indicate successful performance of the coupled IUEA-SNOW17 framework. Implementation of the SNOW17 with the IUEA is straightforward and requires no major modification to the SNOW17 model structure. The IUEA-SNOW17 framework is intended to be modular and transferable and should assist the NWS in advancing the current forecasting system and reinforcing current operational forecasting skill.

  6. Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed

    USGS Publications Warehouse

    Balk, Benjamin; Elder, Kelly

    2000-01-01

    We model the spatial distribution of snow across a mountain basin using an approach that combines binary decision tree and geostatistical techniques. In April 1997 and 1998, intensive snow surveys were conducted in the 6.9‐km2 Loch Vale watershed (LVWS), Rocky Mountain National Park, Colorado. Binary decision trees were used to model the large‐scale variations in snow depth, while the small‐scale variations were modeled through kriging interpolation methods. Binary decision trees related depth to the physically based independent variables of net solar radiation, elevation, slope, and vegetation cover type. These decision tree models explained 54–65% of the observed variance in the depth measurements. The tree‐based modeled depths were then subtracted from the measured depths, and the resulting residuals were spatially distributed across LVWS through kriging techniques. The kriged estimates of the residuals were added to the tree‐based modeled depths to produce a combined depth model. The combined depth estimates explained 60–85% of the variance in the measured depths. Snow densities were mapped across LVWS using regression analysis. Snow‐covered area was determined from high‐resolution aerial photographs. Combining the modeled depths and densities with a snow cover map produced estimates of the spatial distribution of snow water equivalence (SWE). This modeling approach offers improvement over previous methods of estimating SWE distribution in mountain basins.

  7. Snow model design for operational purposes

    NASA Astrophysics Data System (ADS)

    Kolberg, Sjur

    2017-04-01

    A parsimonious distributed energy balance snow model intended for operational use is evaluated using discharge, snow covered area and grain size; the latter two as observed from the MODIS sensor. The snow model is an improvement of the existing GamSnow model, which is a part of the Enki modelling framework. Core requirements for the new version have been: 1. Reduction of calibration freedom, motivated by previous experience of non-identifiable parameters in the existing version 2. Improvement of process representation based on recent advances in physically based snow modelling 3. Limiting the sensitivity to forcing data which are poorly known over the spatial domain of interest (often in mountainous areas) 4. Preference for observable states, and the ability to improve from updates. The albedo calculation is completely revised, now based on grain size through an emulation of the SNICAR model (Flanner and Zender, 2006; Gardener and Sharp, 2010). The number of calibration parameters in the albedo model is reduced from 6 to 2. The wind function governing turbulent energy fluxes has been reduced from 2 to 1 parameter. Following Raleigh et al (2011), snow surface radiant temperature is split from the top layer thermodynamic temperature, using bias-corrected wet-bulb temperature to model the former. Analyses are ongoing, and the poster will bring evaluation results from 16 years of MODIS observations and more than 25 catchments in southern Norway.

  8. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    PubMed

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of which is almost comparable to that due to CO2 (2.83 W m-2) increases since 1750. Our results thus highlight the necessity of realistic representation of snow albedo in the model and demonstrate the use of satellite-based snow albedo to improve model behaviors, which opens new avenues for constraining snow albedo feedback in earth system models.

  9. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations

    PubMed Central

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of which is almost comparable to that due to CO2 (2.83 W m-2) increases since 1750. Our results thus highlight the necessity of realistic representation of snow albedo in the model and demonstrate the use of satellite-based snow albedo to improve model behaviors, which opens new avenues for constraining snow albedo feedback in earth system models. PMID:26366564

  10. Performance of complex snow cover descriptions in a distributed hydrological model system: A case study for the high Alpine terrain of the Berchtesgaden Alps.

    PubMed

    Warscher, M; Strasser, U; Kraller, G; Marke, T; Franz, H; Kunstmann, H

    2013-05-01

    [1] Runoff generation in Alpine regions is typically affected by snow processes. Snow accumulation, storage, redistribution, and ablation control the availability of water. In this study, several robust parameterizations describing snow processes in Alpine environments were implemented in a fully distributed, physically based hydrological model. Snow cover development is simulated using different methods from a simple temperature index approach, followed by an energy balance scheme, to additionally accounting for gravitational and wind-driven lateral snow redistribution. Test site for the study is the Berchtesgaden National Park (Bavarian Alps, Germany) which is characterized by extreme topography and climate conditions. The performance of the model system in reproducing snow cover dynamics and resulting discharge generation is analyzed and validated via measurements of snow water equivalent and snow depth, satellite-based remote sensing data, and runoff gauge data. Model efficiency (the Nash-Sutcliffe coefficient) for simulated runoff increases from 0.57 to 0.68 in a high Alpine headwater catchment and from 0.62 to 0.64 in total with increasing snow model complexity. In particular, the results show that the introduction of the energy balance scheme reproduces daily fluctuations in the snowmelt rates that trace down to the channel stream. These daily cycles measured in snowmelt and resulting runoff rates could not be reproduced by using the temperature index approach. In addition, accounting for lateral snow transport changes the seasonal distribution of modeled snowmelt amounts, which leads to a higher accuracy in modeling runoff characteristics.

  11. Modelling Ground Based X- and Ku-Band Observations of Tundra Snow

    NASA Astrophysics Data System (ADS)

    Kasurak, A.; King, J. M.; Kelly, R. E.

    2012-12-01

    As part of a radar-based remote sensing field experiment in Churchill, Manitoba ground based Ku- and X-band scatterometers were deployed to observe changing tundra snowpack conditions from November 2010 to March 2011. The research is part of the validation effort for the Cold Regions Hydrology High-resolution Observatory (CoReH2O) mission, a candidate in the European Space Agency's Earth Explorer program. This paper focuses on the local validation of the semi-empirical radiative transfer (sRT) model proposed for use in snow property retrievals as part of the CoReH2O mission. In this validation experiment, sRT was executed in the forward mode, simulating backscatter to assess the ability of the model. This is a necessary precursor to any inversion attempt. Two experiments are considered, both conducted in a hummocky tundra environment with shallow snow cover. In both cases, scatterometer observations were acquired over a field of view of approximately 10 by 20 meters. In the first experiment, radar observations were made of a snow field and then repeated after the snow had been removed. A ground-based scanning LiDAR system was used to characterize the spatial variability of snow depth through measurements of the snow and ground surface. Snow properties were determined in the field of view from two snow pits, 12 density core measurements, and Magnaprobe snow depth measurements. In the second experiment, a site was non-destructively observed from November through March, with snow properties measured out-of-scene, to characterize the snow evolution response. The model results from sRT fit the form of the observations from the two scatterometer field experiments but do not capture the backscatter magnitude. A constant offset for the season of 5 dB for X-band co- and cross-polarization response was required to match observations, in addition to a 3 dB X- and Ku-band co-polarization offset after the 6th of December. To explain these offsets, it is recognized that the two main physical processes represented by the model are snow volume scattering and ground surface reflectance. With a larger correction needed for X-band, where the ground portion of backscatter is expected to be larger, the contribution from the underlying soil is explored first. The ground contribution in sRT is computed using the semi-empirical Oh et al. (1992) model using permittivity from a temperate mineral soil based model. The ground response is tested against two observations of snow-removed tundra, and one observation of snow free tundra. A secondary analysis is completed using a modified sRT ground model, incorporating recent work on frozen organic permittivity by Mironov et al. (2010). Multi-scale surface roughness resulting from superimposed microtopography on regularly distributed hummocks is also addressed. These results demonstrate the applicability of microwave scattering models to tundra snowpacks underlain with peat, and demonstrate the applicability of the CoReH2O sRT model.

  12. Estimation of Snow Particle Model Suitable for a Complex and Forested Terrain: Lessons from SnowEx

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Li, W.; Stamnes, K. H.; Poudyal, R.; Fan, Y.; Chen, N.

    2017-12-01

    SnowEx 2017 obtained consistent and coordinated ground and airborne remote sensing measurements over Grand Mesa in Colorado, which feature sufficient forested stands to have a range of density and height (and other forest conditions); a range of snow depth/snow water equivalent (SWE) conditions; sufficiently flat snow-covered terrain of a size comparable to airborne instrument swath widths. The Cloud Absorption Radiometer (CAR) data from SnowEx are unique and can be used to assess the accuracy of Bidirectional Reflectance-Distribution Functions (BRDFs) calculated by different snow models. These measurements provide multiple angle and multiple wavelength data needed for accurate surface BRDF characterization. Such data cannot easily be obtained by current satellite remote sensors. Compared to ground-based snow field measurements, CAR measurements minimize the effect of self-shading, and are adaptable to a wide variety of field conditions. We plan to use the CAR measurements as the validation data source for our snow modeling effort. By comparing calculated BRDF results from different snow models to CAR measurements, we can determine which model best explains the snow BRDFs, and is therefore most suitable for application to satellite remote sensing of snow parameters and surface energy budget calculations.

  13. Polar View Snow Service- Operational Snow Cover Mapping for Downstream Runoff Modeling and Hydropower Predictions

    NASA Astrophysics Data System (ADS)

    Bach, Heike; Appel, Florian; Rust, Felix; Mauser, Wolfram

    2010-12-01

    Information on snow cover and snow properties are important for hydrology and runoff modelling. Frequent updates of snow cover observation, especially for areas characterized by short-term snow dynamics, can help to improve water balance and discharge calculations. Within the GMES service element Polar View, VISTA offers a snow mapping service for Central Europe since several years [1, 2]. We outline the use of this near-real- time product for hydrological applications in Alpine environment. In particular we discuss the integration of the Polar View product into a physically based hydrological model (PROMET). This allows not only the provision of snow equivalent values, but also enhances river runoff modelling and its use in hydropower energy yield prediction. The GMES snow products of Polar View are thus used in a downstream service for water resources management, providing information services for renewable energy suppliers and energy traders.

  14. A comparison study of two snow models using data from different Alpine sites

    NASA Astrophysics Data System (ADS)

    Piazzi, Gaia; Riboust, Philippe; Campo, Lorenzo; Cremonese, Edoardo; Gabellani, Simone; Le Moine, Nicolas; Morra di Cella, Umberto; Ribstein, Pierre; Thirel, Guillaume

    2017-04-01

    The hydrological balance of an Alpine catchment is strongly affected by snowpack dynamics. Melt-water supplies a significant component of the annual water budget, both in terms of soil moisture and runoff, which play a critical role in floods generation and impact water resource management in snow-dominated basins. Several snow models have been developed with variable degrees of complexity, mainly depending on their target application and the availability of computational resources and data. According to the level of detail, snow models range from statistical snowmelt-runoff and degree-day methods using composite snow-soil or explicit snow layer(s), to physically-based and energy balance snow models, consisting of detailed internal snow-process schemes. Intermediate-complexity approaches have been widely developed resulting in simplified versions of the physical parameterization schemes with a reduced snowpack layering. Nevertheless, an increasing model complexity does not necessarily entail improved model simulations. This study presents a comparison analysis between two snow models designed for hydrological purposes. The snow module developed at UPMC and IRSTEA is a mono-layer energy balance model analytically resolving heat and phase change equations into the snowpack. Vertical mass exchange into the snowpack is also analytically resolved. The model is intended to be used for hydrological studies but also to give a realistic estimation of the snowpack state at watershed scale (SWE and snow depth). The structure of the model allows it to be easily calibrated using snow observation. This model is further presented in EGU2017-7492. The snow module of SMASH (Snow Multidata Assimilation System for Hydrology) consists in a multi-layer snow dynamic scheme. It is physically based on mass and energy balances and it reproduces the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide an estimation of the snowpack state. In this study, no DA is used. For more details on the DA scheme, please see EGU2017-7777. Observed data supplied by meteorological stations located in three experimental Alpine sites are used: Col de Porte (1325 m, France); Torgnon (2160 m, Italy); Weissfluhjoch (2540 m, Switzerland). Performances of the two models are compared through evaluations of snow mass, snow depth, albedo and surface temperature simulations in order to better understand and pinpoint limits and potentialities of the analyzed schemes and the impact of different parameterizations on models simulations.

  15. Applying A Multi-Objective Based Procedure to SWAT Modelling in Alpine Catchments

    NASA Astrophysics Data System (ADS)

    Tuo, Y.; Disse, M.; Chiogna, G.

    2017-12-01

    In alpine catchments, water management practices can lead to conflicts between upstream and downstream stakeholders, like in the Adige river basin (Italy). A correct prediction of available water resources plays an important part, for example, in defining how much water can be stored for hydropower production in upstream reservoirs without affecting agricultural activities downstream. Snow is a crucial hydrological component that highly affects seasonal behavior of streamflow. Therefore, a realistic representation of snow dynamics is fundamental for water management operations in alpine catchments. The Soil and Water Assessment Tool (SWAT) model has been applied in alpine catchments worldwide. However, during model calibration of catchment scale applications, snow parameters were generally estimated based on streamflow records rather than on snow measurements. This may lead to streamflow predictions with wrong snow melt contribution. This work highlights the importance of considering snow measurements in the calibration of the SWAT model for alpine hydrology and compares various calibration methodologies. In addition to discharge records, snow water equivalent time series of both subbasin scale and monitoring station were also utilized to evaluate the model performance by comparing with the SWAT subbasin and elevation band snow outputs. Comparing model results obtained calibrating the model using discharge data only and discharge data along with snow water equivalent data, we show that the latter approach allows us to improve the reliability of snow simulations while maintaining good estimations of streamflow. With a more reliable representation of snow dynamics, the hydrological model can provide more accurate references for proposing adequate water management solutions. This study offers to the wide SWAT user community an effective approach to improve streamflow predictions in alpine catchments and hence support decision makers in water allocation.

  16. a Physical Parameterization of Snow Albedo for Use in Climate Models.

    NASA Astrophysics Data System (ADS)

    Marshall, Susan Elaine

    The albedo of a natural snowcover is highly variable ranging from 90 percent for clean, new snow to 30 percent for old, dirty snow. This range in albedo represents a difference in surface energy absorption of 10 to 70 percent of incident solar radiation. Most general circulation models (GCMs) fail to calculate the surface snow albedo accurately, yet the results of these models are sensitive to the assumed value of the snow albedo. This study replaces the current simple empirical parameterizations of snow albedo with a physically-based parameterization which is accurate (within +/- 3% of theoretical estimates) yet efficient to compute. The parameterization is designed as a FORTRAN subroutine (called SNOALB) which can be easily implemented into model code. The subroutine requires less then 0.02 seconds of computer time (CRAY X-MP) per call and adds only one new parameter to the model calculations, the snow grain size. The snow grain size can be calculated according to one of the two methods offered in this thesis. All other input variables to the subroutine are available from a climate model. The subroutine calculates a visible, near-infrared and solar (0.2-5 μm) snow albedo and offers a choice of two wavelengths (0.7 and 0.9 mu m) at which the solar spectrum is separated into the visible and near-infrared components. The parameterization is incorporated into the National Center for Atmospheric Research (NCAR) Community Climate Model, version 1 (CCM1), and the results of a five -year, seasonal cycle, fixed hydrology experiment are compared to the current model snow albedo parameterization. The results show the SNOALB albedos to be comparable to the old CCM1 snow albedos for current climate conditions, with generally higher visible and lower near-infrared snow albedos using the new subroutine. However, this parameterization offers a greater predictability for climate change experiments outside the range of current snow conditions because it is physically-based and not tuned to current empirical results.

  17. Numerical simulation of distributed snow processes in complex terrain utilizing triangulated irregular networks (TINs)

    NASA Astrophysics Data System (ADS)

    Rinehart, A. J.; Vivoni, E. R.

    2005-12-01

    Snow processes play a significant role in the hydrologic cycle of mountainous and high-latitude catchments in the western United States. Snowmelt runoff contributes to a large percentage of stream runoff while snow covered regions remain highly localized to small portions of the catchment area. The appropriate representation of snow dynamics at a given range of spatial and temporal scales is critical for adequately predicting runoff responses in snowmelt-dominated watersheds. In particular, the accurate depiction of snow cover patterns is important as a range of topographic, land-use and geographic parameters create zones of preferential snow accumulation or ablation that significantly affect the timing of a region's snow melt and the persistence of a snow pack. In this study, we present the development and testing of a distributed snow model designed for simulations over complex terrain. The snow model is developed within the context of the TIN-based Real-time Integrated Basin Simulator (tRIBS), a fully-distributed watershed model capable of continuous simulations of coupled hydrological processes, including unsaturated-saturated zone dynamics, land-atmosphere interactions and runoff generation via multiple mechanisms. The use of triangulated irregular networks as a domain discretization allows tRIBS to accurately represent topography with a reduced number of computational nodes, as compared to traditional grid-based models. This representation is developed using a Delauney optimization criterion that causes areas of topographic homogeneity to be represented at larger spatial scales than the original grid, while more heterogeneous areas are represented at higher resolutions. We utilize the TIN-based terrain representation to simulate microscale (10-m to 100-m) snow pack dynamics over a catchment. The model includes processes such as the snow pack energy balance, wind and bulk redistribution, and snow interception by vegetation. For this study, we present tests from a distributed one-layer energy balance model as applied to a northern New Mexico hillslope in a ponderosa pine forest using both synthetic and real meteorological forcing. We also provide tests of the model's capability to represent spatial patterns within a small watershed in the Jemez Mountain region. Finally, we discuss the interaction of the tested snow process module with existing components in the watershed model and additional applications and capabilities under development.

  18. Linking livestock snow disaster mortality and environmental stressors in the Qinghai-Tibetan Plateau: Quantification based on generalized additive models.

    PubMed

    Li, Yijia; Ye, Tao; Liu, Weihang; Gao, Yu

    2018-06-01

    Livestock snow disaster occurs widely in Central-to-Eastern Asian temperate and alpine grasslands. The effects of snow disaster on livestock involve a complex interaction between precipitation, vegetation, livestock, and herder communities. Quantifying the relationship among livestock mortality, snow hazard intensity, and seasonal environmental stressors is of great importance for snow disaster early warning, risk assessments, and adaptation strategies. Using a wide-spatial extent, long-time series, and event-based livestock snow disaster dataset, this study quantified those relationships and established a quantitative model of livestock mortality for prediction purpose for the Qinghai-Tibet Plateau region. Estimations using generalized additive models (GAMs) were shown to accurately predict livestock mortality and mortality rate due to snow disaster, with adjusted-R 2 up to 0.794 and 0.666, respectively. These results showed that a longer snow disaster duration, lower temperatures during the disaster, and a drier summer with less vegetation all contribute significantly and non-linearly to higher mortality (rate), after controlling for elevation and socioeconomic conditions. These results can be readily applied to risk assessment and risk-based adaptation actions. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Physics-based distributed snow models in the operational arena: Current and future challenges

    NASA Astrophysics Data System (ADS)

    Winstral, A. H.; Jonas, T.; Schirmer, M.; Helbig, N.

    2017-12-01

    The demand for modeling tools robust to climate change and weather extremes along with coincident increases in computational capabilities have led to an increase in the use of physics-based snow models in operational applications. Current operational applications include the WSL-SLF's across Switzerland, ASO's in California, and USDA-ARS's in Idaho. While the physics-based approaches offer many advantages there remain limitations and modeling challenges. The most evident limitation remains computation times that often limit forecasters to a single, deterministic model run. Other limitations however remain less conspicuous amidst the assumptions that these models require little to no calibration based on their foundation on physical principles. Yet all energy balance snow models seemingly contain parameterizations or simplifications of processes where validation data are scarce or present understanding is limited. At the research-basin scale where many of these models were developed these modeling elements may prove adequate. However when applied over large areas, spatially invariable parameterizations of snow albedo, roughness lengths and atmospheric exchange coefficients - all vital to determining the snowcover energy balance - become problematic. Moreover as we apply models over larger grid cells, the representation of sub-grid variability such as the snow-covered fraction adds to the challenges. Here, we will demonstrate some of the major sensitivities of distributed energy balance snow models to particular model constructs, the need for advanced and spatially flexible methods and parameterizations, and prompt the community for open dialogue and future collaborations to further modeling capabilities.

  20. Land Surface Model Biases and their Impacts on the Assimilation of Snow-related Observations

    NASA Astrophysics Data System (ADS)

    Arsenault, K. R.; Kumar, S.; Hunter, S. M.; Aman, R.; Houser, P. R.; Toll, D.; Engman, T.; Nigro, J.

    2007-12-01

    Some recent snow modeling studies have employed a wide range of assimilation methods to incorporate snow cover or other snow-related observations into different hydrological or land surface models. These methods often include taking both model and observation biases into account throughout the model integration. This study focuses more on diagnosing the model biases and presenting their subsequent impacts on assimilating snow observations and modeled snowmelt processes. In this study, the land surface model, the Community Land Model (CLM), is used within the Land Information System (LIS) modeling framework to show how such biases impact the assimilation of MODIS snow cover observations. Alternative in-situ and satellite-based observations are used to help guide the CLM LSM in better predicting snowpack conditions and more realistic timing of snowmelt for a western US mountainous region. Also, MODIS snow cover observation biases will be discussed, and validation results will be provided. The issues faced with inserting or assimilating MODIS snow cover at moderate spatial resolutions (like 1km or less) will be addressed, and the impacts on CLM will be presented.

  1. Improving Snow Modeling by Assimilating Observational Data Collected by Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Crumley, R. L.; Hill, D. F.; Arendt, A. A.; Wikstrom Jones, K.; Wolken, G. J.; Setiawan, L.

    2017-12-01

    Modeling seasonal snow pack in alpine environments includes a multiplicity of challenges caused by a lack of spatially extensive and temporally continuous observational datasets. This is partially due to the difficulty of collecting measurements in harsh, remote environments where extreme gradients in topography exist, accompanied by large model domains and inclement weather. Engaging snow enthusiasts, snow professionals, and community members to participate in the process of data collection may address some of these challenges. In this study, we use SnowModel to estimate seasonal snow water equivalence (SWE) in the Thompson Pass region of Alaska while incorporating snow depth measurements collected by citizen scientists. We develop a modeling approach to assimilate hundreds of snow depth measurements from participants in the Community Snow Observations (CSO) project (www.communitysnowobs.org). The CSO project includes a mobile application where participants record and submit geo-located snow depth measurements while working and recreating in the study area. These snow depth measurements are randomly located within the model grid at irregular time intervals over the span of four months in the 2017 water year. This snow depth observation dataset is converted into a SWE dataset by employing an empirically-based, bulk density and SWE estimation method. We then assimilate this data using SnowAssim, a sub-model within SnowModel, to constrain the SWE output by the observed data. Multiple model runs are designed to represent an array of output scenarios during the assimilation process. An effort to present model output uncertainties is included, as well as quantification of the pre- and post-assimilation divergence in modeled SWE. Early results reveal pre-assimilation SWE estimations are consistently greater than the post-assimilation estimations, and the magnitude of divergence increases throughout the snow pack evolution period. This research has implications beyond the Alaskan context because it increases our ability to constrain snow modeling outputs by making use of snow measurements collected by non-expert, citizen scientists.

  2. How Much Water is in That Snowpack? Improving Basin-wide Snow Water Equivalent Estimates from the Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Bormann, K.; Painter, T. H.; Marks, D. G.; Kirchner, P. B.; Winstral, A. H.; Ramirez, P.; Goodale, C. E.; Richardson, M.; Berisford, D. F.

    2014-12-01

    In the western US, snowmelt from the mountains contribute the vast majority of fresh water supply, in an otherwise dry region. With much of California currently experiencing extreme drought, it is critical for water managers to have accurate basin-wide estimations of snow water content during the spring melt season. At the forefront of basin-scale snow monitoring is the Jet Propulsion Laboratory's Airborne Snow Observatory (ASO). With combined LiDAR /spectrometer instruments and weekly flights over key basins throughout California, the ASO suite is capable of retrieving high-resolution basin-wide snow depth and albedo observations. To make best use of these high-resolution snow depths, spatially distributed snow density data are required to leverage snow water equivalent (SWE) from the measured depths. Snow density is a spatially and temporally variable property and is difficult to estimate at basin scales. Currently, ASO uses a physically based snow model (iSnobal) to resolve distributed snow density dynamics across the basin. However, there are issues with the density algorithms in iSnobal, particularly with snow depths below 0.50 m. This shortcoming limited the use of snow density fields from iSnobal during the poor snowfall year of 2014 in the Sierra Nevada, where snow depths were generally low. A deeper understanding of iSnobal model performance and uncertainty for snow density estimation is required. In this study, the model is compared to an existing climate-based statistical method for basin-wide snow density estimation in the Tuolumne basin in the Sierra Nevada and sparse field density measurements. The objective of this study is to improve the water resource information provided to water managers during ASO operation in the future by reducing the uncertainty introduced during the snow depth to SWE conversion.

  3. Estimating Snow Water Storage in North America Using CLM4, DART, and Snow Radiance Data Assimilation

    NASA Technical Reports Server (NTRS)

    Kwon, Yonghwan; Yang, Zong-Liang; Zhao, Long; Hoar, Timothy J.; Toure, Ally M.; Rodell, Matthew

    2016-01-01

    This paper addresses continental-scale snow estimates in North America using a recently developed snow radiance assimilation (RA) system. A series of RA experiments with the ensemble adjustment Kalman filter are conducted by assimilating the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) brightness temperature T(sub B) at 18.7- and 36.5-GHz vertical polarization channels. The overall RA performance in estimating snow depth for North America is improved by simultaneously updating the Community Land Model, version 4 (CLM4), snow/soil states and radiative transfer model (RTM) parameters involved in predicting T(sub B) based on their correlations with the prior T(sub B) (i.e., rule-based RA), although degradations are also observed. The RA system exhibits a more mixed performance for snow cover fraction estimates. Compared to the open-loop run (0.171m RMSE), the overall snow depth estimates are improved by 1.6% (0.168m RMSE) in the rule-based RA whereas the default RA (without a rule) results in a degradation of 3.6% (0.177mRMSE). Significant improvement of the snow depth estimates in the rule-based RA as observed for tundra snow class (11.5%, p < 0.05) and bare soil land-cover type (13.5%, p < 0.05). However, the overall improvement is not significant (p = 0.135) because snow estimates are degraded or marginally improved for other snow classes and land covers, especially the taiga snow class and forest land cover (7.1% and 7.3% degradations, respectively). The current RA system needs to be further refined to enhance snow estimates for various snow types and forested regions.

  4. Energy balance-based distributed modeling of snow and glacier melt runoff for the Hunza river basin in the Pakistan Karakoram Himalayan region

    NASA Astrophysics Data System (ADS)

    Shrestha, M.; Wang, L.; Koike, T.; Xue, Y.; Hirabayashi, Y.; Ahmad, S.

    2012-12-01

    A spatially distributed biosphere hydrological model with energy balance-based multilayer snow physics and multilayer glacier model, including debris free and debris covered surface (enhanced WEB-DHM-S) has been developed and applied to the Hunza river basin in the Pakistan Karakoram Himalayan region, where about 34% of the basin area is covered by glaciers. The spatial distribution of seasonal snow and glacier cover, snow and glacier melt runoff along with rainfall-contributed runoff, and glacier mass balances are simulated. The simulations are carried out at hourly time steps and at 1-km spatial resolution for the two hydrological years (2002-2003) with the use of APHRODITE precipitation dataset, observed temperature, and other atmospheric forcing variables from the Global Land Data Assimilation System (GLDAS). The pixel-to-pixel comparisons for the snow-free and snow-covered grids over the region reveal that the simulation agrees well with the Moderate Resolution Imaging Spectroradiometer (MODIS) eight-day maximum snow-cover extent data (MOD10A2) with an accuracy of 83% and a positive bias of 2.8 %. The quantitative evaluation also shows that the model is able to reproduce the river discharge satisfactorily with Nash efficiency of 0.92. It is found that the contribution of rainfall to total streamflow is small (about 10-12%) while the contribution of snow and glacier is considerably large (35-40% for snowmelt and 50-53% for glaciermelt, respectively). The model simulates the state of snow and glaciers at each model grid prognostically and thus can estimate the net annual mass balance. The net mass balance varies from -2 m to +2 m water equivalent. Additionally, the hypsography analysis for the equilibrium line altitude (ELA) suggests that the average ELA in this region is about 5700 m with substantial variation from glacier to glacier and region to region. This study is the first to adopt a distributed biosphere hydrological model with the energy balance- based multilayer snow and glacier module to estimate the spatial distribution of snow/glacier cover and snow and glacier melt runoff for a river basin in the Karakoram Himalayan region.

  5. A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance

    NASA Astrophysics Data System (ADS)

    Swenson, S. C.; Lawrence, D. M.

    2011-11-01

    One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow cover and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-covered area, or snow-covered fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow cover. To more realistically simulate environments having patchy snow cover, we modify the model by computing the surface fluxes separately for snow-free and snow-covered fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn and greater heat gain during spring. The net effect is to reduce annual mean soil temperatures by up to 3°C in snow-affected regions.

  6. A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance

    NASA Astrophysics Data System (ADS)

    Swenson, S. C.; Lawrence, D. M.

    2012-11-01

    One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow cover and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-covered area, or snow-covered fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow cover. To more realistically simulate environments having patchy snow cover, we modify the model by computing the surface fluxes separately for snow-free and snow-covered fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn and greater heat gain during spring. The net effect is to reduce annual mean soil temperatures by up to 3°C in snow-affected regions.

  7. Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework

    NASA Astrophysics Data System (ADS)

    Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.

    2015-07-01

    Physically based models provide insights into key hydrologic processes but are associated with uncertainties due to deficiencies in forcing data, model parameters, and model structure. Forcing uncertainty is enhanced in snow-affected catchments, where weather stations are scarce and prone to measurement errors, and meteorological variables exhibit high variability. Hence, there is limited understanding of how forcing error characteristics affect simulations of cold region hydrology and which error characteristics are most important. Here we employ global sensitivity analysis to explore how (1) different error types (i.e., bias, random errors), (2) different error probability distributions, and (3) different error magnitudes influence physically based simulations of four snow variables (snow water equivalent, ablation rates, snow disappearance, and sublimation). We use the Sobol' global sensitivity analysis, which is typically used for model parameters but adapted here for testing model sensitivity to coexisting errors in all forcings. We quantify the Utah Energy Balance model's sensitivity to forcing errors with 1 840 000 Monte Carlo simulations across four sites and five different scenarios. Model outputs were (1) consistently more sensitive to forcing biases than random errors, (2) generally less sensitive to forcing error distributions, and (3) critically sensitive to different forcings depending on the relative magnitude of errors. For typical error magnitudes found in areas with drifting snow, precipitation bias was the most important factor for snow water equivalent, ablation rates, and snow disappearance timing, but other forcings had a more dominant impact when precipitation uncertainty was due solely to gauge undercatch. Additionally, the relative importance of forcing errors depended on the model output of interest. Sensitivity analysis can reveal which forcing error characteristics matter most for hydrologic modeling.

  8. Improving the Terrain-Based Parameter for the Assessment of Snow Redistribution in the Col du Lac Blanc Area and Comparisons with TLS Snow Depth Data

    NASA Astrophysics Data System (ADS)

    Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Nishimura, Kouichi; Vionnet, Vincent; Guyomarc'h, Gilbert

    2014-05-01

    Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns, but has failed to quantitatively describe the snow redistribution, and correlations with measured snow heights were poor. The objective of our research was to a) identify the sources of poor correlations between predicted and measured snow re-distribution and b) improve the parameters ability to qualitatively and quantitatively describe snow redistribution in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its constant wind direction and the availability of data from a meteorological station. Our work focused on areas with terrain edges of approximately 10 m height, and we worked with 1-2 m resolution digital terrain and snow surface data. We first compared the results of the terrain-based parameter calculations to measured snow-depths, obtained by high-accuracy terrestrial laser scan measurements. The results were similar to previous studies: The parameter was able to reproduce observed patterns in snow distribution, but regression analyses showed poor correlations between terrain-based parameter and measured snow-depths. We demonstrate how the correlations between measured and calculated snow heights improve if the parameter is calculated based on a snow surface model instead of a digital terrain model. We show how changing the parameter's search distance and how raster re-sampling and raster smoothing improve the results. To improve the parameter's quantitative abilities, we modified the parameter, based on the comparisons with TLS data and the terrain and wind conditions specific to the research site. The modification is in a linear form f(x) = a * Sx, where a is a newly introduced parameter; f(x) yields the estimates for the snow height. We found that the parameter depends on the time period between the compared snow surfaces and the intensity of drifting snow events, which are linked to wind velocities. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter a. We could improve the parameters' correlations with measured snow heights and its ability to quantitatively describe snow distribution in the Col du Lac Blanc area. We believe that our work is also a prerequisite to further improve the parameter's ability to describe snow redistribution.

  9. Climate Sensitivity to Realistic Solar Heating of Snow and Ice

    NASA Astrophysics Data System (ADS)

    Flanner, M.; Zender, C. S.

    2004-12-01

    Snow and ice-covered surfaces are highly reflective and play an integral role in the planetary radiation budget. However, GCMs typically prescribe snow reflection and absorption based on minimal knowledge of snow physical characteristics. We performed climate sensitivity simulations with the NCAR CCSM including a new physically-based multi-layer snow radiative transfer model. The model predicts the effects of vertically resolved heating, absorbing aerosol, and snowpack transparency on snowpack evolution and climate. These processes significantly reduce the model's near-infrared albedo bias over deep snowpacks. While the current CCSM implementation prescribes all solar radiative absorption to occur in the top 2 cm of snow, we estimate that about 65% occurs beneath this level. Accounting for the vertical distribution of snowpack heating and more realistic reflectance significantly alters snowpack depth, surface albedo, and surface air temperature over Northern Hemisphere regions. Implications for the strength of the ice-albedo feedback will be discussed.

  10. Impact of the snow cover scheme on snow distribution and energy budget modeling over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xie, Zhipeng; Hu, Zeyong; Xie, Zhenghui; Jia, Binghao; Sun, Genhou; Du, Yizhen; Song, Haiqing

    2018-02-01

    This paper presents the impact of two snow cover schemes (NY07 and SL12) in the Community Land Model version 4.5 (CLM4.5) on the snow distribution and surface energy budget over the Tibetan Plateau. The simulated snow cover fraction (SCF), snow depth, and snow cover days were evaluated against in situ snow depth observations and a satellite-based snow cover product and snow depth dataset. The results show that the SL12 scheme, which considers snow accumulation and snowmelt processes separately, has a higher overall accuracy (81.8%) than the NY07 (75.8%). The newer scheme performs better in the prediction of overall accuracy compared with the NY07; however, SL12 yields a 15.1% underestimation rate while NY07 overestimated the SCF with a 15.2% overestimation rate. Both two schemes capture the distribution of the maximum snow depth well but show large positive biases in the average value through all periods (3.37, 3.15, and 1.48 cm for NY07; 3.91, 3.52, and 1.17 cm for SL12) and overestimate snow cover days compared with the satellite-based product and in situ observations. Higher altitudes show larger root-mean-square errors (RMSEs) in the simulations of snow depth and snow cover days during the snow-free period. Moreover, the surface energy flux estimations from the SL12 scheme are generally superior to the simulation from NY07 when evaluated against ground-based observations, in particular for net radiation and sensible heat flux. This study has great implications for further improvement of the subgrid-scale snow variations over the Tibetan Plateau.

  11. Crossing physical simulations of snow conditions and a geographic model of ski area to assess ski resorts vulnerability

    NASA Astrophysics Data System (ADS)

    François, Hugues; Spandre, Pierre; Morin, Samuel; George-Marcelpoil, Emmanuelle; Lafaysse, Matthieu; Lejeune, Yves

    2016-04-01

    In order to face climate change, meteorological variability and the recurrent lack of natural snow on the ground, ski resorts adaptation often rely on technical responses. Indeed, since the occurrence of episodes with insufficient snowfalls in the early 1990's, snowmaking has become an ordinary practice of snow management, comparable to grooming, and contributes to optimise the operation of ski resorts. It also participates to the growth of investments and is associated with significant operating costs, and thus represents a new source of vulnerability. The assessment of the actual effects of snowmaking and of snow management practices in general is a real concern for the future of the ski industry. The principal model use to simulate snow conditions in resorts, Ski Sim, has also been moving this way. Its developers introduced an artificial input of snow on ski area to complete natural snowfalls and considered different organisations of ski lifts (lower and upper zones). However the use of a degree-day model prevents them to consider the specific properties of artificial snow and the impact of grooming on the snowpack. A first proof of concept in the French Alps has shown the feasibility and the interest to cross the geographic model of ski areas and the output of the physically-based reanalysis of snow conditions SAFRAN - Crocus (François et al., CRST 2014). Since these initial developments, several ways have been explored to refine our model. A new model of ski areas has been developed. Our representation is now based on gravity derived from a DEM and ski lift localisation. A survey about snow management practices also allowed us to define criteria in order to model snowmaking areas given ski areas properties and tourism infrastructures localisation. We also suggest to revisit the assessment of ski resort viability based on the "one hundred days rule" based on natural snow depth only. Indeed, the impact of snow management must be considered so as to propose reliability indices that are both physically and socio-economically meaningful. Our contribution proposes to present these works in the context of a test resort in the French Alps and its snow conditions during the period 2000-2012. In order to show the impact of different management practices three configurations are considered: natural snowfalls, groomed natural snowfalls and managed snow (natural and artificial snowpack combined with grooming) and discuss the implications of the results in terms of the assessment of the climate vulnerability of ski resorts.

  12. Coupling of snow and permafrost processes using the Basic Modeling Interface (BMI)

    NASA Astrophysics Data System (ADS)

    Wang, K.; Overeem, I.; Jafarov, E. E.; Piper, M.; Stewart, S.; Clow, G. D.; Schaefer, K. M.

    2017-12-01

    We developed a permafrost modeling tool based by implementing the Kudryavtsev empirical permafrost active layer depth model (the so-called "Ku" component). The model is specifically set up to have a basic model interface (BMI), which enhances the potential coupling to other earth surface processes model components. This model is accessible through the Web Modeling Tool in Community Surface Dynamics Modeling System (CSDMS). The Kudryavtsev model has been applied for entire Alaska to model permafrost distribution at high spatial resolution and model predictions have been verified by Circumpolar Active Layer Monitoring (CALM) in-situ observations. The Ku component uses monthly meteorological forcing, including air temperature, snow depth, and snow density, and predicts active layer thickness (ALT) and temperature on the top of permafrost (TTOP), which are important factors in snow-hydrological processes. BMI provides an easy approach to couple the models with each other. Here, we provide a case of coupling the Ku component to snow process components, including the Snow-Degree-Day (SDD) method and Snow-Energy-Balance (SEB) method, which are existing components in the hydrological model TOPOFLOW. The work flow is (1) get variables from meteorology component, set the values to snow process component, and advance the snow process component, (2) get variables from meteorology and snow component, provide these to the Ku component and advance, (3) get variables from snow process component, set the values to meteorology component, and advance the meteorology component. The next phase is to couple the permafrost component with fully BMI-compliant TOPOFLOW hydrological model, which could provide a useful tool to investigate the permafrost hydrological effect.

  13. Evaluation of snow and frozen soil parameterization in a cryosphere land surface modeling framework in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, J.

    2017-12-01

    Snow and frozen soil are important components in the Tibetan Plateau, and influence the water cycle and energy balances through snowpack accumulation and melt and soil freeze-thaw. In this study, a new cryosphere land surface model (LSM) with coupled snow and frozen soil parameterization was developed based on a hydrologically improved LSM (HydroSiB2). First, an energy-balance-based three-layer snow model was incorporated into HydroSiB2 (hereafter HydroSiB2-S) to provide an improved description of the internal processes of the snow pack. Second, a universal and simplified soil model was coupled with HydroSiB2-S to depict soil water freezing and thawing (hereafter HydroSiB2-SF). In order to avoid the instability caused by the uncertainty in estimating water phase changes, enthalpy was adopted as a prognostic variable instead of snow/soil temperature in the energy balance equation of the snow/frozen soil module. The newly developed models were then carefully evaluated at two typical sites of the Tibetan Plateau (TP) (one snow covered and the other snow free, both with underlying frozen soil). At the snow-covered site in northeastern TP (DY), HydroSiB2-SF demonstrated significant improvements over HydroSiB2-F (same as HydroSiB2-SF but using the original single-layer snow module of HydroSiB2), showing the importance of snow internal processes in three-layer snow parameterization. At the snow-free site in southwestern TP (Ngari), HydroSiB2-SF reasonably simulated soil water phase changes while HydroSiB2-S did not, indicating the crucial role of frozen soil parameterization in depicting the soil thermal and water dynamics. Finally, HydroSiB2-SF proved to be capable of simulating upward moisture fluxes toward the freezing front from the underlying soil layers in winter.

  14. Development of a land surface model with coupled snow and frozen soil physics

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhou, Jing; Qi, Jia; Sun, Litao; Yang, Kun; Tian, Lide; Lin, Yanluan; Liu, Wenbin; Shrestha, Maheswor; Xue, Yongkang; Koike, Toshio; Ma, Yaoming; Li, Xiuping; Chen, Yingying; Chen, Deliang; Piao, Shilong; Lu, Hui

    2017-06-01

    Snow and frozen soil are important factors that influence terrestrial water and energy balances through snowpack accumulation and melt and soil freeze-thaw. In this study, a new land surface model (LSM) with coupled snow and frozen soil physics was developed based on a hydrologically improved LSM (HydroSiB2). First, an energy-balance-based three-layer snow model was incorporated into HydroSiB2 (hereafter HydroSiB2-S) to provide an improved description of the internal processes of the snow pack. Second, a universal and simplified soil model was coupled with HydroSiB2-S to depict soil water freezing and thawing (hereafter HydroSiB2-SF). In order to avoid the instability caused by the uncertainty in estimating water phase changes, enthalpy was adopted as a prognostic variable instead of snow/soil temperature in the energy balance equation of the snow/frozen soil module. The newly developed models were then carefully evaluated at two typical sites of the Tibetan Plateau (TP) (one snow covered and the other snow free, both with underlying frozen soil). At the snow-covered site in northeastern TP (DY), HydroSiB2-SF demonstrated significant improvements over HydroSiB2-F (same as HydroSiB2-SF but using the original single-layer snow module of HydroSiB2), showing the importance of snow internal processes in three-layer snow parameterization. At the snow-free site in southwestern TP (Ngari), HydroSiB2-SF reasonably simulated soil water phase changes while HydroSiB2-S did not, indicating the crucial role of frozen soil parameterization in depicting the soil thermal and water dynamics. Finally, HydroSiB2-SF proved to be capable of simulating upward moisture fluxes toward the freezing front from the underlying soil layers in winter.

  15. Estimation of global snow cover using passive microwave data

    NASA Astrophysics Data System (ADS)

    Chang, Alfred T. C.; Kelly, Richard E.; Foster, James L.; Hall, Dorothy K.

    2003-04-01

    This paper describes an approach to estimate global snow cover using satellite passive microwave data. Snow cover is detected using the high frequency scattering signal from natural microwave radiation, which is observed by passive microwave instruments. Developed for the retrieval of global snow depth and snow water equivalent using Advanced Microwave Scanning Radiometer EOS (AMSR-E), the algorithm uses passive microwave radiation along with a microwave emission model and a snow grain growth model to estimate snow depth. The microwave emission model is based on the Dense Media Radiative Transfer (DMRT) model that uses the quasi-crystalline approach and sticky particle theory to predict the brightness temperature from a single layered snowpack. The grain growth model is a generic single layer model based on an empirical approach to predict snow grain size evolution with time. Gridding to the 25 km EASE-grid projection, a daily record of Special Sensor Microwave Imager (SSM/I) snow depth estimates was generated for December 2000 to March 2001. The estimates are tested using ground measurements from two continental-scale river catchments (Nelson River and the Ob River in Russia). This regional-scale testing of the algorithm shows that for passive microwave estimates, the average daily snow depth retrieval standard error between estimated and measured snow depths ranges from 0 cm to 40 cm of point observations. Bias characteristics are different for each basin. A fraction of the error is related to uncertainties about the grain growth initialization states and uncertainties about grain size changes through the winter season that directly affect the parameterization of the snow depth estimation in the DMRT model. Also, the algorithm does not include a correction for forest cover and this effect is clearly observed in the retrieval. Finally, error is also related to scale differences between in situ ground measurements and area-integrated satellite estimates. With AMSR-E data, improvements to snow depth and water equivalent estimates are expected since AMSR-E will have twice the spatial resolution of the SSM/I and will be able to characterize better the subnivean snow environment from an expanded range of microwave frequencies.

  16. Improved quantification of mountain snowpack properties using observations from Unmanned Air Vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Shea, J. M.; Harder, P.; Pomeroy, J. W.; Kraaijenbrink, P. D. A.

    2017-12-01

    Mountain snowpacks represent a critical seasonal reservoir of water for downstream needs, and snowmelt is a significant component of mountain hydrological budgets. Ground-based point measurements are unable to describe the full spatial variability of snow accumulation and melt rates, and repeat Unmanned Air Vehicle (UAV) surveys provide an unparalleled opportunity to measure snow accumulation, redistribution and melt in alpine environments. This study presents results from a UAV-based observation campaign conducted at the Fortress Mountain Snow Laboratory in the Canadian Rockies in 2017. Seven survey flights were conducted between April (maximum snow accumulation) and mid-July (bare ground) to collect imagery with both an RGB camera and thermal infrared imager with the sensefly eBee RTK platform. UAV imagery are processed with structure from motion techniques, and orthoimages, digital elevation models, and surface temperature maps are validated against concurrent ground observations of snow depth, snow water equivalent, and snow surface temperature. We examine the seasonal evolution of snow depth and snow surface temperature, and explore the spatial covariances of these variables with respect to topographic factors and snow ablation rates. Our results have direct implications for scaling snow ablation calculations and model resolution and discretization.

  17. Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments

    NASA Astrophysics Data System (ADS)

    Griessinger, Nena; Seibert, Jan; Magnusson, Jan; Jonas, Tobias

    2016-09-01

    In Alpine catchments, snowmelt is often a major contribution to runoff. Therefore, modeling snow processes is important when concerned with flood or drought forecasting, reservoir operation and inland waterway management. In this study, we address the question of how sensitive hydrological models are to the representation of snow cover dynamics and whether the performance of a hydrological model can be enhanced by integrating data from a dedicated external snow monitoring system. As a framework for our tests we have used the hydrological model HBV (Hydrologiska Byråns Vattenbalansavdelning) in the version HBV-light, which has been applied in many hydrological studies and is also in use for operational purposes. While HBV originally follows a temperature-index approach with time-invariant calibrated degree-day factors to represent snowmelt, in this study the HBV model was modified to use snowmelt time series from an external and spatially distributed snow model as model input. The external snow model integrates three-dimensional sequential assimilation of snow monitoring data with a snowmelt model, which is also based on the temperature-index approach but uses a time-variant degree-day factor. The following three variations of this external snow model were applied: (a) the full model with assimilation of observational snow data from a dense monitoring network, (b) the same snow model but with data assimilation switched off and (c) a downgraded version of the same snow model representing snowmelt with a time-invariant degree-day factor. Model runs were conducted for 20 catchments at different elevations within Switzerland for 15 years. Our results show that at low and mid-elevations the performance of the runoff simulations did not vary considerably with the snow model version chosen. At higher elevations, however, best performance in terms of simulated runoff was obtained when using the snowmelt time series from the snow model, which utilized data assimilation. This was especially true for snow-rich years. These findings suggest that with increasing elevation and the correspondingly increased contribution of snowmelt to runoff, the accurate estimation of snow water equivalent (SWE) and snowmelt rates has gained importance.

  18. NOAA's National Snow Analyses

    NASA Astrophysics Data System (ADS)

    Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.

    2005-12-01

    NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products. The NOHRSC NSA products are used operationally by NOAA's National Weather Service field offices when issuing hydrologic forecasts and warnings including river and flood forecasts, water supply forecasts, and spring flood outlooks for the nation. Additionally, the NOHRSC NSA products are used by a wide variety of federal, state, local, municipal, private-sector, and general-public end-users with a requirement for real-time snowpack information. The paper discusses, in detail, the techniques and procedures used to create the NOHRSC NSA products and gives a number of examples of the real-time snow products generated and distributed over the NOHRSC web site (www.nohrsc.noaa.gov). Also discussed are major limitations of the approach, the most notable being deficiencies in observation of snow water equivalent. Snow observation networks generally lack the consistency and coverage needed to significantly improve confidence in snow model states through updating. Many regions of the world simply lack snow water equivalent observations altogether, a significant constraint on global application of the NSA approach.

  19. Validation of A One-Dimensional Snow-Land Surface Model at the Sleepers River Watershed

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Yih; Chern, Jiun-Dar

    A one-dimensional land surface model, based on conservations of heat and water substance inside the soil and snow, is presented. To validate the model, a stand-alone experiment is carried out with five years of meteorological and hydrological observations collected from the NOAA-ARS Cooperative Snow Research Project (1966-1974) at the Sleepers River watershed in Danville, Vermont, U.S.A. The numerical results show that the model is capable of reproducing the observed soil temperature at different depths during the winter as well as a rapid increase of soil temperature after snow melts in the spring. The model also simulates the density, temperature, thickness, and equivalent water depth of snow reasonably well. The numerical results are sensitive to the fresh snow density and the soil properties used in the model, which affect the heat exchange between the snowpack and the soil.

  20. Snow Sublimation in Mountain Environments and Its Sensitivity to Forest Disturbance and Climate Warming

    NASA Astrophysics Data System (ADS)

    Sexstone, Graham A.; Clow, David W.; Fassnacht, Steven R.; Liston, Glen E.; Hiemstra, Christopher A.; Knowles, John F.; Penn, Colin A.

    2018-02-01

    Snow sublimation is an important component of the snow mass balance, but the spatial and temporal variability of this process is not well understood in mountain environments. This study combines a process-based snow model (SnowModel) with eddy covariance (EC) measurements to investigate (1) the spatio-temporal variability of simulated snow sublimation with respect to station observations, (2) the contribution of snow sublimation to the ablation of the snowpack, and (3) the sensitivity and response of snow sublimation to bark beetle-induced forest mortality and climate warming across the north-central Colorado Rocky Mountains. EC-based observations of snow sublimation compared well with simulated snow sublimation at stations dominated by surface and canopy sublimation, but blowing snow sublimation in alpine areas was not well captured by the EC instrumentation. Water balance calculations provided an important validation of simulated sublimation at the watershed scale. Simulated snow sublimation across the study area was equivalent to 28% of winter precipitation on average, and the highest relative snow sublimation fluxes occurred during the lowest snow years. Snow sublimation from forested areas accounted for the majority of sublimation fluxes, highlighting the importance of canopy and sub-canopy surface sublimation in this region. Simulations incorporating the effects of tree mortality due to bark-beetle disturbance resulted in a 4% reduction in snow sublimation from forested areas. Snow sublimation rates corresponding to climate warming simulations remained unchanged or slightly increased, but total sublimation losses decreased by up to 6% because of a reduction in snow covered area and duration.

  1. Snow sublimation in mountain environments and its sensitivity to forest disturbance and climate warming

    USGS Publications Warehouse

    Sexstone, Graham A.; Clow, David W.; Fassnacht, Steven R.; Liston, Glen E.; Hiemstra, Christopher A.; Knowles, John F.; Penn, Colin A.

    2018-01-01

    Snow sublimation is an important component of the snow mass balance, but the spatial and temporal variability of this process is not well understood in mountain environments. This study combines a process‐based snow model (SnowModel) with eddy covariance (EC) measurements to investigate (1) the spatio‐temporal variability of simulated snow sublimation with respect to station observations, (2) the contribution of snow sublimation to the ablation of the snowpack, and (3) the sensitivity and response of snow sublimation to bark beetle‐induced forest mortality and climate warming across the north‐central Colorado Rocky Mountains. EC‐based observations of snow sublimation compared well with simulated snow sublimation at stations dominated by surface and canopy sublimation, but blowing snow sublimation in alpine areas was not well captured by the EC instrumentation. Water balance calculations provided an important validation of simulated sublimation at the watershed scale. Simulated snow sublimation across the study area was equivalent to 28% of winter precipitation on average, and the highest relative snow sublimation fluxes occurred during the lowest snow years. Snow sublimation from forested areas accounted for the majority of sublimation fluxes, highlighting the importance of canopy and sub‐canopy surface sublimation in this region. Simulations incorporating the effects of tree mortality due to bark‐beetle disturbance resulted in a 4% reduction in snow sublimation from forested areas. Snow sublimation rates corresponding to climate warming simulations remained unchanged or slightly increased, but total sublimation losses decreased by up to 6% because of a reduction in snow covered area and duration.

  2. Validating SWE reconstruction using Airborne Snow Observatory measurements in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Bair, N.; Rittger, K.; Davis, R. E.; Dozier, J.

    2015-12-01

    The Airborne Snow Observatory (ASO) program offers high resolution estimates of snow water equivalent (SWE) in several small basins across California during the melt season. Primarily, water managers use this information to model snowmelt runoff into reservoirs. Another, and potentially more impactful, use of ASO SWE measurements is in validating and improving satellite-based SWE estimates which can be used in austere regions with no ground-based snow or water measurements, such as Afghanistan's Hindu Kush. Using the entire ASO dataset to date (2013-2015) which is mostly from the Upper Tuolumne basin, but also includes measurements from 2015 in the Kings, Rush Creek, Merced, and Mammoth Lakes basins, we compare ASO measurements to those from a SWE reconstruction method. Briefly, SWE reconstruction involves downscaling energy balance forcings to compute potential melt energy, then using satellite-derived estimates of fractional snow covered area (fSCA) to estimate snow melt from potential melt. The snowpack can then be built in reverse, given a remotely-sensed date of snow disappearance (fSCA=0). Our model has improvements over previous iterations in that it: uses the full energy balance (compared to a modified degree-day) approach, models bulk and surface snow temperatures, accounts for ephemeral snow, and uses a remotely-sensed snow albedo adjusted for impurities. To check that ASO provides accurate snow measurements, we compare fSCA derived from ASO snow depth at 3 m resolution with fSCA from a spectral unmixing algorithm for LandSAT at 30 m, and from binary SCA estimates from Geoeye at 0.5 m from supervised classification. To conclude, we document how our reconstruction model has evolved over the years and provide specific examples where improvements have been made using ASO and other verification sources.

  3. Estimation of Subpixel Snow-Covered Area by Nonparametric Regression Splines

    NASA Astrophysics Data System (ADS)

    Kuter, S.; Akyürek, Z.; Weber, G.-W.

    2016-10-01

    Measurement of the areal extent of snow cover with high accuracy plays an important role in hydrological and climate modeling. Remotely-sensed data acquired by earth-observing satellites offer great advantages for timely monitoring of snow cover. However, the main obstacle is the tradeoff between temporal and spatial resolution of satellite imageries. Soft or subpixel classification of low or moderate resolution satellite images is a preferred technique to overcome this problem. The most frequently employed snow cover fraction methods applied on Moderate Resolution Imaging Spectroradiometer (MODIS) data have evolved from spectral unmixing and empirical Normalized Difference Snow Index (NDSI) methods to latest machine learning-based artificial neural networks (ANNs). This study demonstrates the implementation of subpixel snow-covered area estimation based on the state-of-the-art nonparametric spline regression method, namely, Multivariate Adaptive Regression Splines (MARS). MARS models were trained by using MODIS top of atmospheric reflectance values of bands 1-7 as predictor variables. Reference percentage snow cover maps were generated from higher spatial resolution Landsat ETM+ binary snow cover maps. A multilayer feed-forward ANN with one hidden layer trained with backpropagation was also employed to estimate the percentage snow-covered area on the same data set. The results indicated that the developed MARS model performed better than th

  4. The Airborne Snow Observatory: fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo

    USDA-ARS?s Scientific Manuscript database

    Snow cover and its melt dominate regional climate and water resources in many of the world’s mountainous regions. Snowmelt timing and magnitude in mountains tend to be controlled by absorption of solar radiation and snow water equivalent, respectively, and yet both of these are very poorly known ev...

  5. Impact of Snow Grain Shape and Internal Mixing with Black Carbon Aerosol on Snow Optical Properties for use in Climate Models

    NASA Astrophysics Data System (ADS)

    He, C.; Liou, K. N.; Takano, Y.; Yang, P.; Li, Q.; Chen, F.

    2017-12-01

    A set of parameterizations is developed for spectral single-scattering properties of clean and black carbon (BC)-contaminated snow based on geometric-optic surface-wave (GOS) computations, which explicitly resolves BC-snow internal mixing and various snow grain shapes. GOS calculations show that, compared with nonspherical grains, volume-equivalent snow spheres show up to 20% larger asymmetry factors and hence stronger forward scattering, particularly at wavelengths <1 mm. In contrast, snow grain sizes have a rather small impact on the asymmetry factor at wavelengths <1 mm, whereas size effects are important at longer wavelengths. The snow asymmetry factor is parameterized as a function of effective size, aspect ratio, and shape factor, and shows excellent agreement with GOS calculations. According to GOS calculations, the single-scattering coalbedo of pure snow is predominantly affected by grain sizes, rather than grain shapes, with higher values for larger grains. The snow single-scattering coalbedo is parameterized in terms of the effective size that combines shape and size effects, with an accuracy of >99%. Based on GOS calculations, BC-snow internal mixing enhances the snow single-scattering coalbedo at wavelengths <1 mm, but it does not alter the snow asymmetry factor. The BC-induced enhancement ratio of snow single-scattering coalbedo, independent of snow grain size and shape, is parameterized as a function of BC concentration with an accuracy of >99%. Overall, in addition to snow grain size, both BC-snow internal mixing and snow grain shape play critical roles in quantifying BC effects on snow optical properties. The present parameterizations can be conveniently applied to snow, land surface, and climate models including snowpack radiative transfer processes.

  6. Georectification and snow classification of webcam images: potential for complementing satellite-derrived snow maps over Switzerland

    NASA Astrophysics Data System (ADS)

    Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan

    2016-04-01

    The spatial and temporal variability of snow cover has a significant impact on climate and environment and is of great socio-economic importance for the European Alps. Satellite remote sensing data is widely used to study snow cover variability and can provide spatially comprehensive information on snow cover extent. However, cloud cover strongly impedes the surface view and hence limits the number of useful snow observations. Outdoor webcam images not only offer unique potential for complementing satellite-derived snow retrieval under cloudy conditions but could also serve as a reference for improved validation of satellite-based approaches. Thousands of webcams are currently connected to the Internet and deliver freely available images with high temporal and spatial resolutions. To exploit the untapped potential of these webcams, a semi-automatic procedure was developed to generate snow cover maps based on webcam images. We used daily webcam images of the Swiss alpine region to apply, improve, and extend existing approaches dealing with the positioning of photographs within a terrain model, appropriate georectification, and the automatic snow classification of such photographs. In this presentation, we provide an overview of the implemented procedure and demonstrate how our registration approach automatically resolves the orientation of a webcam by using a high-resolution digital elevation model and the webcam's position. This allows snow-classified pixels of webcam images to be related to their real-world coordinates. We present several examples of resulting snow cover maps, which have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or not visible from webcams' positions. The procedure is expected to work under almost any weather condition and demonstrates the feasibility of using webcams for the retrieval of high-resolution snow cover information.

  7. Changes in the relation between snow station observations and basin scale snow water resources

    NASA Astrophysics Data System (ADS)

    Sexstone, G. A.; Penn, C. A.; Clow, D. W.; Moeser, D.; Liston, G. E.

    2017-12-01

    Snow monitoring stations that measure snow water equivalent or snow depth provide fundamental observations used for predicting water availability and flood risk in mountainous regions. In the western United States, snow station observations provided by the Natural Resources Conservation Service Snow Telemetry (SNOTEL) network are relied upon for forecasting spring and summer streamflow volume. Streamflow forecast accuracy has declined for many regions over the last several decades. Changes in snow accumulation and melt related to climate, land use, and forest cover are not accounted for in current forecasts, and are likely sources of error. Therefore, understanding and updating relations between snow station observations and basin scale snow water resources is crucial to improve accuracy of streamflow prediction. In this study, we investigated the representativeness of snow station observations when compared to simulated basin-wide snow water resources within the Rio Grande headwaters of Colorado. We used the combination of a process-based snow model (SnowModel), field-based measurements, and remote sensing observations to compare the spatiotemporal variability of simulated basin-wide snow accumulation and melt with that of SNOTEL station observations. Results indicated that observations are comparable to simulated basin-average winter precipitation but overestimate both the simulated basin-average snow water equivalent and snowmelt rate. Changes in the representation of snow station observations over time in the Rio Grande headwaters were also investigated and compared to observed streamflow and streamflow forecasting errors. Results from this study provide important insight in the context of non-stationarity for future water availability assessments and streamflow predictions.

  8. Evaluating Multispectral Snowpack Reflectivity With Changing Snow Correlation Lengths

    NASA Technical Reports Server (NTRS)

    Kang, Do Hyuk; Barros, Ana P.; Kim, Edward J.

    2016-01-01

    This study investigates the sensitivity of multispectral reflectivity to changing snow correlation lengths. Matzler's ice-lamellae radiative transfer model was implemented and tested to evaluate the reflectivity of snow correlation lengths at multiple frequencies from the ultraviolet (UV) to the microwave bands. The model reveals that, in the UV to infrared (IR) frequency range, the reflectivity and correlation length are inversely related, whereas reflectivity increases with snow correlation length in the microwave frequency range. The model further shows that the reflectivity behavior can be mainly attributed to scattering rather than absorption for shallow snowpacks. The largest scattering coefficients and reflectivity occur at very small correlation lengths (approximately 10(exp -5 m) for frequencies higher than the IR band. In the microwave range, the largest scattering coefficients are found at millimeter wavelengths. For validation purposes, the ice-lamella model is coupled with a multilayer snow physics model to characterize the reflectivity response of realistic snow hydrological processes. The evolution of the coupled model simulated reflectivities in both the visible and the microwave bands is consistent with satellite-based reflectivity observations in the same frequencies. The model results are also compared with colocated in situ snow correlation length measurements (Cold Land Processes Field Experiment 2002-2003). The analysis and evaluation of model results indicate that the coupled multifrequency radiative transfer and snow hydrology modeling system can be used as a forward operator in a data-assimilation framework to predict the status of snow physical properties, including snow correlation length.

  9. Radiance Assimilation Shows Promise for Snowpack Characterization: A 1-D Case Study

    NASA Technical Reports Server (NTRS)

    Durand, Michael; Kim, Edward; Margulis, Steve

    2008-01-01

    We demonstrate an ensemble-based radiometric data assimilation (DA) methodology for estimating snow depth and snow grain size using ground-based passive microwave (PM) observations at 18.7 and 36.5 GHz collected during the NASA CLPX-1, March 2003, Colorado, USA. A land surface model was used to develop a prior estimate of the snowpack states, and a radiative transfer model was used to relate the modeled states to the observations. Snow depth bias was -53.3 cm prior to the assimilation, and -7.3 cm after the assimilation. Snow depth estimated by a non-DA-based retrieval algorithm using the same PM data had a bias of -18.3 cm. The sensitivity of the assimilation scheme to the grain size uncertainty was evaluated; over the range of grain size uncertainty tested, the posterior snow depth estimate bias ranges from -2.99 cm to -9.85 cm, which is uniformly better than both the prior and retrieval estimates. This study demonstrates the potential applicability of radiometric DA at larger scales.

  10. Experimental and model based investigation of the links between snow bidirectional reflectance and snow microstructure

    NASA Astrophysics Data System (ADS)

    Dumont, M.; Flin, F.; Malinka, A.; Brissaud, O.; Hagenmuller, P.; Dufour, A.; Lapalus, P.; Lesaffre, B.; Calonne, N.; Rolland du Roscoat, S.; Ando, E.

    2017-12-01

    Snow optical properties are unique among Earth surface and crucial for a wide range of applications. The bi-directional reflectance, hereafter BRDF, of snow is sensible to snow microstructure. However the complex interplays between different parameters of snow microstructure namely size parameters and shape parameters on reflectance are challenging to disentangle both theoretically and experimentally. An accurate understanding and modelling of snow BRDF is required to correctly process satellite data. BRDF measurements might also provide means of characterizing snow morphology. This study presents one of the very few dataset that combined bi-directional reflectance measurements over 500-2500 nm and X-ray tomography of the snow microstructure for three different snow samples and two snow types. The dataset is used to evaluate the approach from Malinka, 2014 that relates snow optical properties to the chord length distribution in the snow microstructure. For low and medium absorption, the model accurately reproduces the measurements but tends to slightly overestimate the anisotropy of the reflectance. The model indicates that the deviation of the ice chord length distribution from an exponential distribution, that can be understood as a characterization of snow types, does not impact the reflectance for such absorptions. The simulations are also impacted by the uncertainties in the ice refractive index values. At high absorption and high viewing/incident zenith angle, the simulations and the measurements disagree indicating that some of the assumptions made in the model are not met anymore. The study also indicates that crystal habits might play a significant role for the reflectance under such geometries and wavelengths. However quantitative relationship between crystal habits and reflectance alongside with potential optical methodologies to classify snow morphology would require an extended dataset over more snow types. This extended dataset can likely be obtained thanks to the use of ray tracing models on tomography images of the snow microstructure.

  11. Evaluation of an assimilation scheme to estimate snow water equivalent in the High Atlas of Morocco.

    NASA Astrophysics Data System (ADS)

    Baba, W. M.; Baldo, E.; Gascoin, S.; Margulis, S. A.; Cortés, G.; Hanich, L.

    2017-12-01

    The snow melt from the Atlas mountains represents a crucial water resource for crop irrigation in Morocco. Due to the paucity of in situ measurements, and the high spatial variability of the snow cover in this semi-arid region, assimilation of snow cover area (SCA) from high resolution optical remote sensing into a snowpack energy-balance model is considered as a promising method to estimate the snow water equivalent (SWE) and snow melt at catchment scales. Here we present a preliminary evaluation of an uncalibrated particle batch smoother data assimilation scheme (Margulis et al., 2015, J. Hydrometeor., 16, 1752-1772) in the High-Atlas Rheraya pilot catchment (225 km2) over a snow season. This approach does not require in situ data since it is based on MERRA-2 reanalyses data and satellite fractional snow cover area data. We compared the output of this prior/posterior ensemble data assimilation system to output from the distributed snowpack evolution model SnowModel (Liston and Elder, 2006, J. Hydrometeor. 7, 1259-1276). SnowModel was forced with in situ meteorological data from five automatic weather stations (AWS) and some key parameters (precipitation correction factor and rain-snow phase transition parameters) were calibrated using a time series of 8-m resolution SCA maps from Formosat-2. The SnowModel simulation was validated using a continuous snow height record at one high elevation AWS. The results indicate that the open loop simulation was reasonably accurate (compared to SnowModel results) in spite of the coarse resolution of the MERRA-2 forcing. The assimilation of Formosat-2 SCA further improved the simulation in terms of the peak SWE and SWE evolution over the melt season. During the accumulation season, the differences between the modeled and estimated (posterior) SWE were more substantial. The differences appear to be due to some observed precipitation events not being captured in MERRA-2. Further investigation will determine whether additional improvement in the posterior estimates result from a calibration of uncertainty input parameters based on the in situ meteorological data. The positive preliminary results pave the way for a SWE reanalysis at the scale of the Atlas mountains using data from wide swath sensors such as Landsat and Sentinel-2.

  12. Application of SNODAS and hydrologic models to enhance entropy-based snow monitoring network design

    NASA Astrophysics Data System (ADS)

    Keum, Jongho; Coulibaly, Paulin; Razavi, Tara; Tapsoba, Dominique; Gobena, Adam; Weber, Frank; Pietroniro, Alain

    2018-06-01

    Snow has a unique characteristic in the water cycle, that is, snow falls during the entire winter season, but the discharge from snowmelt is typically delayed until the melting period and occurs in a relatively short period. Therefore, reliable observations from an optimal snow monitoring network are necessary for an efficient management of snowmelt water for flood prevention and hydropower generation. The Dual Entropy and Multiobjective Optimization is applied to design snow monitoring networks in La Grande River Basin in Québec and Columbia River Basin in British Columbia. While the networks are optimized to have the maximum amount of information with minimum redundancy based on entropy concepts, this study extends the traditional entropy applications to the hydrometric network design by introducing several improvements. First, several data quantization cases and their effects on the snow network design problems were explored. Second, the applicability the Snow Data Assimilation System (SNODAS) products as synthetic datasets of potential stations was demonstrated in the design of the snow monitoring network of the Columbia River Basin. Third, beyond finding the Pareto-optimal networks from the entropy with multi-objective optimization, the networks obtained for La Grande River Basin were further evaluated by applying three hydrologic models. The calibrated hydrologic models simulated discharges using the updated snow water equivalent data from the Pareto-optimal networks. Then, the model performances for high flows were compared to determine the best optimal network for enhanced spring runoff forecasting.

  13. Discrimination Between Clouds and Snow in Landsat 8 Imagery: an Assessment of Current Methods and a New Approach

    NASA Astrophysics Data System (ADS)

    Stillinger, T.; Dozier, J.; Phares, N.; Rittger, K.

    2015-12-01

    Discrimination between snow and clouds poses a serious but tractable challenge to the consistent delivery of high-quality information on mountain snow from remote sensing. Clouds obstruct the surface from the sensor's view, and the similar optical properties of clouds and snow make accurate discrimination difficult. We assess the performance of the current Landsat 8 operational snow and cloud mask products (LDCM CCA and CFmask), along with a new method, using over one million manually identified snow and clouds pixels in Landsat 8 scenes. The new method uses physically based scattering models to generate spectra in each Landsat 8 band, at that scene's solar illumination, for snow and cloud particle sizes that cover the plausible range for each. The modeled spectra are compared to pixels' spectra via several independent ways to identify snow and clouds. The results are synthesized to create a final snow/cloud mask, and the method can be applied to any multispectral imager with bands covering the visible, near-infrared, and shortwave-infrared regions. Each algorithm we tested misidentifies snow and clouds in both directions to varying degrees. We assess performance with measures of Precision, Recall, and the F statistic, which are based on counts of true and false positives and negatives. Tests for significance in differences between spectra in the measured and modeled values among incorrectly identified pixels help ascertain reasons for misidentification. A cloud mask specifically designed to separate snow from clouds is a valuable tool for those interested in remotely sensing snow cover. Given freely available remote sensing datasets and computational tools to feasibly process entire mission histories for an area of interest, enabling researchers to reliably identify and separate snow and clouds increases the usability of the data for hydrological and climatological studies.

  14. Snow Micro-Structure Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micah Johnson, Andrew Slaughter

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implemented using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations:more » the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.« less

  15. A novel linear physical model for remote sensing of snow wetness and snow density using the visible and infrared bands

    NASA Astrophysics Data System (ADS)

    Varade, D. M.; Dikshit, O.

    2017-12-01

    Modeling and forecasting of snowmelt runoff are significant for understanding the hydrological processes in the cryosphere which requires timely information regarding snow physical properties such as liquid water content and density of snow in the topmost layer of the snowpack. Both the seasonal runoffs and avalanche forecasting are vastly dependent on the inherent physical characteristics of the snowpack which are conventionally measured by field surveys in difficult terrains at larger impending costs and manpower. With advances in remote sensing technology and the increase in the availability of satellite data, the frequency and extent of these surveys could see a declining trend in future. In this study, we present a novel approach for estimating snow wetness and snow density using visible and infrared bands that are available with most multi-spectral sensors. We define a trapezoidal feature space based on the spectral reflectance in the near infrared band and the Normalized Differenced Snow Index (NDSI), referred to as NIR-NDSI space, where dry snow and wet snow are observed in the left diagonal upper and lower right corners, respectively. The corresponding pixels are extracted by approximating the dry and wet edges which are used to develop a linear physical model to estimate snow wetness. Snow density is then estimated using the modeled snow wetness. Although the proposed approach has used Sentinel-2 data, it can be extended to incorporate data from other multi-spectral sensors. The estimated values for snow wetness and snow density show a high correlation with respect to in-situ measurements. The proposed model opens a new avenue for remote sensing of snow physical properties using multi-spectral data, which were limited in the literature.

  16. Distributed Assimilation of Satellite-based Snow Extent for Improving Simulated Streamflow in Mountainous, Dense Forests: An Example Over the DMIP2 Western Basins

    NASA Technical Reports Server (NTRS)

    Yatheendradas, Soni; Peters-Lidard, Christa D.; Koren, Victor; Cosgrove, Brian A.; DeGoncalves, Luis G. D.; Smith, Michael; Geiger, James; Cui, Zhengtao; Borak, Jordan; Kumar, Sujay V.; hide

    2012-01-01

    Snow cover area affects snowmelt, soil moisture, evapotranspiration, and ultimately streamflow. For the Distributed Model Intercomparison Project - Phase 2 Western basins, we assimilate satellite-based fractional snow cover area (fSCA) from the Moderate Resolution Imaging Spectroradiometer, or MODIS, into the National Weather Service (NWS) SNOW-17 model. This model is coupled with the NWS Sacramento Heat Transfer (SAC-HT) model inside the National Aeronautics and Space Administration's (NASA) Land Information System. SNOW-17 computes fSCA from snow water equivalent (SWE) values using an areal depletion curve. Using a direct insertion, we assimilate fSCAs in two fully distributed ways: 1) we update the curve by attempting SWE preservation, and 2) we reconstruct SWEs using the curve. The preceding are refinements of an existing simple, conceptually-guided NWS algorithm. Satellite fSCA over dense forests inadequately accounts for below-canopy snow, degrading simulated streamflow upon assimilation during snowmelt. Accordingly, we implement a below-canopy allowance during assimilation. This simplistic allowance and direct insertion are found to be inadequate for improving calibrated results, still degrading them as mentioned above. However, for streamflow volume for the uncalibrated runs, we obtain: (1) substantial to major improvements (64-81 %) as a percentage of the control run residuals (or distance from observations), and (2) minor improvements (16-22 %) as a percentage of observed values. We highlight the need for detailed representations of canopy-snow optical radiative transfer processes in mountainous, dense forest regions if assimilation-based improvements are to be seen in calibrated runs over these areas.

  17. The Effects of Snow Depth Forcing on Southern Ocean Sea Ice Simulations

    NASA Technical Reports Server (NTRS)

    Powel, Dylan C.; Markus, Thorsten; Stoessel, Achim

    2003-01-01

    The spatial and temporal distribution of snow on sea ice is an important factor for sea ice and climate models. First, it acts as an efficient insulator between the ocean and the atmosphere, and second, snow is a source of fresh water for altering the already weak Southern Ocean stratification. For the Antarctic, where the ice thickness is relatively thin, snow can impact the ice thickness in two ways: a) As mentioned above snow on sea ice reduces the ocean-atmosphere heat flux and thus reduces freezing at the base of the ice flows; b) a heavy snow load can suppress the ice below sea level which causes flooding and, with subsequent freezing, a thickening of the sea ice (snow-to-ice conversion). In this paper, we compare different snow fall paramterizations (incl. the incorporation of satellite-derived snow depth) and study the effect on the sea ice using a sea ice model.

  18. Towards Improved Snow Water Equivalent Estimation via GRACE Assimilation

    NASA Technical Reports Server (NTRS)

    Forman, Bart; Reichle, Rofl; Rodell, Matt

    2011-01-01

    Passive microwave (e.g. AMSR-E) and visible spectrum (e.g. MODIS) measurements of snow states have been used in conjunction with land surface models to better characterize snow pack states, most notably snow water equivalent (SWE). However, both types of measurements have limitations. AMSR-E, for example, suffers a loss of information in deep/wet snow packs. Similarly, MODIS suffers a loss of temporal correlation information beyond the initial accumulation and final ablation phases of the snow season. Gravimetric measurements, on the other hand, do not suffer from these limitations. In this study, gravimetric measurements from the Gravity Recovery and Climate Experiment (GRACE) mission are used in a land surface model data assimilation (DA) framework to better characterize SWE in the Mackenzie River basin located in northern Canada. Comparisons are made against independent, ground-based SWE observations, state-of-the-art modeled SWE estimates, and independent, ground-based river discharge observations. Preliminary results suggest improved SWE estimates, including improved timing of the subsequent ablation and runoff of the snow pack. Additionally, use of the DA procedure can add vertical and horizontal resolution to the coarse-scale GRACE measurements as well as effectively downscale the measurements in time. Such findings offer the potential for better understanding of the hydrologic cycle in snow-dominated basins located in remote regions of the globe where ground-based observation collection if difficult, if not impossible. This information could ultimately lead to improved freshwater resource management in communities dependent on snow melt as well as a reduction in the uncertainty of river discharge into the Arctic Ocean.

  19. Differences between the MEMLS and the multiple-layer HUT model and their comparisons with in-situ snowpack observations

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Sandells, M. J.; Lemmetyinen, J.; Kim, E. J.

    2013-12-01

    Application of passive microwave (PM) brightness temperature for snow water equivalent retrieval requires deep understanding of snow emission models, not only for their performance to reproduce in-situ PM observations, but also for their theoretical differences to approximate radiative transfer theory. In this paper, differences between the multiple-layer HUT (or TKK) model and the Microwave Emission Model of Layered Snowpacks (MEMLS) were listed, and the two models were compared with snow ground-based PM observations at Streamboat Springs, Colorado, USA; Churchill, Canada; and Sodankyla, Finland. The two models were chosen for their multiple-layer schemes are close to actual layer-by-layer snow measurements. Both the two models are semi-empirical models; whereas the HUT model uses the mean snow grain size, MEMLS uses the correlation length to relate the snow microstructure with the scattering coefficients. The two parameters are related according to previous studies. The Specific Surface Area (SSA) was measured at three test sites to derive the correlation length, while the mean snow grain sizes was available at Stream Springs and Sodankyla. It was shown that with different apparent forms of radiative transfer equations, the different parts of the two models have one-to-one correspondence however, and intermediate parameters are comparable. Regarding the multiple-layer structure of the models, it was found that the HUT model considers the internal reflectivity of each snow layer to be zero. The two-flux radiative transfer equations of the two models were compared, and the correspondence of the semi-empirical parameter q in the HUT model was found in the MEMLS. The effect of consideration of transverse radiation scattered into the direction under consideration via the six-flux approximation in MEMLS is compared. Based on model comparisons, we analyzed the differences of TB predictions at the three test sites.

  20. Estimating snow depth of alpine snowpack via airborne multifrequency passive microwave radiance observations: Colorado, USA

    NASA Astrophysics Data System (ADS)

    Kim, R. S.; Durand, M. T.; Li, D.; Baldo, E.; Margulis, S. A.; Dumont, M.; Morin, S.

    2017-12-01

    This paper presents a newly-proposed snow depth retrieval approach for mountainous deep snow using airborne multifrequency passive microwave (PM) radiance observation. In contrast to previous snow depth estimations using satellite PM radiance assimilation, the newly-proposed method utilized single flight observation and deployed the snow hydrologic models. This method is promising since the satellite-based retrieval methods have difficulties to estimate snow depth due to their coarse resolution and computational effort. Indeed, this approach consists of particle filter using combinations of multiple PM frequencies and multi-layer snow physical model (i.e., Crocus) to resolve melt-refreeze crusts. The method was performed over NASA Cold Land Processes Experiment (CLPX) area in Colorado during 2002 and 2003. Results showed that there was a significant improvement over the prior snow depth estimates and the capability to reduce the prior snow depth biases. When applying our snow depth retrieval algorithm using a combination of four PM frequencies (10.7,18.7, 37.0 and 89.0 GHz), the RMSE values were reduced by 48 % at the snow depth transects sites where forest density was less than 5% despite deep snow conditions. This method displayed a sensitivity to different combinations of frequencies, model stratigraphy (i.e. different number of layering scheme for snow physical model) and estimation methods (particle filter and Kalman filter). The prior RMSE values at the forest-covered areas were reduced by 37 - 42 % even in the presence of forest cover.

  1. Effects of Vegetation and of Heat and Vapor Fluxes from Soil on Snowpack Evolution and Radiobrightness

    NASA Technical Reports Server (NTRS)

    Chung, Y. C.; England, A. W.; DeRoo, R. D.; Weininger, Etai

    2006-01-01

    The radiobrightness of a snowpack is strongly linked to the snow moisture content profile, to the point that the only operational inversion algorithms require dry snow. Forward dynamic models do not include the effects of freezing and thawing of the soil beneath the snowpack and the effect of vegetation within the snow or above the snow. To get a more realistic description of the evolution of the snowpack, we reported an addition to the Snow-Soil-Vegetation-Atmosphere- Transfer (SSVAT) model, wherein we coupled soil processes of the Land Surface Process (LSP) model with the snow model SNTHERM. In the near future we will be adding a radiobrightness prediction based on the modeled moisture, temperature and snow grain size profiles. The initial investigations with this SSVAT for a late winter and early spring snow pack indicate that soil processes warm the snowpack and the soil. Vapor diffusion needs to be considered whenever the ground is thawed. In the early spring, heat flow from the ground into a snow and a strong temperature gradient across the snow lead to thermal convection. The buried vegetation can be ignored for a late winter snow pack. The warmer surface snow temperature will affect radiobrightness since it is most sensitive to snow surface characteristics. Comparison to data shows that SSVAT provides a more realistic representation of the temperature and moisture profiles in the snowpack and its underlying soil than SNTHERM. The radiobrightness module will be optimized for the prediction of brightness when the snow is moist. The liquid water content of snow causes considerable absorption compared to dry snow, and so longer wavelengths are likely to be most revealing as to the state of a moist snowpack. For volumetric moisture contents below about 7% (the pendular regime), the water forms rings around the contact points between snow grains. Electrostatic modeling of these pendular rings shows that the absorption of these rings is significantly higher than a sphere of the same volume. The first implementation of the radiobrightness module will therefore be a simple radiative transfer model without scattering.

  2. Acoustic Wave Propagation in Snow Based on a Biot-Type Porous Model

    NASA Astrophysics Data System (ADS)

    Sidler, R.

    2014-12-01

    Despite the fact that acoustic methods are inexpensive, robust and simple, the application of seismic waves to snow has been sparse. This might be due to the strong attenuation inherent to snow that prevents large scale seismic applications or due to the somewhat counterintuitive acoustic behavior of snow as a porous material. Such materials support a second kind of compressional wave that can be measured in fresh snow and which has a decreasing wave velocity with increasing density of snow. To investigate wave propagation in snow we construct a Biot-type porous model of snow as a function of porosity based on the assumptions that the solid frame is build of ice, the pore space is filled with a mix of air, or air and water, and empirical relationships for the tortuosity, the permeability, the bulk, and the shear modulus.We use this reduced model to investigate compressional and shear wave velocities of snow as a function of porosity and to asses the consequences of liquid water in the snowpack on acoustic wave propagation by solving Biot's differential equations with plain wave solutions. We find that the fast compressional wave velocity increases significantly with increasing density, but also that the fast compressional wave velocity might be even lower than the slow compressional wave velocity for very light snow. By using compressional and shear strength criteria and solving Biot's differential equations with a pseudo-spectral approach we evaluate snow failure due to acoustic waves in a heterogeneous snowpack, which we think is an important mechanism in triggering avalanches by explosives as well as by skiers. Finally, we developed a low cost seismic acquisition device to assess the theoretically obtained wave velocities in the field and to explore the possibility of an inexpensive tool to remotely gather snow water equivalent.

  3. Sensitivity of modelled snow cover to turbulent flux parameterization and forcing data: a case study in a high altitude basin of the dry Andes, northern Chile

    NASA Astrophysics Data System (ADS)

    Kinnard, C.; Irarrazaval, I.; Campos, C.; Gascoin, S.; MacDonell, S.; Macdonell, S.; Herrero, J.

    2016-12-01

    Snow cover in the central-northern Andes of Chile is the main runoff source, providing water for the irrigation of cultures in the fertile valleys downstream. The prospect of adverse climate warming impacts on the hydrological cycle calls for a better understanding of the snow cover dynamics in response to climate, an aspect that has been little studied in the dry Andes. The heterogeneous and often thin snow cover, as well as the paucity of long-term hydrometeorological data makes snow modelling a challenging task in these regions. In this work we applied a physically-based, spatially-distributed snow model (Wimmed) to the La Laguna headwater catchment in the dry Andes (30°S, 70°W) during three hydrological years (2010-2013) when forcing data was available. Model testing at the point scale revealed a large sensitivity of simulated snow depths to the choice of snow roughness parameter (z0), which controls turbulent fluxes, while wind-induced snow erosion at the station in 2010 and 2011 complicated model validation. The inclusion of a mean wind speed map from a previous simulation with the WRF atmospheric model was found to improve the simulation results, while excluding the highest mountain ridge weather station had detrimental effects on the results. A snow roughness (z0) of 1 mm yielded the best comparison between the simulated and observed snow depth at the reference weather station, and between the simulated and MODIS-derived snow cover at the catchment scale. The simulation resulted in large sublimation losses (up to 4 mm day-1), corresponding to more than 80% of snow ablation in the catchment. While such high sublimation rates have been reported before in this region, remaining uncertainties in precipitation data and snow compaction processes call for more detailed studies and increased instrumentation in order to improve future modelling efforts.

  4. Snow multivariable data assimilation for hydrological predictions in mountain areas

    NASA Astrophysics Data System (ADS)

    Piazzi, Gaia; Campo, Lorenzo; Gabellani, Simone; Rudari, Roberto; Castelli, Fabio; Cremonese, Edoardo; Morra di Cella, Umberto; Stevenin, Hervé; Ratto, Sara Maria

    2016-04-01

    The seasonal presence of snow on alpine catchments strongly impacts both surface energy balance and water resource. Thus, the knowledge of the snowpack dynamics is of critical importance for several applications, such as water resource management, floods prediction and hydroelectric power production. Several independent data sources provide information about snowpack state: ground-based measurements, satellite data and physical models. Although all these data types are reliable, each of them is affected by specific flaws and errors (respectively dependency on local conditions, sensor biases and limitations, initialization and poor quality forcing data). Moreover, there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine observational and modeled information to obtain the most likely estimate of snowpack state. Indeed, by combining all the available sources of information, the implementation of DA schemes can quantify and reduce the uncertainties of the estimations. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model, strengthened by a robust multivariable data assimilation algorithm. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide a complete estimate of snowpack state. The implementation of an Ensemble Kalman Filter (EnKF) scheme enables to assimilate simultaneously ground-based and remotely sensed data of different snow-related variables (snow albedo and surface temperature, Snow Water Equivalent from passive microwave sensors and Snow Cover Area). SMASH performance was evaluated in the period June 2012 - December 2013 at the meteorological station of Torgnon (Tellinod, 2 160 msl), located in Aosta Valley, a mountain region in northwestern Italy. The EnKF algorithm was firstly tested by assimilating several ground-based measurements: snow depth, land surface temperature, snow density and albedo. The assimilation of snow observed data revealed an overall considerable enhancement of model predictions with respect to the open loop experiments. A first attempt to integrate also remote sensed information was performed by assimilating the Land Surface Temperature (LST) from METEOSAT Second Generation (MSG), leading to good results. The analysis allowed identifying the snow depth and the snowpack surface temperature as the most impacting variables in the assimilation process. In order to pinpoint an optimal number of ensemble instances, SMASH performances were also quantitatively evaluated by varying the instances amount. Furthermore, the impact of the data assimilation frequency was analyzed by varying the assimilation time step (3h, 6h, 12h, 24h).

  5. Characterization and predictability of basin scale SWE distributions using ASO snow depth and SWE retrievals

    NASA Astrophysics Data System (ADS)

    Bormann, K.; Hedrick, A. R.; Marks, D. G.; Painter, T. H.

    2017-12-01

    The spatial and temporal distribution of snow water resources (SWE) in the mountains has been examined extensively through the use of models, in-situ networks and remote sensing techniques. However, until the Airborne Snow Observatory (http://aso.jpl.nasa.gov), our understanding of SWE dynamics has been limited due to a lack of well-constrained spatial distributions of SWE in complex terrain, particularly at high elevations and at regional scales (100km+). ASO produces comprehensive snow depth measurements and well-constrained SWE products providing the opportunity to re-examine our current understanding of SWE distributions with a robust and rich data source. We collected spatially-distributed snow depth and SWE data from over 150 individual ASO acquisitions spanning seven basins in California during the five-year operational period of 2013 - 2017. For each of these acquisitions, we characterized the spatial distribution of snow depth and SWE and examined how these distributions changed with time during snowmelt. We compared these distribution patterns between each of the seven basins and finally, examined the predictability of the SWE distributions using statistical extrapolations through both space and time. We compare and contrast these observationally-based characteristics with those from a physically-based snow model to highlight the strengths and weaknesses of the implementation of our understanding of SWE processes in the model environment. In practice, these results may be used to support or challenge our current understanding of mountain SWE dynamics and provide techniques for enhanced evaluation of high-resolution snow models that go beyond in-situ point comparisons. In application, this work may provide guidance on the potential of ASO to guide backfilling of sparse spaceborne measurements of snow depth and snow water equivalent.

  6. PULSE: A numerical model for the simulation of snowpack solute dynamics to capture runoff ionic pulses during snowmelt

    NASA Astrophysics Data System (ADS)

    Costa, D.; Pomeroy, J. W.; Wheater, H. S.

    2017-12-01

    Early ionic pulses in spring snowmelt can cause the temporary acidification of streams and account for a significant portion of the total annual nutrient export, particularly in seasonally snow-covered areas where the frozen ground may limit runoff-soil contact and cause the rapid delivery of these ions to streams. Ionic pulses are a consequence of snow ion exclusion, a process induced by snow metamorphism where ions are segregated from the snow grains losing mass to the surface of the grains gaining mass. While numerous studies have been successful in providing quantitative evidence of this process, few mechanistic mathematical models have been proposed for diagnostic and prediction. A few early modelling attempts have been successful in capturing this process assuming transport through porous media with variable porosity, however their implementation is difficult because they require complex models of snow physics to resolve the evolution of in-snow properties and processes during snowmelt, such as heat conduction, metamorphism, melt and water flow. Furthermore, initial snowpack to snow-surface ion concentration ratios are difficult to measure but are required to initiate these models and ion exclusion processes are not represented in a physically-based transparent fashion. In this research, a standalone numerical model has been developed to capture ionic pulses in snowmelt by emulating solute leaching from snow grains during melt and its subsequent transport by the percolating meltwater. Estimating snow porosity and water content dynamics is shown to be a viable alternative to deployment of complex snow physics models for this purpose. The model was applied to four study sites located in the Arctic and in Sierra Nevada to test for different climatic and hydrological conditions. The model compares very well with observations and could capture both the timing and magnitude of early melt ionic pulses accurately. This study demonstrates how physically based approaches can provide successful simulations of the spatial and temporal fluxes of snowmelt ions, which can be used to improve the prediction of nutrient export in cold regions for the spring freshet.

  7. PULSE: A numerical model for the simulation of snowpack solute dynamics to capture runoff ionic pulses during snowmelt

    NASA Astrophysics Data System (ADS)

    Clark, M. P.; Nijssen, B.; Lundquist, J. D.; Luce, C. H.; Musselman, K. N.; Wayand, N. E.; Ou, M.; Lapo, K. E.

    2016-12-01

    Early ionic pulses in spring snowmelt can cause the temporary acidification of streams and account for a significant portion of the total annual nutrient export, particularly in seasonally snow-covered areas where the frozen ground may limit runoff-soil contact and cause the rapid delivery of these ions to streams. Ionic pulses are a consequence of snow ion exclusion, a process induced by snow metamorphism where ions are segregated from the snow grains losing mass to the surface of the grains gaining mass. While numerous studies have been successful in providing quantitative evidence of this process, few mechanistic mathematical models have been proposed for diagnostic and prediction. A few early modelling attempts have been successful in capturing this process assuming transport through porous media with variable porosity, however their implementation is difficult because they require complex models of snow physics to resolve the evolution of in-snow properties and processes during snowmelt, such as heat conduction, metamorphism, melt and water flow. Furthermore, initial snowpack to snow-surface ion concentration ratios are difficult to measure but are required to initiate these models and ion exclusion processes are not represented in a physically-based transparent fashion. In this research, a standalone numerical model has been developed to capture ionic pulses in snowmelt by emulating solute leaching from snow grains during melt and its subsequent transport by the percolating meltwater. Estimating snow porosity and water content dynamics is shown to be a viable alternative to deployment of complex snow physics models for this purpose. The model was applied to four study sites located in the Arctic and in Sierra Nevada to test for different climatic and hydrological conditions. The model compares very well with observations and could capture both the timing and magnitude of early melt ionic pulses accurately. This study demonstrates how physically based approaches can provide successful simulations of the spatial and temporal fluxes of snowmelt ions, which can be used to improve the prediction of nutrient export in cold regions for the spring freshet.

  8. Independent evaluation of the SNODAS snow depth product using regional scale LiDAR-derived measurements

    NASA Astrophysics Data System (ADS)

    Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elder, K.; Yueh, S.; Cline, D.

    2014-06-01

    Repeated Light Detection and Ranging (LiDAR) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 LiDAR-derived dataset of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically-based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the coterminous United States. Independent validation data is scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation dataset with substantial geographic coverage. Within twelve distinctive 500 m × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 LiDAR acquisitions. This supplied a dataset for constraining the uncertainty of upscaled LiDAR estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled LiDAR snow depths were then compared to the SNODAS-estimates over the entire study area for the dates of the LiDAR flights. The remotely-sensed snow depths provided a more spatially continuous comparison dataset and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between LiDAR observations and SNODAS estimates were most drastic, suggesting natural processes specific to these regions as causal influences on model uncertainty.

  9. Independent evaluation of the SNODAS snow depth product using regional-scale lidar-derived measurements

    NASA Astrophysics Data System (ADS)

    Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elder, K.; Yueh, S.; Cline, D.

    2015-01-01

    Repeated light detection and ranging (lidar) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 lidar-derived data set of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the conterminous United States. Independent validation data are scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation data set with substantial geographic coverage. Within 12 distinctive 500 × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 lidar acquisitions. This supplied a data set for constraining the uncertainty of upscaled lidar estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled lidar snow depths were then compared to the SNODAS estimates over the entire study area for the dates of the lidar flights. The remotely sensed snow depths provided a more spatially continuous comparison data set and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between lidar observations and SNODAS estimates were most drastic, providing insight into the causal influences of natural processes on model uncertainty.

  10. SWANN: The Snow Water Artificial Neural Network Modelling System

    NASA Astrophysics Data System (ADS)

    Broxton, P. D.; van Leeuwen, W.; Biederman, J. A.

    2017-12-01

    Snowmelt from mountain forests is important for water supply and ecosystem health. Along Arizona's Mogollon Rim, snowmelt contributes to rivers and streams that provide a significant water supply for hydro-electric power generation, agriculture, and human consumption in central Arizona. In this project, we are building a snow monitoring system for the Salt River Project (SRP), which supplies water and power to millions of customers in the Phoenix metropolitan area. We are using process-based hydrological models and artificial neural networks (ANNs) to generate information about both snow water equivalent (SWE) and snow cover. The snow-cover data is generated with ANNs that are applied to Landsat and MODIS satellite reflectance data. The SWE data is generated using a combination of gridded SWE estimates generated by process-based snow models and ANNs that account for variations in topography, forest cover, and solar radiation. The models are trained and evaluated with snow data from SNOTEL stations as well as from aerial LiDAR and field data that we collected this past winter in northern Arizona, as well as with similar data from other sites in the Southwest US. These snow data are produced in near-real time, and we have built a prototype decision support tool to deliver them to SRP. This tool is designed to provide daily-to annual operational monitoring of spatial and temporal changes in SWE and snow cover conditions over the entire Salt River Watershed (covering 17,000 km2), and features advanced web mapping capabilities and watershed analytics displayed as graphical data.

  11. Effects of snow grain shape on climate simulations: sensitivity tests with the Norwegian Earth System Model

    NASA Astrophysics Data System (ADS)

    Räisänen, Petri; Makkonen, Risto; Kirkevåg, Alf; Debernard, Jens B.

    2017-12-01

    Snow consists of non-spherical grains of various shapes and sizes. Still, in radiative transfer calculations, snow grains are often treated as spherical. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM). In this study, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH) is compared with another (NONSPH) in which the snow shortwave single-scattering properties are based on a combination of three non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (0.77-0.78 in the visible region) than in the spherical case ( ≈ 0.89). Therefore, for the same effective snow grain size (or equivalently, the same specific projected area), the snow broadband albedo is higher when assuming non-spherical rather than spherical snow grains, typically by 0.02-0.03. Considering the spherical case as the baseline, this results in an instantaneous negative change in net shortwave radiation with a global-mean top-of-the-model value of ca. -0.22 W m-2. Although this global-mean radiative effect is rather modest, the impacts on the climate simulated by NorESM are substantial. The global annual-mean 2 m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further demonstrated that the effect of snow grain shape could be largely offset by adjusting the snow grain size. When assuming non-spherical snow grains with the parameterized grain size increased by ca. 70 %, the climatic differences to the SPH experiment become very small. Finally, the impact of assumed snow grain shape on the radiative effects of absorbing aerosols in snow is discussed.

  12. Modeling snow-crystal growth: a three-dimensional mesoscopic approach.

    PubMed

    Gravner, Janko; Griffeath, David

    2009-01-01

    We introduce a three-dimensional, computationally feasible, mesoscopic model for snow-crystal growth, based on diffusion of vapor, anisotropic attachment, and a boundary layer. Several case studies are presented that faithfully replicate most observed snow-crystal morphology, an unusual achievement for a mathematical model. In particular, many of the most striking physical specimens feature both facets and branches, and our model provides an explanation for this phenomenon. We also duplicate many other observed traits, including ridges, ribs, sandwich plates, and hollow columns, as well as various dynamic instabilities. The concordance of observed phenomena suggests that the ingredients in our model are the most important ones in the development of physical snow crystals.

  13. The assessment of EUMETSAT HSAF Snow Products for mountainuos areas in the eastern part of Turkey

    NASA Astrophysics Data System (ADS)

    Akyurek, Z.; Surer, S.; Beser, O.; Bolat, K.; Erturk, A. G.

    2012-04-01

    Monitoring the snow parameters (e.g. snow cover area, snow water equivalent) is a challenging work. Because of its natural physical properties, snow highly affects the evolution of weather from daily basis to climate on a longer time scale. The derivation of snow products over mountainous regions has been considered very challenging. This can be done by periodic and precise mapping of the snow cover. However inaccessibility and scarcity of the ground observations limit the snow cover mapping in the mountainous areas. Today, it is carried out operationally by means of optical satellite imagery and microwave radiometry. In retrieving the snow cover area from satellite images bring the problem of topographical variations within the footprint of satellite sensors and spatial and temporal variation of snow characteristics in the mountainous areas. Most of the global and regional operational snow products use generic algorithms for flat and mountainous areas. However the non-uniformity of the snow characteristics can only be modeled with different algorithms for mountain and flat areas. In this study the early findings of Satellite Application Facilities on Hydrology (H-SAF) project, which is financially supported by EUMETSAT, will be presented. Turkey is a part of the H-SAF project, both in product generation (eg. snow recognition, fractional snow cover and snow water equivalent) for mountainous regions for whole Europe, cal/val of satellite-derived snow products with ground observations and cal/val studies with hydrological modeling in the mountainous terrain of Europe. All the snow products are operational on a daily basis. For the snow recognition product (H10) for mountainous areas, spectral thresholding methods were applied on sub pixel scale of MSG-SEVIRI images. The different spectral characteristics of cloud, snow and land determined the structure of the algorithm and these characteristics were obtained from subjective classification of known snow cover features in the MSG/SEVIRI images. The fractional snow cover area (H12) algorithm is based on a sub-pixel reflectance model applied on METOP-AVHRR data. Knowing the effects of topography on satellite-measured radiances for rough terrain, the sun zenith and azimuth angles, as well as direction of observation relative to these are taken into account in estimating the target reflectances from the satellite images. The values of SWE products (H13) were obtained using an assimilation process based on the Helsinki University of Technology model using Advanced Microwave Scanning Radiometer for EOS (AMSR-E) daily brightness-temperature values. The validation studies for three products have been performed for the water years 2010 and 2011. Average values of 70% of probability of detection for snow recognition product, 60% of overall accuracy for the fractional snow cover product and 45 mm RMSE for the snow water equivalent product have been obtained from the validation studies. Final versions of these three products will be presented and discussed. Key words: snow, satellite images, mountain, HSAF, snow cover, snow water equivalent

  14. Impact of model structure on flow simulation and hydrological realism: from a lumped to a semi-distributed approach

    NASA Astrophysics Data System (ADS)

    Garavaglia, Federico; Le Lay, Matthieu; Gottardi, Fréderic; Garçon, Rémy; Gailhard, Joël; Paquet, Emmanuel; Mathevet, Thibault

    2017-08-01

    Model intercomparison experiments are widely used to investigate and improve hydrological model performance. However, a study based only on runoff simulation is not sufficient to discriminate between different model structures. Hence, there is a need to improve hydrological models for specific streamflow signatures (e.g., low and high flow) and multi-variable predictions (e.g., soil moisture, snow and groundwater). This study assesses the impact of model structure on flow simulation and hydrological realism using three versions of a hydrological model called MORDOR: the historical lumped structure and a revisited formulation available in both lumped and semi-distributed structures. In particular, the main goal of this paper is to investigate the relative impact of model equations and spatial discretization on flow simulation, snowpack representation and evapotranspiration estimation. Comparison of the models is based on an extensive dataset composed of 50 catchments located in French mountainous regions. The evaluation framework is founded on a multi-criterion split-sample strategy. All models were calibrated using an automatic optimization method based on an efficient genetic algorithm. The evaluation framework is enriched by the assessment of snow and evapotranspiration modeling against in situ and satellite data. The results showed that the new model formulations perform significantly better than the initial one in terms of the various streamflow signatures, snow and evapotranspiration predictions. The semi-distributed approach provides better calibration-validation performance for the snow cover area, snow water equivalent and runoff simulation, especially for nival catchments.

  15. Assimilating MODIS-based albedo and snow cover fraction into the Common Land Model to improve snow depth simulation with direct insertion and deterministic ensemble Kalman filter methods

    NASA Astrophysics Data System (ADS)

    Xu, Jianhui; Shu, Hong

    2014-09-01

    This study assesses the analysis performance of assimilating the Moderate Resolution Imaging Spectroradiometer (MODIS)-based albedo and snow cover fraction (SCF) separately or jointly into the physically based Common Land Model (CoLM). A direct insertion method (DI) is proposed to assimilate the black and white-sky albedos into the CoLM. The MODIS-based albedo is calculated with the MODIS bidirectional reflectance distribution function (BRDF) model parameters product (MCD43B1) and the solar zenith angle as estimated in the CoLM for each time step. Meanwhile, the MODIS SCF (MOD10A1) is assimilated into the CoLM using the deterministic ensemble Kalman filter (DEnKF) method. A new DEnKF-albedo assimilation scheme for integrating the DI and DEnKF assimilation schemes is proposed. Our assimilation results are validated against in situ snow depth observations from November 2008 to March 2009 at five sites in the Altay region of China. The experimental results show that all three data assimilation schemes can improve snow depth simulations. But overall, the DEnKF-albedo assimilation shows the best analysis performance as it significantly reduces the bias and root-mean-square error (RMSE) during the snow accumulation and ablation periods at all sites except for the Fuyun site. The SCF assimilation via DEnKF produces better results than the albedo assimilation via DI, implying that the albedo assimilation that indirectly updates the snow depth state variable is less efficient than the direct SCF assimilation. For the Fuyun site, the DEnKF-albedo scheme tends to overestimate the snow depth accumulation with the maximum bias and RMSE values because of the large positive innovation (observation minus forecast).

  16. Improving snow water equivalent simulations in an alpine basin using blended gage precipitation and snow pillow measurements

    NASA Astrophysics Data System (ADS)

    Sohrabi, M.; Safeeq, M.; Conklin, M. H.

    2017-12-01

    Snowpack is a critical freshwater reservoir that sustains ecosystem, natural habitat, hydropower, agriculture, and urban water supply in many areas around the world. Accurate estimation of basin scale snow water equivalent (SWE), through both measurement and modeling, has been significantly recognized to improve regional water resource management. Recent advances in remote data acquisition techniques have improved snow measurements but our ability to model snowpack evolution is largely hampered by poor knowledge of inherently variable high-elevation precipitation patterns. For a variety of reasons, majority of the precipitation gages are located in low and mid-elevation range and function as drivers for basin scale hydrologic modeling. Here, we blend observed gage precipitation from low and mid-elevation with point observations of SWE from high-elevation snow pillow into a physically based snow evolution model (SnowModel) to better represent the basin-scale precipitation field and improve snow simulations. To do this, we constructed two scenarios that differed in only precipitation. In WTH scenario, we forced the SnowModel using spatially distributed gage precipitation data. In WTH+SP scenario, the model was forced with spatially distributed precipitation data derived from gage precipitation along with observed precipitation from snow pillows. Since snow pillows do not directly measure precipitation, we uses positive change in SWE as a proxy for precipitation. The SnowModel was implemented at daily time step and 100 m resolution for the Kings River Basin, USA over 2000-2014. Our results show an improvement in snow simulation under WTH+SP as compared to WTH scenario, which can be attributed to better representation in high-elevation precipitation patterns under WTH+SP. The average Nash Sutcliffe efficiency over all snow pillow and course sites was substantially higher for WTH+SP (0.77) than for WTH scenario (0.47). The maximum difference in observed and simulated peak SWE was 810 mm for WTH and 380 mm for WTH+SP, which led to underestimation of snow season length and melt rate by up to 30 days and 12 mm/day, respectively, in WTH scenario. These results indicate that point scale snow observations at higher elevation can be used to improve precipitation input to hydrologic modeling in mountainous basins.

  17. How much runoff originates as snow in the western United States and what its future changes tell us?

    NASA Astrophysics Data System (ADS)

    Li, D.; Wrzesien, M.; Durand, M. T.; Adam, J. C.; Lettenmaier, D. P.

    2017-12-01

    Snow is a vital hydrologic cycle component in the western United States. The seasonal phase of snowmelt bridges between winter-dominant precipitation and summer-dominant human and ecosystem water demand. Current estimates of the fraction of total annual runoff generated by snowmelt (f_Q,snow) are not based on defensible, systematic analyses. Here, based on hydrological model simulations, we describe a new algorithm that explicitly quantifies the contribution of snow to runoff in the Western U.S. Specifically, the algorithm tracks the fate of the snowmelt runoff in the modeled hydrological fluxes in the soil, surface water, and the atmosphere, and accounts for the exchanges among the three. The hydrological fluxes are simulated by the Variable Infiltration Capacity (VIC) model using an ensemble of ten general circulation model (GCM) outputs trained by ground observations. We conducted the tracking to the VIC modeling ensemble and reported the mean of the ten tracking results. We computed the historical f_Q,snow with the modeling estimates from 1960 to 2005, and predicted the future f_Q,snow using the modeling estimates from 2006 to 2100 in the RCP4.5 and RCP8.5 scenarios. Our tracking results show that from 1960 to 2005, slightly over one-half of the total runoff in the western United States originated as snowmelt, despite only 37% of the region's total precipitation falling as snow; snowfall is more efficient than rainfall in runoff generation. Snow's importance varies physiographically: snowmelt from the mountains is responsible for over 70% of the total runoff in the West. Snowmelt-derived runoff currently makes up about 2/3 of the inflow to the region's major reservoirs; for Lake Mead and Lake Powell, which are the two largest reservoirs of the nation, snow contributes over 70% of their storage. The contribution of snowmelt to the total runoff will decrease in a warmer climate, by about 1/3 over the West by 2100. Snow will melt earlier and the snowmelt-induced peak flow will shift earlier by 1.5 to up to 4 weeks. Thus, in the context of predicted reductions and earlier shifts of the snow-induced runoff, and the fact that the region's major reservoirs were designed for the historical snow climatology, we argue that substantial impacts on water supply may occur especially in the summer season when water demand peaks.

  18. Sensitivity of Alpine Snow and Streamflow Regimes to Climate Changes

    NASA Astrophysics Data System (ADS)

    Rasouli, K.; Pomeroy, J. W.; Marks, D. G.; Bernhardt, M.

    2014-12-01

    Understanding the sensitivity of hydrological processes to climate change in alpine areas with snow dominated regimes is of paramount importance as alpine basins show both high runoff efficiency associated with the melt of the seasonal snowpack and great sensitivity of snow processes to temperature change. In this study, meteorological data measured in a selection of alpine headwaters basins including Reynolds Mountain East, Idaho, USA, Wolf Creek, Yukon in Canada, and Zugspitze Mountain, Germany with climates ranging from arctic to continental temperate were used to study the snow and streamflow sensitivity to climate change. All research sites have detailed multi-decadal meteorological and snow measurements. The Cold Regions Hydrological Modelling platform (CRHM) was used to create a model representing a typical alpine headwater basin discretized into hydrological response units with physically based representations of snow redistribution by wind, complex terrain snowmelt energetics and runoff processes in alpine tundra. The sensitivity of snow hydrology to climate change was investigated by changing air temperature and precipitation using weather generating methods based on the change factors obtained from different climate model projections for future and current periods. The basin mean and spatial variability of peak snow water equivalent, sublimation loss, duration of snow season, snowmelt rates, streamflow peak, and basin discharge were assessed under varying climate scenarios and the most sensitive hydrological mechanisms to the changes in the different alpine climates were detected. The results show that snow hydrology in colder alpine climates is more resilient to warming than that in warmer climates, but that compensatory factors to warming such as reduced blowing snow sublimation loss and reduced melt rate should also be assessed when considering climate change impacts on alpine hydrology.

  19. First Gridded Spatial Field Reconstructions of Snow from Tree Rings

    NASA Astrophysics Data System (ADS)

    Coulthard, B. L.; Anchukaitis, K. J.; Pederson, G. T.; Alder, J. R.; Hostetler, S. W.; Gray, S. T.

    2017-12-01

    Western North America's mountain snowpacks provide critical water resources for human populations and ecosystems. Warmer temperatures and changing precipitation patterns will increasingly alter the quantity, extent, and persistence of snow in coming decades. A comprehensive understanding of the causes and range of long-term variability in this system is required for forecasting future anomalies, but snowpack observations are limited and sparse. While individual tree ring-based annual snowpack reconstructions have been developed for specific regions and mountain ranges, we present here the first collection of spatially-explicit gridded field reconstructions of seasonal snowpack within the American Rocky Mountains. Capitalizing on a new western North American snow-sensitive network of over 700 tree-ring chronologies, as well as recent advances in PRISM-based snow modeling, our gridded reconstructions offer a full space-time characterization of snow and associated water resource fluctuations over several centuries. The quality of reconstructions is evaluated against existing observations, proxy-records, and an independently-developed first-order monthly snow model.

  20. Snow Climatology of Arctic Sea Ice: Comparison of Reanalysis and Climate Model Data with In Situ Measurements

    NASA Astrophysics Data System (ADS)

    Chevooruvalappil Chandran, B.; Pittana, M.; Haas, C.

    2015-12-01

    Snow on sea ice is a critical and complex factor influencing sea ice processes. Deep snow with a high albedo and low thermal conductivity inhibits ice growth in winter and minimizes ice loss in summer. Very shallow or absent snow promotes ice growth in winter and ice loss in summer. The timing of snow ablation critically impacts summer sea ice mass balance. Here we assess the accuracy of various snow on sea ice data products from reanalysis and modeling comparing them with in situ measurements. The latter are based on the Warren et al. (1999) monthly climatology derived from snow ruler measurements between 1954-1991, and on daily snow depth retrievals from few drifting ice mass balance buoys (IMB) with sufficiently long observations spanning the summer season. These were compared with snow depth data from the National Center for Environmental Prediction Department of Energy Reanalysis 2 (NCEP), the Community Climate System Model 4 (CCSM4), and the Canadian Earth System Model 2 (CanESM2). Results are quite variable in different years and regions. However, there is often good agreement between CanESM2 and IMB snow depth during the winter accumulation and spring melt periods. Regional analyses show that over the western Arctic covered primarily with multiyear ice NCEP snow depths are in good agreement with the Warren climatology while CCSM4 overestimates snow depth. However, in the Eastern Arctic which is dominated by first-year ice the opposite behavior is observed. Compared to the Warren climatology CanESM2 underestimates snow depth in all regions. Differences between different snow depth products are as large as 10 to 20 cm, with large consequences for the sea ice mass balance. However, it is also very difficult to evaluate the accuracy of reanalysis and model snow depths due to a lack of extensive, continuous in situ measurements.

  1. Demonstrating the Uneven Importance of Fine-Scale Forest Structure on Snow Distributions using High Resolution Modeling

    NASA Astrophysics Data System (ADS)

    Broxton, P. D.; Harpold, A. A.; van Leeuwen, W.; Biederman, J. A.

    2016-12-01

    Quantifying the amount of snow in forested mountainous environments, as well as how it may change due to warming and forest disturbance, is critical given its importance for water supply and ecosystem health. Forest canopies affect snow accumulation and ablation in ways that are difficult to observe and model. Furthermore, fine-scale forest structure can accentuate or diminish the effects of forest-snow interactions. Despite decades of research demonstrating the importance of fine-scale forest structure (e.g. canopy edges and gaps) on snow, we still lack a comprehensive understanding of where and when forest structure has the largest impact on snowpack mass and energy budgets. Here, we use a hyper-resolution (1 meter spatial resolution) mass and energy balance snow model called the Snow Physics and Laser Mapping (SnowPALM) model along with LIDAR-derived forest structure to determine where spatial variability of fine-scale forest structure has the largest influence on large scale mass and energy budgets. SnowPALM was set up and calibrated at sites representing diverse climates in New Mexico, Arizona, and California. Then, we compared simulations at different model resolutions (i.e. 1, 10, and 100 m) to elucidate the effects of including versus not including information about fine scale canopy structure. These experiments were repeated for different prescribed topographies (i.e. flat, 30% slope north, and south-facing) at each site. Higher resolution simulations had more snow at lower canopy cover, with the opposite being true at high canopy cover. Furthermore, there is considerable scatter, indicating that different canopy arrangements can lead to different amounts of snow, even when the overall canopy coverage is the same. This modeling is contributing to the development of a high resolution machine learning algorithm called the Snow Water Artificial Network (SWANN) model to generate predictions of snow distributions over much larger domains, which has implications for improving land surface models that do not currently resolve or parameterize fine-scale canopy structure. In addition, these findings have implications for understanding the potential of different forest management strategies (i.e. thinning) based on local topography and climate to maximize the amount and retention of snow.

  2. Spectral Reflectance and Albedo of Snow-Covered Heterogeneous Landscapes in New Hampshire, USA: Comparison of Ground-based, Airborne Hyperspectral, and MODIS Satellite Data

    NASA Astrophysics Data System (ADS)

    Burakowski, E. A.; Ollinger, S. V.; Martin, M.; Lepine, L. C.; Hollinger, D. Y.; Dibb, J. E.

    2013-12-01

    This study evaluates the accuracy of hyperspectral imagery (HSI) and MODIS daily 500-m snow albedo over forested, deforested, and mixed land use types under snow-covered conditions in New Hampshire, USA. HSI spectral reflectance generally agrees well with tower-based measurements above a mixed forest canopy. Over cleared pasture, HSI spectral reflectance is lower than ground-based measurements collected using a spectrometer, and greatly underestimates reflectance at wavelengths less than 430 nm. Based on tower-based albedo measurements, HSI shortwave broadband albedo meets the absolute accuracy requirement of ×0.05 recommended for climate modeling. When HSI 5-m fine-resolution imagery is aggregated to MODIS 500-m resolution and integrated to shortwave broadband albedo, MOD10A1 daily snow-covered surface albedo exhibits a negative bias of -0.0033 and root mean square error (RMSE) of 0.067 compared to HSI shortwave broadband albedo, just outside the range of the absolute accuracy requirement of ×0.05 recommended for climate modeling. Spectral albedo collected over a deciduous broadleaf canopy under snow-covered and snow-free conditions will expand the existing spectral library and contribute to future validation efforts of multi-spectral remote sensing products (e.g., HyspIRI).

  3. Modeling the Interaction of Radiation Between Vegetation and the Seasonal Snowcover

    NASA Astrophysics Data System (ADS)

    Tribbeck, M. J.; Gurney, R. J.; Morris, E. M.; Pearson, D.

    2001-12-01

    Prediction of meltwater runoff is crucial to communities where the seasonal snowpack is the major water supply. Water is itself a vital resource and it carries nutrients both in solution and in suspension. Simulation of snowpack depletion at a point in open areas has previously been shown to produce accurate results using physically based models such as SNTHERM. However, the radiation balance is more complex under a forest canopy as radiation is scattered and absorbed by canopy elements. This can alter the timing and magnitude of snowpack runoff substantially. The interaction of radiation between a forest canopy and its underlying snowcover is modeled by the coupling of a physically based snow model and an optical and thermal radiation canopy model. The snow model, which is based on SNTHERM (Jordan, 1991), is a discrete, multi-layer, one-dimensional mass and energy budget model for snow and is formulated with an adaptive grid system that compresses with the compacting snowpack and allows retention of snowpack stratigraphy. The vegetation canopy model approximates the canopy as a series of discrete, randomly orientated elements that scatter and absorb optical and thermal radiation. Multiple scattering of radiation between canopy and snow surface is modeled to conserve energy. The coupled model SNOWCAN differs from other vegetation-snow models such as GORT or SNOBAL as it models the albedo feedback mechanism. This is important as the albedo both affects and is affected by (through grain growth) the radiation balance. SNOWCAN is driven by standard atmospheric variables (including incident solar and thermal radiation) measured outside of the canopy and simulates snowpack properties such as temperature and density profiles as well as the sub-canopy radiation balance. The coupled snow and vegetation energy budget model was used to simulate snow depth at an old jack pine site during the 1994 BOREAS campaign. Measured and simulated snow depth showed good agreement throughout the accumulation and ablation periods, yielding an r2 correlation coefficient of 0.94. The snowpack development was also simulated at a point site within a fir stand in Reynolds Creek Experimental Watershed, Idaho, USA for the water year 2000-2001. A sensitivity analysis was carried out and comparisons were made with field observations of snowpack properties and sub-canopy radiation data for model validation.

  4. Early results from NASA's SnowEx campaign

    NASA Astrophysics Data System (ADS)

    Kim, Edward; Gatebe, Charles; Hall, Dorothy; Misakonis, Amy; Elder, Kelly; Marshall, Hans Peter; Hiemstra, Chris; Brucker, Ludovic; Crawford, Chris; Kang, Do Hyuk; De Marco, Eugenia; Beckley, Matt; Entin, Jared

    2017-04-01

    SnowEx is a multi-year airborne snow campaign with the primary goal of addressing the question: How much water is stored in Earth's terrestrial snow-covered regions? Year 1 (2016-17) focuses on the distribution of snow-water equivalent (SWE) and the snow energy balance in a forested environment. The year 1 primary site is Grand Mesa and the secondary site is the Senator Beck Basin, both in western, Colorado, USA. Ten core sensors on four core aircraft will make observations using a broad suite of airborne sensors including active and passive microwave, and active and passive optical/infrared sensing techniques to determine the sensitivity and accuracy of these potential satellite remote sensing techniques, along with models, to measure snow under a range of forest conditions. SnowEx also includes an extensive range of ground truth measurements—in-situ samples, snow pits, ground based remote sensing measurements, and sophisticated new techniques. A detailed description of the data collected will be given and some early results will be presented. Seasonal snow cover is the largest single component of the cryosphere in areal extent (covering an average of 46M km2 of Earth's surface (31 % of land areas) each year). This seasonal snow has major societal impacts in the areas of water resources, natural hazards (floods and droughts), water security, and weather and climate. The only practical way to estimate the quantity of snow on a consistent global basis is through satellites. Yet, current space-based techniques underestimate storage of snow water equivalent (SWE) by as much as 50%, and model-based estimates can differ greatly vs. estimates based on remotely-sensed observations. At peak coverage, as much as half of snow-covered terrestrial areas involve forested areas, so quantifying the challenge represented by forests is important to plan any future snow mission. Single-sensor approaches may work for certain snow types and certain conditions, but not for others. Snow simply varies too much. Thus, the snow community consensus is that a multi-sensor approach is needed to adequately address global snow, combined with modeling and data assimilation. What remains at issue, then, is how best to combine and use the various sensors in an optimal way. That requires field measurements. NASA's SnowEx airborne campaign is designed to do exactly that. A list of core sensors is as follows. All are from NASA unless otherwise noted. • Radar (volume scattering): European Space Agency's SnowSAR, operated by MetaSensing • Lidar & hyperspectral imager: Airborne Snow Observatory (ASO) • Passive microwave: Airborne Earth Science Microwave Imaging Radiometer (AESMIR) • Bi-directional Reflectance Function (BRDF): the Cloud Absorption Radiometer (CAR) • Thermal Infrared imager • Thermal infrared non-imager from U. Washington • Video camera The ASO suite flew on a King Air, and the other sensors flew on a Navy P-3. In addition, two NASA radars flew on G-III aircraft to test more experimental retrieval techniques: • InSAR altimetry: Glacier and Ice Surface Topography Interferometer (GLISTIN-A) • Radar phase delay: Uninhabited Aerial Vehicle Synthetic Aperture Radar, (UAVSAR)

  5. COSMO-SkyMed Image Investigation of Snow Features in Alpine Environment

    PubMed Central

    Paloscia, Simonetta; Pettinato, Simone; Santi, Emanuele; Valt, Mauro

    2017-01-01

    In this work, X band images acquired by COSMO-SkyMed (CSK) on alpine environment have been analyzed for investigating snow characteristics and their effect on backscattering variations. Preliminary results confirmed the capability of simultaneous optical and Synthetic Aperture Radar (SAR) images (Landsat-8 and CSK) in separating snow/no-snow areas and in detecting wet snow. The sensitivity of backscattering to snow depth has not always been confirmed, depending on snow characteristics related to the season. A model based on Dense Media Radiative Transfer theory (DMRT-QMS) was applied for simulating the backscattering response on the X band from snow cover in different conditions of grain size, snow density and depth. By using DMRT-QMS and snow in-situ data collected on Cordevole basin in Italian Alps, the effect of grain size and snow density, beside snow depth and snow water equivalent, was pointed out, showing that the snow features affect the backscatter in different and sometimes opposite ways. Experimental values of backscattering were correctly simulated by using this model and selected intervals of ground parameters. The relationship between simulated and measured backscattering for the entire dataset shows slope >0.9, determination coefficient, R2 = 0.77, and root mean square error, RMSE = 1.1 dB, with p-value <0.05. PMID:28054962

  6. Comparison of Commonly-Used Microwave Radiative Transfer Models for Snow Remote Sensing

    NASA Technical Reports Server (NTRS)

    Royer, Alain; Roy, Alexandre; Montpetit, Benoit; Saint-Jean-Rondeau, Olivier; Picard, Ghislain; Brucker, Ludovic; Langlois, Alexandre

    2017-01-01

    This paper reviews four commonly-used microwave radiative transfer models that take different electromagnetic approaches to simulate snow brightness temperature (T(sub B)): the Dense Media Radiative Transfer - Multi-Layer model (DMRT-ML), the Dense Media Radiative Transfer - Quasi-Crystalline Approximation Mie scattering of Sticky spheres (DMRT-QMS), the Helsinki University of Technology n-Layers model (HUT-nlayers) and the Microwave Emission Model of Layered Snowpacks (MEMLS). Using the same extensively measured physical snowpack properties, we compared the simulated T(sub B) at 11, 19 and 37 GHz from these four models. The analysis focuses on the impact of using different types of measured snow microstructure metrics in the simulations. In addition to density, snow microstructure is defined for each snow layer by grain optical diameter (Do) and stickiness for DMRT-ML and DMRT-QMS, mean grain geometrical maximum extent (D(sub max)) for HUT n-layers and the exponential correlation length for MEMLS. These metrics were derived from either in-situ measurements of snow specific surface area (SSA) or macrophotos of grain sizes (D(sub max)), assuming non-sticky spheres for the DMRT models. Simulated T(sub B) sensitivity analysis using the same inputs shows relatively consistent T(sub B) behavior as a function of Do and density variations for the vertical polarization (maximum deviation of 18 K and 27 K, respectively), while some divergences appear in simulated variations for the polarization ratio (PR). Comparisons with ground based radiometric measurements show that the simulations based on snow SSA measurements have to be scaled with a model-specific factor of Do in order to minimize the root mean square error (RMSE) between measured and simulated T(sub B). Results using in-situ grain size measurements (SSA or D(sub max), depending on the model) give a mean T(sub B) RMSE (19 and 37 GHz) of the order of 16-26 K, which is similar for all models when the snow microstructure metrics are scaled. However, the MEMLS model converges to better results when driven by the correlation length estimated from in-situ SSA measurements rather than D(sub max) measurements. On a practical level, this paper shows that the SSA parameter, a snow property that is easy to retrieve in-situ, appears to be the most relevant parameter for characterizing snow microstructure, despite the need for a scaling factor.

  7. Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography

    NASA Astrophysics Data System (ADS)

    Pimentel, Rafael; Herrero, Javier; José Polo, María

    2017-02-01

    Subgrid variability introduces non-negligible scale effects on the grid-based representation of snow. This heterogeneity is even more evident in semiarid regions, where the high variability of the climate produces various accumulation melting cycles throughout the year and a large spatial heterogeneity of the snow cover. This variability in a watershed can often be represented by snow accumulation-depletion curves (ADCs). In this study, terrestrial photography (TP) of a cell-sized area (30 × 30 m) was used to define local snow ADCs at a Mediterranean site. Snow-cover fraction (SCF) and snow-depth (h) values obtained with this technique constituted the two datasets used to define ADCs. A flexible sigmoid function was selected to parameterize snow behaviour on this subgrid scale. It was then fitted to meet five different snow patterns in the control area: one for the accumulation phase and four for the melting phase in a cycle within the snow season. Each pattern was successfully associated with the snow conditions and previous evolution. The resulting ADCs were associated to certain physical features of the snow, which were used to incorporate them in the point snow model formulated by Herrero et al. (2009) by means of a decision tree. The final performance of this model was tested against field observations recorded over four hydrological years (2009-2013). The calibration and validation of this ADC snow model was found to have a high level of accuracy, with global RMSE values of 105.8 mm for the average snow depth and 0.21 m2 m-2 for the snow-cover fraction in the control area. The use of ADCs on the cell scale proposed in this research provided a sound basis for the extension of point snow models to larger areas by means of a gridded distributed calculation.

  8. Impacts of Recent Climatic Wetting on Distributed Snow and Streamflow Responses in a Terminal Lake Basin.

    NASA Astrophysics Data System (ADS)

    Van Hoy, D.; Mahmood, T. H.; Jeannotte, T.; Todhunter, P. E.

    2017-12-01

    The recent shift in hydroclimatic conditions in the Northern Great Plains (NGP) has led to an increase in precipitation, rainfall rate, and wetland connectivity over the last few decades. These changes yield an integrated response resulting in high mean annual streamflow and subsequent flooding in many NGP basins such as the terminal Devils Lake Basin (DLB). In this study, we investigate the impacts of recent climatic wetting on distributed hydrologic responses such as snow processes and streamflow using a field-tested and physically-based cold region hydrologic model (CRHM). CHRM is designed for cold prairie regions and has modules to simulate major processes such as blowing snow transport, sublimation, interception, frozen soil infiltration, snowmelt and subsequent streamflow generation. Our modeling focuses on a tributary basin of the DLB known as the Mauvais Coulee Basin (MCB). Since there were no snow observations in the MCB, we conducted a detailed snow survey at distributed locations estimating snow depth, density, and snow water equivalent (SWE) using a prairie snow tube four times during winter of 2016-17. The MCB model was evaluated against distributed snow observations and streamflow measured at the basin outlet (USGS) for the year 2016-2017. Preliminary results indicate that the simulated SWEs at distributed locations and streamflow (NSE ≈ 0.70) are in good agreement with observations. The simulated SWE maps exhibit large spatiotemporal variation during 2016-17 winter due to spatial variability in precipitation, snow redistribution from stubble field to wooded areas, and snow accumulations in small depressions across the subbasins. The main source of snow appears to be the hills and ridges of the eastern and western edges of the basin, while the main sink is the large flat central valleys. The model will be used to examine the effect of recent changes to precipitation and temperature on snow processes and subsequent streamflow for 2004-2017 season. We will also investigate the hydrologic sensitivity to precipitation and temperature changes by altering input temperature and precipitation. Finally, our findings will point toward future process-based studies and simulated hydrologic responses that can be used to prepare flood hazard maps for cities around Devils Lake.

  9. Global land-atmosphere coupling associated with cold climate processes

    NASA Astrophysics Data System (ADS)

    Dutra, Emanuel

    This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and tested in HTESSEL and EC-EARTH. The snow scheme is currently operational at the European Centre for Medium-Range Weather Forecasts integrated forecast system, and in the default configuration of EC-EARTH. The improved representation of the snowpack dynamics in HTESSEL resulted in improvements in the near surface temperature simulations of EC-EARTH. The new snow scheme development was complemented with the option of multi-layer version that showed its potential in modeling thick snowpacks. A key process was the snow thermal insulation that led to significant improvements of the surface water and energy balance components. Similar findings were observed when coupling the snow scheme to lake ice, where lake ice duration was significantly improved. An assessment on the snow cover sensitivity to horizontal resolution, parameterizations and atmospheric forcing within HTESSEL highlighted the role of the atmospheric forcing accuracy and snowpack parameterizations in detriment of horizontal resolution over flat regions. A set of experiments with and without free snow evolution was carried out with EC-EARTH to assess the impact of the interannual variability of snow cover on near surface and soil temperatures. It was found that snow cover interannual variability explained up to 60% of the total interannual variability of near surface temperature over snow covered regions. Although these findings are model dependent, the results showed consistency with previously published work. Furthermore, the detailed validation of the snow dynamics simulations in HTESSEL and EC-EARTH guarantees consistency of the results.

  10. Simulation of the Microwave Emission of Multi-layered Snowpacks Using the Dense Media Radiative Transfer Theory: the DMRT-ML Model

    NASA Technical Reports Server (NTRS)

    Picard, G.; Brucker, Ludovic; Roy, A.; Dupont, F.; Fily, M.; Royer, A.; Harlow, C.

    2013-01-01

    DMRT-ML is a physically based numerical model designed to compute the thermal microwave emission of a given snowpack. Its main application is the simulation of brightness temperatures at frequencies in the range 1-200 GHz similar to those acquired routinely by spacebased microwave radiometers. The model is based on the Dense Media Radiative Transfer (DMRT) theory for the computation of the snow scattering and extinction coefficients and on the Discrete Ordinate Method (DISORT) to numerically solve the radiative transfer equation. The snowpack is modeled as a stack of multiple horizontal snow layers and an optional underlying interface representing the soil or the bottom ice. The model handles both dry and wet snow conditions. Such a general design allows the model to account for a wide range of snow conditions. Hitherto, the model has been used to simulate the thermal emission of the deep firn on ice sheets, shallow snowpacks overlying soil in Arctic and Alpine regions, and overlying ice on the large icesheet margins and glaciers. DMRT-ML has thus been validated in three very different conditions: Antarctica, Barnes Ice Cap (Canada) and Canadian tundra. It has been recently used in conjunction with inverse methods to retrieve snow grain size from remote sensing data. The model is written in Fortran90 and available to the snow remote sensing community as an open-source software. A convenient user interface is provided in Python.

  11. Combined Study of Snow Depth Determination and Winter Leaf Area Index Retrieval by Unmanned Aerial Vehicle Photogrammetry

    NASA Astrophysics Data System (ADS)

    Lendzioch, Theodora; Langhammer, Jakub; Jenicek, Michal

    2017-04-01

    A rapid and robust approach using Unmanned Aerial Vehicle (UAV) digital photogrammetry was performed for evaluating snow accumulation over different small localities (e.g. disturbed forest and open area) and for indirect field measurements of Leaf Area Index (LAI) of coniferous forest within the Šumava National Park, Czech Republic. The approach was used to reveal impacts related to changes in forest and snowpack and to determine winter effective LAI for monitoring the impact of forest canopy metrics on snow accumulation. Due to the advancement of the technique, snow depth and volumetric changes of snow depth over these selected study areas were estimated at high spatial resolution (1 cm) by subtracting a snow-free digital elevation model (DEM) from a snow-covered DEM. Both, downward-looking UAV images and upward-looking digital hemispherical photography (DHP), and additional widely used LAI-2200 canopy analyser measurements were applied to determine the winter LAI, controlling interception and transmitting radiation. For the performance of downward-looking UAV images the snow background instead of the sky fraction was used. The reliability of UAV-based LAI retrieval was tested by taking an independent data set during the snow cover mapping campaigns. The results showed the potential of digital photogrammetry for snow depth mapping and LAI determination by UAV techniques. The average difference obtained between ground-based and UAV-based measurements of snow depth was 7.1 cm with higher values obtained by UAV. The SD of 22 cm for the open area seemed competitive with the typical precision of point measurements. In contrast, the average difference in disturbed forest area was 25 cm with lower values obtained by UAV and a SD of 36 cm, which is in agreement with other studies. The UAV-based LAI measurements revealed the lowest effective LAI values and the plant canopy analyser LAI-2200 the highest effective LAI values. The biggest bias of effective LAI was observed between LAI-2200 and UAV-based analyses. Since the LAI parameter is important for snowpack modelling, this method presents the potential of simplifying LAI retrieval and mapping of snow dynamics while reducing running costs and time.

  12. Effects of soil water and heat relationship under various snow cover during freezing-thawing periods in Songnen Plain, China.

    PubMed

    Fu, Qiang; Hou, Renjie; Li, Tianxiao; Jiang, Ruiqi; Yan, Peiru; Ma, Ziao; Zhou, Zhaoqiang

    2018-01-22

    In this study, the spatial variations of soil water and heat under bare land (BL), natural snow (NS), compacted snow (CS) and thick snow (TS) treatments were analyzed. The relationship curve between soil temperature and water content conforms to the exponential filtering model, by means of the functional form of the model, it was defined as soil water and heat relation function model. On this basis, soil water and heat function models of 10, 20, 40, 60, 100, and 140 cm were established. Finally, a spatial variation law of the relationship effect was described based on analysising of the differences between the predicted and measured results. During freezing period, the effects of external factors on soil were hindered by snow cover. As the snow increased, the accuracy of the function model gradually improved. During melting period, infiltration by snowmelt affected the relationship between the soil temperature and moisture. With the increasing of snow, the accuracy of the function models gradually decreased. The relationship effects of soil water and heat increased with increasing depth within the frozen zone. In contrast, below the frozen layer, the relationship of soil water and heat was weaker, and the function models were less accurate.

  13. A comparison of two approaches to modelling snow cover dynamics at the Polish Polar Station at Hornsund

    NASA Astrophysics Data System (ADS)

    Luks, B.; Osuch, M.; Romanowicz, R. J.

    2012-04-01

    We compare two approaches to modelling snow cover dynamics at the Polish Polar Station at Hornsund. In the first approach we apply physically-based Utah Energy Balance Snow Accumulation and Melt Model (UEB) (Tarboton et al., 1995; Tarboton and Luce, 1996). The model uses a lumped representation of the snowpack with two primary state variables: snow water equivalence and energy. Its main driving inputs are: air temperature, precipitation, wind speed, humidity and radiation (estimated from the diurnal temperature range). Those variables are used for physically-based calculations of radiative, sensible, latent and advective heat exchanges with a 3 hours time step. The second method is an application of a statistically efficient lumped parameter time series approach to modelling the dynamics of snow cover , based on daily meteorological measurements from the same area. A dynamic Stochastic Transfer Function model is developed that follows the Data Based Mechanistic approach, where a stochastic data-based identification of model structure and an estimation of its parameters are followed by a physical interpretation. We focus on the analysis of uncertainty of both model outputs. In the time series approach, the applied techniques also provide estimates of the modeling errors and the uncertainty of the model parameters. In the first, physically-based approach the applied UEB model is deterministic. It assumes that the observations are without errors and that the model structure perfectly describes the processes within the snowpack. To take into account the model and observation errors, we applied a version of the Generalized Likelihood Uncertainty Estimation technique (GLUE). This technique also provide estimates of the modelling errors and the uncertainty of the model parameters. The observed snowpack water equivalent values are compared with those simulated with 95% confidence bounds. This work was supported by National Science Centre of Poland (grant no. 7879/B/P01/2011/40). Tarboton, D. G., T. G. Chowdhury and T. H. Jackson, 1995. A Spatially Distributed Energy Balance Snowmelt Model. In K. A. Tonnessen, M. W. Williams and M. Tranter (Ed.), Proceedings of a Boulder Symposium, July 3-14, IAHS Publ. no. 228, pp. 141-155. Tarboton, D. G. and C. H. Luce, 1996. Utah Energy Balance Snow Accumulation and Melt Model (UEB). Computer model technical description and users guide, Utah Water Research Laboratory and USDA Forest Service Intermountain Research Station (http://www.engineering.usu.edu/dtarb/). 64 pp.

  14. Separating snow, clean and debris covered ice in the Upper Indus Basin, Hindukush-Karakoram-Himalayas, using Landsat images between 1998 and 2002

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Naz, Bibi S.; Bowling, Laura C.

    2015-02-01

    The Hindukush Karakoram Himalayan mountains contain some of the largest glaciers of the world, and supply melt water from perennial snow and glaciers to the Upper Indus Basin (UIB) upstream of Tarbela dam, which constitutes greater than 80% of the annual flows, and caters to the needs of millions of people in the Indus Basin. It is therefore important to study the response of perennial snow and glaciers in the UIB under changing climatic conditions, using improved hydrological modeling, glacier mass balance, and observations of glacier responses. However, the available glacier inventories and datasets only provide total perennial-snow and glacier cover areas, despite the fact that snow, clean ice and debris covered ice have different melt rates and densities. This distinction is vital for improved hydrological modeling and mass balance studies. This study, therefore, presents a separated perennial snow and glacier inventory (perennial snow-cover on steep slopes, perennial snow-covered ice, clean and debris covered ice) based on a semi-automated method that combines Landsat images and surface slope information in a supervised maximum likelihood classification to map distinct glacier zones, followed by manual post processing. The accuracy of the presented inventory falls well within the accuracy limits of available snow and glacier inventory products. For the entire UIB, estimates of perennial and/or seasonal snow on steep slopes, snow-covered ice, clean and debris covered ice zones are 7238 ± 724, 5226 ± 522, 4695 ± 469 and 2126 ± 212 km2 respectively. Thus total snow and glacier cover is 19,285 ± 1928 km2, out of which 12,075 ± 1207 km2 is glacier cover (excluding steep slope snow-cover). Equilibrium Line Altitude (ELA) estimates based on the Snow Line Elevation (SLE) in various watersheds range between 4800 and 5500 m, while the Accumulation Area Ratio (AAR) ranges between 7% and 80%. 0 °C isotherms during peak ablation months (July and August) range between ∼ 5500 and 6200 m in various watersheds. These outputs can be used as input to hydrological models, to estimate spatially-variable degree day factors for hydrological modeling, to separate glacier and snow-melt contributions in river flows, and to study glacier mass balance, and glacier responses to changing climate.

  15. A Distributed Snow Evolution Modeling System (SnowModel)

    NASA Astrophysics Data System (ADS)

    Liston, G. E.; Elder, K.

    2004-12-01

    A spatially distributed snow-evolution modeling system (SnowModel) has been specifically designed to be applicable over a wide range of snow landscapes, climates, and conditions. To reach this goal, SnowModel is composed of four sub-models: MicroMet defines the meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowMass simulates snow depth and water-equivalent evolution, and SnowTran-3D accounts for snow redistribution by wind. While other distributed snow models exist, SnowModel is unique in that it includes a well-tested blowing-snow sub-model (SnowTran-3D) for application in windy arctic, alpine, and prairie environments where snowdrifts are common. These environments comprise 68% of the seasonally snow-covered Northern Hemisphere land surface. SnowModel also accounts for snow processes occurring in forested environments (e.g., canopy interception related processes). SnowModel is designed to simulate snow-related physical processes occurring at spatial scales of 5-m and greater, and temporal scales of 1-hour and greater. These include: accumulation from precipitation; wind redistribution and sublimation; loading, unloading, and sublimation within forest canopies; snow-density evolution; and snowpack ripening and melt. To enhance its wide applicability, SnowModel includes the physical calculations required to simulate snow evolution within each of the global snow classes defined by Sturm et al. (1995), e.g., tundra, taiga, alpine, prairie, maritime, and ephemeral snow covers. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) are used as SnowModel simulation examples to highlight model strengths, weaknesses, and features in forested, semi-forested, alpine, and shrubland environments.

  16. Multi-RTM-based Radiance Assimilation to Improve Snow Estimates

    NASA Astrophysics Data System (ADS)

    Kwon, Y.; Zhao, L.; Hoar, T. J.; Yang, Z. L.; Toure, A. M.

    2015-12-01

    Data assimilation of microwave brightness temperature (TB) observations (i.e., radiance assimilation (RA)) has been proven to improve snowpack characterization at relatively small scales. However, large-scale applications of RA require a considerable amount of further efforts. Our objective in this study is to explore global-scale snow RA. In a RA scheme, a radiative transfer model (RTM) is an observational operator predicting TB; therefore, the quality of the assimilation results may strongly depend upon the RTM used as well as the land surface model (LSM). Several existing RTMs show different sensitivities to snowpack properties and thus they simulate significantly different TB. At the global scale, snow physical properties vary widely with local climate conditions. No single RTM has been shown to be able to accurately reproduce the observed TB for such a wide range of snow conditions. In this study, therefore, we hypothesize that snow estimates using a microwave RA scheme can be improved through the use of multiple RTMs (i.e., multi-RTM-based approaches). As a first step, here we use two snowpack RTMs, i.e., the Dense Media Radiative Transfer-Multi Layers model (DMRT-ML) and the Microwave Emission Model for Layered Snowpacks (MEMLS). The Community Land Model version 4 (CLM4) is used to simulate snow dynamics. The assimilation process is conducted by the Data Assimilation Research Testbed (DART), which is a community facility developed by the National Center for Atmospheric Research (NCAR) for ensemble-based data assimilation studies. In the RA experiments, the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) TB at 18.7 and 36.5 GHz vertical polarization channels are assimilated into the RA system using the ensemble adjustment Kalman filter. The results are evaluated using the Canadian Meteorological Centre (CMC) daily snow depth, the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction, and in-situ snowpack and river discharge observations.

  17. Integration, Validation, and Application of a PV Snow Coverage Model in SAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Janine M.; Ryberg, David Severin

    2017-08-01

    Due to the increasing deployment of PV systems in snowy climates, there is significant interest in a method capable of estimating PV losses resulting from snow coverage that has been verified for a variety of system designs and locations. Many independent snow coverage models have been developed over the last 15 years; however, there has been very little effort verifying these models beyond the system designs and locations on which they were based. Moreover, major PV modeling software products have not yet incorporated any of these models into their workflows. In response to this deficiency, we have integrated the methodologymore » of the snow model developed in the paper by Marion et al. (2013) into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work, we describe how the snow model is implemented in SAM and we discuss our demonstration of the model's effectiveness at reducing error in annual estimations for three PV arrays. Next, we use this new functionality in conjunction with a long term historical data set to estimate average snow losses across the United States for two typical PV system designs. The open availability of the snow loss estimation capability in SAM to the PV modeling community, coupled with our results of the nationwide study, will better equip the industry to accurately estimate PV energy production in areas affected by snowfall.« less

  18. Towards a well-founded and reproducible snow load map for Austria

    NASA Astrophysics Data System (ADS)

    Winkler, Michael; Schellander, Harald

    2017-04-01

    "EN 1991-1-3 Eurocode 1: Part 1-3: Snow Loads" provides standard for the determination of the snow load to be used for the structural design of buildings etc. Since 2006 national specifications for Austria define a snow load map with four "load zones", allowing the calculation of the characteristic ground snow load sk for locations below 1500 m asl. A quadratic regression between altitude and sk is used, as suggested by EN 1991-1-3. The actual snow load map is based on best meteorological practice, but still it is somewhat subjective and non-reproducible. Underlying snow data series often end in the 1980s; in the best case data until about 2005 is used. Moreover, extreme value statistics only rely on the Gumbel distribution and the way in which snow depths are converted to snow loads is generally unknown. This might be enough reasons to rethink the snow load standard for Austria, all the more since today's situation is different to what it was some 15 years ago: Firstly, Austria is rich of multi-decadal, high quality snow depth measurements. These data are not well represented in the actual standard. Secondly, semi-empirical snow models allow sufficiently precise calculations of snow water equivalents and snow loads from snow depth measurements without the need of other parameters like temperature etc. which often are not available at the snow measurement sites. With the help of these tools, modelling of daily snow load series from daily snow depth measurements is possible. Finally, extreme value statistics nowadays offers convincing methods to calculate snow depths and loads with a return period of 50 years, which is the base of sk, and allows reproducible spatial extrapolation. The project introduced here will investigate these issues in order to update the Austrian snow load standard by providing a well-founded and reproducible snow load map for Austria. Not least, we seek for contact with standards bodies of neighboring countries to find intersections as well as to avoid inconsistencies and duplications of effort.

  19. A Refined Methodology for Modelling Climate Change Impacts on Snow Sports Tourism

    NASA Astrophysics Data System (ADS)

    Demiroglu, O. Cenk; Turp, M. Tufan; Ozturk, Tugba; An, Nazan; Kurnaz, M. Levent

    2015-04-01

    Nature-based tourism is one of the most vulnerable sectors of the economy against climate change. Among its types, winter tourism stands out as the most critical due to the relatively high exposure and sensitivity of snow cover to the anthropogenic warming trends. In this study, we aim at improving previous works by Ozturk et al. where snow reliability of ski resorts have been examined through projections based on regional climate model outputs downscaled from various GCMs. Major improvements to these studies will be related to increasing the resolution, obtaining snow depth values from snow-water equivalent outputs, and hourly, instead of the daily, calculations of wet bulb temperatures. Daily snow depth values will be utilized for 100-days rule that looks for at least 100 days of snow cover at a minimum of 30 cm in order for a ski resort to be viable, whereas the wet bulb temperatures below -7 oC will indicate the snowmaking capacity. The domain of analysis will be the Balkans, the Middle East and the Caucasus. Therefore the spatial gap in the mostly Euro- and Amero-centric literature will also be improved. The domain will be modelled through RegCM 4.4.2 of the International Centre for Theoretical Physics basing its resolution on MPI-ESM-MR of Max Planck Institut für Meteorologie and the concentration scenario RCP 4.5 for a realistic tourism development future of 2020-2050.

  20. SnowCloud - a Framework to Predict Streamflow in Snowmelt-dominated Watersheds Using Cloud-based Computing

    NASA Astrophysics Data System (ADS)

    Sproles, E. A.; Crumley, R. L.; Nolin, A. W.; Mar, E.; Lopez-Moreno, J. J.

    2017-12-01

    Streamflow in snowy mountain regions is extraordinarily challenging to forecast, and prediction efforts are hampered by the lack of timely snow data—particularly in data sparse regions. SnowCloud is a prototype web-based framework that integrates remote sensing, cloud computing, interactive mapping tools, and a hydrologic model to offer a new paradigm for delivering key data to water resource managers. We tested the skill of SnowCloud to forecast monthly streamflow with one month lead time in three snow-dominated headwaters. These watersheds represent a range of precipitation/runoff schemes: the Río Elqui in northern Chile (200 mm/yr, entirely snowmelt); the John Day River, Oregon, USA (635 mm/yr, primarily snowmelt); and the Río Aragon in the northern Spain (850 mm/yr, snowmelt dominated). Model skill corresponded to snowpack contribution with Nash-Sutcliffe Efficiencies of 0.86, 0.52, and 0.21 respectively. SnowCloud does not require the user to possess advanced programming skills or proprietary software. We access NASA's MOD10A1 snow cover product to calculate the snow metrics globally using Google Earth Engine's geospatial analysis and cloud computing service. The analytics and forecast tools are provided through a web-based portal that requires only internet access and minimal training. To test the efficacy of SnowCloud we provided the tools and a series of tutorials in English and Spanish to water resource managers in Chile, Spain, and the United States. Participants assessed their user experience and provided feedback, and the results of our multi-cultural assessment are also presented. While our results focus on SnowCloud, they outline methods to develop cloud-based tools that function effectively across cultures and languages. Our approach also addresses the primary challenges of science-based computing; human resource limitations, infrastructure costs, and expensive proprietary software. These challenges are particularly problematic in developing countries.

  1. Estimation of snow emissivity via assimilation of multi-frequency passive microwave data into an ensemble-based data assimilation system

    NASA Astrophysics Data System (ADS)

    Farhadi, L.; Bateni, S. M.; Auligne, T.; Navari, M.

    2017-12-01

    Snow emissivity is a key parameter for the estimation of snow surface temperature, which is needed as an initial value in climate models and determination of the outgoing long-wave radiation. Moreover, snow emissivity is required for retrieval of atmospheric parameters (e.g., temperature and humidity profiles) from satellite measurements and satellite data assimilations in numerical weather prediction systems. Microwave emission models and remote sensing data cannot accurately estimate snow emissivity due to limitations attributed to each of them. Existing microwave emission models introduce significant uncertainties in their snow emissivity estimates. This is mainly due to shortcomings of the dense media theory for snow medium at high frequencies, and erroneous forcing variables. The well-known limitations of passive microwave data such as coarse spatial resolution, saturation in deep snowpack, and signal loss in wet snow are the major drawbacks of passive microwave retrieval algorithms for estimation of snow emissivity. A full exploitation of the information contained in the remote sensing data can be achieved by merging them with snow emission models within a data assimilation framework. Such an optimal merging can overcome the specific limitations of models and remote sensing data. An Ensemble Batch Smoother (EnBS) data assimilation framework was developed in this study to combine the synthetically generated passive microwave brightness temperatures at 1.4-, 18.7-, 36.5-, and 89-GHz frequencies with the MEMLS microwave emission model to reduce the uncertainty of the snow emissivity estimates. We have used the EnBS algorithm in the context of observing system simulation experiment (or synthetic experiment) at the local scale observation site (LSOS) of the NASA CLPX field campaign. Our findings showed that the developed methodology significantly improves the estimates of the snow emissivity. The simultaneous assimilation of passive microwave brightness temperatures at all frequencies (i.e., 1.4-, 18.7-, 36.5-, and 89-GHz) reduce the root-mean-square-error (RMSE) of snow emissivity at 1.4-, 18.7-, 36.5-, and 89-GHz (H-pol.) by 80%, 42%, 52%, 40%, respectively compared to the corresponding snow emissivity estimates from the open-loop model.

  2. A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow

    NASA Astrophysics Data System (ADS)

    Tuzet, Francois; Dumont, Marie; Lafaysse, Matthieu; Picard, Ghislain; Arnaud, Laurent; Voisin, Didier; Lejeune, Yves; Charrois, Luc; Nabat, Pierre; Morin, Samuel

    2017-11-01

    Light-absorbing impurities (LAIs) decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive and direct impact is to accelerate snowmelt. Enhanced energy absorption in snow also modifies snow metamorphism, which can indirectly drive further variations of snow albedo in the near-infrared part of the solar spectrum because of the evolution of the near-surface snow microstructure. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities' deposition and evolution within the snowpack and their direct and indirect impacts. Once deposited, the model computes impurities' mass evolution until snow melts out, accounting for scavenging by meltwater. Taking advantage of the recent inclusion of the spectral radiative transfer model TARTES (Two-stream Analytical Radiative TransfEr in Snow model) in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. The model was evaluated at the Col de Porte experimental site (French Alps) during the 2013-2014 snow season against in situ standard snow measurements and spectral albedo measurements. In situ meteorological measurements were used to drive the snowpack model, except for aerosol deposition fluxes. Black carbon (BC) and dust deposition fluxes used to drive the model were extracted from simulations of the atmospheric model ALADIN-Climate. The model simulates snowpack evolution reasonably, providing similar performances to our reference Crocus version in terms of snow depth, snow water equivalent (SWE), near-surface specific surface area (SSA) and shortwave albedo. Since the reference empirical albedo scheme was calibrated at the Col de Porte, improvements were not expected to be significant in this study. We show that the deposition fluxes from the ALADIN-Climate model provide a reasonable estimate of the amount of light-absorbing impurities deposited on the snowpack except for extreme deposition events which are greatly underestimated. For this particular season, the simulated melt-out date advances by 6 to 9 days due to the presence of light-absorbing impurities. The model makes it possible to apportion the relative importance of direct and indirect impacts of light-absorbing impurities on energy absorption in snow. For the snow season considered, the direct impact in the visible part of the solar spectrum accounts for 85 % of the total impact, while the indirect impact related to accelerated snow metamorphism decreasing near-surface specific surface area and thus decreasing near-infrared albedo accounts for 15 % of the total impact. Our model results demonstrate that these relative proportions vary with time during the season, with potentially significant impacts for snowmelt and avalanche prediction.

  3. Effects of snow grain non-sphericity on climate simulations: Sensitivity tests with the NorESM model

    NASA Astrophysics Data System (ADS)

    Räisänen, Petri; Makkonen, Risto; Kirkevåg, Alf

    2017-04-01

    Snow grains are non-spherical and generally irregular in shape. Still, in radiative transfer calculations, they are often treated as spheres. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM). In this work, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH) is compared with another (NONSPH) in which the snow shortwave single-scattering properties are based on a combination of non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (≈ 0.78 in the visible region) than in the spherical case (≈ 0.89). Therefore, for a given snow grain size, the use of non-spherical snow grains yields a higher snow broadband albedo, typically by ≈0.03. Consequently, considering the spherical case as the baseline, the use of non-spherical snow grains results in a negative radiative forcing (RF), with a global-mean top-of-the-model value of ≈ -0.22 W m-2. Although this global-mean RF is modest, it has a rather substantial impact on the climate simulated by NoRESM. In particular, the global annual-mean 2-m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further found that the difference between NONSPH and SPH could be largely "tuned away" by adjusting the snow grain size in the NONSPH experiment by ≈ 70%. The impact of snow grain shape on the radiative effect (RE) of absorbing aerosols in snow (black carbon and mineral dust) is also discussed. For an optically thick snowpack with a given snow grain effective size, the absorbing aerosol RE is smaller for non-spherical than for spherical snow grains. The reason for this is that due to the lower asymmetry parameter of the non-spherical snow grains, solar radiation does not penetrate as deep in snow as in the case of spherical snow grains. However, in a climate model simulation, the RE is sensitive to patterns of aerosol deposition and simulated snow cover. In fact, the global land-area mean absorbing aerosol RE is larger in the NONSPH than SPH experiment (0.193 vs. 0.168 W m-2), owing to later snowmelt in spring.

  4. Measuring and modelling the impact of the bark beetle forest disturbance on snow accumulation and ablation at a plot scale

    NASA Astrophysics Data System (ADS)

    Jenicek, Michal; Matejka, Ondrej; Hotovy, Ondrej

    2017-04-01

    The knowledge of water volume stored in the snowpack and its spatial distribution is important to predict the snowmelt runoff. The objective of this study was to quantify the role of different forest structures on the snowpack distribution at a plot scale during snow accumulation and snow ablation periods. Special interest was put in the role of the forest affected by the bark beetle (Ips typographus). We performed repeated detailed manual field survey at selected mountain plots with different canopy structure located at the same elevation and without influence of topography and wind on the snow distribution. The forest canopy structure was described using parameters calculated from hemispherical photographs, such as canopy closure, leaf area index (LAI) and potential irradiance. Additionally, we used shortwave radiation measured using CNR4 Net radiometers placed in plots with different canopy structure. Two snow accumulation and ablation models were set-up to simulate the snow water equivalent (SWE) in plots with different vegetation cover. First model was physically-based using the energy balance approach, second model was conceptual and it was based on the degree-day approach. Both models accounted for snow interception in different forest types using LAI as a parameter. The measured SWE in the plot with healthy forest was on average by 41% lower than in open area during snow accumulation period. The disturbed forest caused the SWE reduction by 22% compared to open area indicating increasing snow storage after forest defoliation. The snow ablation in healthy forest was by 32% slower compared to open area. On the contrary, the snow ablation in disturbed forest (due to the bark beetle) was on average only by 7% slower than in open area. The relative decrease in incoming solar radiation in the forest compared to open area was much bigger compared to the relative decrease in snowmelt rates. This indicated that the decrease in snowmelt rates cannot be explained only by the decrease in incoming solar radiation. Both models simulated sufficiently compared to observations with slightly accurate simulations in open area compared to healthy forest. This was expected, since both models were forced to fit with observations. However, the energy balance approach simulated snowmelt in the forest environment accurately since it accounts also for longwave radiation which might largely influence snowmelt in the forested plots. Both models showed faster snowmelt after forest defoliation which also resulted in earlier snow melt-out in the disturbed forest compared to the healthy coniferous forest.

  5. Snow drift: acoustic sensors for avalanche warning and research

    NASA Astrophysics Data System (ADS)

    Lehning, M.; Naaim, F.; Naaim, M.; Brabec, B.; Doorschot, J.; Durand, Y.; Guyomarc'h, G.; Michaux, J.-L.; Zimmerli, M.

    Based on wind tunnel measurements at the CSTB (Jules Verne) facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b), or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a). On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966) are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations or long-term monitoring. Optical sensors (Schmidt, 1977; Brown and Pomeroy, 1989; Sato and Kimura, 1993) have been very successful for research applications, but suffer from the fact that they give a single flux value at one specific height. In addition, they have not been used, to our knowledge, for long-term monitoring applications or at remote sites. New developments of acoustic sensors have taken place recently (Chritin et al., 1999; Font et al., 1998). Jaedicke (2001) gives examples of possible applications of acoustic snow drift sensors. He emphasizes the advantages of acoustic sensors for snow drift monitoring at remote locations, but could not present any evaluation of the accuracy of the measurements. We present a complete evaluation of the new acoustic sensors for snow drift and discuss their applications for research or avalanche warning. We compare the suitability of sensors for operational applications.

  6. Comparison of snow melt properties across multiple spatial scales and landscape units in interior sub-Arctic boreal Alaskan watersheds

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Cherry, J. E.; Hiemstra, C. A.; Bolton, W. R.

    2013-12-01

    Interior sub-Arctic Alaskan snow cover is rapidly changing and requires further study for correct parameterization in physically based models. This project undertook field studies during the 2013 snow melt season to capture snow depth, snow temperature profiles, and snow cover extent to compare with observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor at four different sites underlain by discontinuous permafrost. The 2013 melt season, which turned out to be the latest snow melt period on record, was monitored using manual field measurements (SWE, snow depth data collection), iButtons to record temperature of the snow pack, GoPro cameras to capture time lapse of the snow melt, and low level orthoimagery collected at ~1500 m using a Navion L17a plane mounted with a Nikon D3s camera. Sites were selected across a range of landscape conditions, including a north facing black spruce hill slope, a south facing birch forest, an open tundra site, and a high alpine meadow. Initial results from the adjacent north and south facing sites indicate a highly sensitive system where snow cover melts over just a few days, illustrating the importance of high resolution temporal data capture at these locations. Field observations, iButtons and GoPro cameras show that the MODIS data captures the melt conditions at the south and the north site with accuracy (2.5% and 6.5% snow cover fraction present on date of melt, respectively), but MODIS data for the north site is less variable around the melt period, owing to open conditions and sparse tree cover. However, due to the rapid melt rate trajectory, shifting the melt date estimate by a day results in a doubling of the snow cover fraction estimate observed by MODIS. This information can assist in approximating uncertainty associated with remote sensing data that is being used to populate hydrologic and snow models (the Sacramento Soil Moisture Accounting model, coupled with SNOW-17, and the Variable Infiltration Capacity hydrologic model) and provide greater understanding of error and resultant model sensitivities associated with regional observations of snow cover across the sub-Arctic boreal landscape.

  7. Technical snow production in skiing areas: conditions, practice, monitoring and modelling. A case study in Mayrhofen/Austria

    NASA Astrophysics Data System (ADS)

    Strasser, Ulrich; Hanzer, Florian; Marke, Thomas; Rothleitner, Michael

    2017-04-01

    The production of technical snow today is a self-evident feature of modern alpine skiing resort management. Millions of Euros are invested every year for the technical infrastructure and its operation to produce a homogeneous and continuing snow cover on the skiing slopes for the winter season in almost every larger destination in the Alps. In Austria, skiing tourism is a significant factor of the national economic structure. We present the framing conditions of technical snow production in the mid-size skiing resort of Mayrhofen (Zillertal Alps/Austria, 136 km slopes, elevation range 630 - 2.500 m a.s.l.). Production conditions are defined by the availability of water, the planned date for the season opening, and the climatic conditions in the weeks before. By means of an adapted snow production strategy an attempt is made to ecologically and economically optimize the use of water and energy resources. Monitoring of the snow cover is supported by a network of low-cost sensors and mobile snow depth recordings. Finally, technical snow production is simulated with the spatially distributed, physically based hydroclimatological model AMUNDSEN. The model explicitly considers individual snow guns and distributes the produced snow along the slopes. The amount of simulated snow produced by each device is a function of its type, of actual wet-bulb temperature at the location, of ski area infrastructure (in terms of water supply and pumping capacity), and of snow demand.

  8. Do we need a dynamic snow depth threshold when comparing hydrological models with remote sensing products in mountain catchments?

    NASA Astrophysics Data System (ADS)

    Engel, Michael; Bertoldi, Giacomo; Notarnicola, Claudia; Comiti, Francesco

    2017-04-01

    To assess the performance of simulated snow cover of hydrological models, it is common practice to compare simulated data with observed ones derived from satellite images such as MODIS. However, technical and methodological limitations such as data availability of MODIS products, its spatial resolution or difficulties in finding appropriate parameterisations of the model need to be solved previously. Another important assumption usually made is the threshold of minimum simulated snow depth, generally set to 10 mm of snow depth, to respect the MODIS detection thresholds for snow cover. But is such a constant threshold appropriate for complex alpine terrain? How important is the impact of different snow depth thresholds on the spatial and temporal distribution of the pixel-based overall accuracy (OA)? To address this aspect, we compared the snow covered area (SCA) simulated by the GEOtop 2.0 snow model to the daily composite 250 m EURAC MODIS SCA in the upper Saldur basin (61 km2, Eastern Italian Alps) during the period October 2011 - October 2013. Initially, we calibrated the snow model against snow depths and snow water equivalents at point scale, taken from measurements at different meteorological stations. We applied different snow depth thresholds (0 mm, 10 mm, 50 mm, and 100 mm) to obtain the simulated snow cover and assessed the changes in OA both in time (during the entire evaluation period, accumulation and melting season) and space (entire catchment and specific areas of topographic characteristics such as elevation, slope, aspect, landcover, and roughness). Results show remarkable spatial and temporal differences in OA with respect to different snow depth thresholds. Inaccuracies of simulated and observed SCA during the accumulation season September to November 2012 were located in areas with north-west aspect, slopes of 30° or little elevation differences at sub-pixel scale (-0.25 to 0 m). We obtained best agreements with MODIS SCA for a snow depth threshold of 100 mm, leading to increased OA (> 0.8) in 13‰ of the catchment area. SCA agreement in January 2012 and 2013 was slightly limited by MODIS sensor detection due to shading effects and low illumination in areas exposed north-west to north. On the contrary, during the melting season in April 2013 and after the September 2013 snowfall event seemed to depend more on parameterisation than on snow depth thresholds. In contrast, inaccuracies during the melting season March to June 2013 could hardly be attributed to topographic characteristics and different snow depth thresholds but rather on model parameterisation. We identified specific conditions (p.e. specific snowfall events in autumn 2012 and spring 2013) when either MODIS data or the hydrological model was less accurate, thus justifying the need for improvements of precision in the snow cover detection algorithms or in the model's process description. In consequence, our study observations could support future snow cover evaluations in mountain areas, where spatially and temporally dynamic snow depth thresholds are transferred from the catchment scale to the regional scale. Keywords: snow cover, snow modelling, MODIS, snow depth sensitivity, alpine catchment

  9. Putting humans in the loop: Using crowdsourced snow information to inform water management

    NASA Astrophysics Data System (ADS)

    Fedorov, Roman; Giuliani, Matteo; Castelletti, Andrea; Fraternali, Piero

    2016-04-01

    The unprecedented availability of user generated data on the Web due to the advent of online services, social networks, and crowdsourcing, is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatio-temporally dense, possibly contributing to our ability of making better decisions. In this work, we contribute a novel crowdsourcing procedure for computing virtual snow indexes from public web images, either produced by users or generated by touristic webcams, which is based on a complex architecture designed for automatically crawling content from multiple web data sources. The procedure retains only geo-tagged images containing a mountain skyline, identifies the visible peaks in each image using a public online digital terrain model, and classifies the mountain image pixels as snow or no-snow. This operation yields a snow mask per image, from which it is possible to extract time series of virtual snow indexes representing a proxy of the snow covered area. The value of the obtained virtual snow indexes is estimated in a real world water management problem. We consider the snow-dominated catchment of Lake Como, a regulated lake in Northern Italy, where snowmelt represents the most important contribution to seasonal lake storage, and we used the virtual snow indexes for informing the daily operation of the lake's dam. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance.

  10. Development and Evaluation of a Cloud-Gap-Filled MODIS Daily Snow-Cover Product

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Foster, James L.; Kumar, Sujay V.

    2010-01-01

    The utility of the Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover products is limited by cloud cover which causes gaps in the daily snow-cover map products. We describe a cloud-gap-filled (CGF) daily snowcover map using a simple algorithm to track cloud persistence, to account for the uncertainty created by the age of the snow observation. Developed from the 0.050 resolution climate-modeling grid daily snow-cover product, MOD10C1, each grid cell of the CGF map provides a cloud-persistence count (CPC) that tells whether the current or a prior day was used to make the snow decision. Percentage of grid cells "observable" is shown to increase dramatically when prior days are considered. The effectiveness of the CGF product is evaluated by conducting a suite of data assimilation experiments using the community Noah land surface model in the NASA Land Information System (LIS) framework. The Noah model forecasts of snow conditions, such as snow-water equivalent (SWE), are updated based on the observations of snow cover which are obtained either from the MOD1 OC1 standard product or the new CGF product. The assimilation integrations using the CGF maps provide domain averaged bias improvement of -11 %, whereas such improvement using the standard MOD1 OC1 maps is -3%. These improvements suggest that the Noah model underestimates SWE and snow depth fields, and that the assimilation integrations contribute to correcting this systematic error. We conclude that the gap-filling strategy is an effective approach for increasing cloud-free observations of snow cover.

  11. Potential and limitations of webcam images for snow cover monitoring in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan

    2017-04-01

    In Switzerland, several thousands of outdoor webcams are currently connected to the Internet. They deliver freely available images that can be used to analyze snow cover variability on a high spatio-temporal resolution. To make use of this big data source, we have implemented a webcam-based snow cover mapping procedure, which allows to almost automatically derive snow cover maps from such webcam images. As there is mostly no information about the webcams and its parameters available, our registration approach automatically resolves these parameters (camera orientation, principal point, field of view) by using an estimate of the webcams position, the mountain silhouette, and a high-resolution digital elevation model (DEM). Combined with an automatic snow classification and an image alignment using SIFT features, our procedure can be applied to arbitrary images to generate snow cover maps with a minimum of effort. Resulting snow cover maps have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or hidden from webcams' positions. Up to now, we processed images of about 290 webcams from our archive, and evaluated images of 20 webcams using manually selected ground control points (GCPs) to evaluate the mapping accuracy of our procedure. We present methodological limitations and ongoing improvements, show some applications of our snow cover maps, and demonstrate that webcams not only offer a great opportunity to complement satellite-derived snow retrieval under cloudy conditions, but also serve as a reference for improved validation of satellite-based approaches.

  12. Dust on Snow Processes and Impacts in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Skiles, M.; Painter, T. H.; Okin, G. S.

    2015-12-01

    In the Upper Colorado River Basin episodic deposition of mineral dust onto mountain snow cover frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau, and deposition rates have increased since the intensive settlement in the western USA in the mid 1880s. Dust deposition darkens the snow surface, and accelerates snowmelt through reduction of albedo and further indirect reduction of albedo by accelerating the growth of snow grain size. Observation and modeling of dust-on-snow processes began in 2005 at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, work which has shown that dust advances melt, shifts runoff timing and intensity, and reduces total water yield. The consistency of deposition and magnitude of impacts highlighted the need for more detailed understanding of the radiative impacts of dust-on-snow in this region. Here I will present results from a novel, high resolution, daily snow property dataset, collected at SBBSA over the 2013 ablation season, to facilitate physically based radiative transfer and snowmelt modeling. Measurements included snow albedo and vertical profiles of snow density, optical snow grain size, and dust/black carbon concentrations. This dataset was used to assess the relationship between episodic dust events, snow grain growth, and albedo over time, and observe the relation between deposited dust and melt water. Additionally, modeling results include the determination of the regionally specific dust-on-snow complex refractive index and radiative forcing partitioning between dust and black carbon, and dust and snow grain growth.

  13. Snow cover detection algorithm using dynamic time warping method and reflectances of MODIS solar spectrum channels

    NASA Astrophysics Data System (ADS)

    Lee, Kyeong-sang; Choi, Sungwon; Seo, Minji; Lee, Chang suk; Seong, Noh-hun; Han, Kyung-Soo

    2016-10-01

    Snow cover is biggest single component of cryosphere. The Snow is covering the ground in the Northern Hemisphere approximately 50% in winter season and is one of climate factors that affects Earth's energy budget because it has higher reflectance than other land types. Also, snow cover has an important role about hydrological modeling and water resource management. For this reason, accurate detection of snow cover acts as an essential element for regional water resource management. Snow cover detection using satellite-based data have some advantages such as obtaining wide spatial range data and time-series observations periodically. In the case of snow cover detection using satellite data, the discrimination of snow and cloud is very important. Typically, Misclassified cloud and snow pixel can lead directly to error factor for retrieval of satellite-based surface products. However, classification of snow and cloud is difficult because cloud and snow have similar optical characteristics and are composed of water or ice. But cloud and snow has different reflectance in 1.5 1.7 μm wavelength because cloud has lower grain size and moisture content than snow. So, cloud and snow shows difference reflectance patterns change according to wavelength. Therefore, in this study, we perform algorithm for classifying snow cover and cloud with satellite-based data using Dynamic Time Warping (DTW) method which is one of commonly used pattern analysis such as speech and fingerprint recognitions and reflectance spectral library of snow and cloud. Reflectance spectral library is constructed in advance using MOD21km (MODIS Level1 swath 1km) data that their reflectance is six channels including 3 (0.466μm), 4 (0.554μm), 1 (0.647μm), 2 (0.857μm), 26 (1.382μm) and 6 (1.629μm). We validate our result using MODIS RGB image and MOD10 L2 swath (MODIS swath snow cover product). And we use PA (Producer's Accuracy), UA (User's Accuracy) and CI (Comparison Index) as validation criteria. The result of our study detect as snow cover in the several regions which are did not detected as snow in MOD10 L2 and detected as snow cover in MODIS RGB image. The result of our study can improve accuracy of other surface product such as land surface reflectance and land surface emissivity. Also it can use input data of hydrological modeling.

  14. GPS interferometric reflectometry for ground-based remote sensing of snow depth and density

    NASA Astrophysics Data System (ADS)

    Nievinski, F. G.; Larson, K. M.; Gutmann, E. D.; Zavorotny, V.; Williams, M. W.

    2011-12-01

    GPS interferometric reflectometry (GPS-IR) is a method that exploits multipath for ground-based remote sensing in the surroundings of a GPS antenna. It operates on L-band, leveraging hundreds of conventional GPS sites existing in the U.S., with a typical footprint of 30-meter radius. Multipath is the coherent interference of line-of-sight and reflected signals; as the two go in and out of phase, the power recorded by a GPS interferometer goes through peaks and troughs that can be related to land surface characteristics, such as soil moisture and snow depth. GPS-IR has been demonstrated to be capable of retrieving snow depth during extended periods at various locations, as validated by comparisons with a continuously-operating terrestrial scanning laser, an airborne LIDAR campaign, manual stake surveys, and ultrasonic depth sensors. Here we explore the possibility of retrieving snow density, too. This will determine the feasibility and limitations of GPS-IR for monitoring of snow water equivalent (SWE). Data were collected at Niwot Ridge LTER in Colorado, at a 3,500-m altitude alpine tundra site. Niwot receives around 1,000 mm of precipitation per year and has a mean annual air temperature of -3.8°C. Snow density and temperature is measured in 10-cm vertical increments at snowpits dug approximately every week. A continuously-operating GPS system established in 2009 allows for measurement of the snowpack several times a day at multiple azimuths as satellites rise and set. The typical peak snow depth at the GPS site is 1.5 m, with a peak depth during the study period of 1.7 m in 2009/2010 and 2.5 m in 2010/2011; density ranged 200-600 kg/m3. We employ a forward/inverse model originally developed for snow depth and recently extended to account for layering to study both synthetic and real observations. We present comparisons of density estimates obtained using GPS-IR observations to snowpit field data, focusing initially on dry snow. In addition, we explore the sensitivity of the model to roughness, density, snow depth, and random noise. Synthetic observations derived from the forward model based on realistic snow profiles are utilized in the inverse model to quantify both the formal uncertainty and the expected error in parameter retrievals.

  15. Simulation of snow and soil water content as a basis for satellite retrievals

    USDA-ARS?s Scientific Manuscript database

    It is not yet possible to determine whether the snow has changed over time despite collection of passive microwave data for more than thirty years. Physically-based, but computationally simple snow and soil models have been coupled to form the basis of a data assimilation system for retrievals of sn...

  16. Integration, Validation, and Application of a PV Snow Coverage Model in SAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryberg, David; Freeman, Janine

    2015-09-01

    Due to the increasing deployment of PV systems in snowy climates, there is significant interest in a method capable of estimating PV losses resulting from snow coverage that has been verified for a wide variety of system designs and locations. A scattering of independent snow coverage models have been developed over the last 15 years; however, there has been very little effort spent on verifying these models beyond the system design and location on which they were based. Moreover, none of the major PV modeling software products have incorporated any of these models into their workflow. In response to thismore » deficiency, we have integrated the methodology of the snow model developed in the paper by Marion et al. [1] into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work we describe how the snow model is implemented in SAM and discuss our demonstration of the model's effectiveness at reducing error in annual estimations for two PV arrays. Following this, we use this new functionality in conjunction with a long term historical dataset to estimate average snow losses across the United States for a typical PV system design. The open availability of the snow loss estimation capability in SAM to the PV modeling community, coupled with our results of the nation-wide study, will better equip the industry to accurately estimate PV energy production in areas affected by snowfall.« less

  17. Retrieval of Dry Snow Parameters from Radiometric Data Using a Dense Medium Model and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Kim, Edward J.

    2005-01-01

    In this paper, GA-based techniques are used to invert the equations of an electromagnetic model based on Dense Medium Radiative Transfer Theory (DMRT) under the Quasi Crystalline Approximation with Coherent Potential to retrieve snow depth, mean grain size and fractional volume from microwave brightness temperatures. The technique is initially tested on both noisy and not-noisy simulated data. During this phase, different configurations of genetic algorithm parameters are considered to quantify how their change can affect the algorithm performance. A configuration of GA parameters is then selected and the algorithm is applied to experimental data acquired during the NASA Cold Land Process Experiment. Snow parameters retrieved with the GA-DMRT technique are then compared with snow parameters measured on field.

  18. Stochastic parameterization for light absorption by internally mixed BC/dust in snow grains for application to climate models

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Takano, Y.; He, C.; Yang, P.; Leung, L. R.; Gu, Y.; Lee, W. L.

    2014-06-01

    A stochastic approach has been developed to model the positions of BC (black carbon)/dust internally mixed with two snow grain types: hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine BC/dust single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), the action of internal mixing absorbs substantially more light than external mixing. The snow grain shape effect on absorption is relatively small, but its effect on asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions of BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2-5 µm) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 µm, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo substantially more than external mixing and that the snow grain shape plays a critical role in snow albedo calculations through its forward scattering strength. Also, multiple inclusion of BC/dust significantly reduces snow albedo as compared to an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization involving contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountain/snow topography.

  19. Stochastic Parameterization for Light Absorption by Internally Mixed BC/dust in Snow Grains for Application to Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liou, K. N.; Takano, Y.; He, Cenlin

    2014-06-27

    A stochastic approach to model the positions of BC/dust internally mixed with two snow-grain types has been developed, including hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine their single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), internal mixing absorbs more light than external mixing. The snow-grain shape effect on absorption is relatively small, but its effect on the asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions ofmore » BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2 – 5 um) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 um, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo more than external mixing and that the snow-grain shape plays a critical role in snow albedo calculations through the asymmetry factor. Also, snow albedo reduces more in the case of multiple inclusion of BC/dust compared to that of an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization containing contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountains/snow topography.« less

  20. Basic Snow Pressure Calculation

    NASA Astrophysics Data System (ADS)

    Hao, Shouzhi; Su, Jian

    2018-03-01

    As extreme weather rising in recent years, the damage of large steel structures caused by weather is frequent in China. How to consider the effect of wind and snow loads on the structure in structural design has become the focus of attention in engineering field. In this paper, based on the serious snow disasters in recent years and comparative analysis of some scholars, influence factors and the value of the snow load, the probability model are described.

  1. A distributed snow-evolution modeling system (SnowModel)

    Treesearch

    Glen E. Liston; Kelly Elder

    2006-01-01

    SnowModel is a spatially distributed snow-evolution modeling system designed for application in landscapes, climates, and conditions where snow occurs. It is an aggregation of four submodels: MicroMet defines meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowPack simulates snow depth and water-equivalent evolution, and SnowTran-3D...

  2. A multi-objective approach to improve SWAT model calibration in alpine catchments

    NASA Astrophysics Data System (ADS)

    Tuo, Ye; Marcolini, Giorgia; Disse, Markus; Chiogna, Gabriele

    2018-04-01

    Multi-objective hydrological model calibration can represent a valuable solution to reduce model equifinality and parameter uncertainty. The Soil and Water Assessment Tool (SWAT) model is widely applied to investigate water quality and water management issues in alpine catchments. However, the model calibration is generally based on discharge records only, and most of the previous studies have defined a unique set of snow parameters for an entire basin. Only a few studies have considered snow observations to validate model results or have taken into account the possible variability of snow parameters for different subbasins. This work presents and compares three possible calibration approaches. The first two procedures are single-objective calibration procedures, for which all parameters of the SWAT model were calibrated according to river discharge alone. Procedures I and II differ from each other by the assumption used to define snow parameters: The first approach assigned a unique set of snow parameters to the entire basin, whereas the second approach assigned different subbasin-specific sets of snow parameters to each subbasin. The third procedure is a multi-objective calibration, in which we considered snow water equivalent (SWE) information at two different spatial scales (i.e. subbasin and elevation band), in addition to discharge measurements. We tested these approaches in the Upper Adige river basin where a dense network of snow depth measurement stations is available. Only the set of parameters obtained with this multi-objective procedure provided an acceptable prediction of both river discharge and SWE. These findings offer the large community of SWAT users a strategy to improve SWAT modeling in alpine catchments.

  3. Numerical run-out modelling used for reassessment of existing permanent avalanche paths in the Krkonose Mts., Czechia

    NASA Astrophysics Data System (ADS)

    Blahut, Jan; Klimes, Jan; Balek, Jan; Taborik, Petr; Juras, Roman; Pavlasek, Jiri

    2015-04-01

    Run-out modelling of snow avalanches is being widely applied in high mountain areas worldwide. This study presents application of snow avalanche run-out calculation applied to mid-mountain ranges - the Krkonose, Jeseniky and Kralicky Sneznik Mountains. All mentioned mountain ranges lie in the northern part of Czechia, close to the border with Poland. Its highest peak reaches only 1602 m a.s.l. However, climatic conditions and regular snowpack presence are the reason why these mountain ranges experience considerable snow avalanche activity every year, sometimes resulting in injuries or even fatalities. Within the aim of an applied project dealing with snow avalanche hazard prediction a re-assessment of permanent snow avalanche paths has been performed based on extensive statistics covering period from 1961/62 till present. On each avalanche path different avalanches with different return periods were modelled using the RAMMS code. As a result, an up-to-date snow avalanche hazard map was prepared.

  4. On the retrieval of sea ice thickness and snow depth using concurrent laser altimetry and L-band remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhou, Lu; Xu, Shiming; Liu, Jiping; Wang, Bin

    2018-03-01

    The accurate knowledge of sea ice parameters, including sea ice thickness and snow depth over the sea ice cover, is key to both climate studies and data assimilation in operational forecasts. Large-scale active and passive remote sensing is the basis for the estimation of these parameters. In traditional altimetry or the retrieval of snow depth with passive microwave remote sensing, although the sea ice thickness and the snow depth are closely related, the retrieval of one parameter is usually carried out under assumptions over the other. For example, climatological snow depth data or as derived from reanalyses contain large or unconstrained uncertainty, which result in large uncertainty in the derived sea ice thickness and volume. In this study, we explore the potential of combined retrieval of both sea ice thickness and snow depth using the concurrent active altimetry and passive microwave remote sensing of the sea ice cover. Specifically, laser altimetry and L-band passive remote sensing data are combined using two forward models: the L-band radiation model and the isostatic relationship based on buoyancy model. Since the laser altimetry usually features much higher spatial resolution than L-band data from the Soil Moisture Ocean Salinity (SMOS) satellite, there is potentially covariability between the observed snow freeboard by altimetry and the retrieval target of snow depth on the spatial scale of altimetry samples. Statistically significant correlation is discovered based on high-resolution observations from Operation IceBridge (OIB), and with a nonlinear fitting the covariability is incorporated in the retrieval algorithm. By using fitting parameters derived from large-scale surveys, the retrievability is greatly improved compared with the retrieval that assumes flat snow cover (i.e., no covariability). Verifications with OIB data show good match between the observed and the retrieved parameters, including both sea ice thickness and snow depth. With detailed analysis, we show that the error of the retrieval mainly arises from the difference between the modeled and the observed (SMOS) L-band brightness temperature (TB). The narrow swath and the limited coverage of the sea ice cover by altimetry is the potential source of error associated with the modeling of L-band TB and retrieval. The proposed retrieval methodology can be applied to the basin-scale retrieval of sea ice thickness and snow depth, using concurrent passive remote sensing and active laser altimetry based on satellites such as ICESat-2 and WCOM.

  5. CUES - A Study Site for Measuring Snowpack Energy Balance in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Bair, Edward; Dozier, Jeff; Davis, Robert; Colee, Michael; Claffey, Keran

    2015-09-01

    Accurate measurement and modeling of the snowpack energy balance are critical to understanding the terrestrial water cycle. Most of the water resources in the western US come from snowmelt, yet statistical runoff models that rely on the historical record are becoming less reliable because of a changing climate. For physically based snow melt models that do not depend on past conditions, ground based measurements of the energy balance components are imperative for verification. For this purpose, the US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) and the University of California, Santa Barbara (UCSB) established the “CUES” snow study site (CRREL/UCSB Energy Site, http://www.snow.ucsb.edu/) at 2940 m elevation on Mammoth Mountain, California. We describe CUES, provide an overview of research, share our experience with scientific measurements, and encourage future collaborative research. Snow measurements began near the current CUES site for ski area operations in 1969. In the 1970s, researchers began taking scientific measurements. Today, CUES benefits from year round gondola access and a fiber optic internet connection. Data loggers and computers automatically record and store over 100 measurements from more than 50 instruments each minute. CUES is one of only five high altitude mountain sites in the Western US where a full suite of energy balance components are measured. In addition to measuring snow on the ground at multiple locations, extensive radiometric and meteorological measurements are recorded. Some of the more novel measurements include scans by an automated terrestrial LiDAR, passive and active microwave imaging of snow stratigraphy, microscopic imaging of snow grains, snowflake imaging with a multi-angle camera, fluxes from upward and downward looking radiometers, snow water equivalent from different types of snow pillows, snowmelt from lysimeters, and concentration of impurities in the snowpack. We give an example of terrain-corrected snow albedo measurements compared to several models and of sublimation measured from lysimeter and snow pillow melt. We conclude with some thoughts on the future of CUES.

  6. Assessing the hydropower potential of ungauged watersheds in Iceland using hydrological modeling and satellite retrieved snow cover images

    NASA Astrophysics Data System (ADS)

    Finger, David

    2015-04-01

    About 80% of the domestic energy production in Iceland comes from renewable energies. Hydropower accounts for about 20% this production, representing about 75% of the total electricity production in Iceland. In 2008 total electricity production from hydropower was about 12.5 TWh a-1, making Iceland a worldwide leader in hydropower production per capita. Furthermore, the total potential of hydroelectricity in Iceland is estimated to amount up to 220 TWh a-1. In this regard, hydrological modelling is an essential tool to adapt a sustainable management of water resources and estimate the potential of possible new sites for hydropower production. We used the conceptual lumped Hydrologiska Byråns Vattenbalansavdelning model (HBV) to estimate the potential of hydropower production in two remote areas in north-eastern Iceland (Leirdalshraun, a 274 km2 area above 595 m asl and Hafralónsá, a 946 km2 area above 235 m asl). The model parameters were determined by calibrating the model with discharge data from gauged sub catchments. Satellite snow cover images were used to constrain melt parameters of the model and assure adequate modelling of snow melt in the ungauged areas. This was particularly valuable to adequately estimate the contribution of snow melt, rainfall runoff and groundwater intrusion from glaciers outside the topographic boundaries of the selected watersheds. Runoff from the entire area potentially used for hydropower exploitation was estimated using the parameter sets of the gauged sub-catchments. Additionally, snow melt from the ungauged areas was validated with satellite based snow cover images, revealing a robust simulation of snow melt in the entire area. Based on the hydrological modelling the total amount of snow melt and rainfall runoff available in Leirdalshraun and Hafralónsá amounts up to 700 M m3 a-1 and 1000 M m3 a-1, respectively. These results reveal that the total hydropower potential of the two sites amounts up to 1.2 TWh a-1 hydroelectricity, accounting for about 10% of the current production in Iceland. These result are of eminent importance to embed sustainable and resilient based water management in discussions concerning future plans of national energy production.

  7. Projected climate change impacts on winter recreation in the ...

    EPA Pesticide Factsheets

    A physically-based water and energy balance model is used to simulate natural snow accumulation at 247 winter recreation locations across the continental United States. We combine this model with projections of snowmaking conditions to determine downhill skiing, cross-country skiing, and snowmobiling season lengths under baseline and future climates, using data from five climate models and two emissions scenarios. The present-day simulations from the snow model without snowmaking are validated with observations of snow-water-equivalent from snow monitoring sites. Projected season lengths are combined with baseline estimates of winter recreation activity to monetize impacts to the selected winter recreation activity categories for the years 2050 and 2090. Estimate the physical and economic impact of climate change on winter recreation in the contiguous U.S.

  8. A new parameterization of the post-fire snow albedo effect

    NASA Astrophysics Data System (ADS)

    Gleason, K. E.; Nolin, A. W.

    2013-12-01

    Mountain snowpack serves as an important natural reservoir of water: recharging aquifers, sustaining streams, and providing important ecosystem services. Reduced snowpacks and earlier snowmelt have been shown to affect fire size, frequency, and severity in the western United States. In turn, wildfire disturbance affects patterns of snow accumulation and ablation by reducing canopy interception, increasing turbulent fluxes, and modifying the surface radiation balance. Recent work shows that after a high severity forest fire, approximately 60% more solar radiation reaches the snow surface due to the reduction in canopy density. Also, significant amounts of pyrogenic carbon particles and larger burned woody debris (BWD) are shed from standing charred trees, which concentrate on the snowpack, darken its surface, and reduce snow albedo by 50% during ablation. Although the post-fire forest environment drives a substantial increase in net shortwave radiation at the snowpack surface, driving earlier and more rapid melt, hydrologic models do not explicitly incorporate forest fire disturbance effects to snowpack dynamics. The objective of this study was to parameterize the post-fire snow albedo effect due to BWD deposition on snow to better represent forest fire disturbance in modeling of snow-dominated hydrologic regimes. Based on empirical results from winter experiments, in-situ snow monitoring, and remote sensing data from a recent forest fire in the Oregon High Cascades, we characterized the post-fire snow albedo effect, and developed a simple parameterization of snowpack albedo decay in the post-fire forest environment. We modified the recession coefficient in the algorithm: α = α0 + K exp (-nr) where α = snowpack albedo, α0 = minimum snowpack albedo (≈0.4), K = constant (≈ 0.44), -n = number of days since last major snowfall, r = recession coefficient [Rohrer and Braun, 1994]. Our parameterization quantified BWD deposition and snow albedo decay rates and related these forest disturbance effects to radiative heating and snow melt rates. We validated our parameterization of the post-fire snow albedo effect at the plot scale using a physically-based, spatially-distributed snow accumulation and melt model, and in-situ eddy covariance and snow monitoring data. This research quantified wildfire impacts to snow dynamics in the Oregon High Cascades, and provided a new parameterization of post-fire drivers to changes in high elevation winter water storage.

  9. Obtaining sub-daily new snow density from automated measurements in high mountain regions

    NASA Astrophysics Data System (ADS)

    Helfricht, Kay; Hartl, Lea; Koch, Roland; Marty, Christoph; Olefs, Marc

    2018-05-01

    The density of new snow is operationally monitored by meteorological or hydrological services at daily time intervals, or occasionally measured in local field studies. However, meteorological conditions and thus settling of the freshly deposited snow rapidly alter the new snow density until measurement. Physically based snow models and nowcasting applications make use of hourly weather data to determine the water equivalent of the snowfall and snow depth. In previous studies, a number of empirical parameterizations were developed to approximate the new snow density by meteorological parameters. These parameterizations are largely based on new snow measurements derived from local in situ measurements. In this study a data set of automated snow measurements at four stations located in the European Alps is analysed for several winter seasons. Hourly new snow densities are calculated from the height of new snow and the water equivalent of snowfall. Considering the settling of the new snow and the old snowpack, the average hourly new snow density is 68 kg m-3, with a standard deviation of 9 kg m-3. Seven existing parameterizations for estimating new snow densities were tested against these data, and most calculations overestimate the hourly automated measurements. Two of the tested parameterizations were capable of simulating low new snow densities observed at sheltered inner-alpine stations. The observed variability in new snow density from the automated measurements could not be described with satisfactory statistical significance by any of the investigated parameterizations. Applying simple linear regressions between new snow density and wet bulb temperature based on the measurements' data resulted in significant relationships (r2 > 0.5 and p ≤ 0.05) for single periods at individual stations only. Higher new snow density was calculated for the highest elevated and most wind-exposed station location. Whereas snow measurements using ultrasonic devices and snow pillows are appropriate for calculating station mean new snow densities, we recommend instruments with higher accuracy e.g. optical devices for more reliable investigations of the variability of new snow densities at sub-daily intervals.

  10. Use of In-Situ and Remotely Sensed Snow Observations for the National Water Model in Both an Analysis and Calibration Framework.

    NASA Astrophysics Data System (ADS)

    Karsten, L. R.; Gochis, D.; Dugger, A. L.; McCreight, J. L.; Barlage, M. J.; Fall, G. M.; Olheiser, C.

    2017-12-01

    Since version 1.0 of the National Water Model (NWM) has gone operational in Summer 2016, several upgrades to the model have occurred to improve hydrologic prediction for the continental United States. Version 1.1 of the NWM (Spring 2017) includes upgrades to parameter datasets impacting land surface hydrologic processes. These parameter datasets were upgraded using an automated calibration workflow that utilizes the Dynamic Data Search (DDS) algorithm to adjust parameter values using observed streamflow. As such, these upgrades to parameter values took advantage of various observations collected for snow analysis. In particular, in-situ SNOTEL observations in the Western US, volunteer in-situ observations across the entire US, gamma-derived snow water equivalent (SWE) observations courtesy of the NWS NOAA Corps program, gridded snow depth and SWE products from the Jet Propulsion Laboratory (JPL) Airborne Snow Observatory (ASO), gridded remotely sensed satellite-based snow products (MODIS,AMSR2,VIIRS,ATMS), and gridded SWE from the NWS Snow Data Assimilation System (SNODAS). This study explores the use of these observations to quantify NWM error and improvements from version 1.0 to version 1.1, along with subsequent work since then. In addition, this study explores the use of snow observations for use within the automated calibration workflow. Gridded parameter fields impacting the accumulation and ablation of snow states in the NWM were adjusted and calibrated using gridded remotely sensed snow states, SNODAS products, and in-situ snow observations. This calibration adjustment took place over various ecological regions in snow-dominated parts of the US for a retrospective period of time to capture a variety of climatological conditions. Specifically, the latest calibrated parameters impacting streamflow were held constant and only parameters impacting snow physics were tuned using snow observations and analysis. The adjusted parameter datasets were then used to force the model over an independent period for analysis against both snow and streamflow observations to see if improvements took place. The goal of this work is to further improve snow physics in the NWM, along with identifying areas where further work will take place in the future, such as data assimilation or further forcing improvements.

  11. The application of depletion curves for parameterization of subgrid variability of snow

    Treesearch

    C. H. Luce; D. G. Tarboton

    2004-01-01

    Parameterization of subgrid-scale variability in snow accumulation and melt is important for improvements in distributed snowmelt modelling. We have taken the approach of using depletion curves that relate fractional snowcovered area to element-average snow water equivalent to parameterize the effect of snowpack heterogeneity within a physically based mass and energy...

  12. Numerical Modeling of Coupled Water Flow and Heat Transport in Soil and Snow

    NASA Astrophysics Data System (ADS)

    Kelleners, T.

    2015-12-01

    A numerical model is developed to calculate coupled water flow and heat transport in seasonally frozen soil and snow. Both liquid water flow and water vapor flow are included. The effect of dissolved ions on soil water freezing point depression is included by combining an expression for osmotic head with the Clapeyron equation and the van Genuchten soil water retention function. The coupled water flow and heat transport equations are solved using the Thomas algorithm and Picard iteration. Ice pressure is always assumed zero and frost heave is neglected. The new model is tested using data from a high-elevation rangeland soil that is subject to significant soil freezing and a mountainous forest soil that is snow-covered for about 8 months of the year. Soil hydraulic parameters are mostly based on measurements and only vegetation parameters are fine-tuned to match measured and calculated soil water content, soil & snow temperature, and snow height. Modeling statistics for both systems show good performance for temperature, intermediate performance for snow height, and relatively low performance for soil water content, in accordance with earlier results with an older version of the model.

  13. Blowing snow detection from ground-based ceilometers: application to East Antarctica

    NASA Astrophysics Data System (ADS)

    Gossart, Alexandra; Souverijns, Niels; Gorodetskaya, Irina V.; Lhermitte, Stef; Lenaerts, Jan T. M.; Schween, Jan H.; Mangold, Alexander; Laffineur, Quentin; van Lipzig, Nicole P. M.

    2017-12-01

    Blowing snow impacts Antarctic ice sheet surface mass balance by snow redistribution and sublimation. However, numerical models poorly represent blowing snow processes, while direct observations are limited in space and time. Satellite retrieval of blowing snow is hindered by clouds and only the strongest events are considered. Here, we develop a blowing snow detection (BSD) algorithm for ground-based remote-sensing ceilometers in polar regions and apply it to ceilometers at Neumayer III and Princess Elisabeth (PE) stations, East Antarctica. The algorithm is able to detect (heavy) blowing snow layers reaching 30 m height. Results show that 78 % of the detected events are in agreement with visual observations at Neumayer III station. The BSD algorithm detects heavy blowing snow 36 % of the time at Neumayer (2011-2015) and 13 % at PE station (2010-2016). Blowing snow occurrence peaks during the austral winter and shows around 5 % interannual variability. The BSD algorithm is capable of detecting blowing snow both lifted from the ground and occurring during precipitation, which is an added value since results indicate that 92 % of the blowing snow is during synoptic events, often combined with precipitation. Analysis of atmospheric meteorological variables shows that blowing snow occurrence strongly depends on fresh snow availability in addition to wind speed. This finding challenges the commonly used parametrizations, where the threshold for snow particles to be lifted is a function of wind speed only. Blowing snow occurs predominantly during storms and overcast conditions, shortly after precipitation events, and can reach up to 1300 m a. g. l. in the case of heavy mixed events (precipitation and blowing snow together). These results suggest that synoptic conditions play an important role in generating blowing snow events and that fresh snow availability should be considered in determining the blowing snow onset.

  14. Topography and vegetation as predictors of snow water equivalent across the alpine treeline ecotone at Lee Ridge, Glacier National Park, Montana, U.S.A.

    USGS Publications Warehouse

    Geddes, C.A.; Brown, D.G.; Fagre, D.B.

    2005-01-01

    We derived and implemented two spatial models of May snow water equivalent (SWE) at Lee Ridge in Glacier National Park, Montana. We used the models to test the hypothesis that vegetation structure is a control on snow redistribution at the alpine treeline ecotone (ATE). The statistical models were derived using stepwise and "best" subsets regression techniques. The first model was derived from field measurements of SWE, topography, and vegetation taken at 27 sample points. The second model was derived using GIS-based measures of topography and vegetation. Both the field- (R² = 0.93) and GIS-based models (R² = 0.69) of May SWE included the following variables: site type (based on vegetation), elevation, maximum slope, and general slope aspect. Site type was identified as the most important predictor of SWE in both models, accounting for 74.0% and 29.5% of the variation, respectively. The GIS-based model was applied to create a predictive map of SWE across Lee Ridge, predicting little snow accumulation on the top of the ridge where vegetation is scarce. The GIS model failed in large depressions, including ephemeral stream channels. The models supported the hypothesis that upright vegetation has a positive effect on accumulation of SWE above and beyond the effects of topography. Vegetation, therefore, creates a positive feedback in which it modifies its, environment and could affect the ability of additional vegetation to become established.

  15. Impacts of absorbing aerosol deposition on snowpack and hydrologic cycle in the Rocky Mountain region based on variable-resolution CESM (VR-CESM) simulations

    NASA Astrophysics Data System (ADS)

    Wu, Chenglai; Liu, Xiaohong; Lin, Zhaohui; Rahimi-Esfarjani, Stefan R.; Lu, Zheng

    2018-01-01

    The deposition of light-absorbing aerosols (LAAs), such as black carbon (BC) and dust, onto snow cover has been suggested to reduce the snow albedo and modulate the snowpack and consequent hydrologic cycle. In this study we use the variable-resolution Community Earth System Model (VR-CESM) with a regionally refined high-resolution (0.125°) grid to quantify the impacts of LAAs in snow in the Rocky Mountain region during the period 1981-2005. We first evaluate the model simulation of LAA concentrations both near the surface and in snow and then investigate the snowpack and runoff changes induced by LAAs in snow. The model simulates similar magnitudes of near-surface atmospheric dust concentrations as observations in the Rocky Mountain region. Although the model underestimates near-surface atmospheric BC concentrations, the model overestimates BC-in-snow concentrations by 35 % on average. The regional mean surface radiative effect (SRE) due to LAAs in snow reaches up to 0.6-1.7 W m-2 in spring, and dust contributes to about 21-42 % of total SRE. Due to positive snow albedo feedbacks induced by the LAA SRE, snow water equivalent is reduced by 2-50 mm and snow cover fraction by 5-20 % in the two regions around the mountains (eastern Snake River Plain and southwestern Wyoming), corresponding to an increase in surface air temperature by 0.9-1.1 °C. During the snow melting period, LAAs accelerate the hydrologic cycle with monthly runoff increases of 0.15-1.00 mm day-1 in April-May and reductions of 0.04-0.18 mm day-1 in June-July in the mountainous regions. Of all the mountainous regions, the Southern Rockies experience the largest reduction of total runoff by 15 % during the later stage of snowmelt (i.e., June and July). Compared to previous studies based on field observations, our estimation of dust-induced SRE is generally 1 order of magnitude smaller in the Southern Rockies, which is ascribed to the omission of larger dust particles (with the diameter > 10 µm) in the model. This calls for the inclusion of larger dust particles in the model to reduce the discrepancies. Overall these results highlight the potentially important role of LAA interactions with snowpack and the subsequent impacts on the hydrologic cycles across the Rocky Mountains.

  16. Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models

    NASA Astrophysics Data System (ADS)

    Terzago, Silvia; von Hardenberg, Jost; Palazzi, Elisa; Provenzale, Antonello

    2017-07-01

    The estimate of the current and future conditions of snow resources in mountain areas would require reliable, kilometre-resolution, regional-observation-based gridded data sets and climate models capable of properly representing snow processes and snow-climate interactions. At the moment, the development of such tools is hampered by the sparseness of station-based reference observations. In past decades passive microwave remote sensing and reanalysis products have mainly been used to infer information on the snow water equivalent distribution. However, the investigation has usually been limited to flat terrains as the reliability of these products in mountain areas is poorly characterized.This work considers the available snow water equivalent data sets from remote sensing and from reanalyses for the greater Alpine region (GAR), and explores their ability to provide a coherent view of the snow water equivalent distribution and climatology in this area. Further we analyse the simulations from the latest-generation regional and global climate models (RCMs, GCMs), participating in the Coordinated Regional Climate Downscaling Experiment over the European domain (EURO-CORDEX) and in the Fifth Coupled Model Intercomparison Project (CMIP5) respectively. We evaluate their reliability in reproducing the main drivers of snow processes - near-surface air temperature and precipitation - against the observational data set EOBS, and compare the snow water equivalent climatology with the remote sensing and reanalysis data sets previously considered. We critically discuss the model limitations in the historical period and we explore their potential in providing reliable future projections.The results of the analysis show that the time-averaged spatial distribution of snow water equivalent and the amplitude of its annual cycle are reproduced quite differently by the different remote sensing and reanalysis data sets, which in fact exhibit a large spread around the ensemble mean. We find that GCMs at spatial resolutions equal to or finer than 1.25° longitude are in closer agreement with the ensemble mean of satellite and reanalysis products in terms of root mean square error and standard deviation than lower-resolution GCMs. The set of regional climate models from the EURO-CORDEX ensemble provides estimates of snow water equivalent at 0.11° resolution that are locally much larger than those indicated by the gridded data sets, and only in a few cases are these differences smoothed out when snow water equivalent is spatially averaged over the entire Alpine domain. ERA-Interim-driven RCM simulations show an annual snow cycle that is comparable in amplitude to those provided by the reference data sets, while GCM-driven RCMs present a large positive bias. RCMs and higher-resolution GCM simulations are used to provide an estimate of the snow reduction expected by the mid-21st century (RCP 8.5 scenario) compared to the historical climatology, with the main purpose of highlighting the limits of our current knowledge and the need for developing more reliable snow simulations.

  17. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA

    USGS Publications Warehouse

    Clow, David W.; Nanus, Leora; Verdin, Kristine L.; Schmidt, Jeffrey

    2012-01-01

    The National Weather Service's Snow Data Assimilation (SNODAS) program provides daily, gridded estimates of snow depth, snow water equivalent (SWE), and related snow parameters at a 1-km2 resolution for the conterminous USA. In this study, SNODAS snow depth and SWE estimates were compared with independent, ground-based snow survey data in the Colorado Rocky Mountains to assess SNODAS accuracy at the 1-km2 scale. Accuracy also was evaluated at the basin scale by comparing SNODAS model output to snowmelt runoff in 31 headwater basins with US Geological Survey stream gauges. Results from the snow surveys indicated that SNODAS performed well in forested areas, explaining 72% of the variance in snow depths and 77% of the variance in SWE. However, SNODAS showed poor agreement with measurements in alpine areas, explaining 16% of the variance in snow depth and 30% of the variance in SWE. At the basin scale, snowmelt runoff was moderately correlated (R2 = 0.52) with SNODAS model estimates. A simple method for adjusting SNODAS SWE estimates in alpine areas was developed that uses relations between prevailing wind direction, terrain, and vegetation to account for wind redistribution of snow in alpine terrain. The adjustments substantially improved agreement between measurements and SNODAS estimates, with the R2 of measured SWE values against SNODAS SWE estimates increasing from 0.42 to 0.63 and the root mean square error decreasing from 12 to 6 cm. Results from this study indicate that SNODAS can provide reliable data for input to moderate-scale to large-scale hydrologic models, which are essential for creating accurate runoff forecasts. Refinement of SNODAS SWE estimates for alpine areas to account for wind redistribution of snow could further improve model performance. Published 2011. This article is a US Government work and is in the public domain in the USA.

  18. Blowing Snow Sublimation and Transport over Antarctica from 11 Years of CALIPSO Observations

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Kayetha, Vinay; Yang, Yuekui; Pauly, Rebecca

    2017-01-01

    Blowing snow processes commonly occur over the earth's ice sheets when the 10 mile wind speed exceeds a threshold value. These processes play a key role in the sublimation and redistribution of snow thereby influencing the surface mass balance. Prior field studies and modeling results have shown the importance of blowing snow sublimation and transport on the surface mass budget and hydrological cycle of high-latitude regions. For the first time, we present continent-wide estimates of blowing snow sublimation and transport over Antarctica for the period 2006-2016 based on direct observation of blowing snow events. We use an improved version of the blowing snow detection algorithm developed for previous work that uses atmospheric backscatter measurements obtained from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. The blowing snow events identified by CALIPSO and meteorological fields from MERRA-2 are used to compute the blowing snow sublimation and transport rates. Our results show that maximum sublimation occurs along and slightly inland of the coastline. This is contrary to the observed maximum blowing snow frequency which occurs over the interior. The associated temperature and moisture reanalysis fields likely contribute to the spatial distribution of the maximum sublimation values. However, the spatial pattern of the sublimation rate over Antarctica is consistent with modeling studies and precipitation estimates. Overall, our results show that the 2006-2016 Antarctica average integrated blowing snow sublimation is about 393 +/- 196 Gt yr(exp -1), which is considerably larger than previous model-derived estimates. We find maximum blowing snow transport amount of 5 Mt km-1 yr(exp -1) over parts of East Antarctica and estimate that the average snow transport from continent to ocean is about 3.7 Gt yr(exp -1). These continent-wide estimates are the first of their kind and can be used to help model and constrain the surface mass budget over Antarctica.

  19. Implementation of a physically based water percolation routine in the Crocus/SURFEX (V7.3) snowpack model

    NASA Astrophysics Data System (ADS)

    D'Amboise, Christopher J. L.; Müller, Karsten; Oxarango, Laurent; Morin, Samuel; Schuler, Thomas V.

    2017-09-01

    We present a new water percolation routine added to the one-dimensional snowpack model Crocus as an alternative to the empirical bucket routine. This routine solves the Richards equation, which describes flow of water through unsaturated porous snow governed by capillary suction, gravity and hydraulic conductivity of the snow layers. We tested the Richards routine on two data sets, one recorded from an automatic weather station over the winter of 2013-2014 at Filefjell, Norway, and the other an idealized synthetic data set. Model results using the Richards routine generally lead to higher water contents in the snow layers. Snow layers often reached a point at which the ice crystals' surface area is completely covered by a thin film of water (the transition between pendular and funicular regimes), at which feedback from the snow metamorphism and compaction routines are expected to be nonlinear. With the synthetic simulation 18 % of snow layers obtained a saturation of > 10 % and 0.57 % of layers reached saturation of > 15 %. The Richards routine had a maximum liquid water content of 173.6 kg m-3 whereas the bucket routine had a maximum of 42.1 kg m-3. We found that wet-snow processes, such as wet-snow metamorphism and wet-snow compaction rates, are not accurately represented at higher water contents. These routines feed back on the Richards routines, which rely heavily on grain size and snow density. The parameter sets for the water retention curve and hydraulic conductivity of snow layers, which are used in the Richards routine, do not represent all the snow types that can be found in a natural snowpack. We show that the new routine has been implemented in the Crocus model, but due to feedback amplification and parameter uncertainties, meaningful applicability is limited. Updating or adapting other routines in Crocus, specifically the snow compaction routine and the grain metamorphism routine, is needed before Crocus can accurately simulate the snowpack using the Richards routine.

  20. Inferential consequences of modeling rather than measuring snow accumulation in studies of animal ecology

    USGS Publications Warehouse

    Cross, Paul C.; Klaver, Robert W.; Brennan, Angela; Creel, Scott; Beckmann, Jon P.; Higgs, Megan D.; Scurlock, Brandon M.

    2013-01-01

    Abstract. It is increasingly common for studies of animal ecology to use model-based predictions of environmental variables as explanatory or predictor variables, even though model prediction uncertainty is typically unknown. To demonstrate the potential for misleading inferences when model predictions with error are used in place of direct measurements, we compared snow water equivalent (SWE) and snow depth as predicted by the Snow Data Assimilation System (SNODAS) to field measurements of SWE and snow depth. We examined locations on elk (Cervus canadensis) winter ranges in western Wyoming, because modeled data such as SNODAS output are often used for inferences on elk ecology. Overall, SNODAS predictions tended to overestimate field measurements, prediction uncertainty was high, and the difference between SNODAS predictions and field measurements was greater in snow shadows for both snow variables compared to non-snow shadow areas. We used a simple simulation of snow effects on the probability of an elk being killed by a predator to show that, if SNODAS prediction uncertainty was ignored, we might have mistakenly concluded that SWE was not an important factor in where elk were killed in predatory attacks during the winter. In this simulation, we were interested in the effects of snow at finer scales (2) than the resolution of SNODAS. If bias were to decrease when SNODAS predictions are averaged over coarser scales, SNODAS would be applicable to population-level ecology studies. In our study, however, averaging predictions over moderate to broad spatial scales (9–2200 km2) did not reduce the differences between SNODAS predictions and field measurements. This study highlights the need to carefully evaluate two issues when using model output as an explanatory variable in subsequent analysis: (1) the model’s resolution relative to the scale of the ecological question of interest and (2) the implications of prediction uncertainty on inferences when using model predictions as explanatory or predictor variables.

  1. Soil erosion by snow gliding - a first quantification attempt in a sub-alpine area, Switzerland

    NASA Astrophysics Data System (ADS)

    Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Walter, A.; Alewell, C.

    2014-03-01

    Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as soil erosion agent for four different land use/land cover types in a sub-alpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide deposits, the fallout radionuclide 137Cs, and modelling with the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model is suitable to estimate soil loss by water erosion, while the 137Cs method integrates soil loss due to all erosion agents involved. Thus, we hypothesise that the soil erosion rates determined with the 137Cs method are higher and that the observed discrepancy between the soil erosion rate of RUSLE and the 137Cs method is related to snow gliding and sediment concentrations in the snow glide deposits. Cumulative snow glide distance was measured for the sites in the winter 2009/10 and modelled for the surrounding area with the Spatial Snow Glide Model (SSGM). Measured snow glide distance ranged from 2 to 189 cm, with lower values at the north facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is important information with respect to conservation planning and expected land use changes in the Alps. Our hypothesis was confirmed: the difference of RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2= 0.64; p < 0.005) and snow sediment yields (R2 = 0.39; p = 0.13). A high difference (lower proportion of water erosion compared to total net erosion) was observed for high snow glide rates and vice versa. The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding is a key process impacting soil erosion pattern and magnitude in sub-alpine areas with similar topographic and climatic conditions.

  2. Dependence of Snowmelt Simulations on Scaling of the Forcing Processes (Invited)

    NASA Astrophysics Data System (ADS)

    Winstral, A. H.; Marks, D. G.; Gurney, R. J.

    2009-12-01

    The spatial organization and scaling relationships of snow distribution in mountain environs is ultimately dependent on the controlling processes. These processes include interactions between weather, topography, vegetation, snow state, and seasonally-dependent radiation inputs. In large scale snow modeling it is vital to know these dependencies to obtain accurate predictions while reducing computational costs. This study examined the scaling characteristics of the forcing processes and the dependency of distributed snowmelt simulations to their scaling. A base model simulation characterized these processes with 10m resolution over a 14.0 km2 basin with an elevation range of 1474 - 2244 masl. Each of the major processes affecting snow accumulation and melt - precipitation, wind speed, solar radiation, thermal radiation, temperature, and vapor pressure - were independently degraded to 1 km resolution. Seasonal and event-specific results were analyzed. Results indicated that scale effects on melt vary by process and weather conditions. The dependence of melt simulations on the scaling of solar radiation fluxes also had a seasonal component. These process-based scaling characteristics should remain static through time as they are based on physical considerations. As such, these results not only provide guidance for current modeling efforts, but are also well suited to predicting how potential climate changes will affect the heterogeneity of mountain snow distributions.

  3. Towards Year-round Estimation of Terrestrial Water Storage over Snow-Covered Terrain via Multi-sensor Assimilation of GRACE/GRACE-FO and AMSR-E/AMSR-2.

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xue, Y.; Forman, B. A.; Girotto, M.; Reichle, R. H.

    2017-12-01

    The Gravity and Recovery Climate Experiment (GRACE) has revolutionized large-scale remote sensing of the Earth's terrestrial hydrologic cycle and has provided an unprecedented observational constraint for global land surface models. However, the coarse-scale (in space and time), vertically-integrated measure of terrestrial water storage (TWS) limits GRACE's applicability to smaller scale hydrologic applications. In order to enhance model-based estimates of TWS while effectively adding resolution (in space and time) to the coarse-scale TWS retrievals, a multi-variate, multi-sensor data assimilation framework is presented here that simultaneously assimilates gravimetric retrievals of TWS in conjunction with passive microwave (PMW) brightness temperature (Tb) observations over snow-covered terrain. The framework uses the NASA Catchment Land Surface Model (Catchment) and an ensemble Kalman filter (EnKF). A synthetic assimilation experiment is presented for the Volga river basin in Russia. The skill of the output from the assimilation of synthetic observations is compared with that of model estimates generated without the benefit of assimilating the synthetic observations. It is shown that the EnKF framework improves modeled estimates of TWS, snow depth, and snow mass (a.k.a. snow water equivalent). The data assimilation routine produces a conditioned (updated) estimate that is more accurate and contains less uncertainty during both the snow accumulation phase of the snow season as well as during the snow ablation season.

  4. Cartographic modelling of aerotechnogenic pollution in snow cover in the landscapes of the Kola Peninsula.

    PubMed

    Ratkin, N E; Asming, V E; Koshkin, V V

    2001-01-01

    The goal of this work was to develop computational techniques for sulphates, nickel and copper accumulation in the snow in the local pollution zone. The main task was to reveal the peculiarities of formation and pollution of snow cover on the region with complex cross-relief. A digital cartographic model of aerotechnogenic pollution of snow cover in the landscapes of the local zone has been developed, based on five-year experimental data. Data regarding annual emissions from the industrial complex, information about distribution of wind and the sum of precipitation from meteostation "Nikel" for the winter period, allowed the model to ensure: * material presentation in the form of maps of water capacity and accumulation of sulphates, nickel and copper in the snow over any winter period in retrospective; * calculation of water capacity and accumulation of pollutants for watersheds and other natural-territorial complexes; * solution of the opposite problem about the determination of the emissions of sulphates, nickel and copper from the enterprise by measuring snow pollution in datum points. The model can be used in other northern regions of the Russian Federation with similar physical-geographical and climatic conditions. The relationships between the sum of precipitation and water capacity in the landscapes of the same type and also the relationships between pollution content in snow and relief, pollution content in snow and distance from the source of emissions, were used as the basis for the model.

  5. A Method for Snow Reanalysis: The Sierra Nevada (USA) Example

    NASA Technical Reports Server (NTRS)

    Girotto, Manuela; Margulis, Steven; Cortes, Gonzalo; Durand, Michael

    2017-01-01

    This work presents a state-of-the art methodology for constructing snow water equivalent (SWE) reanalysis. The method is comprised of two main components: (1) a coupled land surface model and snow depletion curve model, which is used to generate an ensemble of predictions of SWE and snow cover area for a given set of (uncertain) inputs, and (2) a reanalysis step, which updates estimation variables to be consistent with the satellite observed depletion of the fractional snow cover time series. This method was applied over the Sierra Nevada (USA) based on the assimilation of remotely sensed fractional snow covered area data from the Landsat 5-8 record (1985-2016). The verified dataset (based on a comparison with over 9000 station years of in situ data) exhibited mean and root-mean-square errors less than 3 and 13 cm, respectively, and correlation greater than 0.95 compared with in situ SWE observations. The method (fully Bayesian), resolution (daily, 90-meter), temporal extent (31 years), and accuracy provide a unique dataset for investigating snow processes. This presentation illustrates how the reanalysis dataset was used to provide a basic accounting of the stored snowpack water in the Sierra Nevada over the last 31 years and ultimately improve real-time streamflow predictions.

  6. Pursuing the method of multiple working hypotheses to understand differences in process-based snow models

    NASA Astrophysics Data System (ADS)

    Clark, Martyn; Essery, Richard

    2017-04-01

    When faced with the complex and interdisciplinary challenge of building process-based land models, different modelers make different decisions at different points in the model development process. These modeling decisions are generally based on several considerations, including fidelity (e.g., what approaches faithfully simulate observed processes), complexity (e.g., which processes should be represented explicitly), practicality (e.g., what is the computational cost of the model simulations; are there sufficient resources to implement the desired modeling concepts), and data availability (e.g., is there sufficient data to force and evaluate models). Consequently the research community, comprising modelers of diverse background, experience, and modeling philosophy, has amassed a wide range of models, which differ in almost every aspect of their conceptualization and implementation. Model comparison studies have been undertaken to explore model differences, but have not been able to meaningfully attribute inter-model differences in predictive ability to individual model components because there are often too many structural and implementation differences among the different models considered. As a consequence, model comparison studies to date have provided limited insight into the causes of differences in model behavior, and model development has often relied on the inspiration and experience of individual modelers rather than on a systematic analysis of model shortcomings. This presentation will summarize the use of "multiple-hypothesis" modeling frameworks to understand differences in process-based snow models. Multiple-hypothesis frameworks define a master modeling template, and include a a wide variety of process parameterizations and spatial configurations that are used in existing models. Such frameworks provide the capability to decompose complex models into the individual decisions that are made as part of model development, and evaluate each decision in isolation. It is hence possible to attribute differences in system-scale model predictions to individual modeling decisions, providing scope to mimic the behavior of existing models, understand why models differ, characterize model uncertainty, and identify productive pathways to model improvement. Results will be presented applying multiple hypothesis frameworks to snow model comparison projects, including PILPS, SnowMIP, and the upcoming ESM-SnowMIP project.

  7. Snow mass and river flows modelled using GRACE total water storage observations

    NASA Astrophysics Data System (ADS)

    Wang, S.

    2017-12-01

    Snow mass and river flow measurements are difficult and less accurate in cold regions due to the hash environment. Floods in cold regions are commonly a result of snowmelt during the spring break-up. Flooding is projected to increase with climate change in many parts of the world. Forecasting floods from snowmelt remains a challenge due to scarce and quality issues in basin-scale snow observations and lack of knowledge for cold region hydrological processes. This study developed a model for estimating basin-level snow mass (snow water equivalent SWE) and river flows using the total water storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. The SWE estimation is based on mass balance approach which is independent of in situ snow gauge observations, thus largely eliminates the limitations and uncertainties with traditional in situ or remote sensing snow estimates. The model forecasts river flows by simulating surface runoff from snowmelt and the corresponding baseflow from groundwater discharge. Snowmelt is predicted using a temperature index model. Baseflow is predicted using a modified linear reservoir model. The model also quantifies the hysteresis between the snowmelt and the streamflow rates, or the lump time for water travel in the basin. The model was applied to the Red River Basin, the Mackenzie River Basin, and the Hudson Bay Lowland Basins in Canada. The predicted river flows were compared with the observed values at downstream hydrometric stations. The results were also compared to that for the Lower Fraser River obtained in a separate study to help better understand the roles of environmental factors in determining flood and their variations with different hydroclimatic conditions. This study advances the applications of space-based time-variable gravity measurements in cold region snow mass estimation, river flow and flood forecasting. It demonstrates a relatively simple method that only needs GRACE TWS and temperature data for river flow or flood forecasting. The model can be particularly useful for regions with spare observation networks, and can be used in combination with other available methods to help improve the accuracy in river flow and flood forecasting over cold regions.

  8. Forecasting of wet snow avalanche activity: Proof of concept and operational implementation

    NASA Astrophysics Data System (ADS)

    Gobiet, Andreas; Jöbstl, Lisa; Rieder, Hannes; Bellaire, Sascha; Mitterer, Christoph

    2017-04-01

    State-of-the-art tools for the operational assessment of avalanche danger include field observations, recordings from automatic weather stations, meteorological analyses and forecasts, and recently also indices derived from snowpack models. In particular, an index for identifying the onset of wet-snow avalanche cycles (LWCindex), has been demonstrated to be useful. However, its value for operational avalanche forecasting is currently limited, since detailed, physically based snowpack models are usually driven by meteorological data from automatic weather stations only and have therefore no prognostic ability. Since avalanche risk management heavily relies on timely information and early warnings, many avalanche services in Europe nowadays start issuing forecasts for the following days, instead of the traditional assessment of the current avalanche danger. In this context, the prognostic operation of detailed snowpack models has recently been objective of extensive research. In this study a new, observationally constrained setup for forecasting the onset of wet-snow avalanche cycles with the detailed snow cover model SNOWPACK is presented and evaluated. Based on data from weather stations and different numerical weather prediction models, we demonstrate that forecasts of the LWCindex as indicator for wet-snow avalanche cycles can be useful for operational warning services, but is so far not reliable enough to be used as single warning tool without considering other factors. Therefore, further development currently focuses on the improvement of the forecasts by applying ensemble techniques and suitable post processing approaches to the output of numerical weather prediction models. In parallel, the prognostic meteo-snow model chain is operationally used by two regional avalanche warning services in Austria since winter 2016/2017 for the first time. Experiences from the first operational season and first results from current model developments will be reported.

  9. Snow Depth Mapping at a Basin-Wide Scale in the Western Arctic Using UAS Technology

    NASA Astrophysics Data System (ADS)

    de Jong, T.; Marsh, P.; Mann, P.; Walker, B.

    2015-12-01

    Assessing snow depths across the Arctic has proven to be extremely difficult due to the variability of snow depths at scales from metres to 100's of metres. New Unmanned Aerial Systems (UAS) technology provides the possibility to obtain centimeter level resolution imagery (~3cm), and to create Digital Surface Models (DSM) based on the Structure from Motion method. However, there is an ongoing need to quantify the accuracy of this method over different terrain and vegetation types across the Arctic. In this study, we used a small UAS equipped with a high resolution RGB camera to create DSMs over a 1 km2 watershed in the western Canadian Arctic during snow (end of winter) and snow-free periods. To improve the image georeferencing, 15 Ground Control Points were marked across the watershed and incorporated into the DSM processing. The summer DSM was subtracted from the snowcovered DSM to deliver snow depth measurements across the entire watershed. These snow depth measurements were validated by over 2000 snow depth measurements. This technique has the potential to improve larger scale snow depth mapping across watersheds by providing snow depth measurements at a ~3 cm . The ability of mapping both shallow snow (less than 75cm) covering much of the basin and snow patches (up to 5 m in depth) that cover less than 10% of the basin, but contain a significant portion of total basin snowcover, is important for both water resource applications, as well as for testing snow models.

  10. California's Snow Gun and its implications for mass balance predictions under greenhouse warming

    NASA Astrophysics Data System (ADS)

    Howat, I.; Snyder, M.; Tulaczyk, S.; Sloan, L.

    2003-12-01

    Precipitation has received limited treatment in glacier and snowpack mass balance models, largely due to the poor resolution and confidence of precipitation predictions relative to temperature predictions derived from atmospheric models. Most snow and glacier mass balance models rely on statistical or lapse rate-based downscaling of general or regional circulation models (GCM's and RCM's), essentially decoupling sub-grid scale, orographically-driven evolution of atmospheric heat and moisture. Such models invariably predict large losses in the snow and ice volume under greenhouse warming. However, positive trends in the mass balance of glaciers in some warming maritime climates, as well as at high elevations of the Greenland Ice Sheet, suggest that increased precipitation may play an important role in snow- and glacier-climate interactions. Here, we present a half century of April snowpack data from the Sierra Nevada and Cascade mountains of California, USA. This high-density network of snow-course data indicates that a gain in winter snow accumulation at higher elevations has compensated loss in snow volume at lower elevations by over 50% and has led to glacier expansion on Mt. Shasta. These trends are concurrent with a region-wide increase in winter temperatures up to 2° C. They result from the orographic lifting and saturation of warmer, more humid air leading to increased precipitation at higher elevations. Previous studies have invoked such a "Snow Gun" effect to explain contemporaneous records of Tertiary ocean warming and rapid glacial expansion. A climatological context of the California's "snow gun" effect is elucidated by correlation between the elevation distribution of April SWE observations and the phase of the Pacific Decadal Oscillation and the El Nino Southern Oscillation, both controlling the heat and moisture delivered to the U.S. Pacific coast. The existence of a significant "Snow Gun" effect presents two challenges to snow and glacier mass balance modeling. Firstly, the link between amplification of orographic precipitation and the temporal evolution of ocean-climate oscillations indicates that prediction of future mass balance trends requires consideration of the timing and amplitude of such oscillations. Only recently have ocean-atmosphere models begun to realistically produce such temporal variability. Secondly, the steepening snow mass-balance elevation-gradient associated with the "Snow Gun" implies greater spatial variability in balance with warming. In a warming climate, orographic processes at a scale finer that the highest resolution RCM (>20km grid) become increasingly important and predictions based on lower elevations become increasingly inaccurate for higher elevations. Therefore, thermodynamic interaction between atmospheric heat, moisture and topography must be included in downscaling techniques. In order to demonstrate the importance of the thermodynamic downscaling in mass balance predictions, we nest a high-resolution (100m grid), coupled Orographic Precipitation and Surface Energy balance Model (OPSEM) into the RegC2.5 RCM (40 km grid) and compare results. We apply this nesting technique to Mt. Shasta, California, an area of high topography (~4000m) relative to its RegCM2.5 grid elevation (1289m). These models compute average April snow volume under present and doubled-present Atmospheric CO2 concentrations. While the RegCM2.5 regional model predicts an 83% decrease in April SWE, OPSEM predicts a 16% increase. These results indicate that thermodynamic interactions between the atmosphere and topography at sub- RCM grid resolution must be considered in mass balance models.

  11. Dominance of grain size impacts on seasonal snow albedo at open sites in New Hampshire

    NASA Astrophysics Data System (ADS)

    Adolph, Alden C.; Albert, Mary R.; Lazarcik, James; Dibb, Jack E.; Amante, Jacqueline M.; Price, Andrea

    2017-01-01

    Snow cover serves as a major control on the surface energy budget in temperate regions due to its high reflectivity compared to underlying surfaces. Winter in the northeastern United States has changed over the last several decades, resulting in shallower snowpacks, fewer days of snow cover, and increasing precipitation falling as rain in the winter. As these climatic changes occur, it is imperative that we understand current controls on the evolution of seasonal snow albedo in the region. Over three winter seasons between 2013 and 2015, snow characterization measurements were made at three open sites across New Hampshire. These near-daily measurements include spectral albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density, black carbon content, local meteorological parameters, and analysis of storm trajectories using the Hybrid Single-Particle Lagrangian Integrated Trajectory model. Using analysis of variance, we determine that land-based winter storms result in marginally higher albedo than coastal storms or storms from the Atlantic Ocean. Through multiple regression analysis, we determine that snow grain size is significantly more important in albedo reduction than black carbon content or snow density. And finally, we present a parameterization of albedo based on days since snowfall and temperature that accounts for 52% of variance in albedo over all three sites and years. Our improved understanding of current controls on snow albedo in the region will allow for better assessment of potential response of seasonal snow albedo and snow cover to changing climate.

  12. Assessment and application of a snowblow modelling approach for identifying enhanced snow accumulation in areas of former glaciation

    NASA Astrophysics Data System (ADS)

    Mills, Stephanie; Smith, Michael; Le Brocq, Anne; Ardakova, Ekaterina; Hillier, John; Boston, Clare

    2016-04-01

    The redistribution of snow by wind can play an important role in providing additional mass to the surface of glaciers and can, therefore, have an impact on the glacier's surface mass balance. In areas of marginal glaciation, this local topo-climatic effect may be prove crucial for the initiation and survival of glaciers, whilst it can also increase heterogeneity in the distribution of snow on ice caps and ice sheets. We present a newly developed snowblow model which calculates spatial variations in relative snow accumulation that result from variations in topography. We apply this model to areas of former marginal glaciation in the Brecon Beacons, Wales and an area of former plateau icefield glaciation in the Monadhliath, Scotland. We can then determine whether redistribution by snow can help explain variations in the estimated equilibrium line altitudes (ELAs) of these former glaciers. Specifically, we compare the areas where snow is modelled as accumulating, to the reconstructed glacier surface, which is based on mapped moraines believed to be of Younger Dryas age. The model is applied to 30 m resolution DEMs and potential snow accumulation is simulated from different wind directions in order to determine the most likely contributing sector. Total snow accumulation in sub-set areas is then calculated and compared to the reconstructed glacier area. The results suggest that areas with larger amounts of snow accumulation often correspond with those where the ELA is lower than surrounding glaciers and vice versa, in both the marginal and icefield setting, suggesting that the role of snowblow in supplying additional mass to the surface of glaciers is significant.

  13. Spatio-temporal variability of snow water equivalent in the extra-tropical Andes Cordillera from distributed energy balance modeling and remotely sensed snow cover

    NASA Astrophysics Data System (ADS)

    Cornwell, E.; Molotch, N. P.; McPhee, J.

    2016-01-01

    Seasonal snow cover is the primary water source for human use and ecosystems along the extratropical Andes Cordillera. Despite its importance, relatively little research has been devoted to understanding the properties, distribution and variability of this natural resource. This research provides high-resolution (500 m), daily distributed estimates of end-of-winter and spring snow water equivalent over a 152 000 km2 domain that includes the mountainous reaches of central Chile and Argentina. Remotely sensed fractional snow-covered area and other relevant forcings are combined with extrapolated data from meteorological stations and a simplified physically based energy balance model in order to obtain melt-season melt fluxes that are then aggregated to estimate the end-of-winter (or peak) snow water equivalent (SWE). Peak SWE estimates show an overall coefficient of determination R2 of 0.68 and RMSE of 274 mm compared to observations at 12 automatic snow water equivalent sensors distributed across the model domain, with R2 values between 0.32 and 0.88. Regional estimates of peak SWE accumulation show differential patterns strongly modulated by elevation, latitude and position relative to the continental divide. The spatial distribution of peak SWE shows that the 4000-5000 m a.s.l. elevation band is significant for snow accumulation, despite having a smaller surface area than the 3000-4000 m a.s.l. band. On average, maximum snow accumulation is observed in early September in the western Andes, and in early October on the eastern side of the continental divide. The results presented here have the potential of informing applications such as seasonal forecast model assessment and improvement, regional climate model validation, as well as evaluation of observational networks and water resource infrastructure development.

  14. Application of Snowfall and Wind Statistics to Snow Transport Modeling for Snowdrift Control in Minnesota.

    NASA Astrophysics Data System (ADS)

    Shulski, Martha D.; Seeley, Mark W.

    2004-11-01

    Models were utilized to determine the snow accumulation season (SAS) and to quantify windblown snow for the purpose of snowdrift control for locations in Minnesota. The models require mean monthly temperature, snowfall, density of snow, and wind frequency distribution statistics. Temperature and precipitation data were obtained from local cooperative observing sites, and wind data came from Automated Surface Observing System (ASOS)/Automated Weather Observing System (AWOS) sites in the region. The temperature-based algorithm used to define the SAS reveals a geographic variability in the starting and ending dates of the season, which is determined by latitude and elevation. Mean seasonal snowfall shows a geographic distribution that is affected by topography and proximity to Lake Superior. Mean snowfall density also exhibits variability, with lower-density snow events displaced to higher-latitude positions. Seasonal wind frequencies show a strong bimodal distribution with peaks from the northwest and southeast vector direction, with an exception for locations in close proximity to the Lake Superior shoreline. In addition, for western and south-central Minnesota there is a considerably higher frequency of wind speeds above the mean snow transport threshold of 7 m s-1. As such, this area is more conducive to higher potential snow transport totals. Snow relocation coefficients in this area are in the range of 0.4 0.9, and, according to the empirical models used in this analysis, this range implies that actual snow transport is 40% 90% of the total potential in south-central and western areas of the state.


  15. Improvement of distributed snowmelt energy balance modeling with MODIS-based NDSI-derived fractional snow-covered area data

    Treesearch

    Joel W. Homan; Charles H. Luce; James P. McNamara; Nancy F. Glenn

    2011-01-01

    Describing the spatial variability of heterogeneous snowpacks at a watershed or mountain-front scale is important for improvements in large-scale snowmelt modelling. Snowmelt depletion curves, which relate fractional decreases in snowcovered area (SCA) against normalized decreases in snow water equivalent (SWE), are a common approach to scale-up snowmelt models....

  16. Indices for estimating fractional snow cover in the western Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Shreve, Cheney M.; Okin, Gregory S.; Painter, Thomas H.

    Snow cover in the Tibetan Plateau is highly variable in space and time and plays a key role in ecological processes of this cold-desert ecosystem. Resolution of passive microwave data is too low for regional-scale estimates of snow cover on the Tibetan Plateau, requiring an alternate data source. Optically derived snow indices allow for more accurate quantification of snow cover using higher-resolution datasets subject to the constraint of cloud cover. This paper introduces a new optical snow index and assesses four optically derived MODIS snow indices using Landsat-based validation scenes: MODIS Snow-Covered Area and Grain Size (MODSCAG), Relative Multiple Endmember Spectral Mixture Analysis (RMESMA), Relative Spectral Mixture Analysis (RSMA) and the normalized-difference snow index (NDSI). Pearson correlation coefficients were positively correlated with the validation datasets for all four optical snow indices, suggesting each provides a good measure of total snow extent. At the 95% confidence level, linear least-squares regression showed that MODSCAG and RMESMA had accuracy comparable to validation scenes. Fusion of optical snow indices with passive microwave products, which provide snow depth and snow water equivalent, has the potential to contribute to hydrologic and energy-balance modeling in the Tibetan Plateau.

  17. A Physical Model to Determine Snowfall over Land by Microwave Radiometry

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, G.; Kim, M.-J.; Weinman, J. A.; Chang, D.-E.

    2003-01-01

    Because microwave brightness temperatures emitted by snow covered surfaces are highly variable, snowfall above such surfaces is difficult to observe using window channels that occur at low frequencies (v less than 100 GHz). Furthermore, at frequencies v less than or equal to 37 GHz, sensitivity to liquid hydrometeors is dominant. These problems are mitigated at high frequencies (v greater than 100 GHz) where water vapor screens the surface emission and sensitivity to frozen hydrometeors is significant. However the scattering effect of snowfall in the atmosphere at those higher frequencies is also impacted by water vapor in the upper atmosphere. This work describes the methodology and results of physically-based retrievals of snow falling over land surfaces. The theory of scattering by randomly oriented dry snow particles at high microwave frequencies appears to be better described by regarding snow as a concatenation of equivalent ice spheres rather than as a sphere with the effective dielectric constant of an air-ice mixture. An equivalent sphere snow scattering model was validated against high frequency attenuation measurements. Satellite-based high frequency observations from an Advanced Microwave Sounding Unit (AMSU-B) instrument during the March 5-6, 2001 New England blizzard were used to retrieve snowfall over land. Vertical distributions of snow, temperature and relative humidity profiles were derived from the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). Those data were applied and modified in a radiative transfer model that derived brightness temperatures consistent with the AMSU-B observations. The retrieved snowfall distribution was validated with radar reflectivity measurements obtained from the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) ground-based radar network.

  18. Snow stratigraphic heterogeneity within ground-based passive microwave radiometer footprints: implications for emission modelling

    NASA Astrophysics Data System (ADS)

    Sandells, M.; Rutter, N.; Derksen, C.; Langlois, A.; Lemmetyinen, J.; Montpetit, B.; Pulliainen, J. T.; Royer, A.; Toose, P.

    2012-12-01

    Remote sensing of snow mass remains a challenging area of research. Scattering of electromagnetic radiation is sensitive to snow mass, but is also affected by contrasts in the dielectric properties of the snow. Although the argument that errors from simple algorithms average out at large scales has been used to justify current retrieval methods, it is not obvious why this should be the case. This hypothesis needs to be tested more rigorously. A ground-based field experiment was carried out to assess the impact of sub-footprint snow heterogeneity on microwave brightness temperature, in Churchill, Canada in winter in early 2010. Passive microwave measurements of snow were made using sled-mounted radiometers at 75cm intervals over a 5m transect. Measurements were made at horizontal and vertical polarizations at frequencies of 19 and 37 GHz. Snow beneath the radiometer footprints was subsequently excavated, creating a snow trench wall along the centrepoints of adjacent footprints. The trench wall was carefully smoothed and photographed with a near-infrared camera in order to determine the positions of stratigraphic snow layer boundaries. Three one-dimensional vertical profiles of snowpack properties (density and snow specific surface area) were taken at 75cm, 185cm and 355cm from the left hand side of the trench. These profile measurements were used to derive snow density and grain size for each of the layers identified from the NIR image. Microwave brightness temperatures for the 2-dimensional map of snow properties was simulated with the Helsinki University of Technology (HUT) model at 1cm intervals horizontally across the trench. Where each of five ice lenses was identified in the snow stratigraphy, a decrease in brightness temperature was simulated. However, the median brightness temperature simulated across the trench was substantially higher than the observations, of the order of tens of Kelvin, dependent on frequency and polarization. In order to understand and quantify possible sources of error in the simulations, a number of experiments were carried out to investigate the sensitivity of the brightness temperature to: 1) uncertainties in field observations, 2) representation of ice lenses, 3) model layering structure, and 4) near-infrared derived grain size representing snow grain size at microwave wavelengths. Field measurement error made little difference to the simulated brightness temperature, nor did the representation of ice lenses as crusts of high density snow. As the number of layers in the snow was reduced to 3, 2, or 1, the simulated brightness temperature increased slightly. However, scaling of snow grain size had a dramatic effect on the simulated brightness temperatures, reducing the median bias of the simulations to within measurement error for the statistically different brightness temperature distributions. This indicated that further investigation is required to define what is meant by the microwave grain size, and how this relates to the grain size that is used in the microwave emission model.

  19. Snow Water Equivalent Retrieval Using Multitemporal COSMO Skymed X-Band SAR Images To Inform Water Systems Operation

    NASA Astrophysics Data System (ADS)

    Denaro, S.; Del Gobbo, U.; Castelletti, A.; Tebaldini, S.; Monti Guarnieri, A.

    2015-12-01

    In this work, we explore the use of exogenous snow-related information for enhancing the operation of water facilities in snow dominated watersheds. Traditionally, such information is assimilated into short-to-medium term streamflow forecasts, which are then used to inform water systems operation. Here, we adopt an alternative model-free approach, where the policy is directly conditioned upon a small set of selected observational data able to surrogate the snow-pack dynamics. In snow-fed water systems, the Snow Water Equivalent (SWE) stored in the basin often represents the largest contribution to the future season streamflow. The SWE estimation process is challenged by the high temporal and spatial variability of snow-pack and snow properties. Traditional retrieval methods, based on few ground sensors and optical satellites, often fail at representing the spatial diversity of snow conditions over large basins and at producing continuous (gap-free) data at the high sample frequency (e.g. daily) required to optimally control water systems. Against this background, SWE estimates from remote sensed radar products stand out, being able to acquire spatial information with no dependence on cloud coverage. In this work, we propose a technique for retrieving SWE estimates from Synthetic Aperture Radar (SAR) Cosmo SkyMed X-band images: a regression model, calibrated on ground SWE measurements, is implemented on dry snow maps obtained through a multi-temporal approach. The unprecedented spatial scale of this application is novel w.r.t. state of the art radar analysis conducted on limited spatial domains. The operational value of the SAR retrieved SWE estimates is evaluated based on ISA, a recently developed information selection and assessment framework. The method is demonstrated on a snow-rain fed river basin in the Italian Alps. Preliminary results show SAR images have a good potential for monitoring snow conditions and for improving water management operations.

  20. Assessment of snow modeling decisions in the extra-tropical Andes Cordillera

    NASA Astrophysics Data System (ADS)

    Mendoza, P. A.; Musselman, K. N.; Raleigh, M. S.; Clark, M. P.; McPhee, J. P.

    2017-12-01

    Improving model realism is an ongoing challenge for the cryosphere research community, not only to advance process understanding, but also to quantify and reduce uncertainty under global warming conditions. This work attempts to characterize the interplay and impact of user decisions about snow model structure and parameter specification on model uncertainty. Snow simulations were conducted in the extra-tropical Andes - a mountainous region that acts as a natural reservoir for Central Chile and Western Argentina. To address this topic, we apply the Structure for Unifying Multiple Modeling Alternatives (SUMMA) to simulate seasonal snowpack dynamics at three sites with different hydroclimatic regimes (semi-arid, Mediterranean, and temperate humid). Results are verified against extensive ground-based observations. Site elevations decrease from north to south, whereas precipitation amounts increase with latitude. Results highlight the impact of different windflow and snow transport decisions on model skill during the accumulation period, and different parameterizations (e.g., albedo decay) on spring simulations. We anticipate that the outcomes from this study will have important implications on current and future research, in particular on the configuration of snow models used to quantify the availability of water resources in this region.

  1. From the clouds to the ground - snow precipitation patterns vs. snow accumulation patterns

    NASA Astrophysics Data System (ADS)

    Gerber, Franziska; Besic, Nikola; Mott, Rebecca; Gabella, Marco; Germann, Urs; Bühler, Yves; Marty, Mauro; Berne, Alexis; Lehning, Michael

    2017-04-01

    Knowledge about snow distribution and snow accumulation patterns is important and valuable for different applications such as the prediction of seasonal water resources or avalanche forecasting. Furthermore, accumulated snow on the ground is an important ground truth for validating meteorological and climatological model predictions of precipitation in high mountains and polar regions. Snow accumulation patterns are determined by many different processes from ice crystal nucleation in clouds to snow redistribution by wind and avalanches. In between, snow precipitation undergoes different dynamical and microphysical processes, such as ice crystal growth, aggregation and riming, which determine the growth of individual particles and thereby influence the intensity and structure of the snowfall event. In alpine terrain the interaction of different processes and the topography (e.g. lifting condensation and low level cloud formation, which may result in a seeder-feeder effect) may lead to orographic enhancement of precipitation. Furthermore, the redistribution of snow particles in the air by wind results in preferential deposition of precipitation. Even though orographic enhancement is addressed in numerous studies, the relative importance of micro-physical and dynamically induced mechanisms on local snowfall amounts and especially snow accumulation patterns is hardly known. To better understand the relative importance of different processes on snow precipitation and accumulation we analyze snowfall and snow accumulation between January and March 2016 in Davos (Switzerland). We compare MeteoSwiss operational weather radar measurements on Weissfluhgipfel to a spatially continuous snow accumulation map derived from airborne digital sensing (ADS) snow height for the area of Dischma valley in the vicinity of the weather radar. Additionally, we include snow height measurements from automatic snow stations close to the weather radar. Large-scale radar snow accumulation patterns show a snowfall gradient consistent with the prevailing wind direction. Deriving snow accumulation based on radar data is challenging as the close-ground precipitation patters cannot be resolved by the radar due to shielding and ground clutter in highly complex terrain. Nonetheless, radar measurements show distinct patterns of snowfall and accumulation, which may be the result of orographic enhancement. Station-based snow accumulation measurements are in reasonable agreement with the estimated large-scale radar snow accumulation. The ADS-based snow accumulation maps feature much smaller scale snow accumulation patterns likely due to close-ground wind effects and snow redistribution on top of an altitudinal gradient. To evaluate microphysical processes and patterns influenced by the topography we run a hydrometeor classification on the radar data. The relative importance of topographically induced effects on snow accumulation patterns is investigated based on vertical cross sections of hydrometeor data and corresponding snow accumulation.

  2. Multi-resolution Changes in the Spatial Extent of Perennial Arctic Alpine Snow and Ice Fields with Potential Archaeological Significance in the Central Brooks Range, Alaska

    NASA Astrophysics Data System (ADS)

    Tedesche, M. E.; Freeburg, A. K.; Rasic, J. T.; Ciancibelli, C.; Fassnacht, S. R.

    2015-12-01

    Perennial snow and ice fields could be an important archaeological and paleoecological resource for Gates of the Arctic National Park and Preserve in the central Brooks Range mountains of Arctic Alaska. These features may have cultural significance, as prehistoric artifacts may be frozen within the snow and ice. Globally significant discoveries have been made recently as ancient artifacts and animal dung have been found in melting alpine snow and ice patches in the Southern Yukon and Northwest Territories in Canada, the Wrangell mountains in Alaska, as well as in other areas. These sites are melting rapidly, which results in quick decay of biological materials. The summer of 2015 saw historic lows in year round snow cover extent for most of Alaska. Twenty mid to high elevation sites, including eighteen perennial snow and ice fields, and two glaciers, were surveyed in July 2015 to quantify their areal extent. This survey was accomplished by using both low flying aircraft (helicopter), as well as with on the ground in-situ (by foot) measurements. By helicopter, visual surveys were conducted within tens of meters of the surface. Sites visited by foot were surveyed for extent of snow and ice coverage, melt water hydrologic parameters and chemistry, and initial estimates of depths and delineations between snow, firn, and ice. Imagery from both historic aerial photography and from 5m resolution IKONOS satellite information were correlated with the field data. Initial results indicate good agreement in permanent snow and ice cover between field surveyed data and the 1985 to 2011 Landsat imagery-based Northwest Alaska snow persistence map created by Macander et al. (2015). The most deviation between the Macander et al. model and the field surveyed results typically occurred as an overestimate of perennial extent on the steepest aspects. These differences are either a function of image classification or due to accelerated ablation rates in perennial snow and ice coverage between 2011 and 2015. Further work is ongoing to develop a model to guide archaeological and paleoecological snow and ice field surveys. This will entail a fine scale, empirically based model of accumulation and ablation to estimate changes in three dimensional geometries of historically perennial arctic alpine snow and ice fields in the study area.

  3. Improvement of Mars Surface Snow Albedo Modeling in LMD Mars GCM With SNICAR

    NASA Astrophysics Data System (ADS)

    Singh, D.; Flanner, M. G.; Millour, E.

    2018-03-01

    The current version of Laboratoire de Météorologie Dynamique (LMD) Mars GCM (original-MGCM) uses annually repeating (prescribed) CO2 snow albedo values based on the Thermal Emission Spectrometer observations. We integrate the Snow, Ice, and Aerosol Radiation (SNICAR) model with MGCM (SNICAR-MGCM) to prognostically determine H2O and CO2 snow albedos interactively in the model. Using the new diagnostic capabilities of this model, we find that cryospheric surfaces (with dust) increase the global surface albedo of Mars by 0.022. Over snow-covered regions, SNICAR-MGCM simulates mean albedo that is higher by about 0.034 than prescribed values in the original-MGCM. Globally, shortwave flux into the surface decreases by 1.26 W/m2, and net CO2 snow deposition increases by about 4% with SNICAR-MGCM over one Martian annual cycle as compared to the original-MGCM simulations. SNICAR integration reduces the mean global surface temperature and the surface pressure of Mars by about 0.87% and 2.5%, respectively. Changes in albedo also show a similar distribution to dust deposition over the globe. The SNICAR-MGCM model generates albedos with higher sensitivity to surface dust content as compared to original-MGCM. For snow-covered regions, we improve the correlation between albedo and optical depth of dust from -0.91 to -0.97 with SNICAR-MGCM as compared to the original-MGCM. Dust substantially darkens Mars's cryosphere, thereby reducing its impact on the global shortwave energy budget by more than half, relative to the impact of pure snow.

  4. Role of Tibetan Buddhist monasteries in snow leopard conservation.

    PubMed

    Li, Juan; Wang, Dajun; Yin, Hang; Zhaxi, Duojie; Jiagong, Zhala; Schaller, George B; Mishra, Charudutt; McCarthy, Thomas M; Wang, Hao; Wu, Lan; Xiao, Lingyun; Basang, Lamao; Zhang, Yuguang; Zhou, Yunyun; Lu, Zhi

    2014-02-01

    The snow leopard (Panthera uncia) inhabits the rugged mountains in 12 countries of Central Asia, including the Tibetan Plateau. Due to poaching, decreased abundance of prey, and habitat degradation, it was listed as endangered by the International Union for Conservation of Nature in 1972. Current conservation strategies, including nature reserves and incentive programs, have limited capacities to protect snow leopards. We investigated the role of Tibetan Buddhist monasteries in snow leopard conservation in the Sanjiangyuan region in China's Qinghai Province on the Tibetan Plateau. From 2009 to 2011, we systematically surveyed snow leopards in the Sanjiangyuan region. We used the MaxEnt model to determine the relation of their presence to environmental variables (e.g., elevation, ruggedness) and to predict snow leopard distribution. Model results showed 89,602 km(2) of snow leopard habitat in the Sanjiangyuan region, of which 7674 km(2) lay within Sanjiangyuan Nature Reserve's core zones. We analyzed the spatial relation between snow leopard habitat and Buddhist monasteries and found that 46% of monasteries were located in snow leopard habitat and 90% were within 5 km of snow leopard habitat. The 336 monasteries in the Sanjiangyuan region could protect more snow leopard habitat (8342 km(2) ) through social norms and active patrols than the nature reserve's core zones. We conducted 144 household interviews to identify local herders' attitudes and behavior toward snow leopards and other wildlife. Most local herders claimed that they did not kill wildlife, and 42% said they did not kill wildlife because it was a sin in Buddhism. Our results indicate monasteries play an important role in snow leopard conservation. Monastery-based snow leopard conservation could be extended to other Tibetan Buddhist regions that in total would encompass about 80% of the global range of snow leopards. © 2013 Society for Conservation Biology.

  5. Determining hydrological changes in a small Arctic treeline basin using cold regions hydrological modelling and a pseudo-global warming approach

    NASA Astrophysics Data System (ADS)

    Krogh, S. A.; Pomeroy, J. W.

    2017-12-01

    Increasing temperatures are producing higher rainfall ratios, shorter snow-covered periods, permafrost thaw, more shrub coverage, more northerly treelines and greater interaction between groundwater and surface flow in Arctic basins. How these changes will impact the hydrology of the Arctic treeline environment represents a great challenge. To diagnose the future hydrology along the current Arctic treeline, a physically based cold regions model was used to simulate the hydrology of a small basin near Inuvik, Northwest Territories, Canada. The hydrological model includes hydrological processes such as snow redistribution and sublimation by wind, canopy interception of snow/rain and sublimation/evaporation, snowmelt energy balance, active layer freeze/thaw, infiltration into frozen and unfrozen soils, evapotranspiration, horizontal flow through organic terrain and snowpack, subsurface flow and streamflow routing. The model was driven with weather simulated by a high-resolution (4 km) numerical weather prediction model under two scenarios: (1) control run, using ERA-Interim boundary conditions (2001-2013) and (2) future, using a Pseudo-Global Warming (PGW) approach based on the RCP8.5 projections perturbing the control run. Transient changes in vegetation based on recent observations and ecological expectations were then used to re-parameterise the model. Historical hydrological simulations were validated against daily streamflow, snow water equivalent and active layer thickness records, showing the model's suitability in this environment. Strong annual warming ( 6 °C) and more precipitation ( 20%) were simulated by the PGW scenario, with winter precipitation and fall temperature showing the largest seasonal increase. The joint impact of climate and transient vegetation changes on snow accumulation and redistribution, evapotranspiration, active layer development, runoff generation and hydrograph characteristics are analyzed and discussed.

  6. Comparing different snow products to assess spatio-temporal snow cover patterns in the Central Taurus Mountains, Turkey

    NASA Astrophysics Data System (ADS)

    Sturm, K.; Helmschrot, J.

    2013-12-01

    Snow and its spatial and temporal patterns are important for catchment hydrology in the semi-arid eastern Mediterranean. Since most of the annual rainfall is stored as snow during winter and released during drier conditions in spring and summer, downstream regions of the Taurus Mountains relying on snow water temporarily stored in reservoirs for agricultural use are heavily dependent on the timing of snowmelt discharge. Runoff is controlled by the amount of accumulated snow, its distribution, and the climatic conditions controlling spring snowmelt. Thus, knowledge about spatial and temporal snow cover dynamics is essential for sustainable water resources management. The lack of observations in high-altitude regions reinforces the application of different snow products for a better assessment of spatio-temporal snow cover patterns. To better assess the quality of such products, simulated daily snow cover and EO-based snow cover products were compared for the Egribuk subcatchment, in the Central Taurus Mountains, Turkey. Daily information on snow cover, depths, and snow water equivalent was derived from distributed hydrological modeling using the J2000 model. Furthermore, 8-day MODIS snow cover data from Terra (MOD10A2) and Aqua (MYD10A2) satellites at a spatial resolution of 500 m were synchronized to receive cloud-free images. From this effort, 253 images covering the period between 07/04/2002 and 12/27/2007 were used for further analyses. The products were analyzed individually to determine the number of snow-covered days in relation to freezing days, spring snowmelt onsets, and temporal patterns, reflecting the effect of altitude on the percentage snow-covered area (SCA) along a topographic gradient at various time-steps. Monthly and 8-day spatial patterns of a single snow season were also examined. When SCA peaks at all altitudes, in February and March, the results of both products show a good agreement regarding SCA extent. In contrast, the extent of SCA differs notably during snow accumulation and ablation periods, the highest deviations occurring in December, April, and May. The highest SCA inconsistencies are observed in the low and mid altitudes, whereas the higher elevations are snow-covered very early in the snow season as modeled by J2000. During these periods, J2000 simulates a significantly larger SCA than MODIS. The analysis of individual time steps suggests that the J2000 daily model does capture individual snow events, whereas the MODIS products fail to do so due to their temporal resolution. Furthermore, acquisition time and inner-daily melt and re-freezing effects may affect SCA estimates from MODIS data. In other cases, differences can clearly be associated to insufficient model input data, primarily due to limited spatial precipitation and temperature data. Our study indicates that individual products might provide inconsistent information on temporal and spatial snow cover. We recommend considering a combined analysis of different snow products in order to provide reliable information on snow cover dynamics, in particular in eastern Mediterranean high-altitude environments.

  7. TOMS UV Algorithm: Problems and Enhancements. 2

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay; Herman, Jay; Bhartia, P. K.; Seftor, Colin; Arola, Antti; Kaurola, Jussi; Kroskinen, Lasse; Kalliskota, S.; Taalas, Petteri; Geogdzhaev, I.

    2002-01-01

    Satellite instruments provide global maps of surface ultraviolet (UV) irradiance by combining backscattered radiance measurements with radiative transfer models. The models are limited by uncertainties in input parameters of the atmosphere and the surface. We evaluate the effects of possible enhancements of the current Total Ozone Mapping Spectrometer (TOMS) surface UV irradiance algorithm focusing on effects of diurnal variation of cloudiness and improved treatment of snow/ice. The emphasis is on comparison between the results of the current (version 1) TOMS UV algorithm and each of the changes proposed. We evaluate different approaches for improved treatment of pixel average cloud attenuation, with and without snow/ice on the ground. In addition to treating clouds based only on the measurements at the local time of the TOMS observations, the results from other satellites and weather assimilation models can be used to estimate attenuation of the incident UV irradiance throughout the day. A new method is proposed to obtain a more realistic treatment of snow covered terrain. The method is based on a statistical relation between UV reflectivity and snow depth. The new method reduced the bias between the TOMS UV estimations and ground-based UV measurements for snow periods. The improved (version 2) algorithm will be applied to re-process the existing TOMS UV data record (since 1978) and to the future satellite sensors (e.g., Quik/TOMS, GOME, OMI on EOS/Aura and Triana/EPIC).

  8. Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites

    NASA Astrophysics Data System (ADS)

    Aalstad, Kristoffer; Westermann, Sebastian; Vikhamar Schuler, Thomas; Boike, Julia; Bertino, Laurent

    2018-01-01

    With its high albedo, low thermal conductivity and large water storing capacity, snow strongly modulates the surface energy and water balance, which makes it a critical factor in mid- to high-latitude and mountain environments. However, estimating the snow water equivalent (SWE) is challenging in remote-sensing applications already at medium spatial resolutions of 1 km. We present an ensemble-based data assimilation framework that estimates the peak subgrid SWE distribution (SSD) at the 1 km scale by assimilating fractional snow-covered area (fSCA) satellite retrievals in a simple snow model forced by downscaled reanalysis data. The basic idea is to relate the timing of the snow cover depletion (accessible from satellite products) to the peak SSD. Peak subgrid SWE is assumed to be lognormally distributed, which can be translated to a modeled time series of fSCA through the snow model. Assimilation of satellite-derived fSCA facilitates the estimation of the peak SSD, while taking into account uncertainties in both the model and the assimilated data sets. As an extension to previous studies, our method makes use of the novel (to snow data assimilation) ensemble smoother with multiple data assimilation (ES-MDA) scheme combined with analytical Gaussian anamorphosis to assimilate time series of Moderate Resolution Imaging Spectroradiometer (MODIS) and Sentinel-2 fSCA retrievals. The scheme is applied to Arctic sites near Ny-Ålesund (79° N, Svalbard, Norway) where field measurements of fSCA and SWE distributions are available. The method is able to successfully recover accurate estimates of peak SSD on most of the occasions considered. Through the ES-MDA assimilation, the root-mean-square error (RMSE) for the fSCA, peak mean SWE and peak subgrid coefficient of variation is improved by around 75, 60 and 20 %, respectively, when compared to the prior, yielding RMSEs of 0.01, 0.09 m water equivalent (w.e.) and 0.13, respectively. The ES-MDA either outperforms or at least nearly matches the performance of other ensemble-based batch smoother schemes with regards to various evaluation metrics. Given the modularity of the method, it could prove valuable for a range of satellite-era hydrometeorological reanalyses.

  9. When Models and Observations Collide: Journeying towards an Integrated Snow Depth Product

    NASA Astrophysics Data System (ADS)

    Webster, M.; Petty, A.; Boisvert, L.; Markus, T.; Kurtz, N. T.; Kwok, R.; Perovich, D. K.

    2017-12-01

    Knowledge of snow depth is essential for assessing changes in sea ice mass balance due to snow's insulating and reflective properties. In remote sensing applications, the accuracy of sea ice thickness retrievals from altimetry crucially depends on snow depth. Despite the need for snow depth data, we currently lack continuous observations that capture the basin-scale snow depth distribution and its seasonal evolution. Recent in situ and remote sensing observations are sparse in space and time, and contain uncertainties, caveats, and/or biases that often require careful interpretation. Likewise, using model output for remote sensing applications is limited due to uncertainties in atmospheric forcing and different treatments of snow processes. Here, we summarize our efforts in bringing observational and model data together to develop an approach for an integrated snow depth product. We start with a snow budget model and incrementally incorporate snow processes to determine the effects on snow depth and to assess model sensitivity. We discuss lessons learned in model-observation integration and ideas for potential improvements to the treatment of snow in models.

  10. Climatic Effects of Black Carbon Aerosols Over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    He, Cenlin

    Black carbon (BC), also known as soot, has been identified as the second most important anthropogenic emissions in terms of global climate forcing in the current atmosphere. Ample evidence has shown that BC deposition is an important driver of rapid snow melting and glacier retreat over the Tibetan Plateau, which holds the largest snow/ice mass outside polar regions. However, the climatic effects of BC over the Tibetan Plateau have not been thoroughly investigated in such a manner as to understand, quantify, and reduce large uncertainties in the estimate of radiative and hydrological effects. Thus, this Ph.D. study seeks to understand and improve key processes controlling BC life cycle in global and regional models and to quantify BC radiative effects over the Tibetan Plateau. First, the capability of a state-of-the-art global chemical transport model (CTM), GEOS-Chem, and the associated model uncertainties are systematically evaluated in simulating BC over the Tibetan Plateau, using in situ measurements of BC in surface air, BC in snow, and BC absorption optical depth. The effects of three key factors on the simulation are also delineated, including Asian anthropogenic emissions, BC aging process, and model resolution. Subsequently, a microphysics-based BC aging scheme that accounts for condensation, coagulation, and heterogeneous chemical oxidation processes is developed and examined in GEOS-Chem by comparing with aircraft measurements. Compared to the default aging scheme, the microphysical scheme reduces model-observation discrepancies by a factor of 3, particularly in the middle and upper troposphere. In addition, a theoretical BC aging-optics model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, coated BC by soluble material, and BC particles undergoing further hygroscopic growth. The geometric-optics surface-wave (GOS) approach is employed to compute the BC single-scattering properties at each aging stage, which are subsequently compared with laboratory measurements. Results show large variations in BC optical properties caused by coating morphology and aging stages. Furthermore, a comprehensive intercomparison of the GOS approach, the superposition T-matrix method, and laboratory measurements is performed for optical properties of BC with complex structures during aging. Moreover, a new snow albedo model is developed for widely-observed close-packed snow grains internally mixed with BC. Results indicate that albedo simulations that account for snow close packing match closer to observations. Close packing enhances BC-induced snow albedo reduction and associated surface radiative forcing by up to 15% (20%) for fresh (old) snow, which suggests that BC-snow albedo forcing is underestimated in previous modeling studies without accounting for close packing. Finally, the snow albedo forcing and direct radiative forcing (DRF) of BC in the Tibetan Plateau are estimated using GEOS-Chem in conjunction with a stochastic snow model and a radiative transfer model. This, for the first time, accounts for realistic non-spherical snow grain shape and stochastic multiple inclusions of BC within snow in assessing BC-snow interactions. The annual mean BC snow albedo forcing is 2.9 W m-2 over snow-covered Plateau regions. BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. BC DRF at the top of the atmosphere is 2.3 W m-2 with uncertainties of -70% - +85% in the Plateau. The BC forcings are further attributed to emissions from different regions.

  11. A model of the planetary boundary layer over a snow surface

    NASA Technical Reports Server (NTRS)

    Halberstam, I.; Melendez, R.

    1979-01-01

    A model of the planetary boundary layer over a snow surface has been developed. It contains the vertical heat exchange processes due to radiation, conduction, and atmospheric turbulence. Parametrization of the boundary layer is based on similarity functions developed by Hoffert and Sud (1976), which involve a dimensionless variable, dependent on boundary-layer height and a localized Monin-Obukhov length. The model also contains the atmospheric surface layer and the snowpack itself, where snowmelt and snow evaporation are calculated. The results indicate a strong dependence of surface temperatures, especially at night, on the bursts of turbulence which result from the frictional damping of surface-layer winds during periods of high stability, as described by Businger (1973). The model also shows the cooling and drying effect of the snow on the atmosphere, which may be the mechanism for air mass transformation in sub-Arctic regions.

  12. Soil erosion by snow gliding - a first quantification attempt in a subalpine area in Switzerland

    NASA Astrophysics Data System (ADS)

    Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Walter, A.; Alewell, C.

    2014-09-01

    Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959-2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha-1 yr-1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha-1 yr-1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.

  13. Improvement of a snow albedo parameterization in the Snow-Atmosphere-Soil Transfer model: evaluation of impacts of aerosol on seasonal snow cover

    NASA Astrophysics Data System (ADS)

    Zhong, Efang; Li, Qian; Sun, Shufen; Chen, Wen; Chen, Shangfeng; Nath, Debashis

    2017-11-01

    The presence of light-absorbing aerosols (LAA) in snow profoundly influence the surface energy balance and water budget. However, most snow-process schemes in land-surface and climate models currently do not take this into consideration. To better represent the snow process and to evaluate the impacts of LAA on snow, this study presents an improved snow albedo parameterization in the Snow-Atmosphere-Soil Transfer (SAST) model, which includes the impacts of LAA on snow. Specifically, the Snow, Ice and Aerosol Radiation (SNICAR) model is incorporated into the SAST model with an LAA mass stratigraphy scheme. The new coupled model is validated against in-situ measurements at the Swamp Angel Study Plot (SASP), Colorado, USA. Results show that the snow albedo and snow depth are better reproduced than those in the original SAST, particularly during the period of snow ablation. Furthermore, the impacts of LAA on snow are estimated in the coupled model through case comparisons of the snowpack, with or without LAA. The LAA particles directly absorb extra solar radiation, which accelerates the growth rate of the snow grain size. Meanwhile, these larger snow particles favor more radiative absorption. The average total radiative forcing of the LAA at the SASP is 47.5 W m-2. This extra radiative absorption enhances the snowmelt rate. As a result, the peak runoff time and "snow all gone" day have shifted 18 and 19.5 days earlier, respectively, which could further impose substantial impacts on the hydrologic cycle and atmospheric processes.

  14. Differences Between the HUT Snow Emission Model and MEMLS and Their Effects on Brightness Temperature Simulation

    NASA Technical Reports Server (NTRS)

    Pan, Jinmei; Durand, Michael; Sandells, Melody; Lemmetyinen, Juha; Kim, Edward J.; Pulliainen, Jouni; Kontu, Anna; Derksen, Chris

    2015-01-01

    Microwave emission models are a critical component of snow water equivalent retrieval algorithms applied to passive microwave measurements. Several such emission models exist, but their differences need to be systematically compared. This paper compares the basic theories of two models: the multiple-layer HUT (Helsinki University of Technology) model and MEMLS (Microwave Emission Model of Layered Snowpacks). By comparing the mathematical formulation side-by-side, three major differences were identified: (1) by assuming the scattered intensity is mostly (96) in the forward direction, the HUT model simplifies the radiative transfer (RT) equation into 1-flux; whereas MEMLS uses a 2-flux theory; (2) the HUT scattering coefficient is much larger than MEMLS; (3 ) MEMLS considers the trapped radiation inside snow due to internal reflection by a 6-flux model, which is not included in HUT. Simulation experiments indicate that, the large scattering coefficient of the HUT model compensates for its large forward scattering ratio to some extent, but the effects of 1-flux simplification and the trapped radiation still result in different T(sub B) simulations between the HUT model and MEMLS. The models were compared with observations of natural snow cover at Sodankyl, Finland; Churchill, Canada; and Colorado, USA. No optimization of the snow grain size was performed. It shows that HUT model tends to under estimate T(sub B) for deep snow. MEMLS with the physically-based improved Born approximation performed best among the models, with a bias of -1.4 K, and an RMSE of 11.0 K.

  15. Simulations of a Canadian snowpack brightness temperatures using SURFEX-Crocus for Snow Water Equivalent (SWE) retrievals

    NASA Astrophysics Data System (ADS)

    Larue, Fanny; Royer, Alain; De Sève, Danielle; Langlois, Alexandre; Roy, Alexandre; Saint-Jean-Rondeau, Olivier

    2016-04-01

    In Quebec, the water associated to snowmelt represents 30% of the annual electricity production so that the snow cover evaluation in real time is of primary interest. The key variable is snow water equivalent (SWE) which describes the evolution of a global seasonal snow cover. However, the sparse distribution of meteorological stations in northern Québec generates great uncertainty in the extrapolation of SWE. On the contrary, the spatial and temporal coverage of satellite data offer a source of information with a high potential when considered as an alternative to the poor spatial distribution of in-situ information. Thus, this project aims to improve the prediction of SWE by assimilation of satellite passive microwave brightness temperatures (Tb) observations, independently of any ground observations. The snowpack evolution is simulated by the French snow model SURFEX-Crocus, driven by the Canadian atmospheric model GEM with a spatial resolution of 10 km. The bias of the atmospheric model and the impact of initialization errors on the simulated SWE were quantified from our ground measurements. To assimilate satellite observations, the multi-layered snow model is first coupled with a radiative transfer model using the Dense Media Radiative transfer theory (the DMRT-ML model) to estimate the microwave snow emission of the simulated snowpack. In order to retrieve simulated Tb in frequencies of interest (i.e. sensitive to snow dielectric properties), the snow microstructure needs to be well parameterized. It was shown in previous studies that the specific surface area (SSA) of snow grains is a well-defined parameter to describe the size and the shape of snow grains and which allows reproducible field measurements. SURFEX-Crocus estimates a SSA for each simulated snow layer, however, the snow microstructure in DMRT-ML is defined per layer by monodisperse optical radius of grain (~ 1/SSA) and by the stickiness which is not known. It thus becomes necessary to introduce an empirical factor (noted φ) due to the simplification of the representation of snow as non-sticky spheres of ice in the model. In other words, the measured and simulated SSA has to be converted in an effective snow grain metric by optimizing this scaling factor to minimize the root-mean-square error between the measured and simulated brightness temperatures. The φ factor scaling the Crocus simulated SSA was estimated using ground-based radiometric measurements made during several field campaigns in the James Bay territory, Nunavik (in 2013 and 2015), and Churchill, Manitoba in 2010. This new parameterization, adapted to the Canadian arctic and subarctic snowpack, represents an essential step to optimize SWE maps in this remote region which have yet to be proven accurate.

  16. A Citizen Science Campaign to Validate Snow Remote-Sensing Products

    NASA Astrophysics Data System (ADS)

    Wikstrom Jones, K.; Wolken, G. J.; Arendt, A. A.; Hill, D. F.; Crumley, R. L.; Setiawan, L.; Markle, B.

    2017-12-01

    The ability to quantify seasonal water retention and storage in mountain snow packs has implications for an array of important topics, including ecosystem function, water resources, hazard mitigation, validation of remote sensing products, climate modeling, and the economy. Runoff simulation models, which typically rely on gridded climate data and snow remote sensing products, would be greatly improved if uncertainties in estimates of snow depth distribution in high-elevation complex terrain could be reduced. This requires an increase in the spatial and temporal coverage of observational snow data in high-elevation data-poor regions. To this end, we launched Community Snow Observations (CSO). Participating citizen scientists use Mountain Hub, a multi-platform mobile and web-based crowdsourcing application that allows users to record, submit, and instantly share geo-located snow depth, snow water equivalence (SWE) measurements, measurement location photos, and snow grain information with project scientists and other citizen scientists. The snow observations are used to validate remote sensing products and modeled snow depth distribution. The project's prototype phase focused on Thompson Pass in south-central Alaska, an important infrastructure corridor that includes avalanche terrain and the Lowe River drainage and is essential to the City of Valdez and the fisheries of Prince William Sound. This year's efforts included website development, expansion of the Mountain Hub tool, and recruitment of citizen scientists through a combination of social media outreach, community presentations, and targeted recruitment of local avalanche professionals. We also conducted two intensive field data collection campaigns that coincided with an aerial photogrammetric survey. With more than 400 snow depth observations, we have generated a new snow remote-sensing product that better matches actual SWE quantities for Thompson Pass. In the next phase of the citizen science portion of this project we will focus on expanding our group of participants to a larger geographic area in Alaska, further develop our partnership with Mountain Hub, and build relationships in new communities as we conduct a photogrammetric survey in a different region next year.

  17. On the characterization of subpixel effects for passive microwave remote sensing of snow in montane environments

    NASA Astrophysics Data System (ADS)

    Vander Jagt, Benjamin John

    Snow and its water equivalent plays a vital role in global water and energy balances, with particular relevance in mountainous areas with arid and semi-arid climate regimes. Spaceborne passive microwave (PM) remote sensing measurements are attractive for snowpack characterization due to their continuous global coverage and historical record; over 30 years of research has been invested in the development of methods to characterize large-scale snow water resources from PM-based measurements. Historically, use of PM data for snowpack characterization in montane enviroments has been obstructed by the complex subpixel variability of snow properties within the PM measurement footprint. The main subpixel effects can be grouped as: the effect of snow microstructure (e.g. snow grain size) and stratigraphy on snow microwave emission, vegetation attenuation of PM measurements, and the sensitivity PM brightness temperature (Tb) observation to the variability of different subpixel properties at spaceborne measurement scales. This dissertation is focused on a systematic examination of these issues, which thus far have prevented the widespread integration of snow water equivalent (SWE) retrieval methods. It is meant to further our comprehension of the underlying processes at work in these rugged, remote, a hydrologically important areas. The role that snow microstructure plays in the PM retrievals of SWE is examined first. Traditional estimates of grain size are subjective and prone to error. Objective techniques to characterize grain size are described and implemented, including near infrared (NIR), stereology, and autocorrelation based approaches. Results from an intensive Colorado field study in which independent estimates of grain size and their modeled brightness temperature (Tb) emission are evaluated against PM Tb observations are included. The coarse resolution of the passive microwave measurements provides additional challenges when trying to resolve snow states via remote sensing observations. The natural heterogeneity of snowpack (e.g. depth, stratigraphy, etc) and vegetative states within the PM footprint occurs at spatial scales smaller than PM observation scales. The sensitivity to changes in snow depth given sub-pixel variability in snow and vegetation is explored and quantified using the comprehensive dataset acquired during the Cold Land Processes experiment (CLPX). Lastly, vegetation has long been an obstacle in efforts to derive snow depth and mass estimates from passive microwave (PM) measurements of brightness temperature (Tb). We introduce a vegetation transmissivity model that is derived entirely from multi-scale and multi-temporal PM Tb observations and a globally available vegetation dataset, specifically the Leaf Area Index (LAI). This newly constructed model characterizes the attenuation of PM Tb observations at frequencies typically employed for snow retrieval algorithms, as a function of LAI. Additionally, the model is used to predict how much SWE is observable within the major river basins of Colorado and the central Rockies.

  18. Application of the Markov Chain Monte Carlo method for snow water equivalent retrieval based on passive microwave measurements

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Vanderjagt, B. J.

    2015-12-01

    Markov Chain Monte Carlo (MCMC) method is a retrieval algorithm based on Bayes' rule, which starts from an initial state of snow/soil parameters, and updates it to a series of new states by comparing the posterior probability of simulated snow microwave signals before and after each time of random walk. It is a realization of the Bayes' rule, which gives an approximation to the probability of the snow/soil parameters in condition of the measured microwave TB signals at different bands. Although this method could solve all snow parameters including depth, density, snow grain size and temperature at the same time, it still needs prior information of these parameters for posterior probability calculation. How the priors will influence the SWE retrieval is a big concern. Therefore, in this paper at first, a sensitivity test will be carried out to study how accurate the snow emission models and how explicit the snow priors need to be to maintain the SWE error within certain amount. The synthetic TB simulated from the measured snow properties plus a 2-K observation error will be used for this purpose. It aims to provide a guidance on the MCMC application under different circumstances. Later, the method will be used for the snowpits at different sites, including Sodankyla, Finland, Churchill, Canada and Colorado, USA, using the measured TB from ground-based radiometers at different bands. Based on the previous work, the error in these practical cases will be studied, and the error sources will be separated and quantified.

  19. Analyzing dynamics of snow distribution and melt runoff in a meso-scaled watershed using the AgroEcoSystem-Watershed (AgES-W) model

    NASA Astrophysics Data System (ADS)

    Kunz, A.; Helmschrot, J.; Green, T. R.

    2013-12-01

    The seasonal snow cover in the western mountain regions of the United States functions as the primary supply and storage of water. Water management in these areas is often based on empirical relationships between point measurements of snow water equivalent (SWE) at selected sites and associated stream discharge. With a climate shifting towards more rain and less snow, due to the global warming, the patterns of snow deposition, and consequently the timing of melt, soil water content and the flow in streams and rivers will most likely alter. As a consequence, the established relationships between measured SWE and runoff will become unstable and unreliable, and consequently impacting the water resource management in this area. To better assess and understand the spatial and temporal dimension of altered snow cover on runoff generation in the intermountain region of the western United States, we set up the distributed hydrological AgroEcoSystem-Watershed (AgES-W) model for the Reynolds Creek Experimental Watershed (239 km2) in the Owyhee Mountains of Idaho. The study area with elevations ranging from 1101 to 2241 m is dominated by granitic and volcanic rocks and lake sediments. Deep moist soils allowing for mountain big sagebrush aspen and subalpine fir are found at higher elevations, whereas shallow, arid soils supporting sagebrush-grassland communities are common at lower elevations. Precipitation in the region varies from 230 mm at the lower elevations in the north up to 1100 mm in the higher regions at the southern margin south. The mean annual streamflow at the outlet is 0.56 m3/s. Since the Reynolds Creek Experimental Watershed (RCEW) was selected as a test basin in 1959, a comprehensive hydro-climatological network provides long-term records of daily snow, precipitation, temperature and streamflow measurements. Thus, we used a 30-year data record to calibrate and validate the AgES-W model to three nested sub-basins within the test site. First results show declining discharge volumes for RCEW, while volumes remain fairly constant for the 0.4 km2 Reynolds Mountain East (RME) headwater basin. Comparing simulated snow cover with snow-depth records measured across RME, the model was initially tested regarding its reliability to estimate spatio-temporal snow cover. AgES-W was able to simulate snow-depth dynamics quite well (>0.7 Nash-Sutcliffe Efficiency) for single measurement points, which were cross-validated using additional measurement points as well as stream discharge. The obtained parameter set was then used to model snow distribution for the entire RME basin for a period of 12 years. Applying the calibrated model to all catchments, we analyzed temporal shifts of seasonal runoff within and between the three nested subwatersheds to identify possible changes in the spatio-temporal pattern of snow accumulation and snowmelt. The model results were further used to analyze and map simulated snow water equivalents along a topographic gradient to identify spatial shifts of the snowline during the last 30 years. First results for RME indicate a decline of snow-covered area based on the course of monthly averages, with the largest declines in January and February.

  20. iTree-Hydro: Snow hydrology update for the urban forest hydrology model

    Treesearch

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2011-01-01

    This article presents snow hydrology updates made to iTree-Hydro, previously called the Urban Forest Effects—Hydrology model. iTree-Hydro Version 1 was a warm climate model developed by the USDA Forest Service to provide a process-based planning tool with robust water quantity and quality predictions given data limitations common to most urban areas. Cold climate...

  1. Spatiotemporal variability of snow depletion curves derived from SNODAS for the conterminous United States, 2004-2013

    USGS Publications Warehouse

    Driscoll, Jessica; Hay, Lauren E.; Bock, Andrew R.

    2017-01-01

    Assessment of water resources at a national scale is critical for understanding their vulnerability to future change in policy and climate. Representation of the spatiotemporal variability in snowmelt processes in continental-scale hydrologic models is critical for assessment of water resource response to continued climate change. Continental-extent hydrologic models such as the U.S. Geological Survey National Hydrologic Model (NHM) represent snowmelt processes through the application of snow depletion curves (SDCs). SDCs relate normalized snow water equivalent (SWE) to normalized snow covered area (SCA) over a snowmelt season for a given modeling unit. SDCs were derived using output from the operational Snow Data Assimilation System (SNODAS) snow model as daily 1-km gridded SWE over the conterminous United States. Daily SNODAS output were aggregated to a predefined watershed-scale geospatial fabric and used to also calculate SCA from October 1, 2004 to September 30, 2013. The spatiotemporal variability in SNODAS output at the watershed scale was evaluated through the spatial distribution of the median and standard deviation for the time period. Representative SDCs for each watershed-scale modeling unit over the conterminous United States (n = 54,104) were selected using a consistent methodology and used to create categories of snowmelt based on SDC shape. The relation of SDC categories to the topographic and climatic variables allow for national-scale categorization of snowmelt processes.

  2. Assimilation of Remotely-Sensed Snow information to improve streamflow predictions in the Southwestern US

    NASA Astrophysics Data System (ADS)

    López-Burgos, V.; Rajagopal, S.; Martinez Baquero, G. F.; Gupta, H. V.

    2009-12-01

    Rapidly growing population in the southwestern US is leading to increasing demand and decreasing availability of water, requiring a detailed quantification of hydrological processes. The integration of detailed spatial information of water fluxes from remote sensing platforms, and hydrological models coupled with ground based data is an important step towards this goal. This project is exploring the use of Snow Water Equivalent (SWE) estimates to update the snow component of the Variable Infiltration Capacity model (VIC). SWE estimates are obtained by combining SNOTEL data with MODIS Snow Cover Area (SCA) information. Because, cloud cover corrupts the estimates of SCA, a rule-based method is used to clean up the remotely sensed images. The rules include a time interpolation method, and the probability of a pixel for been covered with snow based on the relationships between elevation, temperature, lapse rate, aspect and topographic shading. The approach is used to improve streamflow predictions on two rivers managed by the Salt River Project, a water and energy supplier in central Arizona. This solution will help improve the management of reservoirs in the Salt and Verde River in Phoenix, Arizona (tributaries of the lower Colorado River basin), by incorporating physically based distributed models and remote sensing observations into their Decision Support Tools and planning tools. This research seeks to increase the knowledge base used to manage reservoirs and groundwater resources in a region affected by a long-term drought. It will be applicable and relevant for other water utility companies facing the challenges of climate change and decreasing water resources.

  3. Monitoring of the Liquid Water Content During Snowmelt Using C-Band SAR Data and the Snow Model CROCUS

    NASA Astrophysics Data System (ADS)

    Rondeau-Genesse, G.; Trudel, M.; Leconte, R.

    2014-12-01

    Coupling C-Band synthetic aperture radar (SAR) data to a multilayer snow model is a step in better understanding the temporal evolution of the radar backscattering coefficient during snowmelt. The watershed used for this study is the Nechako River Basin, located in the Rocky Mountains of British-Columbia (Canada). This basin has a snowpack of several meters in depth and part of its water is diverted to the Kemano hydropower system, managed by Rio-Tinto Alcan. Eighteen RADARSAT-2 ScanSAR Wide archive images were acquired in VV/VH polarization for the winter of 2011-2012, under different snow conditions. They are interpreted along with CROCUS, a multilayer physically-based snow model developed by Météo-France. This model discretizes the snowpack into 50 layers, which makes it possible to monitor various characteristics, such as liquid water content (LWC), throughout the season. CROCUS is used to model three specific locations of the Nechako River Basin. Results vary from one site to another, but in general there is a good agreement between the modeled LWC of the first layer of the snowpack and the backscattering coefficient of the RADARSAT-2 images, with a coefficient of determination (R²) of 0.80 and more. The radar images themselves were processed using an updated version of Nagler's methodology, which consists of subtracting an image in wet snow conditions to one in dry snow conditions, as wet snow can then be identified using a soft threshold centered around -3 dB. A second filter was used in order to differentiate dry snow and bare soil. That filter combines a VH/VV ratio threshold and an altitude criterion. The ensuing maps show a good agreement with the MODIS snow-covered area, which is already obtained daily over the Nechako River Basin, but with additional information on the location of wet snow and without sensibility to cloud cover. As a next step, the outputs of CROCUS will be used in Mätzler's Microwave Emission Model of Layered Snowpacks (MEMLS) to simulate the backscattering coefficient at different locations in the basin.

  4. Overview of SnowEx Year 1 Activities

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Gatebe, Charles; Hall, Dorothy; Newlin, Jerry; Misakonis, Amy; Elder, Kelly; Marshall, Hans Peter; Heimstra, Chris; Brucker, Ludovic; De Marco, Eugenia; hide

    2017-01-01

    SnowEx is a multi-year airborne snow campaign with the primary goal of addressing the question: How much water is stored in Earths terrestrial snow-covered regions? Year 1 (2016-17) focused on the distribution of snow-water equivalent (SWE) and the snow energy balance in a forested environment. The year 1 primary site was Grand Mesa and the secondary site was the Senator Beck Basin, both in western, Colorado, USA. Nine sensors on five aircraft made observations using a broad range of sensing techniques, active and passive microwave, and active and passive optical infrared to determine the sensitivity and accuracy of these potential satellite remote sensing techniques, along with models, to measure snow under a range of forest conditions. SnowEx also included an extensive range of ground truth measurements in-situ manual samples, snow pits, ground based remote sensing measurements, and sophisticated new techniques. A detailed description of the data collected will be given and some preliminary results will be presented.

  5. Reproducing snow making strategies with deterministic modeling and image-based validation

    NASA Astrophysics Data System (ADS)

    Allamano, P.; Claps, P.; Poggi, D.

    2012-04-01

    Almost all winter resorts rely on artificial snow production as a surrogate for natural snow when the natural snow cover is missing or inadequate. The sustainability of snowmaking practices represents a debated issue, with two contrasting views: on the one hand the need for enhancing the value of mountain regions in terms of touristic appeal; on the other hand, the question whether the production of artificial snow is sustainable from an environmental point of view. We present here the outcomes of a pilot study aimed at assessing the impact of snowmaking practices on water resources management in the Gressoney valley. The study area is located in the Aosta Valley (North-Western Italy). The total area covered by ski runs is of about 95 ha, with an elevation range of 2000 m and an average snow production over the last 5 seasons of 200.000 m3 of water per year. Daily records of water volume used for artificial snow making were made available by the ski runs administrators for the last 5 seasons along with webcam images taken for the last 2 years. Daily meteorological records (of temperature and precipitation) were retrieved in 5 meteo stations within the district area since 1928 (83 years). The snowpack evolution in the skiable domain is modeled by means of a distributed water balance model which adopts a radiation-temperature index representation to describe snowmelt, and accounts for the topographic complexity of the area by modeling radiation over a very fine terrain grid (10 by 10 m cells). The model requires distributed daily temperature and precipitation as inputs. The snowmelt module is calibrated locally at the five stations. The snow-making module, aimed at synthesizing the production strategies at the district scale, is calibrated by keeping the required average snow cover depths on the ski runs as a free parameter. After calibrating the model parameters, also with the aid of visual comparison of modeled and real snow patterns registered by the webcams, we were able to reconstruct the seasonal evolution of natural and artificial snow cover over the whole district since 1928. A 83 years-long synthetic record of seasonal volumes potentially allocated for artificial snow production was obtained and a preliminary evaluation of the probability to have insufficient resource to face both domestic and snow production needs was performed. The system was found to have a 10% probability of deficiency, with deficit volumes ranging from 10.000 to 100.000 m3.

  6. Operational and LIS-Based North American Land Data Assimilation Systems at National Centers for Environmental Prediction: Capability in Simulating Water and Energy Budget over the Western United States

    NASA Astrophysics Data System (ADS)

    Mitchell, K.; Xia, Y.; Ek, M. B.; Mocko, D. M.; Kumar, S.; Peters-Lidard, C. D.

    2016-12-01

    NLDAS is a multi-institutional collaborative project sponsored by NOAA's Climate Program Office and NASA's Terrestrial Hydrological Program. NLDAS has a long successful history of producing soil moisture, snow cover, total runoff and streamflow products via application of surface meteorology and precipitation datasets to drive four land-surface models (i.e., Noah, Mosaic, SAC, VIC). The purpose of the NLDAS system is to support numerous research and operational applications in the land modeling and water resources management communities. Since the operational NLDAS version was successfully implemented at NCEP in August 2014, NLDAS products are being used by over 5000 users annually worldwide, including academia, governmental agencies, and private enterprises. Over 71 million files and 144 Tb of data were downloaded in 2015. As we endeavor to increase the quality and breadth of NLDAS products, a joint effort between NASA and NCEP is underway to enable the assimilation of hydrology-relevant remote sensing datasets within NLDAS through the NASA Land Information System (LIS). The use of LIS will also enable easier transition of newly upgraded land surface models into NCEP NLDAS operations. Cold season processes significantly affect water and energy cycles, and their partitioning. As such, in the evaluation of NLDAS systems it is important to assess water and energy exchanges and/or partitioning processes over high-elevations. The Rocky Mountain region of the western U. S. is chosen as such a region to analyze and compare snow water equivalent (SWE), snow cover, snow melt, snow sublimation, total runoff, and sensible heat and latent heat flux. Reference data sets (observation-based and reanalysis) of monthly SWE, streamflow, evapotranspiration, GRACE-based total water storage change, and energy fluxes are used to evaluate model-simulated results. The results show several key factors that affect model simulations: (1) forcing errors such as precipitation partitioning into snowfall and rainfall, (2) snow albedo, (3) refreezing of melted snow, (4) boundary layer stability, and (5) freezing and thawing of soil. Though the anomaly correlations indicate good agreement with the observations or reanalysis products, large quantitative differences are evident in certain cases.

  7. A comparison between modeled and measured permafrost temperatures at Ritigraben borehole, Switzerland

    NASA Astrophysics Data System (ADS)

    Mitterer-Hoinkes, Susanna; Lehning, Michael; Phillips, Marcia; Sailer, Rudolf

    2013-04-01

    The area-wide distribution of permafrost is sparsely known in mountainous terrain (e.g. Alps). Permafrost monitoring can only be based on point or small scale measurements such as boreholes, active rock glaciers, BTS measurements or geophysical measurements. To get a better understanding of permafrost distribution, it is necessary to focus on modeling permafrost temperatures and permafrost distribution patterns. A lot of effort on these topics has been already expended using different kinds of models. In this study, the evolution of subsurface temperatures over successive years has been modeled at the location Ritigraben borehole (Mattertal, Switzerland) by using the one-dimensional snow cover model SNOWPACK. The model needs meteorological input and in our case information on subsurface properties. We used meteorological input variables of the automatic weather station Ritigraben (2630 m) in combination with the automatic weather station Saas Seetal (2480 m). Meteorological data between 2006 and 2011 on an hourly basis were used to drive the model. As former studies showed, the snow amount and the snow cover duration have a great influence on the thermal regime. Low snow heights allow for deeper penetration of low winter temperatures into the ground, strong winters with a high amount of snow attenuate this effect. In addition, variations in subsurface conditions highly influence the temperature regime. Therefore, we conducted sensitivity runs by defining a series of different subsurface properties. The modeled subsurface temperature profiles of Ritigraben were then compared to the measured temperatures in the Ritigraben borehole. This allows a validation of the influence of subsurface properties on the temperature regime. As expected, the influence of the snow cover is stronger than the influence of sub-surface material properties, which are significant, however. The validation presented here serves to prepare a larger spatial simulation with the complex hydro-meteorological 3-dimensional model Alpine 3D, which is based on a distributed application of SNOWPACK.

  8. Microwave Signatures of Melting/Refreezing Snow: Observations and Modeling Using Dense Medium Radiative Transfer Theory

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Kim, Edward J.; England, Anthony; deRoo, Roger; Hardy, Janet

    2005-01-01

    Microwave brightness temperatures of snow covered terrains can be modeled by means of the Dense Radiative Transfer Medium Theory (DMRT). In a dense medium, such as snow, the assumption of independent scattering is no longer valid and the scattering of correlated scatterers must be considered. In the DMRT, this is done considering a pair distribution function of the particles position. In the electromagnetic model, the snowpack is simulated as a homogeneous layer having effective permittivity and albedo calculated through the DMRT. In order to account for clustering of snow crystals, a model of cohesive particles can be applied, where the cohesion between the particles is described by means of a dimensionless parameters called stickiness (z), representing a measure of the inversion of the attraction of the particles. The lower the z the higher the stickiness. In this study, microwave signatures of melting and refreezing cycles of seasonal snowpacks at high altitudes are studied by means of both experimental and modeling tools. Radiometric data were collected 24 hours per day by the University of Michigan Tower Mounted Radiometer System (TMRS). The brightness temperatures collected by means of the TMRS are simulated by means of a multi-layer electromagnetic model based on the dense medium theory with the inputs to the model derived from the data collected at the snow pits and from the meteorological station. The paper is structured as follows: in the first Section the temperature profiles recorded by the meteorological station and the snow pit data are presented and analyzed; in the second Section, the characteristics of the radiometric system used to collect the brightness temperatures are reported together with the temporal behavior of the recorded brightness temperatures; in the successive Section the multi-layer DMRT-based electromagnetic model is described; in the fourth Section the comparison between modeled and measured brightness temperatures is discussed. We dedicate the last Section to the conclusions and future works.

  9. A Comprehensive Snow Density Model for Integrating Lidar-Derived Snow Depth Data into Spatial Snow Modeling

    NASA Astrophysics Data System (ADS)

    Marks, D. G.; Kormos, P.; Johnson, M.; Bormann, K. J.; Hedrick, A. R.; Havens, S.; Robertson, M.; Painter, T. H.

    2017-12-01

    Lidar-derived snow depths when combined with modeled or estimated snow density can provide reliable estimates of the distribution of SWE over large mountain areas. Application of this approach is transforming western snow hydrology. We present a comprehensive approach toward modeling bulk snow density that is reliable over a vast range of weather and snow conditions. The method is applied and evaluated over mountainous regions of California, Idaho, Oregon and Colorado in the western US. Simulated and measured snow density are compared at fourteen validation sites across the western US where measurements of snow mass (SWE) and depth are co-located. Fitting statistics for ten sites from three mountain catchments (two in Idaho, one in California) show an average Nash-Sutcliff model efficiency coefficient of 0.83, and mean bias of 4 kg m-3. Results illustrate issues associated with monitoring snow depth and SWE and show the effectiveness of the model, with a small mean bias across a range of snow and climate conditions in the west.

  10. Close packing effects on clean and dirty snow albedo and associated climatic implications

    NASA Astrophysics Data System (ADS)

    He, C.; Liou, K. N.; Takano, Y.

    2017-12-01

    Previous modeling of snow albedo, a key climate feedback parameter, follows the independent scattering approximation (ISA) such that snow grains are considered as a number of separate units with distances longer than wavelengths. Here we develop a new snow albedo model for widely observed close-packed snow grains internally mixed with black carbon (BC) and demonstrate that albedo simulations match closer to observations. Close packing results in a stronger light absorption for clean and BC-contaminated snow. Compared with ISA, close packing reduces pure snow albedos by up to 0.05, whereas it enhances BC-induced snow albedo reduction and associated surface radiative forcing by up to 15% (20%) for fresh (old) snow, with larger enhancements for stronger structure packing. Finally, our results suggest that BC-snow albedo forcing and snow albedo feedback (climate sensitivity) are underestimated in previous modeling studies, making snow close packing consideration a necessity in climate modeling and analysis.

  11. Close packing effects on clean and dirty snow albedo and associated climatic implications

    NASA Astrophysics Data System (ADS)

    He, Cenlin; Takano, Yoshi; Liou, Kuo-Nan

    2017-04-01

    Previous modeling of snow albedo, a key climate feedback parameter, follows the independent scattering approximation (ISA) such that snow grains are considered as a number of separate units with distances longer than wavelengths. Here we develop a new snow albedo model for widely observed close-packed snow grains internally mixed with black carbon (BC) and demonstrate that albedo simulations match closer to observations. Close packing results in a stronger light absorption for clean and BC-contaminated snow. Compared with ISA, close packing reduces pure snow albedos by up to 0.05, whereas it enhances BC-induced snow albedo reduction and associated surface radiative forcing by up to 15% (20%) for fresh (old) snow, with larger enhancements for stronger structure packing. Finally, our results suggest that BC-snow albedo forcing and snow albedo feedback (climate sensitivity) are underestimated in previous modeling studies, making snow close packing consideration a necessity in climate modeling and analysis.

  12. Simulating Snow in Canadian Boreal Environments with CLASS for ESM-SnowMIP

    NASA Astrophysics Data System (ADS)

    Wang, L.; Bartlett, P. A.; Derksen, C.; Ireson, A. M.; Essery, R.

    2017-12-01

    The ability of land surface schemes to provide realistic simulations of snow cover is necessary for accurate representation of energy and water balances in climate models. Historically, this has been particularly challenging in boreal forests, where poor treatment of both snow masking by forests and vegetation-snow interaction has resulted in biases in simulated albedo and snowpack properties, with subsequent effects on both regional temperatures and the snow albedo feedback in coupled simulations. The SnowMIP (Snow Model Intercomparison Project) series of experiments or `MIPs' was initiated in order to provide assessments of the performance of various snow- and land-surface-models at selected locations, in order to understand the primary factors affecting model performance. Here we present preliminary results of simulations conducted for the third such MIP, ESM-SnowMIP (Earth System Model - Snow Model Intercomparison Project), using the Canadian Land Surface Scheme (CLASS) at boreal forest sites in central Saskatchewan. We assess the ability of our latest model version (CLASS 3.6.2) to simulate observed snowpack properties (snow water equivalent, density and depth) and above-canopy albedo over 13 winters. We also examine the sensitivity of these simulations to climate forcing at local and regional scales.

  13. Simulation of Current and Projected Montane Snowpacks for the Preservation of the Wolverine in the Western U.S.

    NASA Astrophysics Data System (ADS)

    Heldmyer, A.; Livneh, B.; Barsugli, J. J.; Dewes, C.; Ray, A. J.; Rangwala, I.; Guinotte, J. M.; Torbit, S.

    2017-12-01

    A major gap in research on the future of snowpack in the western United States is accounting for snow persistence in relation to topographical effects like terrain aspect and slope, which have important consequences for species that rely on snow for habitat in alpine regions, such as the wolverine (Gulo gulo). Previous work has shown a predicted loss of snow-covered area in Montana (which encompasses much of the Wolverine's extent range) ranging from 50 - 85%. However, these estimates use coarse model grid-boxes (6 - 12 km per side) that lack topographic shading, with mean elevations below the higher elevations where the wolverine tends to live. We address these informational gaps by applying a physically-based, high-resolution hydrologic model (250 m spatial resolution), the Distributed Hydrologic Soil and Vegetation Model (DHSVM), to project snow water equivalent (SWE) in two regions important to the survival of the wolverine within Glacier and Rocky Mountain National Parks. Because snowpack evolution is driven primarily by the energy balance at the surface, particularly during melt season, the inclusion of a realistic, physically-based energy balance together with topographic shading enables a clearer understanding of how projected climatic perturbations will affect future snowpack. We apply a diverse sample of future (2035-2064) climate conditions from CMIP5 General Circulation Models (GCMs) to meteorological forcing data from a baseline historical period (1998-2013) through the delta method, after validating historical simulations with SNOTEL and MODIS satellite data. Despite considerable variability across models, the results show a consistent decrease in Snow-Covered Area (SCA) across investigated future climate projections, an increased loss of snowpack during years of drought, and a fragmentation of land with deep snow available for refuge.

  14. Data Fusion of Gridded Snow Products Enhanced with Terrain Covariates and a Simple Snow Model

    NASA Astrophysics Data System (ADS)

    Snauffer, A. M.; Hsieh, W. W.; Cannon, A. J.

    2017-12-01

    Hydrologic planning requires accurate estimates of regional snow water equivalent (SWE), particularly areas with hydrologic regimes dominated by spring melt. While numerous gridded data products provide such estimates, accurate representations are particularly challenging under conditions of mountainous terrain, heavy forest cover and large snow accumulations, contexts which in many ways define the province of British Columbia (BC), Canada. One promising avenue of improving SWE estimates is a data fusion approach which combines field observations with gridded SWE products and relevant covariates. A base artificial neural network (ANN) was constructed using three of the best performing gridded SWE products over BC (ERA-Interim/Land, MERRA and GLDAS-2) and simple location and time covariates. This base ANN was then enhanced to include terrain covariates (slope, aspect and Terrain Roughness Index, TRI) as well as a simple 1-layer energy balance snow model driven by gridded bias-corrected ANUSPLIN temperature and precipitation values. The ANN enhanced with all aforementioned covariates performed better than the base ANN, but most of the skill improvement was attributable to the snow model with very little contribution from the terrain covariates. The enhanced ANN improved station mean absolute error (MAE) by an average of 53% relative to the composing gridded products over the province. Interannual peak SWE correlation coefficient was found to be 0.78, an improvement of 0.05 to 0.18 over the composing products. This nonlinear approach outperformed a comparable multiple linear regression (MLR) model by 22% in MAE and 0.04 in interannual correlation. The enhanced ANN has also been shown to estimate better than the Variable Infiltration Capacity (VIC) hydrologic model calibrated and run for four BC watersheds, improving MAE by 22% and correlation by 0.05. The performance improvements of the enhanced ANN are statistically significant at the 5% level across the province and in four out of five physiographic regions.

  15. Modelling the physical multiphase interactions of HNO3 between snow and air on the Antarctic Plateau (Dome C) and coast (Halley)

    NASA Astrophysics Data System (ADS)

    Chan, Hoi Ga; Frey, Markus M.; King, Martin D.

    2018-02-01

    Emissions of nitrogen oxide (NOx = NO + NO2) from the photolysis of nitrate (NO3-) in snow affect the oxidising capacity of the lower troposphere especially in remote regions of high latitudes with little pollution. Current air-snow exchange models are limited by poor understanding of processes and often require unphysical tuning parameters. Here, two multiphase models were developed from physically based parameterisations to describe the interaction of nitrate between the surface layer of the snowpack and the overlying atmosphere. The first model is similar to previous approaches and assumes that below a threshold temperature, To, the air-snow grain interface is pure ice and above To a disordered interface (DI) emerges covering the entire grain surface. The second model assumes that air-ice interactions dominate over all temperatures below melting of ice and that any liquid present above the eutectic temperature is concentrated in micropockets. The models are used to predict the nitrate in surface snow constrained by year-round observations of mixing ratios of nitric acid in air at a cold site on the Antarctic Plateau (Dome C; 75°06' S, 123°33' E; 3233 m a.s.l.) and at a relatively warm site on the Antarctic coast (Halley; 75°35' S, 26°39' E; 35 m a.s.l). The first model agrees reasonably well with observations at Dome C (Cv(RMSE) = 1.34) but performs poorly at Halley (Cv(RMSE) = 89.28) while the second model reproduces with good agreement observations at both sites (Cv(RMSE) = 0.84 at both sites). It is therefore suggested that in winter air-snow interactions of nitrate are determined by non-equilibrium surface adsorption and co-condensation on ice coupled with solid-state diffusion inside the grain, similar to Bock et al. (2016). In summer, however, the air-snow exchange of nitrate is mainly driven by solvation into liquid micropockets following Henry's law with contributions to total surface snow NO3- concentrations of 75 and 80 % at Dome C and Halley, respectively. It is also found that the liquid volume of the snow grain and air-micropocket partitioning of HNO3 are sensitive to both the total solute concentration of mineral ions within the snow and pH of the snow. The second model provides an alternative method to predict nitrate concentration in the surface snow layer which is applicable over the entire range of environmental conditions typical for Antarctica and forms a basis for a future full 1-D snowpack model as well as parameterisations in regional or global atmospheric chemistry models.

  16. Origin of elemental carbon in snow from western Siberia and northwestern European Russia during winter-spring 2014, 2015 and 2016

    NASA Astrophysics Data System (ADS)

    Evangeliou, Nikolaos; Shevchenko, Vladimir P.; Espen Yttri, Karl; Eckhardt, Sabine; Sollum, Espen; Pokrovsky, Oleg S.; Kobelev, Vasily O.; Korobov, Vladimir B.; Lobanov, Andrey A.; Starodymova, Dina P.; Vorobiev, Sergey N.; Thompson, Rona L.; Stohl, Andreas

    2018-01-01

    Short-lived climate forcers have been proven important both for the climate and human health. In particular, black carbon (BC) is an important climate forcer both as an aerosol and when deposited on snow and ice surface because of its strong light absorption. This paper presents measurements of elemental carbon (EC; a measurement-based definition of BC) in snow collected from western Siberia and northwestern European Russia during 2014, 2015 and 2016. The Russian Arctic is of great interest to the scientific community due to the large uncertainty of emission sources there. We have determined the major contributing sources of BC in snow in western Siberia and northwestern European Russia using a Lagrangian atmospheric transport model. For the first time, we use a recently developed feature that calculates deposition in backward (so-called retroplume) simulations allowing estimation of the specific locations of sources that contribute to the deposited mass. EC concentrations in snow from western Siberia and northwestern European Russia were highly variable depending on the sampling location. Modelled BC and measured EC were moderately correlated (R = 0.53-0.83) and a systematic region-specific model underestimation was found. The model underestimated observations by 42 % (RMSE = 49 ng g-1) in 2014, 48 % (RMSE = 37 ng g-1) in 2015 and 27 % (RMSE = 43 ng g-1) in 2016. For EC sampled in northwestern European Russia the underestimation by the model was smaller (fractional bias, FB > -100 %). In this region, the major sources were transportation activities and domestic combustion in Finland. When sampling shifted to western Siberia, the model underestimation was more significant (FB < -100 %). There, the sources included emissions from gas flaring as a major contributor to snow BC. The accuracy of the model calculations was also evaluated using two independent datasets of BC measurements in snow covering the entire Arctic. The model underestimated BC concentrations in snow especially for samples collected in springtime.

  17. Refreezing on the Greenland ice sheet: a model comparison

    NASA Astrophysics Data System (ADS)

    Steger, Christian; Reijmer, Carleen; van den Broeke, Michiel; Ligtenberg, Stefan; Kuipers Munneke, Peter; Noël, Brice

    2016-04-01

    Mass loss of the Greenland ice sheet (GrIS) is an important contributor to global sea level rise. Besides calving, surface melt is the dominant source of mass loss. However, only part of the surface melt leaves the ice sheet as runoff whereas the other part percolates into the snow cover and refreezes. Due to this process, part of the meltwater is (intermediately) stored. Refreezing thus impacts the surface mass balance of the ice sheet but it also affects the vertical structure of the snow cover due to transport of mass and energy. Due to the sparse availability of in situ data and the demand of future projections, it is inevitable to use numerical models to simulate refreezing and related processes. Currently, the magnitude of refrozen mass is neither well constrained nor well validated. In this study, we model the snow and firn layer, and compare refreezing on the GrIS as modelled with two different numerical models. Both models are forced with meteorological data from the regional climate model RACMO 2 that has been shown to simulate realistic conditions for Greenland. One model is the UU/IMAU firn densification model (FDM) that can be used both in an on- and offline mode with RACMO 2. The other model is SNOWPACK; a model originally designed to simulate seasonal snow cover in alpine conditions. In contrast to FDM, SNOWPACK accounts for snow metamorphism and microstructure and contains a more physically based snow densification scheme. A first comparison of the models indicates that both seem to be able to capture the general spatial and temporal pattern of refreezing. Spatially, refreezing occurs mostly in the ablation zone and decreases in the accumulation zone towards the interior of the ice sheet. Below the equilibrium line altitude (ELA) where refreezing occurs in seasonal snow cover on bare ice, the storage effect is only intermediate. Temporal patterns on a seasonal range indicate two peaks in refreezing; one at the beginning of the melt season where water infiltrates the cold snow pack and one in early winter where the penetration of the cold surface temperature refreezes the retained liquid water. However, the model comparison reveals differences especially close to the equilibrium line where refreezing and runoff seem to be highly sensitive to the exact model formulation and fresh snow density initialization. Furthermore, SNOWPACK's densification scheme generally underestimates densification rates in case of high overburden pressure.

  18. The Microwave Radiative Properties of Falling Snow Derived from Nonspherical Ice Particle Models. Part II: Initial Testing Using Radar, Radiometer and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Tian, Lin; Grecu, Mircea; Kuo, Kwo-Sen; Johnson, Benjamin; Heymsfield, Andrew J.; Bansemer, Aaron; Heymsfield, Gerald M.; Wang, James R.; Meneghini, Robert

    2016-01-01

    In this study, two different particle models describing the structure and electromagnetic properties of snow are developed and evaluated for potential use in satellite combined radar-radiometer precipitation estimation algorithms. In the first model, snow particles are assumed to be homogeneous ice-air spheres with single-scattering properties derived from Mie theory. In the second model, snow particles are created by simulating the self-collection of pristine ice crystals into aggregate particles of different sizes, using different numbers and habits of the collected component crystals. Single-scattering properties of the resulting nonspherical snow particles are determined using the discrete dipole approximation. The size-distribution-integrated scattering properties of the spherical and nonspherical snow particles are incorporated into a dual-wavelength radar profiling algorithm that is applied to 14- and 34-GHz observations of stratiform precipitation from the ER-2 aircraft-borne High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar. The retrieved ice precipitation profiles are then input to a forward radiative transfer calculation in an attempt to simulate coincident radiance observations from the Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR). Much greater consistency between the simulated and observed CoSMIR radiances is obtained using estimated profiles that are based upon the nonspherical crystal/aggregate snow particle model. Despite this greater consistency, there remain some discrepancies between the higher moments of the HIWRAP-retrieved precipitation size distributions and in situ distributions derived from microphysics probe observations obtained from Citation aircraft underflights of the ER-2. These discrepancies can only be eliminated if a subset of lower-density crystal/aggregate snow particles is assumed in the radar algorithm and in the interpretation of the in situ data.

  19. Factors Impacting Spatial Patterns of Snow Distribution in a Small Catchment near Nome, AK

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wilson, C. J.; Charsley-Groffman, L.; Busey, R.; Bolton, W. R.

    2017-12-01

    Snow cover plays an important role in the climate, hydrology and ecological systems of the Arctic due to its influence on the water balance, thermal regimes, vegetation and carbon flux. Thus, snow depth and coverage have been key components in all the earth system models but are often poorly represented for arctic regions, where fine scale snow distribution data is sparse. The snow data currently used in the models is at coarse resolution, which in turn leads to high uncertainty in model predictions. Through the DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic, high resolution snow distribution data is being developed and applied in catchment scale models to ultimately improve representation of snow and its interactions with other model components in the earth system models . To improve these models, it is important to identify key factors that control snow distribution and quantify the impacts of those factors on snow distribution. In this study, two intensive snow depth surveys (1 to 10 meters scale) were conducted for a 2.3 km2 catchment on the Teller road, near Nome, AK in the winter of 2016 and 2017. We used a statistical model to quantify the impacts of vegetation types, macro-topography, micro-topography, and meteorological parameters on measured snow depth. The results show that snow spatial distribution was similar between 2016 and 2017, snow depth was spatially auto correlated over small distance (2-5 meters), but not spatially auto correlated over larger distance (more than 2-5 meters). The coefficients of variation of snow depth was above 0.3 for all the snow survey transects (500-800 meters long). Variation of snow depth is governed by vegetation height, aspect, slope, surface curvature, elevation and wind speed and direction. We expect that this empirical statistical model can be used to estimate end of winter snow depth for the whole watershed and will further develop the model using data from other arctic regions to estimate seasonally dynamic snow coverage and properties for use in catchment scale to pan-Arctic models.

  20. Calculation of new snow densities from sub-daily automated snow measurements

    NASA Astrophysics Data System (ADS)

    Helfricht, Kay; Hartl, Lea; Koch, Roland; Marty, Christoph; Lehning, Michael; Olefs, Marc

    2017-04-01

    In mountain regions there is an increasing demand for high-quality analysis, nowcasting and short-range forecasts of the spatial distribution of snowfall. Operational services, such as for avalanche warning, road maintenance and hydrology, as well as hydropower companies and ski resorts need reliable information on the depth of new snow (HN) and the corresponding water equivalent (HNW). However, the ratio of HNW to HN can vary from 1:3 to 1:30 because of the high variability of new snow density with respect to meteorological conditions. In the past, attempts were made to calculate new snow densities from meteorological parameters mainly using daily values of temperature and wind. Further complex statistical relationships have been used to calculate new snow densities on hourly to sub-hourly time intervals to drive multi-layer snow cover models. However, only a few long-term in-situ measurements of new snow density exist for sub-daily time intervals. Settling processes within the new snow due to loading and metamorphism need to be considered when computing new snow density. As the effect of these processes is more pronounced for long time intervals, a high temporal resolution of measurements is desirable. Within the pluSnow project data of several automatic weather stations with simultaneous measurements of precipitation (pluviometers), snow water equivalent (SWE) using snow pillows and snow depth (HS) measurements using ultrasonic rangers were analysed. New snow densities were calculated for a set of data filtered on the basis of meteorological thresholds. The calculated new snow densities were compared to results from existing new snow density parameterizations. To account for effects of settling of the snow cover, a case study based on a multi-year data set using the snow cover model SNOWPACK at Weissfluhjoch was performed. Measured median values of hourly new snow densities at the different stations range from 54 to 83 kgm-3. This is considerably lower than a 1:10 approximation (i.e. 100 kgm-3), which is mainly based on daily values in the Alps. Variations in new snow density could not be explained in a satisfactory manner using meteorological data measured at the same location. Likewise, some of the tested parametrizations of new snow density, which primarily use air temperature as a proxy, result in median new snow densities close to the ones from automated measurements, but show only a low correlation between calculated and measured new snow densities. The case study on the influence of snow settling on HN resulted on average in an underestimation of HN by 17%, which corresponds to 2-3% of the cumulated HN from the previous 24 hours. Therefore, the mean hourly new snow densities may be overestimated by 14%. The analysis in this study is especially limited with respect to the meteorological influence on the HS measurement using ultra-sonic rangers. Nevertheless, the reasonable mean values encourage calculating new snow densities from standard hydro-meteorological measurements using more precise observation devices such as optical snow depth sensors and more sensitive scales for SWE measurements also on sub-daily time-scales.

  1. Snow Water Equivalent estimation based on satellite observation

    NASA Astrophysics Data System (ADS)

    Macchiavello, G.; Pesce, F.; Boni, G.; Gabellani, S.

    2009-09-01

    The availability of remotely sensed images and them analysis is a powerful tool for monitoring the extension and typology of snow cover over territory where the in situ measurements are often difficult. Information on snow are fundamental for monitoring and forecasting the available water above all in regions at mid latitudes as Mediterranean where snowmelt may cause floods. The hydrological model requirements and the daily acquisitions of MODIS (Moderate Resolution Imaging Spectroradiometer), drove, in previous research activities, to the development of a method to automatically map the snow cover from multi-spectral images. But, the major hydrological parameter related to the snow pack is the Snow Water Equivalent (SWE). This represents a direct measure of stored water in the basin. Because of it, the work was focused to the daily estimation of SWE from MODIS images. But, the complexity of this aim, based only on optical data, doesn’t find any information in literature. Since, from the spectral range of MODIS data it is not possible to extract a direct relation between spectral information and the SWE. Then a new method, respectful of the physic of the snow, was defined and developed. Reminding that the snow water equivalent is the product of the three factors as snow density, snow depth and the snow covered areas, the proposed approach works separately on each of these physical behaviors. Referring to the physical characteristic of snow, the snow density is function of the snow age, then it was studied a new method to evaluate this. Where, a module for snow age simulation from albedo information was developed. It activates an age counter updated by new snow information set to estimate snow age from zero accumulation status to the end of melting season. The height of the snow pack, can be retrieved by adopting relation between vegetation and snow depth distributions. This computes snow height distribution by the relation between snow cover fraction and the forest canopy density. Finally, the SWE has to be calculated for the snow covered areas, detected by means of a previously developed decision tree classifier able to classify snow cover by self selecting rules in a statistically optimum way. The advantages introduced from this work are many. Firstly, applying a suitable method with data features, it is possible to automatically obtain snow cover description with high frequency. Moreover, the advantages of the modularity in the proposed approach allows to improve the three factors estimation in an independent way. Limitations lie into clouds problem that affects results by obscuring the observed territory, that is bounded by fusing temporal and spatial information. Then the spatial resolution of data, satisfactory with the scale of hydrological models, mismatch with the available in situ point information, causing difficulties for a method validation or calibration. However this working flow results computationally cost-effectiveness, robust to the radiometric noise of the original data, provides spatially extended and frequent information.

  2. A multiphysical ensemble system of numerical snow modelling

    NASA Astrophysics Data System (ADS)

    Lafaysse, Matthieu; Cluzet, Bertrand; Dumont, Marie; Lejeune, Yves; Vionnet, Vincent; Morin, Samuel

    2017-05-01

    Physically based multilayer snowpack models suffer from various modelling errors. To represent these errors, we built the new multiphysical ensemble system ESCROC (Ensemble System Crocus) by implementing new representations of different physical processes in the deterministic coupled multilayer ground/snowpack model SURFEX/ISBA/Crocus. This ensemble was driven and evaluated at Col de Porte (1325 m a.s.l., French alps) over 18 years with a high-quality meteorological and snow data set. A total number of 7776 simulations were evaluated separately, accounting for the uncertainties of evaluation data. The ability of the ensemble to capture the uncertainty associated to modelling errors is assessed for snow depth, snow water equivalent, bulk density, albedo and surface temperature. Different sub-ensembles of the ESCROC system were studied with probabilistic tools to compare their performance. Results show that optimal members of the ESCROC system are able to explain more than half of the total simulation errors. Integrating members with biases exceeding the range corresponding to observational uncertainty is necessary to obtain an optimal dispersion, but this issue can also be a consequence of the fact that meteorological forcing uncertainties were not accounted for. The ESCROC system promises the integration of numerical snow-modelling errors in ensemble forecasting and ensemble assimilation systems in support of avalanche hazard forecasting and other snowpack-modelling applications.

  3. Daily gridded datasets of snow depth and snow water equivalent for the Iberian Peninsula from 1980 to 2014

    NASA Astrophysics Data System (ADS)

    Alonso-González, Esteban; López-Moreno, J. Ignacio; Gascoin, Simon; García-Valdecasas Ojeda, Matilde; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Revuelto, Jesús; Ceballos, Antonio; Jesús Esteban-Parra, María; Essery, Richard

    2018-02-01

    We present snow observations and a validated daily gridded snowpack dataset that was simulated from downscaled reanalysis of data for the Iberian Peninsula. The Iberian Peninsula has long-lasting seasonal snowpacks in its different mountain ranges, and winter snowfall occurs in most of its area. However, there are only limited direct observations of snow depth (SD) and snow water equivalent (SWE), making it difficult to analyze snow dynamics and the spatiotemporal patterns of snowfall. We used meteorological data from downscaled reanalyses as input of a physically based snow energy balance model to simulate SWE and SD over the Iberian Peninsula from 1980 to 2014. More specifically, the ERA-Interim reanalysis was downscaled to 10 km × 10 km resolution using the Weather Research and Forecasting (WRF) model. The WRF outputs were used directly, or as input to other submodels, to obtain data needed to drive the Factorial Snow Model (FSM). We used lapse rate coefficients and hygrobarometric adjustments to simulate snow series at 100 m elevations bands for each 10 km × 10 km grid cell in the Iberian Peninsula. The snow series were validated using data from MODIS satellite sensor and ground observations. The overall simulated snow series accurately reproduced the interannual variability of snowpack and the spatial variability of snow accumulation and melting, even in very complex topographic terrains. Thus, the presented dataset may be useful for many applications, including land management, hydrometeorological studies, phenology of flora and fauna, winter tourism, and risk management. The data presented here are freely available for download from Zenodo (https://doi.org/10.5281/zenodo.854618). This paper fully describes the work flow, data validation, uncertainty assessment, and possible applications and limitations of the database.

  4. Developing the snow component of a distributed hydrological model: a step-wise approach based on multi-objective analysis

    NASA Astrophysics Data System (ADS)

    Dunn, S. M.; Colohan, R. J. E.

    1999-09-01

    A snow component has been developed for the distributed hydrological model, DIY, using an approach that sequentially evaluates the behaviour of different functions as they are implemented in the model. The evaluation is performed using multi-objective functions to ensure that the internal structure of the model is correct. The development of the model, using a sub-catchment in the Cairngorm Mountains in Scotland, demonstrated that the degree-day model can be enhanced for hydroclimatic conditions typical of those found in Scotland, without increasing meteorological data requirements. An important element of the snow model is a function to account for wind re-distribution. This causes large accumulations of snow in small pockets, which are shown to be important in sustaining baseflows in the rivers during the late spring and early summer, long after the snowpack has melted from the bulk of the catchment. The importance of the wind function would not have been identified using a single objective function of total streamflow to evaluate the model behaviour.

  5. Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya.

    PubMed

    Aryal, Achyut; Shrestha, Uttam Babu; Ji, Weihong; Ale, Som B; Shrestha, Sujata; Ingty, Tenzing; Maraseni, Tek; Cockfield, Geoff; Raubenheimer, David

    2016-06-01

    Future climate change is likely to affect distributions of species, disrupt biotic interactions, and cause spatial incongruity of predator-prey habitats. Understanding the impacts of future climate change on species distribution will help in the formulation of conservation policies to reduce the risks of future biodiversity losses. Using a species distribution modeling approach by MaxEnt, we modeled current and future distributions of snow leopard (Panthera uncia) and its common prey, blue sheep (Pseudois nayaur), and observed the changes in niche overlap in the Nepal Himalaya. Annual mean temperature is the major climatic factor responsible for the snow leopard and blue sheep distributions in the energy-deficient environments of high altitudes. Currently, about 15.32% and 15.93% area of the Nepal Himalaya are suitable for snow leopard and blue sheep habitats, respectively. The bioclimatic models show that the current suitable habitats of both snow leopard and blue sheep will be reduced under future climate change. The predicted suitable habitat of the snow leopard is decreased when blue sheep habitats is incorporated in the model. Our climate-only model shows that only 11.64% (17,190 km(2)) area of Nepal is suitable for the snow leopard under current climate and the suitable habitat reduces to 5,435 km(2) (reduced by 24.02%) after incorporating the predicted distribution of blue sheep. The predicted distribution of snow leopard reduces by 14.57% in 2030 and by 21.57% in 2050 when the predicted distribution of blue sheep is included as compared to 1.98% reduction in 2030 and 3.80% reduction in 2050 based on the climate-only model. It is predicted that future climate may alter the predator-prey spatial interaction inducing a lower degree of overlap and a higher degree of mismatch between snow leopard and blue sheep niches. This suggests increased energetic costs of finding preferred prey for snow leopards - a species already facing energetic constraints due to the limited dietary resources in its alpine habitat. Our findings provide valuable information for extension of protected areas in future.

  6. NPP ATMS Snowfall Rate Product

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua

    2015-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2015). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. NCEP CMORPH analysis has shown that integration of ATMS SFR has improved the performance of CMORPH-Snow. The ATMS SFR product is also being assessed at several NWS Weather Forecast Offices for its usefulness in weather forecast.

  7. Mapping snow depth return levels: smooth spatial modeling versus station interpolation

    NASA Astrophysics Data System (ADS)

    Blanchet, J.; Lehning, M.

    2010-12-01

    For adequate risk management in mountainous countries, hazard maps for extreme snow events are needed. This requires the computation of spatial estimates of return levels. In this article we use recent developments in extreme value theory and compare two main approaches for mapping snow depth return levels from in situ measurements. The first one is based on the spatial interpolation of pointwise extremal distributions (the so-called Generalized Extreme Value distribution, GEV henceforth) computed at station locations. The second one is new and based on the direct estimation of a spatially smooth GEV distribution with the joint use of all stations. We compare and validate the different approaches for modeling annual maximum snow depth measured at 100 sites in Switzerland during winters 1965-1966 to 2007-2008. The results show a better performance of the smooth GEV distribution fitting, in particular where the station network is sparser. Smooth return level maps can be computed from the fitted model without any further interpolation. Their regional variability can be revealed by removing the altitudinal dependent covariates in the model. We show how return levels and their regional variability are linked to the main climatological patterns of Switzerland.

  8. The application of ERTS imagery to mapping snow cover in the western United States. [Salt Verde in Arizona and Sierra Nevada California

    NASA Technical Reports Server (NTRS)

    Barnes, J. C. (Principal Investigator); Bowley, C. J.; Simmes, D. A.

    1974-01-01

    The author has identified the following significant results. In much of the western United States a large part of the utilized water comes from accumulated mountain snowpacks; thus, accurate measurements of snow distributions are required for input to streamflow prediction models. The application of ERTS-1 imagery for mapping snow has been evaluated for two geographic areas, the Salt-Verde watershed in central Arizona and the southern Sierra Nevada in California. Techniques have been developed to identify snow and to differentiate between snow and cloud. The snow extent for these two drainage areas has been mapped from the MSS-5 (0.6 - 0.7 microns) imagery and compared with aerial survey snow charts, aircraft photography, and ground-based snow measurements. The results indicate that ERTS imagery has substantial practical applications for snow mapping. Snow extent can be mapped from ERTS-1 imagery in more detail than is depicted on aerial survey snow charts. Moreover, in Arizona and southern California cloud obscuration does not appear to be a serious deterrent to the use of satellite data for snow survey. The costs involved in deriving snow maps from ERTS-1 imagery appear to be very reasonable in comparison with existing data collection methods.

  9. Spring floods prediction with the use of optical satellite data in Québec

    NASA Astrophysics Data System (ADS)

    Roy, A.; Royer, A.; Turcotte, R.

    2009-04-01

    The Centre d'expertise hydrique du Québec (CEHQ) operates a distributed hydrological model, which integrates a snow model, for the management of dams in the south of Québec. It appears that the estimation of the water quantity of snowmelt in spring remains a variable with a large uncertainty and induces generally to an important error in stream flow simulation. Therefore, the National snow and ice center (NSIDC) produces, from MODIS (Moderate Resolution Imaging Spectroradiometer) data, continuous and homogeneous spatial snow cover (snow/swow-free) data on the whole territory, but with a cloud contamination. This research aims to improve the prediction of spring floods and the estimation of the rate of discharge by integrating snow cover data in the CEHQ's snow model. The study is done on two watersheds: du Nord river watershed (45,8°N) and Aux Écorces river watershed (47,9°N). The snow model used in the study (SPH-AV) is an implementation developed by the CEHQ of the snowmelt model of HYDROLTEL in is hydrological forecast system to simulate the melted water. The melted water estimated is then used as input in the empirical hydrological model MOHYSE to simulate stream flow. MODIS data are considered valid only when the cloud cover on each pixel of the watersheds is less then 30%. A pixel by pixel correction is applied to the snow pack when there is a difference between satellite snow cover and modeled snow cover. In the case of model shows to much snow, a factor is applied on temperatures by iterative process (starting from the last valid MODIS data) to melt the snow. In the opposite case, the snow quantity added to the last valid MODIS data is found by iterative process so that the pixel's snow water equivalent is equal to the nonzero neighbor minimum value. The study shows, through the simulations done on the two watersheds, the interest of the use of snow/snow-free product for the operational update of snow water equivalent with the objective to improve spring snowmelt stream flow simulations. The binary aspect (snow/snowfree) of the data is however a limit. Alternatives are discussed (passive microwave data). Keywords : satellite snow cover data, MODIS, satellite data integration, snow model, hydrological model, stream flow simulation, flood.

  10. Assessing the spatial variability of mountain precipitation in California's Sierra Nevada using the Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Deems, J. S.; Painter, T. H.; Dozier, J.

    2016-12-01

    In California's Sierra Nevada, 10 or fewer winter storms are responsible for most of the annual precipitation, which falls mostly as snow. Presently, surface stations are used to measure the dynamics of mountain precipitation. However, even in places like the Sierra Nevada—one of the most gauged regions in the world—the paucity of surface stations can lead to large errors in precipitation thereby biasing both total water year and short-term streamflow forecasts. Remotely sensed snow depth and water equivalent, at a time scale that resolves storms, might provide a novel solution to the problems of: (1) quantifying the spatial variability of mountain precipitation; and (2) assessing gridded precipitation products that are mostly based on surface station interpolation. NASA's Airborne Snow Observatory (ASO), an imaging spectrometer and LiDAR system, has measured snow in the Tuolumne River Basin in California's Sierra Nevada for the past four years, 2013-2016; and, measurements will continue. Principally, ASO monitors the progression of melt for water supply forecasting, nonetheless, a number of flights bracketed storms allowing for estimates of snow accumulation. In this study we examine a few of the ASO recorded storms to determine both the basin and subbasin orographic effect as well as the spatial patterns in total precipitation. We then compare these results to a number of gridded climate products and weather models including: Daymet, the Parameter-elevation Regressions on Independent Slopes Model (PRISM), the North American Land Data Assimilation System (NLDAS-2), and the Weather Research and Forecasting (WRF) model. Finally, to put each ASO recorded storm into context, we use a climatology produced from snow pillows and the North American Regional Reanalysis (NARR) for 2014-2016 to examine key accumulation events, and classify storms based on their integrated water vapor flux.

  11. Monitoring and projecting snow on Hawaii Island

    NASA Astrophysics Data System (ADS)

    Zhang, Chunxi; Hamilton, Kevin; Wang, Yuqing

    2017-05-01

    The highest mountain peaks on Hawaii Island are snow covered for part of almost every year. This snow has aesthetic and recreational value as well as cultural significance for residents and visitors. Thus far there have been almost no systematic observations of snowfall, snow cover, or snow depth in Hawaii. Here we use satellite observations to construct a daily index of Hawaii Island snow cover starting from 2000. The seasonal mean of our index displays large interannual variations that are correlated with the seasonal mean freezing level and frequency of trade wind inversions as determined from nearby balloon soundings. Our snow cover index provides a diagnostic for monitoring climate variability and trends within the extensive area of the globe dominated by the North Pacific trade wind meteorological regime. We have also conducted simulations of the Hawaii climate with a regional atmospheric model. Retrospective simulations for 1990-2015 were run with boundary conditions prescribed from gridded observational analyses. Simulations for the end of 21st century employed boundary conditions based on global climate model projections that included standard scenarios for anticipated anthropogenic climate forcing. The future projections indicate that snowfall will nearly disappear by the end of the current century.

  12. Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River Basin

    NASA Astrophysics Data System (ADS)

    Ji, H. J.; Liu, J.

    2017-12-01

    Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River BasinHaijuan Ji1* Jintao Liu1,2 Shanshan Xu1___________________ 1College of Hydrology and Water Resources, Hohai University, Nanjing 210098, People's Republic of China 2State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, People's Republic of China ___________________ * Corresponding author. Tel.: +86-025-83786973; Fax: +86-025-83786606. E-mail address: Hhu201510@163.com (H.J. Ji). Abstract: The Tibetan Plateau plays an important role in regulating the regional hydrological processes due to its high elevations and being the headwaters of many major Asian river basins. If familiar with the distribution of hydrological characteristics, will help us improve the level of development and utilization the water resources. However, there exist glaciers and snow with few sites. It is significance for us to understand the glacier and snow hydrological process in order to recognize the evolution of water resources in the Tibetan. This manuscript takes Lhasa River as the study area, taking use of ground, remote sensing and assimilation data, taking advantage of high precision TRMM precipitation data and MODIS snow cover data, first, according to the data from ground station evaluation of TRMM data in the application of the accuracy of the Lhasa River, and based on MODIS data fusion of multi source microwave snow making cloudless snow products, which are used for discriminant and analysis glacier and snow regulation mechanism on day scale, add snow and glacier unit into xinanjing model, this model can simulate the study region's runoff evolution, parameter sensitivity even spatial variation of hydrological characteristics the next ten years on region grid scale. The results of hydrological model in Lhasa River can simulate the glacier and snow runoff variation in high cold region better, to enhance the predictive ability of the spring snow disaster.

  13. Estimation of snow albedo reduction by light absorbing impurities using Monte Carlo radiative transfer model

    NASA Astrophysics Data System (ADS)

    Sengupta, D.; Gao, L.; Wilcox, E. M.; Beres, N. D.; Moosmüller, H.; Khlystov, A.

    2017-12-01

    Radiative forcing and climate change greatly depends on earth's surface albedo and its temporal and spatial variation. The surface albedo varies greatly depending on the surface characteristics ranging from 5-10% for calm ocean waters to 80% for some snow-covered areas. Clean and fresh snow surfaces have the highest albedo and are most sensitive to contamination with light absorbing impurities that can greatly reduce surface albedo and change overall radiative forcing estimates. Accurate estimation of snow albedo as well as understanding of feedbacks on climate from changes in snow-covered areas is important for radiative forcing, snow energy balance, predicting seasonal snowmelt, and run off rates. Such information is essential to inform timely decision making of stakeholders and policy makers. Light absorbing particles deposited onto the snow surface can greatly alter snow albedo and have been identified as a major contributor to regional climate forcing if seasonal snow cover is involved. However, uncertainty associated with quantification of albedo reduction by these light absorbing particles is high. Here, we use Mie theory (under the assumption of spherical snow grains) to reconstruct the single scattering parameters of snow (i.e., single scattering albedo ῶ and asymmetry parameter g) from observation-based size distribution information and retrieved refractive index values. The single scattering parameters of impurities are extracted with the same approach from datasets obtained during laboratory combustion of biomass samples. Instead of using plane-parallel approximation methods to account for multiple scattering, we have used the simple "Monte Carlo ray/photon tracing approach" to calculate the snow albedo. This simple approach considers multiple scattering to be the "collection" of single scattering events. Using this approach, we vary the effective snow grain size and impurity concentrations to explore the evolution of snow albedo over a wide wavelength range (300 nm - 2000 nm). Results will be compared with the SNICAR model to better understand the differences in snow albedo computation between plane-parallel methods and the statistical Monte Carlo methods.

  14. Influence of snow cover changes on surface radiation and heat balance based on the WRF model

    NASA Astrophysics Data System (ADS)

    Yu, Lingxue; Liu, Tingxiang; Bu, Kun; Yang, Jiuchun; Chang, Liping; Zhang, Shuwen

    2017-10-01

    The snow cover extent in mid-high latitude areas of the Northern Hemisphere has significantly declined corresponding to the global warming, especially since the 1970s. Snow-climate feedbacks play a critical role in regulating the global radiation balance and influencing surface heat flux exchange. However, the degree to which snow cover changes affect the radiation budget and energy balance on a regional scale and the difference between snow-climate and land use/cover change (LUCC)-climate feedbacks have been rarely studied. In this paper, we selected Heilongjiang Basin, where the snow cover has changed obviously, as our study area and used the WRF model to simulate the influences of snow cover changes on the surface radiation budget and heat balance. In the scenario simulation, the localized surface parameter data improved the accuracy by 10 % compared with the control group. The spatial and temporal analysis of the surface variables showed that the net surface radiation, sensible heat flux, Bowen ratio, temperature and percentage of snow cover were negatively correlated and that the ground heat flux and latent heat flux were positively correlated with the percentage of snow cover. The spatial analysis also showed that a significant relationship existed between the surface variables and land cover types, which was not obviously as that for snow cover changes. Finally, six typical study areas were selected to quantitatively analyse the influence of land cover types beneath the snow cover on heat absorption and transfer, which showed that when the land was snow covered, the conversion of forest to farmland can dramatically influence the net radiation and other surface variables, whereas the snow-free land showed significantly reduced influence. Furthermore, compared with typical land cover changes, e.g., the conversion of forest into farmland, the influence of snow cover changes on net radiation and sensible heat flux were 60 % higher than that of land cover changes, indicating the importance of snow cover changes in the surface-atmospheric feedback system.

  15. Snow hydrology in a general circulation model

    NASA Technical Reports Server (NTRS)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-01-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  16. Introducing two Random Forest based methods for cloud detection in remote sensing images

    NASA Astrophysics Data System (ADS)

    Ghasemian, Nafiseh; Akhoondzadeh, Mehdi

    2018-07-01

    Cloud detection is a necessary phase in satellite images processing to retrieve the atmospheric and lithospheric parameters. Currently, some cloud detection methods based on Random Forest (RF) model have been proposed but they do not consider both spectral and textural characteristics of the image. Furthermore, they have not been tested in the presence of snow/ice. In this paper, we introduce two RF based algorithms, Feature Level Fusion Random Forest (FLFRF) and Decision Level Fusion Random Forest (DLFRF) to incorporate visible, infrared (IR) and thermal spectral and textural features (FLFRF) including Gray Level Co-occurrence Matrix (GLCM) and Robust Extended Local Binary Pattern (RELBP_CI) or visible, IR and thermal classifiers (DLFRF) for highly accurate cloud detection on remote sensing images. FLFRF first fuses visible, IR and thermal features. Thereafter, it uses the RF model to classify pixels to cloud, snow/ice and background or thick cloud, thin cloud and background. DLFRF considers visible, IR and thermal features (both spectral and textural) separately and inserts each set of features to RF model. Then, it holds vote matrix of each run of the model. Finally, it fuses the classifiers using the majority vote method. To demonstrate the effectiveness of the proposed algorithms, 10 Terra MODIS and 15 Landsat 8 OLI/TIRS images with different spatial resolutions are used in this paper. Quantitative analyses are based on manually selected ground truth data. Results show that after adding RELBP_CI to input feature set cloud detection accuracy improves. Also, the average cloud kappa values of FLFRF and DLFRF on MODIS images (1 and 0.99) are higher than other machine learning methods, Linear Discriminate Analysis (LDA), Classification And Regression Tree (CART), K Nearest Neighbor (KNN) and Support Vector Machine (SVM) (0.96). The average snow/ice kappa values of FLFRF and DLFRF on MODIS images (1 and 0.85) are higher than other traditional methods. The quantitative values on Landsat 8 images show similar trend. Consequently, while SVM and K-nearest neighbor show overestimation in predicting cloud and snow/ice pixels, our Random Forest (RF) based models can achieve higher cloud, snow/ice kappa values on MODIS and thin cloud, thick cloud and snow/ice kappa values on Landsat 8 images. Our algorithms predict both thin and thick cloud on Landsat 8 images while the existing cloud detection algorithm, Fmask cannot discriminate them. Compared to the state-of-the-art methods, our algorithms have acquired higher average cloud and snow/ice kappa values for different spatial resolutions.

  17. Predicting the distribution and ecological niche of unexploited snow crab (Chionoecetes opilio) populations in Alaskan waters: a first open-access ensemble model.

    PubMed

    Hardy, Sarah M; Lindgren, Michael; Konakanchi, Hanumantharao; Huettmann, Falk

    2011-10-01

    Populations of the snow crab (Chionoecetes opilio) are widely distributed on high-latitude continental shelves of the North Pacific and North Atlantic, and represent a valuable resource in both the United States and Canada. In US waters, snow crabs are found throughout the Arctic and sub-Arctic seas surrounding Alaska, north of the Aleutian Islands, yet commercial harvest currently focuses on the more southerly population in the Bering Sea. Population dynamics are well-monitored in exploited areas, but few data exist for populations further north where climate trends in the Arctic appear to be affecting species' distributions and community structure on multiple trophic levels. Moreover, increased shipping traffic, as well as fisheries and petroleum resource development, may add additional pressures in northern portions of the range as seasonal ice cover continues to decline. In the face of these pressures, we examined the ecological niche and population distribution of snow crabs in Alaskan waters using a GIS-based spatial modeling approach. We present the first quantitative open-access model predictions of snow-crab distribution, abundance, and biomass in the Chukchi and Beaufort Seas. Multi-variate analysis of environmental drivers of species' distribution and community structure commonly rely on multiple linear regression methods. The spatial modeling approach employed here improves upon linear regression methods in allowing for exploration of nonlinear relationships and interactions between variables. Three machine-learning algorithms were used to evaluate relationships between snow-crab distribution and environmental parameters, including TreeNet, Random Forests, and MARS. An ensemble model was then generated by combining output from these three models to generate consensus predictions for presence-absence, abundance, and biomass of snow crabs. Each algorithm identified a suite of variables most important in predicting snow-crab distribution, including nutrient and chlorophyll-a concentrations in overlying waters, temperature, salinity, and annual sea-ice cover; this information may be used to develop and test hypotheses regarding the ecology of this species. This is the first such quantitative model for snow crabs, and all GIS-data layers compiled for this project are freely available from the authors, upon request, for public use and improvement.

  18. Brittle Fracture Mechanics of Snow : In Situ Testing and Distinct Element Modeling

    NASA Astrophysics Data System (ADS)

    Faillettaz, J.; Daudon, D.; Louchet, F.

    A snow slab avalanche release usually results from the rupture of the snow cover at the interface between an upper layer (slab) and an underlying substrate. Amazingly, the models proposed so far to predict this kind of rupture were only based on continuum mechanics, as they did not take into account the existing cracks or cohesion defects at the interface between the two layers, and their possible unstable propagation that eventually triggers the avalanche. This is why the present work, essentially devoted to human triggered avalanches, is based instead on Griffith's fracture approach, widely used in modelling brittle fracture of materials. The possible rupture scenario involves a propagation in a shear mode of a "basal crack" nucleated and gradually grown at the interface by the skier's weight, followed by a mode I opening and propagation of a "crown crack" at the top of the sheared zone. Different avalanche sizes are predicted according whether the basal crack propagation reaches or not the Griffith's instabil- ity size before crown crack opening (Louchet 2000). Accurate predictions therefore require a precise knowledge of snow toughness values in both modes. A theoretical estimation of toughness considering snow as an ice foam was proposed by Kirchner and Michot (2000), but the question of whether these results may be extended to an assembly of sintered grains is still open. A mode I toughness measurement of snow was also published for the first time by Kirchner and Michot on samples gathered in the Vosges range. In the present work, we developed an experimental set similar to Michot's, in order to measure mode I toughness: a vertical crack of increasing size is gradually machined from the top surface in an horizontal snow beam until failure takes place under its own weight. The toughness value is computed from the snow weight and the crack length at the onset of rapid crack propagation. A similar device was designed for mode II testing, but is still under development. The experimental cam- paign carried out in the Alps during the 2000-2001 winter on homogeneous sintered snow with a density of 200 kg/m3 (typical of a snow slab) gave results of the same or- der of magnitude as Michot's. A numerical modeling of these toughness experiments was performed using a distinct element code, considering snow as a cohesive granu- lar material. Both crack propagation and rupture patterns are in close agreement with experiments. References: Kirchner, Michot, Suzuki 2000 Fracture thoughness of snow in tension 1 Philisophical Magazine A, vol 80,N5, p1265-1272. Louchet 2001,A transition in dry snow slab avalanche triggering modes, Annales de glaciologie, vol 32,Symphosium on Snow, Avalanches and Impact of the Frest Cover, Innsbruck,Austria,22-26 may 2000, p2285-289 2

  19. Evaluation of the Snow Simulations from the Community Land Model, Version 4 (CLM4)

    NASA Technical Reports Server (NTRS)

    Toure, Ally M.; Rodell, Matthew; Yang, Zong-Liang; Beaudoing, Hiroko; Kim, Edward; Zhang, Yongfei; Kwon, Yonghwan

    2015-01-01

    This paper evaluates the simulation of snow by the Community Land Model, version 4 (CLM4), the land model component of the Community Earth System Model, version 1.0.4 (CESM1.0.4). CLM4 was run in an offline mode forced with the corrected land-only replay of the Modern-Era Retrospective Analysis for Research and Applications (MERRA-Land) and the output was evaluated for the period from January 2001 to January 2011 over the Northern Hemisphere poleward of 30 deg N. Simulated snow-cover fraction (SCF), snow depth, and snow water equivalent (SWE) were compared against a set of observations including the Moderate Resolution Imaging Spectroradiometer (MODIS) SCF, the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover, the Canadian Meteorological Centre (CMC) daily snow analysis products, snow depth from the National Weather Service Cooperative Observer (COOP) program, and Snowpack Telemetry (SNOTEL) SWE observations. CLM4 SCF was converted into snow-cover extent (SCE) to compare with MODIS SCE. It showed good agreement, with a correlation coefficient of 0.91 and an average bias of -1.54 x 10(exp 2) sq km. Overall, CLM4 agreed well with IMS snow cover, with the percentage of correctly modeled snow-no snow being 94%. CLM4 snow depth and SWE agreed reasonably well with the CMC product, with the average bias (RMSE) of snow depth and SWE being 0.044m (0.19 m) and -0.010m (0.04 m), respectively. CLM4 underestimated SNOTEL SWE and COOP snow depth. This study demonstrates the need to improve the CLM4 snow estimates and constitutes a benchmark against which improvement of the model through data assimilation can be measured.

  20. Snow Microwave Radiative Transfer (SMRT): A new model framework to simulate snow-microwave interactions for active and passive remote sensing applications

    NASA Astrophysics Data System (ADS)

    Loewe, H.; Picard, G.; Sandells, M. J.; Mätzler, C.; Kontu, A.; Dumont, M.; Maslanka, W.; Morin, S.; Essery, R.; Lemmetyinen, J.; Wiesmann, A.; Floury, N.; Kern, M.

    2016-12-01

    Forward modeling of snow-microwave interactions is widely used to interpret microwave remote sensing data from active and passive sensors. Though different models are yet available for that purpose, a joint effort has been undertaken in the past two years within the ESA Project "Microstructural origin of electromagnetic signatures in microwave remote sensing of snow". The new Snow Microwave Radiative Transfer (SMRT) model primarily facilitates a flexible treatment of snow microstructure as seen by X-ray tomography and seeks to unite respective advantages of existing models. In its main setting, SMRT considers radiation transfer in a plane-parallel snowpack consisting of homogeneous layers with a layer microstructure represented by an autocorrelation function. The electromagnetic model, which underlies permittivity, absorption and scattering calculations within a layer, is based on the improved Born approximation. The resulting vector-radiative transfer equation in the snowpack is solved using spectral decomposition of the discrete ordinates discretization. SMRT is implemented in Python and employs an object-oriented, modular design which intends to i) provide an intuitive and fail-safe API for basic users ii) enable efficient community developments for extensions (e.g. for improvements of sub-models for microstructure, permittivity, soil or interface reflectivity) from advanced users and iii) encapsulate the numerical core which is maintained by the developers. For cross-validation and inter-model comparison, SMRT implements various ingredients of existing models as selectable options (e.g. Rayleigh or DMRT-QCA phase functions) and shallow wrappers to invoke legacy model code directly (MEMLS, DMRT-QMS, HUT). In this paper we give an overview of the model components and show examples and results from different validation schemes.

  1. Investigating the Impact of Aerosol Deposition on Snow Melt over the Greenland Ice Sheet Using a New Kernel

    NASA Astrophysics Data System (ADS)

    Li, Y.; Flanner, M.

    2017-12-01

    Accelerating surface melt on the Greenland Ice Sheet (GrIS) has led to a doubling of Greenland's contribution to global sea level rise during recent decades. The darkening effect due to black carbon (BC), dust, and other light absorbing impurities (LAI) enhances snow melt by boosting its absorption of solar energy. It is therefore important for coupled aerosol-climate and ice sheet models to include snow darkening effects from LAI, and yet most do not. In this study, we develop an aerosol deposition—snow melt kernel based on the Community Earth System Model (CESM) to investigate changes in melt flux due to variations in the amount and timing of aerosol deposition on the GrIS. The Community Land Model (CLM) component of CESM is driven with a large range of aerosol deposition fluxes to determine non-linear relationships between melt perturbation and deposition amount occurring in different months and location (thereby capturing variations in base state associated with elevation and latitude). The kernel product will include climatological-mean effects and standard deviations associated with interannual variability. Finally, the kernel will allow aerosol deposition fluxes from any global or regional aerosol model to be translated into surface melt perturbations of the GrIS, thus extending the utility of state-of-the-art aerosol models.

  2. Estimation of Snow Parameters Based on Passive Microwave Remote Sensing and Meteorological Information

    NASA Technical Reports Server (NTRS)

    Tsang, Leung; Hwang, Jenq-Neng

    1996-01-01

    A method to incorporate passive microwave remote sensing measurements within a spatially distributed snow hydrology model to provide estimates of the spatial distribution of Snow Water Equivalent (SWE) as a function of time is implemented. The passive microwave remote sensing measurements are at 25 km resolution. However, in mountain regions the spatial variability of SWE over a 25 km footprint is large due to topographic influences. On the other hand, the snow hydrology model has built-in topographic information and the capability to estimate SWE at a 1 km resolution. In our work, the snow hydrology SWE estimates are updated and corrected using SSM/I passive microwave remote sensing measurements. The method is applied to the Upper Rio Grande River Basin in the mountains of Colorado. The change in prediction of SWE from hydrology modeling with and without updating is compared with measurements from two SNOTEL sites in and near the basin. The results indicate that the method incorporating the remote sensing measurements into the hydrology model is able to more closely estimate the temporal evolution of the measured values of SWE as a function of time.

  3. Evaluating indices of lipid and protein content in lesser snow and Ross's geese during spring migration

    USGS Publications Warehouse

    Webb, Elisabeth B.; Fowler, Drew N.; Woodall, Brendan A.; Vrtiska, Mark P.

    2018-01-01

    Assessing nutrient stores in avian species is important for understanding the extent to which body condition influences success or failure in life‐history events. We evaluated predictive models using morphometric characteristics to estimate total body lipids (TBL) and total body protein (TBP), based on traditional proximate analyses, in spring migrating lesser snow geese (Anser caerulescens caerulescens) and Ross's geese (A. rossii). We also compared performance of our lipid model with a previously derived predictive equation for TBL developed for nesting lesser snow geese. We used external and internal measurements on 612 lesser snow and 125 Ross's geese collected during spring migration in 2015 and 2016 within the Central and Mississippi flyways to derive and evaluate predictive models. Using a validation data set, our best performing lipid model for snow geese better predicted TBL (root mean square error [RMSE] of 23.56) compared with a model derived from nesting individuals (RMSE = 48.60), suggesting the importance of season‐specific models for accurate lipid estimation. Models that included body mass and abdominal fat deposit best predicted TBL determined by proximate analysis in both species (lesser snow goose, R2 = 0.87, RMSE = 23.56: Ross's geese, R2 = 0.89, RMSE = 13.75). Models incorporating a combination of external structural measurements in addition to internal muscle and body mass best predicted protein values (R2 = 0.85, RMSE = 19.39 and R2 = 0.85, RMSE = 7.65, lesser snow and Ross's geese, respectively), but protein models including only body mass and body size were also competitive and provided extended utility to our equations for field applications. Therefore, our models indicated the importance of specimen dissection and measurement of the abdominal fat pad to provide the most accurate lipid estimates and provide alternative dissection‐free methods for estimating protein.

  4. Improving simulations of snow water equivalent and total water storage changes over the Upper Yangtze River basin using multi-source remote sensing data

    NASA Astrophysics Data System (ADS)

    Han, P.; Long, D.

    2017-12-01

    Snow water equivalent (SWE) and total water storage (TWS) changes are important hydrological state variables over cryospheric regions, such as China's Upper Yangtze River (UYR) basin. Accurate simulation of these two state variables plays a critical role in understanding hydrological processes over this region and, in turn, benefits water resource management, hydropower development, and ecological integrity over the lower reaches of the Yangtze River, one of the largest rivers globally. In this study, an improved CREST model coupled with a snow and glacier melting module was used to simulate SWE and TWS changes over the UYR, and to quantify contributions of snow and glacier meltwater to the total runoff. Forcing, calibration, and validation data are mainly from multi-source remote sensing observations, including satellite-based precipitation estimates, passive microwave remote sensing-based SWE, and GRACE-derived TWS changes, along with streamflow measurements at the Zhimenda gauging station. Results show that multi-source remote sensing information can be extremely valuable in model forcing, calibration, and validation over the poorly gauged region. The simulated SWE and TWS changes and the observed counterparts are highly consistent, showing NSE coefficients higher than 0.8. The results also show that the contributions of snow and glacier meltwater to the total runoff are 8% and 6%, respectively, during the period 2003‒2014, which is an important source of runoff. Moreover, from this study, the TWS is found to increase at a rate of 5 mm/a ( 0.72 Gt/a) for the period 2003‒2014. The snow melting module may overestimate SWE for high precipitation events and was improved in this study. Key words: CREST model; Remote Sensing; Melting model; Source Region of the Yangtze River

  5. Quantifying sources of black carbon in western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model

    DOE PAGES

    Zhang, Rudong; Wang, Hailong; Hegg, D. A.; ...

    2015-11-18

    The Community Atmosphere Model (CAM5), equipped with a technique to tag black carbon (BC) emissions by source regions and types, has been employed to establish source–receptor relationships for atmospheric BC and its deposition to snow over western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over northwestern USA and westernmore » Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF) is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB) is larger than FF. An observationally based positive matrix factorization (PMF) analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. Furthermore, while CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.« less

  6. Coupling of a Simple 3-Layer Snow Model to GISS GCM

    NASA Astrophysics Data System (ADS)

    Aleinov, I.

    2001-12-01

    Appropriate simulation of the snow cover dynamics is an important issue for the General Circulation Models (GCMs). The presence of snow has a significant impact on ground albedo and on heat and moisture balance. A 3-layer snow model similar to the one proposed by Lynch-Stieglitz was developed with the purpose of using it inside the GCM developed in the NASA Goddard Institute for Space Studies (GISS). The water transport between the layers is modeled explicitly while the heat balance is computed implicitly between the snow layers and semi-implicitly on the surface. The processes of melting and refreezing and compactification of layers under the gravitational force are modeled appropriately. It was noticed that implicit computation of the heat transport can cause a significant under- or over-estimation of the incoming heat flux when the temperature of the upper snow layer is equal to 0 C. This may lead in particular to delayed snow melting in spring. To remedy this problem a special flux-control algorithm was added to the model, which checks computed flux for possible errors and if such are detected the heat transport is recomputed again with the appropriate corrections. The model was tested off-line with Sleepers River forcing data and exhibited a good agreement between simulated and observed quantities for snow depth, snow density and snow temperature. The model was then incorporated into the GISS GCM. Inside the GCM the model is driven completely by the data simulated by other parts of the GCM. The screening effect of the vegetation is introduced by means of masking depth. For a thin snowpack a fractional cover is implemented so that the total thickness of the the snow is never less then 10 cm (rather, the areal fraction of the snow cover decreases when it melts). The model was tested with 6 year long GCM speed-up runs. It proved to be stable and produced reasonable results for the global snow cover. In comparison to the old GISS GCM snow model (which was incorporating the snow into the first soil layer) the new snow model has better insulating properties, thus preventing the ground from overcooling in winter. It also provides better simulation for water retention and release by the snow which results in more physical ground water runoff.

  7. SNOWMIP2: An evaluation of forest snow process simulations

    Treesearch

    Richard Essery; Nick Rutter; John Pomeroy; Robert Baxter; Manfred Stahli; David Gustafsson; Alan Barr; Paul Bartlett; Kelly Elder

    2009-01-01

    Models of terrestrial snow cover, or snow modules within land surface models, are used in many meteorological, hydrological, and ecological applications. Such models were developed first, and have achieved their greatest sophistication, for snow in open areas; however, huge tracts of the Northern Hemisphere both have seasonal snow cover and are forested (Fig. 1)....

  8. National Snow Analyses - NOHRSC - The ultimate source for snow information

    Science.gov Websites

    Equivalent Thumbnail image of Modeled Snow Water Equivalent Animate: Season --- Two weeks --- One Day Snow Depth Thumbnail image of Modeled Snow Depth Animate: Season --- Two weeks --- One Day Average Snowpack Temp Thumbnail image of Modeled Average Snowpack Temp Animate: Season --- Two weeks --- One Day SWE

  9. Investigations on socio economic indicators of French Alps ski industry from an explicit spatial modelling of managed snow on ski slopes

    NASA Astrophysics Data System (ADS)

    Spandre, Pierre; François, Hugues; Morin, Samuel; George-Marcelpoil, Emmanuelle; Lafaysse, Matthieu

    2017-04-01

    Investigations of the capacity of ski resorts to anticipate, cope with and recover from the impact of natural snow scarcity through snow management (grooming, snowmaking) have been realized in most of the major regions in terms of international ski offer although not in the French Alps hitherto. The present work therefore introduces an innovative approach for the investigation of socio economic implications of changes in snow conditions for the French Alps ski resorts based on a panel of 129 resorts representing 96% of the total French Alps ski lifts infrastructures. We integrated detailed spatial representations of ski resorts (including priority areas for snowmaking equipment) along with physically based snowpack modelling (including the physical impact of grooming and snowmaking). The viability of ski resorts was further adressed thanks to a commonly used rule based on the snow season duration at the village and ski lifts average elevations along with the development of original viability indicators of snow conditions in the French Alps ski resorts based on the specific periods for the economic success of winter sports: Christmas and February school holidays. Such indicators were correlated to the number of ski lifts tickets sales over the 2001 - 2014 period and proved to be relevant to investigate and predict the evolutions of ski lifts tickets sales under the current ski market conditions in the French Alps. Our results outlined the contrast of snow conditions between French Alps ski resorts, even when accounting for snow management, particularly regarding the geographical location of resorts (Southern versus Northern Alps), the size and related elevation range of ski resorts. Our physically based approach also allowed to compute the water and energy requirements for the production of Machine Made snow since the start of the development of snowguns in the French Alps. Our computations proved to be strongly correlated to the observed amounts of water from the existing literature and confirmed that the increasing surface equipped with snowmaking facilities in the French Alps is the major factor for the increasing water and energy requirements since 1985. Such approach therefore provides objective information on the impact of snow conditions on the economic activity of winter sports in the French Alps under past and present conditions and may be considered as a relevant approach for further investigations, including the impact of climate change on the winter tourism in the French Alps.

  10. Comparison of Local Scale Measured and Modeled Brightness Temperatures and Snow Parameters from the CLPX 2003 by Means of a Dense Medium Radiative Transfer Theory Model

    NASA Technical Reports Server (NTRS)

    Tedescol, Marco; Kim, Edward J.; Cline, Don; Graf, Tobias; Koike, Toshio; Armstrong, Richard; Brodzik, Mary J.; Hardy, Janet

    2004-01-01

    Microwave remote sensing offers distinct advantages for observing the cryosphere. Solar illumination is not required, and spatial and temporal coverage are excellent from polar-orbiting satellites. Passive microwave measurements are sensitive to the two most useful physical quantities for many hydrological applications: physical temperature and water content/state. Sensitivity to the latter is a direct result of the microwave sensitivity to the dielectric properties of natural media, including snow, ice, soil (frozen or thawed), and vegetation. These considerations are factors motivating the development of future cryospheric satellite remote sensing missions, continuing and improving on a 26-year microwave measurement legacy. Perhaps the biggest issues regarding the use of such satellite measurements involve how to relate parameter values at spatial scales as small as a hectare to observations with sensor footprints that may be up to 25 x 25 km. The NASA Cold-land Processes Field Experiment (CLPX) generated a dataset designed to enhance understanding of such scaling issues. CLPX observations were made in February (dry snow) and March (wet snow), 2003 in Colorado, USA, at scales ranging from plot scale to 25 x 25 km satellite footprints. Of interest here are passive microwave observations from ground-based, airborne, and satellite sensors, as well as meteorological and snowpack measurements that will enable studies of the effects of spatial heterogeneity of surface conditions on the observations. Prior to performing such scaling studies, an evaluation of snowpack forward modelling at the plot scale (least heterogeneous scale) is in order. This is the focus of this paper. Many forward models of snow signatures (brightness temperatures) have been developed over the years. It is now recognized that a dense medium radiative transfer (DMRT) treatment represents a high degree of physical fidelity for snow modeling, yet dense medium models are particularly sensitive to snowpack structural parameters such as grain size, density, and depth---parameters that may vary substantially within a snowpack. Microwave radiometric data and snow pit measurements collected at the Local-Scale Observation Site (LSOS) during the third Intensive Observation Period (IOP3) of the CLPX have been used to test the capabilities of a DMRT model using the Quasi Crystalline Approximation with Coherent Potential (QCA-CP). The radiometric measurements were made by the University of Tokyo s Ground Based Microwave Radiometer-7 (GBMR-7) system. We evaluate the degree to which a DMRT-based model can accurately reproduce the GBMR-7 brightness temperatures at different frequencies and incidence angles.

  11. Correcting Inadequate Model Snow Process Descriptions Dramatically Improves Mountain Hydrology Simulations

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Fang, X.

    2014-12-01

    The vast effort in hydrology devoted to parameter calibration as a means to improve model performance assumes that the models concerned are not fundamentally wrong. By focussing on finding optimal parameter sets and ascribing poor model performance to parameter or data uncertainty, these efforts may fail to consider the need to improve models with more intelligent descriptions of hydrological processes. To test this hypothesis, a flexible physically based hydrological model including a full suite of snow hydrology processes as well as warm season, hillslope and groundwater hydrology was applied to Marmot Creek Research Basin, Canadian Rocky Mountains where excellent driving meteorology and basin biophysical descriptions exist. Model parameters were set from values found in the basin or from similar environments; no parameters were calibrated. The model was tested against snow surveys and streamflow observations. The model used algorithms that describe snow redistribution, sublimation and forest canopy effects on snowmelt and evaporative processes that are rarely implemented in hydrological models. To investigate the contribution of these processes to model predictive capability, the model was "falsified" by deleting parameterisations for forest canopy snow mass and energy, blowing snow, intercepted rain evaporation, and sublimation. Model falsification by ignoring forest canopy processes contributed to a large increase in SWE errors for forested portions of the research basin with RMSE increasing from 19 to 55 mm and mean bias (MB) increasing from 0.004 to 0.62. In the alpine tundra portion, removing blowing processes resulted in an increase in model SWE MB from 0.04 to 2.55 on north-facing slopes and -0.006 to -0.48 on south-facing slopes. Eliminating these algorithms degraded streamflow prediction with the Nash Sutcliffe efficiency dropping from 0.58 to 0.22 and MB increasing from 0.01 to 0.09. These results show dramatic model improvements by including snow redistribution and melt processes associated with wind transport and forest canopies. As most hydrological models do not currently include these processes, it is suggested that modellers first improve the realism of model structures before trying to optimise what are inherently inadequate simulations of hydrology.

  12. Evaluation of the SMAP model calculated snow albedo at the SIGMA-A site, northwest Greenland, during the 2012 record surface melt event

    NASA Astrophysics Data System (ADS)

    Niwano, M.; Aoki, T.; Matoba, S.; Yamaguchi, S.; Tanikawa, T.; Kuchiki, K.; Motoyama, H.

    2015-12-01

    The snow and ice on the Greenland ice sheet (GrIS) experienced the extreme surface melt around 12 July, 2012. In order to understand the snow-atmosphere interaction during the period, we applied a physical snowpack model SMAP to the GrIS snowpack. In the SMAP model, the snow albedo is calculated by the PBSAM component explicitly considering effects of snow grain size and light-absorbing snow impurities such as black carbon and dust. Temporal evolution of snow grain size is calculated internally in the SMAP model, whereas mass concentrations of snow impurities are externally given from observations. In the PBSAM, the (shortwave) snow albedo is calculated from a weighted summation of visible albedo (primarily affected by snow impurities) and near-infrared albedo (mainly controlled by snow grain size). The weights for these albedos are the visible and near-infrared fractions of the downward shortwave radiant flux. The SMAP model forced by meteorological data obtained from an automated weather station at SIGMA-A site, northwest GrIS during 30 June to 14 July, 2012 (IOP) was evaluated in terms of surface (optically equivalent) snow grain size and snow albedo. Snow grain size simulated by the model was compared against that retrieved from in-situ spectral albedo measurements. Although the RMSE and ME were reasonable (0.21 mm and 0.17 mm, respectively), the small snow grain size associated with the surface hoar could not be simulated by the SMAP model. As for snow albedo, simulation results agreed well with observations throughout the IOP (RMSE was 0.022 and ME was 0.008). Under cloudy-sky conditions, the SMAP model reproduced observed rapid increase in the snow albedo. When cloud cover is present the near-infrared fraction of the downward shortwave radiant flux is decreased, while it is increased under clear-sky conditions. Therefore, the above mentioned performance of the SMAP model can be attributed to the PBSAM component driven by the observed near-infrared and visible fractions of the downward shortwave radiant flux. This result suggests that it is necessary for snowpack models to consider changes in the visible and near-infrared fractions of the downward shortwave radiant flux caused by the presence of cloud cover to reproduce realistic temporal changes in the snow albedo and consequently the surface energy balance.

  13. Statistical downscaling of regional climate scenarios for the French Alps : Impacts on snow cover

    NASA Astrophysics Data System (ADS)

    Rousselot, M.; Durand, Y.; Giraud, G.; Mérindol, L.; Déqué, M.; Sanchez, E.; Pagé, C.; Hasan, A.

    2010-12-01

    Mountain areas are particularly vulnerable to climate change. Owing to the complexity of mountain terrain, climate research at scales relevant for impacts studies and decisive for stakeholders is challenging. A possible way to bridge the gap between these fine scales and those of the general circulation models (GCMs) consists of combining high-resolution simulations of Regional Climate Models (RCMs) to statistical downscaling methods. The present work is based on such an approach. It aims at investigating the impacts of climate change on snow cover in the French Alps for the periods 2021-2050 and 2071-2100 under several IPCC hypotheses. An analogue method based on high resolution atmospheric fields from various RCMs and climate reanalyses is used to simulate local climate scenarios. These scenarios, which provide meteorological parameters relevant for snowpack evolution, subsequently feed the CROCUS snow model. In these simulations, various sources of uncertainties are thus considered (several greenhouse gases emission scenarios and RCMs). Results are obtained for different regions of the French Alps at various altitudes. For all scenarios, temperature increase is relatively uniform over the Alps. This regional warming is larger than that generally modeled at the global scale (IPCC, 2007), and particularly strong in summer. Annual precipitation amounts seem to decrease, mainly as a result of decreasing precipitation trends in summer and fall. As a result of these climatic evolutions, there is a general decrease of the mean winter snow depth and seasonal snow duration for all massifs. Winter snow depths are particularly reduced in the Northern Alps. However, the impact on seasonal snow duration is more significant in the Southern and Extreme Southern Alps, since these regions are already characterized by small winter snow depths at low elevations. Reference : IPCC (2007a). Climate change 2007 : The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. In : Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H.L. Miller (eds.). Cambridge University Press, Cambridge, UK and New York, NY, USA. This work is performed in the framework of the SCAMPEI ANR (French research project).

  14. Local Scale Radiobrightness Modeling During the Intensive Observing Period-4 of the Cold Land Processes Experiment-1

    NASA Astrophysics Data System (ADS)

    Kim, E.; Tedesco, M.; de Roo, R.; England, A. W.; Gu, H.; Pham, H.; Boprie, D.; Graf, T.; Koike, T.; Armstrong, R.; Brodzik, M.; Hardy, J.; Cline, D.

    2004-12-01

    The NASA Cold Land Processes Field Experiment (CLPX-1) was designed to provide microwave remote sensing observations and ground truth for studies of snow and frozen ground remote sensing, particularly issues related to scaling. CLPX-1 was conducted in 2002 and 2003 in Colorado, USA. One of the goals of the experiment was to test the capabilities of microwave emission models at different scales. Initial forward model validation work has concentrated on the Local-Scale Observation Site (LSOS), a 0.8~ha study site consisting of open meadows separated by trees where the most detailed measurements were made of snow depth and temperature, density, and grain size profiles. Results obtained in the case of the 3rd Intensive Observing Period (IOP3) period (February, 2003, dry snow) suggest that a model based on Dense Medium Radiative Transfer (DMRT) theory is able to model the recorded brightness temperatures using snow parameters derived from field measurements. This paper focuses on the ability of forward DMRT modelling, combined with snowpack measurements, to reproduce the radiobrightness signatures observed by the University of Michigan's Truck-Mounted Radiometer System (TMRS) at 19 and 37~GHz during the 4th IOP (IOP4) in March, 2003. Unlike in IOP3, conditions during IOP4 include both wet and dry periods, providing a valuable test of DMRT model performance. In addition, a comparison will be made for the one day of coincident observations by the University of Tokyo's Ground-Based Microwave Radiometer-7 (GBMR-7) and the TMRS. The plot-scale study in this paper establishes a baseline of DMRT performance for later studies at successively larger scales. And these scaling studies will help guide the choice of future snow retrieval algorithms and the design of future Cold Lands observing systems.

  15. A model for the spatial distribution of snow water equivalent parameterized from the spatial variability of precipitation

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Weltzien, Ingunn H.

    2016-09-01

    Snow is an important and complicated element in hydrological modelling. The traditional catchment hydrological model with its many free calibration parameters, also in snow sub-models, is not a well-suited tool for predicting conditions for which it has not been calibrated. Such conditions include prediction in ungauged basins and assessing hydrological effects of climate change. In this study, a new model for the spatial distribution of snow water equivalent (SWE), parameterized solely from observed spatial variability of precipitation, is compared with the current snow distribution model used in the operational flood forecasting models in Norway. The former model uses a dynamic gamma distribution and is called Snow Distribution_Gamma, (SD_G), whereas the latter model has a fixed, calibrated coefficient of variation, which parameterizes a log-normal model for snow distribution and is called Snow Distribution_Log-Normal (SD_LN). The two models are implemented in the parameter parsimonious rainfall-runoff model Distance Distribution Dynamics (DDD), and their capability for predicting runoff, SWE and snow-covered area (SCA) is tested and compared for 71 Norwegian catchments. The calibration period is 1985-2000 and validation period is 2000-2014. Results show that SDG better simulates SCA when compared with MODIS satellite-derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" and giving spurious positive trends in SWE, typical for SD_LN, is prevented. The precision of runoff simulations using SDG is slightly inferior, with a reduction in Nash-Sutcliffe and Kling-Gupta efficiency criterion of 0.01, but it is shown that the high precision in runoff prediction using SD_LN is accompanied with erroneous simulations of SWE.

  16. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation: Forecast With Data Assimilation

    DOE PAGES

    Huang, Yuanyuan; Jiang, Jiang; Ma, Shuang; ...

    2017-08-18

    We report that accurate simulation of soil thermal dynamics is essential for realistic prediction of soil biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics, and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil temperature and snow depth observations through data assimilation before the model was used for forecasting. The constrained model reproduced variations in observed temperature from different soil layers,more » the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow, and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0°C. Air warming caused stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil temperature but large for snow and frozen depths. Lastly, timely and effective soil thermal forecast, constrained through data assimilation that combines process-based understanding and detailed observations, provides boundary conditions for better predictions of future biogeochemical cycles.« less

  17. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation: Forecast With Data Assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yuanyuan; Jiang, Jiang; Ma, Shuang

    We report that accurate simulation of soil thermal dynamics is essential for realistic prediction of soil biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics, and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil temperature and snow depth observations through data assimilation before the model was used for forecasting. The constrained model reproduced variations in observed temperature from different soil layers,more » the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow, and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0°C. Air warming caused stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil temperature but large for snow and frozen depths. Lastly, timely and effective soil thermal forecast, constrained through data assimilation that combines process-based understanding and detailed observations, provides boundary conditions for better predictions of future biogeochemical cycles.« less

  18. Domain-averaged snow depth over complex terrain from flat field measurements

    NASA Astrophysics Data System (ADS)

    Helbig, Nora; van Herwijnen, Alec

    2017-04-01

    Snow depth is an important parameter for a variety of coarse-scale models and applications, such as hydrological forecasting. Since high-resolution snow cover models are computational expensive, simplified snow models are often used. Ground measured snow depth at single stations provide a chance for snow depth data assimilation to improve coarse-scale model forecasts. Snow depth is however commonly recorded at so-called flat fields, often in large measurement networks. While these ground measurement networks provide a wealth of information, various studies questioned the representativity of such flat field snow depth measurements for the surrounding topography. We developed two parameterizations to compute domain-averaged snow depth for coarse model grid cells over complex topography using easy to derive topographic parameters. To derive the two parameterizations we performed a scale dependent analysis for domain sizes ranging from 50m to 3km using highly-resolved snow depth maps at the peak of winter from two distinct climatic regions in Switzerland and in the Spanish Pyrenees. The first, simpler parameterization uses a commonly applied linear lapse rate. For the second parameterization, we first removed the obvious elevation gradient in mean snow depth, which revealed an additional correlation with the subgrid sky view factor. We evaluated domain-averaged snow depth derived with both parameterizations using flat field measurements nearby with the domain-averaged highly-resolved snow depth. This revealed an overall improved performance for the parameterization combining a power law elevation trend scaled with the subgrid parameterized sky view factor. We therefore suggest the parameterization could be used to assimilate flat field snow depth into coarse-scale snow model frameworks in order to improve coarse-scale snow depth estimates over complex topography.

  19. Modeling of surface dust concentration in snow cover at industrial area using neural networks and kriging

    NASA Astrophysics Data System (ADS)

    Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Shichkin, A. V.; Tyagunov, A. G.; Medvedev, A. N.

    2017-06-01

    Modeling of spatial distribution of pollutants in the urbanized territories is difficult, especially if there are multiple emission sources. When monitoring such territories, it is often impossible to arrange the necessary detailed sampling. Because of this, the usual methods of analysis and forecasting based on geostatistics are often less effective. Approaches based on artificial neural networks (ANNs) demonstrate the best results under these circumstances. This study compares two models based on ANNs, which are multilayer perceptron (MLP) and generalized regression neural networks (GRNNs) with the base geostatistical method - kriging. Models of the spatial dust distribution in the snow cover around the existing copper quarry and in the area of emissions of a nickel factory were created. To assess the effectiveness of the models three indices were used: the mean absolute error (MAE), the root-mean-square error (RMSE), and the relative root-mean-square error (RRMSE). Taking into account all indices the model of GRNN proved to be the most accurate which included coordinates of the sampling points and the distance to the likely emission source as input parameters for the modeling. Maps of spatial dust distribution in the snow cover were created in the study area. It has been shown that the models based on ANNs were more accurate than the kriging, particularly in the context of a limited data set.

  20. Water Futures for Cold Mountain Ecohydrology under Climate Change - Results from the North American Cordilleran Transect

    NASA Astrophysics Data System (ADS)

    Rasouli, K.; Pomeroy, J. W.; Fang, X.; Whitfield, P. H.; Marks, D. G.; Janowicz, J. R.

    2017-12-01

    A transect comprising three intensively researched mountain headwater catchments stretching from the northern US to northern Canada provides the basis to downscale climate models outputs for mountain hydrology and insight for an assessment of water futures under changing climate and vegetation using a physically based hydrological model. Reynolds Mountain East, Idaho; Marmot Creek, Alberta and Wolf Creek, Yukon are high mountain catchments dominated by forests and alpine shrub and grass vegetation with long-term snow, hydrometric and meteorological observations and extensive ecohydrological process studies. The physically based, modular, flexible and object-oriented Cold Regions Hydrological Modelling Platform (CRHM) was used to create custom spatially distributed hydrological models for these three catchments. Model parameterisations were based on knowledge of hydrological processes, basin physiography, soils and vegetation with minimal or no calibration from streamflow measurements. The models were run over multidecadal periods using high-elevation meteorological observations to assess the recent ecohydrological functioning of these catchments. The results showed unique features in each catchment, from snowdrift-fed aspen pocket forests in Reynolds Mountain East, to deep late-lying snowdrifts at treeline larch forests in Marmot Creek, and snow-trapping shrub tundra overlying discontinuous permafrost in Wolf Creek. The meteorological observations were then perturbed using the changes in monthly temperature and precipitation predicted by the NARCCAP modelling outputs for the mid-21st C. In all catchments there is a dramatic decline in snow redistribution and sublimation by wind and of snow interception by and sublimation from evergreen canopies that is associated with warmer winters. Reduced sublimation loss only partially compensated for greater rainfall fractions of precipitation. Under climate change, snowmelt was earlier and slower and at the lowest elevations and latitudes produced less proportion of runoff from snowmelt. Transient vegetation changes counteracted increasing streamflow yields from climate change partly due to increased snow retention by enhanced vegetation heights at high elevations and reduced vegetation canopy coverage at low elevations.

  1. Accuracy assessment of a net radiation and temperature index snowmelt model using ground observations of snow water equivalent in an alpine basin

    NASA Astrophysics Data System (ADS)

    Molotch, N. P.; Painter, T. H.; Bales, R. C.; Dozier, J.

    2003-04-01

    In this study, an accumulated net radiation / accumulated degree-day index snowmelt model was coupled with remotely sensed snow covered area (SCA) data to simulate snow cover depletion and reconstruct maximum snow water equivalent (SWE) in the 19.1-km2 Tokopah Basin of the Sierra Nevada, California. Simple net radiation snowmelt models are attractive for operational snowmelt runoff forecasts as they are computationally inexpensive and have low input requirements relative to physically based energy balance models. The objective of this research was to assess the accuracy of a simple net radiation snowmelt model in a topographically heterogeneous alpine environment. Previous applications of net radiation / temperature index snowmelt models have not been evaluated in alpine terrain with intensive field observations of SWE. Solar radiation data from two meteorological stations were distributed using the topographic radiation model TOPORAD. Relative humidity and temperature data were distributed based on the lapse rate calculated between three meteorological stations within the basin. Fractional SCA data from the Landsat Enhanced Thematic Mapper (5 acquisitions) and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) (2 acquisitions) were used to derive daily SCA using a linear regression between acquisition dates. Grain size data from AVIRIS (4 acquisitions) were used to infer snow surface albedo and interpolated linearly with time to derive daily albedo values. Modeled daily snowmelt rates for each 30-m pixel were scaled by the SCA and integrated over the snowmelt season to obtain estimates of maximum SWE accumulation. Snow surveys consisting of an average of 335 depth measurements and 53 density measurements during April, May and June, 1997 were interpolated using a regression tree / co-krig model, with independent variables of average incoming solar radiation, elevation, slope and maximum upwind slope. The basin was clustered into 7 elevation / average-solar-radiation zones for SWE accuracy assessment. Model simulations did a poor job at estimating the spatial distribution of SWE. Basin clusters where the solar radiative flux dominated the melt flux were simulated more accurately than those dominated by the turbulent fluxes or the longwave radiative flux.

  2. Estimation de l'equivalent en eau de la neige en milieu subarctique du Quebec par teledetection micro-ondes passives

    NASA Astrophysics Data System (ADS)

    Vachon, Francois

    The snow cover (extent, depth and water equivalent) is an important factor in assessing the water balance of a territory. In a context of deregulation of electricity, better knowledge of the quantity of water resulting from snowmelt that will be available for hydroelectric power generation has become a major challenge for the managers of Hydro-Quebec's generating plant. In fact, the snow on the ground represents nearly one third of Hydro-Quebec's annual energy reserve and the proportion is even higher for northern watersheds. Snowcover knowledge would therefore help optimize the management of energy stocks. The issue is especially important when one considers that better management of water resources can lead to substantial economic benefits. The Research Institute of Hydro-Quebec (IREQ), our research partner, is currently attempting to optimize the streamfiow forecasts made by its hydrological models by improving the quality of the inputs. These include a parameter known as the snow water equivalent (SWE) which characterizes the properties of the snow cover. At the present time, SWE data is obtained from in situ measurements, which are both sporadic and scattered, and does not allow the temporal and spatial variability of SWE to be characterized adequately for the needs of hydrological models. This research project proposes to provide the Quebec utility's hydrological models with distributed SWE information about its northern watersheds. The targeted accuracy is 15% for the proposed period of analysis covering the winter months of January, February and March of 2001 to 2006. The methodology is based on the HUT snow emission model and uses the passive microwave remote sensing data acquired by the SSM/I sensor. Monitoring of the temporal and spatial variations in SWE is done by inversion of the model and benefits from the assimilation of in situ data to characterize the state of snow cover during the season. Experimental results show that the assimilation technique of in situ data (density and depth) can reproduce the temporal variations in SWE with a RMSE error of 15.9% (R2=0.76). The analysis of land cover within the SSMI pixels can reduce this error to 14.6% ( R2=0.66) for SWE values below 300 mm. Moreover, the results show that the fluctuations of SWE values are driven by changes in snow depths. Indeed, the use of a constant value for the density of snow is feasible and makes it possible to get as good if not better results. These results will allow IREQ to assess the suitability of using snow cover information provided by the remote sensing data in its forecasting models. This improvement in SWE characterization will meet the needs of IREQ for its work on optimization of the quality of hydrological simulations. The originality and relevance of this work are based primarily on the type of method used to quantify SWE and the site where it is applied. The proposed method focuses on the inversion of the HUT model from passive remote sensing data and assimilates in situ data. Moreover, this approach allows high SWE values (> 300 mm) to be quantified, which was impossible with previous methods. These high SWE values are encountered in areas with large amounts of snow such as northern Quebec. Keywords. remote sensing, microwave, snow water equivalent (SWE), model, retrieval, data assimilation, SWE monitoring, spatialization Complete reference. Vachon, F. (2009) Snow water equivalent retrieval in a subartic environment of Quebec using passive microwave remote sensing. Ph.D. Thesis, Sherbrooke University, Sherbrooke, 211 p.

  3. Satellite Based Probabilistic Snow Cover Extent Mapping (SCE) at Hydro-Québec

    NASA Astrophysics Data System (ADS)

    Teasdale, Mylène; De Sève, Danielle; Angers, Jean-François; Perreault, Luc

    2016-04-01

    Over 40% of Canada's water resources are in Quebec and Hydro-Quebec has developed potential to become one of the largest producers of hydroelectricity in the world, with a total installed capacity of 36,643 MW. The Hydro-Québec fleet park includes 27 large reservoirs with a combined storage capacity of 176 TWh, and 668 dams and 98 controls. Thus, over 98% of all electricity used to supply the domestic market comes from water resources and the excess output is sold on the wholesale markets. In this perspective the efficient management of water resources is needed and it is based primarily on a good river flow estimation including appropriate hydrological data. Snow on ground is one of the significant variables representing 30% to 40% of its annual energy reserve. More specifically, information on snow cover extent (SCE) and snow water equivalent (SWE) is crucial for hydrological forecasting, particularly in northern regions since the snowmelt provides the water that fills the reservoirs and is subsequently used for hydropower generation. For several years Hydro Quebec's research institute ( IREQ) developed several algorithms to map SCE and SWE. So far all the methods were deterministic. However, given the need to maximize the efficient use of all resources while ensuring reliability, the electrical systems must now be managed taking into account all risks. Since snow cover estimation is based on limited spatial information, it is important to quantify and handle its uncertainty in the hydrological forecasting system. This paper presents the first results of a probabilistic algorithm for mapping SCE by combining Bayesian mixture of probability distributions and multiple logistic regression models applied to passive microwave data. This approach allows assigning for each grid point, probabilities to the set of the mutually exclusive discrete outcomes: "snow" and "no snow". Its performance was evaluated using the Brier score since it is particularly appropriate to measure the accuracy of probabilistic discrete predictions. The scores were measured by comparing the snow probabilities produced by our models with the Hydro-Québec's snow ground data.

  4. Mapping Snow Grain Size over Greenland from MODIS

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Tedesco, Marco; Wang, Yujie; Kokhanovsky, Alexander

    2008-01-01

    This paper presents a new automatic algorithm to derive optical snow grain size (SGS) at 1 km resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Differently from previous approaches, snow grains are not assumed to be spherical but a fractal approach is used to account for their irregular shape. The retrieval is conceptually based on an analytical asymptotic radiative transfer model which predicts spectral bidirectional snow reflectance as a function of the grain size and ice absorption. The analytical form of solution leads to an explicit and fast retrieval algorithm. The time series analysis of derived SGS shows a good sensitivity to snow metamorphism, including melting and snow precipitation events. Preprocessing is performed by a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which includes gridding MODIS data to 1 km resolution, water vapor retrieval, cloud masking and an atmospheric correction. MAIAC cloud mask (CM) is a new algorithm based on a time series of gridded MODIS measurements and an image-based rather than pixel-based processing. Extensive processing of MODIS TERRA data over Greenland shows a robust performance of CM algorithm in discrimination of clouds over bright snow and ice. As part of the validation analysis, SGS derived from MODIS over selected sites in 2004 was compared to the microwave brightness temperature measurements of SSM\\I radiometer, which is sensitive to the amount of liquid water in the snowpack. The comparison showed a good qualitative agreement, with both datasets detecting two main periods of snowmelt. Additionally, MODIS SGS was compared with predictions of the snow model CROCUS driven by measurements of the automatic whether stations of the Greenland Climate Network. We found that CROCUS grain size is on average a factor of two larger than MODIS-derived SGS. Overall, the agreement between CROCUS and MODIS results was satisfactory, in particular before and during the first melting period in mid-June. Following detailed time series analysis of SGS for four permanent sites, the paper presents SGS maps over the Greenland ice sheet for the March-September period of 2004.

  5. Physical and Chemical Properties of Seasonal Snow and the Impacts on Albedo in New Hampshire, USA

    NASA Astrophysics Data System (ADS)

    Adolph, A. C.; Albert, M. R.; Amante, J.; Dibb, J. E.

    2014-12-01

    Snow albedo is critical to surface energy budgets and thus to the timing of mid-winter and vernal melt events in seasonal snow packs. Timing of these melt events is important in predicting flooding, understanding plant and animal phenology, and the availability of winter recreational activity. The state of New Hampshire experiences large spatial and temporal variability in snow albedo as a result of differences in meteorological conditions, physical snow structure, and chemical impurities in the snow, particularly highly absorptive black carbon (BC) and dust particles. This work focuses on the winters of 2012-2013 and 2013-2014, comparing three intensive study sites. Data collected at these sites include sub-hourly meteorological data, near daily measurements of snow depth, snow density, surface IR temperature, specific surface area (SSA) from contact spectroscopy, and spectrally resolved snow albedo using an ASD FieldSpec4 throughout the winter season. Additionally, snow samples were analyzed for black carbon content and other chemical impurities including Cl-, NO3-, NH4 , K , Na , Mg2+ , Ca2+ and SO42-. For each storm event at the three intensive sites, moisture sources and paths were determined using HYPLIT back trajectory modeling to determine potential sources of black carbon and other impurities in the snow. Storms with terrestrial-based paths across the US Midwest and Canada resulted in higher BC content than storms with ocean-based paths and sources. In addition to the variable storm path between sites and between years, the second year of study was on average 2.5°C colder than the first year, impacting duration of snow cover at each site and the SSA of surface snow which is sensitive to frequency of snow events and relies on cold temperatures to reduce grain metamorphism. Combining an understanding of storm frequency and path with physical and chemical attributes of the snow allows us to investigate snow albedo sensitivities with implications for understanding the impacts of future climate change on snow albedo in the Northeastern US.

  6. Mesocell study area snow distributions for the Cold Land Processes Experiment (CLPX)

    Treesearch

    Glen E. Liston; Christopher A. Hiemstra; Kelly Elder; Donald W. Cline

    2008-01-01

    The Cold Land Processes Experiment (CLPX) had a goal of describing snow-related features over a wide range of spatial and temporal scales. This required linking disparate snow tools and datasets into one coherent, integrated package. Simulating realistic high-resolution snow distributions and features requires a snow-evolution modeling system (SnowModel) that can...

  7. Coupling the snow thermodynamic model SNOWPACK with the microwave emission model of layered snowpacks for subarctic and arctic snow water equivalent retrievals

    NASA Astrophysics Data System (ADS)

    Langlois, A.; Royer, A.; Derksen, C.; Montpetit, B.; Dupont, F.; GoïTa, K.

    2012-12-01

    Satellite-passive microwave remote sensing has been extensively used to estimate snow water equivalent (SWE) in northern regions. Although passive microwave sensors operate independent of solar illumination and the lower frequencies are independent of atmospheric conditions, the coarse spatial resolution introduces uncertainties to SWE retrievals due to the surface heterogeneity within individual pixels. In this article, we investigate the coupling of a thermodynamic multilayered snow model with a passive microwave emission model. Results show that the snow model itself provides poor SWE simulations when compared to field measurements from two major field campaigns. Coupling the snow and microwave emission models with successive iterations to correct the influence of snow grain size and density significantly improves SWE simulations. This method was further validated using an additional independent data set, which also showed significant improvement using the two-step iteration method compared to standalone simulations with the snow model.

  8. Design, Development and Testing of Web Services for Multi-Sensor Snow Cover Mapping

    NASA Astrophysics Data System (ADS)

    Kadlec, Jiri

    This dissertation presents the design, development and validation of new data integration methods for mapping the extent of snow cover based on open access ground station measurements, remote sensing images, volunteer observer snow reports, and cross country ski track recordings from location-enabled mobile devices. The first step of the data integration procedure includes data discovery, data retrieval, and data quality control of snow observations at ground stations. The WaterML R package developed in this work enables hydrologists to retrieve and analyze data from multiple organizations that are listed in the Consortium of Universities for the Advancement of Hydrologic Sciences Inc (CUAHSI) Water Data Center catalog directly within the R statistical software environment. Using the WaterML R package is demonstrated by running an energy balance snowpack model in R with data inputs from CUAHSI, and by automating uploads of real time sensor observations to CUAHSI HydroServer. The second step of the procedure requires efficient access to multi-temporal remote sensing snow images. The Snow Inspector web application developed in this research enables the users to retrieve a time series of fractional snow cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) for any point on Earth. The time series retrieval method is based on automated data extraction from tile images provided by a Web Map Tile Service (WMTS). The average required time for retrieving 100 days of data using this technique is 5.4 seconds, which is significantly faster than other methods that require the download of large satellite image files. The presented data extraction technique and space-time visualization user interface can be used as a model for working with other multi-temporal hydrologic or climate data WMTS services. The third, final step of the data integration procedure is generating continuous daily snow cover maps. A custom inverse distance weighting method has been developed to combine volunteer snow reports, cross-country ski track reports and station measurements to fill cloud gaps in the MODIS snow cover product. The method is demonstrated by producing a continuous daily time step snow presence probability map dataset for the Czech Republic region. The ability of the presented methodology to reconstruct MODIS snow cover under cloud is validated by simulating cloud cover datasets and comparing estimated snow cover to actual MODIS snow cover. The percent correctly classified indicator showed accuracy between 80 and 90% using this method. Using crowdsourcing data (volunteer snow reports and ski tracks) improves the map accuracy by 0.7--1.2%. The output snow probability map data sets are published online using web applications and web services. Keywords: crowdsourcing, image analysis, interpolation, MODIS, R statistical software, snow cover, snowpack probability, Tethys platform, time series, WaterML, web services, winter sports.

  9. Implementation of a physically-based scheme representing light-absorbing impurities deposition, evolution and radiative impacts in the SURFEX/Crocus model

    NASA Astrophysics Data System (ADS)

    Tuzet, F.; Dumont, M.; Lafaysse, M.; Hagenmuller, P.; Arnaud, L.; Picard, G.; Morin, S.

    2017-12-01

    Light-absorbing impurities decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive impact is to accelerate snow melt. However the presence of a layer highly concentrated in light-absorbing impurities in the snowpack also modify its temperature profile affecting snow metamorphism. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities deposition and evolution within the snowpack (Tuzet et al., 2017, TCD). Once deposited, the model computes impurities mass evolution until snow melts out. Taking benefits of the recent inclusion of the spectral radiative transfer model TARTES in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. In the Pyrenees mountain range, strong sporadic Saharan dust deposition (referred to as dust outbreaks) can occur during the snow season leading some snow layers in the snowpack to contain high concentrations of mineral dust. One of the major events of the past years occurred on February 2014, affecting the whole southern Europe. During the weeks following this dust outbreak a strong avalanche activity was reported in the Aran valley (Pyrenees, Spain). For now, the link between the dust outbreak and the avalanche activity is not demonstrated.We investigate the impact of this dust outbreak on the snowpack stability in the Aran valley using the Crocus model, trying to determine whether the snowpack instability observed after the dust outbreak can be related to the presence of dust. SAFRAN-reanalysis meteorological data are used to drive the model on several altitudes, slopes and aspects. For each slope configuration two different simulations are run; one without dust and one simulating the dust outbreak of February 2014.The two corresponding simulations are then compared to assess the role of impurities on snow metamorphism and stability.On this example, we numerically prove that under specific meteorological conditions the presence of a dusty layer in the snowpack causes an enhanced temperature gradient at the interface, favoring the formation of faceted crystals.These preliminary results need to be evaluated against field measurements and with respect to uncertainties in Crocus model.

  10. LANDSAT-D investigations in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, J.

    1983-01-01

    Progress on the registration of TM data to digital topographic data; on comparison of TM, MSS and NOAA meteorological satellite data for snowcover mapping; and on radiative transfer models for atmospheric correction is reported. Some methods for analyzing spatial contiguity of snow within the snow covered area were selected. The methods are based on a two-channel version of the grey level co-occurence matrix, combined with edge detection derived from an algorithm for computing slopes and exposures from digital terrain data.

  11. Macroscopic modeling of heat and water vapor transfer with phase change in dry snow based on an upscaling method: Influence of air convection

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Geindreau, C.; Flin, F.

    2015-12-01

    At the microscopic scale, i.e., pore scale, dry snow metamorphism is mainly driven by the heat and water vapor transfer and the sublimation-deposition process at the ice-air interface. Up to now, the description of these phenomena at the macroscopic scale, i.e., snow layer scale, in the snowpack models has been proposed in a phenomenological way. Here we used an upscaling method, namely, the homogenization of multiple-scale expansions, to derive theoretically the macroscopic equivalent modeling of heat and vapor transfer through a snow layer from the physics at the pore scale. The physical phenomena under consideration are steady state air flow, heat transfer by conduction and convection, water vapor transfer by diffusion and convection, and phase change (sublimation and deposition). We derived three different macroscopic models depending on the intensity of the air flow considered at the pore scale, i.e., on the order of magnitude of the pore Reynolds number and the Péclet numbers: (A) pure diffusion, (B) diffusion and moderate convection (Darcy's law), and (C) strong convection (nonlinear flow). The formulation of the models includes the exact expression of the macroscopic properties (effective thermal conductivity, effective vapor diffusion coefficient, and intrinsic permeability) and of the macroscopic source terms of heat and vapor arising from the phase change at the pore scale. Such definitions can be used to compute macroscopic snow properties from 3-D descriptions of snow microstructures. Finally, we illustrated the precision and the robustness of the proposed macroscopic models through 2-D numerical simulations.

  12. Addressing sub-scan variability of tundra snow properties in ground-based Ku- and X-band scatterometer observations

    NASA Astrophysics Data System (ADS)

    King, J. M.; Kasurak, A.; Kelly, R. E.; Duguay, C. R.; Derksen, C.; Rutter, N.; Sandells, M.; Watts, T.

    2012-12-01

    During the winter of 2010-2011 ground-based Ku- (17.2 GHz) and X-band (9.6 GHz) scatterometers were deployed near Churchill, Manitoba, Canada to evaluate the potential for dual-frequency observation of tundra snow properties. Field-based scatterometer observations when combined with in-situ snowpack properties and physically based models, provide the means necessary to develop and evaluate local scale property retrievals. To form meaningful analysis of the observed physical interaction space, potential sources of bias and error in the observed backscatter must be identified and quantified. This paper explores variation in observed Ku- and X-band backscatter in relation to the physical complexities of shallow tundra snow whose properties evolve at scales smaller than the observing instrument. The University of Waterloo scatterometer (UW-Scat) integrates observations over wide azimuth sweeps, several meters in length, to minimize errors resulting from radar fade and poor signal-to-noise ratios. Under ideal conditions, an assumption is made that the observed snow target is homogeneous. Despite an often-outward appearance of homogeneity, topographic elements of the Canadian open tundra produce significant local scale variability in snow properties, including snow water equivalent (SWE). Snow at open tundra sites observed during this campaign was found to vary by as much as 20 cm in depth and 40 mm in SWE within the scatterometer field of view. Previous studies suggest that changes in snow properties on this order will produce significant variation in backscatter, potentially introducing bias into products used for analysis. To assess the influence of sub-scan variability, extensive snow surveys were completed within the scatterometer field of view immediately after each scan at 32 sites. A standardized sampling protocol captured a grid of geo-located measurements, characterizing the horizontal variability of bulk properties including depth, density, and SWE. Based upon these measurements, continuous surfaces were generated to represent the observed snow target. Two snow pits were also completed within the field of view, quantifying vertical variability in density, permittivity, temperature, grain size, and stratigraphy. A new post-processing method is applied to divide the previously aggregated scatterometer observations into smaller sub-sets, which are then co-located with the physical snow observations. Sub-scan backscatter coefficients and their relationship to tundra snowpack parameters are then explored. The results presented here provide quantitative methods relevant to the radar observation science of snow and, therefore, to potential future space-borne missions such as the Cold Regions Hydrology High-resolution Observatory (CoReH2O), a candidate European Space Agency Earth Explorer mission. Moreover, this paper provides guidelines for future studies exploring ground-based scatterometer observations of tundra snow.

  13. Snow instability evaluation: calculating the skier-induced stress in a multi-layered snowpack

    NASA Astrophysics Data System (ADS)

    Monti, Fabiano; Gaume, Johan; van Herwijnen, Alec; Schweizer, Jürg

    2016-03-01

    The process of dry-snow slab avalanche formation can be divided into two phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation based on shear stress and strength. Though it is known that both the properties of the weak layer and the slab play a major role in avalanche release, most previous approaches only considered slab properties in terms of slab depth, average density and skier penetration. For example, for the skier stability index, the additional stress (e.g. due to a skier) at the depth of the weak layer is calculated by assuming that the snow cover can be considered a semi-infinite, elastic, half-space. We suggest a new approach based on a simplification of the multi-layered elasticity theory in order to easily compute the additional stress due to a skier at the depth of the weak layer, taking into account the layering of the snow slab and the substratum. We first tested the proposed approach on simplified snow profiles, then on manually observed snow profiles including a stability test and, finally, on simulated snow profiles. Our simple approach reproduced the additional stress obtained by finite element simulations for the simplified profiles well - except that the sequence of layering in the slab cannot be replicated. Once implemented into the classical skier stability index and applied to manually observed snow profiles classified into different stability classes, the classification accuracy improved with the new approach. Finally, we implemented the refined skier stability index into the 1-D snow cover model SNOWPACK. The two study cases presented in this paper showed promising results even though further verification is still needed. In the future, we intend to implement the proposed approach for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.

  14. Snow instability evaluation: calculating the skier-induced stress in a multi-layered snowpack

    NASA Astrophysics Data System (ADS)

    Monti, F.; Gaume, J.; van Herwijnen, A.; Schweizer, J.

    2015-08-01

    The process of dry-snow slab avalanche formation can be divided into two phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation based on shear stress and strength. Though it is known that both the properties of the weak layer and the slab play a major role in avalanche release, most previous approaches only considered slab properties in terms of slab depth, average density and skier penetration. For example, for the skier stability index, the additional stress (e.g. due to a skier) at the depth of the weak layer is calculated by assuming that the snow cover can be considered a semi-infinite, elastic half-space. We suggest a new approach based on a simplification of the multi-layered elasticity theory in order to easily compute the additional stress due to a skier at the depth of the weak layer taking into account the layering of the snow slab and the substratum. We first tested the proposed approach on simplified snow profiles, then on manually observed snow profiles including a stability test and, finally, on simulated snow profiles. Our simple approach well reproduced the additional stress obtained by finite element simulations for the simplified profiles - except that the sequence of layering in the slab cannot be replicated. Once implemented into the classical skier stability index and applied to manually observed snow profiles classified into different stability classes, the classification accuracy improved with the new approach. Finally, we implemented the refined skier stability index into the 1-D snow cover model SNOWPACK. For the two study cases presented in this paper, this approach showed promising results even though further verification is still needed. In the future, we intend to implement the proposed approach for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.

  15. A radiation closure study of Arctic stratus cloud microphysical properties using the collocated satellite-surface data and Fu-Liou radiative transfer model

    NASA Astrophysics Data System (ADS)

    Dong, Xiquan; Xi, Baike; Qiu, Shaoyue; Minnis, Patrick; Sun-Mack, Sunny; Rose, Fred

    2016-09-01

    Retrievals of cloud microphysical properties based on passive satellite imagery are especially difficult over snow-covered surfaces because of the bright and cold surface. To help quantify their uncertainties, single-layered overcast liquid-phase Arctic stratus cloud microphysical properties retrieved by using the Clouds and the Earth's Radiant Energy System Edition 2 and Edition 4 (CERES Ed2 and Ed4) algorithms are compared with ground-based retrievals at the Atmospheric Radiation Measurement North Slope of Alaska (ARM NSA) site at Barrow, AK, during the period from March 2000 to December 2006. A total of 206 and 140 snow-free cases (Rsfc ≤ 0.3), and 108 and 106 snow cases (Rsfc > 0.3), respectively, were selected from Terra and Aqua satellite passes over the ARM NSA site. The CERES Ed4 and Ed2 optical depth (τ) and liquid water path (LWP) retrievals from both Terra and Aqua are almost identical and have excellent agreement with ARM retrievals under snow-free and snow conditions. In order to reach a radiation closure study for both the surface and top of atmosphere (TOA) radiation budgets, the ARM precision spectral pyranometer-measured surface albedos were adjusted (63.6% and 80% of the ARM surface albedos for snow-free and snow cases, respectively) to account for the water and land components of the domain of 30 km × 30 km. Most of the radiative transfer model calculated SW↓sfc and SW↑TOA fluxes by using ARM and CERES cloud retrievals and the domain mean albedos as input agree with the ARM and CERES flux observations within 10 W m-2 for both snow-free and snow conditions. Sensitivity studies show that the ARM LWP and re retrievals are less dependent on solar zenith angle (SZA), but all retrieved optical depths increase with SZA.

  16. Characterizing 2-D snow stratigraphy in forests based on high-resolution snow penetrometry

    NASA Astrophysics Data System (ADS)

    Teich, M.; Loewe, H.; Jenkins, M. J.; Schneebeli, M.

    2016-12-01

    Snow stratigraphy, the characteristic layering within a seasonal snowpack, has important implications for snow remote sensing, hydrology and avalanches. Forests modify snowpack properties through interception of falling snow by tree crowns, the reduction of near-surface wind speeds, and changes to the energy balance beneath and around trees leading to a highly variable stratigraphy in space and time. The lack of snowpack observations in forests limits our ability to understand the spatio-temporal evolution of snow stratigraphy as a function of forest structure and to observe snowpack response to changes in forest cover. We examined the snowpack in field campaigns using the SnowMicroPen (SMP) under tree canopies in an Engelmann spruce forest in the central Rocky Mountains in Utah, USA. Data were collected in plots beneath canopies of undisturbed, bark beetle-disturbed and salvage logged forest stands, and a non-forested meadow. In 2015 weekly-repeated SMP penetration measurements were taken along 10 m transects at 0.3 m intervals. In the winter of 2016 bi-weekly measurements were collected along 20 m transects every 0.5 m. Using a statistical model, we derived 2-D snow density profiles as a measure of stratigraphy. The small-scale patterns in snow density revealed a more heterogeneous stratigraphy in undisturbed dense stands and also beneath bark beetle-disturbed forest. In contrast, snow stratigraphy was more homogeneous in the harvested plot despite standing small diameter trees and woody debris with effective heights up to 95 cm. As expected, snow depth and layering in non-forested plots varied only slightly over the small spatial extent sampled. Observed patterns changed throughout the snow season dependent upon snow and meteorological conditions. The results contribute to the general understanding of forest-snowpack interactions at high spatial resolution, and can be used to validate snowpack and microwave models for avalanche formation processes and SWE retrieval in forests.

  17. Impact of snow gliding on soil redistribution for a sub-alpine area in Switzerland

    NASA Astrophysics Data System (ADS)

    Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Alewell, C.

    2013-07-01

    The aim of this study is to assess the importance of snow gliding as soil erosion agent for four different land use/land cover types in a sub-alpine area in Switzerland. The 14 investigated sites are located close to the valley bottom at approximately 1500 m a.s.l., while the elevation of the surrounding mountain ranges is about 2500 m a.s.l. We used two different approaches to estimate soil erosion rates: the fallout radionuclide 137Cs and the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model is suitable to estimate soil loss by water erosion, while the 137Cs method integrates soil loss due to all erosion agents involved. Thus, we hypothesise that the soil erosion rates determined with the 137Cs method are higher and that the observed discrepancy between the erosion rate of RUSLE and the 137Cs method is related to snow gliding. Cumulative snow glide distance was measured for the sites in the winter 2009/2010 and modelled for the surrounding area with the Spatial Snow Glide Model (SSGM). Measured snow glide distance range from 0 to 189 cm with lower values for the north exposed slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected land use changes in the Alps. Our hypothesis was confirmed, the difference of RUSLE and 137Cs erosion rates was correlated to the measured snow glide distance (R2 = 0.73; p < 0.005). A high difference (lower proportion of water erosion compared to total net erosion) was observed for high snow glide rates and vice versa. The SSGM reproduced the relative difference of the measured snow glide values between different land use/land cover types. The resulting map highlights the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding is a key process impacting soil erosion pattern and magnitude in sub-alpine areas with similar topographic and climatic conditions.

  18. Estimation of Coastal Freshwater Discharge into Prince William Sound using a High-Resolution Hydrological Model

    NASA Astrophysics Data System (ADS)

    Beamer, J. P.; Hill, D. F.; Liston, G. E.; Arendt, A. A.; Hood, E. W.

    2013-12-01

    In Prince William Sound (PWS), Alaska, there is a pressing need for accurate estimates of the spatial and temporal variations in coastal freshwater discharge (FWD). FWD into PWS originates from streamflow due to rainfall, annual snowmelt, and changes in stored glacier mass and is important because it helps establish spatial and temporal patterns in ocean salinity and temperature, and is a time-varying boundary condition for oceanographic circulation models. Previous efforts to model FWD into PWS have been heavily empirical, with many physical processes absorbed into calibration coefficients that, in many cases, were calibrated to streams and rivers not hydrologically similar to those discharging into PWS. In this work we adapted and validated a suite of high-resolution (in space and time), physically-based, distributed weather, snowmelt, and runoff-routing models designed specifically for snow melt- and glacier melt-dominated watersheds like PWS in order to: 1) provide high-resolution, real-time simulations of snowpack and FWD, and 2) provide a record of historical variations of FWD. SnowModel, driven with gridded topography, land cover, and 32 years (1979-2011) of 3-hourly North American Regional Reanalysis (NARR) atmospheric forcing data, was used to simulate snowpack accumulation and melt across a PWS model domain. SnowModel outputs of daily snow water equivalent (SWE) depth and grid-cell runoff volumes were then coupled with HydroFlow, a runoff-routing model which routed snowmelt, glacier-melt, and rainfall to each watershed outlet (PWS coastline) in the simulation domain. The end product was a continuous 32-year simulation of daily FWD into PWS. In order to validate the models, SWE and snow depths from SnowModel were compared with observed SWE and snow depths from SnoTel and snow survey data, and discharge from HydroFlow was compared with observed streamflow measurements. As a second phase of this research effort, the coupled models will be set-up to run in real-time, where daily measurements from weather stations in the PWS will be used to drive simulations of snow cover and streamflow. In addition, we will deploy a strategic array of instrumentation aimed at validating the simulated weather estimates and the calculations of freshwater discharge. Upon successful implementation and validation of the modeling system, it will join established and ongoing computational and observational efforts that have a common goal of establishing a comprehensive understanding of the physical behavior of PWS.

  19. Through the Looking Glass: Droughtorama to Snowpocalypse in the Sierra Nevada as studied with the NASA Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Painter, T. H.; Bormann, K.; Deems, J. S.; Hedrick, A. R.; Marks, D. G.; Skiles, M.; Stock, G. M.

    2017-12-01

    Across the last five years, the Sierra Nevada has seen increasing drought and then an abrupt return to a top five snowpack. Fortunately, the NASA Airborne Snow Observatory has been flying the Central Sierra Nevada since the spring of 2013, quantifying critical mountain basins' snow water equivalent and snow albedo. The huge variation of snowpack years captured by the NASA ASO is of enormous benefit to water cycle science, ecosystem science, and water management utilization of ASO data and its modeling. It allows a much broader understanding of mountain basin snow season cases for understanding snowmelt runoff, snow/rain mixes, snowfall distribution, evapotranspiration, soil moisture, and glacier mass balance. For water management, trust in empirical and physically-based modeling from the ASO data for application anywhere in the range of snow years is greatly improved by having consistency in that modeling with the span of years ASO has characterized. The NASA ASO was designed to characterize mountain snowpack and fill this void in water cycle science. Our original conversations with partner California Department of Water Resources in 2011 focused on the utility of ASO for flood risk mitigation, given the large snowfall of that year. However, from 2012 through 2016, California snowpacks expressed horrible drought, reaching the nadir in 2015 with the lowest snowpack on record. The 2016 snowpack was nearly normal according to snow pillows and snow courses (ASO's record is too short to define a `normal' year). However, 2017 had enormous snowfall in January and February, keeping snow pillows on track with the largest year on record, 1982-83. However, March backed off and the record year was lost. Still, accumulation was enormous. In parts of the San Joaquin basin, snow depths were > 30 m. The sum of near April 1 ASO total basin SWE for 2013 through 2016 in the Tuolumne Basin was only 92% of the near April 1, 2017 acquisition. In addition to the large accumulation of snow in 2017, the snowpack was also covered with far greater impurities (dust, black carbon) across the snowmelt period than in the previous years, as expressed in the snow albedo and radiative forcing by dust and BC in snow from the ASO imaging spectrometer. In this presentation, we explore the importance of this opportunity for water cycle science and water management.

  20. An Integrated Modeling System for Estimating Glacier and Snow Melt Driven Streamflow from Remote Sensing and Earth System Data Products in the Himalayas

    NASA Technical Reports Server (NTRS)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Sen Gupta, A.; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.

    2014-01-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (Geo- SFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification of water availability.

  1. [Research on hyperspectral remote sensing in monitoring snow contamination concentration].

    PubMed

    Tang, Xu-guang; Liu, Dian-wei; Zhang, Bai; Du, Jia; Lei, Xiao-chun; Zeng, Li-hong; Wang, Yuan-dong; Song, Kai-shan

    2011-05-01

    Contaminants in the snow can be used to reflect regional and global environmental pollution caused by human activities. However, so far, the research on space-time monitoring of snow contamination concentration for a wide range or areas difficult for human to reach is very scarce. In the present paper, based on the simulated atmospheric deposition experiments, the spectroscopy technique method was applied to analyze the effect of different contamination concentration on the snow reflectance spectra. Then an evaluation of snow contamination concentration (SCC) retrieval methods was conducted using characteristic index method (SDI), principal component analysis (PCA), BP neural network and RBF neural network method, and the estimate effects of four methods were compared. The results showed that the neural network model combined with hyperspectral remote sensing data could estimate the SCC well.

  2. Statistical prediction of seasonal discharge in the Naryn basin for water resources planning in Central Asia

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Gafurov, Abror; Gerlitz, Lars; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Merkushkin, Aleksandr; Merz, Bruno

    2016-04-01

    The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien-Shan and Pamirs. During the summer months the snow and glacier melt water of the rivers originating in the mountains provides the only water resource available for agricultural production but also for water collection in reservoirs for energy production in winter months. Thus a reliable seasonal forecast of the water resources is crucial for a sustainable management and planning of water resources.. In fact, seasonal forecasts are mandatory tasks of national hydro-meteorological services in the region. Thus this study aims at a statistical forecast of the seasonal water availability, whereas the focus is put on the usage of freely available data in order to facilitate an operational use without data access limitations. The study takes the Naryn basin as a test case, at which outlet the Toktogul reservoir stores the discharge of the Naryn River. As most of the water originates form snow and glacier melt, a statistical forecast model should use data sets that can serve as proxy data for the snow masses and snow water equivalent in late spring, which essentially determines the bulk of the seasonal discharge. CRU climate data describing the precipitation and temperature in the basin during winter and spring was used as base information, which was complemented by MODIS snow cover data processed through ModSnow tool, discharge during the spring and also GRACE gravimetry anomalies. For the construction of linear forecast models monthly as well as multi-monthly means over the period January to April were used to predict the seasonal mean discharge of May-September at the station Uchterek. An automatic model selection was performed in multiple steps, whereas the best models were selected according to several performance measures and their robustness in a leave-one-out cross validation. It could be shown that the seasonal discharge can be predicted with exceptionally high skill reaching explained variances of 86% in the cross validation using ModSnow processed snow cover data and CRU temperature and precipitation data, i.e. freely available data only. Using antecedent discharge information from the Uchterek station over the period January to April the skill can be improved even further. Also the addition of latest EGSIEM GRACE products can improve this skill to > 90% explained variance by replacing the CRU temperature data in the forecast model. From all variables the ModSnow processed MODIS snow cover data proved to be the most important predictor. However, although the prediction models proved to be robust in the cross validation, it has to be mentioned that the models are based on a limited time spanning the period 2000-2012 only. Nevertheless it is believed that the models are reliable, as this time period shows a high variability in seasonal water availability spanning from exceptionally dry to wet years. In summary, the developed forecast model may be a valuable complementary tool for the seasonal discharge prediction in Central Asia for water resources planning, that does not suffer from limited data access required for other forecast methods.

  3. Integration of snow management practices into a detailed snow pack model

    NASA Astrophysics Data System (ADS)

    Spandre, Pierre; Morin, Samuel; Lafaysse, Matthieu; Lejeune, Yves; François, Hugues; George-Marcelpoil, Emmanuelle

    2016-04-01

    The management of snow on ski slopes is a key socio-economic and environmental issue in mountain regions. Indeed the winter sports industry has become a very competitive global market although this economy remains particularly sensitive to weather and snow conditions. The understanding and implementation of snow management in detailed snowpack models is a major step towards a more realistic assessment of the evolution of snow conditions in ski resorts concerning past, present and future climate conditions. Here we describe in a detailed manner the integration of snow management processes (grooming, snowmaking) into the snowpack model Crocus (Spandre et al., Cold Reg. Sci. Technol., in press). The effect of the tiller is explicitly taken into account and its effects on snow properties (density, snow microstructure) are simulated in addition to the compaction induced by the weight of the grooming machine. The production of snow in Crocus is carried out with respect to specific rules and current meteorological conditions. Model configurations and results are described in detail through sensitivity tests of the model of all parameters related to snow management processes. In-situ observations were carried out in four resorts in the French Alps during the 2014-2015 winter season considering for each resort natural, groomed only and groomed plus snowmaking conditions. The model provides realistic simulations of the snowpack properties with respect to these observations. The main uncertainty pertains to the efficiency of the snowmaking process. The observed ratio between the mass of machine-made snow on ski slopes and the water mass used for production was found to be lower than was expected from the literature, in every resort. The model now referred to as "Crocus-Resort" has been proven to provide realistic simulations of snow conditions on ski slopes and may be used for further investigations. Spandre, P., S. Morin, M. Lafaysse, Y. Lejeune, H. François and E. George-Marcelpoil, Integration of snow management processes into a detailed snowpack model, Cold Reg. Sci. Technol., in press.

  4. Snow Physics and Meltwater Hydrology of the SSiB Model Employed for Climate Simulation Studies with GEOS 2 GCM

    NASA Technical Reports Server (NTRS)

    Mocko, David M.; Sud, Y. C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Present-day climate models produce large climate drifts that interfere with the climate signals simulated in modelling studies. The simplifying assumptions of the physical parameterization of snow and ice processes lead to large biases in the annual cycles of surface temperature, evapotranspiration, and the water budget, which in turn causes erroneous land-atmosphere interactions. Since land processes are vital for climate prediction, and snow and snowmelt processes have been shown to affect Indian monsoons and North American rainfall and hydrology, special attention is now being given to cold land processes and their influence on the simulated annual cycle in GCMs. The snow model of the SSiB land-surface model being used at Goddard has evolved from a unified single snow-soil layer interacting with a deep soil layer through a force-restore procedure to a two-layer snow model atop a ground layer separated by a snow-ground interface. When the snow cover is deep, force-restore occurs within the snow layers. However, several other simplifying assumptions such as homogeneous snow cover, an empirical depth related surface albedo, snowmelt and melt-freeze in the diurnal cycles, and neglect of latent heat of soil freezing and thawing still remain as nagging problems. Several important influences of these assumptions will be discussed with the goal of improving them to better simulate the snowmelt and meltwater hydrology. Nevertheless, the current snow model (Mocko and Sud, 2000, submitted) better simulates cold land processes as compared to the original SSiB. This was confirmed against observations of soil moisture, runoff, and snow cover in global GSWP (Sud and Mocko, 1999) and point-scale Valdai simulations over seasonal snow regions. New results from the current snow model SSiB from the 10-year PILPS 2e intercomparison in northern Scandinavia will be presented.

  5. Investigating the effect and uncertainties of light absorbing impurities in snow and ice on snow melt and discharge generation using a hydrologic catchment model and satellite data

    NASA Astrophysics Data System (ADS)

    Matt, Felix; Burkhart, John F.

    2017-04-01

    Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance snow melt by increasing the absorption of short wave radiation. The consequences are a shortening of the snow cover duration due to increased snow melt and, with respect to hydrologic processes, a temporal shift in the discharge generation. However, the magnitude of these effects as simulated in numerical models have large uncertainties, originating mainly from uncertainties in the wet and dry deposition of light absorbing aerosols, limitations in the model representation of the snowpack, and the lack of observable variables required to estimate model parameters and evaluate the simulated variables connected with the representation of LAISI. This leads to high uncertainties in the additional energy absorbed by the snow due to the presence of LAISI, a key variable in understanding snowpack energy-balance dynamics. In this study, we assess the effect of LAISI on snow melt and discharge generation and the involved uncertainties in a high mountain catchment located in the western Himalayas by using a distributed hydrological catchment model with focus on the representation of the seasonal snow pack. The snow albedo is hereby calculated from a radiative transfer model for snow, taking the increased absorption of short wave radiation by LAISI into account. Meteorological forcing data is generated from an assimilation of observations and high resolution WRF simulations, and LAISI mixing ratios from deposition rates of Black Carbon simulated with the FLEXPART model. To asses the quality of our simulations and the related uncertainties, we compare the simulated additional energy absorbed by the snow due to the presence of LAISI to the MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithm satellite product.

  6. Snow water equivalent mapping in Norway

    NASA Astrophysics Data System (ADS)

    Tveito, O. E.; Udnæs, H.-C.; Engeset, R.; Førland, E. J.; Isaksen, K.; Mengistu, Z.

    2003-04-01

    In high latitude area snow covers the ground large parts of the year. Information about the water volume as snow is of major importance in many respects. Flood forecasters at NVE need it in order to assess possible flood risks. Hydropower producers need it to plan the most efficient production of the water in their reservoirs, traders to estimate the potential energy available for the market. Meteorologists on their side use the information as boundary conditions in weather forecasting models. The Norwegian meteorological institute has provided snow accumulation maps for Norway for more than 50 years. These maps are now produced twice a month in the winter season. They show the accumulated precipitation in the winter season from the day the permanent snow cover is established. They do however not take melting into account, and do therefore not give a good description of the actual snow amounts during and after periods with snowmelt. Due to an increased need for a direct measure of water volumes as snow cover, met.no and NVE initialized a joint project in order to establish maps of the actual snow cover expressed in water equivalents. The project utilizes recent developments in the use of GIS in spatial modeling. Daily precipitation and temperature are distributed in space by using objective spatial interpolation methods. The interpolation considers topographical and other geographical parameters as well as weather type information. A degree-day model is used at each modeling point to calculate snow-accumulation and snowmelt. The maps represent a spatial scale of 1x1 km2. The modeled snow reservoir is validated by snow pillow values as well traditional snow depth observations. Preliminary results show that the new snow modeling approach reproduces the snow water equivalent well. The spatial approach also opens for a wide use in the terms of areal analysis.

  7. A new spatial snow distribution in hydrological models parameterized from observed spatial variability of precipitation.

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Weltzien, Ingunn

    2016-04-01

    The traditional catchment hydrological model with its many free calibration parameters is not a well suited tool for prediction under conditions for which is has not been calibrated. Important tasks for hydrological modelling such as prediction in ungauged basins and assessing hydrological effects of climate change are hence not solved satisfactory. In order to reduce the number of calibration parameters in hydrological models we have introduced a new model which uses a dynamic gamma distribution as the spatial frequency distribution of snow water equivalent (SWE). The parameters are estimated from observed spatial variability of precipitation and the magnitude of accumulation and melting events and are hence not subject to calibration. The relationship between spatial mean and variance of precipitation is found to follow a pattern where decreasing temporal correlation with increasing accumulation or duration of the event leads to a levelling off or even a decrease of the spatial variance. The new model for snow distribution is implemented in the, already parameter parsimonious, DDD (Distance Distribution Dynamics) hydrological model and was tested for 71 Norwegian catchments. We compared the new snow distribution model with the current operational snow distribution model where a fixed, calibrated coefficient of variation parameterizes a log-normal model for snow distribution. Results show that the precision of runoff simulations is equal, but that the new snow distribution model better simulates snow covered area (SCA) when compared with MODIS satellite derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" is prevented and hence spurious trends in SWE.

  8. Advances in Airborne Altimetric Techniques for the Measurement of Snow on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Newman, T.; Farrell, S. L.; Richter-Menge, J.; Elder, B. C.; Ruth, J.; Connor, L. N.

    2014-12-01

    Current sea ice observations and models indicate a transition towards a more seasonal Arctic ice pack with a smaller, and geographically more variable, multiyear ice component. To gain a comprehensive understanding of the processes governing this transition it is important to include the impact of the snow cover, determining the mechanisms by which snow is both responding to and forcing changes to the sea ice pack. Data from NASA's Operation IceBridge (OIB) snow radar system, which has been making yearly surveys of the western Arctic since 2009, offers a key resource for investigating the snow cover. In this work, we characterize the OIB snow radar instrument response to ascertain the location of 'side-lobes', aiding the interpretation of snow radar data. We apply novel wavelet-based techniques to identify the primary reflecting interfaces within the snow pack from which snow depth estimates are derived. We apply these techniques to the range of available snow radar data collected over the last 6 years during the NASA OIB mission. Our results are validated through comparison with a range of in-situ data. We discuss the impact of sea ice surface morphology on snow radar returns (with respect to ice type) and the topographic conditions over which accurate snow-radar-derived snow depths may be obtained. Finally we present improvements to in situ survey design that will allow for both an improved sampling of the snow radar footprint and more accurate assessment of the uncertainties in radar-derived snow depths in the future.

  9. Multi-Sensor Approach to Mapping Snow Cover Using Data From NASA's EOS Aqua and Terra Spacecraft

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Brodzik, M. J.

    2003-12-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Over the past several decades both optical and passive microwave satellite data have been utilized for snow mapping at the regional to global scale. For the period 1978 to 2002, we have shown earlier that both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are, depending on season, less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Snow mapping using optical data is based on the magnitude of the surface reflectance while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Our previous work has defined the respective advantages and disadvantages of these two types of satellite data for snow cover mapping and it is clear that a blended product is optimal. We present a multi-sensor approach to snow mapping based both on historical data as well as data from current NASA EOS sensors. For the period 1978 to 2002 we combine data from the NOAA weekly snow charts with passive microwave data from the SMMR and SSM/I brightness temperature record. For the current and future time period we blend MODIS and AMSR-E data sets. An example of validation at the brightness temperature level is provided through the comparison of AMSR-E with data from the well-calibrated heritage SSM/I sensor over a large homogeneous snow-covered surface (Dome C, Antarctica). Prototype snow cover maps from AMSR-E compare well with maps derived from SSM/I. Our current blended product is being developed in the 25 km EASE-Grid while the MODIS data being used are in the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) allowing the blended product to indicate percent snow cover over the larger grid cell. Relationships between the percent area covered by snow as indicated by the MODIS data and the threshold for the appearance of snow as indicated by the passive microwave data are presented. Both MODIS and AMSR-E data have enhanced spatial resolution compared to the earlier data sources and examples of how this increased spatial resolution results in more accurate snow cover maps are presented. A wide range of validation data sets are being employed in this study including the NASA Cold Lands Processes Field Experiment undertaken in Colorado during 2002 and 2003.

  10. Simulating and predicting snow and glacier meltwater to the runoff of the Upper Mekong River basin in Southwest China

    NASA Astrophysics Data System (ADS)

    Han, Z.; Long, D.; Hong, Y.

    2017-12-01

    Snow and glacier meltwater in cryospheric regions replenishes groundwater and reservoir storage and is critical to water supply, hydropower development, agricultural irrigation, and ecological integrity. Accurate simulating and predicting snow and glacier meltwater is therefore fundamental to develop a better understanding of hydrological processes and water resource management for alpine basins and its lower reaches. The Upper Mekong River (or the Lancang River in China) as one of the most important transboundary rivers originating from the Tibetan Plateau (TP), features active dam construction and complicated water resources allocation of the stakeholders. Confronted by both climate change and significant human activities, it is imperative to examine contributions of snow and glacier meltwater to the total runoff and how it will change in the near future. This will greatly benefit hydropower development in the upper reach of the Mekong and better water resources allocation and management across the relevant countries. This study aims to improve snowfall and snow water equivalent (SWE) simulation using improved methods, and combines both modeling skill and remote sensing (i.e., passive microwave-based SWE, and satellite gravimetry-based total water storage) to quantify the contributions of snow and glacier meltwater there. In addition, the runoff of the Lancang River under a range of climate change scenarios is simulated using the improved modeling scheme to evaluate how climate change will impact hydropower development in the upper reaches.

  11. Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout

    NASA Astrophysics Data System (ADS)

    Valero, Cesar Vera; Wever, Nander; Christen, Marc; Bartelt, Perry

    2018-03-01

    Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow height, density, temperature and liquid water content. This information is used to prescribe fracture heights and erosion heights for an avalanche dynamics model. We compare simulated runout distances with observed avalanche deposition fields using a contingency table analysis. Our analysis of the simulations reveals a large variability in predicted runout for tracks with flat terraces and gradual slope transitions to the runout zone. Reliable estimates of avalanche mass (height and density) in the release and erosion zones are identified to be more important than an exact specification of temperature and water content. For wet-snow avalanches, this implies that the layers where meltwater accumulates in the release zone must be identified accurately as this defines the height of the fracture slab and therefore the release mass. Advanced thermomechanical models appear to be better suited to simulate wet-snow avalanche inundation areas than existing guideline procedures if and only if accurate snow cover information is available.

  12. Assimilating Merged Remote Sensing and Ground based Snowpack Information for Runoff Simulation and Forecasting using Hydrological Models

    NASA Astrophysics Data System (ADS)

    Infante Corona, J. A.; Lakhankar, T.; Khanbilvardi, R.; Pradhanang, S. M.

    2013-12-01

    Stream flow estimation and flood prediction influenced by snow melting processes have been studied for the past couple of decades because of their destruction potential, money losses and demises. It has been observed that snow, that was very stationary during its seasons, now is variable in shorter time-scales (daily and hourly) and rapid snowmelt can contribute or been the cause of floods. Therefore, good estimates of snowpack properties on ground are necessary in order to have an accurate prediction of these destructive events. The snow thermal model (SNTHERM) is a 1-dimensional model that analyzes the snowpack properties given the climatological conditions of a particular area. Gridded data from both, in-situ meteorological observations and remote sensing data will be produced using interpolation methods; thus, snow water equivalent (SWE) and snowmelt estimations can be obtained. The soil and water assessment tool (SWAT) is a hydrological model capable of predicting runoff quantity and quality of a watershed given its main physical and hydrological properties. The results from SNTHERM will be used as an input for SWAT in order to have simulated runoff under snowmelt conditions. This project attempts to improve the river discharge estimation considering both, excess rainfall runoff and the snow melting process. Obtaining a better estimation of the snowpack properties and evolution is expected. A coupled use of SNTHERM and SWAT based on meteorological in situ and remote sensed data will improve the temporal and spatial resolution of the snowpack characterization and river discharge estimations, and thus flood prediction.

  13. Experimental measurement and modeling of snow accumulation and snowmelt in a mountain microcatchment

    NASA Astrophysics Data System (ADS)

    Danko, Michal; Krajčí, Pavel; Hlavčo, Jozef; Kostka, Zdeněk; Holko, Ladislav

    2016-04-01

    Fieldwork is a very useful source of data in all geosciences. This naturally applies also to the snow hydrology. Snow accumulation and snowmelt are spatially very heterogeneous especially in non-forested, mountain environments. Direct field measurements provide the most accurate information about it. Quantification and understanding of processes, that cause these spatial differences are crucial in prediction and modelling of runoff volumes in spring snowmelt period. This study presents possibilities of detailed measurement and modeling of snow cover characteristics in a mountain experimental microcatchment located in northern part of Slovakia in Western Tatra mountains. Catchment area is 0.059 km2 and mean altitude is 1500 m a.s.l. Measurement network consists of 27 snow poles, 3 small snow lysimeters, discharge measurement device and standard automatic weather station. Snow depth and snow water equivalent (SWE) were measured twice a month near the snow poles. These measurements were used to estimate spatial differences in accumulation of SWE. Snowmelt outflow was measured by small snow lysimeters. Measurements were performed in winter 2014/2015. Snow water equivalent variability was very high in such a small area. Differences between particular measuring points reached 600 mm in time of maximum SWE. The results indicated good performance of a snow lysimeter in case of snowmelt timing identification. Increase of snowmelt measured by the snow lysimeter had the same timing as increase in discharge at catchment's outlet and the same timing as the increase in air temperature above the freezing point. Measured data were afterwards used in distributed rainfall-runoff model MIKE-SHE. Several methods were used for spatial distribution of precipitation and snow water equivalent. The model was able to simulate snow water equivalent and snowmelt timing in daily step reasonably well. Simulated discharges were slightly overestimated in later spring.

  14. Combining model and satellite data to investigate the effect of light absorbing impurities on snow melt and discharge generation

    NASA Astrophysics Data System (ADS)

    Matt, F.; Burkhart, J. F.

    2017-12-01

    Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance snow melt by increasing the absorption of solar radiation. The consequences are a shortening of the snow cover duration due to increased snow melt and, with respect to hydrologic processes, a temporal shift in the discharge generation. However, the effects as simulated in numerical models have large uncertainties. These uncertainties originate mainly from uncertainties in the wet and dry deposition of light absorbing aerosols, limitations in the model representation of the snowpack, and the lack of observable variables required to estimate model parameters. This leads to high uncertainties in the additional energy absorbed by the snow due to the presence of LAISI (the so called radiative forcing of LAISI), a key variable in understanding snowpack energy-balance dynamics. In this study, we present an approach combining distributed model simulations on the catchment scale and remotely sensed radiative forcing from LAISI in order to evaluate and improve model predictions. In a case study, we assess the effect of LAISI on snow melt and discharge generation in a high mountain catchment located in the western Himalaya using the distributed hydrologic model, Shyft. The snow albedo is hereby calculated from a radiative transfer model for snow, taking the increased absorption of solar radiation by LAISI into account. LAISI mixing ratios in snow are determined from atmospheric aerosol deposition rates. To asses the quality of our simulations, we model the instantaneous clear sky radiative forcing at MODIS overpass times, and compare it to the MODIS Dust Radiative Forcing in Snow (MODDRFS) satellite product. By scaling the deposition input to the model, we can optimize the simulated radiative forcing towards the satellite observations.

  15. Developing a hydrological model in the absence of field data

    NASA Astrophysics Data System (ADS)

    Sproles, E. A.; Orrego Nelson, C.; Kerr, T.; Lopez Aspe, D.

    2014-12-01

    We present two runoff models that use remotely-sensed snow cover products from the Moderate Resolution Imaging Spectrometer (MODIS) as the first order hydrologic input. These simplistic models are the first step in developing an operational model for the Elqui River watershed located in northern Central Chile (30°S). In this semi-arid region, snow and glacier melt are the dominant hydrologic inputs where annual precipitation is limited to three or four winter events. Unfortunately winter access to the Andean Cordillera where snow accumulates is limited. While a monitoring network to measure snow where it accumulates in the upper elevations is under development, management decisions regarding water resources cannot wait. The two models we present differ in structure. The first applies a Monte Carlo approach to determine relationships between lagged changes in monthly snow cover frequency and monthly discharge. The second is a modified degree-day melt model, utilizing the MODIS snow cover product to determine where and when snow melt occurs. These models are not watershed specific and are applicable in other regions where snow dominates hydrologic inputs, but measurements are minimal.

  16. Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps

    NASA Astrophysics Data System (ADS)

    Verfaillie, Deborah; Lafaysse, Matthieu; Déqué, Michel; Eckert, Nicolas; Lejeune, Yves; Morin, Samuel

    2018-04-01

    This article investigates the climatic response of a series of indicators for characterizing annual snow conditions and corresponding meteorological drivers at 1500 m altitude in the Chartreuse mountain range in the Northern French Alps. Past and future changes were computed based on reanalysis and observations from 1958 to 2016, and using CMIP5-EURO-CORDEX GCM-RCM pairs spanning historical (1950-2005) and RCP2.6 (4), RCP4.5 and RCP8.5 (13 each) future scenarios (2006-2100). The adjusted climate model runs were used to drive the multiphysics ensemble configuration of the detailed snowpack model Crocus. Uncertainty arising from physical modeling of snow accounts for 20 % typically, although the multiphysics is likely to have a much smaller impact on trends. Ensembles of climate projections are rather similar until the middle of the 21st century, and all show a continuation of the ongoing reduction in average snow conditions, and sustained interannual variability. The impact of the RCPs becomes significant for the second half of the 21st century, with overall stable conditions with RCP2.6, and continued degradation of snow conditions for RCP4.5 and 8.5, the latter leading to more frequent ephemeral snow conditions. Changes in local meteorological and snow conditions show significant correlation with global temperature changes. Global temperature levels 1.5 and 2 °C above preindustrial levels correspond to a 25 and 32 % reduction, respectively, of winter mean snow depth with respect to the reference period 1986-2005. Larger reduction rates are expected for global temperature levels exceeding 2 °C. The method can address other geographical areas and sectorial indicators, in the field of water resources, mountain tourism or natural hazards.

  17. The Dominant Snow-forming Process in Warm and Cold Mixed-phase Orographic Clouds: Effects of Cloud Condensation Nuclei and Ice Nuclei

    NASA Astrophysics Data System (ADS)

    Fan, J.; Rosenfeld, D.; Leung, L. R.; DeMott, P. J.

    2014-12-01

    Mineral dust aerosols often observed over California in winter and spring from long-range transport can be efficient ice nuclei (IN) and enhance snow precipitation in mixed-phase orographic clouds. On the other hand, local pollution particles can serve as good CCN and suppress warm rain, but their impacts on cold rain processes are uncertain. The main snow-forming mechanism in warm and cold mixed-phase orographic clouds (refer to as WMOC and CMOC, respectively) could be very different, leading to different precipitation response to CCN and IN. We have conducted 1-km resolution model simulations using the Weather Research and Forecasting (WRF) model coupled with a spectral-bin cloud microphysical model for WMOC and CMOC cases from CalWater2011. We investigated the response of cloud microphysical processes and precipitation to CCN and IN with extremely low to extremely high concentrations using ice nucleation parameterizations that connect with dust and implemented based on observational evidences. We find that riming is the dominant process for producing snow in WMOC while deposition plays a more important role than riming in CMOC. Increasing IN leads to much more snow precipitation mainly due to an increase of deposition in CMOC and increased rimming in WMOC. Increasing CCN decreases precipitation in WMOC by efficiently suppressing warm rain, although snow is increased. In CMOC where cold rain dominates, increasing CCN significantly increases snow, leading to a net increase in precipitation. The sensitivity of supercooled liquid to CCN and IN has also been analyzed. The mechanism for the increased snow by CCN and caveats due to uncertainties in ice nucleation parameterizations will be discussed.

  18. How much of stream and groundwater comes from snow? A stable isotope perspective in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Beria, H.; Schaefli, B.; Ceperley, N. C.; Michelon, A.; Larsen, J.

    2017-12-01

    Precipitation which once fell as snow is predicted to fall more often as liquid rain now that climate is, and continues, warming. Within snow dominated areas, preferential winter groundwater recharge has been observed, however a shorter winter season and smaller snow fraction results in earlier snowmelt and thinner snowpacks. This has the potential to change the supply of snow water sources to both streams and groundwater, which has important implications for flow regimes and water resources. Stable isotopes of water (2H and 18O) allow us to discriminate rain vs snow signatures within water flowing in the stream or the subsurface. Using one year of isotope data collected in a Swiss Alpine catchment (Vallon de Nant, Vaud), we developed novel forward Bayesian mixing models, based on statistical and empirical likelihoods, to quantify source contributions and uncertainty estimates. To account for the spatial heterogeneity in precipitation isotopes, we parameterized the model accounting for elevation effects on isotopes, calculated using the network of GNIP stations in Switzerland. Instead of sampling meltwater, we sampled snowpack throughout the season and across a steep elevation gradient (1241m to 2455m) to infer the snowmelt transformation factor. Due to continuous mixing within the snowpack, the snowmelt water shows much lower variability in its isotopic range which is reflected in the snow transformation factor. Snowmelt yield to groundwater recharge per unit amount of precipitation was found to be greater than rainfall in Vallon de Nant, suggesting strongly preferential winter recharge. Seasonal dynamics of stream responses to rain-on-snow events, fog deposition, snowmelt and summer rain were also explored. Innovative monitoring and sampling with tools such as stable isotopes and forward Bayesian mixing models are key to improved comprehension of global recharge mechanisms.

  19. Snowfall Rate Retrieval using NPP ATMS Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua; Zhao, Limin

    2014-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2014). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The ATMS SFR product is validated against radar and gauge snowfall data and shows that the ATMS algorithm outperforms the AMSU/MHS SFR.

  20. Snow in Earth System Models: Recent Progress and Future Challenges

    NASA Astrophysics Data System (ADS)

    Clark, M. P.; Slater, A. G.

    2016-12-01

    Snow is the most variable of terrestrial boundary conditions. Some 50 million km^2 of the Northern Hemisphere typically sees periods of accumulation and ablation in the annual cycle. The wonderous properties of snow, such as high albedo, thermal insulation and its ability to act as a water store make it an integral part of the global climate system. Earliest inclusions of snow within climate models were simple adjustments to albedo and a moisture store. Modern Earth Syetem Models now represent snow through a myriad of model architectures and parameterizations that span a broad range of complexity. Understanding the impacts of modeling decisions upon simulation of snow and other Earth System components (either directly or via feedbacks) is an ongoing area of research. Snow models are progressing with multi-layer representations and capabilities such as complex albedo schemes that include contaminants. While considerable advances have been made, numerous challenges also remain. Simply getting a grasp on the mass of snow (seasonal or permanent) has proved more difficult than expected over the past 30 years. Snow interactions with vegetation has improved but the details of vegetation masking and emergence are still limited. Inclusion of blowing snow processes, in terms of transport and sublimation, is typically rare and sublimation remains a difficult quantity to measure. Contemplation of snow crystal form within models and integration with radiative transfer schemes for better understanding of full spectrum interations (from UV to long microwave) may simultaneously advance simulation and remote sensing. A series of international modeling experiments and directed field campaigns are planned in the near future with the aim of pushing our knowledge forward.

  1. Frost risk for overwintering crops in a changing climate

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Weih, Martin

    2013-04-01

    Climate change scenarios predict a general increase in daily temperatures and a decline in snow cover duration. On the one hand, higher temperature in fall and spring may facilitate the development of overwintering crops and allow the expansion of winter cropping in locations where the growing season is currently too short. On the other hand, higher temperatures prior to winter crop dormancy slow down frost hardening, enhancing crop vulnerability to temperature fluctuation. Such vulnerability may be exacerbated by reduced snow cover, with potential further negative impacts on yields in extremely low temperatures. We propose a parsimonious probabilistic model to quantify the winter frost damage risk for overwintering crops, based on a coupled model of air temperature, snow cover, and crop minimum tolerable temperature. The latter is determined by crop features, previous history of temperature, and snow cover. The temperature-snow cover model is tested against meteorological data collected over 50 years in Sweden and applied to winter wheat varieties differing in their ability to acquire frost resistance. Hence, exploiting experimental results assessing crop frost damage under limited temperature and snow cover realizations, this probabilistic framework allows the quantification of frost risk for different crop varieties, including in full temperature and precipitation unpredictability. Climate change scenarios are explored to quantify the effects of changes in temperature mean and variance and precipitation regime over crops differing in winter frost resistance and response to temperature.

  2. The Electrical Self-Potential Method as a Non-Intrusive Snow-Hydrological Sensor

    NASA Astrophysics Data System (ADS)

    Kulessa, B.; Thompson, S. S.; Luethi, M. P.; Essery, R.

    2015-12-01

    Building on growing momentum in the application of geophysical techniques to snow problems and, specifically, on new theory and an electrical geophysical snow hydrological model published recently; we demonstrate for the first time that the electrical self-potential geophysical technique can sense in-situ bulk meltwater fluxes. This has broad and immediate implications for snow measurement practice, modelling and operational snow forecasting. Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. Encouraged by recent theoretical, modelling and laboratory work, we show here that the diurnal evolution of aerially-distributed self-potential magnitudes closely track those of bulk meltwater fluxes in melting in-situ snowpacks at Rhone and Jungfraujoch glaciers, Switzerland. Numerical modelling infers temporally-evolving liquid water contents in the snowpacks on successive days in close agreement with snow-pit measurements. Muting previous concerns, the governing physical and chemical properties of snow and meltwater became temporally invariant for modelling purposes. Because measurement procedure is straightforward and readily automated for continuous monitoring over significant spatial scales, we conclude that the self-potential geophysical method is a highly-promising non-intrusive snow-hydrological sensor for measurement practice, modelling and operational snow forecasting.

  3. Evolution of Snow-Size Spectra in Cyclonic Storms. Part I: Snow Growth by Vapor Deposition and Aggregation.

    NASA Astrophysics Data System (ADS)

    Mitchell, David L.

    1988-11-01

    Based on the stochastic collection equation, height- and time-dependent snow growth models were developed for unrimed stratiform snowfall. Moment conservation equations were parameterized and solved by constraining the size distribution to be of the form N(D)dD = N0 exp(D)dD, yielding expressions for the slope parameter, , and the y-intercept parameters, NO, as functions of height or time. The processes of vapor deposition and aggregation were treated analytically without neglecting changes in ice crystal habits, while the ice particle breakup process was dealt with empirically.The models were compared against vertical profiles of snow-size spectra, obtained from aircraft measurements, for three case studies. The predicted spectra are in good agreement with the observed evolution of snow-size spectra in all three cases, indicating the proposed scheme for ice particle aggregation was successful. The temperature dependence of aggregation was assumed to result from differences in ice crystal habit. Using data from an earlier study, the aggregation efficiency between two levels in a cloud was calculated. Finally, other height-dependent, steady-state snowfall models in the literature were compared against spectra from one of the above case studies. The agreement between the predicted and observed spectra regarding these models was less favorable than was obtained from the models presented here.

  4. Simulation of Seasonal Snow Microwave TB Using Coupled Multi-Layered Snow Evolution and Microwave Emission Models

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Royer, Alain; Picard, Ghislain; Langlois, Alex; Fily, Michel

    2014-01-01

    The accurate quantification of SWE has important societal benefits, including improving domestic and agricultural water planning, flood forecasting and electric power generation. However, passive-microwave SWE algorithms suffer from variations in TB due to snow metamorphism, difficult to distinguish from those due to SWE variations. Coupled snow evolution-emission models are able to predict snow metamorphism, allowing us to account for emissivity changes. They can also be used to identify weaknesses in the snow evolution model. Moreover, thoroughly evaluating coupled models is a contribution toward the assimilation of TB, which leads to a significant increase in the accuracy of SWE estimates.

  5. How snowmelt changed due to climate change in an ungauged catchment on the Tibetan Plateau?

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Yao, Zhijun

    2017-04-01

    Snow variability is an integrated indicator of climate change, and it has important impacts on runoff regimes and water availability in high altitude catchments. Remote sensing techniques can make it possible to quantitatively detect the snow cover changes and associated hydrological effects in those poorly gauged regions. In this study, the spatial-temporal variations of snow cover and snow melting time in the Tuotuo River basin, which is the headwater of the Yangtze River, were evaluated based on satellite information from MODIS snow cover product, and the snow melting equivalent and its contribution to the total runoff and baseflow were estimated by using degree-day model. The results showed that the snow cover percentage and the tendency of snow cover variability increased with rising altitude. From 2000 to 2012, warmer and wetter climate change resulted in an increase of the snow cover area. Since the 1960s, the start time for snow melt has become earlier by 0.9 3 d/10a and the end time of snow melt has become later by 0.6 2.3 d/10a. Under the control of snow cover and snow melting time, the equivalent of snow melting runoff in the Tuotuo River basin has been fluctuating. The average contributions of snowmelt to baseflow and total runoff were 19.6 % and 6.8 %, respectively. Findings from this study will serve as a reference for future research in areas where observational data are deficient and for planning of future water management strategies for the source region of the Yangtze River.

  6. The ASMEx snow slab experiment: snow microwave radiative transfer (SMRT) model evaluation

    NASA Astrophysics Data System (ADS)

    Sandells, Melody; Löwe, Henning; Picard, Ghislain; Dumont, Marie; Essery, Richard; Floury, Nicolas; Kontu, Anna; Lemmetyinen, Juha; Maslanka, William; Mätzler, Christian; Morin, Samuel; Wiesmann, Andreas

    2017-04-01

    A major uncertainty in snow microwave modelling to date has been the treatment of the snow microstructure. Although observations of microstructural parameters such as the optical grain diameter, specific surface area and correlation length have improved drastically over the last few years, scale factors have been used to derive the parameters needed in microwave emission models from these observations. Previous work has shown that a major difference between electromagnetic models of scattering coefficients is due to the specific snow microstructure models used. The snow microwave radiative transfer model (SMRT) is a new model developed to advance understanding of the role of microstructure and isolate different assumptions in existing microwave models that collectively hinder interpretation of model intercomparison studies. SMRT is implemented in Python and is modular, thus allows switching between different representations in its various components. Here, the role of microstructure is examined with the Improved Born Approximation electromagnetic model. The model is evaluated against scattering and absorption coefficients derived from radiometer measurements of snow slabs taken as part of the Arctic Snow Microstructure Experiment (ASMEx), which took place in Sodankylä, Finland over two seasons. Microtomography observations of slab samples were used to determine parameters for five microstructure models: spherical, exponential, sticky hard sphere, Teubner-Strey and Gaussian random field. SMRT brightness temperature simulations are also compared with radiometric observations of the snow slabs over a reflector plate and an absorber substrate. Agreement between simulations and observations is generally good except for slabs that are highly anisotropic.

  7. Laboratory-based observations of capillary barriers and preferential flow in layered snow

    NASA Astrophysics Data System (ADS)

    Avanzi, F.; Hirashima, H.; Yamaguchi, S.; Katsushima, T.; De Michele, C.

    2015-12-01

    Several evidences are nowadays available that show how the effects of capillary gradients and preferential flow on water transmission in snow may play a more important role than expected. To observe these processes and to contribute in their characterization, we performed observations on the development of capillary barriers and preferential flow patterns in layered snow during cold laboratory experiments. We considered three different layering (all characterized by a finer-over-coarser texture in grain size) and three different water input rates. Nine samples of layered snow were sieved in a cold laboratory, and subjected to a constant supply of dyed tracer. By means of visual inspection, horizontal sectioning and liquid water content measurements, the processes of ponding and preferential flow were characterized as a function of texture and water input rate. The dynamics of each sample were replicated using the multi-layer physically-based SNOWPACK model. Results show that capillary barriers and preferential flow are relevant processes ruling the speed of liquid water in stratified snow. Ponding is associated with peaks in LWC at the boundary between the two layers equal to ~ 33-36 vol. % when the upper layer is composed by fine snow (grain size smaller than 0.5 mm). The thickness of the ponding layer at the textural boundary is between 0 and 3 cm, depending on sample stratigraphy. Heterogeneity in water transmission increases with grain size, while we do not observe any clear dependency on water input rate. The extensive comparison between observed and simulated LWC profiles by SNOWPACK (using an approximation of Richards Equation) shows high performances by the model in estimating the LWC peak over the boundary, while water speed in snow is underestimated by the chosen water transport scheme.

  8. Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model

    NASA Astrophysics Data System (ADS)

    Krogh, Sebastian A.; Pomeroy, John W.; Marsh, Philip

    2017-07-01

    A better understanding of cold regions hydrological processes and regimes in transitional environments is critical for predicting future Arctic freshwater fluxes under climate and vegetation change. A physically based hydrological model using the Cold Regions Hydrological Model platform was created for a small Arctic basin in the tundra-taiga transition region. The model represents snow redistribution and sublimation by wind and vegetation, snowmelt energy budget, evapotranspiration, subsurface flow through organic terrain, infiltration to frozen soils, freezing and thawing of soils, permafrost and streamflow routing. The model was used to reconstruct the basin water cycle over 28 years to understand and quantify the mass fluxes controlling its hydrological regime. Model structure and parameters were set from the current understanding of Arctic hydrology, remote sensing, field research in the basin and region, and calibration against streamflow observations. Calibration was restricted to subsurface hydraulic and storage parameters. Multi-objective evaluation of the model using observed streamflow, snow accumulation and ground freeze/thaw state showed adequate simulation. Significant spatial variability in the winter mass fluxes was found between tundra, shrubs and forested sites, particularly due to the substantial blowing snow redistribution and sublimation from the wind-swept upper basin, as well as sublimation of canopy intercepted snow from the forest (about 17% of snowfall). At the basin scale, the model showed that evapotranspiration is the largest loss of water (47%), followed by streamflow (39%) and sublimation (14%). The models streamflow performance sensitivity to a set of parameter was analysed, as well as the mean annual mass balance uncertainty associated with these parameters.

  9. Re-formulation and Validation of Cloud Microphysics Schemes

    NASA Astrophysics Data System (ADS)

    Wang, J.; Georgakakos, K. P.

    2007-12-01

    The research focuses on improving quantitative precipitation forecasts by removing significant uncertainties in current cloud microphysics schemes embedded in models such as WRF and MM5 and cloud-resolving models such as GCE. Reformulation of several production terms in these microphysics schemes was found necessary. When estimating four graupel production terms involved in the accretion between rain, snow and graupel, current microphysics schemes assumes that all raindrops and snow particles are falling at their appropriate mass-weighted mean terminal velocities and thus analytic solutions are able to be found for these production terms. Initial analysis and tests showed that these approximate analytic solutions give significant and systematic overestimates of these terms, and, thus, become one of major error sources of the graupel overproduction and associated extreme radar reflectivity in simulations. These results are corroborated by several reports. For example, the analytic solution overestimates the graupel production by collisions between raindrops and snow by up to 230%. The structure of "pure" snow (not rimed) and "pure graupel" (completely rimed) in current microphysics schemes excludes intermediate forms between "pure" snow and "pure" graupel and thus becomes a significant reason of graupel overproduction in hydrometeor simulations. In addition, the generation of the same density graupel by both the freezing of supercooled water and the riming of snow may cause underestimation of graupel production by freezing. A parameterization scheme of the riming degree of snow is proposed and then a dynamic fallspeed-diameter relationship and density- diameter relationship of rimed snow is assigned to graupel based on the diagnosed riming degree. To test if these new treatments can improve quantitative precipitation forecast, the Hurricane Katrina and a severe winter snowfall event in the Sierra Nevada Range are selected as case studies. A series of control simulation and sensitivity tests was conducted for these two cases. Two statistical methods are used to compare simulated radar reflectivity by the model with that detected by ground-based and airborne radar at different height levels. It was found that the changes made in current microphysical schemes improve QPF and microphysics simulation significantly.

  10. SnopViz, an interactive snow profile visualization tool

    NASA Astrophysics Data System (ADS)

    Fierz, Charles; Egger, Thomas; gerber, Matthias; Bavay, Mathias; Techel, Frank

    2016-04-01

    SnopViz is a visualization tool for both simulation outputs of the snow-cover model SNOWPACK and observed snow profiles. It has been designed to fulfil the needs of operational services (Swiss Avalanche Warning Service, Avalanche Canada) as well as offer the flexibility required to satisfy the specific needs of researchers. This JavaScript application runs on any modern browser and does not require an active Internet connection. The open source code is available for download from models.slf.ch where examples can also be run. Both the SnopViz library and the SnopViz User Interface will become a full replacement of the current research visualization tool SN_GUI for SNOWPACK. The SnopViz library is a stand-alone application that parses the provided input files, for example, a single snow profile (CAAML file format) or multiple snow profiles as output by SNOWPACK (PRO file format). A plugin architecture allows for handling JSON objects (JavaScript Object Notation) as well and plugins for other file formats may be added easily. The outputs are provided either as vector graphics (SVG) or JSON objects. The SnopViz User Interface (UI) is a browser based stand-alone interface. It runs in every modern browser, including IE, and allows user interaction with the graphs. SVG, the XML based standard for vector graphics, was chosen because of its easy interaction with JS and a good software support (Adobe Illustrator, Inkscape) to manipulate graphs outside SnopViz for publication purposes. SnopViz provides new visualization for SNOWPACK timeline output as well as time series input and output. The actual output format for SNOWPACK timelines was retained while time series are read from SMET files, a file format used in conjunction with the open source data handling code MeteoIO. Finally, SnopViz is able to render single snow profiles, either observed or modelled, that are provided as CAAML-file. This file format (caaml.org/Schemas/V5.0/Profiles/SnowProfileIACS) is an international standard to exchange snow profile data. It is supported by the International Association of Cryospheric Sciences (IACS) and was developed in collaboration with practitioners (Avalanche Canada).

  11. Snow farming: conserving snow over the summer season

    NASA Astrophysics Data System (ADS)

    Grünewald, Thomas; Wolfsperger, Fabian; Lehning, Michael

    2018-01-01

    Summer storage of snow for tourism has seen an increasing interest in the last years. Covering large snow piles with materials such as sawdust enables more than two-thirds of the initial snow volume to be conserved. We present detailed mass balance measurements of two sawdust-covered snow piles obtained by terrestrial laser scanning during summer 2015. Results indicate that 74 and 63 % of the snow volume remained over the summer for piles in Davos, Switzerland and Martell, Italy. If snow mass is considered instead of volume, the values increase to 83 and 72 %. The difference is attributed to settling and densification of the snow. Additionally, we adapted the one-dimensional, physically based snow cover model SNOWPACK to perform simulations of the sawdust-covered snow piles. Model results and measurements agreed extremely well at the point scale. Moreover, we analysed the contribution of the different terms of the surface energy balance to snow ablation for a pile covered with a 40 cm thick sawdust layer and a pile without insulation. Short-wave radiation was the dominant source of energy for both scenarios, but the moist sawdust caused strong cooling by long-wave emission and negative sensible and latent heat fluxes. This cooling effect reduces the energy available for melt by up to a factor of 12. As a result only 9 % of the net short-wave energy remained available for melt. Finally, sensitivity studies of the parameters thickness of the sawdust layer, air temperature, precipitation and wind speed were performed. We show that sawdust thickness has a tremendous effect on snow loss. Higher air temperatures and wind speeds increase snow ablation but less significantly. No significant effect of additional precipitation could be found as the sawdust remained wet during the entire summer with the measured quantity of rain. Setting precipitation amounts to zero, however, strongly increased melt. Overall, the 40 cm sawdust provides sufficient protection for mid-elevation (approx. 1500 m a.s.l.) Alpine climates and can be managed with reasonable effort.

  12. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mernild, Sebastian Haugard; Liston, Glen

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of airmore » temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y{sup -1}. The annual glacier loss for the two simulations was 50.7 x 10{sup 6} m{sup 3} y{sup -1} and 64.4 x 10{sup 6} m{sup 3} y{sup -1} for all glaciers - a difference of {approx}21%. The average equilibrium line altitude (ELA) for all glaciers in the simulation domain was located at 875 m a.s.l. and at 900 m a.s.l. for simulations with or without inversion routines, respectively.« less

  13. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    NASA Astrophysics Data System (ADS)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  14. Analysis of Snow Bidirectional Reflectance from ARCTAS Spring-2008 Campaign

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Gatebe, C. K.; Redemann, J.; Kahn, R.; Brandt, R.; Russell, P.; King, M. D.; Pedersen, C. A.; Gerland, S.; Poudyal, R.; hide

    2010-01-01

    The spring 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment was one of major intensive field campaigns of the International Polar Year aimed at detailed characterization of atmospheric physical and chemical processes in the Arctic region. A part of this campaign was a unique snow bidirectional reflectance experiment on the NASA P-3B aircraft conducted on 7 and 15 April by the Cloud Absorption Radiometer (CAR) jointly with airborne Ames Airborne Tracking Sunphotometer (AATS) and ground-based Aerosol Robotic Network (AERONET) sunphotometers. The CAR data were atmospherically corrected to derive snow bidirectional reflectance at high 1 degree angular resolution in view zenith and azimuthal angles along with surface albedo. The derived albedo was generally in good agreement with ground albedo measurements collected on 15 April. The CAR snow bidirectional reflectance factor (BRF) was used to study the accuracy of analytical Ross-Thick Li-Sparse (RTLS), Modified Rahman-Pinty-Verstraete (MRPV) and Asymptotic Analytical Radiative Transfer (AART) BRF models. Except for the glint region (azimuthal angles phi less than 40 degrees), the best fit MRPV and RTLS models fit snow BRF to within 0.05. The plane-parallel radiative transfer (PPRT) solution was also analyzed with the models of spheres, spheroids, randomly oriented fractal crystals, and with a synthetic phase function. The latter merged the model of spheroids for the forward scattering angles with the fractal model in the backscattering direction. The PPRT solution with synthetic phase function provided the best fit to measured BRF in the full range of angles. Regardless of the snow grain shape, the PPRT model significantly over-/underestimated snow BRF in the glint/backscattering regions, respectively, which agrees with other studies. To improve agreement with experiment, we introduced a model of macroscopic snow surface roughness by averaging the PPRT solution over the slope distribution function and by adding a simple model of shadows. With macroscopic roughness described by two parameters, the AART model achieved an accuracy of about plus or minus 0.05 with a possible bias of plus or minus 0.03 in the spectral range 0.4-2.2 micrometers. This high accuracy holds at view zenith angles below 55-60 degrees covering the practically important range for remote sensing applications, and includes both glint and backscattering directions.

  15. Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach.

    PubMed

    Ala-Aho, Pertti; Tetzlaff, Doerthe; McNamara, James P; Laudon, Hjalmar; Kormos, Patrick; Soulsby, Chris

    2017-07-01

    Use of stable water isotopes has become increasingly popular in quantifying water flow paths and travel times in hydrological systems using tracer-aided modeling. In snow-influenced catchments, snowmelt produces a traceable isotopic signal, which differs from original snowfall isotopic composition because of isotopic fractionation in the snowpack. These fractionation processes in snow are relatively well understood, but representing their spatiotemporal variability in tracer-aided studies remains a challenge. We present a novel, parsimonious modeling method to account for the snowpack isotope fractionation and estimate isotope ratios in snowmelt water in a fully spatially distributed manner. Our model introduces two calibration parameters that alone account for the isotopic fractionation caused by sublimation from interception and ground snow storage, and snowmelt fractionation progressively enriching the snowmelt runoff. The isotope routines are linked to a generic process-based snow interception-accumulation-melt model facilitating simulation of spatially distributed snowmelt runoff. We use a synthetic modeling experiment to demonstrate the functionality of the model algorithms in different landscape locations and under different canopy characteristics. We also provide a proof-of-concept model test and successfully reproduce isotopic ratios in snowmelt runoff sampled with snowmelt lysimeters in two long-term experimental catchment with contrasting winter conditions. To our knowledge, the method is the first such tool to allow estimation of the spatially distributed nature of isotopic fractionation in snowpacks and the resulting isotope ratios in snowmelt runoff. The method can thus provide a useful tool for tracer-aided modeling to better understand the integrated nature of flow, mixing, and transport processes in snow-influenced catchments.

  16. Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Ottlé, Catherine; Boone, Aaron; Ciais, Philippe; Brun, Eric; Morin, Samuel; Krinner, Gerhard; Piao, Shilong; Peng, Shushi

    2013-06-01

    Snow plays an important role in land surface models (LSM) for climate and model applied over Fran studies, but its current treatment as a single layer of constant density and thermal conductivity in ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) induces significant deficiencies. The intermediate complexity snow scheme ISBA-ES (Interaction between Soil, Biosphere and Atmosphere-Explicit Snow) that includes key snow processes has been adapted and implemented into ORCHIDEE, referred to here as ORCHIDEE-ES. In this study, the adapted scheme is evaluated against the observations from the alpine site Col de Porte (CDP) with a continuous 18 year data set and from sites distributed in northern Eurasia. At CDP, the comparisons of snow depth, snow water equivalent, surface temperature, snow albedo, and snowmelt runoff reveal that the improved scheme in ORCHIDEE is capable of simulating the internal snow processes better than the original one. Preliminary sensitivity tests indicate that snow albedo parameterization is the main cause for the large difference in snow-related variables but not for soil temperature simulated by the two models. The ability of the ORCHIDEE-ES to better simulate snow thermal conductivity mainly results in differences in soil temperatures. These are confirmed by performing sensitivity analysis of ORCHIDEE-ES parameters using the Morris method. These features can enable us to more realistically investigate interactions between snow and soil thermal regimes (and related soil carbon decomposition). When the two models are compared over sites located in northern Eurasia from 1979 to 1993, snow-related variables and 20 cm soil temperature are better reproduced by ORCHIDEE-ES than ORCHIDEE, revealing a more accurate representation of spatio-temporal variability.

  17. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts.

    PubMed

    Bokhorst, Stef; Pedersen, Stine Højlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W; Brown, Ross D; Ehrich, Dorothee; Essery, Richard L H; Heilig, Achim; Ingvander, Susanne; Johansson, Cecilia; Johansson, Margareta; Jónsdóttir, Ingibjörg Svala; Inga, Niila; Luojus, Kari; Macelloni, Giovanni; Mariash, Heather; McLennan, Donald; Rosqvist, Gunhild Ninis; Sato, Atsushi; Savela, Hannele; Schneebeli, Martin; Sokolov, Aleksandr; Sokratov, Sergey A; Terzago, Silvia; Vikhamar-Schuler, Dagrun; Williamson, Scott; Qiu, Yubao; Callaghan, Terry V

    2016-09-01

    Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.

  18. Changing Arctic Snow Cover: A Review of Recent Developments and Assessment of Future Needs for Observations, Modelling, and Impacts

    NASA Technical Reports Server (NTRS)

    Bokhorst, Stef; Pedersen, Stine Hojlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W.; Brown, Ross D.; Ehrich, Dorothee; Essery, Richard L. H.; Heilig, Achim; Ingvander, Susanne; hide

    2016-01-01

    Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.

  19. Snow-Cover Variability in North America in the 2000-2001 Winter as Determined from MODIS Snow Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Chien, Janet Y. L.; Houser, Paul R. (Technical Monitor)

    2001-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500 m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5 km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.

  20. Snow-Cover Variability in North America in the 2000-2001 Winter as Determined from MODIS Snow Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Chien, Y. L.; Houser, Paul R. (Technical Monitor)

    2001-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500-m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5-km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.

  1. The Spectral and Chemical Measurement of Pollutants on Snow Near South Pole, Antarctica

    NASA Technical Reports Server (NTRS)

    Casey, K. A.; Kaspari, S. D.; Skiles, S. M.; Kreutz, K.; Handley, M. J.

    2017-01-01

    Remote sensing of light-absorbing particles (LAPs), or dark colored impurities, such as black carbon (BC) and dust on snow, is a key remaining challenge in cryospheric surface characterization and application to snow, ice, and climate models. We present a quantitative data set of in situ snow reflectance, measured and modeled albedo, and BC and trace element concentrations from clean to heavily fossil fuel emission contaminated snow near South Pole, Antarctica. Over 380 snow reflectance spectra (350-2500 nm) and 28 surface snow samples were collected at seven distinct sites in the austral summer season of 2014-2015. Snow samples were analyzed for BC concentration via a single particle soot photometer and for trace element concentration via an inductively coupled plasma mass spectrometer. Snow impurity concentrations ranged from 0.14 to 7000 part per billion (ppb) BC, 9.5 to 1200 ppb sulfur, 0.19 to 660 ppb iron, 0.013 to 1.9 ppb chromium, 0.13 to 120 ppb copper, 0.63 to 6.3 ppb zinc, 0.45 to 82 parts per trillion (ppt) arsenic, 0.0028 to 6.1 ppb cadmium, 0.062 to 22 ppb barium, and 0.0044 to 6.2 ppb lead. Broadband visible to shortwave infrared albedo ranged from 0.85 in pristine snow to 0.62 in contaminated snow. LAP radiative forcing, the enhanced surface absorption due to BC and trace elements, spanned from less than 1 W m(exp. -2) for clean snow to approximately 70 W m(exp. -2) for snow with high BC and trace element content. Measured snow reflectance differed from modeled snow albedo due to specific impurity-dependent absorption features, which we recommend be further studied and improved in snow albedo models.

  2. The spectral and chemical measurement of pollutants on snow near South Pole, Antarctica

    NASA Astrophysics Data System (ADS)

    Casey, K. A.; Kaspari, S. D.; Skiles, S. M.; Kreutz, K.; Handley, M. J.

    2017-06-01

    Remote sensing of light-absorbing particles (LAPs), or dark colored impurities, such as black carbon (BC) and dust on snow, is a key remaining challenge in cryospheric surface characterization and application to snow, ice, and climate models. We present a quantitative data set of in situ snow reflectance, measured and modeled albedo, and BC and trace element concentrations from clean to heavily fossil fuel emission contaminated snow near South Pole, Antarctica. Over 380 snow reflectance spectra (350-2500 nm) and 28 surface snow samples were collected at seven distinct sites in the austral summer season of 2014-2015. Snow samples were analyzed for BC concentration via a single particle soot photometer and for trace element concentration via an inductively coupled plasma mass spectrometer. Snow impurity concentrations ranged from 0.14 to 7000 part per billion (ppb) BC, 9.5 to 1200 ppb sulfur, 0.19 to 660 ppb iron, 0.013 to 1.9 ppb chromium, 0.13 to 120 ppb copper, 0.63 to 6.3 ppb zinc, 0.45 to 82 parts per trillion (ppt) arsenic, 0.0028 to 6.1 ppb cadmium, 0.062 to 22 ppb barium, and 0.0044 to 6.2 ppb lead. Broadband visible to shortwave infrared albedo ranged from 0.85 in pristine snow to 0.62 in contaminated snow. LAP radiative forcing, the enhanced surface absorption due to BC and trace elements, spanned from <1 W m-2 for clean snow to 70 W m-2 for snow with high BC and trace element content. Measured snow reflectance differed from modeled snow albedo due to specific impurity-dependent absorption features, which we recommend be further studied and improved in snow albedo models.

  3. Altitude dependency of future snow cover changes over Central Japan evaluated by a regional climate model

    NASA Astrophysics Data System (ADS)

    Kawase, Hiroaki; Hara, Masayuki; Yoshikane, Takao; Ishizaki, Noriko N.; Uno, Fumichika; Hatsushika, Hiroaki; Kimura, Fujio

    2013-11-01

    Sea of Japan side of Central Japan is one of the heaviest snowfall areas in the world. We investigate near-future snow cover changes on the Sea of Japan side using a regional climate model. We perform the pseudo global warming (PGW) downscaling based on the five global climate models (GCMs). The changes in snow cover strongly depend on the elevation; decrease in the ratios of snow cover is larger in the lower elevations. The decrease ratios of the maximum accumulated snowfall in the short term, such as 1 day, are smaller than those in the long term, such as 1 week. We conduct the PGW experiments focusing on specific periods when a 2 K warming at 850 hPa is projected by the individual GCMs (PGW-2K85). The PGW-2K85 experiments show different changes in precipitation, resulting in snow cover changes in spite of similar warming conditions. Simplified sensitivity experiments that assume homogenous warming of the atmosphere (2 K) and the sea surface show that the altitude dependency of snow cover changes is similar to that in the PGW-2K85 experiments, while the uncertainty of changes in the sea surface temperature influences the snow cover changes both in the lower and higher elevations. The decrease in snowfall is, however, underestimated in the simplified sensitivity experiments as compared with the PGW experiments. Most GCMs project an increase in dry static stability and some GCMs project an anticyclonic anomaly over Central Japan, indicating the inhibition of precipitation, including snowfall, in the PGW experiments.

  4. A stochastic model for density-dependent microwave Snow- and Graupel scattering coefficients of the NOAA JCSDA community radiative transfer model

    NASA Astrophysics Data System (ADS)

    Stegmann, Patrick G.; Tang, Guanglin; Yang, Ping; Johnson, Benjamin T.

    2018-05-01

    A structural model is developed for the single-scattering properties of snow and graupel particles with a strongly heterogeneous morphology and an arbitrary variable mass density. This effort is aimed to provide a mechanism to consider particle mass density variation in the microwave scattering coefficients implemented in the Community Radiative Transfer Model (CRTM). The stochastic model applies a bicontinuous random medium algorithm to a simple base shape and uses the Finite-Difference-Time-Domain (FDTD) method to compute the single-scattering properties of the resulting complex morphology.

  5. What are the controls on mountain snowmelt and runoff around the globe?

    NASA Astrophysics Data System (ADS)

    Painter, T. H.

    2017-12-01

    The Anthropocene has seen a marked expulsion of mass from mountain glaciers to oceans and earlier snowmelt that evacuates the mountains earlier in the year. The loss of ice mass and snow cover is often attributed to increasing temperatures. However, process studies across the last two decades indicate that acceleration of melt by dust/black carbon (BC) may dominate in some regions. Process studies with detailed energy balance measurements around the globe are relatively sparse but strongly suggestive of the impact of dust and BC. Mesoscale and global scale modeling have recently taken on radiative transfer modeling of snow albedo that accounts for changes in grain size and dust/BC concentrations and optical properties. However, our understanding of metamorphism and changes in grain growth still has considerable range of uncertainty that, when passed through radiative transfer modeling, far exceeds in magnitude the at-surface greenhouse gas forcing of 3 W m-2. Likewise, it is a rare study that provides the quantitative knowledge of seasonal variation of dust and BC concentrations, let alone the range of optical properties. Therefore, the energy balance of snow in mountains around the globe is poorly understood and our capacity to model past, present, and future hydrologic responses is relatively weak. Atop the energy balance uncertainties, we also still do not know the spatio-temporal distributions of snow water equivalent in mountain basins around the globe. With the advent of the NASA Airborne Snow Observatory in 2013, we entered a new era of understanding mountain basin SWE. ASO uses scanning lidar, imaging spectrometer, and physical modeling to map distributions across basins in California, Colorado, and the Swiss Alps. The program is expanding in these and other regions for water management. However, in the science realm, in addition to providing the capacity to understand distributed SWE and its change, ASO is also pathfinding through the NASA Snow Experiment (SnowEx) for a spaceborne snow depth and SWE mission that can provide the global perspective we need. The next few decades hold enormous potential to quantify mountain snow pack and to constrain physically-based climate models to allow us to answer the title question here and where the cryosphere-water cycles are heading.

  6. Resolving Size Distribution of Black Carbon Internally Mixed With Snow: Impact on Snow Optical Properties and Albedo

    NASA Astrophysics Data System (ADS)

    He, Cenlin; Liou, Kuo-Nan; Takano, Yoshi

    2018-03-01

    We develop a stochastic aerosol-snow albedo model that explicitly resolves size distribution of aerosols internally mixed with various snow grains. We use the model to quantify black carbon (BC) size effects on snow albedo and optical properties for BC-snow internal mixing. Results show that BC-induced snow single-scattering coalbedo enhancement and albedo reduction decrease by a factor of 2-3 with increasing BC effective radii from 0.05 to 0.25 μm, while polydisperse BC results in up to 40% smaller visible single-scattering coalbedo enhancement and albedo reduction compared to monodisperse BC with equivalent effective radii. We further develop parameterizations for BC size effects for application to climate models. Compared with a realistic polydisperse assumption and observed shifts to larger BC sizes in snow, respectively, assuming monodisperse BC and typical atmospheric BC effective radii could lead to overestimates of 24% and 40% in BC-snow albedo forcing averaged over different BC and snow conditions.

  7. Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon

    PubMed Central

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Zhang, Qianggong; Guo, Junming; Li, Yang; Schwikowski, Margit; Farinotti, Daniel

    2017-01-01

    Deposited mineral dust and black carbon are known to reduce the albedo of snow and enhance melt. Here we estimate the contribution of anthropogenic black carbon (BC) to snowmelt in glacier accumulation zones of Central Asia based on in-situ measurements and modelling. Source apportionment suggests that more than 94% of the BC is emitted from mostly regional anthropogenic sources while the remaining contribution comes from natural biomass burning. Even though the annual deposition flux of mineral dust can be up to 20 times higher than that of BC, we find that anthropogenic BC causes the majority (60% on average) of snow darkening. This leads to summer snowmelt rate increases of up to 6.3% (7 cm a−1) on glaciers in three different mountain environments in Kyrgyzstan, based on albedo reduction and snowmelt models. PMID:28079148

  8. PBSM3D: A finite volume, scalar-transport blowing snow model for use with variable resolution meshes

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Wayand, N. E.; Pomeroy, J. W.; Wheater, H. S.; Spiteri, R. J.

    2017-12-01

    Blowing snow redistribution results in heterogeneous snowcovers that are ubiquitous in cold, windswept environments. Capturing this spatial and temporal variability is important for melt and runoff simulations. Point scale blowing snow transport models are difficult to apply in fully distributed hydrological models due to landscape heterogeneity and complex wind fields. Many existing distributed snow transport models have empirical wind flow and/or simplified wind direction algorithms that perform poorly in calculating snow redistribution where there are divergent wind flows, sharp topography, and over large spatial extents. Herein, a steady-state scalar transport model is discretized using the finite volume method (FVM), using parameterizations from the Prairie Blowing Snow Model (PBSM). PBSM has been applied in hydrological response units and grids to prairie, arctic, glacier, and alpine terrain and shows a good capability to represent snow redistribution over complex terrain. The FVM discretization takes advantage of the variable resolution mesh in the Canadian Hydrological Model (CHM) to ensure efficient calculations over small and large spatial extents. Variable resolution unstructured meshes preserve surface heterogeneity but result in fewer computational elements versus high-resolution structured (raster) grids. Snowpack, soil moisture, and streamflow observations were used to evaluate CHM-modelled outputs in a sub-arctic and an alpine basin. Newly developed remotely sensed snowcover indices allowed for validation over large basins. CHM simulations of snow hydrology were improved by inclusion of the blowing snow model. The results demonstrate the key role of snow transport processes in creating pre-melt snowcover heterogeneity and therefore governing post-melt soil moisture and runoff generation dynamics.

  9. Monitoring global snow cover

    NASA Technical Reports Server (NTRS)

    Armstrong, Richard; Hardman, Molly

    1991-01-01

    A snow model that supports the daily, operational analysis of global snow depth and age has been developed. It provides improved spatial interpolation of surface reports by incorporating digital elevation data, and by the application of regionalized variables (kriging) through the use of a global snow depth climatology. Where surface observations are inadequate, the model applies satellite remote sensing. Techniques for extrapolation into data-void mountain areas and a procedure to compute snow melt are also contained in the model.

  10. Antarctic surface temperature and sea ice biases in coupled climate models linked with cloud and land surface properties

    NASA Astrophysics Data System (ADS)

    Skiles, M.; Painter, T. H.; Marks, D. G.; Hedrick, A. R.

    2014-12-01

    Since 2013 the Airborne Snow Observatory (ASO) has been measuring spatial and temporal distribution of both snow water equivalent and snow albedo, the two most critical properties for understanding snowmelt runoff and timing, across key basins in the Western US. It is generally understood that net solar radiation (as controlled by variations in snow albedo and irradiance) provides the energy available for melt in almost all snow-covered environments. Until now, sparse measurements have restricted the ability to utilize measured net solar radiation in energy balance models, and current process simulations and model prediction of albedo evolution rely on oversimplifications of the processes. Data from ASO offers the unprecedented opportunity to utilize weekly measurements of spatially extensive spectral snow albedo to constrain and update snow albedo in a distributed snowmelt model for the first time. Here, we first investigate the sensitivity of the snow energy balance model SNOBAL to prescribed changes in snow albedo at two instrumented alpine catchments: at the point scale across 10 years at Senator Beck Basin Study Area in the San Juan Mountains, southwestern Colorado, and at the distributed scale across 25 years at Reynolds Creek Experimental Watershed, Idaho. We then compare distributed energy balance and snowmelt results across the ASO measurement record in the Tuolumne Basin in the Sierra Nevada Mountains, California, for model runs with and without integrated snow albedo from ASO.

  11. Snow: A New Model Diagnostic and Seasonal Forecast Influences

    NASA Astrophysics Data System (ADS)

    Slater, A. G.; Lawrence, D. M.; Koven, C.

    2015-12-01

    Snow is the most variable of terrestrial surface condition on the planet with the seasonal extent of snow cover varying by about 48% of land area in the Northern Hemisphere. Physical properties of snow such as high albedo, high insulation along with its ability to store moisture make it an integral component of mid- and high-latitude climates and it is therefore important that models capture these properties and associated processes. In this work we explore two items associated with snow and their role in the climate system. Firstly, a diagnostic measure of snow insulation that is rooted in the physics of heat transfer is introduced. Insulation of the ground during cold Arctic winters heavily influences the rate and depth of ground freezing (or thawing), which can then influence hydrologic and biogeochemical fluxes. The ability of models to simulate snow insulation varies widely. Secondly, the role of snow upon seasonal forecasts is demonstrated within a currently operational modeling system. Due to model system biases, mass and longevity of snow can vary with forecasts. In turn, a longer lasting and greater moisture store can have impacts upon the surface temperature. These impacts can linger for over two months after all snow has melted. The cause of the biases is identified and a solution posed.

  12. Using mid-altitude regions as observatories of change in snow areas: the Natural Park of Cazorla, Segura y las Villas (South Spain) as study case for early snow regression.

    NASA Astrophysics Data System (ADS)

    Montilla, Soledad; Pimentel, Rafael; José Pérez-Palazón, María; Aguillar, Cristina; José Polo, María

    2017-04-01

    Snow plays a key role at the hydrological cycle in semiarid mountainous areas, modifying the energy and water balances that govern the regime of stored water in the snowpack, a key resource for the spring and summer river flow. The Natural and National Park of Sierra Nevada (SNNP), a coastal mountain range up to 3450 m a.s.l. in southern Spain, is a representative example of snow areas in Mediterranean-climate regions; its high altitudinal gradient results in a wide variety of eco-climatic environments, and it is part of the global monitoring network to study climate change. Both monitoring and modelling efforts have been performed to assess this variability and its significant scales; whereas increasing temperature trends have been found, no significant trends are observed so far regarding the precipitation regime both on a seasonal and annual basis, with a highly variable impact on the snow regime in this area, especially in the mid-altitude range. In this context, the study of the snow cover in the neighbouring Natural Park of Cazorla, Segura and Las Villas (CSLVNP), with similar climatic conditions but lower altitudes (up to 2107 m a.s.l.) is proposed as a parallel monitoring site for early warning of impacts of climate change on the snow regime. The CSLVNP is the most extensive protected area in Spain and it is located to the north of SNPN, with less influence of the Mediterranean Sea. This study carried out a first quantification of the snow importance in this area, which exhibits a large transitional zone with a dominant alpine environment, and its relationship with the observed local precipitation-temperature trends. For this, the snow cover fraction on a 30x30 m gridded resolution has been studied during a 5-yr period combining on-site meteorological observations and remote-sensing data analysis, and snow modelling by the distributed and physically based approach for Mediterranean regions proposed by Herrero et al. (2009; 2010). The analysis of the available series of satellite images Landsat 8 OLI/TIRS, Landsat 7 ETM+ and Landsat 4-5 TM were used to obtain snow cover fraction maps with 30x30 m resolution. The study period 2010-2015 was simulated with the distributed snow model and the results were compared against these snow map series. Additionally, the annual and seasonal trends of precipitation, mean daily temperature and global radiation were obtained from the available local data sets. Globally, the simulated results overestimate the snow presence in the study area, very likely due to the estimation of snowfall. However, on a local scale, the model performance improves in the region between 1750 and 2250 m altitude. On the other hand, those zones at lower altitudes, which are a transition of the clearly alpine environment above, present a high variability of results related to the spatial patterns of precipitation, temperature and radiation. Regarding the precipitation-temperature regime, an increasing 0.05 °/yr over the last 30 years (1970-2010) was found, but no significant conclusion can be achieved on precipitation trends. This is also observed in the SNNP, which confirms the potential representativeness of PNCSV as an early warning site. Further work is being carried out to improve the snow modelling at this site and generate longer snow cover fraction maps series and other characteristic variables of the snow in this area.

  13. Spatial analysis and statistical modelling of snow cover dynamics in the Central Himalayas, Nepal

    NASA Astrophysics Data System (ADS)

    Weidinger, Johannes; Gerlitz, Lars; Böhner, Jürgen

    2017-04-01

    General circulation models are able to predict large scale climate variations in global dimensions, however small scale dynamic characteristics, such as snow cover and its temporal variations in high mountain regions, are not represented sufficiently. Detailed knowledge about shifts in seasonal ablation times and spatial distribution of snow cover are crucial for various research interests. Since high mountain areas, for instance the Central Himalayas in Nepal, are generally remote, it is difficult to obtain data in high spatio-temporal resolutions. Regional climate models and downscaling techniques are implemented to compensate coarse resolution. Furthermore earth observation systems, such as MODIS, also permit bridging this gap to a certain extent. They offer snow (cover) data in daily temporal and medium spatial resolution of around 500 m, which can be applied as evaluation and training data for dynamical hydrological and statistical analyses. Within this approach two snow distribution models (binary snow cover and fractional snow cover) as well as one snow recession model were implemented for a research domain in the Rolwaling Himal in Nepal, employing the random forest technique, which represents a state of the art machine learning algorithm. Both bottom-up strategies provide inductive reasoning to derive rules for snow related processes out of climate (temperature, precipitation and irradiance) and climate-related topographic data sets (elevation, aspect and convergence index) obtained by meteorological network stations, remote sensing products (snow cover - MOD10-A1 and land surface temperatures - MOD11-A1) along with GIS. Snow distribution is predicted reliably on a daily basis in the research area, whereas further effort is necessary for predicting daily snow cover recession processes adequately. Swift changes induced by clear sky conditions with high insolation rates are well represented, whereas steady snow loss still needs continuing effort. All approaches underline the technical difficulties of snow cover modelling during the monsoon season, in accordance with previous studies. The developed methods in combination with continuous in situ measurements provide a basis for further downscaling approaches.

  14. Evaluating MODIS snow products for modelling snowmelt runoff: Case study of the Rio Grande headwaters

    NASA Astrophysics Data System (ADS)

    Steele, Caitriana; Dialesandro, John; James, Darren; Elias, Emile; Rango, Albert; Bleiweiss, Max

    2017-12-01

    Snow-covered area (SCA) is a key variable in the Snowmelt-Runoff Model (SRM) and in other models for simulating discharge from snowmelt. Landsat Thematic Mapper (TM), Enhanced Thematic Mapper (ETM +) or Operational Land Imager (OLI) provide remotely sensed data at an appropriate spatial resolution for mapping SCA in small headwater basins, but the temporal resolution of the data is low and may not always provide sufficient cloud-free dates. The coarser spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) offers better temporal resolution and in cloudy years, MODIS data offer the best alternative for mapping snow cover when finer spatial resolution data are unavailable. However, MODIS' coarse spatial resolution (500 m) can obscure fine spatial patterning in snow cover and some MODIS products are not sensitive to end-of-season snow cover. In this study, we aimed to test MODIS snow products for use in simulating snowmelt runoff from smaller headwater basins by a) comparing maps of TM and MODIS-based SCA and b) determining how SRM streamflow simulations are changed by the different estimates of seasonal snow depletion. We compared gridded MODIS snow products (Collection 5 MOD10A1 fractional and binary SCA; SCA derived from Collection 6 MOD10A1 Normalised Difference Snow Index (NDSI) Snow Cover), and the MODIS Snow Covered-Area and Grain size retrieval (MODSCAG) canopy-corrected fractional SCA (SCAMG), with reference SCA maps (SCAREF) generated from binary classification of TM imagery. SCAMG showed strong agreement with SCAREF; excluding true negatives (where both methods agreed no snow was present) the median percent difference between SCAREF and SCAMG ranged between -2.4% and 4.7%. We simulated runoff for each of the four study years using SRM populated with and calibrated for snow depletion curves derived from SCAREF. We then substituted in each of the MODIS-derived depletion curves. With efficiency coefficients ranging between 0.73 and 0.93, SRM simulation results from the SCAMG runs yielded the best results of all the MODIS products and only slightly underestimated discharge volume (between 7 and 11% of measured annual discharge). SRM simulations that used SCA derived from Collection 6 NDSI Snow Cover also yielded promising results, with efficiency coefficients ranging between 0.73 and 0.91. In conclusion, we recommend that when simulating snowmelt runoff from small basins (<4000 km2) with SRM, we recommend that users select either canopy-corrected MODSCAG or create their own site-specific products from the Collection 6 MOD10A1 NDSI.

  15. Cloud-based Computing and Applications of New Snow Metrics for Societal Benefit

    NASA Astrophysics Data System (ADS)

    Nolin, A. W.; Sproles, E. A.; Crumley, R. L.; Wilson, A.; Mar, E.; van de Kerk, M.; Prugh, L.

    2017-12-01

    Seasonal and interannual variability in snow cover affects socio-environmental systems including water resources, forest ecology, freshwater and terrestrial habitat, and winter recreation. We have developed two new seasonal snow metrics: snow cover frequency (SCF) and snow disappearance date (SDD). These metrics are calculated at 500-m resolution using NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data (MOD10A1). SCF is the number of times snow is observed in a pixel over the user-defined observation period. SDD is the last date of observed snow in a water year. These pixel-level metrics are calculated rapidly and globally in the Google Earth Engine cloud-based environment. SCF and SDD can be interactively visualized in a map-based interface, allowing users to explore spatial and temporal snowcover patterns from 2000-present. These metrics are especially valuable in regions where snow data are sparse or non-existent. We have used these metrics in several ongoing projects. When SCF was linked with a simple hydrologic model in the La Laguna watershed in northern Chile, it successfully predicted summer low flows with a Nash-Sutcliffe value of 0.86. SCF has also been used to help explain changes in Dall sheep populations in Alaska where sheep populations are negatively impacted by late snow cover and low snowline elevation during the spring lambing season. In forest management, SCF and SDD appear to be valuable predictors of post-wildfire vegetation growth. We see a positive relationship between winter SCF and subsequent summer greening for several years post-fire. For western US winter recreation, we are exploring trends in SDD and SCF for regions where snow sports are economically important. In a world with declining snowpacks and increasing uncertainty, these metrics extend across elevations and fill data gaps to provide valuable information for decision-making. SCF and SDD are being produced so that anyone with Internet access and a Google account can access, visualize, and download the data with a minimum of technical expertise and no need for proprietary software.

  16. Photopolarimetric Retrievals of Snow Properties

    NASA Technical Reports Server (NTRS)

    Ottaviani, M.; van Diedenhoven, B.; Cairns, B.

    2015-01-01

    Polarimetric observations of snow surfaces, obtained in the 410-2264 nm range with the Research Scanning Polarimeter onboard the NASA ER-2 high-altitude aircraft, are analyzed and presented. These novel measurements are of interest to the remote sensing community because the overwhelming brightness of snow plagues aerosol and cloud retrievals based on airborne and spaceborne total reflection measurements. The spectral signatures of the polarized reflectance of snow are therefore worthwhile investigating in order to provide guidance for the adaptation of algorithms currently employed for the retrieval of aerosol properties over soil and vegetated surfaces. At the same time, the increased information content of polarimetric measurements allows for a meaningful characterization of the snow medium. In our case, the grains are modeled as hexagonal prisms of variable aspect ratios and microscale roughness, yielding retrievals of the grains' scattering asymmetry parameter, shape and size. The results agree with our previous findings based on a more limited data set, with the majority of retrievals leading to moderately rough crystals of extreme aspect ratios, for each scene corresponding to a single value of the asymmetry parameter.

  17. The Cold Land Processes Experiment (CLPX-1): Analysis and Modelling of LSOS Data (IOP3 Period)

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Kim, Edward J.; Cline, Don; Graf, Tobias; Koike, Toshio; Hardy, Janet; Armstrong, Richard; Brodzik, Mary

    2004-01-01

    Microwave brightness temperatures at 18.7,36.5, and 89 GHz collected at the Local-Scale Observation Site (LSOS) of the NASA Cold-Land Processes Field Experiment in February, 2003 (third Intensive Observation Period) were simulated using a Dense Media Radiative Transfer model (DMRT), based on the Quasi Crystalline Approximation with Coherent Potential (QCA-CP). Inputs to the model were averaged from LSOS snow pit measurements, although different averages were used for the lower frequencies vs. the highest one, due to the different penetration depths and to the stratigraphy of the snowpack. Mean snow particle radius was computed as a best-fit parameter. Results show that the model was able to reproduce satisfactorily brightness temperatures measured by the University of Tokyo s Ground Based Microwave Radiometer system (CBMR-7). The values of the best-fit snow particle radii were found to fall within the range of values obtained by averaging the field-measured mean particle sizes for the three classes of Small, Medium and Large grain sizes measured at the LSOS site.

  18. An improved snow scheme for the ECMWF land surface model: Description and offline validation

    Treesearch

    Emanuel Dutra; Gianpaolo Balsamo; Pedro Viterbo; Pedro M. A. Miranda; Anton Beljaars; Christoph Schar; Kelly Elder

    2010-01-01

    A new snow scheme for the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model has been tested and validated. The scheme includes a new parameterization of snow density, incorporating a liquid water reservoir, and revised formulations for the subgrid snow cover fraction and snow albedo. Offline validation (covering a wide range of spatial and...

  19. Evaluation of forest snow processes models (SnowMKIP2)

    Treesearch

    Nick Rutter; Richard Essery; John Pomeroy; Nuria Altimir; Kostas Andreadis; Ian Baker; Alan Barr; Paul Bartlett; Aaron Boone; Huiping Deng; Herve Douville; Emanuel Dutra; Kelly Elder; others

    2009-01-01

    Thirty-three snowpack models of varying complexity and purpose were evaluated across a wide range of hydrometeorological and forest canopy conditions at five Northern Hemisphere locations, for up to two winter snow seasons. Modeled estimates of snow water equivalent (SWE) or depth were compared to observations at forest and open sites at each location. Precipitation...

  20. Northern Hemisphere Autumn and Winter Climate Responses to Realistic Tibetan Plateau and Mongolia Snow Anomalies

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Yao, Y.; Liu, S.

    2017-12-01

    The impact of the Eurasian snow cover extent (SCE) on the Northern Hemisphere (NH) circulation is first investigated by applying a lagged maximum covariance analysis (MCA) to monthly satellite-derived SCE and NCEP reanalysis data. Wintertime atmospheric signals significantly correlated with persistently autumn-early winter SCE anomalies are found in the leading two MCA modes. The first MCA mode indicates the effect of Eurasian snow cover anomalies on the Arctic Oscillation/North Atlantic Oscillation (AO/NAO). The second MCA mode links a persistent dipole of autumn and winter SCE anomalies over the Tibetan Plateau (TP) and Mongolia with winter Pacific-North America (PNA)-like atmospheric variations. A modeling study further investigates atmospheric responses to above TP and Mongolia snow forcings using multiple ensemble transient integrations of the CAM4 and CLM4.0 models. Model boundary conditions are based on climatological sea ice extent (SIE) and sea surface temperature (SST), and satellite observations of SCE and snow water equivalent (SWE) over the TP and Mongolia from October to March in 1997/98 (heavy TP and light Mongolia snow) and 1984/85 (light TP and heavy Mongolia snow), with model derived SCE and SWE elsewhere. In various forcing experiments, the ensemble-mean difference between simulations with these two extreme snow states identifies local, distant, concurrent, and delayed climatic responses. The main atmospheric responses to a dipole of high TP and low Mongolia SCE persisting from October to March (versus the opposite extreme) are strong TP surface cooling, warming in the surrounding China and Mongolia region, and a winter positive PNA-like response. The localized response is maintained by persistent diabatic cooling or heating, and the remote PNA response results mainly from the increased horizontal eastward propagation of stationary Rossby wave energy due to persistent TP snow forcing and also a winter transient eddy feedback mechanism. With a less persistent dipole anomaly in autumn or winter only, local responses are similar depending on the specific anomalies, but the winter PNA-like response is nearly absent or noticeably reduced.

  1. Sequential optimization of a terrestrial biosphere model constrained by multiple satellite based products

    NASA Astrophysics Data System (ADS)

    Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.

    2012-12-01

    Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis shows that terrestrial carbon and water cycle simulations in monsoon Asia were greatly improved, and the use of multiple satellite observations with this framework is an effective way for improving terrestrial biosphere models.

  2. Estimating time and spatial distribution of snow water equivalent in the Hakusan area

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Matsui, Y.; Touge, Y.

    2015-12-01

    In the Sousei program, on-going Japanese research program for risk information on climate change, assessing the impact of climate change on water resources is attempted using the integrated water resources model which consists of land surface model, irrigation model, river routing model, reservoir operation model, and crop growth model. Due to climate change, reduction of snowfall amount, reduction of snow cover and change in snowmelt timing, change in river discharge are of increasing concern. So, the evaluation of snow water amount is crucial for assessing the impact of climate change on water resources in Japan. To validate the snow simulation of the land surface model, time and spatial distribution of the snow water equivalent was estimated using the observed surface meteorological data and RAP (Radar Analysis Precipitation) data. Target area is Hakusan. Hakusan means 'white mountain' in Japanese. Water balance of the Tedori River Dam catchment was checked with daily inflow data. Analyzed runoff was generally well for the period from 2010 to 2012. From the result for 2010-2011 winter, maximum snow water equivalent in the headwater area of the Tedori River dam reached more than 2000mm in early April. On the other hand, due to the underestimation of RAP data, analyzed runoff was under estimated from 2006 to 2009. This underestimation is probably not from the lack of land surface model, but from the quality of input precipitation data. In the original RAP, only the rain gauge data of JMA (Japan Meteorological Agency) were used in the analysis. Recently, other rain gauge data of MLIT (Ministry of Land, Infrastructure, Transport and Tourism) and local government have been added in the analysis. So, the quality of the RAP data especially in the mountain region has been greatly improved. "Reanalysis" of the RAP precipitation is strongly recommended using all the available off-line rain gauges information. High quality precipitation data will contribute to validate hydrological model, satellite based precipitation product, GCM output, etc.

  3. Modelling the influence of elevation and snow regime on winter stream temperature in the rain-on-snow zone

    NASA Astrophysics Data System (ADS)

    Leach, J.; Moore, D.

    2015-12-01

    Winter stream temperature of coastal mountain catchments influences fish growth and development. Transient snow cover and advection associated with lateral throughflow inputs are dominant controls on stream thermal regimes in these regions. Existing stream temperature models lack the ability to properly simulate these processes. Therefore, we developed and evaluated a conceptual-parametric catchment-scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model provided reasonable estimates of observed stream temperature at three test catchments. We used the model to simulate winter stream temperature for virtual catchments located at different elevations within the rain-on-snow zone. The modelling exercise examined stream temperature response associated with interactions between elevation, snow regime, and changes in air temperature. Modelling results highlight that the sensitivity of winter stream temperature response to changes in climate may be dependent on catchment elevation and landscape position.

  4. Research on the resilience of husbandry economy to snow disaster

    NASA Astrophysics Data System (ADS)

    Zhao, Shuang; Fang, Yiping

    2017-04-01

    Snow disaster always makes adverse influence on the pastoral economy in alpine area. Resilience theory could efficiently enhance the capacities of resisting disaster and mitigating loss of animal husbandry economy. In order to distinguish the weak parts of existed resilience system and strengthen the construction of disaster mitigating in the source of Changjiang-Yellow River, this paper has developed two methods of comprehensive index and relationship model to measure the resilience from 1980 to 2014. The comprehensive index method is based on the conceptual framework of resilience assessment. And relationship model is derived from the internal relationship between vulnerability and resilience. Through the index system of resilience, this paper also summarizes the mean influencing indicator to husbandry economy resilience. The results show:(1)From time dimension, the resilience of snow disaster in Changjiang-Yellow River is rising with fluctuations. Based on the rate, the changes could be divided into slow(1980-1996) and fast(1997-2014) growing phases. The disaster-mitigating capacity of livestock has been markedly improved; (2)From spatial dimension, the magnitude and frequency of snow disaster change weakly. But the gap of resilience in Changjiang-Yellow River has shrunk in 35 years and the resilience in source of Changjiang is distinctly better than Yellow River; (3)Among all the indicators, snow disaster plays a decisive role in the changes of resilience. The resisting capacity including infrastructure construction makes significant effects on resilience and the reducing measures consisted of income, education and agricultural finance could effectively regulate the level. Key words: husbandry economy; snow disaster; resilience; mitigation

  5. Examination of snowmelt over Western Himalayas using remote sensing data

    NASA Astrophysics Data System (ADS)

    Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.

    2016-07-01

    Snowmelt variability in the Western Himalayas has been examined using remotely sensed snow water equivalent (SWE) and snow-covered area (SCA) datasets. It is seen that climatological snowfall and snowmelt amount varies in the Himalayan region from west to east and from month to month. Maximum snowmelt occurs at the elevation zone between 4500 and 5000 m. As the spring and summer approach and snowmelt begins, a large amount of snow melts in May. Strength and weaknesses of temperature-based snowmelt models have been analyzed for this region by computing the snowmelt factor or the degree-day factor (DDF). It is seen that average DDF in the Himalayas is more in April and less in July. During spring and summer months, melting rate is higher in the areas that have height above 2500 m. The region that lies between 4500 and 5000 m elevation zones contributes toward more snowmelt with higher melting rate. Snowmelt models have been developed to estimate interannual variations of monthly snowmelt amount using the DDF, observed SWE, and surface air temperature from reanalysis datasets. In order to further improve the estimate snowmelt, regression between observed and modeled snowmelt has been carried out and revised DDF values have been computed. It is found that both the models do not capture the interannual variability of snowmelt in April. The skill of the model is moderate in May and June, but the skill is relatively better in July. In order to explain this skill, interannual variability (IAV) of surface air temperature has been examined. Compared to July, in April, the IAV of temperature is large indicating that a climatological value of DDF is not sufficient to explain the snowmelt rate in April. Snow area and snow amount depletion curves over Himalayas indicate that in a small area at high altitude, snow is still observed with large SWE whereas over most of the region, all the snow has melted.

  6. Progress in radar snow research. [Brookings, South Dakota

    NASA Technical Reports Server (NTRS)

    Stiles, W. H.; Ulaby, F. T.; Fung, A. K.; Aslam, A.

    1981-01-01

    Multifrequency measurements of the radar backscatter from snow-covered terrain were made at several sites in Brookings, South Dakota, during the month of March of 1979. The data are used to examine the response of the scattering coefficient to the following parameters: (1) snow surface roughness, (2) snow liquid water content, and (3) snow water equivalent. The results indicate that the scattering coefficient is insensitive to snow surface roughness if the snow is drv. For wet snow, however, surface roughness can have a strong influence on the magnitude of the scattering coefficient. These observations confirm the results predicted by a theoretical model that describes the snow as a volume of Rayleig scatterers, bounded by a Gaussian random surface. In addition, empirical models were developed to relate the scattering coefficient to snow liquid water content and the dependence of the scattering coefficient on water equivalent was evaluated for both wet and dry snow conditions.

  7. What color should glacier algae be? An ecological role for red carbon in the cryosphere.

    PubMed

    Dial, Roman J; Ganey, Gerard Q; Skiles, S McKenzie

    2018-03-01

    Red-colored secondary pigments in glacier algae play an adaptive role in melting snow and ice. We advance this hypothesis using a model of color-based absorption of irradiance, an experiment with colored particles in snow, and the natural history of glacier algae. Carotenoids and phenols-astaxanthin in snow-algae and purpurogallin in ice-algae-shield photosynthetic apparatus by absorbing overabundant visible wavelengths, then dissipating the excess radiant energy as heat. This heat melts proximal ice crystals, providing liquid-water in a 0°C environment and freeing up nutrients bound in frozen water. We show that purple-colored particles transfer 87%-89% of solar energy absorbed by black particles. However, red-colored particles transfer nearly as much (85%-87%) by absorbing peak solar wavelengths and reflecting the visible wavelengths most absorbed by nearby ice and snow crystals; this latter process may reduce potential cellular overheating when snow insulates cells. Blue and green particles transfer only 80%-82% of black particle absorption. In the experiment, red-colored particles melted 87% as much snow as black particles, while blue particles melted 77%. Green-colored snow-algae naturally occupy saturated snow where water is non-limiting; red-colored snow-algae occupy drier, water-limited snow. In addition to increasing melt, we suggest that esterified astaxanthin in snow-alga cells increases hydrophobicity to remain surficial. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Development of a MODIS-Derived Surface Albedo Data Set: An Improved Model Input for Processing the NSRDB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maclaurin, Galen; Sengupta, Manajit; Xie, Yu

    A significant source of bias in the transposition of global horizontal irradiance to plane-of-array (POA) irradiance arises from inaccurate estimations of surface albedo. The current physics-based model used to produce the National Solar Radiation Database (NSRDB) relies on model estimations of surface albedo from a reanalysis climatalogy produced at relatively coarse spatial resolution compared to that of the NSRDB. As an input to spectral decomposition and transposition models, more accurate surface albedo data from remotely sensed imagery at finer spatial resolutions would improve accuracy in the final product. The National Renewable Energy Laboratory (NREL) developed an improved white-sky (bi-hemispherical reflectance)more » broadband (0.3-5.0 ..mu..m) surface albedo data set for processing the NSRDB from two existing data sets: a gap-filled albedo product and a daily snow cover product. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellites have provided high-quality measurements of surface albedo at 30 arc-second spatial resolution and 8-day temporal resolution since 2001. The high spatial and temporal resolutions and the temporal coverage of the MODIS sensor will allow for improved modeling of POA irradiance in the NSRDB. However, cloud and snow cover interfere with MODIS observations of ground surface albedo, and thus they require post-processing. The MODIS production team applied a gap-filling methodology to interpolate observations obscured by clouds or ephemeral snow. This approach filled pixels with ephemeral snow cover because the 8-day temporal resolution is too coarse to accurately capture the variability of snow cover and its impact on albedo estimates. However, for this project, accurate representation of daily snow cover change is important in producing the NSRDB. Therefore, NREL also used the Integrated Multisensor Snow and Ice Mapping System data set, which provides daily snow cover observations of the Northern Hemisphere for the temporal extent of the NSRDB (1998-2015). We provide a review of validation studies conducted on these two products and describe the methodology developed by NREL to remap the data products to the NSRDB grid and integrate them into a seamless daily data set.« less

  9. NASA's Potential Contributions to Avalanche Forecasting Using Active and Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir

    2007-01-01

    This Candidate Solution is based on using active and passive microwave measurements acquired from NASA satellites to improve USDA (U.S. Department of Agriculture) Forest Service forecasting of avalanche danger. Regional Avalanche Centers prepare avalanche forecasts using ground measurements of snowpack and mountain weather conditions. In this Solution, range of the in situ observations is extended by adding remote sensing measurements of snow depth, snow water equivalent, and snowfall rate acquired by satellite missions that include Aqua, CloudSat, future GPM (Global Precipitation Measurement), and the proposed SCLP (Snow and Cold Land Processes). Measurements of snowpack conditions and time evolution are improved by combining the in situ and satellite observations with a snow model. Recurring snow observations from NASA satellites increase accuracy of avalanche forecasting, which helps the public and the managers of public facilities make better avalanche safety decisions.

  10. Economic Impacts of Climate Change on Winter Tourism: Challenges for Ski Area Operators

    NASA Astrophysics Data System (ADS)

    Damm, A.; Köberl, J.; Prettenthaler, F.; Töglhofer, C.

    2012-04-01

    Increasing temperatures and snow scarce winter seasons pose a big challenge for the winter tourism industry. Changing natural snow reliability influences tourism demand and ski area operators are faced with an enhanced need of technical snow production. The goal of the present research work is to analyze the economic effects of technical snow production under future climate conditions. Snowmaking as an adaptation strategy to climate change impacts on the ski tourism industry is already taken into consideration in several studies from a scientific perspective concerning snowmaking potentials under future climate conditions and the impacts on ski season length (e.g. Scott et al. 2003; Scott & McBoyle 2007; Hennessy et al. 2008; Steiger 2010). A few studies considered economic aspects of technical snowmaking (e.g. Teich et al. 2007; Gonseth 2008). However, a detailed analysis of the costs and benefits of snowmaking under future climate and snow conditions based on sophisticated climate and snow models has not been carried out yet. The present study addresses the gap of knowledge concerning the economic profitability of prospective snowmaking requirements under future climate scenarios. We carry out a detailed cost-revenue analysis of snowmaking under current and future climate conditions for a case study site in Styria (Austria) using dynamic investment models. The starting point of all economic calculations is the daily demand for artificial snow that determines the requirements for additional snowmaking investments and additional operating costs. The demand for artificial snow is delivered by the snow cover model AMUNDSEN (see Strasser et al. 2011) and is driven by four climate scenarios. Apart from future climate conditions the profitability of snowmaking depends on changes in costs and visitor numbers. The results of a ski tourism demand model analyzing daily visitor numbers and their dependencies of prevailing weather conditions enter the cost-revenue analysis of snowmaking and enable the determination of the immediate benefits in terms of additional revenues of ski ticket sales. Furthermore, we conduct an econometric analysis of how snowmaking investments changed ski ticket prices in previous years, as the positive effects of snowmaking on snow reliability could be offset in the longer term by the effects of higher prices for skiing, possibly resulting in lower demand.

  11. Improving simulations of precipitation phase and snowpack at a site subject to cold air intrusions: Snoqualmie Pass, WA

    NASA Astrophysics Data System (ADS)

    Wayand, Nicholas E.; Stimberis, John; Zagrodnik, Joseph P.; Mass, Clifford F.; Lundquist, Jessica D.

    2016-09-01

    Low-level cold air from eastern Washington often flows westward through mountain passes in the Washington Cascades, creating localized inversions and locally reducing climatological temperatures. The persistence of this inversion during a frontal passage can result in complex patterns of snow and rain that are difficult to predict. Yet these predictions are critical to support highway avalanche control, ski resort operations, and modeling of headwater snowpack storage. In this study we used observations of precipitation phase from a disdrometer and snow depth sensors across Snoqualmie Pass, WA, to evaluate surface-air-temperature-based and mesoscale-model-based predictions of precipitation phase during the anomalously warm 2014-2015 winter. Correlations of phase between surface-based methods and observations were greatly improved (r2 from 0.45 to 0.66) and frozen precipitation biases reduced (+36% to -6% of accumulated snow water equivalent) by using air temperature from a nearby higher-elevation station, which was less impacted by low-level inversions. Alternatively, we found a hybrid method that combines surface-based predictions with output from the Weather Research and Forecasting mesoscale model to have improved skill (r2 = 0.61) over both parent models (r2 = 0.42 and 0.55). These results suggest that prediction of precipitation phase in mountain passes can be improved by incorporating observations or models from above the surface layer.

  12. Investigations into the climate of the South Pole

    NASA Astrophysics Data System (ADS)

    Town, Michael S.

    Four investigations into the climate of the South Pole are presented. The general subjects of polar cloud cover, the surface energy balance in a stable boundary layer, subsurface energy transfer in snow, and modification of water stable isotopes in snow after deposition are investigated based on the historical data set from the South Pole. Clouds over the South Pole. A new, accurate cloud fraction time series is developed based on downwelling infrared radiation measurements taken at the South Pole. The results are compared to cloud fraction estimates from visual observations and satellite retrievals of cloud fraction. Visual observers are found to underestimate monthly mean cloud fraction by as much as 20% during the winter, and satellite retrievals of cloud fraction are not accurate for operational or climatic purposes. We find associations of monthly mean cloud fraction with other meteorological variables at the South Pole for use in testing models of polar weather and climate. Surface energy balance. A re-examination of the surface energy balance at the South Pole is motivated by large discrepancies in the literature. We are not able to find closure in the new surface energy balance, likely due to weaknesses in the turbulent heat flux parameterizations in extremely stable boundary layers. These results will be useful for constraining our understanding and parameterization of stable boundary layers. Subsurface energy transfer. A finite-volume model of the snow is used to simulate nine years of near-surface snow temperatures, heating rates, and vapor pressures at the South Pole. We generate statistics characterizing heat and vapor transfer in the snow on submonthly to interannual time scales. The variability of near-surface snow temperatures on submonthly time scales is large, and has potential implications for revising the interpretation of paleoclimate records of water stable isotopes in polar snow. Modification of water stable isotopes after deposition. The evolution of water stable isotopes in near-surface polar snow is simulated using a Rayleigh fractionation model including the processes of pore-space diffusion, forced ventilation, and intra-ice-grain diffusion. We find isotopic enrichment of winter snow during subsequent summers as enriched water vapor is forced into the snow and deposits as frost. This process depends on snow and atmospheric temperatures, surface wind speed, accumulation rate, and surface morphology. We further find that differential enrichment between the present day and the Last Glacial Maximum (LGM) may exaggerate the greenlandic glacial-interglacial temperature difference derived from water stable isotopes. In Antarctica, present-day post-depositional modification is likely equal to that of the LGM due to the compensating factors of lower temperatures and lower accumulation rate during the LGM.

  13. Snow cover monitoring over French Alps based on Spot-Vegetation S-10 products. Application to the Vercors area for the time period 1998-2008.

    NASA Astrophysics Data System (ADS)

    Bigot, S.; Dedieu, Jp.; Rome, S.

    2009-04-01

    Sylvain.bigot@ujf-grenoble.fr Jean-pierre.dedieu@hmg.inpg.fr Sandra.rome@ujf-grenoble.fr Estimation of the Snow Covered Area (SCA) is an important issue for meteorological application and hydrological modeling of runoff. With spectral bands in the visible, near and middle infrared, the SPOT-4 and -5 VEGETATION sensors are used to detect snow cover because of large differences between reflectance from snow covered and snow free surfaces. At the same time, it allows separation between snow and clouds. Moreover, the sensor provides a daily coverage of large areas. However, as the pixel size is 1km x 1km, a VGT pixel may be partially covered by snow, particularly in Alpine areas, where snow may not be present in valleys lying at lower altitudes. Also, variation of reflectance due to differential sunlit effects as a function of slope and aspect, as well as bidirectional effects may be present in images. Nevertheless, it is possible to estimate snow cover at the sub-pixel level with a relatively good accuracy and with very good results if the sub-pixel estimations are integrated for a few pixels relative to an entire watershed. Application of this approach in the French Alps is presented over the Vercors Natural Park area (N 44°.50' / E 05°.30'), based on 10-day Synthetic products for the 1998-2008 time period, and using the NDSII (Normalized Difference Snow/Ice Index) as numerical threshold. This work performs an analysis of climate impact on snow cover spatial and temporal variability, at mid-elevation mountain range (1500 m asl) under temperate climate conditions. The results indicates (i) a increasing temporal and spatial variability of snow coverage, and (ii) a high sensitivity to low variation of air temperature, often close to 1° C. This is the case in particular for the beginning and the end of the winter season. The regional snow cover depletion is both influenced by thermal positives anomalies (e.g. 2000 and 2006), and the general trend of rising atmospheric temperatures since the late 1980s.

  14. Climate change impacts on maritime mountain snowpack in the Oregon Cascades

    Treesearch

    E. Sproles; A.W. Nolin; K. Rittger; T.H. Painter

    2013-01-01

    This study investigates the effect of projected temperature increases on maritime mountain snowpack in the McKenzie River Basin (MRB; 3041 km2) in the Cascades Mountains of Oregon, USA. We simulated the spatial distribution of snow water equivalent (SWE) in the MRB for the period of 1989–2009 with SnowModel, a spatiallydistributed, process-based...

  15. The Life and Work of John Snow

    ERIC Educational Resources Information Center

    Melville, Wayne; Fazio, Xavier

    2007-01-01

    Due to his work to determine how cholera was spread in the 18th century, John Snow (1813-1858) has been hailed as the father of modern epidemiology. This article presents an inquiry model based on his life and work, which teachers can use to develop a series of biology lessons involving the history and nature of science. The lessons presented use…

  16. Snow water equivalent monitoring retrieved by assimilating passive microwave observations in a coupled snowpack evolution and microwave emission models over North-Eastern Canada

    NASA Astrophysics Data System (ADS)

    Royer, A.; Larue, F.; De Sève, D.; Roy, A.; Vionnet, V.; Picard, G.; Cosme, E.

    2017-12-01

    Over northern snow-dominated basins, the snow water equivalent (SWE) is of primary interest for spring streamflow forecasting. SWE retrievals from satellite data are still not well resolved, in particular from microwave (MW) measurements, the only type of data sensible to snow mass. Also, the use of snowpack models is challenging due to the large uncertainties in meteorological input forcings. This project aims to improve SWE prediction by assimilation of satellite brightness temperature (TB), without any ground-based observations. The proposed approach is the coupling of a detailed multilayer snowpack model (Crocus) with a MW snow emission model (DMRT-ML). The assimilation scheme is a Sequential Importance Resampling Particle filter, through ensembles of perturbed meteorological forcings according to their respective uncertainties. Crocus simulations driven by operational meteorological forecasts from the Canadian Global Environmental Multiscale model at 10 km spatial resolution were compared to continuous daily SWE measurements over Québec, North-Eastern Canada (56° - 45°N). The results show a mean bias of the maximum SWE overestimated by 16% with variations up to +32%. This observed large variability could lead to dramatic consequences on spring flood forecasts. Results of Crocus-DMRT-ML coupling compared to surface-based TB measurements (at 11, 19 and 37 GHz) show that the Crocus snowpack microstructure described by sticky hard spheres within DMRT has to be scaled by a snow stickiness of 0.18, significantly reducing the overall RMSE of simulated TBs. The ability of assimilation of daily TBs to correct the simulated SWE is first presented through twin experiments with synthetic data, and then with AMSR-2 satellite time series of TBs along the winter taking into account atmospheric and forest canopy interferences (absorption and emission). The differences between TBs at 19-37 GHz and at 11-19 GHz, in vertical polarization, were assimilated. This assimilation test with synthetic data gives a SWE RMSE reduced by a factor of 2 after assimilation. Assimilation of AMSR-2 TBs shows improvement in SWE retrievals compared to continuous in-situ SWE measurements. The accuracy is discussed as a function of boreal forest density and LAI (MODIS-based data), having significant effects.

  17. Assessing the interaction between mountain forests and snow avalanches at Nevados de Chillán, Chile and its implications for ecosystem-based disaster risk reduction

    NASA Astrophysics Data System (ADS)

    Casteller, Alejandro; Häfelfinger, Thomas; Cortés Donoso, Erika; Podvin, Karen; Kulakowski, Dominik; Bebi, Peter

    2018-04-01

    Gravitational natural hazards such as snow avalanches, rockfalls, shallow landslides and volcanic activity represent a risk to mountain communities around the world. In particular, where documentary records about these processes are rare, decisions on risk management and land-use planning have to be based on a variety of other sources including vegetation, tree-ring data and natural hazard process models. We used a combination of these methods in order to evaluate dynamics of natural hazards with a focus on snow avalanches at Valle Las Trancas, in the Biobío region in Chile. Along this valley, natural hazards threaten not only the local human population, but also the numerous tourists attracted by outdoor recreational activities. Given the regional scarcity of documentary records, tree-ring methods were applied in order to reconstruct the local history of snow avalanches and debris flow events, which are the most important weather-related processes at respective tracks. A recent version of the model Rapid Mass MovementS (RAMMS), which includes influences of forest structure, was used to calculate different avalanche parameters such as runout distances and maximum pressures, taking into consideration the presence or absence of forest along the tracks as well as different modeled return periods. Our results show that local Nothofagus broadleaf forests contribute to a reduction of avalanche runout distances as well as impact pressure on present infrastructure, thus constituting a valuable ecosystem disaster risk reduction measure that can substitute or complement other traditional measures such as snow sheds.

  18. Parameterization of single-scattering properties of snow

    NASA Astrophysics Data System (ADS)

    Räisänen, P.; Kokhanovsky, A.; Guyot, G.; Jourdan, O.; Nousiainen, T.

    2015-02-01

    Snow consists of non-spherical grains of various shapes and sizes. Still, in many radiative transfer applications, single-scattering properties of snow have been based on the assumption of spherical grains. More recently, second-generation Koch fractals have been employed. While they produce a relatively flat phase function typical of deformed non-spherical particles, this is still a rather ad-hoc choice. Here, angular scattering measurements for blowing snow conducted during the CLimate IMpacts of Short-Lived pollutants In the Polar region (CLIMSLIP) campaign at Ny Ålesund, Svalbard, are used to construct a reference phase function for snow. Based on this phase function, an optimized habit combination (OHC) consisting of severely rough (SR) droxtals, aggregates of SR plates and strongly distorted Koch fractals is selected. The single-scattering properties of snow are then computed for the OHC as a function of wavelength λ and snow grain volume-to-projected area equivalent radius rvp. Parameterization equations are developed for λ = 0.199-2.7 μm and rvp = 10-2000 μm, which express the single-scattering co-albedo β, the asymmetry parameter g and the phase function P11 as functions of the size parameter and the real and imaginary parts of the refractive index. The parameterizations are analytic and simple to use in radiative transfer models. Compared to the reference values computed for the OHC, the accuracy of the parameterization is very high for β and g. This is also true for the phase function parameterization, except for strongly absorbing cases (β > 0.3). Finally, we consider snow albedo and reflected radiances for the suggested snow optics parameterization, making comparisons to spheres and distorted Koch fractals.

  19. Parameterization of single-scattering properties of snow

    NASA Astrophysics Data System (ADS)

    Räisänen, P.; Kokhanovsky, A.; Guyot, G.; Jourdan, O.; Nousiainen, T.

    2015-06-01

    Snow consists of non-spherical grains of various shapes and sizes. Still, in many radiative transfer applications, single-scattering properties of snow have been based on the assumption of spherical grains. More recently, second-generation Koch fractals have been employed. While they produce a relatively flat phase function typical of deformed non-spherical particles, this is still a rather ad hoc choice. Here, angular scattering measurements for blowing snow conducted during the CLimate IMpacts of Short-Lived pollutants In the Polar region (CLIMSLIP) campaign at Ny Ålesund, Svalbard, are used to construct a reference phase function for snow. Based on this phase function, an optimized habit combination (OHC) consisting of severely rough (SR) droxtals, aggregates of SR plates and strongly distorted Koch fractals is selected. The single-scattering properties of snow are then computed for the OHC as a function of wavelength λ and snow grain volume-to-projected area equivalent radius rvp. Parameterization equations are developed for λ = 0.199-2.7 μm and rvp = 10-2000 μm, which express the single-scattering co-albedo β, the asymmetry parameter g and the phase function P11 as functions of the size parameter and the real and imaginary parts of the refractive index. The parameterizations are analytic and simple to use in radiative transfer models. Compared to the reference values computed for the OHC, the accuracy of the parameterization is very high for β and g. This is also true for the phase function parameterization, except for strongly absorbing cases (β > 0.3). Finally, we consider snow albedo and reflected radiances for the suggested snow optics parameterization, making comparisons to spheres and distorted Koch fractals.

  20. MODSNOW-Tool: an operational tool for daily snow cover monitoring using MODIS data

    NASA Astrophysics Data System (ADS)

    Gafurov, Abror; Lüdtke, Stefan; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Schöne, Tilo; Schmidt, Sebastian; Kalashnikova, Olga; Merz, Bruno

    2017-04-01

    Spatially distributed snow cover information in mountain areas is extremely important for water storage estimations, seasonal water availability forecasting, or the assessment of snow-related hazards (e.g. enhanced snow-melt following intensive rains, or avalanche events). Moreover, spatially distributed snow cover information can be used to calibrate and/or validate hydrological models. We present the MODSNOW-Tool - an operational monitoring tool offers a user-friendly application which can be used for catchment-based operational snow cover monitoring. The application automatically downloads and processes freely available daily Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data. The MODSNOW-Tool uses a step-wise approach for cloud removal and delivers cloud-free snow cover maps for the selected river basins including basin specific snow cover extent statistics. The accuracy of cloud-eliminated MODSNOW snow cover maps was validated for 84 almost cloud-free days in the Karadarya river basin in Central Asia, and an average accuracy of 94 % was achieved. The MODSNOW-Tool can be used in operational and non-operational mode. In the operational mode, the tool is set up as a scheduled task on a local computer allowing automatic execution without user interaction and delivers snow cover maps on a daily basis. In the non-operational mode, the tool can be used to process historical time series of snow cover maps. The MODSNOW-Tool is currently implemented and in use at the national hydrometeorological services of four Central Asian states - Kazakhstan, Kyrgyzstan, Uzbekistan and Turkmenistan and used for seasonal water availability forecast.

  1. Linking laser scanning to snowpack modeling: Data processing and visualization

    NASA Astrophysics Data System (ADS)

    Teufelsbauer, H.

    2009-07-01

    SnowSim is a newly developed physical snowpack model that can use three-dimensional terrestrial laser scanning data to generate model domains. This greatly simplifies the input and numerical simulation of snow covers in complex terrains. The program can model two-dimensional cross sections of general slopes, with complicated snow distributions. The model predicts temperature distributions and snow settlements in this cross section. Thus, the model can be used for a wide range of problems in snow science and engineering, including numerical investigations of avalanche formation. The governing partial differential equations are solved by means of the finite element method, using triangular elements. All essential data for defining the boundary conditions and evaluating the simulation results are gathered by automatic weather and snow measurement sites. This work focuses on the treatment of these measurements and the simulation results, and presents a pre- and post-processing graphical user interface (GUI) programmed in Matlab.

  2. Subpixel Snow Cover Mapping from MODIS Data by Nonparametric Regression Splines

    NASA Astrophysics Data System (ADS)

    Akyurek, Z.; Kuter, S.; Weber, G. W.

    2016-12-01

    Spatial extent of snow cover is often considered as one of the key parameters in climatological, hydrological and ecological modeling due to its energy storage, high reflectance in the visible and NIR regions of the electromagnetic spectrum, significant heat capacity and insulating properties. A significant challenge in snow mapping by remote sensing (RS) is the trade-off between the temporal and spatial resolution of satellite imageries. In order to tackle this issue, machine learning-based subpixel snow mapping methods, like Artificial Neural Networks (ANNs), from low or moderate resolution images have been proposed. Multivariate Adaptive Regression Splines (MARS) is a nonparametric regression tool that can build flexible models for high dimensional and complex nonlinear data. Although MARS is not often employed in RS, it has various successful implementations such as estimation of vertical total electron content in ionosphere, atmospheric correction and classification of satellite images. This study is the first attempt in RS to evaluate the applicability of MARS for subpixel snow cover mapping from MODIS data. Total 16 MODIS-Landsat ETM+ image pairs taken over European Alps between March 2000 and April 2003 were used in the study. MODIS top-of-atmospheric reflectance, NDSI, NDVI and land cover classes were used as predictor variables. Cloud-covered, cloud shadow, water and bad-quality pixels were excluded from further analysis by a spatial mask. MARS models were trained and validated by using reference fractional snow cover (FSC) maps generated from higher spatial resolution Landsat ETM+ binary snow cover maps. A multilayer feed-forward ANN with one hidden layer trained with backpropagation was also developed. The mutual comparison of obtained MARS and ANN models was accomplished on independent test areas. The MARS model performed better than the ANN model with an average RMSE of 0.1288 over the independent test areas; whereas the average RMSE of the ANN model was 0.1500. MARS estimates for low FSC values (i.e., FSC<0.3) were better than that of ANN. Both ANN and MARS tended to overestimate medium FSC values (i.e., 0.30.7).

  3. Improving the Representation of Snow Crystal Properties within a Single-Moment Microphysics Scheme

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, Scott R.

    2010-01-01

    The assumptions of a single-moment microphysics scheme (NASA Goddard) were evaluated using a variety of surface, aircraft and radar data sets. Fixed distribution intercepts and snow bulk densities fail to represent the vertical variability and diversity of crystal populations for this event. Temperature-based equations have merit, but they can be adversely affected by complex temperature profiles that are inverted or isothermal. Column-based approaches can mitigate complex profiles of temperature but are restricted by the ability of the model to represent cloud depth. Spheres are insufficient for use in CloudSat reflectivity comparisons due to Mie resonance, but reasonable for Rayleigh scattering applications. Microphysics schemes will benefit from a greater range of snow crystal characteristics to accommodate naturally occurring diversity.

  4. Monitoring Areal Snow Cover Using NASA Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Harshburger, Brian J.; Blandford, Troy; Moore, Brandon

    2011-01-01

    The objective of this project is to develop products and tools to assist in the hydrologic modeling process, including tools to help prepare inputs for hydrologic models and improved methods for the visualization of streamflow forecasts. In addition, this project will facilitate the use of NASA satellite imagery (primarily snow cover imagery) by other federal and state agencies with operational streamflow forecasting responsibilities. A GIS software toolkit for monitoring areal snow cover extent and producing streamflow forecasts is being developed. This toolkit will be packaged as multiple extensions for ArcGIS 9.x and an opensource GIS software package. The toolkit will provide users with a means for ingesting NASA EOS satellite imagery (snow cover analysis), preparing hydrologic model inputs, and visualizing streamflow forecasts. Primary products include a software tool for predicting the presence of snow under clouds in satellite images; a software tool for producing gridded temperature and precipitation forecasts; and a suite of tools for visualizing hydrologic model forecasting results. The toolkit will be an expert system designed for operational users that need to generate accurate streamflow forecasts in a timely manner. The Remote Sensing of Snow Cover Toolbar will ingest snow cover imagery from multiple sources, including the MODIS Operational Snowcover Data and convert them to gridded datasets that can be readily used. Statistical techniques will then be applied to the gridded snow cover data to predict the presence of snow under cloud cover. The toolbar has the ability to ingest both binary and fractional snow cover data. Binary mapping techniques use a set of thresholds to determine whether a pixel contains snow or no snow. Fractional mapping techniques provide information regarding the percentage of each pixel that is covered with snow. After the imagery has been ingested, physiographic data is attached to each cell in the snow cover image. This data can be obtained from a digital elevation model (DEM) for the area of interest.

  5. Modeling urban flood risk territories for Riga city

    NASA Astrophysics Data System (ADS)

    Piliksere, A.; Sennikovs, J.; Virbulis, J.; Bethers, U.; Bethers, P.; Valainis, A.

    2012-04-01

    Riga, the capital of Latvia, is located on River Daugava at the Gulf of Riga. The main flooding risks of Riga city are: (1) storm caused water setup in South part of Gulf of Riga (storm event), (2) water level increase caused by Daugava River discharge maximums (spring snow melting event) and (3) strong rainfall or rapid snow melting in densely populated urban areas. The first two flooding factors were discussed previously (Piliksere et al, 2011). The aims of the study were (1) the identification of the flood risk situations in densely populated areas, (2) the quantification of the flooding scenarios caused by rain and snow melting events of different return periods nowadays, in the near future (2021-2050), far future (2071-2100) taking into account the projections of climate change, (3) estimation of groundwater level for Riga city, (4) the building and calibration of the hydrological mathematical model based on SWMM (EPA, 2004) for the domain potentially vulnerable for rain and snow melt flooding events, (5) the calculation of rain and snow melting flood events with different return periods, (6) mapping the potentially flooded areas on a fine grid. The time series of short term precipitation events during warm time period of year (id est. rain events) were analyzed for 35 year long time period. Annual maxima of precipitation intensity for events with different duration (5 min; 15 min; 1h; 3h; 6h; 12h; 1 day; 2 days; 4 days; 10 days) were calculated. The time series of long term simultaneous precipitation data and observations of the reduction of thickness of snow cover were analyzed for 27 year long time period. Snow thawing periods were detected and maximum of snow melting intensity for events with different intensity (1day; 2 days; 4 days; 7 days; 10 days) were calculated. According to the occurrence probability six scenarios for each event for nowadays, near and far future with return period once in 5, 10, 20, 50, 100 and 200 years were constructed based on the Gumbell extreme value analysis. The hydrological modelling driven by the temperature and precipitation data series from regional climate models were used for evaluation of rain event maximums in the future periods. The usage of the climate model data in hydrological models causes systematic errors; therefore the bias correction method (Sennikovs, Bethers, 2009) was applied for determination of the future rainfall intensities. SWMM model was built for the urban area. Objects of hydraulic importance (manifold, penstock, ditch, pumping station, weir, well, catchment sub-basin etc.) were included in the model. There exist pure rain sewage system and mixed rain-water/household sewage system in Riga. Sewage system with wastewater load proportional to population density was taken account and calibrated. Model system was calibrated for a real rain event against the water flux time series into sewage treatment plant of Riga. High resolution (~1.5 points per square meter) digital terrain map was used as the base for finite element mesh for the geospatial mapping of results of hydraulic calculations. Main results of study are (1) detection of the hot spots of densely populated urban areas; (2) identification of the weak chains of the melioration and sewage systems; (3) mapping the elevation of ground water mainly caused by snow melting. A.Piliksere, A.Valainis, J.Seņņikovs, (2011), A flood risk assessment for Riga city taking account climate changes, EGU, Vienna, Austria. EPA, (2004), Storm water management model. User's manual version 5.0. US Environmental Protection Agency J.Sennikovs, U.Bethers, (2009), Statistical downscaling method of regional climate model results for hydrological modelling. 18th World IMACS/MODSIM Congress, Cairns, Australia.

  6. Radiative transfer model of snow for bare ice regions

    NASA Astrophysics Data System (ADS)

    Tanikawa, T.; Aoki, T.; Niwano, M.; Hosaka, M.; Shimada, R.; Hori, M.; Yamaguchi, S.

    2016-12-01

    Modeling a radiative transfer (RT) for coupled atmosphere-snow-bare ice systems is of fundamental importance for remote sensing applications to monitor snow and bare ice regions in the Greenland ice sheet and for accurate climate change predictions by regional and global climate models. Recently, the RT model for atmosphere-snow system was implemented for our regional and global climate models. However, the bare ice region where recently it has been expanded on the Greenland ice sheet due to the global warming, has not been implemented for these models, implying that this region leads miscalculations in these climate models. Thus, the RT model of snow for bare ice regions is needed for accurate climate change predictions. We developed the RT model for coupled atmosphere-snow-bare ice systems, and conducted a sensitivity analysis of the RT model to know the effect of snow, bare ice and geometry parameters on the spectral radiant quantities. The RT model considers snow and bare-ice inherent optical properties (IOPs), including snow grain size, air bubble size and its concentration and bare ice thickness. The conventional light scattering theory, Mie theory, was used for IOP calculations. Monte Carlo method was used for the multiple scattering. The sensitivity analyses showed that spectral albedo for the bare ice increased with increasing the concentration of the air bubble in the bare ice for visible wavelengths because the air bubble is scatterer with no absorption. For near infrared wavelengths, spectral albedo has no dependence on the air bubble due to the strong light absorption by ice. When increasing solar zenith angle, the spectral albedo were increased for all wavelengths. This is the similar trend with spectral snow albedo. Cloud cover influenced the bare ice spectral albedo by covering direct radiation into diffuse radiation. The purely diffuse radiation has an effective solar zenith angle near 50°. Converting direct into diffuse radiation reduces the effective solar zenith angle, resulting in reducing the spectral albedo. This is also the similar trend with spectral snow albedo. Further work should focus on the validation of the RT model using in situ measurement data through field and laboratory experiments.

  7. How much can a single webcam tell to the operation of a water system?

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Castelletti, Andrea; Fedorov, Roman; Fraternali, Piero

    2017-04-01

    Recent advances in environmental monitoring are making a wide range of hydro-meteorological data available with a great potential to enhance understanding, modelling and management of environmental processes. Despite this progress, continuous monitoring of highly spatiotemporal heterogeneous processes is not well established yet, especially in inaccessible sites. In this context, the unprecedented availability of user-generated data on the web might open new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this work, we focus on snow and contribute a novel crowdsourcing procedure for extracting snow-related information from public web images, either produced by users or generated by touristic webcams. A fully automated process fetches mountain images from multiple sources, identifies the peaks present therein, and estimates virtual snow indexes representing a proxy of the snow-covered area. The operational value of the obtained virtual snow indexes is then assessed for a real-world water-management problem, where we use these indexes for informing the daily control of a regulated lake supplying water for multiple purposes. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance. Our procedure has the potential for complementing traditional snow-related information, minimizing costs and efforts for obtaining the virtual snow indexes and, at the same time, maximizing the portability of the procedure to several locations where such public images are available.

  8. Evaluation of the satellite derived snow cover area - Runoff forecasting models for the inaccessible basins of western Himalayas

    NASA Technical Reports Server (NTRS)

    Dey, B.

    1985-01-01

    In this study, the existing seasonal snow cover area runoff forecasting models of the Indus, Kabul, Sutlej and Chenab basins were evaluated with the concurrent flow correlation model for the period 1975-79. In all the basins under study, correlation of concurrent flow model explained the variability in flow better than by the snow cover area runoff models. Actually, the concurrent flow correlation model explained more than 90 percent of the variability in the flow of these rivers. Compared to this model, the snow cover area runoff models explained less of the variability in flow. In the Himalayan river basins under study and at least for the period under observation, the concurrent flow correlation model provided a set of results with which to compare the estimates from the snow cover area runoff models.

  9. Evaluating the performance of coupled snow-soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site

    NASA Astrophysics Data System (ADS)

    Barrere, Mathieu; Domine, Florent; Decharme, Bertrand; Morin, Samuel; Vionnet, Vincent; Lafaysse, Matthieu

    2017-09-01

    Climate change projections still suffer from a limited representation of the permafrost-carbon feedback. Predicting the response of permafrost temperature to climate change requires accurate simulations of Arctic snow and soil properties. This study assesses the capacity of the coupled land surface and snow models ISBA-Crocus and ISBA-ES to simulate snow and soil properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-Interim reanalyses were used to drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and thermal insulance are examined to determine the critical variables involved in the soil and snow thermal regime. Simulated soil properties are compared to measurements of thermal conductivity, temperature and water content. The simulated snow density profiles are unrealistic, which is most likely caused by the lack of representation in snow models of the upward water vapor fluxes generated by the strong temperature gradients within the snowpack. The resulting vertical profiles of thermal conductivity are inverted compared to observations, with high simulated values at the bottom of the snowpack. Still, ISBA-Crocus manages to successfully simulate the soil temperature in winter. Results are satisfactory in summer, but the temperature of the top soil could be better reproduced by adequately representing surface organic layers, i.e., mosses and litter, and in particular their water retention capacity. Transition periods (soil freezing and thawing) are the least well reproduced because the high basal snow thermal conductivity induces an excessively rapid heat transfer between the soil and the snow in simulations. Hence, global climate models should carefully consider Arctic snow thermal properties, and especially the thermal conductivity of the basal snow layer, to perform accurate predictions of the permafrost evolution under climate change.

  10. Modeling Snow Regime in Cores of Small Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Boukaré, C. E.; Ricard, Y. R.; Parmentier, E.; Parman, S. W.

    2017-12-01

    Observations of present day magnetic field on small planetary bodies such as Ganymede or Mercury challenge our understanding of planetary dynamo. Several mechanisms have been proposed to explain the origin of magnetic fields. Among the proposed scenarios, one family of models relies on snow regime. Snow regime is supported by experimental studies showing that melting curves can first intersect adiabats in regions where the solidifying phase is not gravitationaly stable. First solids should thus remelt during their ascent or descent. The effect of the snow zone on magnetic field generation remains an open question. Could magnetic field be generated in the snow zone? If not, what is the depth extent of the snow zone? How remelting in the snow zone drive compositional convection in the liquid layer? Several authors have tackled this question with 1D-spherical models. Zhang and Schubert, 2012 model sinking of the dense phase as internally heated convection. However, to our knowledge, there is no study on the convection structure associated with sedimentation and phase change at planetary scale. We extend the numerical model developped in [Boukare et al., 2017] to model snow dynamics in 2D Cartesian geometry. We build a general approach for modeling double diffusive convection coupled with solid-liquid phase change and phase separation. We identify several aspects that may govern the convection structure of the solidifying system: viscosity contrast between the snow zone and the liquid layer, crystal size, rate of melting/solidification and partitioning of light components during phase change.

  11. Snow depth retrieval from L-band satellite measurements on Arctic and Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Maaß, N.; Kaleschke, L.; Wever, N.; Lehning, M.; Nicolaus, M.; Rossmann, H. L.

    2017-12-01

    The passive microwave mission SMOS provides daily coverage of the polar regions and measures at a low frequency of 1.4 GHz (L-band). SMOS observations have been used to operationally retrieve sea ice thickness up to 1 m and to estimate snow depth in the Arctic for thicker ice. Here, we present how SMOS-retrieved snow depths compare with airborne measurements from NASA's Operation IceBridge mission (OIB) and with AMSR-2 satellite retrievals at higher frequencies, and we show first applications to Antarctic sea ice. In previous studies, SMOS and OIB snow depths showed good agreement on spatial scales from 50 to 1000 km for some days and disagreement for other days. Here, we present a more comprehensive comparison of OIB and SMOS snow depths in the Arctic for 2011 to 2015. We find that the SMOS retrieval works best for cold conditions and depends on auxiliary information on ice surface temperature, here provided by MODIS thermal imagery satellite data. However, comparing SMOS and OIB snow depths is difficult because of the different spatial resolutions (SMOS: 40 km, OIB: 40 m). Spatial variability within the SMOS footprint can lead to different snow conditions as seen from SMOS and OIB. Ideally the comparison is made for uniform conditions: Low lead and open water fraction, low spatial and temporal variability of ice surface temperature, no mixture of multi- and first-year ice. Under these conditions and cold temperatures (surface temperatures below -25°C), correlation coefficients between SMOS and OIB snow depths increase from 0.3 to 0.6. A finding from the comparison with AMSR-2 snow depths is that the SMOS-based maps depend less on the age of the sea ice than the maps derived from higher frequencies. Additionally, we show first results of SMOS snow depths for Antarctic sea ice. SMOS observations are compared to measurements of autonomous snow buoys drifting in the Weddell Sea since 2014. For a better comparability of these point measurements with SMOS data, we use model simulations along these trajectories made with a sea ice version of SNOWPACK, a 1D multi-layer thermodynamic snow model driven by reanalysis data. These simulations are especially helpful for indicating the occurrence of snow-ice-transformation, which cannot be identified in the buoy data and contributes to the measured snow height.

  12. On the formation of glide-snow avalanches

    NASA Astrophysics Data System (ADS)

    Mitterer, C.; Schweizer, J.

    2012-12-01

    On steep slopes the full snowpack can glide on the ground; tension cracks may open and eventually the slope may fail as a glide-snow avalanche. Due to their large mass they have considerable destructive potential. Glide-snow avalanches typically occur when the snow-soil interface is moist or wet so that basal friction is reduced. The occurrence, however, of glide cracks and their evolution to glide avalanches are still poorly understood. Consequently, glides are difficult to predict as (i) not all cracks develop into an avalanche, and (ii) for those that do, the time between crack opening and avalanche event might vary from hours to weeks - or on the other hand be so short that there is no warning at all by crack opening. To improve our understanding we monitored several slopes and related glide snow activity to meteorological data. In addition, we explored conditions that favor the formation of a thin wet basal snowpack layer with a physical-based model representing water and heat flux at the snow-soil interface. The statistical analyses revealed that glide-snow avalanche activity might be associated to an early season and a spring condition. While early season conditions tend to have warm and dry autumns followed by heavy snowfalls, spring conditions showed good agreement with increasing air temperature. The model indicates that energy (summer heat) stored in the ground might be sufficient to melt snow at the bottom of the snowpack. Due to capillary forces, water will rise for a few centimeters into the snowpack and thereby reduce friction at the interface. Alternatively, we demonstrate that also in the absence of melt water production at the bottom of the snowpack water may accumulate in the bottom layer due to an upward flux into the snowpack if a dry snowpack overlies a wet soil. The particular conditions that are obviously required at the snow-soil interface explain the strong winter-to-winter variations in snow gliding.

  13. Monitoring of snowpack dynamics in mountainous terrain by cosmic-ray neutron sensing compared to Terrestrial Laser Scanning observations

    NASA Astrophysics Data System (ADS)

    Schattan, P.; Baroni, G.; Schrön, M.; Köhli, M.; Oswald, S. E.; Huttenlau, M.; Achleitner, S.

    2017-12-01

    Monitoring a mountain snowpack in a representative domain of several hectares is challenging due to its high heterogeneity in time and space. Recent studies have suggested cosmic-ray neutron sensing (CRNS) as a promising method for monitoring snow representatively at these scales. Little is known however about the depth of sensitivity, the effects of fractional snow coverage in complex terrain or the influence of snow density profiles. Therefore, a field campaign in the Austrian Alps was conducted from March 2014 to June 2016. The main scope was to evaluate the characteristics of CRNS for monitoring a snowpack in a relatively wet and mountainous environment. During the experiment, the study site experienced a peak snow accumulation in terms of snow water equivalent (SWE) of up to 600 mm in the 2014/2015 winter season. Snow depth (SD) and SWE measurements from an automatic weather station were compared to CRNS neutron counts. Several spatially distributed Terrestrial Laser Scanning (TLS)-based SD and SWE maps were additionally used to cope with the spatial heterogeneity of the site. Furthermore, an URANOS neutron transport model was set up to provide additional insights into the response of CRNS to the presence of a complex snowpack. Therein, spatially distributed SWE scenarios and different snow density assumptions are used for hypothesis testing. The field measurements revealed an unexpectedly high potential of CRNS for monitoring heterogeneous snowpack dynamics beyond shallow snowpacks. A clear, nonlinear relation was found for both SD and SWE with neutron counts. In contrast to previous studies suggesting signal saturation at around 100 mm of SWE, complete signal saturation was observed only for SWE values beyond 500 to 600 mm. In addition, first modelling results highlight the effects of snow density profiles, small-scale changes in SWE, and the complex patterns of fractional snow cover on neutron counts. Understanding the interactions between neutrons and snow cover in complex terrain potentially improves the transferability of the results to other locations.

  14. Improving Understanding of Glacier Melt Contribution to High Asian River Discharge through Collaboration and Capacity Building with High Asian CHARIS Partner Institutions

    NASA Astrophysics Data System (ADS)

    Armstrong, Richard; Brodzik, Mary Jo; Armstrong, Betsy; Barrett, Andrew; Fetterer, Florence; Hill, Alice; Jodha Khalsa, Siri; Racoviteanu, Adina; Raup, Bruce; Rittger, Karl; Williams, Mark; Wilson, Alana; Ye, Qinghua

    2017-04-01

    The Contribution to High Asia Runoff from Ice & Snow (CHARIS) project uses remote sensing data combined with modeling from 2000 to the present to improve proportional estimates of melt from glaciers and seasonal snow surfaces. Based at the National Snow and Ice Data Center (NSIDC), University of Colorado, Boulder, USA, the CHARIS project objectives are twofold: 1) capacity-building efforts with CHARIS partners from eight High Asian countries to better forecast future availability and vulnerability of water resources in the region, and 2) improving our ability to systematically assess the role of glaciers and seasonal snow in the freshwater resources of High Asia. Capacity-building efforts include working with CHARIS partners from Bhutan, Nepal, India, Pakistan, Afghanistan, Kazakhstan, Kyrgyzstan and Tajikistan. Our capacity-building activities include training, data sharing, supporting fieldwork, graduate student education and infrastructure development. Because of the scarcity of in situ data in this High Asian region, we are using the wealth of available remote sensing data to characterize digital elevation, daily maps of fractional snow-cover, annual maps of glacier and permanent snow cover area and downscaled reanalysis temperature data in snow melt models to estimate the relative proportions of river runoff from glacierized and seasonally snow-covered surfaces. Current collaboration with Qinghua Ye, visiting scientist at NSIDC from the Institute of Tibetan Plateau Research, CAS, focuses on remote sensing methods to detect changes in the mountain cryosphere. Collaboration with our Asian partners supports the systematic analysis of the annual cycle of seasonal snow and glacier ice melt across the High Mountain Asia region. With our Asian partners, we have derived reciprocal benefits, learning from their specialized local knowledge and obtaining access to their in situ data. We expect that the improved understanding of runoff from snow and glacier surfaces will inform the development of adaptation and mitigation measures. The CHARIS Project is funded by USAID.

  15. NHM-SMAP: spatially and temporally high-resolution nonhydrostatic atmospheric model coupled with detailed snow process model for Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Niwano, Masashi; Aoki, Teruo; Hashimoto, Akihiro; Matoba, Sumito; Yamaguchi, Satoru; Tanikawa, Tomonori; Fujita, Koji; Tsushima, Akane; Iizuka, Yoshinori; Shimada, Rigen; Hori, Masahiro

    2018-02-01

    To improve surface mass balance (SMB) estimates for the Greenland Ice Sheet (GrIS), we developed a 5 km resolution regional climate model combining the Japan Meteorological Agency Non-Hydrostatic atmospheric Model and the Snow Metamorphism and Albedo Process model (NHM-SMAP) with an output interval of 1 h, forced by the Japanese 55-year reanalysis (JRA-55). We used in situ data to evaluate NHM-SMAP in the GrIS during the 2011-2014 mass balance years. We investigated two options for the lower boundary conditions of the atmosphere: an offline configuration using snow, firn, and ice albedo, surface temperature data from JRA-55, and an online configuration using values from SMAP. The online configuration improved model performance in simulating 2 m air temperature, suggesting that the surface analysis provided by JRA-55 is inadequate for the GrIS and that SMAP results can better simulate physical conditions of snow/firn/ice. It also reproduced the measured features of the GrIS climate, diurnal variations, and even a strong mesoscale wind event. In particular, it successfully reproduced the temporal evolution of the GrIS surface melt area extent as well as the record melt event around 12 July 2012, at which time the simulated melt area extent reached 92.4 %. Sensitivity tests showed that the choice of calculation schemes for vertical water movement in snow and firn has an effect as great as 200 Gt year-1 in the GrIS-wide accumulated SMB estimates; a scheme based on the Richards equation provided the best performance.

  16. Modelling the snowmelt and the snow water equivalent by creating a simplified energy balance conceptual snow model

    NASA Astrophysics Data System (ADS)

    Riboust, Philippe; Thirel, Guillaume; Le Moine, Nicolas; Ribstein, Pierre

    2016-04-01

    A better knowledge of the accumulated snow on the watersheds will help flood forecasting centres and hydro-power companies to predict the amount of water released during spring snowmelt. Since precipitations gauges are sparse at high elevations and integrative measurements of the snow accumulated on watershed surface are hard to obtain, using snow models is an adequate way to estimate snow water equivalent (SWE) on watersheds. In addition to short term prediction, simulating accurately SWE with snow models should have many advantages. Validating the snow module on both SWE and snowmelt should give a more reliable model for climate change studies or regionalization for ungauged watersheds. The aim of this study is to create a new snow module, which has a structure that allows the use of measured snow data for calibration or assimilation. Energy balance modelling seems to be the logical choice for designing a model in which internal variables, such as SWE, could be compared to observations. Physical models are complex, needing high computational resources and many different types of inputs that are not widely measured at meteorological stations. At the opposite, simple conceptual degree-day models offer to simulate snowmelt using only temperature and precipitation as inputs with fast computing. Its major drawback is to be empirical, i.e. not taking into account all of the processes of the energy balance, which makes this kind of model more difficult to use when willing to compare SWE to observed measurements. In order to reach our objectives, we created a snow model structured by a simplified energy balance where each of the processes is empirically parameterized in order to be calculated using only temperature, precipitation and cloud cover variables. This model's structure is similar to the one created by M.T. Walter (2005), where parameterizations from the literature were used to compute all of the processes of the energy balance. The conductive fluxes into the snowpack were modelled by using analytical solutions to the heat equation taking phase change into account. This approach has the advantage to use few forcing variables and to take into account all the processes of the energy balance. Indeed, the simulations should be quick enough to allow, for example, ensemble prediction or simulation of numerous basins, more easily than physical snow models. The snow module formulation has been completed and is in its validation phase using data from the experimental station of Col de Porte, Alpes, France. Data from the US SNOTEL product will be used in order to test the model structure on a larger scale and to test diverse calibration procedures, since the aim is to use it on a basin scale for discharge modelling purposes.

  17. Impact of absorbing aerosol deposition on snow albedo reduction over the southern Tibetan plateau based on satellite observations

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Liang; Liou, K. N.; He, Cenlin; Liang, Hsin-Chien; Wang, Tai-Chi; Li, Qinbin; Liu, Zhenxin; Yue, Qing

    2017-08-01

    We investigate the snow albedo variation in spring over the southern Tibetan Plateau induced by the deposition of light-absorbing aerosols using remote sensing data from moderate resolution imaging spectroradiometer (MODIS) aboard Terra satellite during 2001-2012. We have selected pixels with 100 % snow cover for the entire period in March and April to avoid albedo contamination by other types of land surfaces. A model simulation using GEOS-Chem shows that aerosol optical depth (AOD) is a good indicator for black carbon and dust deposition on snow over the southern Tibetan Plateau. The monthly means of satellite-retrieved land surface temperature (LST) and AOD over 100 % snow-covered pixels during the 12 years are used in multiple linear regression analysis to derive the empirical relationship between snow albedo and these variables. Along with the LST effect, AOD is shown to be an important factor contributing to snow albedo reduction. We illustrate through statistical analysis that a 1-K increase in LST and a 0.1 increase in AOD indicate decreases in snow albedo by 0.75 and 2.1 % in the southern Tibetan Plateau, corresponding to local shortwave radiative forcing of 1.5 and 4.2 W m-2, respectively.

  18. An integrated uncertainty analysis and data assimilation approach for improved streamflow predictions

    NASA Astrophysics Data System (ADS)

    Hogue, T. S.; He, M.; Franz, K. J.; Margulis, S. A.; Vrugt, J. A.

    2010-12-01

    The current study presents an integrated uncertainty analysis and data assimilation approach to improve streamflow predictions while simultaneously providing meaningful estimates of the associated uncertainty. Study models include the National Weather Service (NWS) operational snow model (SNOW17) and rainfall-runoff model (SAC-SMA). The proposed approach uses the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) to simultaneously estimate uncertainties in model parameters, forcing, and observations. An ensemble Kalman filter (EnKF) is configured with the DREAM-identified uncertainty structure and applied to assimilating snow water equivalent data into the SNOW17 model for improved snowmelt simulations. Snowmelt estimates then serves as an input to the SAC-SMA model to provide streamflow predictions at the basin outlet. The robustness and usefulness of the approach is evaluated for a snow-dominated watershed in the northern Sierra Mountains. This presentation describes the implementation of DREAM and EnKF into the coupled SNOW17 and SAC-SMA models and summarizes study results and findings.

  19. Generation of liquid water on Mars through the melting of a dusty snowpack

    USGS Publications Warehouse

    Clow, G.D.

    1987-01-01

    The possibility that snowmelt could have provided liquid water for valley network formation early in the history of Mars is investigated using an optical-thermal model developed for dusty snowpacks at temperate latitudes. The heating of the postulated snow is assumed to be driven primarily by the absorption of solar radiation during clear sky conditions. Radiative heating rates are predicted as a function of depth and shown to be sensitive to the dust concentration and the size of the ice grains while the thermal conductivity is controlled by temperature, atmospheric pressure, and bulk density. Rates of metamorphism indicate that fresh fine-grained snow on Mars would evolve into moderately coarse snow during a single summer season. Results from global climate models are used to constrain the mean-annual surface temperatures for snow and the atmospheric exchange terms in the surface energy balance. Mean-annual temperatures within Martian snowpacks fail to reach the melting point for all atmospheric pressures below 1000 mbar despite a predicted temperature enhancement beneath the surface of the snowpacks. When seasonal and diurnal variations in the incident solar flux are included in the model, melting occurs at midday during the summer for a wide range of snow types and atmospheric pressures if the dust levels in the snow exceed 100 ppmw (parts per million by weight). The optimum dust concentration appears to be about 1000 ppmw. With this dust load, melting can occur in the upper few centimeters of a dense coarse-grained snow at atmospheric pressures as low as 7 mbar. Snowpack thickness and the thermal conductivity of the underlying substrate determine whether the generated snow-melt can penetrate to the snowpack base, survive basal ice formation, and subsequently become available for runoff. Under favorable conditions, liquid water becomes available for runoff at atmospheric pressures as low as 30 to 100 mbar if the substrate is composed of regolith, as is expected in the ancient cratered terrain of Mars. ?? 1987.

  20. Subpixel Snow-covered Area Including Differentiated Grain Size from AVIRIS Data Over the Sierra Nevada Mountain Range

    NASA Astrophysics Data System (ADS)

    Hill, R.; Calvin, W. M.; Harpold, A. A.

    2016-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Previous retrieval of subpixel snow-covered area in alpine regions used multiple snow endmembers due to the sensitivity of snow spectral reflectance to grain size. We will present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction and approximate grain size or melt state. The root mean squared error will provide a spectrum-wide assessment of the mixture model's goodness-of-fit. Analysis will compare snow-covered area and snow-cover depletion in the 2016 year, and annual variation from the 2015 year. Field data were also acquired on three days concurrent with the 2016 flights in the Sagehen Experimental Forest and will support ground validation of the airborne data set.

  1. Refinements to SSiB with an Emphasis on Snow-Physics: Evaluation and Validation Using GSWP and Valdai Data

    NASA Technical Reports Server (NTRS)

    Mocko, David M.; Sud, Y. C.

    2000-01-01

    Refinements to the snow-physics scheme of SSiB (Simplified Simple Biosphere Model) are described and evaluated. The upgrades include a partial redesign of the conceptual architecture to better simulate the diurnal temperature of the snow surface. For a deep snowpack, there are two separate prognostic temperature snow layers - the top layer responds to diurnal fluctuations in the surface forcing, while the deep layer exhibits a slowly varying response. In addition, the use of a very deep soil temperature and a treatment of snow aging with its influence on snow density is parameterized and evaluated. The upgraded snow scheme produces better timing of snow melt in GSWP-style simulations using ISLSCP Initiative I data for 1987-1988 in the Russian Wheat Belt region. To simulate more realistic runoff in regions with high orographic variability, additional improvements are made to SSiB's soil hydrology. These improvements include an orography-based surface runoff scheme as well as interaction with a water table below SSiB's three soil layers. The addition of these parameterizations further help to simulate more realistic runoff and accompanying prognostic soil moisture fields in the GSWP-style simulations. In intercomparisons of the performance of the new snow-physics SSiB with its earlier versions using an 18-year single-site dataset from Valdai Russia, the version of SSiB described in this paper again produces the earliest onset of snow melt. Soil moisture and deep soil temperatures also compare favorably with observations.

  2. A simple algorithm for identifying periods of snow accumulation on a radiometer

    NASA Astrophysics Data System (ADS)

    Lapo, Karl E.; Hinkelman, Laura M.; Landry, Christopher C.; Massmann, Adam K.; Lundquist, Jessica D.

    2015-09-01

    Downwelling solar, Qsi, and longwave, Qli, irradiances at the earth's surface are the primary energy inputs for many hydrologic processes, and uncertainties in measurements of these two terms confound evaluations of estimated irradiances and negatively impact hydrologic modeling. Observations of Qsi and Qli in cold environments are subject to conditions that create additional uncertainties not encountered in other climates, specifically the accumulation of snow on uplooking radiometers. To address this issue, we present an automated method for estimating these periods of snow accumulation. Our method is based on forest interception of snow and uses common meteorological observations. In this algorithm, snow accumulation must exceed a threshold to obscure the sensor and is only removed through scouring by wind or melting. The algorithm is evaluated at two sites representing different mountain climates: (1) Snoqualmie Pass, Washington (maritime) and (2) the Senator Beck Basin Study Area, Colorado (continental). The algorithm agrees well with time-lapse camera observations at the Washington site and with multiple measurements at the Colorado site, with 70-80% of observed snow accumulation events correctly identified. We suggest using the method for quality controlling irradiance observations in snow-dominated climates where regular, daily maintenance is not possible.

  3. Estimating terrestrial snow depth with the Topex-Poseidon altimeter and radiometer

    USGS Publications Warehouse

    Papa, F.; Legresy, B.; Mognard, N.M.; Josberger, E.G.; Remy, F.

    2002-01-01

    Active and passive microwave measurements obtained by the dual-frequency Topex-Poseidon radar altimeter from the Northern Great Plains of the United States are used to develop a snow pack radar backscatter model. The model results are compared with daily time series of surface snow observations made by the U.S. National Weather Service. The model results show that Ku-band provides more accurate snow depth determinations than does C-band. Comparing the snow depth determinations derived from the Topex-Poseidon nadir-looking passive microwave radiometers with the oblique-looking Satellite Sensor Microwave Imager (SSM/I) passive microwave observations and surface observations shows that both instruments accurately portray the temporal characteristics of the snow depth time series. While both retrievals consistently underestimate the actual snow depths, the Topex-Poseidon results are more accurate.

  4. Mapping snow depth from stereo satellite imagery

    NASA Astrophysics Data System (ADS)

    Gascoin, S.; Marti, R.; Berthier, E.; Houet, T.; de Pinel, M.; Laffly, D.

    2016-12-01

    To date, there is no definitive approach to map snow depth in mountainous areas from spaceborne sensors. Here, we examine the potential of very-high-resolution (VHR) optical stereo satellites to this purpose. Two triplets of 0.70 m resolution images were acquired by the Pléiades satellite over an open alpine catchment (14.5 km²) under snow-free and snow-covered conditions. The open-source software Ame's Stereo Pipeline (ASP) was used to match the stereo pairs without ground control points to generate raw photogrammetric clouds and to convert them into high-resolution digital elevation models (DEMs) at 1, 2, and 4 m resolutions. The DEM differences (dDEMs) were computed after 3-D coregistration, including a correction of a -0.48 m vertical bias. The bias-corrected dDEM maps were compared to 451 snow-probe measurements. The results show a decimetric accuracy and precision in the Pléiades-derived snow depths. The median of the residuals is -0.16 m, with a standard deviation (SD) of 0.58 m at a pixel size of 2 m. We compared the 2 m Pléiades dDEM to a 2 m dDEM that was based on a winged unmanned aircraft vehicle (UAV) photogrammetric survey that was performed on the same winter date over a portion of the catchment (3.1 km²). The UAV-derived snow depth map exhibits the same patterns as the Pléiades-derived snow map, with a median of -0.11 m and a SD of 0.62 m when compared to the snow-probe measurements. The Pléiades images benefit from a very broad radiometric range (12 bits), allowing a high correlation success rate over the snow-covered areas. This study demonstrates the value of VHR stereo satellite imagery to map snow depth in remote mountainous areas even when no field data are available. Based on this method we have initiated a multi-year survey of the peak snow depth in the Bassiès catchment.

  5. The Airborne Snow Observatory: fusion of imaging spectrometer and scanning lidar for studies of mountain snow cover (Invited)

    NASA Astrophysics Data System (ADS)

    Painter, T. H.; Andreadis, K.; Berisford, D. F.; Goodale, C. E.; Hart, A. F.; Heneghan, C.; Deems, J. S.; Gehrke, F.; Marks, D. G.; Mattmann, C. A.; McGurk, B. J.; Ramirez, P.; Seidel, F. C.; Skiles, M.; Trangsrud, A.; Winstral, A. H.; Kirchner, P.; Zimdars, P. A.; Yaghoobi, R.; Boustani, M.; Khudikyan, S.; Richardson, M.; Atwater, R.; Horn, J.; Goods, D.; Verma, R.; Boardman, J. W.

    2013-12-01

    Snow cover and its melt dominate regional climate and water resources in many of the world's mountainous regions. However, we face significant water resource challenges due to the intersection of increasing demand from population growth and changes in runoff total and timing due to climate change. Moreover, increasing temperatures in desert systems will increase dust loading to mountain snow cover, thus reducing the snow cover albedo and accelerating snowmelt runoff. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still poorly quantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. Recognizing this need, JPL developed the Airborne Snow Observatory (ASO), an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. Critical in the design of the ASO system is the availability of snow water equivalent and albedo products within 24 hours of acquisition for timely constraint of snowmelt runoff forecast models. In spring 2013, ASO was deployed for its first year of a multi-year Demonstration Mission of weekly acquisitions in the Tuolumne River Basin (Sierra Nevada) and monthly acquisitions in the Uncompahgre River Basin (Colorado). The ASO data were used to constrain spatially distributed models of varying complexities and integrated into the operations of the O'Shaughnessy Dam on the Hetch Hetchy reservoir on the Tuolumne River. Here we present the first results from the ASO Demonstration Mission 1 along with modeling results with and without the constraint by the ASO's high spatial resolution and spatially complete acquisitions. ASO ultimately provides a potential foundation for coming spaceborne missions.

  6. Performances of the snow accumulation melting model SAMM: results in the Northern Apennines test area

    NASA Astrophysics Data System (ADS)

    Lagomarsino, Daniela; Martelloni, Gianluca; Segoni, Samuele; Catani, Filippo; Fanti, Riccardo

    2013-04-01

    In this work we propose a snow accumulation-melting model (SAMM) to forecast the snowpack height and we compare the results with a simple temperature index model and an improved version of the latter.For this purpose we used rainfall, temperature and snowpack thickness 5-years data series from 7 weather stations in the Northern Apennines (Emilia Romagna Region, Italy). SAMM is based on two modules modelling the snow accumulation and the snowmelt processes. Each module is composed by two equations: a mass conservation equation is solved to model snowpack thickness and an empirical equation is used for the snow density. The processes linked to the accumulation/depletion of the snowpack (e.g. compression of the snowpack due to newly fallen snow and effects of rainfall) are modelled identifying limiting and inhibitory factors according to a kinetic approach. The model depends on 13 empirical parameters, whose optimal values were defined with an optimization algorithm (simplex flexible) using calibration measures of snowpack thickness. From an operational point of view, SAMM uses as input data only temperature and rainfall measurements, bringing the additional advantage of a relatively easy implementation. In order to verify the improvement of SAMM with respect to a temperature-index model, the latter was applied considering, for the amount of snow melt, the following equation: M = fm(T-T0), where M is hourly melt, fm is the melting factor and T0 is a threshold temperature. In this case the calculation of the depth of the snowpack requires the use of 3 parameters: fm, T0 and ?0 (the mean density of the snowpack). We also performed a simulation by replacing the SAMM melting module with the above equation and leaving unchanged the accumulation module: in this way we obtained a model with 9 parameters. The simulations results suggest that any further extension of the simple temperature index model brings some improvements with a consequent decrease of the mean error between model and experimental data of the snowpack thickness.

  7. Assimilation of MODIS Snow Cover Through the Data Assimilation Research Testbed and the Community Land Model Version 4

    NASA Technical Reports Server (NTRS)

    Zhang, Yong-Fei; Hoar, Tim J.; Yang, Zong-Liang; Anderson, Jeffrey L.; Toure, Ally M.; Rodell, Matthew

    2014-01-01

    To improve snowpack estimates in Community Land Model version 4 (CLM4), the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) was assimilated into the Community Land Model version 4 (CLM4) via the Data Assimilation Research Testbed (DART). The interface between CLM4 and DART is a flexible, extensible approach to land surface data assimilation. This data assimilation system has a large ensemble (80-member) atmospheric forcing that facilitates ensemble-based land data assimilation. We use 40 randomly chosen forcing members to drive 40 CLM members as a compromise between computational cost and the data assimilation performance. The localization distance, a parameter in DART, was tuned to optimize the data assimilation performance at the global scale. Snow water equivalent (SWE) and snow depth are adjusted via the ensemble adjustment Kalman filter, particularly in regions with large SCF variability. The root-mean-square error of the forecast SCF against MODIS SCF is largely reduced. In DJF (December-January-February), the discrepancy between MODIS and CLM4 is broadly ameliorated in the lower-middle latitudes (2345N). Only minimal modifications are made in the higher-middle (4566N) and high latitudes, part of which is due to the agreement between model and observation when snow cover is nearly 100. In some regions it also reveals that CLM4-modeled snow cover lacks heterogeneous features compared to MODIS. In MAM (March-April-May), adjustments to snowmove poleward mainly due to the northward movement of the snowline (i.e., where largest SCF uncertainty is and SCF assimilation has the greatest impact). The effectiveness of data assimilation also varies with vegetation types, with mixed performance over forest regions and consistently good performance over grass, which can partly be explained by the linearity of the relationship between SCF and SWE in the model ensembles. The updated snow depth was compared to the Canadian Meteorological Center (CMC) data. Differences between CMC and CLM4 are generally reduced in densely monitored regions.

  8. View Angle Effects on MODIS Snow Mapping in Forests

    NASA Technical Reports Server (NTRS)

    Xin, Qinchuan; Woodcock, Curtis E.; Liu, Jicheng; Tan, Bin; Melloh, Rae A.; Davis, Robert E.

    2012-01-01

    Binary snow maps and fractional snow cover data are provided routinely from MODIS (Moderate Resolution Imaging Spectroradiometer). This paper investigates how the wide observation angles of MODIS influence the current snow mapping algorithm in forested areas. Theoretical modeling results indicate that large view zenith angles (VZA) can lead to underestimation of fractional snow cover (FSC) by reducing the amount of the ground surface that is viewable through forest canopies, and by increasing uncertainties during the gridding of MODIS data. At the end of the MODIS scan line, the total modeled error can be as much as 50% for FSC. Empirical analysis of MODIS/Terra snow products in four forest sites shows high fluctuation in FSC estimates on consecutive days. In addition, the normalized difference snow index (NDSI) values, which are the primary input to the MODIS snow mapping algorithms, decrease as VZA increases at the site level. At the pixel level, NDSI values have higher variances, and are correlated with the normalized difference vegetation index (NDVI) in snow covered forests. These findings are consistent with our modeled results, and imply that consideration of view angle effects could improve MODIS snow monitoring in forested areas.

  9. Incorporation of the Mass Concentration and the New Snow Albedo Schemes into the Global Forecasting Model, GEOS-5 and the Impact of the New Schemes over Himalayan Glaciers

    NASA Technical Reports Server (NTRS)

    Yasunari, Teppei

    2012-01-01

    Recently the issue on glacier retreats comes up and many factors should be relevant to the issue. The absorbing aerosols such as dust and black carbon (BC) are considered to be one of the factors. After they deposited onto the snow surface, it will reduce snow albedo (called snow darkening effect) and probably contribute to further melting of glacier. The Goddard Earth Observing System version 5 (GEOS-5) has developed at NASA/GSFC. However, the original snowpack model used in the land surface model in the GEOS-5 did not consider the snow darkening effect. Here we developed the new snow albedo scheme which can consider the snow darkening effect. In addition, another scheme on calculating mass concentrations on the absorbing aerosols in snowpack was also developed, in which the direct aerosol depositions from the chemical transport model in the GEOS-5 were used. The scheme has been validated with the observed data obtained at backyard of the Institute of Low Temperature Science, Hokkaido University, by Dr. Teruo Aoki (Meteorological Research Institute) et aL including me. The observed data was obtained when I was Ph.D. candidate. The original GEOS-5during 2007-2009 over the Himalayas and Tibetan Plateau region showed more reductions of snow than that of the new GEOS-5 because the original one used lower albedo settings. On snow cover fraction, the new GEOS-5 simulated more realistic snow-covered area comparing to the MODIS snow cover fraction. The reductions on snow albedo, snow cover fraction, and snow water equivalent were seen with statistically significance if we consider the snow darkening effect comparing to the results without the snow darkening effect. In the real world, debris cover, inside refreezing process, surface flow of glacier, etc. affect glacier mass balance and the simulated results immediately do not affect whole glacier retreating. However, our results indicate that some surface melting over non debris covered parts of the glacier would be explained by the snow darkening effect. Further discussion and observations are necessary to assess the glacier issue.

  10. Coupling the WRF model with a temperature index model based on remote sensing for snowmelt simulations in a river basin in the Altay Mountains, northwest China

    NASA Astrophysics Data System (ADS)

    Wu, X.; Shen, Y.; Wang, N.; Pan, X.; Zhang, W.; He, J.; Wang, G.

    2017-12-01

    Snowmelt water is an important freshwater resource in the Altay Mountains in northwest China, and it is also crucial for local ecological system, economic and social sustainable development; however, warming climate and rapid spring snowmelt can cause floods that endanger both eco-environment and public and personal property and safety. This study simulates snowmelt in the Kayiertesi River catchment using a temperature-index model based on remote sensing coupled with high-resolution meteorological data obtained from NCEP reanalysis fields that were downscaled using Weather Research Forecasting model, then bias-corrected using a statistical downscaled model. Validation of the forcing data revealed that the high-resolution meteorological fields derived from downscaled NCEP reanalysis were reliable for driving the snowmelt model. Parameters of temperature-index model based on remote sensing were calibrated for spring 2014, and model performance was validated using MODIS snow cover and snow observations from spring 2012. The results show that the temperature-index model based on remote sensing performed well, with a simulation mean relative error of 6.7% and a Nash-Sutchliffe efficiency of 0.98 in spring 2012 in the river of Altay Mountains. Based on the reliable distributed snow water equivalent simulation, daily snowmelt runoff was calculated for spring 2012 in the basin. In the study catchment, spring snowmelt runoff accounts for 72% of spring runoff and 21% of annual runoff. Snowmelt is the main source of runoff for the catchment and should be managed and utilized effectively. The results provide a basis for snowmelt runoff predictions, so as to prevent snowmelt-induced floods, and also provide a generalizable approach that can be applied to other remote locations where high-density, long-term observational data is lacking.

  11. Influence of Projected Changes in North American Snow Cover Extent on Mid-Latitude Cyclone Progression

    NASA Astrophysics Data System (ADS)

    Clare, R. M.; Desai, A. R.; Martin, J. E.; Notaro, M.; Vavrus, S. J.

    2017-12-01

    It has long been hypothesized that snow cover and snow extent have an influence on the development or steering of synoptic mid-latitude cyclones (MLCs). Rydzik and Desai (2014) showed a robust statistical relationship among snow cover extent, generation of low-level baroclinicity, and MLC tracks. Though snow cover extent is highly variable year to year, the changing global climate is expected to continue an already observed pattern of poleward retreat of mean snow cover in North America, particularly in late winter and spring. For this experiment, large ensemble simulations with the Weather Research and Forecasting model (WRF) were forced with output from the Community Earth System Model (CESM) to test the effect contributed solely by snow cover and the projected effects of a changing climate. Our experiment induces an adjustment to the extent of snow cover in North America according to CESM RCP 8.5 projections for each decade from 2020 to 2100 before and during several cases of MLCs moving east across the Great Plains near the snow line. To evaluate mechanisms of pre-existing and current snow influence on MLCs, model cases are started with snow line adjustment occurring from three days prior up to the storm's arrival over the Great Plains. We demonstrate that snow cover changes do alter MLC intensity and path via modification of low-level potential vorticity.

  12. General-circulation-model simulations of future snowpack in the western United States

    USGS Publications Warehouse

    McCabe, G.J.; Wolock, D.M.

    1999-01-01

    April 1 snowpack accumulations measured at 311 snow courses in the western United States (U.S.) are grouped using a correlation-based cluster analysis. A conceptual snow accumulation and melt model and monthly temperature and precipitation for each cluster are used to estimate cluster-average April 1 snowpack. The conceptual snow model is subsequently used to estimate future snowpack by using changes in monthly temperature and precipitation simulated by the Canadian Centre for Climate Modeling and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HADLEY) general circulation models (GCMs). Results for the CCC model indicate that although winter precipitation is estimated to increase in the future, increases in temperatures will result in large decreases in April 1 snowpack for the entire western US. Results for the HADLEY model also indicate large decreases in April 1 snowpack for most of the western US, but the decreases are not as severe as those estimated using the CCC simulations. Although snowpack conditions are estimated to decrease for most areas of the western US, both GCMs estimate a general increase in winter precipitation toward the latter half of the next century. Thus, water quantity may be increased in the western US; however, the timing of runoff will be altered because precipitation will more frequently occur as rain rather than as snow.

  13. A new approach to assess the skier additional stress within a multi-layered snowpack

    NASA Astrophysics Data System (ADS)

    Monti, Fabiano; Gaume, Johan; van Herwijnen, Alec; Schweizer, Jürg

    2014-05-01

    The physical and mechanical processes of dry-snow slab avalanche formation can be distinguished into two subsequent phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation, based on a simple strength-of-material approach (strength vs. stress). Even if it is known that both weak layer and slab properties play a major role in avalanche release, apart from weak layer characteristics, often only the slab thickness and its average density were considered. For calculating the amount of additional stress (e.g. due to a skier) at the depth of the weak layer, the snow cover was often assumed to be a semi-infinite elastic half space in order to apply Boussinesq's theory. However, finite element (FE) calculations have shown that slab layering strongly influences the stress at depth. To avoid FE calculations, we suggest a new approach based on a simplification of multi-layered elasticity theory. It allows computing the additional stress due to a skier at the depth of the weak layer, taking into account the layering of the snow slab and the substratum. The proposed approach was first tested on simplified snow profiles and compared reasonably well with FE calculations. We then implemented the method to refine the classical skier stability index. Using manually observed snow profiles, classified in different stability classes using stability tests, we obtained a satisfactory discrimination power. Lastly, the refined skier stability index was implemented into the 1-D snow cover model SNOWPACK and presented on two case studies. In the future, it will be interesting to implement the proposed method for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.

  14. Comparison of the Snow Simulations in Community Land Model Using Two Snow Cover Fraction Parameterizations

    NASA Astrophysics Data System (ADS)

    Xie, Zhipeng; Hu, Zeyong

    2016-04-01

    Snow cover is an important component of local- and regional-scale energy and water budgets, especially in mountainous areas. This paper evaluates the snow simulations by using two snow cover fraction schemes in CLM4.5 (NY07 is the original snow-covered area parameterization used in CLM4, and SL12 is the default scheme in CLM4.5). Off-line simulations are carried out forced by the China Meteorological forcing dataset from January 1, 2001 to December 31, 2010 over the Tibetan Plateau. Simulated snow cover fraction (SCF), snow depth, and snow water equivalent (SWE) were compared against a set of observations including the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover product, the daily snow depth dataset of China, and China Meteorological Administration (CMA) in-situ snow depth and SWE observations. The comparison results indicate significant differences existing between those two SCF parameterizations simulations. Overall, the SL12 formulation shows a certain improvement compared to the NY07 scheme used in CLM4, with the percentage of correctly modeled snow/no snow being 75.8% and 81.8% when compared with the IMS snow product, respectively. Yet, this improvement varies both temporally and spatially. Both these two snow cover schemes overestimated the snow depth, in comparison with the daily snow depth dataset of China, the average biases of simulated snow depth are 7.38cm (8.77cm), 6.97cm (8.2cm) and 5.49cm (5.76cm) NY07 (and SL12) in the snow accumulation period (September through next February), snowmelt period (March through May) and snow-free period (June through August), respectively. When compared with the CMA in-situ snow depth observations, averaged biases are 3.18cm (4.38cm), 2.85cm (4.34cm) and 0.34cm (0.34cm) for NY07 (SL12), respectively. Though SL12 does worse snow depth simulation than NY07, the simulated SWE by SL12 is better than that by NY07, with average biases being 2.64mm, 6.22mm, 1.33mm for NY07, and 1.47mm, 2.63mm, 0.31mm for SL12, respectively. This study demonstrates that future improvements on snow simulation over the Tibetan Plateau are in urgent need for better representing the variability of snow in CLM. Furthermore, these findings lay a foundation for follow-up studies on the modification of snow cover parameterization in the land surface model. Keywords: snow cover, CLM, Tibetan Plateau, simulation.

  15. Iron snow in the Martian Core?

    NASA Astrophysics Data System (ADS)

    Davies, C. J.; Pommier, A.

    2017-12-01

    The decline of Mars' global magnetic field some 3.8-4.1 billion years ago is thought to reflect the demise of the dynamo that operated in its liquid core. The termination of the dynamo is intimately tied to the thermochemical evolution of the core-mantle system and therefore to the present-day physical state of the Martian core. The standard model predicts that the Martian dynamo failed because thermal convection stopped and the core remained entirely liquid until the present. Here we consider an alternative hypothesis that the Martian core crystallized from the top down in the so-called iron snow regime. We derive energy-entropy equations describing the long-timescale thermal and magnetic evolution of the core that incorporate the self-consistent formation of a snow layer that freezes out pure iron and is assumed to be on the liquidus; the iron sinks and remelts in the deeper core, acting as a possible source for magnetic field generation. Compositions are in the FeS system, with a sulfur content up to 16 wt%. The values of the different parameters (core radius, density and CMB pressure) are varied within bounds set by recent internal structure models that satisfy existing geodetic constraints (planetary mass, moment of inertia and tidal Love number). The melting curve and adiabat, CMB heat flow and thermal conductivity were also varied, based on previous experimental and numerical works. We observe that the formation of snow zones occurs for a wide range of interior and thermal structure properties and depends critically on the initial sulfur concentration. Gravitational energy release and latent heat effects arising during growth of the snow zone do not generate sufficient entropy to restart the dynamo unless the snow zone occupies a significant fraction of the core. Our results suggest that snow zones can be 1.5-2 Gyrs old, though thermal stratification of the uppermost core, not included in our model, likely delays onset. Models that match the available magnetic and geodetic constraints have an initial S concentration of about 10wt.% and snow zones that occupy approximately the top 100 km of the present-day Martian core.

  16. Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western Arctic, 2003–2100

    USGS Publications Warehouse

    Euskirchen, E.S.; McGuire, A. David; Rupp, T.S.; Chapin, F. S.; Walsh, J.E.

    2009-01-01

    In high latitudes, changes in climate impact fire regimes and snow cover duration, altering the surface albedo and the heating of the regional atmosphere. In the western Arctic, under four scenarios of future climate change and future fire regimes (2003–2100), we examined changes in surface albedo and the related changes in regional atmospheric heating due to: (1) vegetation changes following a changing fire regime, and (2) changes in snow cover duration. We used a spatially explicit dynamic vegetation model (Alaskan Frame-based Ecosystem Code) to simulate changes in successional dynamics associated with fire under the future climate scenarios, and the Terrestrial Ecosystem Model to simulate changes in snow cover. Changes in summer heating due to the changes in the forest stand age distributions under future fire regimes showed a slight cooling effect due to increases in summer albedo (mean across climates of −0.9 W m−2 decade−1). Over this same time period, decreases in snow cover (mean reduction in the snow season of 4.5 d decade−1) caused a reduction in albedo, and a heating effect (mean across climates of 4.3 W m−2 decade−1). Adding both the summer negative change in atmospheric heating due to changes in fire regimes to the positive changes in atmospheric heating due to changes in the length of the snow season resulted in a 3.4 W m−2 decade−1 increase in atmospheric heating. These findings highlight the importance of gaining a better understanding of the influences of changes in surface albedo on atmospheric heating due to both changes in the fire regime and changes in snow cover duration.

  17. Improvement and further development of SSM/I overland parameter algorithms using the WetNet workstation

    NASA Technical Reports Server (NTRS)

    Neale, Christopher M. U.; Mcdonnell, Jeffrey J.; Ramsey, Douglas; Hipps, Lawrence; Tarboton, David

    1993-01-01

    Since the launch of the DMSP Special Sensor Microwave/Imager (SSM/I), several algorithms have been developed to retrieve overland parameters. These include the present operational algorithms resulting from the Navy calibration/validation effort such as land surface type (Neale et al. 1990), land surface temperature (McFarland et al. 1990), surface moisture (McFarland and Neale, 1991) and snow parameters (McFarland and Neale, 1991). In addition, other work has been done including the classification of snow cover and precipitation using the SSM/I (Grody, 1991). Due to the empirical nature of most of the above mentioned algorithms, further research is warranted and improvements can probably be obtained through a combination of radiative transfer modelling to study the physical processes governing the microwave emissions at the SSM/I frequencies, and the incorporation of additional ground truth data and special cases into the regression data sets. We have proposed specifically to improve the retrieval of surface moisture and snow parameters using the WetNet SSM/I data sets along with ground truth information namely climatic variables from the NOAA cooperative network of weather stations as well as imagery from other satellite sensors such as the AVHRR and Thematic Mapper. In the case of surface moisture retrievals the characterization of vegetation density is of primary concern. The higher spatial resolution satellite imagery collected at concurrent periods will be used to characterize vegetation types and amounts which, along with radiative transfer modelling should lead to more physically based retrievals. Snow parameter retrieval algorithm improvement will initially concentrate on the classification of snowpacks (dry snow, wet snow, refrozen snow) and later on specific products such as snow water equivalent. Significant accomplishments in the past year are presented.

  18. A vertically integrated snow/ice model over land/sea for climate models. I - Development. II - Impact on orbital change experiments

    NASA Technical Reports Server (NTRS)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1988-01-01

    A vertically integrated formulation (VIF) model for sea ice/snow and land snow is discussed which can simulate the nonlinear effects of heat storage and transfer through the layers of snow and ice. The VIF demonstates the accuracy of the multilayer formulation, while benefitting from the computational flexibility of linear formulations. In the second part, the model is implemented in a seasonal dynamic zonally averaged climate model. It is found that, in response to a change between extreme high and low summer insolation orbits, the winter orbital change dominates over the opposite summer change for sea ice. For snow over land the shorter but more pronounced summer orbital change is shown to dominate.

  19. Snowmobile impacts on snowpack physical and mechanical properties

    NASA Astrophysics Data System (ADS)

    Fassnacht, Steven R.; Heath, Jared T.; Venable, Niah B. H.; Elder, Kelly J.

    2018-03-01

    Snowmobile use is a popular form of winter recreation in Colorado, particularly on public lands. To examine the effects of differing levels of use on snowpack properties, experiments were performed at two different areas, Rabbit Ears Pass near Steamboat Springs and at Fraser Experimental Forest near Fraser, Colorado USA. Differences between no use and varying degrees of snowmobile use (low, medium and high) on shallow (the operational standard of 30 cm) and deeper snowpacks (120 cm) were quantified and statistically assessed using measurements of snow density, temperature, stratigraphy, hardness, and ram resistance from snow pit profiles. A simple model was explored that estimated snow density changes from snowmobile use based on experimental results. Snowpack property changes were more pronounced for thinner snow accumulations. When snowmobile use started in deeper snow conditions, there was less difference in density, hardness, and ram resistance compared to the control case of no snowmobile use. These results have implications for the management of snowmobile use in times and places of shallower snow conditions where underlying natural resources could be affected by denser and harder snowpacks.

  20. Investigating the Relationships between Canopy Characteristics and Snow Depth Distribution at Fine Scales: Preliminary Results from the SnowEX TLS Campaign

    NASA Astrophysics Data System (ADS)

    Glenn, N. F.; Uhlmann, Z.; Spaete, L.; Tennant, C.; Hiemstra, C. A.; McNamara, J.

    2017-12-01

    Predicting changes in forested seasonal snowpacks under altered climate scenarios is one of the most pressing hydrologic challenges facing today's society. Airborne- and satellite-based remote sensing methods hold the potential to transform measurements of terrestrial water stores in snowpack, improve process representations of snowpack accumulation and ablation, and to generate high quality predictions that inform potential strategies to better manage water resources. While the effects of forest on snowpack are well documented, many of the fine-scale processes influenced by the forest-canopy are not directly accounted for because most snow models don't explicitly represent canopy structure and canopy heterogeneity. This study investigates the influence of forest canopy on snowpack distribution at fine scales and quantifies the influence of canopy heterogeneity on snowpack accumulation and ablation processes. We use terrestrial laser scanning (TLS) data collected during the SnowEX campaign to discover how the relationships between canopy and snow distributions change across scales. Our sample scales range from individual trees to patches of trees across the Grand Mesa, CO, SnowEx site.

  1. Spring snow conditions on Arctic sea ice north of Svalbard, during the Norwegian Young Sea ICE (N-ICE2015) expedition

    NASA Astrophysics Data System (ADS)

    Gallet, Jean-Charles; Merkouriadi, Ioanna; Liston, Glen E.; Polashenski, Chris; Hudson, Stephen; Rösel, Anja; Gerland, Sebastian

    2017-10-01

    Snow is crucial over sea ice due to its conflicting role in reflecting the incoming solar energy and reducing the heat transfer so that its temporal and spatial variability are important to estimate. During the Norwegian Young Sea ICE (N-ICE2015) campaign, snow physical properties and variability were examined, and results from April until mid-June 2015 are presented here. Overall, the snow thickness was about 20 cm higher than the climatology for second-year ice, with an average of 55 ± 27 cm and 32 ± 20 cm on first-year ice. The average density was 350-400 kg m-3 in spring, with higher values in June due to melting. Due to flooding in March, larger variability in snow water equivalent was observed. However, the snow structure was quite homogeneous in spring due to warmer weather and lower amount of storms passing over the field camp. The snow was mostly consisted of wind slab, faceted, and depth hoar type crystals with occasional fresh snow. These observations highlight the more dynamic character of evolution of snow properties over sea ice compared to previous observations, due to more variable sea ice and weather conditions in this area. The snowpack was isothermal as early as 10 June with the first onset of melt clearly identified in early June. Based on our observations, we estimate than snow could be accurately represented by a three to four layers modeling approach, in order to better consider the high variability of snow thickness and density together with the rapid metamorphose of the snow in springtime.

  2. Modeling snow accumulation and ablation processes in forested environments

    NASA Astrophysics Data System (ADS)

    Andreadis, Konstantinos M.; Storck, Pascal; Lettenmaier, Dennis P.

    2009-05-01

    The effects of forest canopies on snow accumulation and ablation processes can be very important for the hydrology of midlatitude and high-latitude areas. A mass and energy balance model for snow accumulation and ablation processes in forested environments was developed utilizing extensive measurements of snow interception and release in a maritime mountainous site in Oregon. The model was evaluated using 2 years of weighing lysimeter data and was able to reproduce the snow water equivalent (SWE) evolution throughout winters both beneath the canopy and in the nearby clearing, with correlations to observations ranging from 0.81 to 0.99. Additionally, the model was evaluated using measurements from a Boreal Ecosystem-Atmosphere Study (BOREAS) field site in Canada to test the robustness of the canopy snow interception algorithm in a much different climate. Simulated SWE was relatively close to the observations for the forested sites, with discrepancies evident in some cases. Although the model formulation appeared robust for both types of climates, sensitivity to parameters such as snow roughness length and maximum interception capacity suggested the magnitude of improvements of SWE simulations that might be achieved by calibration.

  3. Sensitivity of the snowmelt runoff model to underestimates of remotely sensed snow covered area

    USDA-ARS?s Scientific Manuscript database

    Three methods for estimating snow covered area (SCA) from Terra MODIS data were used to derive conventional depletion curves for input to the Snowmelt Runoff Model (SRM). We compared the MOD10 binary and fractional snow cover products and a method for estimating sub-pixel snow cover using spectral m...

  4. Catchment response to bark beetle outbreak and dust-on-snow in the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Livneh, Ben; Deems, Jeffrey S.; Buma, Brian; Barsugli, Joseph J.; Schneider, Dominik; Molotch, Noah P.; Wolter, K.; Wessman, Carol A.

    2015-04-01

    Since 2002, the headwaters of the Colorado River and nearby basins have experienced extensive changes in land cover at sub-annual timescales. Widespread tree mortality from bark beetle infestation has taken place across a range of forest types, elevation, and latitude. Extent and severity of forest structure alteration have been observed through a combination of aerial survey, satellite remote-sensing, and in situ measurements. Additional perturbations have resulted from deposition of dust from regional dry-land sources on mountain snowpacks that strongly alter the snow surface albedo, driving earlier and faster snowmelt runoff. One challenge facing past studies of these forms of disturbance is the relatively small magnitude of the disturbance signals within the larger climatic signal. The combined impacts of forest disturbance and dust-on-snow are explored within a hydrologic modeling framework. We drive the Distributed Hydrology Soil and Vegetation Model (DHSVM) with observed meteorological data, time-varying maps of leaf area index and forest properties to emulate bark beetle impacts, and parameterizations of snow albedo based on observations of dust forcing. Results from beetle-killed canopy alteration suggest slightly greater snow accumulation as a result of less interception and reduced canopy sublimation and evapotranspiration, contributing to overall increases in annual water yield between 8% and 13%. However, understory regeneration roughly halves the changes in water yield. A purely observation-based estimate of runoff coefficient change with cumulative forest mortality shows comparable sensitivities to simulated results; however, positive water yield changes are not statistically significant (p ⩽ 0.05). The primary hydrologic impact of dust-on-snow forcing is an increased rate of snowmelt associated with more extreme dust deposition, producing earlier peak streamflow rates on the order of 1-3 weeks. Simulations of combined bark beetle and dust-on-snow produced little compounding effects, due to the relatively exclusive nature of their impacts. Potential changes in water yield and peak streamflow timing have important implications for regional water management decisions.

  5. Enhanced hemispheric-scale snow mapping through the blending of optical and microwave satellite data

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Brodzik, M. J.; Savoie, M.; Knowles, K.

    2003-04-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. Global snow cover fluctuation can now be monitored over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere weekly snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Decadal trends and their significance are compared for the two data types. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as throughout the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the negative spectral gradient driving the passive microwave algorithm is enhanced. Because the current generation of microwave snow algorithms is unable to consistently detect shallow and intermittent snow, we combine visible satellite data with the microwave data in a single blended product to overcome this problem. For the period 1978 to 2002 we combine data from the NOAA weekly snow charts with passive microwave data from the SMMR and SSM/I brightness temperature record. For the current and future time period we blend MODIS and AMSR-E data sets, both of which have greatly enhanced spatial resolution compared to the earlier data sources. Because it is not possible to determine snow depth or snow water equivalent from visible data, the regions where only the NOAA or MODIS data indicate snow are defined as "shallow snow". However, because our current blended product is being developed in the 25 km EASE-Grid and the MODIS data being used are in the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) the blended product also includes percent snow cover over the larger grid cell. A prototype version of the blended MODIS/AMSR-E product will be available in near real-time from NSIDC during the 2002-2003 winter season.

  6. Analysis of MODIS snow cover time series over the alpine regions as input for hydrological modeling

    NASA Astrophysics Data System (ADS)

    Notarnicola, Claudia; Rastner, Philipp; Irsara, Luca; Moelg, Nico; Bertoldi, Giacomo; Dalla Chiesa, Stefano; Endrizzi, Stefano; Zebisch, Marc

    2010-05-01

    Snow extent and relative physical properties are key parameters in hydrology, weather forecast and hazard warning as well as in climatological models. Satellite sensors offer a unique advantage in monitoring snow cover due to their temporal and spatial synoptic view. The Moderate Resolution Imaging Spectrometer (MODIS) from NASA is especially useful for this purpose due to its high frequency. However, in order to evaluate the role of snow on the water cycle of a catchment such as runoff generation due to snowmelt, remote sensing data need to be assimilated in hydrological models. This study presents a comparison on a multi-temporal basis between snow cover data derived from (1) MODIS images, (2) LANDSAT images, and (3) predictions by the hydrological model GEOtop [1,3]. The test area is located in the catchment of the Matscher Valley (South Tyrol, Northern Italy). The snow cover maps derived from MODIS-images are obtained using a newly developed algorithm taking into account the specific requirements of mountain regions with a focus on the Alps [2]. This algorithm requires the standard MODIS-products MOD09 and MOD02 as input data and generates snow cover maps at a spatial resolution of 250 m. The final output is a combination of MODIS AQUA and MODIS TERRA snow cover maps, thus reducing the presence of cloudy pixels and no-data-values due to topography. By using these maps, daily time series starting from the winter season (November - May) 2002 till 2008/2009 have been created. Along with snow maps from MODIS images, also some snow cover maps derived from LANDSAT images have been used. Due to their high resolution (< 30 m) they have been considered as an evaluation tool. The snow cover maps are then compared with the hydrological GEOtop model outputs. The main objectives of this work are: 1. Evaluation of the MODIS snow cover algorithm using LANDSAT data 2. Investigation of snow cover, and snow cover duration for the area of interest for South Tyrol 3. Derivation and interpretation of the snow line for the seven winter seasons 4. An evaluation of the model outputs in order to determine the situations in which the remotely sensed data can be used to improve the model prediction of snow coverage and related variables References [1] Rigon R., Bertoldi G. and Over T.M. 2006. GEOtop: A Distributed Hydrological Model with Coupled Water and Energy Budgets, Journal of Hydrometeorology, 7: 371-388. [2] Rastner P., Irsara L., Schellenberger T., Della Chiesa S., Bertoldi G., Endrizzi S., Notarnicola C., Steurer C., Zebisch M. 2009. Monitoraggio del manto nevoso in aree alpine con dati MODIS multi-temporali e modelli idrologici, 13th ASITA National Conference, 1-4.12.2009, Bari, Italy. [3] Zanotti F., Endrizzi S., Bertoldi G. and Rigon R. 2004. The GEOtop snow module. Hydrological Processes, 18: 3667-3679. DOI:10.1002/hyp.5794.

  7. The effectiveness of snow cube throwing learning model based on exploration

    NASA Astrophysics Data System (ADS)

    Sari, Nenden Mutiara

    2017-08-01

    This study aimed to know the effectiveness of Snow Cube Throwing (SCT) and Cooperative Model in Exploration-Based Math Learning in terms of the time required to complete the teaching materials and student engagement. This study was quasi-experimental research was conducted at SMPN 5 Cimahi, Indonesia. All student in grade VIII SMPN 5 Cimahi which consists of 382 students is used as population. The sample consists of two classes which had been chosen randomly with purposive sampling. First experiment class consists of 38 students and the second experiment class consists of 38 students. Observation sheet was used to observe the time required to complete the teaching materials and record the number of students involved in each meeting. The data obtained was analyzed by independent sample-t test and used the chart. The results of this study: SCT learning model based on exploration are more effective than cooperative learning models based on exploration in terms of the time required to complete teaching materials based on exploration and student engagement.

  8. Long-term analyses of snow dynamics within the french Alps on the 1900-2100 period. Analyses of historical snow water equivalent observations, modelisations and projections of a hundred of snow courses.

    NASA Astrophysics Data System (ADS)

    Mathevet, T.; Joel, G.; Gottardi, F.; Nemoz, B.

    2017-12-01

    The aim of this communication is to present analyses of climate variability and change on snow water equivalent (SWE) observations, reconstructions (1900-2016) and scenarii (2020-2100) of a hundred of snow courses dissiminated within the french Alps. This issue became particularly important since a decade, in regions where snow variability had a large impact on water resources availability, poor snow conditions in ski resorts and artificial snow production. As a water resources manager in french mountainuous regions, EDF (french hydropower company) has developed and managed a hydrometeorological network since 1950. A recent data rescue research allowed to digitize long term SWE manual measurments of a hundred of snow courses within the french Alps. EDF have been operating an automatic SWE sensors network, complementary to the snow course network. Based on numerous SWE observations time-series and snow accumulation and melt model (Garavaglia et al., 2017), continuous daily historical SWE time-series have been reconstructed within the 1950-2016 period. These reconstructions have been extented to 1900 using 20 CR reanalyses (ANATEM method, Kuentz et al., 2015) and up to 2100 using GIEC Climate Change scenarii. Considering various mountainous areas within the french Alps, this communication focuses on : (1) long term (1900-2016) analyses of variability and trend of total precipitation, air temperature, snow water equivalent, snow line altitude, snow season length , (2) long term variability of hydrological regime of snow dominated watersheds and (3) future trends (2020 -2100) using GIEC Climate Change scenarii. Comparing historical period (1950-1984) to recent period (1984-2016), quantitative results within a region in the north Alps (Maurienne) shows an increase of air temperature by 1.2 °C, an increase of snow line height by 200m, a reduction of SWE by 200 mm/year and a reduction of snow season length by 15 days. These analyses will be extended from north to south of the Alps, on a region spanning 200 km. Caracterisation of the increase of snow line height and SWE reduction are particularly important at a local and watershed scale. This long term change of snow dynamics within moutainuous regions both impacts snow resorts and artificial snow production developments and multi-purposes dam reservoirs managments.

  9. Spatial Modeling for Resources Framework (SMRF): A modular framework for developing spatial forcing data for snow modeling in mountain basins

    NASA Astrophysics Data System (ADS)

    Havens, Scott; Marks, Danny; Kormos, Patrick; Hedrick, Andrew

    2017-12-01

    In the Western US and many mountainous regions of the world, critical water resources and climate conditions are difficult to monitor because the observation network is generally very sparse. The critical resource from the mountain snowpack is water flowing into streams and reservoirs that will provide for irrigation, flood control, power generation, and ecosystem services. Water supply forecasting in a rapidly changing climate has become increasingly difficult because of non-stationary conditions. In response, operational water supply managers have begun to move from statistical techniques towards the use of physically based models. As we begin to transition physically based models from research to operational use, we must address the most difficult and time-consuming aspect of model initiation: the need for robust methods to develop and distribute the input forcing data. In this paper, we present a new open source framework, the Spatial Modeling for Resources Framework (SMRF), which automates and simplifies the common forcing data distribution methods. It is computationally efficient and can be implemented for both research and operational applications. We present an example of how SMRF is able to generate all of the forcing data required to a run physically based snow model at 50-100 m resolution over regions of 1000-7000 km2. The approach has been successfully applied in real time and historical applications for both the Boise River Basin in Idaho, USA and the Tuolumne River Basin in California, USA. These applications use meteorological station measurements and numerical weather prediction model outputs as input. SMRF has significantly streamlined the modeling workflow, decreased model set up time from weeks to days, and made near real-time application of a physically based snow model possible.

  10. Data sets for snow cover monitoring and modelling from the National Snow and Ice Data Center

    NASA Astrophysics Data System (ADS)

    Holm, M.; Daniels, K.; Scott, D.; McLean, B.; Weaver, R.

    2003-04-01

    A wide range of snow cover monitoring and modelling data sets are pending or are currently available from the National Snow and Ice Data Center (NSIDC). In-situ observations support validation experiments that enhance the accuracy of remote sensing data. In addition, remote sensing data are available in near-real time, providing coarse-resolution snow monitoring capability. Time series data beginning in 1966 are valuable for modelling efforts. NSIDC holdings include SMMR and SSM/I snow cover data, MODIS snow cover extent products, in-situ and satellite data collected for NASA's recent Cold Land Processes Experiment, and soon-to-be-released ASMR-E passive microwave products. The AMSR-E and MODIS sensors are part of NASA's Earth Observing System flying on the Terra and Aqua satellites Characteristics of these NSIDC-held data sets, appropriateness of products for specific applications, and data set access and availability will be presented.

  11. The Value of Hydrograph Partitioning Curves for Calibrating Hydrological Models in Glacierized Basins

    NASA Astrophysics Data System (ADS)

    He, Zhihua; Vorogushyn, Sergiy; Unger-Shayesteh, Katy; Gafurov, Abror; Kalashnikova, Olga; Omorova, Elvira; Merz, Bruno

    2018-03-01

    This study refines the method for calibrating a glacio-hydrological model based on Hydrograph Partitioning Curves (HPCs), and evaluates its value in comparison to multidata set optimization approaches which use glacier mass balance, satellite snow cover images, and discharge. The HPCs are extracted from the observed flow hydrograph using catchment precipitation and temperature gradients. They indicate the periods when the various runoff processes, such as glacier melt or snow melt, dominate the basin hydrograph. The annual cumulative curve of the difference between average daily temperature and melt threshold temperature over the basin, as well as the annual cumulative curve of average daily snowfall on the glacierized areas are used to identify the starting and end dates of snow and glacier ablation periods. Model parameters characterizing different runoff processes are calibrated on different HPCs in a stepwise and iterative way. Results show that the HPC-based method (1) delivers model-internal consistency comparably to the tri-data set calibration method; (2) improves the stability of calibrated parameter values across various calibration periods; and (3) estimates the contributions of runoff components similarly to the tri-data set calibration method. Our findings indicate the potential of the HPC-based approach as an alternative for hydrological model calibration in glacierized basins where other calibration data sets than discharge are often not available or very costly to obtain.

  12. Assimilation of ground and satellite snow observations in a distributed hydrologic model to improve water supply forecasts in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Micheletty, P. D.; Day, G. N.; Quebbeman, J.; Carney, S.; Park, G. H.

    2016-12-01

    The Upper Colorado River Basin above Lake Powell is a major source of water supply for 25 million people and provides irrigation water for 3.5 million acres. Approximately 85% of the annual runoff is produced from snowmelt. Water supply forecasts of the April-July runoff produced by the National Weather Service (NWS) Colorado Basin River Forecast Center (CBRFC), are critical to basin water management. This project leverages advanced distributed models, datasets, and snow data assimilation techniques to improve operational water supply forecasts made by CBRFC in the Upper Colorado River Basin. The current work will specifically focus on improving water supply forecasts through the implementation of a snow data assimilation process coupled with the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM). Three types of observations will be used in the snow data assimilation system: satellite Snow Covered Area (MODSCAG), satellite Dust Radiative Forcing in Snow (MODDRFS), and SNOTEL Snow Water Equivalent (SWE). SNOTEL SWE provides the main source of high elevation snowpack information during the snow season, however, these point measurement sites are carefully selected to provide consistent indices of snowpack, and may not be representative of the surrounding watershed. We address this problem by transforming the SWE observations to standardized deviates and interpolating the standardized deviates using a spatial regression model. The interpolation process will also take advantage of the MODIS Snow Covered Area and Grainsize (MODSCAG) product to inform the model on the spatial distribution of snow. The interpolated standardized deviates are back-transformed and used in an Ensemble Kalman Filter (EnKF) to update the model simulated SWE. The MODIS Dust Radiative Forcing in Snow (MODDRFS) product will be used more directly through temporary adjustments to model snowmelt parameters, which should improve melt estimates in areas affected by dust on snow. In order to assess the value of different data sources, reforecasts will be produced for a historical period and performance measures will be computed to assess forecast skill. The existing CBRFC Ensemble Streamflow Prediction (ESP) reforecasts will provide a baseline for comparison to determine the added-value of the data assimilation process.

  13. Next Generation Snow Cover Mapping: Can Future Hyperspectral Satellite Spectrometer Systems Improve Subpixel Snow-covered Area and Grain Size in the Sierra Nevada?

    NASA Astrophysics Data System (ADS)

    Hill, R.; Calvin, W. M.; Harpold, A.

    2017-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Building on previous retrieval of subpixel snow-covered area algorithms that take into account varying grain size we present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction, and approximate grain size. In addition, varying simulated models of the data will compare and contrast the retrieval of current snow products such as MODIS Snow-Covered Area and Grain Size (MODSCAG) and the Airborne Space Observatory (ASO). Specifically, does lower spatial resolution (MODIS), broader resolution bandwidth (MODIS), and limited spectral resolution (ASO) affect snow-cover area and grain size approximations? The implications of our findings will help refine snow mapping products for planned hyperspectral satellite spectrometer systems such as EnMAP (slated to launch in 2019), HISUI (planned for inclusion on the International Space Station in 2018), and HyspIRI (currently under consideration).

  14. Summer snowmelt patterns in the South Shetlands using TerraSAR-X imagery

    NASA Astrophysics Data System (ADS)

    Mora, C.; Jimenez, J. J.; Catalao Fernades, J.; Ferreira, A.; David, A.; Ramos, M.; Vieira, G.

    2014-12-01

    Snow plays an important role in controlling ground thermal regime and thus influencing permafrost distribution in the lower areas of the South Shetlands archipelago, where late lying snowpatches protect the soil from summer warming. However, summer snow distribution is complex in the mountainous environments of the Maritime Antarctica and it is very difficult to obtain accurate mapping products of snow cover extent and also to monitor snowmelt. Field observations of snow cover in the region are currently based on: i) thickness data from a very scarce network of meteorological stations, ii) temperature poles allowing to estimate snow thickness, iii) and time-lapse cameras allowing for assessing snow distribution over relatively small areas. The high cloudiness of the Maritime Antarctic environment limits good mapping results from the analysis of optical remote sensing imagery such as Landsat, QuickBird or GeoEye. Therefore, microwave sensors provide the best imagery, since they are not influenced by cloudiness and are sensitive to wet-snow, typical of the melting season. We have acquired TerraSAR-X scenes for Deception and Livingston Islands for January-March 2014 in spotlight (HH, VV and HH/VV) and stripmap modes (HH) and analyse the radar backscattering for determining the differences between wet-snow, dry-snow and bare soil aiming at developing snow melt pattern maps. For ground truthing, snowpits were dug in order to characterize snow stratigraphy, grain size, grain type and snow density and to evaluate its effects on radar backscattering. Time-lapse cameras allow to identify snow patch boundaries in the field and ground surface temperatures obtained with minloggers, together with air temperatures, allow to identify the presence of snow cover in the ground. The current research is conducted in the framework of the project PERMANTAR-3 (Permafrost monitoring and modelling in Antarctic Peninsula - PTDC/AAG-GLO/3908/2012 of the FCT and PROPOLAR).

  15. Assessing the snowmelt submodel of TETIS within the DMIP2 project

    NASA Astrophysics Data System (ADS)

    Orozco, Ismael; Francés, Félix

    2010-05-01

    Melt modelling is a crucial element in any attempt to predict runoff from snow-covered or glacierised areas, as well as to assess changes in the cryosphere associated with clime change. In mountainous regions, snow and ice significantly affect catchment hydrology by temporarily storing and releasing water on various time scales (Jansson et al., 2003). Hence, success of runoff modelling in such areas largely depends on accurate quantification of the melt process (Hock, 2003). Snowmelt modelling is complex and dependent on elevation, slope, vegetation type, surface roughness, radiation load, and energy exchange at the snow-air interface (Baron, 1992; Barros and Lettenmaier, 1993; Becker et al., 1994; Cline, 1995; Elder et al., 1991). This paper describes the application of the degree-day method for snowmelt-runoff at hourly time discretization, which is implemented in the distributed and conceptually based hydrological model TETIS, as well as the evaluation of results. In the TETIS model the natural basins are discretizated in grid cells according to drainage network. This conceptualization permits all parameters do not lose its physical meaning (Francés et al., 2007). At each cell the main soil properties need to be estimated previously using topographical, environmental, land use, geological and soil maps. The model has been applied to the Sierra Nevada basins, in USA: the American River (886 km2) and the Carson River (922 km2), as a part of the Distributed Model Intercomparison Project, second phase (DMIP2), of the National Oceanic and Atmospheric Administration's National Weather Service (NOAA/NWS), in which we are participating. These basins are geographically close, but their hidrological regimes are quite different: the Carson River is a high altitude basin with a snow dominated regime; while the American River drains an area that is lower in elevation with precipitation falling as rain and mixed snow and rain (Jeton et al., 1996). Details on the basins features are available in Smith et al. (2006). The degree-day method in the TETIS model, assuming an empirical relationship between air temperatures and melt rates, applied and refined (e.g. Clyde, 1931; Collins, 1934; Corps of Engineers, 1956; Hoinkes and Steinacker, 1975; Braithwaite, 1995). The snow (initial values) and temperature are interpolated at each cell with inverse distance squared algorithm with a linear correction with altitude. The degree-day method was implemented with a simple and parsimonious parameterization using one melting coefficient for rainy and another for not-rainy time. The evaluation of the modeling results was performed using the observed snow water equivalent (SWE) at daily scale, hourly discharges at the basin outlet and some snow-covered images provided by NOAA/NWS. As expected, the model does not reproduce the fluctuations observed in the outflow hydrograph, caused by diurnal melting. The results obtained are acceptable according to the Nash-Sutcliffe coefficient, but excellent at daily scale. Concerning the SWE, the results are very good, taking into account we are dealing with point observations in space. Also, it must be underline that such results are better at higher altitude stations than in lower altitude ones. In conclusion, the results are acceptable, but indicate the need to add information of radiation to the snowmelt model in order to improve the energy-balance and the sensitivity of the model against spatial-temporal changes in the energy fluxes and assess what degree of complexity is recommended for snowmelt model, based on the results and the principle of parsimony.

  16. Drones application on snow and ice surveys in alpine areas

    NASA Astrophysics Data System (ADS)

    La Rocca, Leonardo; Bonetti, Luigi; Fioletti, Matteo; Peretti, Giovanni

    2015-04-01

    First results from Climate change are now clear in Europe, and in Italy in particular, with the natural disasters that damaged irreparably the territory and the habitat due to extreme meteorological events. The Directive 2007/60/EC highlight that an "effective natural hazards prevention and mitigation that requires coordination between Member States above all on natural hazards prevention" is necessary. A climate change adaptation strategy is identified on the basis of the guidelines of the European Community program 2007-2013. Following the directives provided in the financial instrument for civil protection "Union Civil Protection Mechanism" under Decision No. 1313/2013 / EU of the European Parliament and Council, a cross-cutting approach that takes into account a large number of implementation tools of EU policies is proposed as climate change adaptation strategy. In last 7 years a network of trans-Alpine area's authorities was created between Italy and Switzerland to define an adaptive strategy on climate change effects on natural enviroment based on non structural remedies. The Interreg IT - CH STRADA Project (STRategie di ADAttamento al cambiamento climatico) was born to join all the non structural remedies to climate change effects caused by snow and avalanches, on mountain sources, extreme hydrological events and to manage all transnational hydrological resources, involving all stakeholders from Italy and Switzerland. The STRADA project involved all civil protection authorities and all research centers in charge of snow, hydrology end civil protection. The Snow - meteorological center of the Regional Agency for Environment Protection (CNM of ARPA Lombardia) and the Civil Protection of Lombardy Region created a research team to develop tools for avalanche prediction and to observe and predict snow cover on Alpine area. With this aim a lot of aerial photo using Drone as been performed in unusual landscape. Results of all surveys were really interesting on a scientific point of view. All flight was performed by remote controlled aero models with high resolution camera. Aero models were able to take off and to ground on snow covered or icy surfaces since the specific aerodynamic configuration and specific engine used to. All winter surveys were executed flying low to obtain a tridimensional reconstruction of an High resolution Digital Elevation Model (DEM) of snow cover and ice cover and on summer as been developed the DEM were snow amass in the maximum avalanche risk period. The difference between winter and summer DEM (difference between two point clouds) let to individuate the snow depth, and it was used as input data for the snow avalanche model for the Aprica site (Bergamo - Italy).

  17. Quantifying the accuracy of snow water equivalent estimates using broadband radar signal phase

    NASA Astrophysics Data System (ADS)

    Deeb, E. J.; Marshall, H. P.; Lamie, N. J.; Arcone, S. A.

    2014-12-01

    Radar wave velocity in dry snow depends solely on density. Consequently, ground-based pulsed systems can be used to accurately measure snow depth and snow water equivalent (SWE) using signal travel-time, along with manual depth-probing for signal velocity calibration. Travel-time measurements require a large bandwidth pulse not possible in airborne/space-borne platforms. In addition, radar backscatter from snow cover is sensitive to grain size and to a lesser extent roughness of layers at current/proposed satellite-based frequencies (~ 8 - 18 GHz), complicating inversion for SWE. Therefore, accurate retrievals of SWE still require local calibration due to this sensitivity to microstructure and layering. Conversely, satellite radar interferometry, which senses the difference in signal phase between acquisitions, has shown a potential relationship with SWE at lower frequencies (~ 1 - 5 GHz) because the phase of the snow-refracted signal is sensitive to depth and dielectric properties of the snowpack, as opposed to its microstructure and stratigraphy. We have constructed a lab-based, experimental test bed to quantify the change in radar phase over a wide range of frequencies for varying depths of dry quartz sand, a material dielectrically similar to dry snow. We use a laboratory grade Vector Network Analyzer (0.01 - 25.6 GHz) and a pair of antennae mounted on a trolley over the test bed to measure amplitude and phase repeatedly/accurately at many frequencies. Using ground-based LiDAR instrumentation, we collect a coordinated high-resolution digital surface model (DSM) of the test bed and subsequent depth surfaces with which to compare the radar record of changes in phase. Our plans to transition this methodology to a field deployment during winter 2014-2015 using precision pan/tilt instrumentation will also be presented, as well as applications to airborne and space-borne platforms toward the estimation of SWE at high spatial resolution (on the order of meters) over large regions (> 100 square kilometers).

  18. Validation and application of MODIS-derived clean snow albedo and dust radiative forcing

    NASA Astrophysics Data System (ADS)

    Rittger, K. E.; Bryant, A. C.; Seidel, F. C.; Bair, E. H.; Skiles, M.; Goodale, C. E.; Ramirez, P.; Mattmann, C. A.; Dozier, J.; Painter, T.

    2012-12-01

    Snow albedo is an important control on snowmelt. Though albedo evolution of aging snow can be roughly modeled from grain growth, dust and other light absorbing impurities are extrinsic and therefore must be measured. Estimates of clean snow albedo and surface radiative forcing from impurities, which can be inferred from MODIS 500 m surface reflectance products, can provide this driving data for snowmelt models. Here we use MODSCAG (MODIS snow covered area and grain size) to estimate the clean snow albedo and MODDRFS (MODIS dust radiative forcing of snow) to estimate the additional absorbed solar radiation from dust and black carbon. With its finer spatial (20 m) and spectral (10 nm) resolutions, AVIRIS provides a way to estimate the accuracy of MODIS products and understand variability of snow albedo at a finer scale that we explore though a range of topography. The AVIRIS database includes images from late in the accumulation season through the melt season when we are most interested in changes in snow albedo. In addition to the spatial validation, we employ the best estimate of albedo from MODIS in an energy balance reconstruction model to estimate the maximum snow water equivalent. MODDRFS calculates radiative forcing only in pixels that are completely snow-covered, so we spatially interpolate the product to estimate the forcing in all pixels where MODSCAG has given us estimates of clean snow albedo. Comparisons with snow pillows and courses show better agreement when the radiative forcing from absorbing impurities is included in the energy balance reconstruction.

  19. White water: Fifty years of snow research in WRR and the outlook for the future

    NASA Astrophysics Data System (ADS)

    Sturm, Matthew

    2015-07-01

    Over the past 50 years, 239 papers related to snow have been published in Water Resources Research (WRR). Seminal papers on virtually every facet of snow physics and snow water resources have appeared in the journal. These include papers on drifting snow, the snow surface energy balance, the effect of grain size on albedo, chemical elution, water movement through snow, and canopy interception. In particular, papers in WRR have explored the distribution of snow across different landscapes, providing data, process knowledge, and the basis for virtually all of the distributed snow models in use today. In this paper, I review these key contributions and provide some personal thoughts on what is likely to be the focus and nature of papers published in the next few decades, a period that is likely to see an increasing ability to map snow cover in detail, which should serve as a basis for the further development and improvement of snow models. It will also be an uncertain future, with profound changes in snow climatology predicted. I expect WRR will continue to play a key role in documenting and understanding these important cryospheric changes.

  20. An Evaluation of Arctic Ocean Precipitation from Reanalyses for use in Snow Accumulation and Melt Models over Sea Ice

    NASA Astrophysics Data System (ADS)

    Barrett, A. P.; Stroeve, J.; Liston, G. E.; Tschudi, M. A.; Stewart, S.

    2017-12-01

    Retrievals of sea ice thickness from satellite- and air-borne sensors require knowledge of snow depth and density. Early retrievals used climatologies of snow depth and density - "The Warren Climatology" - based on observations from 31 Soviet drifting stations between 1957 and 1991. This climatology was the best available Arctic-wide data set at the time. However, it does not account for year-to-year variations in spatial and temporal patterns of snow depth, nor does it account for changes in snow depth over longer time periods. Recent efforts to retrieve ice thickness have used output from global and regional atmospheric reanalyses directly or as input to snow accumulation, density evolution, and melt models to estimate snow depth. While such efforts represent the state-of-the-art in terms of Arctic-wide snow depth fields, there can be large differences between precipitation (and other variables) from reanalyses. Knowledge about these differences and about biases in precipitation magnitude are important for getting the best-possible retrievals of ice thickness. Here, we evaluate fields of total precipitation and snow fall from the NASA MERRA and MERRA2, NOAA CFSR and CFSR version 2, ECMWF ERA-Interim, and Arctic System (ASR) reanalyses with a view to understanding differences in the magnitude, and temporal and spatial patterns of precipitation. Where possible we use observations to understand biases in the reanalysis output. Time series of annual total precipitation for the central Arctic correlate well with all reanalyses showing similar year-to-year variability. Time series for MERRA, MERRA2 and CFSR show no evidence of long-term trends. By contrast ERA-Interim appears to be wetter in the most recent decade. The ASR records only spans 2000 to 2012 but is similar to ERA-Interim. CFSR and MERRA2 are wetter than the other five reanalyses, especially over the eastern Arctic and North Atlantic.

  1. Expanded science and management utllity of SWE and albedo data from the NASA/JPL Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Painter, T. H.; Deems, J. S.; Marks, D. G.; Hedrick, A. R.; Bormann, K.; Skiles, S. M.; Boardman, J. W.; Graham, C. B.; McGurk, B. J.; Gehrke, F.; Berisford, D. F.; Ferraz, A.; Saatchi, S.; Schimel, D.

    2016-12-01

    The NASA Airborne Snow Observatory (ASO), an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. This talk presents results from the fourth year of the ASO program, 2016, and the now four years of data record in the Western United States. Following on the heels of the most intense, sustained drought in California history, 2016 held promise of a large snowfall year due to an intense El Nino anomaly. Ultimately, the year had approximately 85% of average peak SWE. In the Sierra Nevada, ASO measured 10x greater SWE than near peak in the dramatic 2015 drought year, and twice that of the more moderate drought year of 2013. Water managers in the Sierra were using these data regularly and extending the dynamic range of newly established relationships between accumulated runoff (circa April through July runoff) and ASO total basin SWE acquisitions. ASO also participated in the NASA OLYMPEX project by flying the entire snow-covered reghions of the Olympic Peninsula for distributed SWE. These data are now being used to validate snowfall estimates from modeling and accumulation patterns as inferred from the NASA Global Precipitation Measurement mission (GPM). The ASO snow program expanded to acquire data in the McKenzie and Deschutes Rivers of Oregon in participation with university and state/federal agencies; Sagehen and Lee Vining basins in the Sierra Nevada, California; the Reynolds Creek Experimental Watershed in Idaho; and the East River, in the Colorado River Basin. These regions extend the existing program flying the Tuolumne, Merced, Lakes, Rush Creek, and Middle+South Forks of Kings River Basins in the California Sierra Nevada and the Upper Rio Grande, Conejos, and Uncompahgre Basins in the Colorado Rocky Mountains.The ASO SWE and albedo data are now being used to constrain various hydrologic models for water cycle science of varying complexity and expanding empirical and physically-based water management models.

  2. Modelling CLPX IOP3 Radiometric Data by Means of the Dense Media Theory: Preliminary Results for the LSOS Test Site

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Kim, Edward J.; Cline, Don; Graf, Tobias; Koike, Toshio; Armstrong, Richard; Brodzik, Mary Jo; Hardy, Janet

    2003-01-01

    The capabilities of the Dense Media Radiative Transfer model using the Quasi Crystalline Approximation with Coherent Potential (QCA-CP) to reproduce measured radiometric data were tested using the University of Tokyo Ground Based Microwave Radiometer (GBMR-7) during the third Intensive Observation Period (IOP3) of the NASA Cold-land Processes Field Experiment (CLPX). The data were collected at the Local-Scale Observation Site (LSOS), a 0.8-ha study site consisting of two open meadows separated by trees. Intensive measurements were also made of snow depth and temperature, density, and grain size profiles. A DMRT model is needed to describe radiative transfer in a medium such as snow because the assumption of independent scattering used in classical radiative transfer theory (CRT) is not valid. Validation of the DMRT approach requires a relationship between measured snow grain size and the DMRT approximation of snow grain radius as spherical particles with a mean radius of the log-normal particle-size distribution. This relationship is very important for a better understanding of snow modelling and for practical applications. DMRT simulations were compared with observations of microwave brightnesses at 18.7, 36.5 and 89-GHz (V and H polarizations) collected on February-1 9-25, 2003. Observation angles ranged from 30\\deg to 70\\deg. Model inputs included measured snow parameters except mean grain size. The average snow temperature, fractional volume and depth were held constant, together with the ice and soil permittivities. The minimum and maximum measured mean grain sizes were used to test the capabilities of the DMRT to reproduce the brightnesses as upper and lower limits. The sensitivity to the largest and smallest measured grain size in the three classes of minimum, medium and maximum observed grain sizes was also investigated. DMRT particle sizes yielding a best-fit to the experimental data for each date were computed. Results show that the measured brightnesses fall within the range of simulated brightnesses using the smallest and largest measured grain size values. The DMRT best-fit radii are comparable to the average radii for the medium observed grain sizes.

  3. The electrical self-potential method is a non-intrusive snow-hydrological sensor

    NASA Astrophysics Data System (ADS)

    Thompson, S. S.; Kulessa, B.; Essery, R. L. H.; Lüthi, M. P.

    2015-08-01

    Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. Encouraged by recent theoretical, modelling and laboratory work, we show here that the diurnal evolution of aerially-distributed self-potential magnitudes closely track those of bulk meltwater fluxes in melting in-situ snowpacks at Rhone and Jungfraujoch glaciers, Switzerland. Numerical modelling infers temporally-evolving liquid water contents in the snowpacks on successive days in close agreement with snow-pit measurements. Muting previous concerns, the governing physical and chemical properties of snow and meltwater became temporally invariant for modelling purposes. Because measurement procedure is straightforward and readily automated for continuous monitoring over significant spatial scales, we conclude that the self-potential geophysical method is a highly-promising non-intrusive snow-hydrological sensor for measurement practice, modelling and operational snow forecasting.

  4. Using crowdsourced web content for informing water systems operations in snow-dominated catchments

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Castelletti, Andrea; Fedorov, Roman; Fraternali, Piero

    2016-12-01

    Snow is a key component of the hydrologic cycle in many regions of the world. Despite recent advances in environmental monitoring that are making a wide range of data available, continuous snow monitoring systems that can collect data at high spatial and temporal resolution are not well established yet, especially in inaccessible high-latitude or mountainous regions. The unprecedented availability of user-generated data on the web is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this paper, we contribute a novel crowdsourcing procedure for extracting snow-related information from public web images, either produced by users or generated by touristic webcams. A fully automated process fetches mountain images from multiple sources, identifies the peaks present therein, and estimates virtual snow indexes representing a proxy of the snow-covered area. Our procedure has the potential for complementing traditional snow-related information, minimizing costs and efforts for obtaining the virtual snow indexes and, at the same time, maximizing the portability of the procedure to several locations where such public images are available. The operational value of the obtained virtual snow indexes is assessed for a real-world water-management problem, the regulation of Lake Como, where we use these indexes for informing the daily operations of the lake. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance.

  5. Modeling the effect of snow and ice on the global environmental fate and long-range transport potential of semivolatile organic compounds.

    PubMed

    Stocker, Judith; Scheringer, Martin; Wegmann, Fabio; Hungerbuhler, Konrad

    2007-09-01

    Snow and ice have been implemented in a global multimedia box model to investigate the influence of these media on the environmental fate and long-range transport (LRT) of semivolatile organic compounds (SOCs). Investigated compounds include HCB, PCB28, PCB180, PBDE47, PBDE209, alpha-HCH, and dacthal. In low latitudes, snow acts as a transfer medium taking up chemicals from air and releasing them to water or soil during snowmelt. In high latitudes, snow and ice shield water, soil, and vegetation from chemical deposition. In the model version including snow and ice (scenario 2), the mass of chemicals in soil in high latitudes is between 27% (HCB) and 97% (alpha-HCH) of the mass calculated with the model version without snow and ice (scenario 1). Amounts in Arctic seawater in scenario 2 are 8% (alpha-HCH) to 21% (dacthal) of the amounts obtained in scenario 1. For all investigated chemicals except alpha-HCH, presence of snow and ice in the model increases the concentration in air by a factor of 2 (HCB)to 10 (PBDE209). Because of reduced net deposition to snow-covered surfaces in high latitudes, LRT to the Arctic is reduced for most chemicals whereas transport to the south is more pronounced than in scenario 1 ("southward shift"). The presence of snow and ice thus considerably changes the environmental fate of SOCs.

  6. Developing an A Priori Database for Passive Microwave Snow Water Retrievals Over Ocean

    NASA Astrophysics Data System (ADS)

    Yin, Mengtao; Liu, Guosheng

    2017-12-01

    A physically optimized a priori database is developed for Global Precipitation Measurement Microwave Imager (GMI) snow water retrievals over ocean. The initial snow water content profiles are derived from CloudSat Cloud Profiling Radar (CPR) measurements. A radiative transfer model in which the single-scattering properties of nonspherical snowflakes are based on the discrete dipole approximate results is employed to simulate brightness temperatures and their gradients. Snow water content profiles are then optimized through a one-dimensional variational (1D-Var) method. The standard deviations of the difference between observed and simulated brightness temperatures are in a similar magnitude to the observation errors defined for observation error covariance matrix after the 1D-Var optimization, indicating that this variational method is successful. This optimized database is applied in a Bayesian retrieval snow water algorithm. The retrieval results indicated that the 1D-Var approach has a positive impact on the GMI retrieved snow water content profiles by improving the physical consistency between snow water content profiles and observed brightness temperatures. Global distribution of snow water contents retrieved from the a priori database is compared with CloudSat CPR estimates. Results showed that the two estimates have a similar pattern of global distribution, and the difference of their global means is small. In addition, we investigate the impact of using physical parameters to subset the database on snow water retrievals. It is shown that using total precipitable water to subset the database with 1D-Var optimization is beneficial for snow water retrievals.

  7. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western U.S. based on WRF chemistry and regional climate simulations

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Gustafson, W. I.; Leung, R.; Ghan, S. J.

    2008-12-01

    Radiative forcing induced by soot on snow is an important anthropogenic forcing affecting the global climate. In this study we simulated the deposition of soot aerosol on snow and the resulting impact on snowpack and the hydrological cycle in the western United States. A yearlong simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine the soot deposition, followed by three simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the surface net solar radiation flux during late winter to early spring, increase the surface air temperature, and reduce the snow accumulation and spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow covered regions. For a doubled snow albedo perturbation, the change to surface energy and temperature is around 50-80%, however, snowpack reduction is nonlinearly accelerated.

  8. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations

    NASA Astrophysics Data System (ADS)

    Qian, Yun; Gustafson, William I.; Leung, L. Ruby; Ghan, Steven J.

    2009-02-01

    Radiative forcing induced by soot on snow is an important anthropogenic forcing affecting the global climate. In this study we simulated the deposition of soot aerosol on snow and the resulting impact on snowpack and the hydrological cycle in the western United States. A year-long simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine the soot deposition, followed by three simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the surface net solar radiation flux during late winter to early spring, increase the surface air temperature, and reduce the snow accumulation and spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow-covered regions. For a doubled snow albedo perturbation, the change to surface energy and temperature is around 50-80%; however, snowpack reduction is nonlinearly accelerated.

  9. A Particle Batch Smoother Approach to Snow Water Equivalent Estimation

    NASA Technical Reports Server (NTRS)

    Margulis, Steven A.; Girotto, Manuela; Cortes, Gonzalo; Durand, Michael

    2015-01-01

    This paper presents a newly proposed data assimilation method for historical snow water equivalent SWE estimation using remotely sensed fractional snow-covered area fSCA. The newly proposed approach consists of a particle batch smoother (PBS), which is compared to a previously applied Kalman-based ensemble batch smoother (EnBS) approach. The methods were applied over the 27-yr Landsat 5 record at snow pillow and snow course in situ verification sites in the American River basin in the Sierra Nevada (United States). This basin is more densely vegetated and thus more challenging for SWE estimation than the previous applications of the EnBS. Both data assimilation methods provided significant improvement over the prior (modeling only) estimates, with both able to significantly reduce prior SWE biases. The prior RMSE values at the snow pillow and snow course sites were reduced by 68%-82% and 60%-68%, respectively, when applying the data assimilation methods. This result is encouraging for a basin like the American where the moderate to high forest cover will necessarily obscure more of the snow-covered ground surface than in previously examined, less-vegetated basins. The PBS generally outperformed the EnBS: for snow pillows the PBSRMSE was approx.54%of that seen in the EnBS, while for snow courses the PBSRMSE was approx.79%of the EnBS. Sensitivity tests show relative insensitivity for both the PBS and EnBS results to ensemble size and fSCA measurement error, but a higher sensitivity for the EnBS to the mean prior precipitation input, especially in the case where significant prior biases exist.

  10. Archival processes of the water stable isotope signal in East Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Casado, Mathieu; Landais, Amaelle; Picard, Ghislain; Münch, Thomas; Laepple, Thomas; Stenni, Barbara; Dreossi, Giuliano; Ekaykin, Alexey; Arnaud, Laurent; Genthon, Christophe; Touzeau, Alexandra; Masson-Delmotte, Valerie; Jouzel, Jean

    2018-05-01

    The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation-condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.

  11. Microwave remote sensing of snowpacks

    NASA Technical Reports Server (NTRS)

    Stiles, W. H.; Ulaby, F. T.

    1980-01-01

    The interaction mechanisms responsible for the microwave backscattering and emission behavior of snow were investigated, and models were developed relating the backscattering coefficient (sigma) and apparent temperature (T) to the physical parameters of the snowpack. The microwave responses to snow wetness, snow water equivalent, snow surface roughness, and to diurnal variations were investigated. Snow wetness was shown to have an increasing effect with increasing frequency and angle of incidence for both active and passive cases. Increasing snow wetness was observed to decrease the magnitude sigma and increase T. Snow water equivalent was also observed to exhibit a significant influence sigma and T. Snow surface configuration (roughness) was observed to be significant only for wet snow surface conditions. Diurnal variations were as large as 15 dB for sigma at 35 GHz and 120 K for T at 37 GHz. Simple models for sigma and T of a snowpack scene were developed in terms of the most significant ground-truth parameters. The coefficients for these models were then evaluated; the fits to the sigma and T measurements were generally good. Finally, areas of needed additional observations were outlined and experiments were specified to further the understanding of the microwave-snowpack interaction mechanisms.

  12. Polarization signatures and brightness temperatures caused by horizontally oriented snow particles at microwave bands: Effects of atmospheric absorption

    NASA Astrophysics Data System (ADS)

    Xie, Xinxin; Crewell, Susanne; Löhnert, Ulrich; Simmer, Clemens; Miao, Jungang

    2015-06-01

    This study analyzes the effects of atmospheric absorption and emission on the polarization difference (PD) and brightness temperature (TB) generated by horizontally oriented snow particles. A three-layer plane-parallel atmosphere model is used in conjunction with a simplified radiative transfer (RT) scheme to illustrate the combined effects of dichroic and nondichroic media on microwave signatures observed by ground-based and spaceborne sensors. Based on idealized scenarios which encompass a dichroic snow layer and adjacent nondichroic layers composed of supercooled liquid water (SCLW) droplets and water vapor, we demonstrate that the presence of atmospheric absorption/emission enhances TB and damps PD when observed from the ground. From a spaceborne perspective, however, TB can be reduced or enhanced by an absorbing/emitting layer above the snow layer, while a strong absorbing/emitting layer below the dichroic snow layer may even enhance PD. The induced PD and TB, which rely on snow microphysical assumptions, can vary up to 2 K and 10 K, respectively, due to the temperature-dependent absorption of SCLW. RT calculations based on 223 snowfall profiles selected from European Centre for Medium-Range Weather Forecasts data sets indicate that the existence of SCLW has a noticeable impact on PD and TB at three window frequencies (150 GHz, 243 GHz, and 664 GHz) during snowfall. Our results imply that while polarimetric channels at the three window channels have the potential for snowfall characterization, accurate information on liquid water is required to correctly interpret the polarimetric observations.

  13. Impacts of 1, 1.5, and 2 Degree Warming on Arctic Terrestrial Snow and Sea Ice

    NASA Astrophysics Data System (ADS)

    Derksen, C.; Mudryk, L.; Howell, S.; Flato, G. M.; Fyfe, J. C.; Gillett, N. P.; Sigmond, M.; Kushner, P. J.; Dawson, J.; Zwiers, F. W.; Lemmen, D.; Duguay, C. R.; Zhang, X.; Fletcher, C. G.; Dery, S. J.

    2017-12-01

    The 2015 Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC) established the global temperature goal of "holding the increase in the global average temperature to below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels." In this study, we utilize multiple gridded snow and sea ice products (satellite retrievals; assimilation systems; physical models driven by reanalyses) and ensembles of climate model simulations to determine the impacts of observed warming, and project the relative impacts of the UNFCC future warming targets on Arctic seasonal terrestrial snow and sea ice cover. Observed changes during the satellite era represent the response to approximately 1°C of global warming. Consistent with other studies, analysis of the observational record (1970's to present) identifies changes including a shorter snow cover duration (due to later snow onset and earlier snow melt), significant reductions in spring snow cover and summer sea ice extent, and the loss of a large proportion of multi-year sea ice. The spatial patterns of observed snow and sea ice loss are coherent across adjacent terrestrial/marine regions. There are strong pattern correlations between snow and temperature trends, with weaker association between sea ice and temperature due to the additional influence of dynamical effects such wind-driven redistribution of sea ice. Climate model simulations from the Coupled Model Inter-comparison Project Phase 5(CMIP-5) multi-model ensemble, large initial condition ensembles of the Community Earth System Model (CESM) and Canadian Earth System Model (CanESM2) , and warming stabilization simulations from CESM were used to identify changes in snow and ice under further increases to 1.5°C and 2°C warming. The model projections indicate these levels of warming will be reached over the coming 2-4 decades. Warming to 1.5°C results in an increase in the number of melting days over snow and sea ice (and resultant increases in snow-free and ice-free duration), which are similar in magnitude to the change from pre-industrial conditions to present day. Continued warming to 2°C further intensifies the cryospheric response consistent with amplified Arctic warming relative to the global average trend.

  14. Validation of snow line estimations using MODIS images for the Elqui River basin, Chile

    NASA Astrophysics Data System (ADS)

    Vasquez, Nicolas; Lagos, Miguel; Vargas, Ximena

    2015-04-01

    Precipitation events in North-Central Chile are very important because the region has a Mediterranean climate, with a humid period, and an extensive dry one. Separation between solid and liquid precipitation (snow line) in each event is important information that allow to estimate 1) the available snow covered area for snow-melt forecasting, during the dry season (the only resource of water in this period) and 2) the area affected by rain for flood modelling and infrastructure design. In this work, snow line was estimated with a meteorological approach, considering precipitation, temperature, relative humidity and dew point information at a daily scale from 2004 to 2010 and hourly from 2010 to 2013. In both periods, different meteorological stations are considered due to the implementation of new stations in the study area, covering from 1000 to 3000 (m.a.s.l) approximately, with snow and rain meteorological stations. The methodology exposed in this research is based in vertical variation of dew point and temperature due to more stability variations compared to vertical relative humidity behavior. The results calculated from meteorological data are compared with MODIS images, considering three criteria: (1) the median altitude of the minimum specific fractional snow covered area (FSCA), (2) the mean elevation of pixels with a FSCA<10% and (3) the snow line estimation via snow covered area and hypsometric curve. Historically in Chile, snow line has been studied considering few specific precipitation and temperature observations, or estimations of zero isotherms from upper air soundings. A comparison between these estimations and the results validated through MOD10A1/MYD10A1 products was made in order to identify tendencies and/or variations of the snow line at an annually scale.

  15. What color should snow algae be and what does it mean for glacier melt?

    NASA Astrophysics Data System (ADS)

    Dial, R. J.; Ganey, G. Q.; Loso, M.; Burgess, A. B.; Skiles, M.

    2017-12-01

    Specialized microbes colonize glaciers and ice sheets worldwide and, like all organisms, they are unable to metabolize water in its solid form. It is well understood that net solar radiation controls melt in almost all snow and ice covered environments, and theoretical and empirical studies have documented the substantial reduction of albedo by these microbes both on ice and on snow, implicating a microbial role in glacier melt. If glacial microbiomes are limited by liquid water, and the albedo-reducing properties of individual cells enhance melt rates, then natural selection should favor those microbes that melt ice and snow crystals most efficiently. Here we: (1) argue that natural selection favors a red color on snow and a near-black color on ice based on instantaneous radiative forcing. (2) Review results of the first replicated, controlled field experiment to both quantify the impact of microbes on snowmelt in "red-snow" communities and demonstrate their water-limitation and (3) show the extent of snow-algae's spatial distribution and estimate their contribution to snowmelt across a large Alaskan icefield using remote sensing. On the 700 km2 of a 2,000 km2 maritime icefield in Alaska where red-snow was present, microbes increased snowmelt over 20% by volume, a percentage likely to increase as the climate warms and particulate pollution intensifies with important implications for models of sea level rise.

  16. Influence of tundra snow layer thickness on measured and modelled radar backscatter

    NASA Astrophysics Data System (ADS)

    Rutter, N.; Sandells, M. J.; Derksen, C.; King, J. M.; Toose, P.; Wake, L. M.; Watts, T.

    2017-12-01

    Microwave radar backscatter within a tundra snowpack is strongly influenced by spatial variability of the thickness of internal layering. Arctic tundra snowpacks often comprise layers consisting of two dominant snow microstructures; a basal depth hoar layer overlain by a layer of wind slab. Occasionally there is also a surface layer of decomposing fresh snow. The two main layers have strongly different microwave scattering properties. Depth hoar has a greater capacity for scattering electromagnetic energy than wind slab, however, wind slab usually has a larger snow water equivalent (SWE) than depth hoar per unit volume due to having a higher density. So, determining the relative proportions of depth hoar and wind slab from a snowpack of a known depth may help our future capacity to invert forward models of electromagnetic backscatter within a data assimilation scheme to improve modelled estimates of SWE. Extensive snow measurements were made within Trail Valley Creek, NWT, Canada in April 2013. Snow microstructure was measured at 18 pit and 9 trench locations throughout the catchment (trench extent ranged between 5 to 50 m). Ground microstructure measurements included traditional stratigraphy, near infrared stratigraphy, Specific Surface Area (SSA), and density. Coincident airborne Lidar measurements were made to estimate distributed snow depth across the catchment, in addition to airborne radar snow backscatter using a dual polarized (VV/VH) X- and Ku-band Synthetic Aperture Radar (SnowSAR). Ground measurements showed the mean proportion of depth hoar was just under 30% of total snow depth and was largely unresponsive to increasing snow depth. The mean proportion of wind slab is consistently greater than 50% and showed an increasing trend with increasing total snow depth. A decreasing trend in the mean proportion of surface snow (approximately 25% to 10%) with increasing total depth accounted for this increase in wind slab. This new knowledge of variability in stratigraphic thickness, relative to respective proportions of total snow depth, was used to investigate the representativeness of point measurements of density and microstructure for forward simulations of the SMRT microwave scattering model, using Lidar derived snow depths.

  17. Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Yulan; Kang, Shichang; Cong, Zhiyuan; Schmale, Julia; Sprenger, Michael; Li, Chaoliu; Yang, Wei; Gao, Tanguang; Sillanpää, Mika; Li, Xiaofei; Liu, Yajun; Chen, Pengfei; Zhang, Xuelei

    2017-07-01

    Light-absorbing impurities (LAIs) in snow of the southeastern Tibetan Plateau (TP) and their climatic impacts are of interest not only because this region borders areas affected by the South Asian atmospheric brown clouds but also because the seasonal snow and glacier melt from this region form important headwaters of large rivers. In this study, we collected surface snow and snowpit samples from four glaciers in the southeastern TP in June 2015 to investigate the comprehensive observational data set of LAIs. Results showed that the LAI concentrations were much higher in the aged snow and granular ice than in the fresh snow and snowpits due to postdepositional processes. Impurity concentrations fluctuated across snowpits, with maximum LAI concentrations frequently occurring toward the bottom of snowpits. Based on the SNow ICe Aerosol Radiative model, the albedo simulation indicated that black carbon and dust account for approximately 20% of the albedo reduction relative to clean snow. The radiative forcing caused by black carbon and dust deposition on the glaciers were between 1.0-141 W m-2 and 1.5-120 W m-2, respectively. Black carbon (BC) played a larger role in albedo reduction and radiative forcing than dust in the study area, enhancing approximately 15% of glacier melt. Analysis based on the Fire INventory from NCAR indicated that nonbiomass-burning sources of BC played an important role in the total BC deposition, especially during the monsoon season. This study suggests that eliminating anthropogenic BC could mitigate glacier melt in the future of the southeastern TP.

  18. Using High Resolution Simulations with WRF/SSiB Regional Climate Model Constrained by In Situ Observations to Assess the Impacts of Dust in Snow in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Oaida, C. M.; Skiles, M.; Painter, T. H.; Xue, Y.

    2015-12-01

    The mountain snowpack is an essential resource for both the environment as well as society. Observational and energy balance modeling work have shown that dust on snow (DOS) in western U.S. (WUS) is a major contributor to snow processes, including snowmelt timing and runoff amount in regions like the Upper Colorado River Basin (UCRB). In order to accurately estimate the impact of DOS to the hydrologic cycle and water resources, now and under a changing climate, we need to be able to (1) adequately simulate the snowpack (accumulation), and (2) realistically represent DOS processes in models. Energy balance models do not capture the impact on a broader local or regional scale, nor the land-atmosphere feedbacks, while GCM studies cannot resolve orographic-related precipitation processes, and therefore snowpack accumulation, owing to coarse spatial resolution and smoother terrain. All this implies the impacts of dust on snow on the mountain snowpack and other hydrologic processes are likely not well captured in current modeling studies. Recent increase in computing power allows for RCMs to be used at higher spatial resolutions, while recent in situ observations of dust in snow properties can help constrain modeling simulations. Therefore, in the work presented here, we take advantage of these latest resources to address the some of the challenges outlined above. We employ the newly enhanced WRF/SSiB regional climate model at 4 km horizontal resolution. This scale has been shown by others to be adequate in capturing orographic processes over WUS. We also constrain the magnitude of dust deposition provided by a global chemistry and transport model, with in situ measurements taken at sites in the UCRB. Furthermore, we adjust the dust absorptive properties based on observed values at these sites, as opposed to generic global ones. This study aims to improve simulation of the impact of dust in snow on the hydrologic cycle and related water resources.

  19. Building a Snow Data System on the Apache OODT Open Technology Stack

    NASA Astrophysics Data System (ADS)

    Goodale, C. E.; Painter, T. H.; Mattmann, C. A.; Hart, A. F.; Ramirez, P.; Zimdars, P.; Bryant, A. C.; Snow Data System Team

    2011-12-01

    Snow cover and its melt dominate regional climate and hydrology in many of the world's mountainous regions. One-sixth of Earth's population depends on snow- or glacier-melt for water resources. Operationally, seasonal forecasts of snowmelt-generated streamflow are leveraged through empirical relations based on past snowmelt periods. These historical data show that climate is changing, but the changes reduce the reliability of the empirical relations. Therefore optimal future management of snowmelt derived water resources will require explicit physical models driven by remotely sensed snow property data. Toward this goal, the Snow Optics Laboratory at the Jet Propulsion Laboratory has initiated a near real-time processing pipeline to generate and publish post-processed snow data products within a few hours of satellite acquisition. To solve this challenge, a Scientific Data Management and Processing System was required and the JPL Team leveraged an open-source project called Object Oriented Data Technology (OODT). OODT was developed within NASA's Jet Propulsion Laboratory across the last 10 years. OODT has supported various scientific data management and processing projects, providing solutions in the Earth, Planetary, and Medical science fields. It became apparent that the project needed to be opened to a larger audience to foster and promote growth and adoption. OODT was open-sourced at the Apache Software Foundation in November 2010 and has a growing community of users and committers that are constantly improving the software. Leveraging OODT, the JPL Snow Data System (SnowDS) Team was able to install and configure a core Data Management System (DMS) that would download MODIS raw data files and archive the products in a local repository for post processing. The team has since built an online data portal, and an algorithm-processing pipeline using the Apache OODT software as the foundation. We will present the working SnowDS system with its core remote sensing components: the MODIS Snow Covered Area and Grain size model (MODSCAG) and the MODIS Dust Radiative Forcing in Snow (MOD-DRFS). These products will be delivered in near real time to water managers and the broader cryosphere and climate community beginning in Winter 2012. We will then present the challenges and opportunities we see in the future as the SnowDS matures and contributions are made back to the OODT project.

  20. An AeroCom Assessment of Black Carbon in Arctic Snow and Sea Ice

    NASA Technical Reports Server (NTRS)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Bernsten, T. K.; Bian, H.; Carslaw, K. S.; Chin, M.; DeLuca, N.; hide

    2014-01-01

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng/g for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng/g for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng/g. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model-measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60-90degN) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates from extra-Arctic emissions, these results suggest that aerosol removal processes are a leading source of variation in model performance. The multi-model mean (full range) of Arctic radiative effect from BC in snow is 0.15 (0.07-0.25) W/sq m and 0.18 (0.06-0.28) W/sq m in phase I and phase II models, respectively. After correcting for model biases relative to observed BC concentrations in different regions of the Arctic, we obtain a multi-model mean Arctic radiative effect of 0.17 W/sq m for the combined AeroCom ensembles. Finally, there is a high correlation between modeled BC concentrations sampled over the observational sites and the Arctic as a whole, indicating that the field campaign provided a reasonable sample of the Arctic.

  1. Spatial properties of snow cover in the Upper Merced River Basin: implications for a distributed snow measurement network

    NASA Astrophysics Data System (ADS)

    Bouffon, T.; Rice, R.; Bales, R.

    2006-12-01

    The spatial distributions of snow water equivalent (SWE) and snow depth within a 1, 4, and 16 km2 grid element around two automated snow pillows in a forested and open- forested region of the Upper Merced River Basin (2,800 km2) of Yosemite National Park were characterized using field observations and analyzed using binary regression trees. Snow surveys occurred at the forested site during the accumulation and ablation seasons, while at the open-forest site a survey was performed only during the accumulation season. An average of 130 snow depth and 7 snow density measurements were made on each survey, within the 4 km2 grid. Snow depth was distributed using binary regression trees and geostatistical methods using the physiographic parameters (e.g. elevation, slope, vegetation, aspect). Results in the forest region indicate that the snow pillow overestimated average SWE within the 1, 4, and 16 km2 areas by 34 percent during ablation, but during accumulation the snow pillow provides a good estimate of the modeled mean SWE grid value, however it is suspected that the snow pillow was underestimating SWE. However, at the open forest site, during accumulation, the snow pillow was 28 percent greater than the mean modeled grid element. In addition, the binary regression trees indicate that the independent variables of vegetation, slope, and aspect are the most influential parameters of snow depth distribution. The binary regression tree and multivariate linear regression models explain about 60 percent of the initial variance for snow depth and 80 percent for density, respectively. This short-term study provides motivation and direction for the installation of a distributed snow measurement network to fill the information gap in basin-wide SWE and snow depth measurements. Guided by these results, a distributed snow measurement network was installed in the Fall 2006 at Gin Flat in the Upper Merced River Basin with the specific objective of measuring accumulation and ablation across topographic variables with the aim of providing guidance for future larger scale observation network designs.

  2. Laser Pulse Bidirectional Reflectance from CALIPSO Mission

    NASA Technical Reports Server (NTRS)

    Lu, Xiaomei; Hu, Yongxiang; Yang, Yuekui; Liu, Zhaoyan; Vaughan, Mark; Lucker, Patricia; Trepte, Charles

    2017-01-01

    In this Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) study, we present a simple way of determining laser pulse bidirectional reflectance over snow/ice surface using the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) 532 nanometer polarization channels' measurements. The saturated laser pulse returns from snow and ice surfaces are recovered based on surface tail information. The method overview and initial assessment of the method performance will be presented. The retrieved snow surface bidirectional reflectance is compared with reflectance from both CALIOP cloud cover regions and Moderate Resolution Imaging Spectroradiometer (Earth Observing System (EOS)) (MODIS) Bi-directional Reflectance Distribution Function (BRDF) / Albedo model parameters. The comparisons show that the snow surface bidirectional reflectance over Antarctica for saturation region are generally reliable with a mean value of about 0.90 plus or minus 0.10, while the mean surface reflectance from cloud cover region is about 0.84 plus or minus 0.13 and the calculated MODIS reflectance at 555 nanometers from the BRDF / Albedo model with near nadir illumination and viewing angles is about 0.96 plus or minus 0.04. The comparisons here demonstrate that the snow surface reflectance underneath the cloud with cloud optical depth of about 1 is significantly lower than that for a clear sky condition.

  3. Snow cover volumes dynamic monitoring during melting season using high topographic accuracy approach for a Lebanese high plateau witness sinkhole

    NASA Astrophysics Data System (ADS)

    Abou Chakra, Charbel; Somma, Janine; Elali, Taha; Drapeau, Laurent

    2017-04-01

    Climate change and its negative impact on water resource is well described. For countries like Lebanon, undergoing major population's rise and already decreasing precipitations issues, effective water resources management is crucial. Their continuous and systematic monitoring overs long period of time is therefore an important activity to investigate drought risk scenarios for the Lebanese territory. Snow cover on Lebanese mountains is the most important water resources reserve. Consequently, systematic observation of snow cover dynamic plays a major role in order to support hydrologic research with accurate data on snow cover volumes over the melting season. For the last 20 years few studies have been conducted for Lebanese snow cover. They were focusing on estimating the snow cover surface using remote sensing and terrestrial measurement without obtaining accurate maps for the sampled locations. Indeed, estimations of both snow cover area and volumes are difficult due to snow accumulation very high variability and Lebanese mountains chains slopes topographic heterogeneity. Therefore, the snow cover relief measurement in its three-dimensional aspect and its Digital Elevation Model computation is essential to estimate snow cover volume. Despite the need to cover the all lebanese territory, we favored experimental terrestrial topographic site approaches due to high resolution satellite imagery cost, its limited accessibility and its acquisition restrictions. It is also most challenging to modelise snow cover at national scale. We therefore, selected a representative witness sinkhole located at Ouyoun el Siman to undertake systematic and continuous observations based on topographic approach using a total station. After four years of continuous observations, we acknowledged the relation between snow melt rate, date of total melting and neighboring springs discharges. Consequently, we are able to forecast, early in the season, dates of total snowmelt and springs low water flows which are essentially feeded by snowmelt water. Simulations were ran, predicting the snow level between two sampled dates, they provided promising result for national scale extrapolation.

  4. Snow Cover Mapping at the Continental to Global Scale Using Combined Visible and Passive Microwave Satellite Data

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Brodzik, M.; Savoie, M. H.

    2007-12-01

    Over the past several decades both visible and passive microwave satellite data have been utilized for snow mapping at the continental to global scale. Snow mapping using visible data has been based primarily on the magnitude of the surface reflectance, and in more recent cases on specific spectral signatures, while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. We describe the respective problems as well as the advantages and disadvantages of these two types of satellite data for snow cover mapping and demonstrate how a multi-sensor approach is optimal. For the period 1978 to present we combine data from the NOAA weekly snow charts with snow cover derived from the SMMR and SSM/I brightness temperature data. For the period since 2002 we blend NASA EOS MODIS and AMSR-E data sets. Our current product incorporates MODIS data from the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) with microwave-derived snow water equivalent (SWE) at 25 km, resulting in a blended product that includes percent snow cover in the larger grid cell whenever the microwave SWE signal is absent. Validation of AMSR-E at the brightness temperature level is provided through the comparison with data from the well-calibrated heritage SSM/I sensor over large homogeneous snow-covered surfaces (e.g. Dome C region, Antarctica). We also describe how the application of the higher frequency microwave channels (85 and 89 GHz)enhances accurate mapping of shallow and intermittent snow cover.

  5. Objective Characterization of Snow Microstructure for Microwave Emission Modeling

    NASA Technical Reports Server (NTRS)

    Durand, Michael; Kim, Edward J.; Molotch, Noah P.; Margulis, Steven A.; Courville, Zoe; Malzler, Christian

    2012-01-01

    Passive microwave (PM) measurements are sensitive to the presence and quantity of snow, a fact that has long been used to monitor snowcover from space. In order to estimate total snow water equivalent (SWE) within PM footprints (on the order of approx 100 sq km), it is prerequisite to understand snow microwave emission at the point scale and how microwave radiation integrates spatially; the former is the topic of this paper. Snow microstructure is one of the fundamental controls on the propagation of microwave radiation through snow. Our goal in this study is to evaluate the prospects for driving the Microwave Emission Model of Layered Snowpacks with objective measurements of snow specific surface area to reproduce measured brightness temperatures when forced with objective measurements of snow specific surface area (S). This eliminates the need to treat the grain size as a free-fit parameter.

  6. Process-level model evaluation: a snow and heat transfer metric

    NASA Astrophysics Data System (ADS)

    Slater, Andrew G.; Lawrence, David M.; Koven, Charles D.

    2017-04-01

    Land models require evaluation in order to understand results and guide future development. Examining functional relationships between model variables can provide insight into the ability of models to capture fundamental processes and aid in minimizing uncertainties or deficiencies in model forcing. This study quantifies the proficiency of land models to appropriately transfer heat from the soil through a snowpack to the atmosphere during the cooling season (Northern Hemisphere: October-March). Using the basic physics of heat diffusion, we investigate the relationship between seasonal amplitudes of soil versus air temperatures due to insulation from seasonal snow. Observations demonstrate the anticipated exponential relationship of attenuated soil temperature amplitude with increasing snow depth and indicate that the marginal influence of snow insulation diminishes beyond an effective snow depth of about 50 cm. A snow and heat transfer metric (SHTM) is developed to quantify model skill compared to observations. Land models within the CMIP5 experiment vary widely in SHTM scores, and deficiencies can often be traced to model structural weaknesses. The SHTM value for individual models is stable over 150 years of climate, 1850-2005, indicating that the metric is insensitive to climate forcing and can be used to evaluate each model's representation of the insulation process.

  7. Process-level model evaluation: a snow and heat transfer metric

    DOE PAGES

    Slater, Andrew G.; Lawrence, David M.; Koven, Charles D.

    2017-04-20

    Land models require evaluation in order to understand results and guide future development. Examining functional relationships between model variables can provide insight into the ability of models to capture fundamental processes and aid in minimizing uncertainties or deficiencies in model forcing. This study quantifies the proficiency of land models to appropriately transfer heat from the soil through a snowpack to the atmosphere during the cooling season (Northern Hemisphere: October–March). Using the basic physics of heat diffusion, we investigate the relationship between seasonal amplitudes of soil versus air temperatures due to insulation from seasonal snow. Observations demonstrate the anticipated exponential relationshipmore » of attenuated soil temperature amplitude with increasing snow depth and indicate that the marginal influence of snow insulation diminishes beyond an effective snow depth of about 50 cm. A snow and heat transfer metric (SHTM) is developed to quantify model skill compared to observations. Land models within the CMIP5 experiment vary widely in SHTM scores, and deficiencies can often be traced to model structural weaknesses. The SHTM value for individual models is stable over 150 years of climate, 1850–2005, indicating that the metric is insensitive to climate forcing and can be used to evaluate each model's representation of the insulation process.« less

  8. Process-level model evaluation: a snow and heat transfer metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Andrew G.; Lawrence, David M.; Koven, Charles D.

    Land models require evaluation in order to understand results and guide future development. Examining functional relationships between model variables can provide insight into the ability of models to capture fundamental processes and aid in minimizing uncertainties or deficiencies in model forcing. This study quantifies the proficiency of land models to appropriately transfer heat from the soil through a snowpack to the atmosphere during the cooling season (Northern Hemisphere: October–March). Using the basic physics of heat diffusion, we investigate the relationship between seasonal amplitudes of soil versus air temperatures due to insulation from seasonal snow. Observations demonstrate the anticipated exponential relationshipmore » of attenuated soil temperature amplitude with increasing snow depth and indicate that the marginal influence of snow insulation diminishes beyond an effective snow depth of about 50 cm. A snow and heat transfer metric (SHTM) is developed to quantify model skill compared to observations. Land models within the CMIP5 experiment vary widely in SHTM scores, and deficiencies can often be traced to model structural weaknesses. The SHTM value for individual models is stable over 150 years of climate, 1850–2005, indicating that the metric is insensitive to climate forcing and can be used to evaluate each model's representation of the insulation process.« less

  9. The Contribution to High Asia Runoff from Ice and Snow (CHARIS): Understanding the source and trends of cryospheric contributions to the water balance

    NASA Astrophysics Data System (ADS)

    Rittger, K.; Armstrong, R. L.; Bair, N.; Racoviteanu, A.; Brodzik, M. J.; Hill, A. F.; Wilson, A. M.; Khan, A. L.; Ramage, J. M.; Khalsa, S. J. S.; Barrett, A. P.; Raup, B. H.; Painter, T. H.

    2017-12-01

    The Contribution to High Asia Runoff from Ice and Snow, or CHARIS, project is systematically assessing the role that glaciers and seasonal snow play in the freshwater resources of Central and South Asia. The study area encompasses roughly 3 million square kilometers of the Himalaya, Karakoram, Hindu Kush, Pamir and Tien Shan mountain ranges that drain to five major rivers: the Ganges, Brahmaputra, Indus, Amu Darya and Syr Darya. We estimate daily snow and glacier ice contributions to the water balance. Our automated partitioning method generates daily maps of 1) snow over ice (SOI), 2) exposed glacier ice (EGI), 3) debris covered glacier ice (DGI) and 4) snow over land (SOL) using fractional snow cover, snow grain size, and annual minimum ice and snow from the 500 m MODIS-derived MODSCAG and MODICE products. Maps of snow and ice cover are validated using high-resolution (30 m) maps of snow, ice, and debris cover from Landsat. The probability of detection is 0.91 and precision is 0.85 for MODICE. We examine trends in annual and monthly snow and ice maps and use daily maps as inputs to a calibrated temperature-index model and an uncalibrated energy balance model, ParBal. Melt model results and measurements of isotopes and specific ions used as an independent validation of melt modeling indicate a sharp geographic contrast in the role of snow and ice melt to downstream water supplies between the arid Tien Shan and Pamir ranges of Central Asia, where melt water dominates dry season flows, and the monsoon influenced central and eastern Himalaya where rain controls runoff. We also compare melt onset and duration from the melt models to the Calibrated, Enhanced Resolution Passive Microwave Brightness Temperature Earth Science Data Record. Trend analysis of annual and monthly area of permanent snow and ice (the union of SOI and EGI) for 2000 to 2016 shows statistically significant negative trends in the Ganges and Brahmaputra basins. There are no statistically significant trends in permanent snow and ice in the other basins and no statistically significant trends in SOL, the renewable and seasonal component of snow and ice cover, in any of the five basins. This work gives a better understanding of the current hydrologic regime to guide realistic estimates of the future availability and vulnerability of water resources in these regions.

  10. Snow cover data records from satellite and conventional measurements

    NASA Astrophysics Data System (ADS)

    Derksen, C.; Brown, R.; Wang, L.

    2008-12-01

    A major goal of snow-related research in the Climate Research Division of Environment Canada is the development of consistent snow cover information from satellite and in situ data sources for climate monitoring and model evaluation. This work involves new satellite algorithm development for reliable mapping of snow water equivalent (SWE), snow cover extent (SCE) and snow cover onset and melt dates, evaluation of existing snow cover products such as the NOAA weekly data set with in situ and satellite data, and the reconstruction and reanalysis of snow cover information from the application of physical snow models, geostatistics and data assimilation methods. In the context of the International Polar Year, a major effort is being made to develop and evaluate snow cover information over the Arctic region with a particular focus on the dynamic spring melt period where positive feedbacks to the climate system are more pronounced. Assessment of the NOAA daily and weekly SCE products with MODIS and QuikSCAT derived datasets identified a systematic late bias of 2-3 weeks in snow-off dates over northern Canada. This bias was not observed over northern Eurasia which suggests that regional differences in variables such as lake fraction and cloud cover are systematically influencing the accuracy of the NOAA product over northern Canada. Considerable progress has been made in deriving passive microwave derived SWE information over sub- Arctic regions of North America where pre-existing algorithms were unable to account for the influence of forest cover and lake ice. Previous uncertainties in retrieving SWE across the boreal forest have been resolved with the combination of 18.7 and 10.7 GHz measurements from the Advanced Microwave Scanning Radiometer (AMSR-E; 2002-present). Full time series development (1978-onwards) remains problematic, however, because 10.7 GHz measurements are not available from the Special Sensor Microwave/Imager (1987-present). Satellite measurements coupled with lake ice model simulations have illustrated frequency dependent, seasonally evolving relationships between brightness temperature and lake fraction across tundra regions. A potential solution based on the temporal evolution of 37 GHz AMSR-E measurements shows some promise as this was found to be significantly correlated with field measurements of tundra SWE, and to be relatively insensitive to lake fraction. New pan-Arctic (N 60°N) snowmelt onset and end date records (2000-2006) were produced from enhanced resolution (4.45 km) QuikSCAT (QSCAT) Ku-band backscatter measurements. The goal is to merge this with melt onset information from other components of the cryosphere (e.g. glaciers, ice caps, ice sheets, lake ice, sea ice) to provide an integrated circumpolar melt onset and duration dataset for climate monitoring and research on cryosphere-climate links and feedbacks. A major challenge is expanding the relatively short time period of Ku-band satellite measurements with historical C-band data (i.e. from ERS-1). Geostatistical methods and snow cover modeling were used to develop a 10-km gridded SWE dataset over Quebec from 1970-2005 for climate studies and evaluation of the performance of the Canadian Regional Climate Model.

  11. Joint DEnKF-albedo assimilation scheme that considers the common land model subgrid heterogeneity and a snow density-based observation operator for improving snow depth simulations

    NASA Astrophysics Data System (ADS)

    Xu, Jianhui; Zhang, Feifei; Zhao, Yi; Shu, Hong; Zhong, Kaiwen

    2016-07-01

    For the large-area snow depth (SD) data sets with high spatial resolution in the Altay region of Northern Xinjiang, China, we present a deterministic ensemble Kalman filter (DEnKF)-albedo assimilation scheme that considers the common land model (CoLM) subgrid heterogeneity. In the albedo assimilation of DEnKF-albedo, the assimilated albedos over each subgrid tile are estimated with the MCD43C1 bidirectional reflectance distribution function (BRDF) parameters product and CoLM calculated solar zenith angle. The BRDF parameters are hypothesized to be consistent over all subgrid tiles within a specified grid. In the SCF assimilation of DEnKF-albedo, a DEnKF combining a snow density-based observation operator considers the effects of the CoLM subgrid heterogeneity and is employed to assimilate MODIS SCF to update SD states over all subgrid tiles. The MODIS SCF over a grid is compared with the area-weighted sum of model predicted SCF over all the subgrid tiles within the grid. The results are validated with in situ SD measurements and AMSR-E product. Compared with the simulations, the DEnKF-albedo scheme can reduce errors of SD simulations and accurately simulate the seasonal variability of SD. Furthermore, it can improve simulations of SD spatiotemporal distribution in the Altay region, which is more accurate and shows more detail than the AMSR-E product.

  12. Field measurements and modeling of wave propagation and subsequent weak layer failure in snow due to explosive loading

    NASA Astrophysics Data System (ADS)

    Simioni, Stephan; Sidler, Rolf; Dual, Jürg; Schweizer, Jürg

    2015-04-01

    Avalanche control by explosives is among the key temporary preventive measures. Yet, little is known about the mechanism involved in releasing avalanches by the effect of an explosion. Here, we test the hypothesis that the stress induced by acoustic waves exceeds the strength of weak snow layers. Consequently the snow fails and the onset of rapid crack propagation might finally lead to the release of a snow slab avalanche. We performed experiments with explosive charges over a snowpack. We installed microphones above the snowpack to measure near-surface air pressure and accelerometers within three snow pits. We also recorded pit walls of each pit with high speed cameras to detect weak layer failure. Empirical relationships and a priori information from ice and air were used to characterize a porous layered model from density measurements of snow profiles in the snow pits. This model was used to perform two-dimensional numerical simulations of wave propagation in Biot-type porous material. Locations of snow failure were identified in the simulation by comparing the axial and deviatoric stress field of the simulation to the corresponding snow strength. The identified snow failure locations corresponded well with the observed failure locations in the experiment. The acceleration measured in the snowpack best correlated with the modeled acceleration of the fluid relative to the ice frame. Even though the near field of the explosion is expected to be governed by non-linear effects as for example the observed supersonic wave propagation in the air above the snow surface, the results of the linear poroelastic simulation fit well with the measured air pressure and snowpack accelerations. The results of this comparison are an important step towards quantifying the effectiveness of avalanche control by explosives.

  13. Uncertainty in solid precipitation and snow depth prediction for Siberia using the Noah and Noah-MP land surface models

    NASA Astrophysics Data System (ADS)

    Suzuki, Kazuyoshi; Zupanski, Milija

    2018-01-01

    In this study, we investigate the uncertainties associated with land surface processes in an ensemble predication context. Specifically, we compare the uncertainties produced by a coupled atmosphere-land modeling system with two different land surface models, the Noah- MP land surface model (LSM) and the Noah LSM, by using the Maximum Likelihood Ensemble Filter (MLEF) data assimilation system as a platform for ensemble prediction. We carried out 24-hour prediction simulations in Siberia with 32 ensemble members beginning at 00:00 UTC on 5 March 2013. We then compared the model prediction uncertainty of snow depth and solid precipitation with observation-based research products and evaluated the standard deviation of the ensemble spread. The prediction skill and ensemble spread exhibited high positive correlation for both LSMs, indicating a realistic uncertainty estimation. The inclusion of a multiple snowlayer model in the Noah-MP LSM was beneficial for reducing the uncertainties of snow depth and snow depth change compared to the Noah LSM, but the uncertainty in daily solid precipitation showed minimal difference between the two LSMs. The impact of LSM choice in reducing temperature uncertainty was limited to surface layers of the atmosphere. In summary, we found that the more sophisticated Noah-MP LSM reduces uncertainties associated with land surface processes compared to the Noah LSM. Thus, using prediction models with improved skill implies improved predictability and greater certainty of prediction.

  14. 1D-Var multilayer assimilation of X-band SAR data into a detailed snowpack model

    NASA Astrophysics Data System (ADS)

    Phan, X. V.; Ferro-Famil, L.; Gay, M.; Durand, Y.; Dumont, M.; Morin, S.; Allain, S.; D'Urso, G.; Girard, A.

    2014-10-01

    The structure and physical properties of a snowpack and their temporal evolution may be simulated using meteorological data and a snow metamorphism model. Such an approach may meet limitations related to potential divergences and accumulated errors, to a limited spatial resolution, to wind or topography-induced local modulations of the physical properties of a snow cover, etc. Exogenous data are then required in order to constrain the simulator and improve its performance over time. Synthetic-aperture radars (SARs) and, in particular, recent sensors provide reflectivity maps of snow-covered environments with high temporal and spatial resolutions. The radiometric properties of a snowpack measured at sufficiently high carrier frequencies are known to be tightly related to some of its main physical parameters, like its depth, snow grain size and density. SAR acquisitions may then be used, together with an electromagnetic backscattering model (EBM) able to simulate the reflectivity of a snowpack from a set of physical descriptors, in order to constrain a physical snowpack model. In this study, we introduce a variational data assimilation scheme coupling TerraSAR-X radiometric data into the snowpack evolution model Crocus. The physical properties of a snowpack, such as snow density and optical diameter of each layer, are simulated by Crocus, fed by the local reanalysis of meteorological data (SAFRAN) at a French Alpine location. These snowpack properties are used as inputs of an EBM based on dense media radiative transfer (DMRT) theory, which simulates the total backscattering coefficient of a dry snow medium at X and higher frequency bands. After evaluating the sensitivity of the EBM to snowpack parameters, a 1D-Var data assimilation scheme is implemented in order to minimize the discrepancies between EBM simulations and observations obtained from TerraSAR-X acquisitions by modifying the physical parameters of the Crocus-simulated snowpack. The algorithm then re-initializes Crocus with the modified snowpack physical parameters, allowing it to continue the simulation of snowpack evolution, with adjustments based on remote sensing information. This method is evaluated using multi-temporal TerraSAR-X images acquired over the specific site of the Argentière glacier (Mont-Blanc massif, French Alps) to constrain the evolution of Crocus. Results indicate that X-band SAR data can be taken into account to modify the evolution of snowpack simulated by Crocus.

  15. Role of Forcing Uncertainty and Background Model Error Characterization in Snow Data Assimilation

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay V.; Dong, Jiarul; Peters-Lidard, Christa D.; Mocko, David; Gomez, Breogan

    2017-01-01

    Accurate specification of the model error covariances in data assimilation systems is a challenging issue. Ensemble land data assimilation methods rely on stochastic perturbations of input forcing and model prognostic fields for developing representations of input model error covariances. This article examines the limitations of using a single forcing dataset for specifying forcing uncertainty inputs for assimilating snow depth retrievals. Using an idealized data assimilation experiment, the article demonstrates that the use of hybrid forcing input strategies (either through the use of an ensemble of forcing products or through the added use of the forcing climatology) provide a better characterization of the background model error, which leads to improved data assimilation results, especially during the snow accumulation and melt-time periods. The use of hybrid forcing ensembles is then employed for assimilating snow depth retrievals from the AMSR2 (Advanced Microwave Scanning Radiometer 2) instrument over two domains in the continental USA with different snow evolution characteristics. Over a region near the Great Lakes, where the snow evolution tends to be ephemeral, the use of hybrid forcing ensembles provides significant improvements relative to the use of a single forcing dataset. Over the Colorado headwaters characterized by large snow accumulation, the impact of using the forcing ensemble is less prominent and is largely limited to the snow transition time periods. The results of the article demonstrate that improving the background model error through the use of a forcing ensemble enables the assimilation system to better incorporate the observational information.

  16. Machine learning based cloud mask algorithm driven by radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Chen, N.; Li, W.; Tanikawa, T.; Hori, M.; Shimada, R.; Stamnes, K. H.

    2017-12-01

    Cloud detection is a critically important first step required to derive many satellite data products. Traditional threshold based cloud mask algorithms require a complicated design process and fine tuning for each sensor, and have difficulty over snow/ice covered areas. With the advance of computational power and machine learning techniques, we have developed a new algorithm based on a neural network classifier driven by extensive radiative transfer modeling. Statistical validation results obtained by using collocated CALIOP and MODIS data show that its performance is consistent over different ecosystems and significantly better than the MODIS Cloud Mask (MOD35 C6) during the winter seasons over mid-latitude snow covered areas. Simulations using a reduced number of satellite channels also show satisfactory results, indicating its flexibility to be configured for different sensors.

  17. SMRT: A new, modular snow microwave radiative transfer model

    NASA Astrophysics Data System (ADS)

    Picard, Ghislain; Sandells, Melody; Löwe, Henning; Dumont, Marie; Essery, Richard; Floury, Nicolas; Kontu, Anna; Lemmetyinen, Juha; Maslanka, William; Mätzler, Christian; Morin, Samuel; Wiesmann, Andreas

    2017-04-01

    Forward models of radiative transfer processes are needed to interpret remote sensing data and derive measurements of snow properties such as snow mass. A key requirement and challenge for microwave emission and scattering models is an accurate description of the snow microstructure. The snow microwave radiative transfer model (SMRT) was designed to cater for potential future active and/or passive satellite missions and developed to improve understanding of how to parameterize snow microstructure. SMRT is implemented in Python and is modular to allow easy intercomparison of different theoretical approaches. Separate modules are included for the snow microstructure model, electromagnetic module, radiative transfer solver, substrate, interface reflectivities, atmosphere and permittivities. An object-oriented approach is used with carefully specified exchanges between modules to allow future extensibility i.e. without constraining the parameter list requirements. This presentation illustrates the capabilities of SMRT. At present, five different snow microstructure models have been implemented, and direct insertion of the autocorrelation function from microtomography data is also foreseen with SMRT. Three electromagnetic modules are currently available. While DMRT-QCA and Rayleigh models need specific microstructure models, the Improved Born Approximation may be used with any microstructure representation. A discrete ordinates approach with stream connection is used to solve the radiative transfer equations, although future inclusion of 6-flux and 2-flux solvers are envisioned. Wrappers have been included to allow existing microwave emission models (MEMLS, HUT, DMRT-QMS) to be run with the same inputs and minimal extra code (2 lines). Comparisons between theoretical approaches will be shown, and evaluation against field experiments in the frequency range 5-150 GHz. SMRT is simple and elegant to use whilst providing a framework for future development within the community.

  18. Snow particles extracted from X-ray computed microtomography imagery and their single-scattering properties

    NASA Astrophysics Data System (ADS)

    Ishimoto, Hiroshi; Adachi, Satoru; Yamaguchi, Satoru; Tanikawa, Tomonori; Aoki, Teruo; Masuda, Kazuhiko

    2018-04-01

    Sizes and shapes of snow particles were determined from X-ray computed microtomography (micro-CT) images, and their single-scattering properties were calculated at visible and near-infrared wavelengths using a Geometrical Optics Method (GOM). We analyzed seven snow samples including fresh and aged artificial snow and natural snow obtained from field samples. Individual snow particles were numerically extracted, and the shape of each snow particle was defined by applying a rendering method. The size distribution and specific surface area distribution were estimated from the geometrical properties of the snow particles, and an effective particle radius was derived for each snow sample. The GOM calculations at wavelengths of 0.532 and 1.242 μm revealed that the realistic snow particles had similar scattering phase functions as those of previously modeled irregular shaped particles. Furthermore, distinct dendritic particles had a characteristic scattering phase function and asymmetry factor. The single-scattering properties of particles of effective radius reff were compared with the size-averaged single-scattering properties. We found that the particles of reff could be used as representative particles for calculating the average single-scattering properties of the snow. Furthermore, the single-scattering properties of the micro-CT particles were compared to those of particle shape models using our current snow retrieval algorithm. For the single-scattering phase function, the results of the micro-CT particles were consistent with those of a conceptual two-shape model. However, the particle size dependence differed for the single-scattering albedo and asymmetry factor.

  19. Canadian snow and sea ice: assessment of snow, sea ice, and related climate processes in Canada's Earth system model and climate-prediction system

    NASA Astrophysics Data System (ADS)

    Kushner, Paul J.; Mudryk, Lawrence R.; Merryfield, William; Ambadan, Jaison T.; Berg, Aaron; Bichet, Adéline; Brown, Ross; Derksen, Chris; Déry, Stephen J.; Dirkson, Arlan; Flato, Greg; Fletcher, Christopher G.; Fyfe, John C.; Gillett, Nathan; Haas, Christian; Howell, Stephen; Laliberté, Frédéric; McCusker, Kelly; Sigmond, Michael; Sospedra-Alfonso, Reinel; Tandon, Neil F.; Thackeray, Chad; Tremblay, Bruno; Zwiers, Francis W.

    2018-04-01

    The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state-of-the-art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. This study presents an assessment from the CanSISE Network of the ability of the second-generation Canadian Earth System Model (CanESM2) and the Canadian Seasonal to Interannual Prediction System (CanSIPS) to simulate and predict snow and sea ice from seasonal to multi-decadal timescales, with a focus on the Canadian sector. To account for observational uncertainty, model structural uncertainty, and internal climate variability, the analysis uses multi-source observations, multiple Earth system models (ESMs) in Phase 5 of the Coupled Model Intercomparison Project (CMIP5), and large initial-condition ensembles of CanESM2 and other models. It is found that the ability of the CanESM2 simulation to capture snow-related climate parameters, such as cold-region surface temperature and precipitation, lies within the range of currently available international models. Accounting for the considerable disagreement among satellite-era observational datasets on the distribution of snow water equivalent, CanESM2 has too much springtime snow mass over Canada, reflecting a broader northern hemispheric positive bias. Biases in seasonal snow cover extent are generally less pronounced. CanESM2 also exhibits retreat of springtime snow generally greater than observational estimates, after accounting for observational uncertainty and internal variability. Sea ice is biased low in the Canadian Arctic, which makes it difficult to assess the realism of long-term sea ice trends there. The strengths and weaknesses of the modelling system need to be understood as a practical tradeoff: the Canadian models are relatively inexpensive computationally because of their moderate resolution, thus enabling their use in operational seasonal prediction and for generating large ensembles of multidecadal simulations. Improvements in climate-prediction systems like CanSIPS rely not just on simulation quality but also on using novel observational constraints and the ready transfer of research to an operational setting. Improvements in seasonal forecasting practice arising from recent research include accurate initialization of snow and frozen soil, accounting for observational uncertainty in forecast verification, and sea ice thickness initialization using statistical predictors available in real time.

  20. Observations of Precipitation Size and Fall Speed Characteristics within Coexisting Rain and Wet Snow

    NASA Technical Reports Server (NTRS)

    Yuter, Sandra E.; Kingsmill, David E.; Nance, Louisa B.; Loeffler-Mang, Martin

    2006-01-01

    Ground-based measurements of particle size and fall speed distributions using a Particle Size and Velocity (PARSIVEL) disdrometer are compa red among samples obtained in mixed precipitation (rain and wet snow) and rain in the Oregon Cascade Mountains and in dry snow in the Rock y Mountains of Colorado. Coexisting rain and snow particles are distinguished using a classification method based on their size and fall sp eed properties. The bimodal distribution of the particles' joint fall speed-size characteristics at air temperatures from 0.5 to 0 C suggests that wet-snow particles quickly make a transition to rain once mel ting has progressed sufficiently. As air temperatures increase to 1.5 C, the reduction in the number of very large aggregates with a diame ter > 10 mm coincides with the appearance of rain particles larger than 6 mm. In this setting. very large raindrops appear to be the result of aggregates melting with minimal breakup rather than formation by c oalescence. In contrast to dry snow and rain, the fall speed for wet snow has a much weaker correlation between increasing size and increasing fall speed. Wet snow has a larger standard deviation of fall spee d (120%-230% relative to dry snow) for a given particle size. The ave rage fall speed for observed wet-snow particles with a diameter great er than or equal to 2.4 mm is 2 m/s with a standard deviation of 0.8 m/s. The large standard deviation is likely related to the coexistence of particles of similar physical size with different percentages of melting. These results suggest that different particle sizes are not required for aggregation since wet-snow particles of the same size can have different fall speeds. Given the large standard deviation of fa ll speeds in wet snow, the collision efficiency for wet snow is likely larger than that of dry snow. For particle sizes between 1 and 10 mm in diameter within mixed precipitation, rain constituted I % of the particles by volume within the isothermal layer at 0 C and 4% of the particles by volume for the region just below the isothermal layer where air temperatures rise from 0" to 0.5"C. As air temperatures increa sed above 0.5 C, the relative proportions of rain versus snow particl es shift dramatically and raindrops become dominant. The value of 0.5 C for the sharp transition in volume fraction from snow to rain is sl ightly lower than the range from 1 .l to 1.7 C often used in hydrolog ical models.

  1. Simultaneous retrieval of sea ice thickness and snow depth using concurrent active altimetry and passive L-band remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xu, S.; Liu, J.

    2017-12-01

    The retrieval of sea ice thickness mainly relies on satellite altimetry, and the freeboard measurements are converted to sea ice thickness (hi) under certain assumptions over snow loading. The uncertain in snow depth (hs) is a major source of uncertainty in the retrieved sea ice thickness and total volume for both radar and laser altimetry. In this study, novel algorithms for the simultaneous retrieval of hi and hs are proposed for the data synergy of L-band (1.4 GHz) passive remote sensing and both types of active altimetry: (1) L-band (1.4GHz) brightness temperature (TB) from Soil Moisture Ocean Salinity (SMOS) satellite and sea ice freeboard (FBice) from radar altimetry, (2) L-band TB data and snow freeboard (FBsnow) from laser altimetry. Two physical models serve as the forward models for the retrieval: L-band radiation model, and the hydrostatic equilibrium model. Verification with SMOS and Operational IceBridge (OIB) data is carried out, showing overall good retrieval accuracy for both sea ice parameters. Specifically, we show that the covariability between hs and FBsnow is crucial for the synergy between TB and FBsnow. Comparison with existing algorithms shows lower uncertainty in both sea ice parameters, and that the uncertainty in the retrieved sea ice thickness as caused by that of snow depth is spatially uncorrelated, with the potential reduction of the volume uncertainty through spatial sampling. The proposed algorithms can be applied to the retrieval of sea ice parameters at basin-scale, using concurrent active and passive remote sensing data based on satellites.

  2. High-resolution LIDAR and ground observations of snow cover in a complex forested terrain in the Sierra Nevada - implications for optical remote sensing of seasonal snow.

    NASA Astrophysics Data System (ADS)

    Kostadinov, T. S.; Harpold, A.; Hill, R.; McGwire, K.

    2017-12-01

    Seasonal snow cover is a key component of the hydrologic regime in many regions of the world, especially those in temperate latitudes with mountainous terrain and dry summers. Such regions support large human populations which depend on the mountain snowpack for their water supplies. It is thus important to quantify snow cover accurately and continuously in these regions. Optical remote-sensing methods are able to detect snow and leverage space-borne spectroradiometers with global coverage such as MODIS to produce global snow cover maps. However, snow is harder to detect accurately in mountainous forested terrain, where topography influences retrieval algorithms, and importantly - forest canopies complicate radiative transfer and obfuscate the snow. Current satellite snow cover algorithms assume that fractional snow-covered area (fSCA) under the canopy is the same as the fSCA in the visible portion of the pixel. In-situ observations and first principles considerations indicate otherwise, therefore there is a need for improvement of the under-canopy correction of snow cover. Here, we leverage multiple LIDAR overflights and in-situ observations with a distributed fiber-optic temperature sensor (DTS) to quantify snow cover under canopy as opposed to gap areas at the Sagehen Experimental Forest in the Northern Sierra Nevada, California, USA. Snow-off LIDAR overflights from 2014 are used to create a baseline high-resolution digital elevation model and classify pixels at 1 m resolution as canopy-covered or gap. Low canopy pixels are excluded from the analysis. Snow-on LIDAR overflights conducted by the Airborne Snow Observatory in 2016 are then used to classify all pixels as snow-covered or not and quantify fSCA under canopies vs. in gap areas over the Sagehen watershed. DTS observations are classified as snow-covered or not based on diel temperature fluctuations and used as validation for the LIDAR observations. LIDAR- and DTS-derived fSCA is also compared with retrievals from hyperspectral imaging spectroradiometer (AVIRIS) data. Initial evidence suggest fSCA was generally lower under canopy and that overall snow cover estimates were overestimated as a result. Implications for a canopy correction applicable to coarser-resolution sensors like MODIS are discussed, as are topography and view angle effects.

  3. Estimate of temperature change due to ice and snow accretion in the boreal forest regions

    NASA Astrophysics Data System (ADS)

    Sugiura, K.; Nagai, S.; Suzuki, R.; Eicken, H.; Maximov, T. C.

    2016-12-01

    Previous research has demonstrated that there is a wide difference between the surface albedo in winter/spring in snow-covered forest regions in various global climate models. If the forest is covered with snow, the surface albedo would increase. In this study, we carried out field observations to monitor the frequency of ice and snow accretion in the boreal forest regions. The time-lapse digital camera was set up on each side of the observation towers at the site located to the north of Fairbanks (USA) and at the site located to the north of Yakutsk (Russia). It was confirmed that both forests were not necessarily covered with snow without a break from the start of continuous snow cover until the end. In addition, the boreal forest at the Yakutsk site is covered with snow in comparison with the boreal forest at the Fairbanks site for a long term such as for about five month. Using a one-dimensional mathematics model about the energy flow including atmospheric multiple scattering, we estimated temperature change due to ice and snow accretion in the boreal forest regions. The result show that the mean surface temperature rises approximately 0.5 [oC] when the boreal forest is not covered with snow. In this presentation, we discuss the snow albedo parameterization in the boreal forest regions and the one-dimensional mathematics model to provide a basis for a better understanding of the role of snow in the climate system.

  4. Snow-atmosphere coupling and its impact on temperature variability and extremes over North America

    NASA Astrophysics Data System (ADS)

    Diro, G. T.; Sushama, L.; Huziy, O.

    2018-04-01

    The impact of snow-atmosphere coupling on climate variability and extremes over North America is investigated using modeling experiments with the fifth generation Canadian Regional Climate Model (CRCM5). To this end, two CRCM5 simulations driven by ERA-Interim reanalysis for the 1981-2010 period are performed, where snow cover and depth are prescribed (uncoupled) in one simulation while they evolve interactively (coupled) during model integration in the second one. Results indicate systematic influence of snow cover and snow depth variability on the inter-annual variability of soil and air temperatures during winter and spring seasons. Inter-annual variability of air temperature is larger in the coupled simulation, with snow cover and depth variability accounting for 40-60% of winter temperature variability over the Mid-west, Northern Great Plains and over the Canadian Prairies. The contribution of snow variability reaches even more than 70% during spring and the regions of high snow-temperature coupling extend north of the boreal forests. The dominant process contributing to the snow-atmosphere coupling is the albedo effect in winter, while the hydrological effect controls the coupling in spring. Snow cover/depth variability at different locations is also found to affect extremes. For instance, variability of cold-spell characteristics is sensitive to snow cover/depth variation over the Mid-west and Northern Great Plains, whereas, warm-spell variability is sensitive to snow variation primarily in regions with climatologically extensive snow cover such as northeast Canada and the Rockies. Furthermore, snow-atmosphere interactions appear to have contributed to enhancing the number of cold spell days during the 2002 spring, which is the coldest recorded during the study period, by over 50%, over western North America. Additional results also provide useful information on the importance of the interactions of snow with large-scale mode of variability in modulating temperature extreme characteristics.

  5. Monitoring Food Security Indicators from Remote Sensing and Predicting Cereal Production in Afghanistan

    NASA Astrophysics Data System (ADS)

    Pervez, M. S.; Budde, M. E.; Rowland, J.

    2015-12-01

    We extract percent of basin snow covered areas above 2500m elevation from Moderate Resolution Imaging Spectroradiometer (MODIS) 500-meter 8-day snow cover composites to monitor accumulation and depletion of snow in the basin. While the accumulation and depletion of snow cover extent provides an indication of the temporal progression of the snow pack, it does not provide insight into available water for irrigation. Therefore, we use snow model results from the National Operational Hydrologic Remote Sensing Center to quantify snow water equivalent and volume of water available within the snowpack for irrigation. In an effort to understand how water availability, along with its inter-annual variability, relates to the food security of the country, we develop a simple, effective, and easy-to-implement model to identify irrigated areas across the country on both annual and mid-season basis. The model is based on applying thresholds to peak growing season vegetation indices—derived from 250-meter MODIS images—in a decision-tree classifier to separate irrigated crops from non-irrigated vegetation. The spatial distribution and areal estimates of irrigated areas from these maps compare well with irrigated areas classified from multiple snap shots of the landscape from Landsat 5 optical and thermal images over selected locations. We observed that the extents of irrigated areas varied depending on the availability of snowmelt and can be between 1.35 million hectares in a year with significant water deficit and 2.4 million hectares in a year with significant water surplus. The changes in the amount of available water generally can contribute up to a 30% change in irrigated areas. We also observed that the strong correlation between inter-annual variability of irrigated areas and the variability in the country's cereal production could be utilized to predict an annual estimate of cereal production, providing early indication of food security scenarios for the country.

  6. Snow depth and snow cover retrieval from FengYun3B microwave radiation imagery based on a snow passive microwave unmixing method in Northeast China

    NASA Astrophysics Data System (ADS)

    Gu, Lingjia; Ren, Ruizhi; Zhao, Kai; Li, Xiaofeng

    2014-01-01

    The precision of snow parameter retrieval is unsatisfactory for current practical demands. The primary reason is because of the problem of mixed pixels that are caused by low spatial resolution of satellite passive microwave data. A snow passive microwave unmixing method is proposed in this paper, based on land cover type data and the antenna gain function of passive microwaves. The land cover type of Northeast China is partitioned into grass, farmland, bare soil, forest, and water body types. The component brightness temperatures (CBT), namely unmixed data, with 1 km data resolution are obtained using the proposed unmixing method. The snow depth determined by the CBT and three snow depth retrieval algorithms are validated through field measurements taken in forest and farmland areas of Northeast China in January 2012 and 2013. The results show that the overall of the retrieval precision of the snow depth is improved by 17% in farmland areas and 10% in forest areas when using the CBT in comparison with the mixed pixels. The snow cover results based on the CBT are compared with existing MODIS snow cover products. The results demonstrate that more snow cover information can be obtained with up to 86% accuracy.

  7. Comparison of the effects of using local and central snow deposits: a case study in Luleå.

    PubMed

    Reinosdotter, K; Viklander, M; Malmqvist, P A

    2003-01-01

    The aim of the study was to determine if an increased use of local land-based snow deposits would be more sustainable than the use of a central snow deposit. The study focused on transport related emissions, costs for transporting the snow, technical attendance, local effects, public acceptance, land use, effects on the recipient environmental control and potential for accidents. General information was obtained from an inventory regarding snow handling that was made in 14, geographically spread, Swedish municipalities during 2001. The comparison of costs for transporting snow and transport-related emissions was based on information gathered from the municipality of Luleå. The study showed that using local land-based snow deposits would decrease traffic-related emissions such as CO2, CO and NO(x) by 40% annually and would decrease the annual cost for transporting snow by nearly 80%. On the other hand local snow deposits may lead to an increased risk of accidents and to negative local effects such as delayed growing season, flooding and drainage problems. Available land for local snow deposits in the cities is hard to find, and is usually expensive. Therefore a combination of local and central snow deposits is likely to be the most realistic option.

  8. Infrasound array criteria for automatic detection and front velocity estimation of snow avalanches: towards a real-time early-warning system

    NASA Astrophysics Data System (ADS)

    Marchetti, E.; Ripepe, M.; Ulivieri, G.; Kogelnig, A.

    2015-11-01

    Avalanche risk management is strongly related to the ability to identify and timely report the occurrence of snow avalanches. Infrasound has been applied to avalanche research and monitoring for the last 20 years but it never turned into an operational tool to identify clear signals related to avalanches. We present here a method based on the analysis of infrasound signals recorded by a small aperture array in Ischgl (Austria), which provides a significant improvement to overcome this limit. The method is based on array-derived wave parameters, such as back azimuth and apparent velocity. The method defines threshold criteria for automatic avalanche identification by considering avalanches as a moving source of infrasound. We validate the efficiency of the automatic infrasound detection with continuous observations with Doppler radar and we show how the velocity of a snow avalanche in any given path around the array can be efficiently derived. Our results indicate that a proper infrasound array analysis allows a robust, real-time, remote detection of snow avalanches that is able to provide the number and the time of occurrence of snow avalanches occurring all around the array, which represent key information for a proper validation of avalanche forecast models and risk management in a given area.

  9. How much runoff originates as snow in the western United States, and how will that change in the future?

    NASA Astrophysics Data System (ADS)

    Li, Dongyue; Wrzesien, Melissa L.; Durand, Michael; Adam, Jennifer; Lettenmaier, Dennis P.

    2017-06-01

    In the western United States, the seasonal phase of snow storage bridges between winter-dominant precipitation and summer-dominant water demand. The critical role of snow in water supply has been frequently quantified using the ratio of snowmelt-derived runoff to total runoff. However, current estimates of the fraction of annual runoff generated by snowmelt are not based on systematic analyses. Here based on hydrological model simulations and a new snowmelt tracking algorithm, we show that 53% of the total runoff in the western United States originates as snowmelt, despite only 37% of the precipitation falling as snow. In mountainous areas, snowmelt is responsible for 70% of the total runoff. By 2100, the contribution of snowmelt to runoff will decrease by one third for the western U.S. in the Intergovernmental Panel on Climate Change Representative Concentration Pathway 8.5 scenario. Snowmelt-derived runoff currently makes up two thirds of the inflow to the region's major reservoirs. We argue that substantial impacts on water supply are likely in a warmer climate.

  10. Uncertainty Evaluation and Appropriate Distribution for the RDHM in the Rockies

    NASA Astrophysics Data System (ADS)

    Kim, J.; Bastidas, L. A.; Clark, E. P.

    2010-12-01

    The problems that hydrologic models have in properly reproducing the processes involved in mountainous areas, and in particular the Rocky Mountains, are widely acknowledged. Herein, we present an application of the National Weather Service RDHM distributed model over the Durango River basin in Colorado. We focus primarily in the assessment of the model prediction uncertainty associated with the parameter estimation and the comparison of the model performance using parameters obtained with a priori estimation following the procedure of Koren et al., and those obtained via inverse modeling using a variety of Markov chain Monte Carlo based optimization algorithms. The model evaluation is based on traditional procedures as well as non-traditional ones based on the use of shape matching functions, which are more appropriate for the evaluation of distributed information (e.g. Hausdorff distance, earth movers distance). The variables used for the model performance evaluation are discharge (with internal nodes), snow cover and snow water equivalent. An attempt to establish the proper degree of distribution, for the Durango basin with the RDHM model, is also presented.

  11. Carbon dioxide crystals: An examination of their size, shape, and scattering properties at 37 GHz and comparisons with water ice (snow) measurements

    NASA Astrophysics Data System (ADS)

    Foster, J. L.; Chang, A. T. C.; Hall, D. K.; Wergin, W. P.; Erbe, E. F.; Barton, J.

    1998-11-01

    On Earth, the temperature regime is such that water is generally fairly close to its freezing point, and thus relatively small differences in climate affect how much snow and ice are present and whether or not the snow covering will be seasonal or last from one year to the next. On Mars, as on Earth, the presence of ice also plays a role in large-scale climate processes and it is important in controlling the abundance of atmospheric carbon dioxide (CO2) and water vapor. Passive microwave radiometry has been used to derive snow extent and snow depth on Earth, where scattering by snow (H2O) crystals is the dominant effect on the microwave radiation emanating from the ground and emerging from the snowpack. Microwave remote sensing may also prove to be useful for assessing the coverage and thickness of the frozen H2O and CO2 on Mars, but more exact information is needed on how both H2O crystals and frozen CO2 crystals scatter and absorb passive microwave radiation. In this study, CO2 crystals have been produced in a laboratory cold chamber with temperature conditions similar to those found on the polar caps of Mars, and detailed three-dimensional images of their size and shape have been made with a low-temperature scanning electron microscope. Unlike the much larger H2O snow crystals found on Earth, which typically range in size between 0.1 mm and 1.0 mm (radius), CO2 crystals are differently shaped and considerably smaller. Bipyramid crystals (base to base four-sided pyramids) are commonly observed, some as small as 1.0 μm. A discrete dipole model was employed to calculate the passive microwave radiation scattered and absorbed by crystals of various sizes and shapes. Modeling results indicate that the shape of the crystal, whether for frozen CO2 or H2O, is of little consequence in affecting extinction efficiency. However, owing to their smaller size, frozen CO2 crystals are more emissive than the H2O crystals in the 37 GHz region of the microwave spectrum. For the larger sizes of the modeled crystals, scattering dominates over absorption since the particles approach the size of the wavelength. The scattering values are 2 orders of magnitude larger than absorption for the 900 μm size snow particles. For CO2 crystals of 3.0 μm in size, absorption is 7 orders of magnitude greater than scattering.

  12. Black carbon radiative forcing over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    He, Cenlin; Li, Qinbin; Liou, Kuo-Nan; Takano, Yoshi; Gu, Yu; Qi, Ling; Mao, Yuhao; Leung, L. Ruby

    2014-11-01

    We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. The annual mean BC snow albedo forcing is 2.9 W m-2 averaged over snow-covered plateau regions, which is a factor of 3 larger than the value over global land snowpack. BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing, and coated BC increases the forcing by 30-50% compared with uncoated BC aggregates, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. The annual BC DRF at the top of the atmosphere is 2.3 W m-2 with uncertainties of -70-85% in the plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network observations. The BC forcings are attributed to emissions from different regions.

  13. Meltwater flux and runoff modeling in the abalation area of jakobshavn Isbrae, West Greenland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mernild, Sebastian Haugard; Chylek, Petr; Liston, Glen

    2009-01-01

    The temporal variability in surface snow and glacier melt flux and runoff were investigated for the ablation area of lakobshavn Isbrae, West Greenland. High-resolution meteorological observations both on and outside the Greenland Ice Sheet (GrIS) were used as model input. Realistic descriptions of snow accumulation, snow and glacier-ice melt, and runoff are essential to understand trends in ice sheet surface properties and processes. SnowModel, a physically based, spatially distributed meteorological and snow-evolution modeling system was used to simulate the temporal variability of lakobshavn Isbrre accumulation and ablation processes for 2000/01-2006/07. Winter snow-depth observations and MODIS satellite-derived summer melt observations weremore » used for model validation of accumulation and ablation. Simulations agreed well with observed values. Simulated annual surface melt varied from as low as 3.83 x 10{sup 9} m{sup 3} (2001/02) to as high as 8.64 x 10{sup 9} m{sup 3} (2004/05). Modeled surface melt occurred at elevations reaching 1,870 m a.s.l. for 2004/05, while the equilibrium line altitude (ELA) fluctuated from 990 to 1,210 m a.s.l. during the simulation period. The SnowModel meltwater retention and refreezing routines considerably reduce the amount of meltwater available as ice sheet runoff; without these routines the lakobshavn surface runoff would be overestimated by an average of 80%. From September/October through May/June no runoff events were simulated. The modeled interannual runoff variability varied from 1.81 x 10{sup 9} m{sup 3} (2001/02) to 5.21 x 10{sup 9} m{sup 3} (2004/05), yielding a cumulative runoff at the Jakobshavn glacier terminus of {approx}2.25 m w.eq. to {approx}4.5 m w.eq., respectively. The average modeled lakobshavn runoff of {approx}3.4 km{sup 3} y{sup -1} was merged with previous estimates of Jakobshavn ice discharge to quantify the freshwater flux to Illulissat Icefiord. For both runoff and ice discharge the average trends are similar, indicating increasing (insignificant) influx of freshwater to the Illulissat Icefiord for the period 2000/01-2006/07. This study suggests that surface runoff forms a minor part of the overall Jakobshavn freshwater flux to the fiord: around 7% ({approx}3.4 km{sup 3} y{sup -1}) of the average annual freshwater flux of {approx}51.0 km{sup 3} y{sup -1} originates from the surface runoff.« less

  14. Co-production of Snow Projections for a Study of Snow Persistence Projections for the American Wolverine Gulo gulo

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Barsugli, J. J.; Guinotte, J. M.; Livneh, B.; Dewes, C.; Rangwala, I.; Heldmyer, A.; Torbit, S.

    2017-12-01

    This presentation will describe the efforts of climate scientists to work with the US Fish and Wildlife Service (FWS) to provide analysis of future snow persistence to support a Species Status Assessment (SSA) for the American wolverine (Gulo gulo), under the Endangered Species Act (ESA). The project has been a research to application (R2A) study, aimed directly at the FWS needs, and in regular collaboration with FWS Region 6 personnel to discuss and agree on the choice downscaled projections to represent a range of plausible futures, and other methodological choices including use of high resolution (250m) physical hydrology modeling. FWS sought improved information on which to base a court-ordered re-evaluation of the conclusions of a previous SSA, due in 12 months, necessitating a quick turn-around for the snow research. The goal was to improve upon the the previous evaluation of snow persistence, both in understanding of the range of uncertainty and by using new snow modeling at spatial scales intended to be more relevant to both physical snowpack processes and to making inferences about potential wolverine denning opportunity. This project was embedded both in a specific legal/regulatory process and also in a broader FWS interest in building body of science for snow-dependent species that might support other ESA processes. Results of the co-production included new scientific questions and analytic approaches that arose from the interaction between climate scientists and ecologists. The fine spatial scales of the analysis compared to previous work allowed new hypotheses to be articulated, but also led to significant issues in the interpretation of the snow model output. This presentation will discuss key issues that arose in the collaboration between scientists and the managers developing the SSA, including the managing the independence of the science while remaining in a co-production mode, the challenges of the rapid time frame, and the challenges transitioning findings from a more academic and research framework to the demands of applied resource management.

  15. Patterns of Snow Leopard Site Use in an Increasingly Human-Dominated Landscape

    PubMed Central

    2016-01-01

    Human population growth and concomitant increases in demand for natural resources pose threats to many wildlife populations. The landscapes used by the endangered snow leopard (Panthera uncia) and their prey is increasingly subject to major changes in land use. We aimed to assess the influence of 1) key human activities, as indicated by the presence of mining and livestock herding, and 2) the presence of a key prey species, the blue sheep (Pseudois nayaur), on probability of snow leopard site use across the landscape. In Gansu Province, China, we conducted sign surveys in 49 grid cells, each of 16 km2 in size, within a larger area of 3392 km2. We analysed the data using likelihood-based habitat occupancy models that explicitly account for imperfect detection and spatial auto-correlation between survey transect segments. The model-averaged estimate of snow leopard occupancy was high [0.75 (SE 0.10)], but only marginally higher than the naïve estimate (0.67). Snow leopard segment-level probability of detection, given occupancy on a 500 m spatial replicate, was also high [0.68 (SE 0.08)]. Prey presence was the main determinant of snow leopard site use, while human disturbances, in the form of mining and herding, had low predictive power. These findings suggest that snow leopards continue to use areas very close to such disturbances, as long as there is sufficient prey. Improved knowledge about the effect of human activity on large carnivores, which require large areas and intact prey populations, is urgently needed for conservation planning at the local and global levels. We highlight a number of methodological considerations that should guide the design of such research. PMID:27171203

  16. Patterns of Snow Leopard Site Use in an Increasingly Human-Dominated Landscape.

    PubMed

    Alexander, Justine Shanti; Gopalaswamy, Arjun M; Shi, Kun; Hughes, Joelene; Riordan, Philip

    2016-01-01

    Human population growth and concomitant increases in demand for natural resources pose threats to many wildlife populations. The landscapes used by the endangered snow leopard (Panthera uncia) and their prey is increasingly subject to major changes in land use. We aimed to assess the influence of 1) key human activities, as indicated by the presence of mining and livestock herding, and 2) the presence of a key prey species, the blue sheep (Pseudois nayaur), on probability of snow leopard site use across the landscape. In Gansu Province, China, we conducted sign surveys in 49 grid cells, each of 16 km2 in size, within a larger area of 3392 km2. We analysed the data using likelihood-based habitat occupancy models that explicitly account for imperfect detection and spatial auto-correlation between survey transect segments. The model-averaged estimate of snow leopard occupancy was high [0.75 (SE 0.10)], but only marginally higher than the naïve estimate (0.67). Snow leopard segment-level probability of detection, given occupancy on a 500 m spatial replicate, was also high [0.68 (SE 0.08)]. Prey presence was the main determinant of snow leopard site use, while human disturbances, in the form of mining and herding, had low predictive power. These findings suggest that snow leopards continue to use areas very close to such disturbances, as long as there is sufficient prey. Improved knowledge about the effect of human activity on large carnivores, which require large areas and intact prey populations, is urgently needed for conservation planning at the local and global levels. We highlight a number of methodological considerations that should guide the design of such research.

  17. Estimation of daily Snow Cover Area combining MODIS and LANDSAT information by using cellular automata

    NASA Astrophysics Data System (ADS)

    Pardo-Iguzquiza, Eulogio; Juan Collados Lara, Antonio; Pulido-Velazquez, David

    2016-04-01

    The snow availability in Alpine catchments is essential for the economy of these areas. It plays an important role in tourist development but also in the management of the Water Resources Snow is an important water resource in many river basins with mountains in the catchment area. The determination of the snow water equivalent requires the estimation of the evolution of the snow pack (cover area, thickness and snow density) along the time. Although there are complex physical models of the dynamics of the snow pack, sometimes the data available are scarce and a stochastic model like the cellular automata (CA) can be of great practical interest. CA can be used to model the dynamics of growth and wane of the snow pack. The CA is calibrated with historical data. This requires the determination of transition rules that are capable of modeling the evolution of the spatial pattern of snow cover area. Furthermore, CA requires the definition of states and neighborhoods. We have included topographical variables and climatological variables in order to define the state of each pixel. The evolution of snow cover in a pixel depends on its state, the state of the neighboring pixels and the transition rules. The calibration of the CA is done using daily MODIS data, available for the period 24/02/2002 to present with a spatial resolution of 500 m, and the LANDSAT information available with a sixteen-day periodicity from 1984 to the present and with spatial resolution of 30 m. The methodology has been applied to estimation of the snow cover area of Sierra Nevada mountain range in the Southern of Spain to obtain snow cover area daily information with 500 m spatial resolution for the period 1980-2014. Acknowledgments: This research has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds. We would also like to thank NASA DAAC and LANDSAT project for the data provided for this study.

  18. High fidelity remote sensing of snow properties from MODIS and the Airborne Snow Observatory: Snowflakes to Terabytes

    NASA Astrophysics Data System (ADS)

    Painter, T.; Mattmann, C. A.; Brodzik, M.; Bryant, A. C.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Rittger, K. E.; Seidel, F. C.; Zimdars, P. A.

    2012-12-01

    The response of the cryosphere to climate forcings largely determines Earth's climate sensitivity. However, our understanding of the strength of the simulated snow albedo feedback varies by a factor of three in the GCMs used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, mainly caused by uncertainties in snow extent and the albedo of snow-covered areas from imprecise remote sensing retrievals. Additionally, the Western US and other regions of the globe depend predominantly on snowmelt for their water supply to agriculture, industry and cities, hydroelectric power, and recreation, against rising demand from increasing population. In the mountains of the Upper Colorado River Basin, dust radiative forcing in snow shortens snow cover duration by 3-7 weeks. Extended to the entire upper basin, the 5-fold increase in dust load since the late-1800s results in a 3-week earlier peak runoff and a 5% annual loss of total runoff. The remotely sensed dynamics of snow cover duration and melt however have not been factored into hydrological modeling, operational forecasting, and policymaking. To address these deficiencies in our understanding of snow properties, we have developed and validated a suite of MODIS snow products that provide accurate fractional snow covered area and radiative forcing of dust and carbonaceous aerosols in snow. The MODIS Snow Covered Area and Grain size (MODSCAG) and MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithms, developed and transferred from imaging spectroscopy techniques, leverage the complete MODIS surface reflectance spectrum. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. We have created the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties, and provide complete, robust inputs to water management models and systems of the future. In the push to better understand the physical and ecological processes of snowmelt and how they influence regional to global hydrologic and climatic cycles, these technologies and retrievals provide markedly improved detail. We have implemented a science computing facility anchored upon the open source Apache OODT data processing framework. Apache OODT provides adaptable, rapid, and effective workflow technologies that we leverage to execute 10s of thousands of MOD-DRFS and MODSCAG jobs in the Western US, Alaska, and High Asia, critical regions where snowmelt and runoff must be more accurately and precisely identified. Apache OODT also provides us data dissemination capabilities built upon the popular, open source WebDAV protocol that allow our system to disseminate over 20 TB of MOD-DRFS and MODSCAG to the decision making community. Our latest endeavor involves building out Apache OODT to support Geospatial exploration of our data, including providing a Leaflet.js based Map, Geoserver backed protocols, and seamless integration with our Apache OODT system. This framework provides the foundation for the ASO data system.

  19. Dynamics of Phase Transitions in a Snow Mass Containing Water-Soluble Salt Particles

    NASA Astrophysics Data System (ADS)

    Zelenko, V. L.; Heifets, L. I.; Orlov, Yu. N.; Voskresenskiy, N. M.

    2018-07-01

    A macrokinetic approach is used to describe the dynamics of phase transitions in a snow mass containing water-soluble salt particles. Equations are derived that describe the rate of salt granule dissolution and the change in the phase composition and temperature of a snow mass under the conditions of heat transfer with an isothermal surface. An experimental setup that models the change in the state of a snow mass placed on an isothermal surface is created to verify theoretical conclusions. Experimental observations of the change in temperature of the snow mass are compared to theoretical calculations. The mathematical model that is developed can be used to predict the state of a snow mass on roads treated with a deicing agent, or to analyze the state of snow masses containing water-soluble salt inclusions and resting on mountain slopes.

  20. Diffusion of nitrogen oxides and oxygenated volatile organic compounds through snow

    NASA Astrophysics Data System (ADS)

    Bartels-Rausch, T.; Ammann, M.; Schneebeli, M.; Riche, F.; Wren, S. N.

    2013-12-01

    Release of trace gases from surface snow on Earth drives atmospheric chemistry, especially in the Polar Regions. The exchange of atmospheric trace gases between snow or firn and atmosphere can also determine how these species are incorporated into glacial ice, which serves as archive. At low wind conditions, such fluxes between the porous surface snow and the overlaying atmosphere are driven by diffusion through the interstitial air. Here we present results from two laboratory studies where we looked at how the structure of the snowpack, the interaction of the trace gases with the snow surface, and the grain boundaries influence the diffusion of NO, NO2, HONO, methanol, and acetone on time scales up to 1 h. The diffusion through a snow sample was the direct observable of the experiments. Results for different snow types are presented, the structures of which were analysed by means of X-ray computed micro-tomography. Grain boundary content was quantified in one sample using a stereological method. The observed diffusion profiles were very well reproduced in simulations based on gas-phase diffusion and the known structure of the snow sample at temperatures above 253 K. At colder temperatures surface interactions start to dominate the diffusion. Parameterizing these in terms of adsorption to the solid ice surface gave much better agreement to the observations than the use of air - liquid partitioning coefficients. This is a central result as field and modelling studies have indicated that the partitioning to liquid water might describe the diffusion through snow much better even at cold temperatures. This will be discussed using our recent results from surface sensitive spectroscopy experiments. No changes in the diffusion was observed by increasing the number of grain boundaries in the snow sample by a factor of 7.

  1. Remote sensing of snow and ice

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1979-01-01

    This paper reviews remote sensing of snow and ice, techniques for improved monitoring, and incorporation of the new data into forecasting and management systems. The snowcover interpretation of visible and infrared data from satellites, automated digital methods, radiative transfer modeling to calculate the solar reflectance of snow, and models using snowcover input data and elevation zones for calculating snowmelt are discussed. The use of visible and near infrared techniques for inferring snow properties, microwave monitoring of snowpack characteristics, use of Landsat images for collecting glacier data, monitoring of river ice with visible imagery from NOAA satellites, use of sequential imagery for tracking ice flow movement, and microwave studies of sea ice are described. Applications of snow and ice research to commercial use are examined, and it is concluded that a major problem to be solved is characterization of snow and ice in nature, since assigning of the correct properties to a real system to be modeled has been difficult.

  2. Twenty-four year record of Northern Hemisphere snow cover derived from passive microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Armstrong, Richard L.; Brodzik, Mary Jo

    2003-04-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. It is now possible to monitor the global fluctuation of snow cover over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a smiliar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible statellite data and the visible data typically show higher monthly variability. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as on into the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the negative spectral gradient driving the passive microwave algorithm is enhanced. Trends in annual averages are similar, decreasing at rates of approximately 2% per decade. The only region where the passive microwave data consistently indicate snow and the visible data do not is over the Tibetan Plateau and surrounding mountain areas. In the effort to determine the accuracy of the microwave algorithm over this region we are acquiring surface snow observations through a collaborative study with CAREERI/Lanzhou. In order to provide an optimal snow cover product in the future, we are developing a procedure that blends snow extent maps derived from MODIS data with snow water equivalent maps derived from both SSM/I and AMSR.

  3. On the Impact of Snow Salinity on CryoSat-2 First-Year Sea Ice Thickness Retrievals

    NASA Astrophysics Data System (ADS)

    Nandan, V.; Yackel, J.; Geldsetzer, T.; Mahmud, M.

    2017-12-01

    European Space Agency's Ku-band altimeter CryoSat-2 (CS-2) has demonstrated its potential to provide extensive basin-scale spatial and temporal measurements of Arctic sea ice freeboard. It is assumed that CS-2 altimetric returns originate from the snow/sea ice interface (assumed to be the main scattering horizon). However, in newly formed thin ice ( 0.6 m) through to thick first-year sea ice (FYI) ( 2 m), upward wicking of brine into the snow cover from the underlying sea ice surface produces saline snow layers, especially in the bottom 6-8 cm of a snow cover. This in turn modifies the brine volume at/or near the snow/sea ice interface, altering the dielectric and scattering properties of the snow cover, leading to strong Ku-band microwave attenuation within the upper snow volume. Such significant reductions in Ku-band penetration may substantially affect CS-2 FYI freeboard retrievals. Therefore, the goal of this study is to evaluate a theoretical approach to estimate snow salinity induced uncertainty on CS-2 Arctic FYI freeboard measurements. Using the freeboard-to-thickness hydrostatic equilibrium equation, we quantify the error differences between the CS-2 FYI thickness, (assuming complete penetration of CS-2 radar signals to the snow/FYI interface), and the FYI thickness based on the modeled Ku-band main scattering horizon for different snow cover cases. We utilized naturally occurring saline and non-saline snow cover cases ranging between 6 cm to 32 cm from the Canadian Arctic, observed during late-winter from 1993 to 2017, on newly-formed ice ( 0.6 m), medium ( 1.5 m) and thick FYI ( 2 m). Our results suggest that irrespective of the thickness of the snow cover overlaying FYI, the thickness of brine-wetted snow layers and actual FYI freeboard strongly influence the amount with which CS-2 FYI freeboard estimates and thus thickness calculations are overestimated. This effect is accentuated for increasingly thicker saline snow covers overlaying newly-formed ice, which accounted to an overestimated FYI thickness by 250%, when compared to 80% overestimations on thinner saline snow covers, and the error reduces with increase in FYI thickness. Our study recommends the CS-2 sea ice community to add snow salinity as a potential error source, affecting CS-2 Arctic FYI freeboard and thickness retrievals.

  4. Evaluation of single-band snow-patch mapping using high-resolution microwave remote sensing: an application in the maritime Antarctic

    NASA Astrophysics Data System (ADS)

    Mora, Carla; Jiménez, Juan Javier; Pina, Pedro; Catalão, João; Vieira, Gonçalo

    2017-01-01

    The mountainous and ice-free terrains of the maritime Antarctic generate complex mosaics of snow patches, ranging from tens to hundreds of metres. These can only be accurately mapped using high-resolution remote sensing. In this paper we evaluate the application of radar scenes from TerraSAR-X in High Resolution SpotLight mode for mapping snow patches at a test area on Fildes Peninsula (King George Island, South Shetlands). Snow-patch mapping and characterization of snow stratigraphy were conducted at the time of image acquisition on 12 and 13 January 2012. Snow was wet in all studied snow patches, with coarse-grain and rounded crystals showing advanced melting and with frequent ice layers in the snow pack. Two TerraSAR-X scenes in HH and VV polarization modes were analysed, with the former showing the best results when discriminating between wet snow, lake water and bare soil. However, significant overlap in the backscattering signal was found. Average wet-snow backscattering was -18.0 dB in HH mode, with water showing -21.1 dB and bare soil showing -11.9 dB. Single-band pixel-based and object-oriented image classification methods were used to assess the classification potential of TerraSAR-X SpotLight imagery. The best results were obtained with an object-oriented approach using a watershed segmentation with a support vector machine (SVM) classifier, with an overall accuracy of 92 % and Kappa of 0.88. The main limitation was the west to north-west facing snow patches, which showed significant error, an issue related to artefacts from the geometry of satellite imagery acquisition. The results show that TerraSAR-X in SpotLight mode provides high-quality imagery for mapping wet snow and snowmelt in the maritime Antarctic. The classification procedure that we propose is a simple method and a first step to an implementation in operational mode if a good digital elevation model is available.

  5. The Snowtweets Project: communicating snow depth measurements from specialists and non-specialists via mobile communication technologies and social networks

    NASA Astrophysics Data System (ADS)

    King, J. M.; Cabrera, A. R.; Kelly, R. E.

    2009-12-01

    With the global decline of in situ snow measurements for hydrometeorological applications, there is an evolving need to find alternative ways to collect localized measurements of snow. The Snowtweets Project is an experiment aimed at providing a way for people interested in making snow measurements to quickly broadcast their measurements to the internet. The goal of the project is to encourage specialists and non-specialists alike to share simple snow depth measurements through widely available social networking sites. We are currently using the rapidly growing microblogging site Twitter (www.twitter.com) as a broadcasting vehicle to collect the snow depth measurements. Using 140 characters or less, users "tweet" their snow depth from their location through the Twitter website. This can be done from a computer or smartphone with internet access or through SMS messaging. The project has developed a Snowtweets web application that interrogates Twitter by parsing the 140 character string to obtain a geographic position and snow depth. GeoRSS and KML feeds are available to visualize the tweets in GoogleEarth or they can be viewed in our own visualiser, Snowbird. The emphasis is on achieving wide coverage to increase the number of microblogs. Furthermore, after some quality control filters, the project is able to combine the broadcast snow depths with traditional and objective satellite remote sensing-based observations or hydrologic model estimates. Our site, snowcore.uwaterloo.ca, was launched in July 2009 and is ready for the 2009-2010 northern hemisphere winter. We invite comments from experienced community participation projects to help improve our product.

  6. Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.

    PubMed

    Calonne, Neige; Geindreau, Christian; Flin, Frédéric

    2014-11-26

    Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.

  7. Use of distributed snow cover information to update snow storages of a lumped rainfall-runoff model operationally

    NASA Astrophysics Data System (ADS)

    Lisniak, D.; Meissner, D.; Klein, B.; Pinzinger, R.

    2013-12-01

    The German Federal Institute of Hydrology (BfG) offers navigational water-level forecasting services on the Federal Waterways, like the rivers Rhine and Danube. In cooperation with the Federal States this mandate also includes the forecasting of flood events. For the River Rhine, the most frequented inland waterway in Central Europe, the BfG employs a hydrological model (HBV) coupled to a hydraulic model (SOBEK) by the FEWS-framework to perform daily forecasts of water-levels operationally. Sensitivity studies have shown that the state of soil water storage in the hydrological model is a major factor of uncertainty when performing short- to medium-range forecasts some days ahead. Taking into account the various additional sources of uncertainty associated with hydrological modeling, including measurement uncertainties, it is essential to estimate an optimal initial state of the soil water storage before propagating it in time, forced by meteorological forecasts, and transforming it into discharge. We show, that using the Ensemble Kalman Filter these initial states can be updated straightforward under certain hydrologic conditions. However, this approach is not sufficient if the runoff is mainly generated by snow melt. Since the snow cover evolution is modeled rather poorly by the HBV-model in our operational setting, flood events caused by snow melt are consistently underestimated by the HBV-model, which has long term effects in basins characterized by a nival runoff regime. Thus, it appears beneficial to update the snow storage of the HBV-model with information derived from regionalized snow cover observations. We present a method to incorporate spatially distributed snow cover observations into the lumped HBV-model. We show the plausibility of this approach and asses the benefits of a coupled snow cover and soil water storage updating, which combine a direct insertion with an Ensemble Kalman Filter. The Ensemble Kalman Filter used here takes into account the internal routing mechanism of the HBV-model, which causes a delayed response of the simulated discharge at the catchment outlet to changes in internal states.

  8. SUBGRID PARAMETERIZATION OF SNOW DISTRIBUTION FOR AN ENERGY AND MASS BALANCE SNOW COVER MODEL. (R824784)

    EPA Science Inventory

    Representation of sub-element scale variability in snow accumulation and ablation is increasingly recognized as important in distributed hydrologic modelling. Representing sub-grid scale variability may be accomplished through numerical integration of a nested grid or through a l...

  9. Modeling outcomes of approaches to sustained human and snow leopard coexistence.

    PubMed

    Wilman, Elizabeth A; Wilman, Elspeth N

    2016-02-01

    The snow leopard (Uncia uncia) is in danger of extinction. Killing to protect livestock is among the primary causes of its decline. Efforts to mitigate this threat have focused on balancing the need to conserve the snow leopard with the needs of local people in snow leopard habitat, many of whom rely on raising livestock for their livelihoods. Conservation of the snow leopard has the characteristics of a public good, and outside funding is required to support conservation efforts. There are 5 commonly discussed approaches to resolving this issue: (1) direct payments for conservation, (2) investments in protection from predation, (3) damage compensation payments, (4) investments in better livestock husbandry, and (5) leases of pastureland for wild prey. After a review of these 5 conservation strategies, an economic-ecologic model, which includes the interactions between the snow leopard, its wild prey, and livestock, is used to evaluate the 2 most promising conservation strategies. The model reveals that investments in protection from predation and leases of pastureland for wild prey are effective but only in delaying the eventual extinction of the snow leopard. To preserve the snow leopard, these approaches must be applied more aggressively and new ones explored. © 2015 Society for Conservation Biology.

  10. Seasonal evolution of the effective thermal conductivity of the snow and the soil in high Arctic herb tundra at Bylot Island, Canada

    NASA Astrophysics Data System (ADS)

    Domine, Florent; Barrere, Mathieu; Sarrazin, Denis

    2016-11-01

    The values of the snow and soil thermal conductivity, ksnow and ksoil, strongly impact the thermal regime of the ground in the Arctic, but very few data are available to test model predictions for these variables. We have monitored ksnow and ksoil using heated needle probes at Bylot Island in the Canadian High Arctic (73° N, 80° W) between July 2013 and July 2015. Few ksnow data were obtained during the 2013-2014 winter, because little snow was present. During the 2014-2015 winter ksnow monitoring at 2, 12 and 22 cm heights and field observations show that a depth hoar layer with ksnow around 0.02 W m-1 K-1 rapidly formed. At 12 and 22 cm, wind slabs with ksnow around 0.2 to 0.3 W m-1 K-1 formed. The monitoring of ksoil at 10 cm depth shows that in thawed soil ksoil was around 0.7 W m-1 K-1, while in frozen soil it was around 1.9 W m-1 K-1. The transition between both values took place within a few days, with faster thawing than freezing and a hysteresis effect evidenced in the thermal conductivity-liquid water content relationship. The fast transitions suggest that the use of a bimodal distribution of ksoil for modelling may be an interesting option that deserves further testing. Simulations of ksnow using the snow physics model Crocus were performed. Contrary to observations, Crocus predicts high ksnow values at the base of the snowpack (0.12-0.27 W m-1 K-1) and low ones in its upper parts (0.02-0.12 W m-1 K-1). We diagnose that this is because Crocus does not describe the large upward water vapour fluxes caused by the temperature gradient in the snow and soil. These fluxes produce mass transfer between the soil and lower snow layers to the upper snow layers and the atmosphere. Finally, we discuss the importance of the structure and properties of the Arctic snowpack on subnivean life, as species such as lemmings live under the snow most of the year and must travel in the lower snow layer in search of food.

  11. Bromine release from blowing snow and its impact on tropospheric chemistry

    NASA Astrophysics Data System (ADS)

    Griffiths, Paul; Yang, Xin; Abraham, N. Luke; Archibald, Alexander; Pyle, John

    2016-04-01

    In the last two decades, significant depletion of boundary layer ozone (ozone depletion events, ODEs) has been observed in both Arctic and Antarctic spring. ODEs are attributed to catalytic destruction by bromine radicals (Br plus BrO), especially during bromine explosion events (BEs), when high concentrations of BrO periodically occur. The source of bromine and the mechanism that sustains the high BrO levels are still the subject of study. Recent work by Pratt et al. (2013) posits Br2 production within saline snow and sea ice which leads to sudden ODEs. Previously, Yang et al. (2008) suggested snow could provide a source of (depleted) sea-salt aerosol if wicked from the surface of ice. They suggest that rapid depletion of bromide from the aerosol will constitute a source of photochemical Bry. Given the large sea ice extent in polar regions, this may constitute a significant source of sea salt and bromine in the polar lower atmosphere. While bromine release from blowing snow is perhaps less likely to trigger sudden ODEs, it may make a contribution to regional scale processes affecting ozone levels. Currently, the model parameterisations of Yang et al. assumes that rapid release of bromine occurs from fresh snow on sea ice during periods of strong wind. The parameterisation depends on an assumed sea-salt aerosol distribution generated via sublimation of the snow above the boundary layer, as well as taking into account the salinity of the snow. In this work, we draw on recent measurements by scientists from the British Antarctic Survey during a cruise aboard the Polarstern in the southern oceans. This has provided an extensive set of measurements of the chemical and physical characteristics of blowing snow over sea ice, and of the aerosol associated with it. Based on the observations, we have developed an improved parameterisation of the release of bromine from blowing snow. The paper presents results from the simulation performed using the United Kingdom Chemistry and Aerosols (UKCA) model, run as a component of the UK Met Office Unified Model, employing the updated parameterisation of Yang et al. We assess the performance of the parameterisation in simulating tropospheric BrO, a review of relevant parameters, as well as a quantitative assessment of the release of sea salt aerosol and its contribution to halogen chemistry in the polar and global atmosphere.

  12. Prediction of daily spring hydrographs for future climatic scenarios based on an integrated numerical modelling approach: Application on a snow-governed semi- arid karst catchment area.

    NASA Astrophysics Data System (ADS)

    Doummar, J.; Kassem, A.; Gurdak, J. J.

    2017-12-01

    In the framework of a three-year USAID/NSF- funded PEER Science project, flow in a karst system in Lebanon (Assal Spring; discharge 0.2-2.5 m3/s yearly volume of 22-30 Mm3) dominated by snow and semi arid conditions was simulated using an integrated numerical model (Mike She 2016). The calibrated model (Nash-Sutcliffe coefficient of 0.77) is based on high resolution input data (2014-2017) and detailed catchment characterization. The approach is to assess the influence of various model parameters on recharge signals in the different hydrological karst compartments (Atmosphere, unsaturated zone, and saturated zone) based on an integrated numerical model. These parameters include precipitation intensity and magnitude, temperature, snow-melt parameters, in addition to karst specific spatially distributed features such as fast infiltration points, soil properties and thickness, topographical slopes, Epikarst and thickness of unsaturated zone, and hydraulic conductivity among others. Moreover, the model is currently simulated forward using various scenarios for future climate (Global Climate Models GCM; daily downscaled temperature and precipitation time series for Lebanon 2020-2045) in order to depict the flow rates expected in the future and the effect of climate change on hydrographs recession coefficients, discharge maxima and minima, and total spring discharge volume . Additionally, a sensitivity analysis of individual or coupled major parameters allows quantifying their impact on recharge or indirectly on the vulnerability of the system (soil thickness, soil and rock hydraulic conductivity appear to be amongst the highly sensitive parameters). This study particularly unravels the normalized single effect of rain magnitude and intensity, snow, and temperature change on the flow rate (e.g., a change of temperature of 3° on the catchment yields a Residual Mean Square Error RMSE of 0.15 m3/s in the spring discharge and a 16% error in the total annual volume with respect to the calibrated model). Finally, such a study can allow decision makers to implement best informed management practices, especially in complex karst systems, to overcome impacts of climate change on water resources.

  13. Impacts of absorbing aerosol deposition on snowpack and hydrologic cycle in the Rocky Mountain region using variable-resolution CESM (VR-CESM)

    NASA Astrophysics Data System (ADS)

    Wu, C.; Liu, X.; Lin, Z.; Rahimi-Esfarjani, S. R.; Lu, Z.

    2017-12-01

    Deposition of light-absorbing aerosols (LAAs) including black carbon (BC) and dust onto snow surface has been suggested to reduce the snow albedo, and modulate the snowpack and consequent hydrologic cycle. In this study we use the variable-resolution Community Earth System Model (VR-CESM) to quantify the impacts of LAAs deposition onto snow in the Rocky Mountain region (RMR) during the period of 1981-2005. We first evaluate the model simulation of LAA concentrations both in the atmosphere and in snow, and then investigate the snowpack and runoff changes induced by LAAs-in-snow. The model simulates similar magnitudes of surface atmospheric dust concentrations as observations, but underestimates surface atmospheric BC concentrations by about a factor of two. Despite of this, the magnitude of BC-in-snow concentrations is overall comparable to observations. Regional mean surface radiative effect (SRE) due to LAAs-in-snow reaches up to 0.6-1.7 W m-2 in spring, and dust contributes to about 21-43% of total SRE. Maximum surface air temperature increase due to the LLA's SRE is around 0.9-1.1oC. Snow water equivalent and snow cover fraction reduce by around 2-50 mm and 0.05-0.2, respectively in the two regions around the mountains (Eastern Snake River Plain and Southwestern Wyoming) due to positive snow-albedo feedbacks. During the snow melting period, LAAs accelerate the hydrologic cycle with runoff increased by 7%-42% in April-May and reduced by 2-23% in June-July in the mountainous regions. Under the influence of LAAs-in-snow, Southern Rockies experience the most significant reduction of runoff by about 15% in the later stage of snow melt (i.e., June-July). Our results highlight the potentially important role of LAAs-in-snow in the historical and future changes of snowpack in the RMR.

  14. Factors Controlling Black Carbon Deposition in Snow in the Arctic

    NASA Astrophysics Data System (ADS)

    Qi, L.; Li, Q.; He, C.; Li, Y.

    2015-12-01

    This study evaluates the sensitivity of black carbon (BC) concentration in snow in the Arctic to BC emissions, dry deposition and wet scavenging efficiency using a 3D global chemical transport model GEOS-Chem driven by meteorological field GEOS-5. With all improvements, simulated median BC concentration in snow agrees with observation (19.2 ng g-1) within 10%, down from -40% in the default GEOS-Chem. When the previously missed gas flaring emissions (mainly located in Russia) are included, the total BC emission in the Arctic increases by 70%. The simulated BC in snow increases by 1-7 ng g-1, with the largest improvement in Russia. The discrepancy of median BC in snow in the whole Arctic reduces from -40% to -20%. In addition, recent measurements of BC dry deposition velocity suggest that the constant deposition velocity of 0.03 cm s-1 over snow and ice used in the GEOS-Chem is too low. So we apply resistance-in-series method to calculate the dry deposition velocity over snow and ice and the resulted dry deposition velocity ranges from 0.03 to 0.24 cm s-1. However, the simulated total BC deposition flux in the Arctic and BC in snow does not change, because the increased dry deposition flux has been compensated by decreased wet deposition flux. However, the fraction of dry deposition to total deposition increases from 16% to 25%. This may affect the mixing of BC and snow particles and further affect the radative forcing of BC deposited in snow. Finally, we reduced the scavenging efficiency of BC in mixed-phase clouds to account for the effect of Wegener-Bergeron-Findeisen (WBF) process based on recent observations. The simulated BC concentration in snow increases by 10-100%, with the largest increase in Greenland (100%), Tromsø (50%), Alaska (40%), and Canadian Arctic (30%). Annual BC loading in the Arctic increases from 0.25 to 0.43 mg m-2 and the lifetime of BC increases from 9.2 to 16.3 days. This indicates that BC simulation in the Arctic is really sensitive to the representation of BC scavenging efficiency. More measurements are needed to better understand the BC-cloud interaction and to constrain the model.

  15. The Studies on Aerosol Transport, Its Deposition, and Its Impact on Climate - the Study on the Surface Material Circulation can Connect from the Past to the Future

    NASA Technical Reports Server (NTRS)

    Yasunari, Teppei

    2012-01-01

    Recently the issue on glacier retreats comes up and many factors should be relevant to the issue. The absorbing aerosols such as dust and black carbon (BC) are considered to be one of the factors. After they deposited onto the snow surface, it will reduce snow albedo (called snow darkening effect) and probably contribute to further melting of glacier. The Goddard Earth Observing System version 5 (GEOS-5) has developed at NASAlGSFC. However, the original snowpack model used in the land surface model in the GEOS-5 did not consider the snow darkening effect. Here we developed the new snow albedo scheme which can consider the snow darkening effect. In addition, another scheme on calculating mass concentrations on the absorbing aerosols in snowpack was also developed, in which the direct aerosol depositions from the chemical transport model in the GEOS-5 were used. The scheme has been validated with the observed data obtained at backyard of the Institute of Low Temperature Science, Hokkaido University, by Dr. Teruo Aoki (Meteorological Research Institute) et al. including me. The observed data was obtained when I was Ph.D. candidate. The original GEOS-5 during 2007-2009 over the Himalayas and Tibetan Plateau region showed more reductions of snow than that of the new GEOS-5 because the original one used lower albedo settings. On snow cover fraction, the new GEOS-5 simulated more realistic snow-covered area comparing to the MODIS snow cover fraction. The reductions on snow albedo, snow cover fraction, and snow water equivalent were seen with statistically significance if we consider the snow darkening effect comparing to the results without the snow darkening effect. In the real world, debris-cover, inside refreezing process, surface flow of lacier, etc. affect glacier mass balance and the simu.latedresults immediately do not affect whole glacier retreating. However, our results indicate that some surface melting over non debris-covered parts of the glacier would be explained by the snow darkening effect. Further discussion and observations are necessary to assess the glacier issue.

  16. The Various Influences due to Aerosol Depositions

    NASA Technical Reports Server (NTRS)

    Yasunari, Teppei

    2011-01-01

    Recently the issue on glacier retreats comes up and many factors should be relevant to the issue. The absorbing aerosols such as dust and black carbon (BC) are considered to be one of the factors. After they deposited onto the snow surface, it will reduce snow albedo (called snow darkening effect) and probably contribute to further melting of glacier. The Goddard Earth Observing System version 5 (GEOS-5) has developed at NASA/GSFC. However, the original snowpack model used in the land surface model in the GEOS-5 did not consider the snow darkening effect. Here we developed the new snow albedo scheme which can consider the snow darkening effect. In addition, another scheme on calculating mass concentrations on the absorbing aerosols in snowpack was also developed, in which the direct aerosol depositions from the chemical transport model in the GEOS-5 were used. The scheme has been validated with the observed data obtained at backyard of the Institute of Low Temperature Science, Hokkaido University, by Dr. Teruo Aoki (Meteorological Research Institute) et al. including me. The observed data was obtained when I was Ph.D.caftdidate. The original GEOS-5 during 2007-2009 over the Himalayas and Tibetan Plateau region showed more reductions of snow than that of the new GEOS-5 because the original one used lower albedo settings. On snow cover fraction, the new GEOS-5 simulated more realistic snow-covered area comparing to the MODIS snow cover fraction. The reductions on snow albedo, snow cover fraction, and snow water equivalent were seen with statistically significance if we consider the snow darkening effect comparing to the results without the snow darkening effect. In the real world, debris cover, inside refreezing process, surface flow of glacier, etc. affect glacier mass balance and the simulated results immediately do not affect whole glacier retreating. However, our results indicate that some surface melting over non debris covered parts of the glacier would be explained by the snow darkening effect. Further discussion and observations are necessary to assess the glacier issue.

  17. Electromagnetic reflection from multi-layered snow models

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.; Jiracek, G. R.

    1975-01-01

    The remote sensing of snow-pack characteristics with surface installations or an airborne system could have important applications in water-resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayered snow models is analyzed in this paper. Normally incident plane waves at frequencies ranging from 1 MHz to 10 GHz are assumed, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice layers. Layers are defined by thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the variations of reflection coefficient as a function of frequency.

  18. Assessing the ability of operational snow models to predict snowmelt runoff extremes (Invited)

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Restrepo, P. J.; Clark, M. P.

    2013-12-01

    In the western US, the snow accumulation and melt cycle of winter and spring plays a critical role in the region's water management strategies. Consequently, the ability to predict snowmelt runoff at time scales from days to seasons is a key input for decisions in reservoir management, whether for avoiding flood hazards or supporting environmental flows through the scheduling of releases in spring, or for allocating releases for multi-state water distribution in dry seasons of year (using reservoir systems to provide an invaluable buffer for many sectors against drought). Runoff forecasts thus have important benefits at both wet and dry extremes of the climatological spectrum. The importance of the prediction of the snow cycle motivates an assessment of the strengths and weaknesses of the US's central operational snow model, SNOW17, in contrast to process-modeling alternatives, as they relate to simulating observed snowmelt variability and extremes. To this end, we use a flexible modeling approach that enables an investigation of different choices in model structure, including model physics, parameterization and degree of spatiotemporal discretization. We draw from examples of recent extreme events in western US watersheds and an overall assessment of retrospective model performance to identify fruitful avenues for advancing the modeling basis for the operational prediction of snow-related runoff extremes.

  19. Estimating snow leopard population abundance using photography and capture-recapture techniques

    USGS Publications Warehouse

    Jackson, R.M.; Roe, J.D.; Wangchuk, R.; Hunter, D.O.

    2006-01-01

    Conservation and management of snow leopards (Uncia uncia) has largely relied on anecdotal evidence and presence-absence data due to their cryptic nature and the difficult terrain they inhabit. These methods generally lack the scientific rigor necessary to accurately estimate population size and monitor trends. We evaluated the use of photography in capture-mark-recapture (CMR) techniques for estimating snow leopard population abundance and density within Hemis National Park, Ladakh, India. We placed infrared camera traps along actively used travel paths, scent-sprayed rocks, and scrape sites within 16- to 30-km2 sampling grids in successive winters during January and March 2003-2004. We used head-on, oblique, and side-view camera configurations to obtain snow leopard photographs at varying body orientations. We calculated snow leopard abundance estimates using the program CAPTURE. We obtained a total of 66 and 49 snow leopard captures resulting in 8.91 and 5.63 individuals per 100 trap-nights during 2003 and 2004, respectively. We identified snow leopards based on the distinct pelage patterns located primarily on the forelimbs, flanks, and dorsal surface of the tail. Capture probabilities ranged from 0.33 to 0.67. Density estimates ranged from 8.49 (SE = 0.22; individuals per 100 km2 in 2003 to 4.45 (SE = 0.16) in 2004. We believe the density disparity between years is attributable to different trap density and placement rather than to an actual decline in population size. Our results suggest that photographic capture-mark-recapture sampling may be a useful tool for monitoring demographic patterns. However, we believe a larger sample size would be necessary for generating a statistically robust estimate of population density and abundance based on CMR models.

  20. The layered evolution of fabric and microstructure of snow at Point Barnola, Central East Antarctica

    NASA Astrophysics Data System (ADS)

    Calonne, Neige; Montagnat, Maurine; Matzl, Margret; Schneebeli, Martin

    2017-02-01

    Snow fabric, defined as the distribution of the c-axis orientations of the ice crystals in snow, is poorly known. So far, only one study exits that measured snow fabric based on a statistically representative technique. This recent study has revealed the impact of temperature gradient metamorphism on the evolution of fabric in natural snow, based on cold laboratory experiments. On polar ice sheets, snow properties are currently investigated regarding their strong variability in time and space, notably because of their potential influence on firn processes and consequently on ice core analysis. Here, we present measurements of fabric and microstructure of snow from Point Barnola, East Antarctica (close to Dome C). We analyzed a snow profile from 0 to 3 m depth, where temperature gradients occur. The main contributions of the paper are (1) a detailed characterization of snow in the upper meters of the ice sheet, especially by providing data on snow fabric, and (2) the study of a fundamental snow process, never observed up to now in a natural snowpack, namely the role of temperature gradient metamorphism on the evolution of the snow fabric. Snow samples were scanned by micro-tomography to measure continuous profiles of microstructural properties (density, specific surface area and pore thickness). Fabric analysis was performed using an automatic ice texture analyzer on 77 representative thin sections cut out from the samples. Different types of snow fabric could be identified and persist at depth. Snow fabric is significantly correlated with snow microstructure, pointing to the simultaneous influence of temperature gradient metamorphism on both properties. We propose a mechanism based on preferential grain growth to explain the fabric evolution under temperature gradients. Our work opens the question of how such a layered profile of fabric and microstructure evolves at depth and further influences the physical and mechanical properties of snow and firn. More generally, it opens the way to further studies on the influence of the snow fabric in snow processes related to anisotropic properties of ice such as grain growth, mechanical response, electromagnetic behavior.

Top