Science.gov

Sample records for based solid-state photoelectrochemical

  1. Photoelectrochemical based direct conversion systems

    SciTech Connect

    Kocha, S.; Arent, D.; Peterson, M.

    1995-09-01

    The goal of this research is to develop a stable, cost effective, photoelectrochemical based system that will split water upon illumination, producing hydrogen and oxygen directly, using sunlight as the only energy input. This type of direct conversion system combines a photovoltaic material and an electrolyzer into a single monolithic device. We report on our studies of two multifunction multiphoton photoelectrochemical devices, one based on the ternary semiconductor gallium indium phosphide, (GaInP{sub 2}), and the other one based on amorphous silicon carbide. We also report on our studies of the solid state surface treatment of GaInP{sub 2} as well as our continuing effort to develop synthetic techniques for the attachment of transition metal complexes to the surface of semiconductor electrodes. All our surface studies are directed at controlling the interface energetics and forming stable catalytic surfaces.

  2. Lithium Based Anodes for Solid State Batteries

    DTIC Science & Technology

    1981-06-30

    AFOSR- 77- 3460 LITHIUM BASED ANODES FOR SOLID STATE BATTERIES R.A.H. Edwards, J.R. Owen and B.C.H. Steele I!Tolfson Unit for Solid State Ionics, D...use in secondary lithium batteries . Three main problems associated with the use of pure lithium as the negative plate are as follows: (a) Formation of...Proceedings of the Workshop on Lithium Non aque ous Battery Electrochemistry. Case Western Reserve Univ. June 4-6 1980, pp.130-142, The Electrochemical Soc

  3. Solid-state-based analog of optomechanics

    DOE PAGES

    Naumann, Nicolas L.; Droenner, Leon; Carmele, Alexander; ...

    2016-09-01

    In this study, we investigate a semiconductor quantum dot as a microscopic analog of a basic optomechanical setup. We show that optomechanical features can be reproduced by the solid-state platform, arising from parallels of the underlying interaction processes, which in the optomechanical case is the radiation pressure coupling and in the semiconductor case the electron–phonon coupling. We discuss bistabilities, lasing, and phonon damping, and recover the same qualitative behaviors for the semiconductor and the optomechanical cases expected for low driving strengths. However, in contrast to the optomechanical case, distinct signatures of higher order processes arise in the semiconductor model.

  4. Solid state transport-based thermoelectric converter

    DOEpatents

    Hu, Zhiyu

    2010-04-13

    A solid state thermoelectric converter includes a thermally insulating separator layer, a semiconducting collector and an electron emitter. The electron emitter comprises a metal nanoparticle layer or plurality of metal nanocatalyst particles disposed on one side of said separator layer. A first electrically conductive lead is electrically coupled to the electron emitter. The collector layer is disposed on the other side of the separator layer, wherein the thickness of the separator layer is less than 1 .mu.m. A second conductive lead is electrically coupled to the collector layer.

  5. Plasmon-Assisted Nd(3+)-Based Solid-State Nanolaser.

    PubMed

    Molina, Pablo; Yraola, Eduardo; Ramírez, Mariola O; Tserkezis, Christos; Plaza, José L; Aizpurua, Javier; Bravo-Abad, Jorge; Bausá, Luisa E

    2016-02-10

    Solid-state lasers constitute essential tools in a variety of scientific and technological areas, being available in many different designs. However, although nanolasing has been successfully achieved for dyes and semiconductor gain media associated with plasmonic structures, the operation of solid-state lasers beyond the diffraction limit has not been reported yet. Here, we demonstrate room temperature laser action with subwavelength confinement in a Nd(3+)-based solid-state laser by means of the localized surface plasmon resonances supported by chains of metallic nanoparticles. We show a 50% reduction of the pump power at threshold and a remarkable 15-fold improvement of the slope efficiency with respect to the bulk laser operation. The results can be extended to the large diversity of solid-state lasers with the subsequent impact on their applications.

  6. In Situ Solid-State Synthesis of a AgNi/g-C3 N4 Nanocomposite for Enhanced Photoelectrochemical and Photocatalytic Activity.

    PubMed

    Bhandary, Nimai; Singh, Aadesh P; Kumar, Sandeep; Ingole, Pravin P; Thakur, Gohil S; Ganguli, Ashok K; Basu, Suddhasatwa

    2016-10-06

    A graphitic carbon nitride (g-C3 N4 ) polymer matrix was embedded with AgNi alloy nanoparticles using a simple and direct in situ solid-state heat treatment method to develop a novel AgNi/g-C3 N4 photocatalyst. The characterization confirms that the AgNi alloy particles are homogeneously distributed throughout the g-C3 N4 matrix. The catalyst shows excellent photoelectrochemical activity for water splitting with a maximum photocurrent density of 1.2 mA cm(-2) , which is the highest reported for doped g-C3 N4 . Furthermore, a detailed experimental study of the photocatalytic degradation of Rhodamine B (RhB) dye using doped g-C3 N4 showed the highest reported degradation efficiency of approximately 95 % after 90 min. The electronic conductivity increased upon incorporation of AgNi alloy nanoparticles on g-C3 N4 and the material showed efficient charge carrier separation and transfer characteristics, which are responsible for the enhanced photoelectrochemical and photocatalytic performance under visible light.

  7. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-09-01

    In this annual report we summarize the progress obtained in the first year with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  8. Solid-state cooling line based on the electrocaloric effect.

    PubMed

    Khodayari, Akram; Mohammadi, Saber

    2011-03-01

    In this paper, the feasibility of using ferroelectric materials as a cooling device or solid-state refrigerator based on the electrocaloric effect has been considered. The electrocaloric responses of two different ferroelectric capacitors (PMN-25PT, PZN-4.5PT) are studied. In this study, the dynamics of temperature variation at the edges of a layered structure comprised of an electrocaloric material with heatconducting elements on its sides to an applied periodic electric field have been studied. Electrocaloric elements can generate directed heat flux as a thermal pump by alternative switching. A temperature reduction of 6° is obtained in an electric field of 1 KV/mm at a frequency of 1 Hz for PMN-25PT material after applying 80 cycles. It is shown that the type of applied electric pulses and ferroelectric material affect the results.

  9. All-solid-state reference electrodes based on conducting polymers.

    PubMed

    Kisiel, Anna; Marcisz, Honorata; Michalska, Agata; Maksymiuk, Krzysztof

    2005-12-01

    A novel construction of solution free (pseudo)reference electrodes, compatible with all-solid-state potentiometric indicator electrodes, has been proposed. These electrodes use conducting polymers (CP): polypyrrole (PPy) or poly(3,4-ethylenedioxythiophene) (PEDOT). Two different arrangements have been tested: solely based on CP and those where the CP phase is covered with a poly(vinyl chloride) based outer membrane of tailored composition. The former arrangement was designed to suppress or compensate cation- and anion-exchange, using mobile perchlorate ions and poly(4-styrenesulfonate) or dodecylbenzenesulfonate anions as immobilized dopants. The following systems were used: (i) polypyrrole layers doped simultaneously by two kinds of anions, both mobile and immobilized in the polymer layer; (ii) bilayers of polypyrrole with anion exchanging inner layer and cation-exchanging outer layer; (iii) polypyrrole doped by surfactant dodecylbenzenesulfonate ions, which inhibit ion exchange on the polymer/solution interface. For the above systems, recorded potentials have been found to be practically independent of electrolyte concentration. The best results, profound stability of potentials, have been obtained for poly(3,4-ethylenedioxythiophene) or polypyrrole doped by poly(4-styrenesulfonate) anions covered by a poly(vinyl chloride) based membrane, containing both anion- and cation-exchangers as well as solid potassium chloride and silver chloride with metallic silver. Differently to the cases (i)-(iii) these electrodes are much less sensitive to the influence of redox and pH interferences. This arrangement has been also characterized using electrochemical impedance spectroscopy and chronopotentiometry.

  10. Solid-state dye-sensitized solar cells fabricated by coupling photoelectrochemically deposited poly(3,4-ethylenedioxythiophene) (PEDOT) with silver-paint on cathode.

    PubMed

    Manseki, Kazuhiro; Jarernboon, Wirat; Youhai, You; Jiang, Ke-Jian; Suzuki, Kazuharu; Masaki, Naruhiko; Kim, Yukyeong; Xia, Jiangbin; Yanagida, Shozo

    2011-03-21

    A PEDOT-based dye-sensitized solar cell (DSC) is successfully improved by coupling photoelectrochemically deposited PEDOT layer with an Ag paste-paint on the cathode. With a 9.3 μm thick mesoscopic nanocrystalline TiO(2) film, a maximum cell performance of 3.2% with relatively high V(oc) of around 780 mV is achieved.

  11. Environment-protected solid-state-based distributed charge qubit

    NASA Astrophysics Data System (ADS)

    Tayebi, Amin; Hoatson, Tanya Nicole; Wang, Joie; Zelevinsky, Vladimir

    2016-12-01

    A solid-state-based charge qubit is presented. The system consists of a one-dimensional wire with a pair of qubits embedded at its center. It is shown that the system supports collective states localized in the left and right sides of the wire and therefore, as a whole, performs as a single qubit. The couplings between the ground and excited states of the two central qubits are inversely proportional making them fully asynchronized and allowing for coherent manipulation and gate operations. Initialization and measurement devices, such as leads and charge detectors, connected to the edges of the wire are modeled by a continuum of energy states. The coupling to the continuum is discussed using the effective non-Hermitian Hamiltonian. At weak continuum coupling, all internal states uniformly acquire small decay widths. This changes dramatically as the coupling strength increases: the width distribution undergoes a sharp restructuring and is no longer uniformly divided among the eigenstates. Two broad resonances localized at the ends of the wire are formed. These superradiant states (analogous to Dicke states in quantum optics) effectively protect the remaining internal states from decaying into the continuum and hence increase the lifetime of the qubit. Environmental noise is introduced by considering random Gaussian fluctuations of electronic energies. The interplay between decoherence and superradiance is studied by solving the stochastic Liouville equation. In addition to increasing the lifetime, the emergence of the superradiant states increases the qubit coherence.

  12. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect

    Paul T. Fini; Shuji Nakamura

    2003-10-30

    In this second annual report we summarize the progress in the second-year period of Department of Energy contract DE-FC26-01NT41203, entitled ''High- Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has recently made significant progress in the development of light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV), resonant-cavity LEDs (RCLEDs), as well as lateral epitaxial overgrowth (LEO) techniques to obtain large-area non-polar GaN films with low average dislocation density. The Rensselaer team has benchmarked the performance of commercially available LED systems and has also conducted efforts to develop an optimized RCLED packaging scheme, including development of advanced epoxy encapsulant chemistries.

  13. Tunable Solid State Lasers Based on Molecular Ions

    DTIC Science & Technology

    1992-01-01

    Pensylvania University Press, University Park and London, 1980) [2] W. Krupke and M.J. Weber, Prospects for New Dielectric Solid State Lasers , at...Research Office under the Grant DAAL03-88-0103. -13- References [1] W. Krupke and M.J. Weber, Prospects for New Dielectric Solid State Lasers , at Topical...including the time for reviewing instructions. searching existing data sources.AD At9 23 ;ng and retwn h ole~lon of 0n/ormlon. Send commetnts regarding

  14. Matrix-assisted laser desorption/ionization mass spectrometric analysis of poly(3,4-ethylenedioxythiophene) in solid-state dye-sensitized solar cells: comparison of in situ photoelectrochemical polymerization in aqueous micellar and organic media.

    PubMed

    Zhang, Jinbao; Ellis, Hanna; Yang, Lei; Johansson, Erik M J; Boschloo, Gerrit; Vlachopoulos, Nick; Hagfeldt, Anders; Bergquist, Jonas; Shevchenko, Denys

    2015-04-07

    Solid-state dye-sensitized solar cells (sDSCs) are devoid of such issues as electrolyte evaporation or leakage and electrode corrosion, which are typical for traditional liquid electrolyte-based DSCs. Poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most popular and efficient p-type conducting polymers that are used in sDSCs as a solid-state hole-transporting material. The most convenient way to deposit this insoluble polymer into the dye-sensitized mesoporous working electrode is in situ photoelectrochemical polymerization. Apparently, the structure and the physicochemical properties of the generated conducting polymer, which determine the photovoltaic performance of the corresponding solar cell, can be significantly affected by the preparation conditions. Therefore, a simple and fast analytical method that can reveal information on polymer chain length, possible chemical modifications, and impurities is strongly required for the rapid development of efficient solar energy-converting devices. In this contribution, we applied matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for the analysis of PEDOT directly on sDSCs. It was found that the PEDOT generated in aqueous micellar medium possesses relatively shorter polymeric chains than the PEDOT deposited from an organic medium. Furthermore, the micellar electrolyte promotes a transformation of one of the thiophene terminal units to thiophenone. The introduction of a carbonyl group into the PEDOT molecule impedes the growth of the polymer chain and reduces the conductivity of the final polymer film. Both the simplicity of sample preparation (only application of the organic matrix onto the solar cell is needed) and the rapidity of analysis hold the promise of making MALDI MS an essential tool for the physicochemical characterization of conducting polymer-based sDSCs.

  15. A review of lithium and non-lithium based solid state batteries

    NASA Astrophysics Data System (ADS)

    Kim, Joo Gon; Son, Byungrak; Mukherjee, Santanu; Schuppert, Nicholas; Bates, Alex; Kwon, Osung; Choi, Moon Jong; Chung, Hyun Yeol; Park, Sam

    2015-05-01

    Conventional lithium-ion liquid-electrolyte batteries are widely used in portable electronic equipment such as laptop computers, cell phones, and electric vehicles; however, they have several drawbacks, including expensive sealing agents and inherent hazards of fire and leakages. All solid state batteries utilize solid state electrolytes to overcome the safety issues of liquid electrolytes. Drawbacks for all-solid state lithium-ion batteries include high resistance at ambient temperatures and design intricacies. This paper is a comprehensive review of all aspects of solid state batteries: their design, the materials used, and a detailed literature review of various important advances made in research. The paper exhaustively studies lithium based solid state batteries, as they are the most prevalent, but also considers non-lithium based systems. Non-lithium based solid state batteries are attaining widespread commercial applications, as are also lithium based polymeric solid state electrolytes. Tabular representations and schematic diagrams are provided to underscore the unique characteristics of solid state batteries and their capacity to occupy a niche in the alternative energy sector.

  16. High-Efficiency Nitride-Based Solid-State Lighting

    SciTech Connect

    Paul T. Fini; Shuji Nakamura

    2005-07-30

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white

  17. Nanocomposite Photoelectrochemical Cells

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R.; Kindler, Andrew; Whitacre, Jay F.

    2007-01-01

    Improved, solid-state photoelectrochemical cells for converting solar radiation to electricity have been proposed. (In general, photoelectrochemical cells convert incident light to electricity through electrochemical reactions.) It is predicted that in comparison with state-of-the-art photoelectrochemical cells, these cells will be found to operate with greater solar-to-electric energy-conversion efficiencies.

  18. Investigation of Space Based Solid State Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    2002-01-01

    This report describes the work performed over the period of October 1, 1997 through March 31, 2001. Under this contract, UAH/CAO participated in defining and designing the SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission, and developed the instrument's optical subsystem. This work was performed in collaborative fashion with NASA/MSFC engineers at both UAH/CAO and NASA/MSFC facilities. Earlier work by the UAH/CAO had produced a preliminary top-level system design for the Shuttle lidar instrument meeting the proposed mission performance requirements and the Space Shuttle Hitchhiker canister volume constraints. The UAH/CAO system design efforts had concentrated on the optical and mechanical designs of the instrument. The instrument electronics were also addressed, and the major electronic components and their interfaces defined. The instrument design concept was mainly based on the state of the transmitter and local oscillator laser development at NASA Langley Research Center and Jet Propulsion Laboratory, and utilized several lidar-related technologies that were either developed or evaluated by the NASA/MSFC and UAH/CAO scientists. UAH/CAO has developed a comprehensive coherent lidar numerical model capable of analyzing the performance of different instrument and mission concepts. This model uses the instrument configuration, atmospheric conditions and current velocity estimation theory to provide prediction of instrument performance during different phases of operation. This model can also optimize the design parameters of the instrument.

  19. Apollony photonic sponge based photoelectrochemical solar cells.

    PubMed

    Ramiro-Manzano, Fernando; Atienzar, Pedro; Rodriguez, Isabelle; Meseguer, Francisco; Garcia, Hermenegildo; Corma, Avelino

    2007-01-21

    We have developed a quasi-fractal colloidal crystal to localize efficiently photons in a very broad optical spectral range; it has been applied to prepare dye sensitized photoelectrochemical solar (PES) cells able to harvest very efficiently photons from the ultraviolet (UV) and the visible (VIS) regions of the solar spectrum.

  20. Polylactide-based microspheres prepared using solid-state copolymerized chitosan and d,l-lactide.

    PubMed

    Demina, T S; Akopova, T A; Vladimirov, L V; Zelenetskii, A N; Markvicheva, E A; Grandfils, Ch

    2016-02-01

    Amphiphilic chitosan-g-poly(d,l-lactide) copolymers have been manufactured via solid-state mechanochemical copolymerization and tailored to design polyester-based microspheres for tissue engineering. A single-step solid-state reactive blending (SSRB) using low-temperature co-extrusion has been used to prepare these copolymers. These materials have been valorized to stabilize microspheres processed by an oil/water emulsion evaporation technique. Introduction of the copolymers either in water or in the oil phase of the emulsion allowed to replace a non-degradable emulsifier typically used for microparticle preparation. To enhance cell adhesion, these copolymers were also tailored to bring amino-saccharide positively charged segments to the microbead surface. Size distribution, surface morphology, and total microparticle yield have been studied and optimized as a function of the copolymer composition.

  1. Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers

    NASA Astrophysics Data System (ADS)

    Giffin, Shirin M.; McKinnie, Iain T.; Wadsworth, William J.; Woolhouse, Anthony D.; Smith, Gerald J.; Haskell, Tim G.

    1999-03-01

    The laser performance of a range of solid state dye lasers based on rhodamine 590-doped co-polymers of 2-hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA) has been investigated. The optimisation of preparation conditions, including polymerisation initiator and solvent for dye delivery is discussed in detail. Laser efficiency is compared for different polymeric hosts and dye concentrations with a range of output couplers, cavity lengths and repetition rates. Passive and dynamic loss have been determined for each host medium. Laser efficiencies of optimised polymers are among the highest reported for rhodamine 590-doped solid state dye lasers under these operating conditions. Highest slope efficiency of 35% and lowest threshold fluence of 0.06 J cm -2 were obtained with dimethyl sulphoxide (DMSO) additive in MPMMA at 10 Hz repetition rate.

  2. Color-Tunable Solid-State Fluorescence Emission from Carbazole-Based BODIPYs.

    PubMed

    Maeda, Chihiro; Todaka, Takumi; Ueda, Tomomi; Ema, Tadashi

    2016-05-23

    Several carbazole-based boron dipyrromethene (BODIPY) dyes were synthesized by organometallic approaches. Thiazole, benzothiazole, imidazole, benzimidazole, triazole, and indolone substituents were introduced at the 1-position of the carbazole moiety, and boron complexation of each dipyrrin generated the corresponding compounds 1, 2 a, and 3-6. The properties of these products were investigated by UV/Vis and fluorescence spectroscopy, cyclic voltammetry, X-ray crystallography, and DFT calculations. These compounds exhibited large Stokes shifts, and compounds 1, 2 a, and 3-5 fluoresced both in solution and in the solid state. Complex 2 a showed the highest fluorescence quantum yield (ΦF ) in the solid state, therefore boron complexes of the carbazole-benzothiazole hybrids 2 b-f, which had several different substituents, were prepared and the effects of the substituents on the photophysical properties of the compounds were examined. The fluorescence properties showed good correlation with the results of crystal-packing analyses, and the dyes exhibited color-tunable solid-state fluorescence.

  3. Optical characterization of nitride-based light-emitting diodes for solid-state lighting applications

    NASA Astrophysics Data System (ADS)

    Masui, Hisashi

    This dissertation describes research dedicated to the solid-state lighting technology based on III-nitride light-emitting diodes (LEDs). Nitride semiconductors are rather an immature material system compared to conventional III-V semiconductors. As the solid-state lighting technology based on nitride optoelectronic devices becomes widely accepted in the market, solid-state technology is required to compete with the conventional vacuum lighting technology, especially in energy efficiency. In addition to such energy-efficiency requirements, solid-state optoelectronic devices have the potential to explore new applications based on their unique properties. The research was conducted as a way of optical characterization of LEDs with a strong emphasis on electroluminescence. Device-packaging techniques were introduced in the early stage of the research to evaluate performances of discrete LEDs including phosphor-combined white-light emitting devices. Light extraction and white-LED fabrication were of direct interest in terms of solid-state lighting, which occupies a large part of the present dissertation. The suspended-LED technique was introduced to improve light extraction and the sphere package was invented as a result of the technique. A phosphor-combined sphere LED achieved as high as 117 lm/W of luminous efficacy. Low-temperature characterization is important to evaluate light-emission efficiency of LEDs, especially the internal quantum efficiency. It was a generally known problem that electroluminescence efficiency deteriorates drastically at low temperature where photoluminescence efficiency remains high. High-quality LEDs prepared on GaN bulk substrates that became available during the present project contributed to the low-temperature study, largely to address the problem. Electroluminescence is related to carrier generation processes via low-temperature measurements on such high-quality LEDs. This study produced a model to explain electroluminescence

  4. Solid-state characterization of sertraline base-β-cyclodextrin inclusion complex.

    PubMed

    Ogawa, Noriko; Hashimoto, Takuro; Furuishi, Takayuki; Nagase, Hiromasa; Endo, Tomohiro; Yamamoto, Hiromitsu; Kawashima, Yoshiaki; Ueda, Haruhisa

    2015-03-25

    Sertraline is one of the serotonin-specific reuptake inhibitors that is effective in treating several disorders such as major depression, obsessive-compulsive disorder, panic disorder, and social phobia. It is marketed in the form of its hydrochloride salt, which exhibits better solubility in water than its free base form. However, the absorption of sertraline through biological membranes could be improved by enhancing the solubility of its base because it is more hydrophobic than sertraline hydrochloride. To clarify the mechanism for the interaction of sertraline base with β-CD, it is important to study the basic interaction between the β-CD ring and sertraline base. Therefore, in this study, the currently used hydrochloride salt form was converted into the free base and β-CD was used as a model for β-CD derivatives to evaluate the interaction between β-CD and the sertraline base. The solid-state physicochemical characteristics of the sertraline-β-CD complex were investigated by the phase solubility method, differential scanning calorimetry, Fourier transform IR spectroscopy, FT-Raman spectroscopy, powder X-ray diffraction, and (13)C cross-polarization magic-angle spinning NMR measurements. The results showed that sertraline base and β-CD form an inclusion complex, and the stoichiometric ratio of the solid-state sertraline base-β-CD complex is 1:1, which was estimated by the (1)H NMR measurements of the complex dissolved in DMSO-d6.

  5. Simulation of solid-state dye solar cells based on organic and Perovskite sensitizers

    NASA Astrophysics Data System (ADS)

    Di Carlo, Aldo; Gentilini, Desireé; Gagliardi, Alessio

    2015-03-01

    In this work we present a multiscale numerical simulation of solid-state Dye and Perovskite Solar Cells where the real morphology of the mesoporous active layer is taken into account. Band alignment and current densities are computed using the drift-diffusion model. In the case of Dye cells, a portion of the real interface is merged between two regions described using the effective medium approximation, casting light on the role of trapped states at the interface between TiO2 / Dye / hole transporting materials. A second case of study is the simulation of Perovskite Solar Cell where the performances of cells based on Alumina and Titania mesoporous layer are compared.

  6. Structural modeling of Vpu from HIV-1 based on solid-state NMR observables

    NASA Astrophysics Data System (ADS)

    Ahn, SeonJoo; Lim, GyuTae; Nam, Seungyoon; Lee, Jinhyuk

    2014-04-01

    Vpu is one of the accessory proteins of HIV-1, and is involved in viral particle release. Viral particle release is enhanced by two proposed functions of Vpu: (i) tetherin interaction and (ii) membrane polarization. Two Vpu functions in viral particle release are still controversial. Here, we investigated the proposed functions by extensive structural modeling of Vpu based on solid-state NMR (Nuclear Magnetic Resonance) observables. We found that Vpu can co-exist in two structural forms: left-handed and right-handed conformation. The co-existence of the two conformations provides a clue to reconcile the controversial issue of its two functions in virus particle release.

  7. Mutual injection phase locking coherent combination of solid-state lasers based on corner cube.

    PubMed

    Cheng, Yong; Liu, Xu; Wan, Qiang; Zhu, Mengzhen; Mi, Chaowei; Tan, Chaoyong; Wei, Shangfang; Chen, Xia

    2013-12-01

    Coherent beam combination is an effective way to develop high-power lasers with high beam quality and high brightness. Coherent combination of six solid-state lasers based on the technique of mutual injection phase locking by using the natural coherent combination property of corner cube is first investigated. The coherent combination with 15.3 J of output energy, 1.7 mrad of divergent angle is obtained, and the combining efficiency is as high as 95.6% at 10 Hz and 85 A. The far-field profile is flattened protuberance.

  8. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.

    PubMed

    Yuan, Longyan; Lu, Xi-Hong; Xiao, Xu; Zhai, Teng; Dai, Junjie; Zhang, Fengchao; Hu, Bin; Wang, Xue; Gong, Li; Chen, Jian; Hu, Chenguo; Tong, Yexiang; Zhou, Jun; Wang, Zhong Lin

    2012-01-24

    A highly flexible solid-state supercapacitor was fabricated through a simple flame synthesis method and electrochemical deposition process based on a carbon nanoparticles/MnO(2) nanorods hybrid structure using polyvinyl alcohol/H(3)PO(4) electrolyte. Carbon fabric is used as a current collector and electrode (mechanical support), leading to a simplified, highly flexible, and lightweight architecture. The device exhibited good electrochemical performance with an energy density of 4.8 Wh/kg at a power density of 14 kW/kg, and a demonstration of a practical device is also presented, highlighting the path for its enormous potential in energy management.

  9. Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition

    NASA Astrophysics Data System (ADS)

    Pandey, G. P.; Hashmi, S. A.

    2013-12-01

    Performance characteristics of the solid-state supercapacitors fabricated with ionic liquid (IL) incorporated gel polymer electrolyte and acid treated multiwalled carbon nanotube (MWCNT) electrodes have been studied. The effect of Li-salt (LiPF6) addition in the IL (1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, EMImFAP) based gel electrolyte on the performance of supercapacitors has been specifically investigated. The LiPF6/IL/poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) gel electrolyte film possesses excellent electrochemical window of 4 V (from -2.0 to 2.0 V), high ionic conductivity ˜2.6 × 10-3 S cm-1 at 20 °C and high enough thermal stability. The comparative performance of supercapacitors employing electrolytes with and without lithium salt has been evaluated by impedance spectroscopy and cyclic voltammetric studies. The acid-treated MWCNT electrodes show specific capacitance of ˜127 F g-1 with IL/LiPF6 containing gel polymer electrolyte as compared to that with the gel polymer electrolyte without Li-salt, showing the value of ˜76 F g-1. The long cycling stability of the solid state supercapacitor based on the Li-salt containing gel polymer electrolyte confirms the electrochemical stability of the electrolyte.

  10. Flexible Asymmetrical Solid-State Supercapacitors Based on Laboratory Filter Paper.

    PubMed

    Zhang, Leicong; Zhu, Pengli; Zhou, Fengrui; Zeng, Wenjin; Su, Haibo; Li, Gang; Gao, Jihua; Sun, Rong; Wong, Ching-Ping

    2016-01-26

    In this study, a flexible asymmetrical all-solid-state supercapacitor with high electrochemical performance was fabricated with Ni/MnO2-filter paper (FP) as the positive electrode and Ni/active carbon (AC)-filter paper as negative electrode, separated with poly(vinyl alcohol) (PVA)-Na2SO4 electrolyte. A simple procedure, such as electroless plating, was introduced to prepare the Ni/MnO2-FP electrode on the conventional laboratory FP, combined with the subsequent step of electrodeposition. Electrochemical results show that the as-prepared electrodes display outstanding areal specific capacitance (1900 mF/cm(2) at 5 mV/s) and excellent cycling performance (85.1% retention after 1000 cycles at 20 mA/cm(2)). Such a flexible supercapacitor assembled asymmetrically in the solid state exhibits a large volume energy density (0.78 mWh/cm(3)) and superior flexibility under different bending conditions. It has been demonstrated that the supercapacitors could be used as a power source to drive a 3 V light-emitting diode indicator. This study may provide an available method for designing and fabricating flexible supercapacitors with high performance in the application of wearable and portable electronics based on easily available materials.

  11. Ground penetrating detection using miniaturized radar system based on solid state microwave sensor.

    PubMed

    Yao, B M; Fu, L; Chen, X S; Lu, W; Guo, H; Gui, Y S; Hu, C-M

    2013-12-01

    We propose a solid-state-sensor-based miniaturized microwave radar technique, which allows a rapid microwave phase detection for continuous wave operation using a lock-in amplifier rather than using expensive and complicated instruments such as vector network analyzers. To demonstrate the capability of this sensor-based imaging technique, the miniaturized system has been used to detect embedded targets in sand by measuring the reflection for broadband microwaves. Using the reconstruction algorithm, the imaging of the embedded target with a diameter less than 5 cm buried in the sands with a depth of 5 cm or greater is clearly detected. Therefore, the sensor-based approach emerges as an innovative and cost-effective way for ground penetrating detection.

  12. Hierarchical Corannulene-Based Materials: Energy Transfer and Solid-State Photophysics.

    PubMed

    Rice, Allison M; Fellows, W Brett; Dolgopolova, Ekaterina A; Greytak, Andrew B; Vannucci, Aaron K; Smith, Mark D; Karakalos, Stavros G; Krause, Jeanette A; Avdoshenko, Stanislav M; Popov, Alexey A; Shustova, Natalia B

    2017-04-10

    We report the first example of a donor-acceptor corannulene-containing hybrid material with rapid ligand-to-ligand energy transfer (ET). Additionally, we provide the first time-resolved photoluminescence (PL) data for any corannulene-based compounds in the solid state. Comprehensive analysis of PL data in combination with theoretical calculations of donor-acceptor exciton coupling was employed to estimate ET rate and efficiency in the prepared material. The ligand-to-ligand ET rate calculated using two models is comparable with that observed in fullerene-containing materials, which are generally considered for molecular electronics development. Thus, the presented studies not only demonstrate the possibility of merging the intrinsic properties of π-bowls, specifically corannulene derivatives, with the versatility of crystalline hybrid scaffolds, but could also foreshadow the engineering of a novel class of hierarchical corannulene-based hybrid materials for optoelectronic devices.

  13. Thermal effect of diode-pumped solid state lasers based on composite crystals

    NASA Astrophysics Data System (ADS)

    Hao, Ming-ming; Lu, Guo-guang; Zhu, Hong-bo; Huang, Yun; En, Yun-fei

    2013-12-01

    Thermal effect of diode-pumped solid-state lasers (DPSSL) based on YAP/Tm:YAP composite crystal is studied by using of finite element method (FEM). It is found that the peak temperature in a composite rod decreases to less than 80% of that in a non-composite crystal. Thermal stress of composite rod is obviously reduced to less than 70% comparing with non-composite crystal. It is also demonstrated that length of thermal lens unchanged with increasing of un-doped crystal length, which means that beam quality of composite laser wouldn't be improved by non-composite crystal. Therefore, it is concluded that using composite crystal would benefit for the properties of temperature and heat stress while insignificance for beam quality of DPSSL.

  14. Solid-state semiconductor optical cryocooler based on CdS nanobelts.

    PubMed

    Li, Dehui; Zhang, Jun; Wang, Xinjiang; Huang, Baoling; Xiong, Qihua

    2014-08-13

    We demonstrate the laser cooling of silicon-on-insulator (SOI) substrate using CdS nanobelts. The local temperature change of the SOI substrate exactly beneath the CdS nanobelts is deduced from the ratio of the Stokes and anti-Stokes Raman intensities from the Si layer on the top of the SOI substrate. We have achieved a 30 and 20 K net cooling starting from 290 K under a 3.8 mW 514 nm and a 4.4 mW 532 nm pumping, respectively. In contrast, a laser heating effect has been observed pumped by 502 and 488 nm lasers. Theoretical analysis based on the general static heat conduction module in the Ansys program package is conducted, which agrees well with the experimental results. Our investigations demonstrate the laser cooling capability of an external thermal load, suggesting the applications of II-VI semiconductors in all-solid-state optical cryocoolers.

  15. All-solid-state micro-supercapacitors based on inkjet printed graphene electrodes

    NASA Astrophysics Data System (ADS)

    Li, Jiantong; Mishukova, Viktoriia; Östling, Mikael

    2016-09-01

    The all-solid-state graphene-based in-plane micro-supercapacitors are fabricated simply through reliable inkjet printing of pristine graphene in interdigitated structure on silicon wafers to serve as both electrodes and current collectors, and a following drop casting of polymer electrolytes (polyvinyl alcohol/H3PO4). Benefiting from the printing processing, an attractive porous electrode microstructure with a large number of vertically orientated graphene flakes is observed. The devices exhibit commendable areal capacitance over 0.1 mF/cm2 and a long cycle life of over 1000 times. The simple and scalable fabrication technique for efficient micro-supercapacitors is promising for on-chip energy storage applications in emerging electronics.

  16. Solid state dye lasers based on LDS 698 doped in modified polymethyl methacrylate.

    PubMed

    Fan, Rongwei; Xia, Yuanqin; Chen, Deying

    2008-06-23

    Broad band solid state dye lasers based on LDS 698 doped in modified polymethyl methacrylate (MPMMA) with laser wavelength about 650 nm were demonstrated. It was demonstrated that the fluorescence spectra of LDS 698 in solid host MPMMA displays an obvious blue shift about 50 nm comparing with that in ethanol solution. The dye concentration has great effect on the laser's performance including laser slope efficiency and lifetime. The lifetime increased dramatically with the increase of the LDS 698 concentration. With pump repetition rate of 10 Hz and intensity of 0.1 J/cm(2), the maximum lifetime 300,000 shots corresponding normalized photostability 102 GJ/mol was obtained with LDS 698 at 1.5 x 10(-4)mol/L.

  17. Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers.

    PubMed

    Ma, Jie; Lu, Shunbin; Guo, Zhinan; Xu, Xiaodong; Zhang, Han; Tang, Dingyuan; Fan, Dianyuan

    2015-08-24

    We experimentally demonstrated that few-layer black phosphorus (BP) could be used as an optical modulator for solid-state lasers to generate short laser pulses. The BP flakes were fabricated by the liquid phase exfoliation method and drop-casted on a high-reflection mirror to form a BP-based saturable absorber mirror (BP-SAM). Stable Q-switched pulses with a pulse width of 620 ns at the wavelength of 1046 nm were obtained in a Yb:CaYAlO(4) (Yb:CYA) laser with the BP-SAM. The generated pulse train has a repetition rate of 113.6 kHz and an average output power of 37 mW. Our results show that the BP-SAMs could have excellent prospective for ultrafast photonics applications.

  18. Solid-state-based laser system as a replacement for Ar+ lasers.

    PubMed

    Beck, Tobias; Rein, Benjamin; Sörensen, Fabian; Walther, Thomas

    2016-09-15

    We report on a solid-state-based laser system at 1028 nm. The light is generated by a diode laser seeded ytterbium fiber amplifier. In two build-up cavities, its frequency is doubled and quadrupled to 514 nm and 257 nm, respectively. At 514 nm, the system delivers up to 4.7 W of optical power. In the fourth harmonic, up to 173 mW are available limited by the nonlinear crystal. The frequency of the laser is mode-hop-free tunable by 16 GHz in 10 ms in the UV. Therefore, the system is suitable as a low maintenance, efficient, and tunable narrowband replacement for frequency doubled Ar+ laser systems.

  19. GPU-based acceleration of free energy calculations in solid state physics

    NASA Astrophysics Data System (ADS)

    Januszewski, Michał; Ptok, Andrzej; Crivelli, Dawid; Gardas, Bartłomiej

    2015-07-01

    Obtaining a thermodynamically accurate phase diagram through numerical calculations is a computationally expensive problem that is crucially important to understanding the complex phenomena of solid state physics, such as superconductivity. In this work we show how this type of analysis can be significantly accelerated through the use of modern GPUs. We illustrate this with a concrete example of free energy calculation in multi-band iron-based superconductors, known to exhibit a superconducting state with oscillating order parameter (OP). Our approach can also be used for classical BCS-type superconductors. With a customized algorithm and compiler tuning we are able to achieve a 19×speedup compared to the CPU (119×compared to a single CPU core), reducing calculation time from minutes to mere seconds, enabling the analysis of larger systems and the elimination of finite size effects.

  20. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.

    PubMed

    Kang, Yu Jin; Chung, Haegeun; Han, Chi-Hwan; Kim, Woong

    2012-02-17

    All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf(2)]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g(-1) at a current density of 2 A g(-1), when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg(-1) and 41 Wh kg(-1), respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.

  1. Model Predictive Control of A Matrix-Converter Based Solid State Transformer for Utility Grid Interaction

    SciTech Connect

    Xue, Yaosuo

    2016-01-01

    The matrix converter solid state transformer (MC-SST), formed from the back-to-back connection of two three-to-single-phase matrix converters, is studied for use in the interconnection of two ac grids. The matrix converter topology provides a light weight and low volume single-stage bidirectional ac-ac power conversion without the need for a dc link. Thus, the lifetime limitations of dc-bus storage capacitors are avoided. However, space vector modulation of this type of MC-SST requires to compute vectors for each of the two MCs, which must be carefully coordinated to avoid commutation failure. An additional controller is also required to control power exchange between the two ac grids. In this paper, model predictive control (MPC) is proposed for an MC-SST connecting two different ac power grids. The proposed MPC predicts the circuit variables based on the discrete model of MC-SST system and the cost function is formulated so that the optimal switch vector for the next sample period is selected, thereby generating the required grid currents for the SST. Simulation and experimental studies are carried out to demonstrate the effectiveness and simplicity of the proposed MPC for such MC-SST-based grid interfacing systems.

  2. Study of dual wavelength composite output of solid state laser based on adjustment of resonator parameters

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Nie, Jinsong; Wang, Xi; Hu, Yuze

    2016-10-01

    The 1064nm fundamental wave (FW) and the 532nm second harmonic wave (SHW) of Nd:YAG laser have been widely applied in many fields. In some military applications requiring interference in both visible and near-infrared spectrum range, the de-identification interference technology based on the dual wavelength composite output of FW and SHW offers an effective way of making the device or equipment miniaturized and low cost. In this paper, the application of 1064nm and 532nm dual-wavelength composite output technology in military electro-optical countermeasure is studied. A certain resonator configuration that can achieve composite laser output with high power, high beam quality and high repetition rate is proposed. Considering the thermal lens effect, the stability of this certain resonator is analyzed based on the theory of cavity transfer matrix. It shows that with the increase of thermal effect, the intracavity fundamental mode volume decreased, resulting the peak fluctuation of cavity stability parameter. To explore the impact the resonator parameters does to characteristics and output ratio of composite laser, the solid-state laser's dual-wavelength composite output models in both continuous and pulsed condition are established by theory of steady state equation and rate equation. Throughout theoretical simulation and analysis, the optimal KTP length and best FW transmissivity are obtained. The experiment is then carried out to verify the correctness of theoretical calculation result.

  3. Laser Hardening Prediction Tool Based On a Solid State Transformations Numerical Model

    SciTech Connect

    Martinez, S.; Ukar, E.; Lamikiz, A.

    2011-01-17

    This paper presents a tool to predict hardening layer in selective laser hardening processes where laser beam heats the part locally while the bulk acts as a heat sink.The tool to predict accurately the temperature field in the workpiece is a numerical model that combines a three dimensional transient numerical solution for heating where is possible to introduce different laser sources. The thermal field was modeled using a kinetic model based on Johnson-Mehl-Avrami equation. Considering this equation, an experimental adjustment of transformation parameters was carried out to get the heating transformation diagrams (CHT). With the temperature field and CHT diagrams the model predicts the percentage of base material converted into austenite. These two parameters are used as first step to estimate the depth of hardened layer in the part.The model has been adjusted and validated with experimental data for DIN 1.2379, cold work tool steel typically used in mold and die making industry. This steel presents solid state diffusive transformations at relative low temperature. These transformations must be considered in order to get good accuracy of temperature field prediction during heating phase. For model validation, surface temperature measured by pyrometry, thermal field as well as the hardened layer obtained from metallographic study, were compared with the model data showing a good adjustment.

  4. Solid-state (49/47)Ti NMR of titanium-based MCM-41 hybrid materials.

    PubMed

    Ballesteros, Ruth; Fajardo, Mariano; Sierra, Isabel; Force, Carmen; del Hierro, Isabel

    2009-11-03

    Titanium solid-state NMR spectroscopy data for a series of organic-inorganic titanium MCM-41 based materials have been collected. These materials have been synthesized by first modifying the mesoporous silica MCM-41 in one step with a mixture of silanes: a triazine propyl triethoxysilane acting as functional linker and methyltrimethoxysilane or hexamethyldisilizane as capped agents to mask the remaining silanol groups. Second, the appropiate titanium precursor Ti(OPr(i))(4), [{Ti(OPr(i))(3)(OMent)}(2)] (OMent = 1R,2S,5R-(-)-menthoxo), Ti(OPr(i))(4), or [Ti(eta(5)-C(5)HMe(4))Cl(3)], has been immobilized by reaction with the modified MCM-41. Finally, after Ti(OPr(i))(4) immobilization onto the organomodified support the reaction with the chiral (+)-diethyl-l-tartrate was accomplished. The materials without functional linker have been also prepared by reaction in one step of the capped agent and the titanium precursor with the mesoporous silica. Relevant correlations of titanium NMR resonance chemical shifts and line widths can be inferred depending on different factors. The immobilization procedure used to prepare titanium-based MCM-41 hybrid materials and the choice of the silylating reagents employed to mask the silanol groups present on the silica surfaces produce significant differences in the Ti NMR spectra. Furthermore, depending on the electronic and sterical influence of the substituents directly attached to the titanium center, chemical shifts and line widths are modified providing novel information about titanium structure.

  5. A 6 GW nanosecond solid-state generator based on semiconductor opening switch

    NASA Astrophysics Data System (ADS)

    Gusev, A. I.; Pedos, M. S.; Rukin, S. N.; Timoshenkov, S. P.; Tsyranov, S. N.

    2015-11-01

    In this paper, a nanosecond all solid-state generator providing peak power of up to 6 GW, output voltage of 500-900 kV, pulse length (full width at half maximum) of ˜7 ns across external loads of 40-100 Ω, and pulse repetition frequency up to 1 kHz in burst operation mode is described. The output pulse is generated by a semiconductor opening switch (SOS). A new SOS pumping circuit based on a double forming line (DFL) is proposed and its implementation described. As compared with a lumped capacitors-based pumping circuit, the DFL allows minimization of the inductance and stray capacitance of the reverse pumping circuit, and thus, an increase in the SOS cutoff current amplitude and generator output peak power as a whole. The pumping circuit provides a reverse current increasing through the SOS up to 14 kA within ˜12 ns. The SOS cuts off the current in ˜2 ns; the current cutoff rate reaches 7 kA/ns. The SOS braking power (the product of peak voltage and cutoff current) for an external load above 100 Ω is 13 GW.

  6. All-solid-state repetitive semiconductor opening switch-based short pulse generator.

    PubMed

    Ding, Zhenjie; Hao, Qingsong; Hu, Long; Su, Jiancang; Liu, Guozhi

    2009-09-01

    The operating characteristics of a semiconductor opening switch (SOS) are determined by its pumping circuit parameters. SOS is still able to cut off the current when pumping current duration falls to the order of tens of nanoseconds and a short pulse forms simultaneously in the output load. An all-solid-state repetitive SOS-based short pulse generator (SPG100) with a three-level magnetic pulse compression unit was successfully constructed. The generator adopts magnetic pulse compression unit with metallic glass and ferrite cores, which compresses a 600 V, 10 mus primary pulse into short pulse with forward pumping current of 825 A, 60 ns and reverse pumping current of 1.3 kA, 30 ns. The current is sent to SOS in which the reverse pumping current is interrupted. The generator is capable of providing a pulse with the voltage of 120 kV and duration of 5-6 ns while output load being 125 Omega. The highest repetition rate is up to 1 kHz.

  7. All-solid-state carbonate-selective electrode based on screen-printed carbon paste electrode

    NASA Astrophysics Data System (ADS)

    Li, Guang; Lyu, Xiaofeng; Wang, Zhan; Rong, Yuanzhen; Hu, Ruifen; Luo, Zhiyuan; Wang, You

    2017-02-01

    A novel disposable all-solid-state carbonate-selective electrode based on a screen-printed carbon paste electrode using poly(3-octylthiophene-2,5-diyl) (POT) as an ion-to-electron transducer has been developed. The POT was dropped onto the reaction area of the carbon paste electrode covered by the poly(vinyl chloride) (PVC) membrane, which contains N,N-Dioctyl-3α,12α-bis(4-trifluoroacetylbenzoyloxy)-5β-cholan-24-amide as a carbonate ionophore. The electrode showed a near-Nernstian slope of  -27.5 mV/decade with a detection limit of 3.6 * 10-5 mol l-1. Generally, the detection time was 30 s. Because these electrodes are fast, convenient and low in cost, they have the potential to be mass produced and used in on-site testing as disposable sensors. Furthermore, the repeatability, reproducibility and stability have been studied to evaluate the properties of the electrodes. Measurement of the carbonate was also conducted in a human blood solution and achieved good performance.

  8. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw.

    PubMed

    Pensupa, Nattha; Jin, Meng; Kokolski, Matt; Archer, David B; Du, Chenyu

    2013-12-01

    This paper reports a solid-state fungal fermentation-based pre-treatment strategy to convert wheat straw into a fermentable hydrolysate. Aspergillus niger was firstly cultured on wheat straw for production of cellulolytic enzymes and then the wheat straw was hydrolyzed by the enzyme solution into a fermentable hydrolysate. The optimum moisture content and three wheat straw modification methods were explored to improve cellulase production. At a moisture content of 89.5%, 10.2 ± 0.13 U/g cellulase activity was obtained using dilute acid modified wheat straw. The addition of yeast extract (0.5% w/v) and minerals significantly improved the cellulase production, to 24.0 ± 1.76 U/g. The hydrolysis of the fermented wheat straw using the fungal culture filtrate or commercial cellulase Ctec2 was performed, resulting in 4.34 and 3.13 g/L glucose respectively. It indicated that the fungal filtrate harvested from the fungal fermentation of wheat straw contained a more suitable enzyme mixture than the commercial cellulase.

  9. Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform

    PubMed Central

    Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot

    2006-01-01

    A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from logic 1 (+5 V) to logic 0 (+1.7 V). The entire instrument provides an inherently digital output of light intensity measurements for a few cents. A light dependent resistor (LDR) modified with similar sensor membrane was also used as a comparison method. Both the LED sensor and the LDR sensor responded to various pH buffer solutions in a similar way to obtain sigmoidal curves expected of the dye. The pKa value obtained for the sensors was found to agree with the literature value.

  10. Formulation and Solid State Characterization of Nicotinamide-based Co-crystals of Fenofibrate

    PubMed Central

    Shewale, Sheetal; Shete, A. S.; Doijad, R. C.; Kadam, S. S.; Patil, V. A.; Yadav, A. V.

    2015-01-01

    The present investigation deals with formulation of nicotinamide-based co-crystals of fenofibrate by different methods and solid-state characterization of the prepared co-crystals. Fenofibrate and nicotinamide as a coformer in 1:1 molar ratio were used to formulate molecular complexes by kneading, solution crystallization, antisolvent addition and solvent drop grinding methods. The prepared molecular complexes were characterized by powder X-ray diffractometry, differential scanning calorimetry, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and in vitro dissolution study. Considerable improvement in the dissolution rate of fenofibrate from optimized co-crystal formulation was due to an increased solubility that is attributed to the super saturation from the fine co-crystals is faster because of large specific surface area of small particles and prevention of phase transformation to pure fenofibrate. In vitro dissolution study showed that the formation of co-crystals improves the dissolution rate of fenofibrate. Nicotinamide forms the co-crystals with fenofibrate, theoretically and practically. PMID:26180279

  11. Black phosphorus based saturable absorber for Nd-ion doped pulsed solid state laser operation

    NASA Astrophysics Data System (ADS)

    Han, S.; Zhang, F.; Wang, M.; Wang, L.; Zhou, Y.; Wang, Z.; Xu, X.

    2016-12-01

    In this paper, the use of black phosphorus (BP) as a saturable absorber in a Q-switched Nd-ion doped solid state laser is presented. Few layers of BP in isopropyl alcohol are obtained by liquid phase exfoliation. The BP nanosheets with thicknesses in the range of 15-20 nm are deposited onto a K9 glass substrate. By inserting the BP nanosheets into a diode pumped Nd-ion doped solid state laser, stable Q-switched lasing at 0.9, 1.06, 1.3 μm is obtained. Using this approach, we have achieved a short pulse duration down to 219 ns, a high pulse energy of up to 6.5 μJ, and the corresponding peak power of 30 W. Our results show that the BP saturable absorber functions well in a Nd-ion doped solid state laser for pulsed laser generation.

  12. Black phosphorus based saturable absorber for Nd-ion doped pulsed solid state laser operation

    NASA Astrophysics Data System (ADS)

    Han, S.; Zhang, F.; Wang, M.; Wang, L.; Zhou, Y.; Wang, Z.; Xu, X.

    2017-04-01

    In this paper, the use of black phosphorus (BP) as a saturable absorber in a Q-switched Nd-ion doped solid state laser is presented. Few layers of BP in isopropyl alcohol are obtained by liquid phase exfoliation. The BP nanosheets with thicknesses in the range of 15-20 nm are deposited onto a K9 glass substrate. By inserting the BP nanosheets into a diode pumped Nd-ion doped solid state laser, stable Q-switched lasing at 0.9, 1.06, 1.3 μm is obtained. Using this approach, we have achieved a short pulse duration down to 219 ns, a high pulse energy of up to 6.5 μJ, and the corresponding peak power of 30 W. Our results show that the BP saturable absorber functions well in a Nd-ion doped solid state laser for pulsed laser generation.

  13. Development of Advanced LED Phosphors by Spray-based Processes for Solid State Lighting

    SciTech Connect

    Cabot Corporation

    2007-09-30

    The overarching goal of the project was to develop luminescent materials using aerosol processes for making improved LED devices for solid state lighting. In essence this means improving white light emitting phosphor based LEDs by improvement of the phosphor and phosphor layer. The structure of these types of light sources, displayed in Figure 1, comprises of a blue or UV LED under a phosphor layer that converts the blue or UV light to a broad visible (white) light. Traditionally, this is done with a blue emitting diode combined with a blue absorbing, broadly yellow emitting phosphor such as Y{sub 3}Al{sub 5}O{sub 12}:Ce (YAG). A similar result may be achieved by combining a UV emitting diode and at least three different UV absorbing phosphors: red, green, and blue emitting. These emitted colors mix to make white light. The efficiency of these LEDs is based on the combined efficiency of the LED, phosphor, and the interaction between the two. The Cabot SSL project attempted to improve the over all efficiency of the LED light source be improving the efficiency of the phosphor and the interaction between the LED light and the phosphor. Cabot's spray based process for producing phosphor powders is able to improve the brightness of the powder itself by increasing the activator (the species that emits the light) concentration without adverse quenching effects compared to conventional synthesis. This will allow less phosphor powder to be used, and will decrease the cost of the light source; thus lowering the barrier of entry to the lighting market. Cabot's process also allows for chemical flexibility of the phosphor particles, which may result in tunable emission spectra and so light sources with improved color rendering. Another benefit of Cabot's process is the resulting spherical morphology of the particles. Less light scattering results when spherical particles are used in the phosphor layer (Figure 1) compared to when conventional, irregular shaped phosphor particles

  14. A GdAlO3 Perovskite Oxide Electrolyte-Based NOx Solid-State Sensor

    PubMed Central

    Xiao, Yihong; Wang, Dongmei; Cai, Guohui; Zheng, Yong; Zhong, Fulan

    2016-01-01

    NOx is a notorious emission from motor vehicles and chemical factories as the precursor of acid rain and photochemical smog. Although zirconia-based NOx sensors have been developed and showed high sensitivity and selectivity at a high temperature of above 800 °C, they fail to show good performance, and even don’t work at the typical work temperature window of the automotive engine (<500 °C). It still is a formidable challenge for development of mild-temperature NOx detector or sensor. Herein, a novel amperometric solid-state NOx sensor was developed using perovskite-type oxide Gd1−xCaxAlO3−δ(GCA) as the electrolyte and NiO as the sensing electrode. NOx sensing properties of the device were investigated at the temperature region of 400–500 °C. The response current value at −300 mV was almost linearly proportional to the NOx concentration between 300 and 500 ppm at 500 °C. At such a temperature, the optimal sensor gave the highest NO2 sensitivity of 20.15 nA/ppm, and the maximum response current value reached 5.57 μA. Furthermore, a 90% response and 90% recover time to 500 ppm NO2 were about 119 and 92 s, respectively. The excellent selectivity and stability towards NOx sensing showed the potential application of the sensor in motor vehicles. PMID:27886278

  15. A GdAlO3 Perovskite Oxide Electrolyte-Based NOx Solid-State Sensor

    NASA Astrophysics Data System (ADS)

    Xiao, Yihong; Wang, Dongmei; Cai, Guohui; Zheng, Yong; Zhong, Fulan

    2016-11-01

    NOx is a notorious emission from motor vehicles and chemical factories as the precursor of acid rain and photochemical smog. Although zirconia-based NOx sensors have been developed and showed high sensitivity and selectivity at a high temperature of above 800 °C, they fail to show good performance, and even don’t work at the typical work temperature window of the automotive engine (<500 °C). It still is a formidable challenge for development of mild-temperature NOx detector or sensor. Herein, a novel amperometric solid-state NOx sensor was developed using perovskite-type oxide Gd1‑xCaxAlO3‑δ(GCA) as the electrolyte and NiO as the sensing electrode. NOx sensing properties of the device were investigated at the temperature region of 400–500 °C. The response current value at ‑300 mV was almost linearly proportional to the NOx concentration between 300 and 500 ppm at 500 °C. At such a temperature, the optimal sensor gave the highest NO2 sensitivity of 20.15 nA/ppm, and the maximum response current value reached 5.57 μA. Furthermore, a 90% response and 90% recover time to 500 ppm NO2 were about 119 and 92 s, respectively. The excellent selectivity and stability towards NOx sensing showed the potential application of the sensor in motor vehicles.

  16. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids

    NASA Astrophysics Data System (ADS)

    Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2016-09-01

    Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.

  17. Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples.

    PubMed

    Zhang, Nan; Zhang, Ling; Ruan, Yi-Fan; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-03-07

    Photoelectrochemical (PEC) bioanalysis is a newly developed methodology that provides an exquisite route for innovative biomolecular detection. Quantum dots (QDs) are semiconductor nanocrystals with unique photophysical properties that have attracted tremendous attentions among the analytical community. QDs-based PEC bioanalysis comprises an important research hotspot in the field of PEC bioanalysis due to its combined advantages and potentials. Currently, it has ignited increasing interests as demonstrated by increased research papers. This review aims to cover the most recent advances in this field. With the discussion of recent examples of QDs-PEC bioanalysis from the literatures, special emphasis will be placed on work reporting on fundamental advances in the signaling strategies of QDs-based PEC bioanalysis from 2013 to now. Future prospects in this field are also discussed.

  18. Solid-State, High Energy 2-Micron Laser Development for Space-Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2010-01-01

    report in 2000 strongly advocated that NASA maintain in-house laser and lidar capability, and that NASA should work to lower the technology risk for all future lidar missions. A multi-Center NASA team formulated an integrated NASA strategy to provide the technology and maturity of systems necessary to make Lidar/Laser systems viable for space-based study and monitoring of the Earth's atmosphere. In 2002 the NASA Earth Science Enterprise (ESE) and Office of Aerospace Technology (OAT) created the Laser Risk Reduction Program (LRRP) and directed NASA Langley Research Center (LaRC) and Goddard Space Flight Center to carry out synergistic and complementary research towards solid-state lasers/lidars developments for space-based remote sensing applications.

  19. Development of Bipolar All-solid-state Lithium Battery Based on Quasi-solid-state Electrolyte Containing Tetraglyme-LiTFSA Equimolar Complex

    PubMed Central

    Gambe, Yoshiyuki; Sun, Yan; Honma, Itaru

    2015-01-01

    The development of high energy–density lithium-ion secondary batteries as storage batteries in vehicles is attracting increasing attention. In this study, high-voltage bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex were prepared, and the performance of the device was evaluated. Via the successful production of double-layered and triple-layered high-voltage devices, it was confirmed that these stacked batteries operated properly without any internal short-circuits of a single cell within the package: Their plateau potentials (6.7 and 10.0 V, respectively) were two and three times that (3.4 V) of the single-layered device, respectively. Further, the double-layered device showed a capacity retention of 99% on the 200th cycle at 0.5 C, which is an indication of good cycling properties. These results suggest that bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex could readily produce a high voltage of 10 V. PMID:25746860

  20. Development of bipolar all-solid-state lithium battery based on quasi-solid-state electrolyte containing tetraglyme-LiTFSA equimolar complex.

    PubMed

    Gambe, Yoshiyuki; Sun, Yan; Honma, Itaru

    2015-03-09

    The development of high energy-density lithium-ion secondary batteries as storage batteries in vehicles is attracting increasing attention. In this study, high-voltage bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex were prepared, and the performance of the device was evaluated. Via the successful production of double-layered and triple-layered high-voltage devices, it was confirmed that these stacked batteries operated properly without any internal short-circuits of a single cell within the package: Their plateau potentials (6.7 and 10.0 V, respectively) were two and three times that (3.4 V) of the single-layered device, respectively. Further, the double-layered device showed a capacity retention of 99% on the 200th cycle at 0.5 C, which is an indication of good cycling properties. These results suggest that bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex could readily produce a high voltage of 10 V.

  1. A plasticized polymer-electrolyte-based photoelectrochemical solar cell

    SciTech Connect

    Mao, D.; Ibrahim, M.A.; Frank, A.J.

    1998-01-01

    A photoelectrochemical solar cell based on an n-GaAs/polymer-redox-electrolyte junction is reported. Di(ethylene glycol) ethyl ether acrylate containing ferrocene as a redox species and benzoin methyl ether as a photoinitiator is polymerized in situ. Propylene carbonate is used as a plasticizer to improve the conductivity of the polymer redox electrolyte. For thin (1 {micro}m) polymer electrolytes, the series resistance of the cell is negligible. However, the short-circuit photocurrent density of the cell at light intensities above 10 mW/cm{sup 2} is limited by mass transport of redox species within the polymer matrix. At a light intensity of 70 mW/cm{sup 2}, a moderate light-to-electrical energy conversion efficiency (3.1%) is obtained. The interfacial charge-transfer properties of the cell in the dark and under illumination are studied.

  2. Endo-Fullerenes and Doped Diamond Nanocrystallite Based Solid-State Qubits

    NASA Technical Reports Server (NTRS)

    Park, Seongjun; Srivastava, Deepak; Cho, K.

    2001-01-01

    This viewgraph presentation provides information on the use of endo-fullerenes and doped diamond nanocrystallites in the development of a solid state quantum computer. Arrays of qubits, which have 1/2 nuclear spin, are more easily fabricated than arrays of similar bare atoms. H-1 can be encapsulated in a C20D20 fullerene, while P-31 can be encapsulated in a diamond nanocrystallite.

  3. Spectroscopic studies of solid-state forms of donepezil free base and salt forms with various salicylic acids

    NASA Astrophysics Data System (ADS)

    Brittain, Harry G.

    2014-12-01

    The polymorphic forms of donepezil free base have been studied using X-ray powder diffraction, Fourier transform infrared absorption spectroscopy, and differential scanning calorimetry. None of the free base crystal forms was observed to exhibit detectable fluorescence in the solid state under ambient conditions. Crystalline salt products were obtained by the reaction of donepezil with salicylic and methyl-substituted salicylic acids, with the salicylate and 4-methylsalicylate salts being obtained as non-solvated products, and the 3-methylsalicylate and 5-methylsalicylate salts being obtained as methanol solvated products. The intensity of solid-state fluorescence from donepezil salicylate and donepezil 4-methylsalicylate was found to be reduced relative to the fluorescence intensity of the corresponding free acids, while the solid-state fluorescence intensity of donepezil 3-methylsalicylate methanolate and donepezil 5-methylsalicylate methanolate was greatly increased relative to the fluorescence intensity of the corresponding free acids. Desolvation of the solvated salt products led to formation of glassy solids that exhibited strong green fluorescence.

  4. All-solid state supercapacitors operating at 3.5 V by using ionic liquid based polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ayalneh Tiruye, Girum; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2015-04-01

    All-solid state supercapacitors (SCs) using Ionic Liquid based Polymer Electrolyte (IL-b-PE) and activated carbon were assembled and characterized electrochemically. IL-b-PE consisted of a binary blend of a polymeric ionic liquid (PIL), poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (pDADMATFSI), and their corresponding ionic liquid (IL), N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR14TFSI) in a ratio of 40:60,w/w respectively. Assembling of supercapacitors simply consists of facing two impregnated electrodes without the need of additional separator. Several all-solid state SCs with impregnation ratios (IL-b-PE mass/active material mass) ranging from 5 to 18 were characterized. An all-solid state SC with impregnation ratio of 7 showed the best performance with specific capacitance (Cam) and real energy (Ereal) of 100 F g-1 and 32 Wh kg-1, respectively. After increasing temperatures to 60 °C, the performance of SCs further improved exhibiting Ereal values of 42 Wh kg-1 at 1 mA cm-2. These figures of merit are only slightly lower than those obtained for convectional SCs using pure PYR14TFS and much higher as compared with other solid SCs based on conventional polymer electrolytes. This is mainly due to the high electrochemical stability of this IL-b-PE that allows these solid SCs to operate at maximum voltages as high as 3.5 V for the first time.

  5. Progress on High-Energy 2-micron Solid State Laser for NASA Space-Based Wind and Carbon Dioxide Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2011-01-01

    Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  6. Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes.

    PubMed

    Rius-Ruiz, F Xavier; Kisiel, Anna; Michalska, Agata; Maksymiuk, Krzystof; Riu, Jordi; Rius, F Xavier

    2011-04-01

    A novel potentiometric solid-state reference electrode containing single-walled carbon nanotubes as the transducer layer between a polyacrylate membrane and the conductor is reported here. Single-walled carbon nanotubes act as an efficient transducer of the constant potentiometric signal originating from the reference membrane containing the Ag/AgCl/Cl(-) ions system, and they are needed to obtain a stable reference potentiometric signal. Furthermore, we have taken advantage of the light insensitivity of single-walled carbon nanotubes to improve the analytical performance characteristics of previously reported solid-state reference electrodes. Four different polyacrylate polymers have been selected in order to identify the most efficient reservoir for the Ag/AgCl system. Finally, two different arrangements have been assessed: (1) a solid-state reference electrode using photo-polymerised n-butyl acrylate polymer and (2) a thermo-polymerised methyl methacrylate:n-butyl acrylate (1:10) polymer. The sensitivity to various salts, pH and light, as well as time of response and stability, has been tested: the best results were obtained using single-walled carbon nanotubes and photo-polymerised n-butyl acrylate polymer. Water transport plays an important role in the potentiometric performance of acrylate membranes, so a new screening test method has been developed to qualitatively assess the difference in water percolation between the polyacrylic membranes studied. The results presented here open the way for the true miniaturisation of potentiometric systems using the excellent properties of single-walled carbon nanotubes.

  7. Novel creatine biosensors based on all solid-state contact ammonium-selective membrane electrodes.

    PubMed

    Altikatoglu, Melda; Karakus, Emine; Erci, Vildan; Pekyardımcı, Sule; Isildak, Ibrahim

    2013-04-01

    Novel creatine bienzymatic potentiometric biosensors were prepared by immobilizing urease and creatinase on all solid-state contact PVC-containing palmitic acid and carboxylated PVC matrix membrane ammonium-selective electrodes without inner reference solution. Potentiometric characteristics of biosensors were examined in physiological model solutions at different creatine concentrations. The linear working range and long-term sensitivity of the biosensors were also determined. The creatine biosensors prepared by using the carboxylated PVC membrane electrodes showed more effective performance than those of the PVC containing palmitic acid membrane electrodes. Creatine assay in serum samples was successfully carried out by using the standard addition method.

  8. Solid-state dye laser based on Coumarin 540A-doped polymeric matrices

    NASA Astrophysics Data System (ADS)

    Costela, A.; Garcia-Moreno, I.; Figuera, J. M.; Amat-Guerri, F.; Barroso, J.; Sastre, R.

    1996-02-01

    Coumarin 540-A has been dissolved in a copolymer of 2-hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA) 1:1 v/v and in a pure poly(methyl methacrylate) homopolymer (PMMA). Laser action has been induced in the resulting solid-state solutions pumped with 1.2 mJ pulses at 337 nm from a nitrogen laser. The effects on the laser performance of different polymerization methods, dye concentration and polymeric matrix composition have been evaluated. Energy conversion efficiencies of 11% and lifetimes of about 2000 pulses at 2 Hz repetition rate have been demonstrated.

  9. Noise reduction in solid-state lasers using a SHG-based buffer reservoir.

    PubMed

    El Amili, Abdelkrim; Alouini, Mehdi

    2015-04-01

    The cancellation of resonant intensity noise, from a few kHz up to several GHz, is reported using a second-harmonic generation (SHG) buffer reservoir in a Nd:YAG solid-state laser. This approach is shown to be well suited and easily optimizable for reducing the excess noise lying at the laser relaxation oscillations as well as that originating from the beating between the lasing mode and nonlasing adjacent longitudinal modes. A thorough analysis of noise spectra of both laser and SHG signals confirms definitely that noise reduction is a consequence of a deep laser dynamics modification rather than noise evacuation mechanism.

  10. Electrochemical-reaction-induced synaptic plasticity in MoOx-based solid state electrochemical cells.

    PubMed

    Yang, Chuan-Sen; Shang, Da-Shan; Chai, Yi-Sheng; Yan, Li-Qin; Shen, Bao-Gen; Sun, Young

    2017-02-08

    Solid state electrochemical cells with synaptic functions have important applications in building smart-terminal networks. Here, the essential synaptic functions including potentiation and depression of synaptic weight, transition from short- to long-term plasticity, spike-rate-dependent plasticity, and spike-timing-dependent plasticity behavior were successfully realized in an Ag/MoOx/fluorine-doped tin oxide (FTO) cell with continual resistance switching. The synaptic plasticity underlying these functions was controlled by tuning the excitatory post-synaptic current (EPSC) decay, which is determined by the applied voltage pulse number, width, frequency, and intervals between the pre- and post-spikes. The physical mechanism of the artificial synapse operation is attributed to the interfacial electrochemical reaction processes of the MoOx films with the adsorbed water, where protons generated by water decomposition under an electric field diffused into the MoOx films and intercalated into the lattice, leading to the short- and long-term retention of cell resistance, respectively. These results indicate the possibility of achieving advanced artificial synapses with solid state electrochemical cells and will contribute to the development of smart-terminal networking systems.

  11. Photoelectrochemical cells

    NASA Astrophysics Data System (ADS)

    Nozik, A. J.

    1980-02-01

    The application of photoelectrochemical systems based on photoactive semiconducting electrodes to the problem of solar energy conversion and chemical synthesis is discussed. Three types of cells are described: electrochemical photovoltaic cells (wherein optical energy is converted into electrical energy); photoelectrolysis cells (wherein optical energy is converted into chemical free energy); and photocatalytic cells (wherein optical energy provides the activation energy for exoergic chemical reactions). The critical semiconductor electrode properties for these cells are the band gap, the flat-band potential, and the photoelectrochemical stability. No semiconductor electrode material is yet known for which all three parameters are simultaneously optimized. An interesting configurational variation of photoelectrolysis cells, labelled 'photochemical diodes', is described. These diodes comprise cells that have been collapsed into monolithic particles containing no external wires. Recent advances in several areas of photoelectrochemical systems are also described.

  12. Solid State Photovoltaic Research Branch

    SciTech Connect

    Not Available

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  13. Non-invasive medical diagnostics by nanoparticle-based solid-state gas sensors

    NASA Astrophysics Data System (ADS)

    Tricoli, Antonio

    2013-08-01

    Chemical sensors made of tailored nanoparticles offer excellent miniaturization capability and are able to rapidly and continuously detect trace amounts of important analytes down to trace concentrations. Application of these sensing materials to non-invasive medical diagnostics by breath analysis has the potential to drastically reduce diagnostics costs while offering better service quality to the patients and enabling very early-stage detection of severe illnesses such as lung cancer. Here, we present a flexible approach to synthesize advanced solid-state gas sensor materials that have demonstrated reliable detection of important breath markers. In particular, the feasibility of capturing highly performing, meta-stable sensing nanoparticles by flame-synthesis of multi component metal-oxides is critically discussed.

  14. Introduction to the Solid State Based Interior Lighting System for ISS

    NASA Technical Reports Server (NTRS)

    Maida, James C.

    2014-01-01

    Solid state lighting assembly (SSLA) were designed to replace general luminaire assembly (GLA) for both general interior illumination and improved circadian rhythm through melatonin control using multiple spectrums. To accomplish these goals, the light is design to operate in 3 modes with 3 distinct spectrum. The different spectrum provide control of the blue portion of the light which impacts melatonin production in humans which impacts sleep. General mode is a 4500K "neutral" light spectrum intended to the be the default mode of operation for day to day operations. Pre-sleep mode is a 2700K "warm" light spectrum intended to be used by the crew at the end of the work day. Phase-shift mode is a 6500K "cool" light spectrum intended to be used for altering the crew's sleep patterns.

  15. Detection of a single enzyme molecule based on a solid-state nanopore sensor

    NASA Astrophysics Data System (ADS)

    Tan, ShengWei; Gu, DeJian; Liu, Hang; Liu, QuanJun

    2016-04-01

    The nanopore sensor as a high-throughput and low-cost technology can detect a single molecule in a solution. In the present study, relatively large silicon nitride (Si3N4) nanopores with diameters of ∼28 and ∼88 nm were fabricated successfully using a focused Ga ion beam. We have used solid-state nanopores with various sizes to detect the single horseradish peroxidase (HRP) molecule and for the first time analyzed single HRP molecular translocation events. In addition, a real-time monitored single enzyme molecular biochemical reaction and a translocation of the product of enzyme catalysis substrates were investigated by using a Si3N4 nanopore. Our nanopore system showed a high sensitivity in detecting single enzyme molecules and a real-time monitored single enzyme molecular biochemical reaction. This method could also be significant for studying gene expression or enzyme dynamics at the single-molecule level.

  16. Microwave-induced plasma reactor based on a domestic microwave oven for bulk solid state chemistry

    SciTech Connect

    Brooks, David J.; Douthwaite, Richard E.

    2004-12-01

    A microwave-induced plasma (MIP) reactor has been constructed from a domestic microwave oven (DMO) and applied to the bulk synthesis of solid state compounds. Low pressure MIP can be initiated and maintained using a range of gases including Ar, N{sub 2}, NH{sub 3}, O{sub 2}, Cl{sub 2}, and H{sub 2}S. In order to obtain reproducible synthesis conditions the apparatus is designed to allow control of gas flow rate, gas composition, and pressure. The use of the reactor is demonstrated by the synthesis of three binary metal nitrides formed in a NH{sub 3} MIP. The reactions are rapid and the products show good crystallinity and phase purity as judged by powder x-ray diffraction.

  17. Fabrication and characterization of solid-state thermal neutron detectors based on hexagonal boron nitride epilayers

    NASA Astrophysics Data System (ADS)

    Doan, T. C.; Majety, S.; Grenadier, S.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2014-06-01

    Solid-state thermal neutron detectors with improved detection efficiencies are highly sought after for many applications. Hexagonal boron nitride (hBN) epilayers have been synthesized by metal organic chemical vapor deposition on sapphire substrates. Important material parameters including the mobility-lifetime (μτ) product and the thermal neutron absorption length (λ) have been measured. For hBN epilayers with a room temperature resistivity of 5.3×1010 Ω cm, the measured μτ product of electrons is 4.46×10-8 cm2/V and of holes is 7.07×10-9 cm2/V. The measured λ values are 277 μm and 77 μm for natural and 10B enriched hBN epilayers, respectively. Metal-semiconductor-metal detectors incorporating 0.3 µm thick hBN epilayers were fabricated. The reaction product pulse-height spectra were measured under thermal neutron irradiation produced by a 252Cf source moderated by high density polyethylene block. The measured pulse-height spectra revealed distinguishable peaks corresponding to the product energies of 10B and neutron reaction with the 0.84 MeV 7Li peak being the most prominent. The detectors exhibited negligible responses to gamma rays produced by 137Cs decay. Our results indicate that hBN epilayers are highly promising for realizing highly sensitive solid-state thermal neutron detectors with expected advantages resulting from semiconductor technologies, including compact size, light weight, ability to integrate with other functional devices, and low cost.

  18. Holmium Doped Solid State Laser Resonantly Pumped and Q-Switched by Novel GaSb-Based Photonic Devices

    DTIC Science & Technology

    2011-08-31

    collection of information if it does not display a currently valid OMB control number. 31-08-2011 FINAL 01-03-2008 --- 31-05-2011 Holmium Doped Solid State...release Diode pumped holmium doped fiber laser was developed in cooperation with Dr. Stuart Jackson (University of Sydney, Australia) in the framework...40 C in CW regime. Holmium doped fiber laser, resonant pumping, diode pumped, high power diode lasers, GaSb-based, type-I quantum-well U U U UU AFRL

  19. Low-cost superior solid-state symmetric supercapacitors based on hematite nanocrystals

    NASA Astrophysics Data System (ADS)

    Peng, Shaomin; Yu, Lin; Lan, Bang; Sun, Ming; Cheng, Gao; Liao, Shuhuan; Cao, Han; Deng, Yulin

    2016-12-01

    We present a facile method for the fabrication of hematite nanocrystal-carbon cloth (Fe2O3-CC) composite. Hierarchical manganite is chosen as the sacrificial precursor, that does not contribute to the component of final iron oxide but can be in situ dissolved by the acid produced from the Fe3+ hydrolysis. This method effectively enhances the specific surface area and conductivity of hematite (Fe2O3) by attaching Fe2O3 nanocrystals (around 5 nm) firmly on the surface of carbon fibers. The obtained Fe2O3-CC can be directly used as a binder-free electrode for a supercapacitor. Interestingly, the composite electrode exhibits synergistic electrochemical capacitance (electrochemical double-layer capacitance and pseudo-capacitance). It manifests a very high areal capacitance of 1.66 F cm-2 (1660 F g-1) at 2 mA cm-2 and excellent cycling performance at large current densities (88.6% retention at 30 mA cm-2 after 5000 cycles) in a three-electrode testing system, which is among the best performances reported in the literature. Importantly, when fabricated as a solid-state flexible symmetric supercapacitor it still shows a maximum energy density of 8.74 mW h cm-3 and power density of 253.9 mW cm-3. Additionally, its good flexibility makes it suitable for portable devices.

  20. Characterization of a Tissue-Equivalent Dosimeter based on CMOS Solid-State Photomultipliers

    NASA Astrophysics Data System (ADS)

    Johnson, Erik; Benton, Eric; Stapels, Christopher; Chrsitian, James; Jie Chen, Xiao

    Available digital dosimeters are bulky and unable to provide real-time monitoring of dose from space radiation. The complexity of space-flight design requires reliable, fault-tolerant equip-ment capable of providing real-time dosimetry during a mission, which is not feasible with the existing thermoluminescent dosimeter (TLD) technology, especially during extravehicular activity (EVA). Real-time monitoring is important for low-Earth orbiting spacecraft and inter-planetary space flight to alert the crew when Solar Particle Events (SPE) increase the particle flux of the spacecraft environment. A dosimeter-on-a-chip for personal dosimetry is comprised of a tissue-equivalent scintillator coupled to a solid-state photomultiplier (SSPM) built using CMOS technology. The radiation sensitive component of the dosimeter is coupled to analog signal processing components and a microprocessor, which can maintain processing fidelity up to 5x105 events per second. The dynamic range of the dosimeter has been verified from 1-GeV protons (0.22 keV/µm in H20) to 420 MeV/n Fe (201.1 keV/µm in H20). The dosimeter confirmed doses to within 3

  1. A 2×2 array of EMCCD-based solid state x-ray detectors.

    PubMed

    Sharma, P; Swetadri Vasan, S N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2012-01-01

    We have designed and developed a new solid-state x-ray imaging system that consists of a 2×2 array of electron multiplying charge coupled devices (EMCCDs). This system is intended for fluoroscopic and angiographic medical imaging. The key components are the four 1024 × 1024 pixel EMCCDs with a pixel size of 13 × 13 µm(2). Each EMCCD is bonded to a fiber optic plate (FOP), and optically coupled to a 350 µm thick micro-columnar CsI(TI) scintillator via a 3.22∶1 fiber optic taper (FOT). The detector provides x-ray images of 9 line pairs/mm resolution at 15 frames/sec and real-time live video at 30 frames/sec with binning at a lower resolution, independent of the electronic gain applied to the EMCCD. The total field of view (FOV) of the array is 8.45 cm × 8.45 cm. The system is designed to also provide the ability to do region-of- interest imaging (ROI) by selectively enabling individual modules of the array.

  2. Carbon-Based Flexible and All-Solid-State Micro-supercapacitors Fabricated by Inkjet Printing with Enhanced Performance

    NASA Astrophysics Data System (ADS)

    Pei, Zhibin; Hu, Haibo; Liang, Guojin; Ye, Changhui

    2017-04-01

    By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors (MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide (GO, 98.0 vol.%) ink and commercial pen ink (2.0 vol.%). A small amount of commercial pen ink was added to effectively reduce the agglomeration of the GO sheets during solvent evaporation and the following reduction processes in which the presence of graphite carbon nanoparticles served as nano-spacer to separate GO sheets. The printed device fabricated using the hybrid ink, combined with the binder-free microelectrodes and interdigital microelectrode configuration, exhibits nearly 780% enhancement in areal capacitance compared with that of pure GO ink. It also shows excellent flexibility and cycling stability with nearly 100% retention of the areal capacitance after 10,000 cycles. The all-solid-state device can be optionally connected in series or in parallel to meet the voltage and capacity requirements for a given application. This work demonstrates a promising future of the carbon-based hybrid ink for directly large-scale inkjet printing MSCs for disposable energy storage devices.

  3. High Performance All-Solid-State Flexible Micro-Pseudocapacitor Based on Hierarchically Nanostructured Tungsten Trioxide Composite

    PubMed Central

    2015-01-01

    Microsupercapacitors (MSCs) are promising energy storage devices to power miniaturized portable electronics and microelectromechanical systems. With the increasing attention on all-solid-state flexible supercapacitors, new strategies for high-performance flexible MSCs are highly desired. Here, we demonstrate all-solid-state, flexible micropseudocapacitors via direct laser patterning on crack-free, flexible WO3/polyvinylidene fluoride (PVDF)/multiwalled carbon nanotubes (MWCNTs) composites containing high levels of porous hierarchically structured WO3 nanomaterials (up to 50 wt %) and limited binder (PVDF, <25 wt %). The work leads to an areal capacitance of 62.4 mF·cm–2 and a volumetric capacitance of 10.4 F·cm–3, exceeding that of graphene based flexible MSCs by a factor of 26 and 3, respectively. As a noncarbon based flexible MSC, hierarchically nanostructured WO3 in the narrow finger electrode is essential to such enhancement in energy density due to its pseudocapacitive property. The effects of WO3/PVDF/MWCNTs composite composition and the dimensions of interdigital structure on the performance of the flexible MSCs are investigated. PMID:26618406

  4. High Performance All-Solid-State Flexible Micro-Pseudocapacitor Based on Hierarchically Nanostructured Tungsten Trioxide Composite.

    PubMed

    Huang, Xuezhen; Liu, Hewei; Zhang, Xi; Jiang, Hongrui

    2015-12-23

    Microsupercapacitors (MSCs) are promising energy storage devices to power miniaturized portable electronics and microelectromechanical systems. With the increasing attention on all-solid-state flexible supercapacitors, new strategies for high-performance flexible MSCs are highly desired. Here, we demonstrate all-solid-state, flexible micropseudocapacitors via direct laser patterning on crack-free, flexible WO3/polyvinylidene fluoride (PVDF)/multiwalled carbon nanotubes (MWCNTs) composites containing high levels of porous hierarchically structured WO3 nanomaterials (up to 50 wt %) and limited binder (PVDF, <25 wt %). The work leads to an areal capacitance of 62.4 mF·cm(-2) and a volumetric capacitance of 10.4 F·cm(-3), exceeding that of graphene based flexible MSCs by a factor of 26 and 3, respectively. As a noncarbon based flexible MSC, hierarchically nanostructured WO3 in the narrow finger electrode is essential to such enhancement in energy density due to its pseudocapacitive property. The effects of WO3/PVDF/MWCNTs composite composition and the dimensions of interdigital structure on the performance of the flexible MSCs are investigated.

  5. High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Wang, Yanyan; Zhang, Yafei

    2016-11-01

    Graphene-based all-solid-state supercapacitors (ASSSCs) have received increasing attention. It's a great challenge to fabricate high-performance flexible solid-state supercapacitors with high areal and volumetric energy storage capability, superior electron and ion conductivity, robust mechanical flexibility, as well as long term stability. Herein, we report a facile method to fabricate flexible ASSSCs based on densely-packed reduced graphene oxide (rGO)/polypyrrole nanoparticle (PPy NP) hybrid papers with a sandwich framework, which consists of well-separated and continuously-aligned rGO sheets. The incorporation of PPy NPs not only provides pseudocapacitance but also facilitates the infiltration of gel electrolyte. The assembled ASSSCs possess maximum areal and volumetric specific capacitances of 477 mF/cm2 and 94.9 F/cm3 at 0.5 mA/cm2. They also exhibit little capacitance deviation under different bending states, excellent cycling stability, small leakage current and low self-discharge characteristics. Additionally, the maximum areal and volumetric energy densities of 132.5 μWh/cm2 and 26.4 mWh/cm3 are achieved, which indicate that this hybrid paper is a promising candidate for high-performance flexible energy storage devices.

  6. All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials.

    PubMed

    Chen, Teng; Tang, Yongfu; Qiao, Yuqing; Liu, Zhangyu; Guo, Wenfeng; Song, Jianzheng; Mu, Shichun; Yu, Shengxue; Zhao, Yufeng; Gao, Faming

    2016-03-29

    All-solid-state high-performance asymmetric supercapacitors (ASCs) are fabricated using γ-MnS as positive electrode and porous eggplant derived activated carbon (EDAC) as negative electrode with saturated potassium hydroxide agar gel as the solid electrolyte. The laminar wurtzite nanostructure of γ-MnS facilitates the insertion of hydroxyl ions into the interlayer space, and the manganese sulfide nanowire offers electronic transportation channels. The size-uniform porous nanostructure of EDAC provides a continuous electron pathway as well as facilitates short ionic transportation pathways. Due to these special nanostructures of both the MnS and the EDAC, they exhibited a specific capacitance of 573.9 and 396 F g(-1) at 0.5 A g(-1), respectively. The optimized MnS//EDAC asymmetric supercapacitor shows a superior performance with specific capacitance of 110.4 F g(-1) and 89.87% capacitance retention after 5000 cycles, a high energy density of 37.6 Wh kg(-1) at a power density of 181.2 W kg(-1) and remains 24.9 Wh kg(-1) even at 5976 W kg(-1). Impressively, such two assembled all-solid-state cells in series can light up a red LED indicator for 15 minutes after fully charged. These impressive results make these pollution-free materials promising for practical applications in solid aqueous electrolyte-based ASCs.

  7. Temperature-induced solid-state valence tautomeric interconversion in two cobalt-Schiff base diquinone complexes.

    PubMed

    Cador, Olivier; Chabre, Françoise; Dei, Andrea; Sangregorio, Claudio; van Slageren, Joris; Vaz, Maria G F

    2003-10-06

    The mixed-ligand complexes [Co(III)(tpy)(Cat-N-SQ)]Y and [Ni(II)(tpy)(Cat-N-BQ)]PF(6) (tpy = 2,2':6',2' '-terpyridine; Cat-N-BQ, Cat-N-SQ = mononegative and radical dinegative Schiff base diquinone ligand; Y = PF(6), BPh(4)) were prepared. Structural and spectroscopic data support the different charge distribution of the two compounds. The temperature-dependent electronic and spectral properties of solutions containing the [Co(III)(tpy)(Cat-N-SQ)](+) suggest that this compound undergoes a thermally driven valence tautomeric interconversion to [Co(II)(tpy)(Cat-N-BQ)](+) complex, the metal ion being in high-spin configuration. The comparison of the electrochemical properties of the cobalt and nickel derivatives supports the observed behavior. The same interconversion process was found to occur also in the solid state with a significant higher T(c) value than in solution. It was found that the previously reported [Co(III)(Cat-N-BQ)(Cat-N-SQ)] shows a similar behavior. The large difference between the interconversion T(c) in the solid state and in solution is suggested to come from the entropy changes associated with the modifications of vibronic interactions.

  8. Development of a high current high temperature SiC MOSFET based solid-state power controller

    NASA Astrophysics Data System (ADS)

    Guo, Yuanbo

    Solid-State Power Controllers (SSPCs) are critical components in the development of electric aircraft and must be small in size, fast in response, and have high reliability. They are also proposed for use in microgrids to improve the power quality and system reliability. The development of Silicon Carbide (SiC) semiconductor switches provides a series of improvements for the SSPCs in both electrical and thermal performances. In the proposed SSPC design investigation, SiC MOSFETs die are mounted on cast-aluminum traces, under which are an aluminum nitride (AlN) layer and an aluminum composite base plate. The concept of i2t and its application in solid state protection is discussed in detail. Transient thermal characterizations of SiC MOSFETs are provided for a nearly-all-aluminum package by Finite Element Analysis (FEA). The SSPC is targeted for 120A nominal, 1200A fault current, 270V DC system, and working at 105°C environment with a maximum 350°C transient junction temperature capability.

  9. Highly efficient and photostable solid-state dye lasers based on modified copolymers doped with PM567

    NASA Astrophysics Data System (ADS)

    Jiang, Yugang; Fan, Rongwei; Xia, Yuanqin; Chen, Deying

    2011-04-01

    Solid-state dye samples based on modified copolymers of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) with methanol doped with PM567 were first prepared. The volume proportions of methanol have great effects on the laser's characteristics including spectra, lasing output and thermal properties. The highest slope efficiency of 64.25% was achieved in the sample MP (MMA:HEMA = 85:15 + 10% methanol). Pumping the samples at a repetition rate of 5 Hz with a pulse energy as high as 100 mJ (the fluence was 0.26 J/cm2), the maximum lifetime of 278,000 shots was obtained in the sample MP (MMA:HEMA = 85:15 + 15% methanol), and the corresponding normalized photostability reached 180.7 GJ/mol. The obtained ten-shots damage thresholds were as high as 6.7 J/cm2. The results indicate that the laser properties of solid-state dyes can be greatly enhanced by using modified copolymers of MMA and HEMA with methanol as solid hosts.

  10. All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials

    NASA Astrophysics Data System (ADS)

    Chen, Teng; Tang, Yongfu; Qiao, Yuqing; Liu, Zhangyu; Guo, Wenfeng; Song, Jianzheng; Mu, Shichun; Yu, Shengxue; Zhao, Yufeng; Gao, Faming

    2016-03-01

    All-solid-state high-performance asymmetric supercapacitors (ASCs) are fabricated using γ-MnS as positive electrode and porous eggplant derived activated carbon (EDAC) as negative electrode with saturated potassium hydroxide agar gel as the solid electrolyte. The laminar wurtzite nanostructure of γ-MnS facilitates the insertion of hydroxyl ions into the interlayer space, and the manganese sulfide nanowire offers electronic transportation channels. The size-uniform porous nanostructure of EDAC provides a continuous electron pathway as well as facilitates short ionic transportation pathways. Due to these special nanostructures of both the MnS and the EDAC, they exhibited a specific capacitance of 573.9 and 396 F g‑1 at 0.5 A g‑1, respectively. The optimized MnS//EDAC asymmetric supercapacitor shows a superior performance with specific capacitance of 110.4 F g‑1 and 89.87% capacitance retention after 5000 cycles, a high energy density of 37.6 Wh kg‑1 at a power density of 181.2 W kg‑1 and remains 24.9 Wh kg‑1 even at 5976 W kg‑1. Impressively, such two assembled all-solid-state cells in series can light up a red LED indicator for 15 minutes after fully charged. These impressive results make these pollution-free materials promising for practical applications in solid aqueous electrolyte-based ASCs.

  11. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun

    2016-10-01

    A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.

  12. Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide-Ag nanoparticle composites as labels.

    PubMed

    Jiang, Xiaochun; Chen, Kun; Wang, Jing; Shao, Kang; Fu, Tao; Shao, Feng; Lu, Donglian; Liang, Jiangong; Foda, M Frahat; Han, Heyou

    2013-06-21

    A new electrochemical immunosensor based on solid-state voltammetry was fabricated for the detection of Escherichia coli (E. coli) by using graphene oxide-Ag nanoparticle composites (P-GO-Ag) as labels. To construct the platform, Au nanoparticles (AuNPs) were first self-assembled on an Au electrode surface through cysteamine and served as an effective matrix for antibody (Ab) attachment. Under a sandwich-type immunoassay format, the analyte and the probe (P-GO-Ag-Ab) were successively captured onto the immunosensor. Finally, the bonded AgNPs were detected through a solid-state redox process in 0.2 M of KCl solution. Combining the advantages of the high-loading capability of graphene oxide with promoted electron-transfer rate of AuNPs, this immunosensor produced a 26.92-fold signal enhancement compared with the unamplified protocol. Under the optimal conditions, the immunosensor exhibited a wide linear dependence on the logarithm of the concentration of E. coli ranging from 50 to 1.0 × 10(6) cfu mL(-1) with a detection limit of 10 cfu mL(-1). Moreover, as a practical application, the proposed immunosensor was used to monitor E. coli in lake water with satisfactory results.

  13. Obviating the requirement for oxygen in SnO2-based solid-state dye-sensitized solar cells.

    PubMed

    Docampo, Pablo; Snaith, Henry J

    2011-06-03

    Organic semiconductors employed in solar cells are perfectly stable to solar irradiation provided oxygen content can be kept below 1 ppm. Paradoxically, the state-of-the-art molecular hole-transporter-based solid-state dye-sensitized solar cells only operate efficiently if measured in an atmosphere containing oxygen. Without oxygen, these devices rapidly lose photovoltage and photocurrent and are rendered useless. Clearly this peculiar requirement has detrimental implications to the long term stability of these devices. Through characterizing the solar cells in air and in oxygen-free atmospheres, and considering the device architecture, we identify that direct contact between the metallic cathode and the mesoporous metal oxide photo-anode is responsible for a shunting path through the device. This metal-metal oxide contact forms a Schottky barrier under ambient conditions and the barrier is suitably high so as to prevent significant shunting of the solar cells. However, under light absorption in an anaerobic atmosphere the barrier reduces significantly, opening a low resistance shunting path which dominates the current-voltage characteristics in the solar cell. By incorporating an extra interlayer of insulating mesoporous aluminum oxide, on top of the mesoporous semiconducting metal oxide electrode, we successfully block this shunting path and subsequently the devices operate efficiently in an oxygen-free atmosphere, enabling the possibility of long term stability of solid-state dye-sensitized solar cells.

  14. A theoretical perspective on the accuracy of rotational resonance (R 2)-based distance measurements in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Ramachandran, Ramesh

    2010-03-01

    The application of solid-state NMR methodology for bio-molecular structure determination requires the measurement of constraints in the form of 13C-13C and 13C-15N distances, torsion angles and, in some cases, correlation of the anisotropic interactions. Since the availability of structurally important constraints in the solid state is limited due to lack of sufficient spectral resolution, the accuracy of the measured constraints become vital in studies relating the three-dimensional structure of proteins to its biological functions. Consequently, the theoretical methods employed to quantify the experimental data become important. To accentuate this aspect, we re-examine analytical two-spin models currently employed in the estimation of 13C-13C distances based on the rotational resonance (R 2) phenomenon. Although the error bars for the estimated distances tend to be in the range 0.5-1.0 Å, R 2 experiments are routinely employed in a variety of systems ranging from simple peptides to more complex amyloidogenic proteins. In this article we address this aspect by highlighting the systematic errors introduced by analytical models employing phenomenological damping terms to describe multi-spin effects. Specifically, the spin dynamics in R 2 experiments is described using Floquet theory employing two different operator formalisms. The systematic errors introduced by the phenomenological damping terms and their limitations are elucidated in two analytical models and analysed by comparing the results with rigorous numerical simulations.

  15. A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.

    PubMed

    Fan, Xuliang; Liu, Jinliang

    2014-02-01

    High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically.

  16. Solid-state configurations

    NASA Technical Reports Server (NTRS)

    Schroeder, K. G.

    1980-01-01

    Two prototype solid-state phased array systems concepts developed for the solar power satellite (SPS) are described. In both concepts, the beam was centered on the rectenna by means of phase conjugation of a pilot signal emanating from the ground. Also discussed are results of solid state studies.

  17. Solid State Division

    SciTech Connect

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  18. Photoelectrochemical based direct conversion systems for hydrogen production

    SciTech Connect

    Kocha, S.; Peterson, M.; Arent, D.

    1996-10-01

    Photon driven, direct conversion systems consist of a light absorber and a water splitting catalyst as a monolithic system; water is split directly upon illumination. This one-step process eliminates the need to generate electricity externally and subsequently feed it to an electrolyzer. These configurations require only the piping necessary for transport of hydrogen to an external storage system or gas pipeline. This work is focused on multiphoton photoelectrochemical devices for production of hydrogen directly using sunlight and water. Two types of multijunction cells, one consisting of a-Si triple junctions and the other GaInP{sub 2}/GaAs homojunctions, were studied for the photoelectrochemical decomposition of water into hydrogen and oxygen from an aqueous electrolyte solution. To catalyze the water decomposition process, the illuminated surface of the device was modified either by addition of platinum colloids or by coating with ruthenium dioxide. These colloids have been characterized by gel electrophoresis.

  19. Efficiency Improvement of Nitride-Based Solid State Light Emitting Materials -- CRADA Final Report

    SciTech Connect

    Kisielowski, Christian; Weber, Eicke

    2010-05-13

    The development of In{sub x}Ga{sub 1-x} N/GaN thin film growth by Molecular Beam Epitaxy has opened a new route towards energy efficient solid-state lighting. Blue and green LED's became available that can be used to match the whole color spectrum of visible light with the potential to match the eye response curve. Moreover, the efficiency of such devices largely exceeds that of incandescent light sources (tungsten filaments) and even competes favorably with lighting by fluorescent lamps. It is, however, also seen in Figure 1 that it is essential to improve on the luminous performance of green LED's in order to mimic the eye response curve. This lack of sufficiently efficient green LED's relates to particularities of the In{sub x}Ga{sub 1-x}N materials system. This ternary alloy system is polar and large strain is generated during a lattice mismatched thin film growth because of the significantly different lattice parameters between GaN and InN and common substrates such as sapphire. Moreover, it is challenging to incorporate indium into GaN at typical growth temperatures because a miscibility gap exists that can be modified by strain effects. As a result a large parameter space needs exploration to optimize the growth of In{sub x}Ga{sub 1-x}N and to date it is unclear what the detailed physical processes are that affect device efficiencies. In particular, an inhomogeneous distribution indium in GaN modifies the device performance in an unpredictable manner. As a result technology is pushed forward on a trial and error basis in particular in Asian countries such as Japan and Korea, which dominate the market and it is desirable to strengthen the competitiveness of the US industry. This CRADA was initiated to help Lumileds Lighting/USA boosting the performance of their green LED's. The tasks address the distribution of the indium atoms in the active area of their blue and green LED's and its relation to internal and external quantum efficiencies. Procedures to

  20. Photoelectrochemical based direct conversion systems for hydrogen production

    SciTech Connect

    Khaselev, O.; Bansal, A.; Kocha, S.; Turner, J.A.

    1998-08-01

    With an eye towards developing a photoelectrochemical system for hydrogen production using sunlight as the only energy input, two types of systems were studied, both involving multijunction devices. One set of cells consisted of a-Si triple junctions and the other a GaInP{sub 2}/GaAs tandem cell combination. Additional investigations were carried out on semiconductor surface modifications to move semiconductor band edges to more favorable energetic positions.

  1. An all solid-state high-voltage ns trigger generator based on magnetic pulse compression and transmission line transformer.

    PubMed

    Lin, Jiajin; Yang, Jianhua; Zhang, Jiande; Chen, Xinbing

    2013-09-01

    Innovative design of an all solid-state high-voltage ns trigger generator, based on magnetic pulse compression and transmission line transformer, is presented. The repetitive trigger pulse generator was developed to trigger a 700 kV trigatron, which has been used to pulse a repetitive intense electron beam accelerator with Tesla transformer charged double pulse forming lines (PFLs). Experimental results show that the trigger pulse generator could produce 180 kV 65 ns duration pulses with a rise time of 20 ns. The repetitive trigger pulses have nice uniform in the voltage waveform. The control time jitter is less then 3 ns. Owing to its good stability and low time jitter, the high-voltage trigger generator is an excellent candidate to trigger the repetitive accelerator.

  2. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells.

    PubMed

    Zhang, Xi; Jiang, Hongrui

    2015-03-09

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.

  3. Tunable infrared solid-state laser materials based on Cr/sup 3 +/ in low ligand fields

    SciTech Connect

    Kenyon, P.T.; Andrews, L.; Lempick, A.; McCollum, B.

    1982-08-01

    A new class of solid-state tunable lasers based on Cr/sup 3 +/ in low ligand field materials is described. Spectroscopic and calculated laser properties have been obtained for the /sup 4/T/sub 2/ emission in two low field crystals: K/sub 2/Na Sc/sub 1-x/ Cr/sub x/F/sub 6/ and Al/sub 1-x/ Cr/sub x/ (PO/sub 3/)/sub 3/. A comparison is made with two d/sup 3/ laser materials (Cr/sup 3 +/:alexandrite and V/sup 2 +/:MgF/sub 2/). The prospect of expanding this class of materials is assessed.

  4. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells

    PubMed Central

    Zhang, Xi; Jiang, Hongrui

    2015-01-01

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices. PMID:25829547

  5. Eco-friendly wood-based solid-state flexible supercapacitors from wood transverse section slice and reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Lv, Shaoyi; Fu, Feng; Wang, Siqun; Huang, Jingda; Hu, La

    2015-07-01

    An interesting wood-based all-solid-state supercapacitor is produced using reduced graphene oxide (RGO) coated on wood transverse section slice (WTSS) as electrode material by means of a low-cost, eco-friendly, and simple method for the first time. The RGO-coated WTSS electrode has a porous 3D honeycomb framework due to the hierarchical cellular structure of the WTSS substrate and can function as an electrolyte reservoir. This special construction endows this novel electrode with good areal capacitance (102 mF cm-2) and excellent cyclic stability (capacitance retention of 98.9% after 5000 cycles). In addition, the supercapacitors exhibit good mechanical flexibility and preserve almost constant capacitive behavior under different bending conditions. Our study introduces a new and eco-friendly material design for electrodes in future flexible energy storage devices that closely resemble natural materials. [Figure not available: see fulltext.

  6. Effect of ion-chelating chain lengths in thiophene-based monomers on in situ photoelectrochemical polymerization and photovoltaic performances.

    PubMed

    Song, In Young; Kim, Minjun; Park, Taiho

    2015-06-03

    We synthesized thiophene-based monomers (bis-EDOTs) with different ethylene glycol oligomer (EGO) lengths (TBO3, TBO4, and TBO5) and investigated their polymerization characteristics during photoelectrochemical polymerization (PEP) at the surfaces of dye (D205)-sensitized TiO2 nanocrystalline particles. During the PEP reaction, monomers were expected to diffuse toward neighboring dyes through the growing polymer layers to enable continuous chain growth. We found that the less bulky monomer (TBO3) formed a more compact polymer layer with a high molecular weight. Its diffusion to the active sites through the resulting growing polymer layer was, therefore, limited. We deployed layers of the polymers (PTBO3, PTBO4, and PTBO5) in iodine-free solid-state hybrid solar cells to investigate the lithium ion chelating properties of the polymers as a function of the number of oxygen atoms present in the EGOs. PTBO4 and PTBO5 were capable of chelating lithium ions, yielding a photovoltaic performance that was 142% of the performance obtained without the polymer layers (3.0→5.2%).

  7. Solid-state lithium battery

    SciTech Connect

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  8. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong

    2016-02-01

    The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.

  9. Air Pollution Monitoring and Use of Nanotechnology Based Solid State Gas Sensors in Greater Cairo Area, Egypt

    NASA Astrophysics Data System (ADS)

    Ramadan, A. B. A.

    Air pollution is a serious problem in thickly populated and industrialized areas in Egypt, especially in greater Cairo area. Economic growth and industrialization are proceeding at a rapid pace, accompanied by increasing emissions of air polluting sources. Furthermore, though the variety and quantities of polluting sources have increased dramatically, the development of a suitable method for monitoring the pollution causing sources has not followed at the same pace. Environmental impacts of air pollutants have impact on public health, vegetation, material deterioration etc. To prevent or minimize the damage caused by atmospheric pollution, suitable monitoring systems are urgently needed that can rapidly and reliably detect and quantify polluting sources for monitoring by regulating authorities in order to prevent further deterioration of the current pollution levels. Consequently, it is important that the current real-time air quality monitoring system, controlled by the Egyptian Environmental Affairs Agency (EEAA), should be adapted or extended to aid in alleviating this problem. Nanotechnology has been applied to several industrial and domestic fields, for example, applications for gas monitoring systems, gas leak detectors in factories, fire and toxic gas detectors, ventilation control, breath alcohol detectors, and the like. Here we report an application example of studying air quality monitoring based on nanotechnology `solid state gas sensors'. So as to carry out air pollution monitoring over an extensive area, a combination of ground measurements through inexpensive sensors and wireless GIS will be used for this purpose. This portable device, comprising solid state gas sensors integrated to a Personal Digital Assistant (PDA) linked through Bluetooth communication tools and Global Positioning System (GPS), will allow rapid dissemination of information on pollution levels at multiple sites simultaneously.

  10. Bacillus coagulans tolerance to 1-ethyl-3-methylimidazolium-based ionic liquids in aqueous and solid-state thermophilic culture.

    PubMed

    Simmons, Christopher W; Reddy, Amitha P; Vandergheynst, Jean S; Simmons, Blake A; Singer, Steven W

    2014-01-01

    The use of ionic liquids (ILs) to disrupt the recalcitrant structure of lignocellulose and make polysaccharides accessible to hydrolytic enzymes is an emerging technology for biomass pretreatment in lignocellulosic biofuel production. Despite efforts to reclaim and recycle IL from pretreated biomass, residual IL can be inhibitory to microorganisms used for downstream fermentation. As a result, pathways for IL tolerance are needed to improve the activity of fermentative organisms in the presence of IL. In this study, microbial communities from compost were cultured under high-solids and thermophilic conditions in the presence of 1-ethyl-3-methylimidazolium-based ILs to enrich for IL-tolerant microorganisms. A strain of Bacillus coagulans isolated from an IL-tolerant community was grown in liquid and solid-state culture in the presence of the ILs 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) or 1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) to gauge IL tolerance. Viability and respiration varied with the concentration of IL applied and the type of IL used. B. coagulans maintained growth and respiration in the presence of 4 wt% IL, a concentration similar to that present on IL-pretreated biomass. In the presence of both [C2mim][OAc] and [C2mim][Cl] in liquid culture, B. coagulans grew at a rate approximately half that observed in the absence of IL. However, in solid-state culture, the bacteria were significantly more tolerant to [C2mim][Cl] compared with [C2mim][OAc]. B. coagulans tolerance to IL under industrially relevant conditions makes it a promising bacterium for understanding mechanisms of IL tolerance and discovering IL tolerance pathways for use in other microorganisms, particularly those used in bioconversion of IL-pretreated plant biomass.

  11. The Organic Solid State.

    ERIC Educational Resources Information Center

    Cowan, Dwaine O.; Wlygul, Frank M.

    1986-01-01

    Reviews interesting and useful electrical, magnetic, and optical properties of the organic solid state. Offers speculation as to areas of fruitful research. Discusses organic superconductors, conducting organic polymers, organic metals, and traces recent history of creation of organic metals. (JM)

  12. Fluorescent gold nanoclusters based photoelectrochemical sensors for detection of H2O2 and glucose.

    PubMed

    Zhang, Jianxiu; Tu, Liping; Zhao, Shuang; Liu, Guohua; Wang, Yangyun; Wang, Yong; Yue, Zhao

    2015-05-15

    In this work, low-toxicity fluorescent gold nanoclusters (AuNCs) based photoelectrochemical sensors were developed for H2O2 and glucose detection. Herein, the processes used to fabricate the sensors and the photoelectrochemical performances of the sensors under different conditions were presented. Based on the energy band levels of the AuNCs and electron tunneling processes, a detailed photoelectrochemical sensing model was given. The designed sensors were then used for H2O2 and glucose detection without any extra modification of the AuNCs or complex enzyme immobilization. The results demonstrate that the AuNCs allow for H2O2 sensing based on their capacity for both fluorescence and catalysis. Indeed, it was observed that H2O2 was catalyzed by the AuNCs and reduced by photoinduced electrons derived from excited AuNCs. Furthermore, an enhancement in photocurrent amplitude followed the increase in the concentrations of H2O2 and glucose. The effects of the types of ligands surrounding the AuNCs and the applied potential on the output photocurrent were well studied to optimize the measurement conditions. The sensitivity and LOD of MUA-AuNCs at -500 mV were 4.33 nA/mM and 35 μM, respectively. All experimental results indicated that AuNCs could not only serve as a promising photoelectrical material for building the photoelectrochemical biosensors but as catalysts for H2O2 sensing.

  13. Solid state switch

    DOEpatents

    Merritt, Bernard T.; Dreifuerst, Gary R.

    1994-01-01

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

  14. Solid-state dye-sensitized solar cells based on spirofluorene (spiro-OMeTAD) and arylamines as hole transporting materials.

    PubMed

    Hsu, Chih-Yu; Chen, Yung-Chung; Lin, Ryan Yeh-Yung; Ho, Kuo-Chuan; Lin, Jiann T

    2012-11-07

    Dye-sensitized solar cells are a promising solar technology because of their low cost, reliability, and high efficiency, compared with silicon-based solar cells. Efforts over the last two decades have increased solar cell efficiency to 12% based on liquid electrolytes, and more research on solid-state devices is necessary to determine their practical usage and long-term stability. The development of solid-state devices has achieved an overall efficiency over 7% using hole transporting materials. This study reviews current progress on hole transporting materials, sensitizers, and mesoporous TiO(2) in solid-state dye-sensitized solar cells using small organic molecules as the hole transporting material. This study also discusses the key factors, such as molecular structure design and interfacial problems, affecting device performance.

  15. High-temperature solid-state dye-sensitized solar cells based on organic ionic plastic crystal electrolytes.

    PubMed

    Li, Qing; Zhao, Jie; Sun, Baoquan; Lin, Bencai; Qiu, Lihua; Zhang, Yueguang; Chen, Xiaojian; Lu, Jianmei; Yan, Feng

    2012-02-14

    Organic ionic plastic crystal, 1-ethyl-1-methyl pyrrolidinium iodide (P(12) I), is employed as the solid-state electrolytes for dye-sensitized solar cells. The fabricated solid-state devices show an overall power conversion efficiency of ~5.8% under AM 1.5 radiation (50 mW/cm(2) ) and excellent long-term stability at 80 °C.

  16. Asynchronous symmetry-based sequences for homonuclear dipolar recoupling in solid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Tan, Kong Ooi; Rajeswari, M.; Madhu, P. K.; Ernst, Matthias

    2015-02-01

    We show a theoretical framework, based on triple-mode Floquet theory, to analyze recoupling sequences derived from symmetry-based pulse sequences, which have a non-vanishing effective field and are not rotor synchronized. We analyze the properties of one such sequence, a homonuclear double-quantum recoupling sequence derived from the C72 1 sequence. The new asynchronous sequence outperforms the rotor-synchronized version for spin pairs with small dipolar couplings in the presence of large chemical-shift anisotropy. The resonance condition of the new sequence is analyzed using triple-mode Floquet theory. Analytical calculations of second-order effective Hamiltonian are performed to compare the efficiency in suppressing second-order cross terms. Experiments and numerical simulations are shown to corroborate the results of the theoretical analysis.

  17. A Novel Solid-State Thermal Rectifier Based On Reduced Graphene Oxide

    PubMed Central

    Tian, He; Xie, Dan; Yang, Yi; Ren, Tian-Ling; Zhang, Gang; Wang, Yu-Feng; Zhou, Chang-Jian; Peng, Ping-Gang; Wang, Li-Gang; Liu, Li-Tian

    2012-01-01

    Recently, manipulating heat transport by phononic devices has received significant attention, in which phonon – a heat pulse through lattice, is used to carry energy. In addition to heat control, the thermal devices might also have broad applications in the renewable energy engineering, such as thermoelectric energy harvesting. Elementary phononic devices such as diode, transistor and logic devices have been theoretically proposed. In this work, we experimentally create a macroscopic scale thermal rectifier based on reduced graphene oxide. Obvious thermal rectification ratio up to 1.21 under 12 K temperature bias has been observed. Moreover, this ratio can be enhanced further by increasing the asymmetric ratio. Collectively, our results raise the exciting prospect that the realization of macroscopic phononic device with large-area graphene based materials is technologically feasible, which may open up important applications in thermal circuits and thermal management. PMID:22826801

  18. A novel solid-state thermal rectifier based on reduced graphene oxide.

    PubMed

    Tian, He; Xie, Dan; Yang, Yi; Ren, Tian-Ling; Zhang, Gang; Wang, Yu-Feng; Zhou, Chang-Jian; Peng, Ping-Gang; Wang, Li-Gang; Liu, Li-Tian

    2012-01-01

    Recently, manipulating heat transport by phononic devices has received significant attention, in which phonon--a heat pulse through lattice, is used to carry energy. In addition to heat control, the thermal devices might also have broad applications in the renewable energy engineering, such as thermoelectric energy harvesting. Elementary phononic devices such as diode, transistor and logic devices have been theoretically proposed. In this work, we experimentally create a macroscopic scale thermal rectifier based on reduced graphene oxide. Obvious thermal rectification ratio up to 1.21 under 12 K temperature bias has been observed. Moreover, this ratio can be enhanced further by increasing the asymmetric ratio. Collectively, our results raise the exciting prospect that the realization of macroscopic phononic device with large-area graphene based materials is technologically feasible, which may open up important applications in thermal circuits and thermal management.

  19. A review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cells.

    PubMed

    Paschos, O; Kunze, J; Stimming, U; Maglia, F

    2011-06-15

    The electrolytes currently used for proton exchange membrane fuel cells are mainly based on polymers such as Nafion which limits the operation regime of the cell to ∼80 °C. Solid oxide fuel cells operate at much elevated temperatures compared to proton exchange membrane fuel cells (∼1000 °C) and employ oxide electrolytes such as yttrium stabilized zirconia and gadolinium doped ceria. So far an intermediate temperature operation regime (300 °C) has not been widely explored which would open new pathways for novel fuel cell systems. In this review we summarize the potential use of phosphate compounds as electrolytes for intermediate temperature fuel cells. Various examples on ammonium polyphosphate, pyrophosphate, cesium phosphate and other phosphate based electrolytes are presented and their preparation methods, conduction mechanism and conductivity values are demonstrated.

  20. Spin-Photon Entanglement in Semiconductor Quantum Dots: Towards Solid-State-Based Quantum Repeaters

    NASA Astrophysics Data System (ADS)

    De Greve, Kristiaan; Yamamoto, Yoshihisa

    `In this chapter, we introduced and analyze techniques that allow truly secure secret key sharing over long distances, using public, open channels, where the laws of quantum mechanics ensure the security of the long distance key sharing - an idea generally referred to as the essence of a quantum repeater. We describe several proof-of-principle experiments where technology based on self-assembled quantum dots is used as the backbone of a future quantum repeater.'

  1. A Bipolar Current Actuated Gate Driver for JFET Based Bidirectional Scalable Solid-State Circuit Breakers

    DTIC Science & Technology

    2010-12-16

    for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data...19b. TELEPHONE NUMBER (Include area code) 02/16/2010 Technical Report - Briefing Charts A Bipolar Current Actuated Gate Driver for JFET Based...Approved For Public Release 12/3/2015 No U U U U.S. Army Research, Development and Engineering Command A Bipolar Current Actuated Gate Driver for

  2. Solid-state supercapacitors with ionic liquid gel polymer electrolyte based on poly (3, 4-ethylenedioxythiophene), carbon nanotubes, and metal oxides nanocomposites for electrical energy storage

    NASA Astrophysics Data System (ADS)

    Obeidat, Amr M.

    Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also

  3. All solid-state redox supercapacitors based on supramolecular 1,5-diaminoanthraquinone oligomeric electrode and polymeric electrolytes

    NASA Astrophysics Data System (ADS)

    Hashmi, S. A.; Suematsu, Shunzo; Naoi, Katsuhiko

    Supramolecular conducting oligomeric 1,5-diaminoanthraquinone (DAAQ)-based all solid-state redox supercapacitors have been fabricated with the solid polymer electrolyte, poly vinyl alcohol (PVA)-H 3PO 4 blend and polymeric gel electrolyte poly methyl methacrylate (PMMA)-ethylene carbonate (EC)-propylene carbonate (PC)-tetra ethyl ammonium perchlorate (TEAClO 4) system. The films of gel electrolyte of the optimized composition PMMA (35 wt.%)-EC:PC (1:1 v/v)-1 M TEAClO 4 and polymer electrolyte PVA-H 3PO 4 (50:50 w/w) blend exhibited high ionic conductivity (10 -4 to 10 -3 S cm -1 at room temperature) with good mechanical strength, suitable for application in electrochemical supercapacitors. The capacitors have been characterized using a.c. impedance spectroscopy, linear sweep voltammetry and prolonged cyclic test. The maximum capacitance value of 3.7-5.4 mF cm -2 (equivalent to single electrode capacitance 125-184 F g -1 of DAAQ electrode) has been observed for the PMMA-gel electrolyte based capacitor. This corresponds to the energy density 92-135 Wh kg -1. System based on the proton-conducting PVA-H 3PO 4 polymer blend, however has relatively lower capacitance of 1.1-4.0 mF cm -2 (equivalent to single electrode capacitance of 36-136 F g -1).

  4. All solid state mid-infrared dual-comb spectroscopy platform based on QCL technology

    NASA Astrophysics Data System (ADS)

    Hugi, Andreas; Geiser, Markus; Villares, Gustavo; Cappelli, Francesco; Blaser, Stephane; Faist, Jérôme

    2015-01-01

    We develop a spectroscopy platform for industrial applications based on semiconductor quantum cascade laser (QCL) frequency combs. The platform's key features will be an unmatched combination of bandwidth of 100 cm-1, resolution of 100 kHz, speed of ten to hundreds of μs as well as size and robustness, opening doors to beforehand unreachable markets. The sensor can be built extremely compact and robust since the laser source is an all-electrically pumped semiconductor optical frequency comb and no mechanical elements are required. However, the parallel acquisition of dual-comb spectrometers comes at the price of enormous data-rates. For system scalability, robustness and optical simplicity we use free-running QCL combs. Therefore no complicated optical locking mechanisms are required. To reach high signal-to-noise ratios, we develop an algorithm, which is based on combination of coherent and non-coherent averaging. This algorithm is specifically optimized for free-running and small footprint, therefore high-repetition rate, comb sources. As a consequence, our system generates data-rates of up to 3.2 GB/sec. These data-rates need to be reduced by several orders of magnitude in real-time in order to be useful for spectral fitting algorithms. We present the development of a data-treatment solution, which reaches a single-channel throughput of 22% using a standard laptop-computer. Using a state-of-the art desktop computer, the throughput is increased to 43%. This is combined with a data-acquisition board to a stand-alone data processing unit, allowing real-time industrial process observation and continuous averaging to achieve highest signal fidelity.

  5. Next Generation Print-based Manufacturing for Photovoltaics and Solid State Lighting

    SciTech Connect

    Sue A. Carter

    2012-09-07

    For the grand challenge of reducing our energy and carbon footprint, the development of renewable energy and energy efficient technologies offer a potential solution. Energy technologies can reduce our dependence on foreign oil as well as the energy consumed by the petroleum industry, the leading consumer of energy by a U.S. industry sector. Nonetheless, the manufacturing processes utilized to manufacture equipment for alternative energy technologies often involve energy-intensive processes. This undermines some of the advantages to moving to 'green' technologies in the first place. Our answer to the Industrial Technology Program's (ITP) Grand Challenge FOA was to develop a transformational low cost manufacturing process for plastic-based photovoltaics that will lower by over 50% both energy consumption and greenhouse emissions and offer a return-of-investment of over 20%. We demonstrated a Luminescent Solar Concentrator fabricated on a plastic acrylic substrate (i.e. no glass) that increases the power output of the PV cell by 2.2x with a 2% power efficiency as well as an LSC with a 7% power efficiency that increased the power output from the PV cells by 35%. S large area 20-inch x 60-inch building-integrated photovoltaic window was fabricated using contract manufacturing with a 4% power efficiency which improved the power output of the PV cell by over 50%. In addition, accelerated lifetimes of the luminescent material demonstrate lifetimes of 20-years.

  6. Model-based predictions of solid state intermetallic compound layer growth in hybrid microelectronic circuits

    SciTech Connect

    Vianco, P.T.; Erickson, K.L.; Hopkins, P.L.

    1997-12-31

    A mathematical model was developed to quantitatively describe the intermetallic compound (IMC) layer growth that takes place between a Sn-based solder and a noble metal thick film conductor material used in hybrid microcircuit (HMC) assemblies. The model combined the reaction kinetics of the solder/substrate interaction, as determined from ancillary isothermal aging experiments, with a 2-D finite element mesh that took account of the porous morphology of the thick film coating. The effect of the porous morphology on the IMC layer growth when compared to the traditional 1-D computations was significant. The previous 1-D calculations under-predicted the nominal IMC layer thickness relative to the 2-D case. The 2-D model showed greater substrate consumption by IMC growth and lesser solder consumption that was determined with the 1-D computation. The new 2-D model allows the design engineer to better predict circuit aging and hence, the reliability of HMC hardware that is placed in the field.

  7. Solid Polymer Electrolytes Based on Functionalized Tannic Acids from Natural Resources for All-Solid-State Lithium-Ion Batteries.

    PubMed

    Shim, Jimin; Bae, Ki Yoon; Kim, Hee Joong; Lee, Jin Hong; Kim, Dong-Gyun; Yoon, Woo Young; Lee, Jong-Chan

    2015-12-21

    Solid polymer electrolytes (SPEs) for all-solid-state lithium-ion batteries are prepared by simple one-pot polymerization induced by ultraviolet (UV) light using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as an ion-conducting monomeric unit and tannic acid (TA)-based crosslinking agent and plasticizer. The crosslinking agent and plasticizer based on natural resources are obtained from the reaction of TA with glycidyl methacrylate and glycidyl poly(ethylene glycol), respectively. Dimensionally stable free-standing SPE having a large ionic conductivity of 5.6×10(-4)  Scm(-1) at room temperature can be obtained by the polymerization of PEGMA into P(PEGMA) with a very small amount (0.1 wt %) of the crosslinking agent and 2.0 wt % of the plasticizer. The ionic conductivity value of SPE with a crosslinked structure is one order of magnitude larger than that of linear P(PEGMA) in the waxy state.

  8. Solid state switch

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  9. The solid state

    SciTech Connect

    Guinier, A.; Remi, J.

    1989-01-01

    This book is an introduction to the solid state for students and non-specialists. Authors aim to relate the macroscopic properties of solids (usually crystalline) to models of their atomic structure. Thermal expansion, the electronic conductivity of metals, ferromagnetism, plastic deformation and diffusion in real systems are among specific topics addressed. Advanced mathematical explanations are set off from the rest of the text in boxed sections for readers wishing a more indepth treatment of topics. Abbreviated bibliography included. For academic collections in solid state physics.

  10. Recent developments in solid-state dye-sensitized photovoltaic devices based on spiro-MeOTAD

    NASA Astrophysics Data System (ADS)

    Krueger, Jessica; Plass, Robert; Matthieu, Hans J.; Graetzel, Michael

    2003-02-01

    The photovoltaic performance of solid-state dye-sensitized solar cells based on spiro-MeOTAD (2,2'7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene) has been improved to 3.2% overall conversion efficiency under air mass AM 1.5 illumination by performing the dye adsorption in the presence of silver ions in the dye solution. Different spectroscopic methods, such as X-ray photoelectron, Fourier-transform infrared and UV-visible spectroscopy have been employed to scrutinize the impact of the silver on the dye-sensitized device. From spectroscopic evidence it is inferred that the silver binds to the sensitizer mainly via the amphidentate thiocyanate, allowing the formation of ligand-bridged dye complexes. The enhancement in overall device efficiency is a result of increased open circuit potential and short circuit current. The increased open circuit voltage was explained by the blocking of the dark current as a result of a closer packed dye layer and/or the partial formation of a dye double layer upon silver coordination. The increased short circuit current corresponds to the higher amount of ruthenium dye units adsorbed to the TiO2 surface.

  11. Probing the nanostructure, interfacial interaction, and dynamics of chitosan-based nanoparticles by multiscale solid-state NMR.

    PubMed

    Wang, Fenfen; Zhang, Rongchun; Wu, Qiang; Chen, Tiehong; Sun, Pingchuan; Shi, An-Chang

    2014-12-10

    Chitosan-based nanoparticles (NPs) are widely used in drug and gene delivery, therapy, and medical imaging, but a molecular-level understanding of the internal morphology and nanostructure size, interface, and dynamics, which is critical for building fundamental knowledge for the precise design and efficient biological application of the NPs, remains a great challenge. Therefore, the availability of a multiscale (0.1-100 nm) and nondestructive analytical technique for examining such NPs is of great importance for nanotechnology. Herein, we present a new multiscale solid-state NMR approach to achieve this goal for the investigation of chitosan-poly(N-3-acrylamidophenylboronic acid) NPs. First, a recently developed (13)C multiple cross-polarization magic-angle spinning (MAS) method enabled fast quantitative determination of the NPs' composition and detection of conformational changes in chitosan. Then, using an improved (1)H spin-diffusion method with (13)C detection and theoretical simulations, the internal morphology and nanostructure size were quantitatively determined. The interfacial coordinated interaction between chitosan and phenylboronic acid was revealed by one-dimensional MAS and two-dimensional (2D) triple-quantum MAS (11)B NMR. Finally, dynamic-editing (13)C MAS and 2D (13)C-(1)H wide-line separation experiments provided details regarding the componential dynamics of the NPs in the solid and swollen states. On the basis of these NMR results, a model of the unique nanostructure, interfacial interaction, and componential dynamics of the NPs was proposed.

  12. High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel

    NASA Astrophysics Data System (ADS)

    Liu, Weiwei; Li, Xin; Zhu, Menghua; He, Xiong

    2015-05-01

    An all-solid state asymmetric supercapacitor has been fabricated using carbon aerogel (CA) microspheres as the negative electrode and Co3O4 nanowires on nickel foam (Co3O4-NF) as the positive electrode separated by PVA-KOH membrane as the electrolyte. For the desirable porous structure, high specific capacitance and rate capability of CA and Co3O4-NF, broader potential window of the two electrodes, no binder and conductive agent added, the asymmetric supercapacitor can be cycled reversibly in a wide potential window of 0-1.5 V with an energy density of 17.9 Wh kg-1 at a power density of 750 W kg-1. The energy density of the asymmetric supercapacitor is significantly improved in comparison with those of the symmetric supercapacitors based on CA (6.28 Wh kg-1) and Co3O4-NF (2.42 Wh kg-1). The asymmetric supercapacitor can also deliver a high energy density of 10.44 Wh kg-1, even at a high power density of 7.5 kW kg-1. In addition, the asymmetric device shows good stability with approximately 85% of its initial capacitance after 1000 cycles.

  13. Mechanically delaminated few layered MoS2 nanosheets based high performance wire type solid-state symmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Karthikeyan; Pazhamalai, Parthiban; Veerasubramani, Ganesh Kumar; Kim, Sang Jae

    2016-07-01

    Two dimensional nanostructures are increasingly used as electrode materials in flexible supercapacitors for portable electronic applications. Herein, we demonstrated a ball milling approach for achieving few layered molybdenum disulfide (MoS2) via exfoliation from their bulk. Physico-chemical characterizations such as X-ray diffraction, field emission scanning electron microscope, and laser Raman analyses confirmed the occurrence of exfoliated MoS2 sheets with few layers from their bulk via ball milling process. MoS2 based wire type solid state supercapacitors (WSCs) are fabricated and examined using cyclic voltammetry (CV), electrochemical impedance spectroscopy, and galvanostatic charge discharge (CD) measurements. The presence of rectangular shaped CV curves and symmetric triangular shaped CD profiles suggested the mechanism of charge storage in MoS2 WSC is due to the formation of electrochemical double layer capacitance. The MoS2 WSC device delivered a specific capacitance of 119 μF cm-1, and energy density of 8.1 nW h cm-1 with better capacitance retention of about 89.36% over 2500 cycles, which ensures the use of the ball milled MoS2 for electrochemical energy storage devices.

  14. Impact of the atomic layer deposition precursors diffusion on solid-state carbon nanotube based supercapacitors performances.

    PubMed

    Fiorentino, Giuseppe; Vollebregt, Sten; Tichelaar, F D; Ishihara, Ryoichi; Sarro, Pasqualina M

    2015-02-13

    A study on the impact of atomic layer deposition (ALD) precursors diffusion on the performance of solid-state miniaturized nanostructure capacitor array is presented. Three-dimensional nanostructured capacitor array based on double conformal coating of multiwalled carbon nanotubes (MWCNTs) bundles is realized using ALD to deposit Al2O3 as dielectric layer and TiN as high aspect-ratio conformal counter-electrode on 2 μm long MWCNT bundles. The devices have a small footprint (from 100 μm(2) to 2500 μm(2)) and are realized using an IC wafer-scale manufacturing process with high reproducibility (≤0.3E-12F deviation). To evaluate the enhancement of the electrode surface, the measured capacitance values are compared to a lumped circuital model. The observed discrepancies are explained with a partial coating of the CNT, that determine a limited use of the available electrode surface area. To analyze the CNT coating effectiveness, the ALD precursors diffusions inside the CNT bundle is studied using a Knudsen diffusion mechanism.

  15. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR

    PubMed Central

    Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25–30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2–6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92–128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6–3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2–4 times lower than with the best triradicals. PMID:24887201

  16. Structure and Dynamics Characterization of HMDI- and MDI-based Poly(urethane urea) Elastomers via Solid- State NMR

    NASA Astrophysics Data System (ADS)

    Hu, Weiguo; Hsieh, Alex; Rinderspacher, B. Christopher; Chantawansri, Tanya

    2013-03-01

    High performance elastomers have recently gained considerable interest throughout DoD, particularly for their potential in ballistic impact protection and blast mitigation capabilities. Recent simulation results based on coarse-grained modeling have revealed the role of the intermolecular interaction and the flexibility of interface between hard and soft segments on the morphology and mechanical deformation behavior of poly(urethane urea), PUU, elastomers. In this work, we exploit solid-state nuclear magnetic resonance (NMR) techniques to investigate the influence of hard domain size on molecular dynamics by comparing the diisocyanate chemistry (aliphatic 4,4'-dicyclohexylmethane diisocyanate (HMDI) vs. aromatic 4,4'-diphenylmethane diisocyanate (MDI)) in PUU elastomers. Despite identical stoichiometry and soft segment chemical structure, large difference in the molecular dynamics, indicated by the 1H dipolar dephasing time (Td) , is observed. The Td of HMDI-PUU is shorter and it exhibits higher activation energy, suggesting finer phase mixing. Results from 1H spin echo measurements are also included for comparison.

  17. Solid-State High Performance Flexible Supercapacitors Based on Polypyrrole-MnO2-Carbon Fiber Hybrid Structure

    PubMed Central

    Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua

    2013-01-01

    A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an “in situ growth for conductive wrapping” and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm−3 at a discharge current density of 0.1 A cm−3 and an energy density of 6.16 × 10−3 Wh cm−3 at a power density of 0.04 W cm−3, the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the “in situ growth for conductive wrapping” method might be generalized to open up new strategies for designing next-generation energy storage devices. PMID:23884478

  18. Solid-State Devices.

    ERIC Educational Resources Information Center

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine Corps enlisted personnel with the principles of solid-state devices and their functions. The course contains four study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work…

  19. Solid State Lighting

    SciTech Connect

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2013-03-30

    The article discusses solid state lighting technologies. This topic was covered in two previous ASHRAE Journal columns (2010). This article covers advancements in technologies and the associated efficacies. The life-cycle, energy savings and market potential of these technologies are addressed as well.

  20. A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture.

    PubMed

    Duchêne, L; Kühnel, R-S; Rentsch, D; Remhof, A; Hagemann, H; Battaglia, C

    2017-03-27

    Na2(B12H12)0.5(B10H10)0.5, a new solid-state sodium electrolyte is shown to offer high Na(+) conductivity of 0.9 mS cm(-1) at 20 °C, excellent thermal stability up to 300 °C, and a large electrochemical stability window of 3 V including stability towards sodium metal anodes, all essential prerequisites for a stable room-temperature 3 V all-solid-state sodium-ion battery.

  1. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall*

    PubMed Central

    Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E.

    2015-01-01

    Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment “ghosts” and applied 2D 13C-13C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. PMID:25825492

  2. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall.

    PubMed

    Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E

    2015-05-29

    Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment "ghosts" and applied 2D (13)C-(13)C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics.

  3. Detection of zinc ions under aqueous conditions using chirality assisted solid-state fluorescence of a bipyridyl based fluorophore.

    PubMed

    Sreejith, Sivaramapanicker; Divya, Kizhumuri P; Ajayaghosh, Ayyappanpillai

    2008-07-07

    A pyrrole end-capped bipyridyl ligand incorporating a chiral handle exhibited high solid-state emission when compared to the achiral analogue 1b and to the racemic molecule 1c which allowed the design of a reusable fluorescent probe for the selective detection of Zn2+ under aqueous conditions.

  4. Solid State Laser

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.

  5. Solid State Research

    NASA Technical Reports Server (NTRS)

    Shaver, David C.

    1995-01-01

    This report covers in detail the research work of the Solid State Division at Lincoln Laboratory for the period 1 May-31 July 1995. The topics covered are: Electrooptical Devices, Quantum Electronics, Materials Research, Submicrometer Technology, High Speed Electronics, Microelectronics, and analog device technology. Funding is provided primarily by the Air Force, with additional Support provided by the Army, ARPA, Navy, BMDO, NASA and NIST.

  6. Solid State Research

    NASA Technical Reports Server (NTRS)

    Shaver, David C.

    1996-01-01

    This report covers in detail the research work of the Solid State Division at Lincoln Laboratory for the period 1 May - 31 July 1996. The topics covered are Electrooptical Devices, Quantum Electronics, Materials Research, Submicrometer Technology, High Speed Electronics, Microelectronics, and Analog Device Technology. Funding is provided primarily by the Air Force, with additional Support provided by the Army, DARPA, Navy, BMDO, NASA, and NIST.

  7. Solid State Research.

    DTIC Science & Technology

    2007-11-02

    Technology, High Speed Electronics, Microelectronics, Analog Device Technology, and Advanced Silicon Technology. Funding is provided primarily by the...Illustrations vii Table ix Introduction xi Reports on Solid State Research xiii Organization xxiii 1. QUANTUM ELECTRONICS 1 1.1 High -Power Passively...Microchemical Etching of Silicon 13 3.2 Calorimetric Measurements of Optical Materials for 193-nm Lithography 17 4. HIGH SPEED ELECTRONICS 21 4.1

  8. Tunable solid state lasers

    SciTech Connect

    Hammerling, R.; Budgor, A.B.; Pinto, A.

    1985-01-01

    This book presents the papers given at a conference on solid state lasers. Topics considered at the conference included transition-metal-doped lasers, line-narrowed alexandrite lasers, NASA specification, meteorological lidars, laser materials spectroscopy, laser pumped single pass gain, vibronic laser materials growth, crystal growth methods, vibronic laser theory, cross-fertilization through interdisciplinary fields, and laser action of color centers in diamonds.

  9. Solid State Research

    DTIC Science & Technology

    1986-11-15

    Uttaro, R.S. Vera , A. Wilde, R.E. Young, E.M. * Research Assistant T Staff Associate t Part Time XXVI 1.1 1. SOLID STATE DEVICE RESEARCH A...substrate temperature of 850° C, as shown in Figure 3-7(b). Figure 3-8 shows the low-temperature PL spectra of an Alo 2gGao 72AS layer excited by an Ar-ion

  10. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery.

    PubMed

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-09-15

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a "solar water battery". The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E(0) (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge.

  11. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery

    PubMed Central

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-01-01

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a “solar water battery”. The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E0 (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge. PMID:27629362

  12. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery

    NASA Astrophysics Data System (ADS)

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-09-01

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a “solar water battery”. The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E0 (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge.

  13. C-HCl(-) hydrogen bonds in solution and in the solid-state: HgCl2 complexes with cyclen-based cryptands.

    PubMed

    Ikeda, Mari; Sah, Ajay Kumar; Iwase, Miki; Murashige, Rina; Ishi-I, Jun-Ichi; Hasegawa, Masatoshi; Kachi-Terajima, Chihiro; Park, Ki-Min; Kuwahara, Shunsuke; Habata, Yoichi

    2017-03-21

    Structural evidence is reported for C-HCl(-) hydrogen bonds in solution and in the solid state of HgCl2 complexes with cyclen-based cryptands. These cyclen-based cryptands (1) and (2) are bridged by di- and triethylene glycol units, respectively, between two aromatic rings. The X-ray structure indicates that the 2/HgCl2 complex contains an acetonitrile molecule in the cavity.

  14. Solid-state photogalvanic dye-sensitized solar cells.

    PubMed

    Berhe, Seare A; Gobeze, Habtom B; Pokharel, Sundari D; Park, Eunsol; Youngblood, W Justin

    2014-07-09

    Photogalvanic cells are photoelectrochemical systems wherein the semiconductor electrode is not a participant in primary photoinduced charge formation. The discovery of photoelectrochemical systems that successfully exploit secondary (thermal) electron injection at dye-semiconductor interfaces may enable studies of electron transfer at minimal driving force for electron injection into the semiconductor. In this study, we have examined thermal electron transfer from molecular sensitizers to nanostructured semiconductor electrodes composed of titanium dioxide nanorods by means of transient spectroscopy and the assembly and testing of photoelectrochemical cells. Electron-accepting molecular dyes have been studied alongside an arylamine electron donor. Thermal injection is estimated for a naphthacenequinone radical anion as a multiexponential decay process with initial decay lifetimes of 6 and 27 ps. The ambient electric field present during charge separation at a surface-adsorbed dye monolayer causes Stark shifts of the radical ion pair absorbance peaks that confounded kinetic estimation of thermal injection for a fullerene sensitizer. Electron-accepting dyes that operate by thermal injection into titanium dioxide function better in solid-state photoelectrochemical cells than in liquid-junction cells due to the kinetic advantage of solid-state cells with respect to photoinduced acceptor-quenching to form the necessary radical anion sensitizers.

  15. All-solid-state reference electrodes based on colloid-imprinted mesoporous carbon and their application in disposable paper-based potentiometric sensing devices.

    PubMed

    Hu, Jinbo; Ho, Kieu T; Zou, Xu U; Smyrl, William H; Stein, Andreas; Bühlmann, Philippe

    2015-03-03

    Reference electrodes are used in almost every electroanalytical measurement. Here, all-solid-state reference electrodes are described that employ colloid-imprinted mesoporous (CIM) carbon as solid contact and a poly(vinyl chloride) reference membrane to contact the sample. Such a reference membrane is doped with a moderately hydrophilic ionic liquid and a hydrophobic redox couple, leading to well-defined constant potentials at the interfaces of this membrane to the sample and to the solid contact, respectively. Due to the intrinsic properties of CIM carbon, reference electrodes with a CIM carbon solid contact exhibit excellent resistance to common interfering agents such as light and O2, with outstanding potential stability in continuous potentiometric measurements. The potential drift of CIM carbon-based reference electrodes without redox couple is as low as 1.7 μV/h over 110 h, making them the most stable all-solid-state reference electrodes reported so far. To demonstrate the compatibility of CIM carbon-based reference electrodes with miniaturized potentiometric systems, these reference electrodes were integrated into paper-based potentiometric sensing devices, successfully replacing the conventional reference electrode with its reference electrolyte solution. As a proof of concept, disposable paper-based Cl(-) sensing devices that contain stencil-printed Ag/AgCl-based Cl(-) selective electrodes and CIM carbon-based reference electrodes were constructed. These sensing devices are inexpensive, easy to use, and offer highly reproducible Cl(-) measurements with sample volumes as low as 10 μL.

  16. Solid-state dye-sensitized solar cells based on ZnO nanoparticle and nanorod array hybrid photoanodes

    PubMed Central

    2011-01-01

    The effect of ZnO photoanode morphology on the performance of solid-state dye-sensitized solar cells (DSSCs) is reported. Four different structures of dye-loaded ZnO layers have been fabricated in conjunction with poly(3-hexylthiophene). A significant improvement in device efficiency with ZnO nanorod arrays as photoanodes has been achieved by filling the interstitial voids of the nanorod arrays with ZnO nanoparticles. The overall power conversion efficiency increases from 0.13% for a nanorod-only device to 0.34% for a device with combined nanoparticles and nanorod arrays. The higher device efficiency in solid-state DSSCs with hybrid nanorod/nanoparticle photoanodes is originated from both large surface area provided by nanoparticles for dye adsorption and efficient charge transport provided by the nanorod arrays to reduce the recombinations of photogenerated carriers. PMID:21884596

  17. Endo-Fullerene and Doped Diamond Nanocrystallite Based Models of Qubits for Solid-State Quantum Computers

    NASA Technical Reports Server (NTRS)

    Park, Seongjun; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Models of encapsulated 1/2 nuclear spin H-1 and P-31 atoms in fullerene and diamond nanocrystallite, respectively, are proposed and examined with ab-initio local density functional method for possible applications as single quantum bits (qubits) in solid-state quantum computers. A H-1 atom encapsulated in a fully deuterated fullerene, C(sub 20)D(sub 20), forms the first model system and ab-initio calculation shows that H-1 atom is stable in atomic state at the center of the fullerene with a barrier of about 1 eV to escape. A P-31 atom positioned at the center of a diamond nanocrystallite is the second model system, and 3 1P atom is found to be stable at the substitutional site relative to interstitial sites by 15 eV, Vacancy formation energy is 6 eV in diamond so that substitutional P-31 atom will be stable against diffusion during the formation mechanisms within the nanocrystallite. The coupling between the nuclear spin and weakly bound (valance) donor electron coupling in both systems is found to be suitable for single qubit applications, where as the spatial distributions of (valance) donor electron wave functions are found to be preferentially spread along certain lattice directions facilitating two or more qubit applications. The feasibility of the fabrication pathways for both model solid-state qubit systems within practical quantum computers is discussed with in the context of our proposed solid-state qubits.

  18. Solid-state Marx based two-switch voltage modulator for the On-Line Isotope Mass Separator accelerator at the European Organization for Nuclear Research

    SciTech Connect

    Redondo, L. M.; Canacsinh, H.; Ferrao, N.; Mendes, C.; Silva, J. Fernando; Soares, R.; Schipper, J.; Fowler, A.

    2010-07-15

    A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

  19. A high performance flexible all solid state supercapacitor based on the MnO2 sphere coated macro/mesoporous Ni/C electrode and ionic conducting electrolyte

    NASA Astrophysics Data System (ADS)

    Zhi, Jian; Reiser, Oliver; Wang, Youfu; Hu, Aiguo

    2016-06-01

    A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm-3, which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L-1 and 549 W L-1, based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices.A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating

  20. Solid State Research.

    DTIC Science & Technology

    2007-11-02

    Functionality Process Accuracy CCD MDAC 25,000 Multiply/add 2-Poly-Si, 2-metal 1.2 /zm Analog x 8 b Digital CMOS [1] 2,300 Multiply/add 2-Poly...additional support provided by the Army, ARPA, Navy, BMDO, NASA, and NIST. in TABLE OF CONTENTS Abstract üi List of Illustrations yii List of Tables x ...Introduction x * Reports on Solid State Research xiii Organization xxm 1. ELECTROOPTICAL DEVICES 1 1.1 1.3-jUm Strained-Layer InGaAsP/InP Quantum

  1. Solid state optical microscope

    SciTech Connect

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  2. Solid state optical microscope

    DOEpatents

    Young, I.T.

    1983-08-09

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

  3. Solid State Research

    DTIC Science & Technology

    1990-11-15

    Alo .3Gao.7As confining layers. 38 IX Figure No. Page 3-2 Schematic structure and energy diagram of AlInGaAs/AlGaAs SCH SQW diode laser. 39 3-3...Lithography Photooxidation of a-Conjugated Si-Si Network Polymers High-Power Solid-State Laser Radar Technology Heat Driven Cryocoolers for...M.J. Nichols, K.B. Parker, CD. Rabe, S. Rathman, D.D. Smith, F.W., III Vera , A. xxvn ELECTROOPTICAL DEVICES ANALOG DEVICE TECHNOLOGY R.C

  4. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  5. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  6. High-performance solid-state on-chip supercapacitors based on Si nanowires coated with ruthenium oxide via atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zheng, Wen; Cheng, Qingmei; Wang, Dunwei; Thompson, Carl V.

    2017-02-01

    Solid-state on-chip supercapacitors based on ruthenium oxide coated silicon nanowires were fabricated using a process that is compatible with silicon integrated circuit processing. Ordered arrays of silicon nanowires were fabricated using metal-assisted anodic etching (MAAE). Atomic layer deposition (ALD) was used to form a uniform coating of ruthenium oxide on high-aspect-ratio silicon nanowires at a moderate temperature of 290 °C. Coated nanowire electrodes were studied using cyclic voltammetry and charge-discharge tests in a neutral Na2SO4 electrolyte, and a specific capacitance of 19 mFcm-2 was achieved at 5 mVs-1. Solid state nanowire capacitors were then fabricated with symmetric face to face nanowire arrays separated by a polymer-based electrolyte. This device exhibited a specific capacitance as high as 6.5 mFcm-2 at 2 mVs-1. The full device was tested over 10000 cycles under galvanostatic charge-discharge at 0.4 mAcm-2, and showed a retention of 92% of the specific capacitance. The specific capacitance was found to scale with the total nanowire surface area, as controlled by controlling the aspect ratios of the wires. The solid state nanowire-based device also achieved high specific energies without sacrificing power performance.

  7. Investigating the all-solid-state batteries based on lithium garnets and a high potential cathode - LiMn1.5Ni0.5O4.

    PubMed

    Hänsel, Christian; Afyon, Semih; Rupp, Jennifer L M

    2016-11-03

    All-solid-state Li-ion batteries based on lithium garnets give new prospects for safer battery operations avoiding liquids, and could enable the integration of high energy density electrode materials. Herein, we critically investigate the structural and chemical stability of the high voltage cathode material, LiMn1.5Ni0.5O4, based on the solid lithium garnet electrolyte LLZO (c-Li6.4Ga0.2La3Zr2O12) for all-solid Li-ion batteries. We manufacture battery cells based on nano-grained synthesized LLZO and composite cathodes (LiMn1.5Ni0.5O4/LLZO/C) fabricated via direct slurry casting of the cathode material and additives on sintered LLZO pellets against metallic Li anodes. The galvanostatic tests of such all-solid-state batteries up to 4.9 V at 95 °C reveal the incompatibility of the solid electrolyte and the cathode material under given conditions. Post-mortem analyses of the all-solid-state batteries demonstrate the formation of new inactive phases at the LLZO/LiMn1.5Ni0.5O4 interfacial region through an irreversible reaction starting at ∼3.8 V during charging. The discovered limited chemical stability under the investigated conditions raises the question if LLZO could be a promising solid-electrolyte for future all-solid-state Li-ion batteries especially at higher operation potentials and demanding operation conditions.

  8. Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni3S2 nanorod array and pen ink electrodes

    NASA Astrophysics Data System (ADS)

    Wen, Jian; Li, Songzhan; Zhou, Kai; Song, Zengcai; Li, Borui; Chen, Zhao; Chen, Tian; Guo, Yaxiong; Fang, Guojia

    2016-08-01

    Fiber supercapacitors have attracted public attentions because of their merits of relatively high capacitance density, flexibility and easy integration with various electronic devices. In this work, a flexible coaxial-type fiber solid-state asymmetrical supercapacitor (ASC) based on Ni3S2 nanorod array electrode and pen ink electrode was successfully fabricated. The Ni3S2 nanorod array electrode was synthesized by directly growing Ni3S2 nanorod arrays on a nickel wire through a facile hydrothermal method and the pen ink electrode as negative electrode was synthesized by a simple dip-coating method. The solid-state ASC device presents a stable voltage window of 1.4 V and behaves a high specific capacitance of 34.9 F g-1 (87.25 F cm-1) at a scan rate of 10 mV s-1. Compared with the symmetric supercapacitor (SSC) based on Ni3S2 electrodes, the ASC device provide an increased energy density of 8.2 Wh kg-1 (0.81 mWh cm-3) at the power density of 214.6 W kg-1 (21.12 mW cm-3). In addition, the ASC device also exhibits excellent electrochemical stability with 93.1% of initial specific capacitance after 3000 consecutive cycles and good mechanical stability. These encouraging results present its great potential in flexible solid-state energy storage devices.

  9. Solid State Humidity Sensors

    NASA Astrophysics Data System (ADS)

    Chang, Song-Lin

    There are only a few solid state humidity sensors available today. Most of those sensors use a porous oxide material as a principal part of the device. The devices work on the basis of a change in resistance as the moisture in the air varies. In this experiment, two solid state humidity sensors have been developed for use under practical conditions. One is a Polymer Oxide Semiconductor device with a POLYOX film that absorbs the moisture from the air. The amount of water dipoles absorbed by the polymer is a function of relative humidity. This sensor can measure relative humidity from 20% to 90%. The other is a Dew Point sensor. The sensor is in contact with the upper surface of a miniature Peltier cooler. Water molecules deposited on the sensor surface cause the electrical current through the sensor to increase. The operator adjusts the temperature of the Peltier cooler until a saturated current through the sensor is reached. About one min. is required to measure low relative humidities. The Dew Point sensor can measure a range of relative humidities of 30% to 80%.

  10. Packaging of solid state devices

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  11. Development of White-Light Emitting Active Layers in Nitride Based Heterostructures for Phosphorless Solid State Lighting

    SciTech Connect

    Jan Talbot; Kailash Mishra

    2007-12-31

    This report provides a summary of research activities carried out at the University of California, San Diego and Central Research of OSRAM SYLVANIA in Beverly, MA partially supported by a research contract from US Department of Energy, DE-FC26-04NT422274. The main objective of this project was to develop III-V nitrides activated by rare earth ions, RE{sup 3+}, which could eliminate the need for phosphors in nitride-based solid state light sources. The main idea was to convert electron-hole pairs injected into the active layer in a LED die to white light directly through transitions within the energy levels of the 4f{sup n}-manifold of RE{sup 3+}. We focused on the following materials: Eu{sup 3+}(red), Tb{sup 3+}(green), Er{sup 3+}(green), Dy{sup 3+}(yellow) and Tm{sup 3+}(blue) in AlN, GaN and alloys of AlN and GaN. Our strategy was to explore candidate materials in powder form first, and then study their behavior in thin films. Thin films of these materials were to be deposited on sapphire substrates using pulsed laser deposition (PLD) and metal organic vapor phase epitaxy (MOVPE). The photo- and cathode-luminescence measurements of these materials were used to investigate their suitability for white light generation. The project proceeded along this route with minor modifications needed to produce better materials and to expedite our progress towards the final goal. The project made the following accomplishments: (1) red emission from Eu{sup 3+}, green from Tb{sup 3+}, yellow from Dy{sup 3+} and blue from Tm{sup 3+} in AlN powders; (2) red emission from Eu{sup 3+} and green emission from Tb{sup 3+} in GaN powder; (3) red emission from Eu{sup 3+} in alloys of GaN and AlN; (4) green emission from Tb{sup 3+} in GaN thin films by PLD; (5) red emission from Eu{sup 3+} and Tb{sup 3+} in GaN thin films deposited by MOVPE; (6) energy transfer from host to RE{sup 3+}; (7) energy transfer from Tb{sup 3+} to Eu{sup 3+} in AlN powders; (8) emission from AlN powder samples

  12. A repetitively pulsed xenon chloride excimer laser with all ferrite magnetic cores (AFMC) based all solid state exciter

    NASA Astrophysics Data System (ADS)

    Benerji, N. S.; Varshnay, N. K.; Ghodke, D. V.; Singh, A.

    2016-10-01

    Performance of repetitively pulsed xenon chloride excimer laser (λ~308 nm) with solid state pulser consisting of magnetic pulse compression circuit (MPC) using all ferrite magnetic cores (AFMC) is reported. Laser system suitable for 100 Hz operation with inbuilt pre-ionizer, compact gas circulation and cooling has been developed and presented. In this configuration, high voltage pulses of ~8 μs duration are compressed to ~100 ns by magnetic pulse compression circuit with overall compression factor of ~80. Pulse energy of ~18 J stored in the primary capacitor is transferred to the laser head with an efficiency of ~85% compared to ~70% that is normally achieved in such configurations using annealed met-glass core. This is a significant improvement of about 21%. Maximum output laser pulse energy of ~100 mJ was achieved at repetition rate of 100 Hz with a typical pulse to pulse energy stability of ±5% and laser pulse energy of 150 mJ was generated at low rep-rate of ~40 Hz. This exciter uses a low current and low voltage solid state switch (SCR) that replaces high voltage and high current switch i. e, thyratron completely. The use of solid state exciter in turn reduces electromagnetic interference (EMI) effects particularly in excimer lasers where high EMI is present due to high di/dt. The laser is focused on a thin copper sheet for generation of micro-hole and the SEM image of the generated micro hole shows the energy stability of the laser at high repetition rate operation. Nearly homogeneous, regular and well developed xenon chloride (XeCl) laser beam spot was achieved using the laser.

  13. Electrochemical, Electrochemiluminescence, and Photoelectrochemical Aptamer-Based Nanostructured Sensors for Biomarker Analysis

    PubMed Central

    Ravalli, Andrea; Voccia, Diego; Palchetti, Ilaria; Marrazza, Giovanna

    2016-01-01

    Aptamer-based sensors have been intensively investigated as potential analytical tools in clinical analysis providing the desired portability, fast response, sensitivity, and specificity, in addition to lower cost and simplicity versus conventional methods. The aim of this review, without pretending to be exhaustive, is to give the readers an overview of recent important achievements about electrochemical, electrochemiluminescence, and photoelectrochemical aptasensors for the protein biomarker determination, mainly cancer related biomarkers, by selected recent publications. Special emphasis is placed on nanostructured-based aptasensors, which show a substantial improvement of the analytical performances. PMID:27490578

  14. Electrochemical, Electrochemiluminescence, and Photoelectrochemical Aptamer-Based Nanostructured Sensors for Biomarker Analysis.

    PubMed

    Ravalli, Andrea; Voccia, Diego; Palchetti, Ilaria; Marrazza, Giovanna

    2016-08-02

    Aptamer-based sensors have been intensively investigated as potential analytical tools in clinical analysis providing the desired portability, fast response, sensitivity, and specificity, in addition to lower cost and simplicity versus conventional methods. The aim of this review, without pretending to be exhaustive, is to give the readers an overview of recent important achievements about electrochemical, electrochemiluminescence, and photoelectrochemical aptasensors for the protein biomarker determination, mainly cancer related biomarkers, by selected recent publications. Special emphasis is placed on nanostructured-based aptasensors, which show a substantial improvement of the analytical performances.

  15. New thermal-neutron solid-state electronic detector based on HgI/sub 2/ single crystals

    SciTech Connect

    Melamud, M.; Burshtein, Z.; Levi, A.; Schieber, M.M.

    1983-08-01

    The use of HgI/sub 2/ as a thermal-neutron solid-state electronic detector, in particular its application for neutron diffractometry, is demonstrated for the first time. A single crystal HgI/sub 2/ detector is used to count prompt gamma emissions (0.2--5 MeV) from (n,..gamma..) nuclear reactions in Gd or Cd foils. The neutron counting efficiency depends on the HgI/sub 2/ detector thickness. For a 1-mm thickness of HgI/sub 2/ the efficiency is about 10% compared to the efficiency of a /sup 10/BF/sub 3/ gas detector.

  16. Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Costela, A.; Florido, F.; Garcia-Moreno, I.; Duchowicz, R.; Amat-Guerri, F.; Figuera, J. M.; Sastre, R.

    1995-04-01

    Rhodamine 6G has been dissolved in copolymers of 2-HydroxyEthyl MethAcrylate (HEMA) and Methyl MethAcrylate (MMA) and the resulting solid-state solutions have been pumped at 337 nm and 532 nm. Lasing efficiencies similar to those found in ethanol solution have been obtained with a 1:1 vol/vol HEMA: MMA copolymer matrix, and lifetimes of ca. 10 000 (337 nm pumping) and ca. 75 000 (532 nm pumping) pulses at repetition rates up to 15 Hz and 10 Hz, respectively, have been demonstrated.

  17. Hepatoprotective Effect of Wheat-Based Solid-State Fermented Antrodia cinnamomea in Carbon Tetrachloride-Induced Liver Injury in Rat

    PubMed Central

    Chiu, Huan-Wen; Hua, Kuo-Feng

    2016-01-01

    Antrodia cinnamomea (A. cinnamomea) is an indigenous medical fungus in Taiwan and has multiple biological functions, including hepatoprotective and immune-modulatory effects. Currently, the commercially available A. cinnamomea are mainly liquid- and solid-state fermented A. cinnamomea. However, the hepatoprotective effect of solid-state fermented A. cinnamomea has never been reported. Here we evaluate the ability of air-dried, ground and non-extracted wheat-based solid-state fermented A. cinnamomea (WFAC) to protect against carbon tetrachloride (CCl4)-induced hepatic injury in vivo. The results showed that oral administration of WFAC dose dependently (180, 540 and 1080 mg/kg) ameliorated the increase in plasma aspartate aminotransferase and alanine aminotransferase levels caused by chronic repeated CCl4 intoxication in rats. WFAC significantly reduced the CCl4-induced increase in hepatic lipid peroxidation levels and hydroxyproline contents, as well as reducing the spleen weight and water content of the liver. WFAC also restored the hepatic soluble protein synthesis and plasma albumin concentration in CCl4-intoxicated rats, but it did not affect the activities of superoxide dismutase, catalase, or glutathione peroxidase. In addition, a hepatic morphological analysis showed that the hepatic fibrosis and necrosis induced by CCl4 were significantly ameliorated by WFAC. Furthermore, the body weights of control rats and WFAC-administered rats were not significantly different, and no adverse effects were observed in WFAC-administered rats. These results indicate that WFAC is a nontoxic hepatoprotective agent against chronic CCl4-induced hepatic injury. PMID:27046059

  18. High-performance flexible all-solid-state microbatteries based on solid electrolyte of lithium boron oxynitride

    NASA Astrophysics Data System (ADS)

    Song, Seung-Wan; Lee, Ki-Chang; Park, Ho-Young

    2016-10-01

    Rapidly growing interest and demand for wearable electronics require the development of flexible and lightweight all-solid-state batteries as power sources that guarantee high performance and safety with the absence of the risk of fire or explosion that can occur with traditional liquid electrolyte systems. Herein, we successfully fabricate new flexible all-solid-state microbatteries integrating a solid electrolyte film of lithium boron oxynitride (LiBON) on a flexible substrate using sophisticated thin-film fabrication technology. The new microbattery of Li/LiBON/LiCoO2 exhibits excellent mechanical integrity even under severe bending and twisting test conditions, enabling the realization of flexible microbatteries. The microbatteries demonstrate superior electrochemical cycling stability relative to conventional batteries, delivering an outstanding capacity retention of 90% on the 1000th cycle. Furthermore, operation at various temperatures from -10 °C to +60 °C and fast charging within 3-6 min are achieved. With various types of flexible substrates, the microbatteries can provide diverse opportunities for flexible and wearable electronics.

  19. Solid state rapid thermocycling

    DOEpatents

    Beer, Neil Reginald; Spadaccini, Christopher

    2014-05-13

    The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

  20. Solid state power controllers

    NASA Technical Reports Server (NTRS)

    Gibbs, R. S.

    1973-01-01

    The rationale, analysis, design, breadboarding and testing of the incremental functional requirements are reported that led to the development of prototype 1 and 5 Amp dc and 1 Amp ac solid state power controllers (SSPC's). The SSPC's are to be considered for use as a replacement of electro-mechanical relays and circuit breakers in future spacecraft and aircraft. They satisfy the combined function of both the relay and circuit breaker and can be remotely controlled by small signals, typically 10 mA, 5 to 28 Vdc. They have the advantage over conventional relay/circuit breaker systems in that they can be located near utilization equipment and the primary ac or dc bus. The low level control, trip indication and status signals can be circuited by small guage wire for control, computer interface, logic, electrical multiplexing, unboard testing, and power management and distribution purposes. This results in increased system versatility at appreciable weight saving and increased reliability.

  1. Solid-state proton conductors

    NASA Astrophysics Data System (ADS)

    Jewulski, J. R.; Osif, T. L.; Remick, R. J.

    1990-12-01

    The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling, and optimization studies. Correlation and optimization studies are described which include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells are presented which include the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms.

  2. Solid-state proton conductors

    SciTech Connect

    Jewulski, J.R.; Osif, T.L.; Remick, R.J.

    1990-12-01

    The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling and optimization studies. Correlation and optimization studies, to include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells including the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms. 164 refs., 27 figs., 13 tabs.

  3. Combining Solid-state and Solution-based Techniques: Synthesis and Reactivity of Chalcogenidoplumbates(II or IV).

    PubMed

    Thiele, Günther; Donsbach, Carsten; Nußbruch, Isabell; Dehnen, Stefanie

    2016-12-29

    The phases of "PbCh2" (Ch = Se, Te) are obtained from solid-state syntheses (i.e., by the fusion of the elements under inert conditions in silica glass ampules). Reduction of such phases by elemental alkaline metals in amines affords crystalline chalcogenidoplumbate(II) salts comprised of [PbTe3](2)(-) or [Pb2Ch3](2)(-) anions, depending upon which sequestering agent for the cations is present: crown ethers, like 18-crown-6, or cryptands, like [2.2.2]crypt. Reactions of solutions of such anions with transition-metal compounds yield (poly-)chalcogenide anions or transition-metal chalcogenide clusters, including one with a µ-PbSe ligand (i.e., the heaviest-known CO homolog). In contrast, the solid-state synthesis of a phase of the nominal composition "K2PbSe2" by successive reactions of the elements and by the subsequent solvothermal treatment in amines yields the first non-oxide/halide inorganic lead(IV) compound: a salt of the ortho-selenidoplumbate(IV) anion [PbSe4](4)(-). This was unexpected due to the redox potentials of Pb(IV) and Se(-II). Such methods can further be applied to other elemental combinations, leading to the formation of solutions with binary [HgTe2](2)(-) or [BiSe3](3)(-) anions, or to large-scale syntheses of K2Hg2Se3 or K3BiSe3 via the solid-state route. All compounds are characterized by single-crystal X-ray diffraction and elemental analysis; solutions of plumbate salts can be investigated by (205)Pb and (77)Se or (127)Te NMR techniques. Quantum chemical calculations using density functional theory methods enable energy comparisons. They further allow for insights into the electronic configuration and thus, the bonding situation. Molecular Rh-containing Chevrel-type compounds were found to exhibit delocalized mixed valence, whereas similar telluridopalladate anions are electron-precise; the cluster with the µ-PbSe ligand is energetically favored over a hypothetical CO analog, in line with the unsuccessful attempt at its synthesis. The

  4. Electrochemical and photoelectrochemical nano-immunesensing using origami paper based method.

    PubMed

    Hasanzadeh, Mohammad; Shadjou, Nasrin

    2016-04-01

    Patterned paper has characteristics that lead to miniaturized assays that run by capillary action with small volumes of fluids. These methods suggest a path for the development of simple, inexpensive, and portable diagnostic assays that can be useful in remote settings, where simple immunoassays are becoming increasingly important for detecting disease and monitoring health. Incorporation of nanomaterials plays a major role in sensing probe immobilization and detection sensitivity of paper-based devices. Nanomaterial properties, such as increased surface area, have aided with signal amplification and lower detection limits. This review focuses on application of nanomaterials as signal amplification elements on origami paper-based electro-analytical devices for immune biomarkers detection with a brief introduction about various fabrication techniques and designs, biological and detection methods. In this review, we comprehensively summarize the selected latest research articles from 2013 to May 2015 on application of nanomaterials in various types of origami paper based electrochemical and photoelectrochemical immunosensors. The review breaks into two parts. The first part devotes to the development and applications of nanomaterials in electrochemical immunesensing. The second part provides an overview of recent origami paper based photoelectrochemical immunosensors.

  5. ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+.

    PubMed

    Zhang, Bintian; Lu, Lili; Hu, Qichang; Huang, Feng; Lin, Zhang

    2014-06-15

    Lead contamination is now widespread, and exposure to lead may cause adverse effects on human beings. In this study, a photoelectrochemical sensor based on flower-like ZnO nanostructures was developed for Pb(2+) detection, using a Pb(2+)-dependent DNAzyme as the recognition unit and a double-strand DNA intercalator, Ru(bpy)2(dppz)(2+) (bpy=2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c] phenazine) as the photoelectrochemical signal reporter. The ZnO nanoflower was fabricated on an indium tin oxide (ITO) electrode by the convenient hydrothermal decomposition method. The morphology and photoelectrochemical property of the ZnO nanoflowers were characterized by SEM, XRD and photocurrent measurements. DNAzyme-substrate duplex was assembled on an ITO/ZnO electrode through electrostatic adsorption. In the presence of Pb(2+), RNA-cleavage activity of the DNAzyme was activated and its substrate strand was cleaved, resulting in the release of Ru(bpy)2(dppz)(2+) from the DNA film and the concomitant photocurrent decrease. The detection principle was verified by fluorescence measurements. Under the optimized conditions, a linear relationship between photocurrent and Pb(2+) concentration was obtained over the range of 0.5-20 nM, with a detection limit of 0.1 nM. Interference from other common metal ions was found negligible. Applicability of the sensor was demonstrated by analyzing lead level in human serum and Pb(2+) spiked water samples. This facile and economical sensor system showed high sensitivity and selectivity, thus can be potentially applied for on-site monitoring of lead contaminant.

  6. Nanostructured all-solid-state supercapacitor based on Li2S-P2S5 glass-ceramic electrolyte

    NASA Astrophysics Data System (ADS)

    Francisco, Brian E.; Jones, Christina M.; Lee, Se-Hee; Stoldt, Conrad R.

    2012-03-01

    While today's lithium-ion batteries offer acceptable energy storage capability, they lack the ability to be cycled repeatedly more than a couple thousand times. Electrochemical capacitors, i.e., supercapacitors, are being developed whose lifetimes exceed 1 × 106 cycles and power densities surpass those of batteries by several times. Here, we present an all-solid-state supercapacitor using a Li2S-P2S5 glass-ceramic electrolyte as both separator and ion conductor. Three device architectures are examined including two with nanostructured electrodes which incorporate multi-walled carbon nanotubes (MWCNTs). Cyclic voltammograms and electrochemical impedance measurements demonstrate that these devices develop reversible double layer capacitance, and a maximum of 7.75 F/g is achieved in the device constructed by mechanically mixing the nanostructured electrodes. Electrochemical impedance spectroscopy explains non-idealities observed when MWCNTs are incorporated in the electrode layers.

  7. Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling

    NASA Astrophysics Data System (ADS)

    Lu, Canhui; Zhang, Xinxing; Zhang, Wei

    2015-05-01

    The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.

  8. Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling

    SciTech Connect

    Lu, Canhui; Zhang, Xinxing; Zhang, Wei

    2015-05-22

    The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.

  9. Single molecule magnet behavior of a pentanuclear Mn-based metallacrown complex: solid state and solution magnetic studies.

    PubMed

    Zaleski, Curtis M; Tricard, Simon; Depperman, Ezra C; Wernsdorfer, Wolfgang; Mallah, Talal; Kirk, Martin L; Pecoraro, Vincent L

    2011-11-21

    The magnetic behavior of the pentanuclear complex of formula Mn(II)(O(2)CCH(3))(2)[12-MC(Mn(III)(N)shi)-4](DMF)(6), 1, was investigated using magnetization and magnetic susceptibility measurements both in the solid state and in solution. Complex 1 has a nearly planar structure, made of a central Mn(II) ion surrounded by four peripheral Mn(III) ions. Solid state variable-field dc magnetic susceptibility experiments demonstrate that 1 possesses a low value for the total spin in the ground state; fitting appropriate expressions to the data results in antiferromangetic coupling both between the peripheral Mn(III) ions (J = -6.3 cm(-1)) and between the central Mn(II) ion and the Mn(III) ones (J' = -4.2 cm(-1)). In order to obtain a reasonable fit, a relatively large single ion magnetic anisotropy (D) value of 1 cm(-1) was necessary for the central Mn(II) ion. The single crystal magnetization measurements using a microsquid array display a very slight opening of the hysteresis loop but only at a very low temperature (0.04 K), which is in line with the ac susceptibility data where a slow relaxation of the magnetization occurs just around 2 K. In frozen solution, complex 1 displays a frequency dependent ac magnetic susceptibility signal with an energy barrier to magnetization reorientation (E) and relaxation time at an infinite temperature (τ(o)) of 14.7 cm(-1) and 1.4 × 10(-7) s, respectively, demonstrating the single molecule magnetic behavior in solution.

  10. Mechanochemical solid-state synthesis of 2-aminothiazoles, quinoxalines and benzoylbenzofurans from ketones by one-pot sequential acid- and base-mediated reactions.

    PubMed

    Nagarajaiah, Honnappa; Mishra, Abhaya Kumar; Moorthy, Jarugu Narasimha

    2016-04-26

    α-Chloroketones - obtained by the atom-economical chlorination of ketones with trichloroisocyanuric acid (TCCA) in the presence of p-TSA under ball-milling conditions - were set up for a sequential base-mediated condensation reaction with thiourea/thiosemicarbazides, o-phenylenediamine and salicylaldehyde to afford 2-aminothiazoles, 2-hydrazinylthiazoles, quinoxalines and benzoylbenzofurans, respectively, in respectable yields. The viability of one-pot sequential acid- and base-mediated reactions in the solid state under ball-milling conditions is thus demonstrated.

  11. Contamination and solid state welds.

    SciTech Connect

    Mills, Bernice E.

    2007-05-01

    Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

  12. Polarized Solid State Target

    NASA Astrophysics Data System (ADS)

    Dutz, Hartmut; Goertz, Stefan; Meyer, Werner

    2017-01-01

    The polarized solid state target is an indispensable experimental tool to study single and double polarization observables at low intensity particle beams like tagged photons. It was one of the major components of the Crystal-Barrel experiment at ELSA. Besides the operation of the 'CB frozen spin target' within the experimental program of the Crystal-Barrel collaboration both collaborative groups of the D1 project, the polarized target group of the Ruhr Universität Bochum and the Bonn polarized target group, have made significant developments in the field of polarized targets within the CRC16. The Bonn polarized target group has focused its work on the development of technically challenging polarized solid target systems towards the so called '4π continuous mode polarized target' to operate them in combination with 4π-particle detection systems. In parallel, the Bochum group has developed various highly polarized deuterated target materials and high precision NMR-systems, in the meantime used for polarization experiments at CERN, JLAB and MAMI, too.

  13. Solid state laser

    NASA Technical Reports Server (NTRS)

    Rines, Glen A. (Inventor); Moulton, Peter F. (Inventor); Harrison, James (Inventor)

    1993-01-01

    A wavelength-tunable, injection-seeded, dispersion-compensated, dispersively-pumped solid state laser includes a lasing medium; a highly reflective mirror; an output coupler; at least one isosceles Brewster prism oriented to the minimum deviation angle between the medium and the mirror for directing light of different wavelengths along different paths; means for varying the angle of the highly reflective mirror relative to the light from at least one Brewster angle for selecting a predetermined laser operating wavelength; a dispersion compensation apparatus associated with the lasing medium; a laser injection seeding port disposed between the dispersion compensation apparatus and one of the mirror and coupler and including a reflective surface at an acute non-Brewster angle to the laser beam for introducing a seed input; a dispersion compensation apparatus associated with the laser medium including opposite chirality optical elements; the lasing medium including a pump surface disposed at an acute angle to the laser beam to define a discrete path for the pumping laser beam separate from the pumped laser beam.

  14. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Solid State Dye Lasers Based on Coumarin 440 and Pyrromethene 567 Codoped Polymethyl Methacrylate

    NASA Astrophysics Data System (ADS)

    Fan, Rong-Wei; Li, Xiao-Hui; Xia, Yuan-Qin; Jiang, Yu-Gang; He, Wei-Ming; Chen, De-Ying

    2008-05-01

    Laser dye coumarin 440(C440) is codoped with pyrromethene 567 (PM567) into polymethyl methacrylate (PMMA). The effects of C440 concentration on the performance of the solid state dye medium, including spectra property, slope efficiency and photostability, are studied. When C440 is codoped with PM567 at the same concentration 1 × 10-4 mol/L, the highest efficiency and photostability can be obtained. Compared with the medium based on pure PM567 doped PMMA, about 50% increase in slope efficiency and at least five-fold enhancement in the photostability are observed.

  15. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk

  16. An all-solid-state microsecond-range quasi-square pulse generator based on fractional-turn ratio saturable pulse transformer and anti-resonance network

    NASA Astrophysics Data System (ADS)

    Chen, Rong; Yang, Jianhua; Cheng, Xinbing; Pan, Zilong

    2017-03-01

    High voltage pulse generators are widely applied in a number of fields. Defense and industrial applications stimulated intense interests in the area of pulsed power technology towards the system with high power, high repetition rate, solid state characteristics, and compact structure. An all-solid-state microsecond-range quasi-square pulse generator based on a fractional-turn ratio saturable pulse transformer and anti-resonance network is proposed in this paper. This generator consists of a charging system, a step-up system, and a modulating system. In this generator, the fractional-turn ratio saturable pulse transformer is the key component since it acts as a step-up transformer and a main switch during the working process. Demonstrative experiments show that if the primary storage capacitors are charged to 400 V, a quasi-square pulse with amplitude of about 29 kV can be achieved on a 3500 Ω resistive load, as well as the pulse duration (full width at half maximum) of about 1.3 μs. Preliminary repetition rate experiments are also carried out, which indicate that this pulse generator could work stably with the repetition rates of 30 Hz and 50 Hz. It can be concluded that this kind of all-solid-state microsecond-range quasi-square pulse generator can not only lower both the operating voltage of the primary windings and the saturable inductance of the secondary windings, thus ideally realizing the magnetic switch function of the fractional-turn ratio saturable pulse transformer, but also achieve a quasi-square pulse with high quality and fixed flat top after the modulation of a two-section anti-resonance network. This generator can be applied in areas of large power microwave sources, sterilization, disinfection, and wastewater treatment.

  17. 6-Li enriched Cs2LiYCl6:Ce based thermal neutron detector coupled with CMOS solid-state photomultipliers for a portable detector unit

    NASA Astrophysics Data System (ADS)

    Whitney, Chad; Stapels, Christopher; Johnson, Erik; Chapman, Eric; Alberghini, Guy; Glodo, Jarek; Shah, Kanai; Christian, James

    2011-03-01

    For detecting neutrons, 3-He tubes provide sensitivity and a unique capability for detecting and discriminating neutron signals from background gamma-ray signals. A solid-state scintillation-based detector provides an alternative to 3-He for neutron detection. A real-time, portable, and low cost thermal neutron detector has been constructed from a 6Li-enriched Cs2LiYCl6:Ce (CLYC) scintillator crystal coupled with a CMOS solid-state photomultiplier (SSPM). These components are fully integrated with a miniaturized multi-channel analyzer (MCA) unit for calculation and readout of the counts and count rates. CLYC crystals and several other elpasolites including Cs2LiLaCl6:Ce (CLLC) and Cs2LiLaBr6:Ce (CLLB) have been considered for their unique properties in detecting neutrons and discriminating gamma ray events along with providing excellent energy resolution comparable to NaI(Tl) scintillators. CLYC's slower rise and decay time for neutrons (70ns and 900ns respectively) relative to a faster rise and decay time for gamma ray events (6ns and 55ns respectively) allows for pulse shape discrimination in mixed radiation fields. Light emissions from CLYC crystals are detected using an array of avalanche photodiodes referred to as solid-state photomultipliers. SSPMs are binary photon counting devices where the number of pixels activated is directly proportional to the light output of the CLYC scintillator which is proportional to the energy deposited from the radiation field. SSPMs can be fabricated using standard CMOS processes and inherently contain the low noise performance associated with ordinary photomultiplier tubes (PMT) while providing a light and compact solution for portable neutron detectors.

  18. An all-solid-state microsecond-range quasi-square pulse generator based on fractional-turn ratio saturable pulse transformer and anti-resonance network.

    PubMed

    Chen, Rong; Yang, Jianhua; Cheng, Xinbing; Pan, Zilong

    2017-03-01

    High voltage pulse generators are widely applied in a number of fields. Defense and industrial applications stimulated intense interests in the area of pulsed power technology towards the system with high power, high repetition rate, solid state characteristics, and compact structure. An all-solid-state microsecond-range quasi-square pulse generator based on a fractional-turn ratio saturable pulse transformer and anti-resonance network is proposed in this paper. This generator consists of a charging system, a step-up system, and a modulating system. In this generator, the fractional-turn ratio saturable pulse transformer is the key component since it acts as a step-up transformer and a main switch during the working process. Demonstrative experiments show that if the primary storage capacitors are charged to 400 V, a quasi-square pulse with amplitude of about 29 kV can be achieved on a 3500 Ω resistive load, as well as the pulse duration (full width at half maximum) of about 1.3 μs. Preliminary repetition rate experiments are also carried out, which indicate that this pulse generator could work stably with the repetition rates of 30 Hz and 50 Hz. It can be concluded that this kind of all-solid-state microsecond-range quasi-square pulse generator can not only lower both the operating voltage of the primary windings and the saturable inductance of the secondary windings, thus ideally realizing the magnetic switch function of the fractional-turn ratio saturable pulse transformer, but also achieve a quasi-square pulse with high quality and fixed flat top after the modulation of a two-section anti-resonance network. This generator can be applied in areas of large power microwave sources, sterilization, disinfection, and wastewater treatment.

  19. Solid State Lighting Program (Falcon)

    SciTech Connect

    Meeks, Steven

    2012-06-30

    Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioning which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated

  20. Specific of a photocurrent in GaN-based photoelectrochemical cell

    NASA Astrophysics Data System (ADS)

    Marchenko, O. N.; Ermakov, I. A.; Puzyk, M. V.; Kovalev, D. S.; Ivanova, S. A.; Papchenko, B. P.; Usikov, A. S.; Chernyakov, A. E.

    2016-08-01

    An influence of various parameters of a photoelectrochemical cell (PECC) having a GaN working electrode on the photocurrent was studied. Type of the aqua electrolyte (alkaline (KOH)-, neutral salt (Na2SO4)- and acid (H2SO4)- based electrolytes) influences on transient time for the photocurrent stabilization. A transient time for the photo current stabilization was observed under illumination by the UV LED light sources. The shortest transient time and the highest photocurrent were observed in the alkaline-based electrolyte (∼0.5M KOH) with n- GaN working electrodes (ND-NA =(3-5)×1016 cm-3). PECC with electrolytes based on sodium sulfate and sulfuric acid demonstrated longer transient time (up to ten minutes) for the photocurrent stabilization and smaller photocurrent.

  1. Solid state double layer capacitor based on a polyether polymer electrolyte blend and nanostructured carbon black electrode composites

    NASA Astrophysics Data System (ADS)

    Lavall, Rodrigo L.; Borges, Raquel S.; Calado, Hállen D. R.; Welter, Cezar; Trigueiro, João P. C.; Rieumont, Jacques; Neves, Bernardo R. A.; Silva, Glaura G.

    An all solid double layer capacitor was assembled by using poly(ethylene oxide)/poly(propylene glycol)- b-poly(ethylene glycol)- b-poly(propylene glycol)-bis(2-aminopropyl ether) blend (PEO-NPPP) and LiClO 4 as polymer electrolyte layer and PEO-NPPP-carbon black (CB) as electrode film. High molecular weight PEO and the block copolymer NPPP with molecular mass of 2000 Da were employed, which means that the design is safe from the point of view of solvent or plasticizer leakage and thus, a separator is not necessary. Highly conductive with large surface area nanostructured carbon black was dispersed in the polymer blend to produce the electrode composite. The electrolyte and electrode multilayers prepared by spray were studied by differential scanning calorimetry, atomic force microscopy (AFM) and impedance spectroscopy. The ionic conductivity as a function of temperature was fitted with the Williams-Landel-Ferry equation, which indicates a conductivity mechanism typical of solid polymer electrolyte. AFM images of the nanocomposite electrode showed carbon black particles of approximately 60 nm in size well distributed in a semicrystalline and porous polymer blend coating. The solid double layer capacitor with 10 wt.% CB was designed with final thickness of approximately 130 μm and delivered a capacitance of 17 F g -1 with a cyclability of more than 1000 cycles. These characteristics make possible the construction of a miniature device in complete solid state which will avoid electrolyte leakage and present a performance superior to other similar electric double layer capacitors (EDLCs) presented in literature, as assessed in specific capacitance by total carbon mass.

  2. Automatic illumination compensation device based on a photoelectrochemical biofuel cell driven by visible light.

    PubMed

    Yu, You; Han, Yanchao; Xu, Miao; Zhang, Lingling; Dong, Shaojun

    2016-04-28

    Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm(-2) and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications.

  3. Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications

    NASA Astrophysics Data System (ADS)

    Ebaid, Mohamed; Kang, Jin-Ho; Ryu, Sang-Wan

    2017-01-01

    Photoelectrochemical (PEC) water splitting using semiconductor materials as light absorbers have been extensively studied. Several semiconducting materials have been proposed, such as TiO2, ZnO, and GaN. Because the efficiency of PEC water splitting is dependent on visible light absorption, the ability to tune the bandgap of GaN by alloying with In makes it advantageous over other wide bandgap semiconductors. The fabrication of GaN-based materials with nanoscale geometry offers more merit for their use in PEC water splitting. In this review, we provide an overview of the recent progress made in the synthesis and application of GaN-based nanomaterials in PEC water splitting. The outstanding challenges and the future prospects of this field will also be addressed.

  4. Highly efficient solid-state dye-sensitized solar cells based on hexylimidazolium iodide ionic polymer electrolyte prepared by in situ low-temperature polymerization

    NASA Astrophysics Data System (ADS)

    Wang, Guiqiang; Yan, Chao; Zhang, Juan; Hou, Shuo; Zhang, Wei

    2017-03-01

    Solid-state dye-sensitized solar cells (DSCs) are fabricated using a novel ionic polymer electrolyte containing hexylimidazolium iodide (HII) ionic polymer prepared by in situ polymerization of N,N‧-bis(imidazolyl) hexane and 1,6-diiodohexane without an initiator at low temperature (40 °C). The as-prepared HII ionic polymer has a similar structure to alkylimidazolium iodide ionic liquid, and the imidazolium cations are contained in the polymer main chain; so, it can act simultaneously as the redox mediator in the electrolyte. By incorporating an appropriate amount of 1,3-dimethylimidazolium iodide (DMII) in HII ionic polymer (DMII/HII ionic polymer = 0.7:1, weight ratio), the conductivity of the ionic polymer electrolyte is greatly improved due to the formation of Grotthuss bond exchange. In addition, in situ synthesis of ionic polymer electrolyte guarantees a good pore-filling of the electrolyte in the TiO2 photoanode. As a result, the solid-state DSC based on the ionic polymer electrolyte containing HII ionic polymer and DMII without iodine achieves a conversion efficiency of 6.55% under the illumination of 100 mW cm-2 (AM 1.5), which also exhibits a good at-rest stability at room temperature.

  5. Features of chemical bonds based on the overlap polarizabilities: diatomic and solid-state systems with the frozen-density embedding approach.

    PubMed

    Moura, Renaldo T; Duarte, Gian C S; da Silva, Thiago E; Malta, Oscar L; Longo, Ricardo L

    2015-03-28

    The chemical bond overlap properties were obtained for alkali halides NaY (Y = F, Cl, Br), alkaline-earth chalcogenides MX (M = Ca, Mg and X = O, S, Se) and alkali and alkali-earth metals (Li, Na, and Mg) in diatomic and solid-state systems using an embedding approach based on the frozen density functional theory to simulate the crystalline effects. The computational protocol established provides errors for bond distances smaller than 1%. The results indicate that larger chemical bond covalency leads to larger absorption or scattering by the overlap region. The ionic specific valence and overlap polarizability are closely related to the valence orbital compactness measured by the sum of Mulliken electronegativities. The embedding approach used in this work makes it possible to quantify the effects of the crystalline environment on the chemical bond overlap properties. In the solid-state, the bond overlap charges are less polarizable, in cases of well-known ionic systems (provided by electronegativity differences), leading to smaller chemical bond covalency in solids than in diatomics. The spectroscopic properties of the polarizability of the electron density in the overlap region of a chemical bond could be measured in the 1-20 eV spectral region and could be used to characterize some bands in several spectra whose assignments are ambiguous or not available.

  6. Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly(3,4-ethylenedioxythiophene)-carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Haihan; Zhai, Hua-Jin; Han, Gaoyi

    2016-08-01

    Ternary composite electrodes based on carbon nanotubes thin films (CNFs)-loaded graphene oxide (GO) supported poly(3,4-ethylenedioxythiophene)- carbon nanotubes (GO/PEDOT-CNTs) have been prepared via a facile one-step electrochemical codeposition method. The effect of long and short CNTs-incorporated composites (GO/PEDOT-lCNTs and GO/PEDOT-sCNTs) on the electrochemical behaviors of the electrodes is investigated and compared. Electrochemical measurements indicate that the incorporation of CNTs effectively improves the electrochemical performances of the GO/PEDOT electrodes. Long CNTs-incorporated GO/PEDOT-lCNTs electrodes have more superior electrochemical behaviors with respect to the short CNTs-incorporated GO/PEDOT-lCNTs electrodes, which can be attributed to the optimized composition and specific microstructures of the former. To verify the feasibility of the prepared composite electrodes for utilization as flexible supercapacitor, a solid-state supercapacitor using the CNFs-loaded GO/PEDOT-lCNTs electrodes is fabricated and tested. The device shows lightweight, ultrathin, and highly flexible features, which also has a high areal and volumetric specific capacitance (33.4 m F cm-2 at 10 mV s-1 and 2.7 F cm-3 at 0.042 A cm-3), superior rate capability, and excellent cycle stability (maintaining 97.5% for 5000 cycles). This highly flexible solid-state supercapacitor has great potential for applications in flexible electronics, roll-up display, and wearable devices.

  7. A miniature photoelectrochemical sensor based on organic electrochemical transistor for sensitive determination of chemical oxygen demand in wastewaters.

    PubMed

    Liao, Jianjun; Lin, Shiwei; Zeng, Min; Yang, Yue

    2016-05-01

    A three-electrode configuration is often required in the conventional photoelectrochemical measurements. Nevertheless, one common drawback is the reference electrode and the counter electrode used in the measurements, which has been proved to be an impediment for the miniaturization. In this study, a simple, cost-effective and miniature photoelectrochemical sensor based on high sensitive organic electrochemical transistor (OECT) is developed and used for the determination of chemical oxygen demand (COD) in wastewaters. The devices show detection limit down to 0.01 mg/L COD, which is two orders of magnitude better than that of the conventional photoelectrochemical method. The excellent sensing performance can be contributed to the novel sensing mechanism of OECT devices. That is, the devices are sensitive to the potential changes induced by the photoelectrochemical reaction on TiO2 nanotube arrays gate electrodes. Real sample analyses are also carried out. The results demonstrate that the measured COD values using the OECT devices and the standard dichromate methods are in a good agreement. Since the proposed sensor is constructed on a miniature transistor, it is expected that the device shows a promising application on the integrated COD monitoring platform.

  8. Automatic illumination compensation device based on a photoelectrochemical biofuel cell driven by visible light

    NASA Astrophysics Data System (ADS)

    Yu, You; Han, Yanchao; Xu, Miao; Zhang, Lingling; Dong, Shaojun

    2016-04-01

    Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications.Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00759g

  9. Photoelectrochemical corrosion of GaN-based p-n structures

    NASA Astrophysics Data System (ADS)

    Fomichev, A. D.; Kurin, S. Yu; Ermakovi, I. A.; Puzyk, M. V.; Usikov, A. S.; Helava, H.; Nikiforov, A.; Papchenko, B. P.; Makarov, Yu N.; Chernyakov, A. E.

    2016-08-01

    Direct water photoelectrolysis using III-N materials is a promising way for hydrogen production. GaN/AlGaN based p-n structures were used in a photoelectrochemical process to investigate the material etching (corrosion) in an electrolyte. At the beginning, the corrosion performs through the top p-type layers via channels associated with threading defects and can penetrate deep into the structure. Then, the corrosion process occurs in lateral direction in n- type layers forming voids and cavities in the structure. The lateral etching is due to net positive charges at the AlGaN/GaN interfaces arising because of spontaneous and piezoelectric polarization in the structure and positively charged ionized donors in the space charge region of the p-n junction.

  10. Photoelectrochemical batteries for efficient energy recovery.

    PubMed

    Han, Lei; Guo, Shaojun; Xu, Miao; Dong, Shaojun

    2014-11-11

    Herein we propose novel photoelectrochemical fuel cells (PEFCs) by the introduction of a solid-state Ag2O/Ag cathode (here also term as photoelectrochemical battery). Due to the superior electrochemical properties of Ag2O/Ag, the maximum power density of our PEFCs can reach 0.94 mW cm(-2) upon UV illumination. Furthermore, our PEFCs have stable cycle operation and can be undertaken in a single chamber without an ion-exchange membrane. Most importantly, we demonstrate that our PEFCs can be adopted to degrade the methyl orange (MO) dye with a decomposition percentage of 72.5% within 30 min during the PEFC process.

  11. High power solid state lasers

    SciTech Connect

    Weber, H.

    1988-01-01

    These proceedings discuss the following subjects: trends in materials processing with laser radiation; slabs and high power systems; glasses and new crystals; solid state lasers at HOYA Corp.; lamps, resonators and transmission; glasses as active materials for high average power solid state lasers; flashlamp pumped GGG-crystals; alexandrite lasers; designing telescope resonators; mode operation of neodymium: YAG lasers; intracavity frequency doubling with KTP crystal and thermal effects in cylinder lasers.

  12. Solar-pumped solid state Nd lasers

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Zapata, L.

    1985-01-01

    Solid state neodymium lasers are considered candidates for space-based polar-pumped laser for continuous power transmission. Laser performance for three different slab laser configurations has been computed to show the excellent power capability of such systems if heat problems can be solved. Ideas involving geometries and materials are offered as potential solutions to the heat problem.

  13. DFT calculations of quadrupolar solid-state NMR properties: Some examples in solid-state inorganic chemistry.

    PubMed

    Cuny, Jerome; Messaoudi, Sabri; Alonzo, Veronique; Furet, Eric; Halet, Jean-François; Le Fur, Eric; Ashbrook, Sharon E; Pickard, Chris J; Gautier, Regis; Le Polles, Laurent

    2008-10-01

    This article presents results of first-principles calculations of quadrupolar parameters measured by solid-state nuclear magnetic measurement (NMR) spectroscopy. Different computational methods based on density functional theory were used to calculate the quadrupolar parameters. Through a series of illustrations from different areas of solid state inorganic chemistry, it is shown how quadrupolar solid-state NMR properties can be tackled by a theoretical approach and can yield structural information.

  14. Tris(hydroxymethyl)aminomethane photooxidation on titania based photoanodes and its implication for photoelectrochemical biofuel cells

    NASA Astrophysics Data System (ADS)

    Filipiak, Marcin S.; Zloczewska, Adrianna; Grzeskowiak, Piotr; Lynch, Robert; Jönsson-Niedziolka, Martin

    2015-09-01

    In many photoelectrochemical biofuel cells tris(hydroxymethyl)aminomethane (TRIS) is used a buffer. We show that TRIS can be readily photooxidised on titania electrodes. Combining a titania nanotube photoanode in a TRIS buffer with an air-breathing enzymatic biocathode we construct a relatively efficient photoelectrochemical biofuel cell using the TRIS buffer as fuel. This shows both the prospect of using air-breathing bio-cathodes in this kind of cells, but more importantly, shows the need for caution when using TRIS as buffer in photoelectrochemical applications.

  15. Ultra-low phase-noise microwave generation using a diode-pumped solid-state laser based frequency comb and a polarization-maintaining pulse interleaver.

    PubMed

    Portuondo-Campa, Erwin; Buchs, Gilles; Kundermann, Stefan; Balet, Laurent; Lecomte, Steve

    2015-12-14

    We report ultra-low phase-noise microwave generation at a 9.6 GHz carrier frequency from optical frequency combs based on diode-pumped solid-state lasers emitting at telecom wavelength and referenced to a common cavity-stabilized continuous-wave laser. Using a novel fibered polarization-maintaining pulse interleaver, a single-oscillator phase-noise floor of -171 dBc/Hz at 10 MHz offset frequency has been measured with commercial PIN InGaAs photodiodes, constituting a record for this type of detector. Also, a direct optical measurement of the stabilized frequency combs' timing jitter was performed using a balanced optical cross correlator, allowing for an identification of the origin of the phase-noise limitations in the system.

  16. Effects of amount of graphene oxide and the times of LightScribe on the performance of all-solid-state flexible graphene-based micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Cai, Fenglian; Tao, Cheng-an; Li, Yujiao; Yin, Wenchang; Wang, Xueye; Wang, Jianfang

    2017-03-01

    Recently, the preparation of flexible graphene-based micro-supercapacitors has attracted considerable attention. In this paper, a flexible and all-solid-state micro-supercapacitor was fabricated by LightScribe technology. Additionally, the influences of the drop-cast amount of graphene oxide (GO) and the numbers of LightScribe times on the performance of the supercapacitor were systematically investigated by means of cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge. It was determined that the electrochemical performance of the micro-supercapacitor was optimal when the drop-cast amount was 0.38 mg cm‑2. Moreover, a positive correlation was found between the capacitance and the number of LightScribe times. The maximum capacitance was 2.9 mF cm‑2, which was reached with 20 rounds of LightScribe.

  17. An all-solid-state perovskite-sensitized solar cell based on the dual function polyaniline as the sensitizer and p-type hole-transporting material

    NASA Astrophysics Data System (ADS)

    Xiao, Yaoming; Han, Gaoyi; Chang, Yunzhen; Zhou, Haihan; Li, Miaoyu; Li, Yanping

    2014-12-01

    High performance dual function of polyaniline (PANI) with brachyplast structure is synthesized by using a two-step cyclic voltammetry (CV) approach onto the fluorinated tin oxide (FTO) glass substrate, which acts as the sensitizer and p-type hole-transporting material (p-HTM) for the all-solid-state perovskite-sensitized solar cell (ass-PSSC) due to its π-π* transition and the localized polaron. The ass-PSSC based on the PANI delivers a photovoltaic conversion efficiency of 7.34%, and reduces from 7.34% to 6.71% after 1000 h, thereby 91.42% of the energy conversion efficiency is kept, indicating the device has a good long-term stability.

  18. A mass diffusion-based interpretation of the effect of total solids content on solid-state anaerobic digestion of cellulosic biomass.

    PubMed

    Xu, Fuqing; Wang, Zhi-Wu; Tang, Li; Li, Yebo

    2014-09-01

    In solid-state anaerobic digestion (SS-AD) of cellulosic biomass, the volumetric methane production rate has often been found to increase with the increase in total solids (TS) content until a threshold is reached, and then to decrease. This phenomenon cannot be explained by conventional understanding derived from liquid anaerobic digestion. This study proposed that the high TS content-caused mass diffusion limitation may be responsible for the observed methane production deterioration. Based on this hypothesis, a new SS-AD model was developed by taking into account the mass diffusion limitation and hydrolysis inhibition. The good agreement between model simulation and the experimental as well as literature data verified that the observed reduction in volumetric methane production rate could be ascribed to hydrolysis inhibition as a result of the mass diffusion limitation in SS-AD.

  19. Semi-interpenetrating solid polymer electrolyte based on thiol-ene cross-linker for all-solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Suk, Jungdon; Lee, Yu Hwa; Kim, Do Youb; Kim, Dong Wook; Cho, Song Yun; Kim, Ji Man; Kang, Yongku

    2016-12-01

    We developed highly promising solid polymer electrolytes (SPEs) based on a novel cross-linker containing star-shaped phosphazene with poly(ethylene oxide) (PEO) branches with very high ionic conductivity (7.6 × 10-4 S cm-1), improved mechanical stability, and good electrochemical stability for all-solid-state lithium batteries. In particular, allyl groups were introduced at the ends of the cross-linker in order to overcome the easy self-polymerization of existing cross-linking acrylate end groups. A novel semi-interpenetrating network (semi-IPN) SPE was prepared by in-situ radical polymerization of a precursor solution containing lithium salt, poly(ethylene glycol) dimethyl ether as a plasticizer, and a mixture of pentaerythritol tetrakis(3-mercaptopropionate) and a synthesized hexakis(allyloxy)cyclotriphosphazene (thiol-ene PAL) as the cross-linker. Batteries employing LiFePO4 as the cathode, lithium foil as the anode, and the SPE thin film as the electrolyte were assembled and tested. At ambient temperature, the initial discharge capacity was 147 mAh/g at 0.1 °C and 132 mAh/g at 0.5 °C, and 97% of the capacity was retained at the 100th cycle. All-solid-state pouch-package lithium cells assembled with the SPEs exhibited stable electrochemical performance, even under a severely wrinkled state. These outstanding properties of SPEs based on thiol-ene PAL demonstrate feasibility for practical battery applications with improved reliability and safety.

  20. In situ generated AgBr-enhanced ZnO nanorod-based photoelectrochemical aptasensing via layer-by-layer assembly.

    PubMed

    Li, Jing; Tu, Wenwen; Li, Hongbo; Bao, Jianchun; Dai, Zhihui

    2014-02-28

    A robust aptasensor for Ag(+) was proposed for the first time using an enhanced ZnO nanorod-based photoelectrochemistry by in situ generated AgBr via layer-by-layer assembly. This work opens up new avenues for application of one-dimensional ZnO nanorod arrays in photoelectrochemical sensing. Additionally, the strategy of employing in situ generated narrow-bandgap semiconductors paves a new way for photoelectrochemical sensing.

  1. Nanoscale solid-state cooling: a review

    NASA Astrophysics Data System (ADS)

    Ziabari, Amirkoushyar; Zebarjadi, Mona; Vashaee, Daryoosh; Shakouri, Ali

    2016-09-01

    The recent developments in nanoscale solid-state cooling are reviewed. This includes both theoretical and experimental studies of different physical concepts, as well as nanostructured material design and device configurations. We primarily focus on thermoelectric, thermionic and thermo-magnetic coolers. Particular emphasis is given to the concepts based on metal-semiconductor superlattices, graded materials, non-equilibrium thermoelectric devices, Thomson coolers, and photon assisted Peltier coolers as promising methods for efficient solid-state cooling. Thermomagnetic effects such as magneto-Peltier and Nernst-Ettingshausen cooling are briefly described and recent advances and future trends in these areas are reviewed. The ongoing progress in solid-state cooling concepts such as spin-calorimetrics, electrocalorics, non-equilibrium/nonlinear Peltier devices, superconducting junctions and two-dimensional materials are also elucidated and practical achievements are reviewed. We explain the thermoreflectance thermal imaging microscopy and the transient Harman method as two unique techniques developed for characterization of thermoelectric microrefrigerators. The future prospects for solid-state cooling are briefly summarized.

  2. Solid state safety jumper cables

    DOEpatents

    Kronberg, J.W.

    1993-02-23

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating positive'' terminals, and one has a lower voltage than the reference voltage, indicating negative'' terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  3. Solid state safety jumper cables

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating "positive" terminals, and one has a lower voltage than the reference voltage, indicating "negative" terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  4. Solid State Research

    DTIC Science & Technology

    1998-05-15

    Series, University of Wisconsin, Racine, Wisconsin, 27 April 1998 B-Cell-Based Sensors for Rapid Bioagent Identification M.A.Hollis American...sor could be used either to trigger a separate biological-agent identification sensor or, under high threat Figure 1-1. Bioaerosol fluorescence sensor...Pollen MS2 Virus ugway Dirt Penicillium Fungal Spores Mountain * Cedar Pollen

  5. Research on photoelectrochemical cells based on CdSe, CdSe/sub 1-x/Te/sub x/ and other photoelectrode materials

    SciTech Connect

    Wallace, W L

    1984-05-01

    Research on electrochemical photovoltaic cells incorporating thin film n-CdSe and n-CdSe/sub 1-x/Te/sub x/ photoanodes has resulted in efficiencies up to 7.5% using small area electrodes in polysulfide electrolytes. Efficiencies close to 10% can be achieved using alternate electrolytes in significantly less stable systems. The major limitations on the efficiency of II-VI photoelectrochemical cells are associated with the open circuit voltage and the fill factor. Research on CuInSe/sub 2/ electrochemical photovoltaic cells has resulted in efficiencies up to 11.7% using single crystal n-CuInSe/sub 2/ photoanodes in aqueous electrolytes. The n-CuInSe/sub 2/ surface and the electrolyte have been optimized to produce a highly stable semiconductor/electrolyte junction. A review will also be given on the status of photoelectrochemical storage cell research. In situ photoelectrochemical measurement techniques have been used to probe the semiconductor/electrolyte interface and have been used to support the characterization of semiconductor materials for solid state photovoltaic applications.

  6. Modern solid state laser materials

    SciTech Connect

    Krupke, W.F.

    1984-06-20

    This document contains visual aids used in an invited talk entitled Modern Solid State Laser Materials, presented at the Conference on Lasers and Electro-Optics (CLEO) held in Anaheim, California, on June 20, 1984. Interest at LLNL in solid state lasers focuses on evaluating the potential of solid state laser media for high average power applications, including inertial fusion power production. This talk identifies the relevant bulk material parameters characterizing average power capacity and uses chromium and neodymium co-doped gadolinium scandium gallium garnet (Nd:Cr:GSGG) as an example of a laser material with improved laser properties relative to Nd:YAG (plausible large-scale growth, more efficient spectral coupling to xenon flashlamp radiation, reduced stimulated emission cross section, adequate thermal shock and optical damage threshold parameters, etc.). Recently measured spectroscopic, kinetic, and thermo-mechanical properties of Nd:Cr:GSGG are given.

  7. Solid State Research

    DTIC Science & Technology

    1988-11-15

    Thermally induced drastic morphological changes have recently been observed on etched InP, GaAs, and GaP mesa structures and have been used to fabricate...the base temperature of the sub- strate, changing the shape of the movable heater and the gap between this heater and the sample, and heating or... oxychloride adsorbed layer even at submonolayer thickness. The temperature rise due to the laser pulse depends strongly on the condensed-layer

  8. Solid State Research

    DTIC Science & Technology

    1987-05-15

    a modulation frequency of 30 Hz and determining the intercept for the output laser power (the threshold). Moving the crystal is equivalent to moving...Microwave MESFETs Fabricated in GaAs Layers Grown on Silicon-on-Sapphire Substrates 25 3.2 Optical Absorption and Photoluminescence of Ti:ScB03 29...43 5.2 Integrated Circuit Implementation of an Artificial Neural Network Based on CCD and MNOS Technologies 45 LIST OF ILLUSTRATIONS Figure No

  9. Solid State Research.

    DTIC Science & Technology

    2007-11-02

    Figure 8-2. Typical transistor characteristics of n-channel MOSFET with 0.4-jMn drawn gate length, 0.3-pun effective channel length, and 10-fJm...improved tip construction in which gate -layer thickness is increased and adverse effects of Cr203 insulating interface layer are eliminated. 33 5-2 FEA...made using improved processing. Note the thicker, smoother gate . 34 5-3 Yield estimated from gate -base open-circuit devices on wafer 8LC1-2. The

  10. Solid State Research.

    DTIC Science & Technology

    1985-05-15

    A- Thick Sputtered Niobium Films as a Function of Frequency, with Temperature as a Parameter. The Substrates Are 500-pm-Thick Sapphire 43 5-5...Measured Quality Factors, as a Function of Reciprocal Temperature, of 50-fl Resonators Based on: (a) 4000-A-Thick Sputtered Niobium on 500-pzm-Thick Sapphire...b) 2500-A-Thick Evaporated Niobium on 4 500-pm-Thick Sapphire; and (c) 1.5-plm-Thick Reactively Sputtered Niobium Nitride Films on 125-pm-Thick

  11. Holmium Doped Solid State Laser Resonantly Pumped and Q-Switched by Novel GaSb-Based Photonic Devices

    DTIC Science & Technology

    2011-08-31

    demonstrated for all devices. High power 1.95µm type-I quantum-well GaSb-based diode lasers were used to pump fluoride glass holmium doped fiber...II-VI semiconductors, novel type-II quantum well Sb-based semiconductors, and holmium doped crystals, glasses and fibers can be achieved. The...resonant pumping of the holmium doped fiber laser was demonstrated in this work. (a).1. High power ~2.2 µm lasers with broadened waveguide design

  12. Copper-based ternary and quaternary semiconductor nanoplates: templated synthesis, characterization, and photoelectrochemical properties.

    PubMed

    Wu, Xue-Jun; Huang, Xiao; Qi, Xiaoying; Li, Hai; Li, Bing; Zhang, Hua

    2014-08-18

    Two-dimensional (2D) copper-based ternary and quaternary semiconductors are promising building blocks for the construction of efficient solution-processed photovoltaic devices at low cost. However, the facile synthesis of such 2D nanoplates with well-defined shape and uniform size remains a challenge. Reported herein is a universal template-mediated method for preparing copper-based ternary and quaternary chalcogenide nanoplates, that is, CuInS2, CuIn(x)Ga(1-x)S2, and Cu2ZnSnS4, by using a pre-synthesized CuS nanoplate as the starting template. The various synthesized nanoplates are monophasic with uniform thickness and lateral size. As a proof of concept, the Cu2ZnSnS4 nanoplates were immobilized on a Mo/glass substrate and used as semiconductor photoelectrode, thus showing stable photoelectrochemical response. The method is general and provides future opportunities for fabrication of cost-effective photovoltaic devices based on 2D semiconductors.

  13. Solid state electrolyte systems

    SciTech Connect

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R.

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  14. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    NASA Astrophysics Data System (ADS)

    Kulkarni, A.; Ha, S.; Joshirao, P.; Manchanda, V.; Bak, M. S.; Kim, T.

    2015-06-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ṡ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  15. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector.

    PubMed

    Kulkarni, A; Ha, S; Joshirao, P; Manchanda, V; Bak, M S; Kim, T

    2015-06-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ⋅ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  16. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    SciTech Connect

    Kulkarni, A.; Bak, M. S. E-mail: moonsoo@skku.edu; Ha, S.; Joshirao, P.; Manchanda, V.; Kim, T. E-mail: moonsoo@skku.edu

    2015-06-15

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO{sub 3}){sub 4} ⋅ 5H{sub 2}O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  17. Cyclometalated iridium complex-based label-free photoelectrochemical biosensor for DNA detection by hybridization chain reaction amplification.

    PubMed

    Li, Chunxiang; Wang, Hongyang; Shen, Jing; Tang, Bo

    2015-04-21

    Photoactive material is the most crucial factor which intimately determines analytical performances of the photoelectrochemical sensor. On the basis of the high affinity of dipyrido [3,2-a:2',3'-c] phenazine (dppz) with DNA helix, a novel photoactive intercalator, [(ppy)2Ir(dppz)](+)PF6(-)(ppy = 2-phenylpyridine and dppz = dipyrido [3,2-a:2',3'-c] phenazine) was prepared and characterized by UV-vis absorption spectroscopy, fluorescence spectroscopy, and cyclic voltammetry. The photoelectrochemical properties of the as-prepared iridium(III) complex immobilized on the ITO electrode was investigated. Either cathodic or anodic photocurrent generation can be observed when triethanolamine (TEOA) or dissolved O2 is used as a sacrificial electron donor/acceptor, respectively. The probable photocurrent-generation mechanisms are speculated. A highly sensitive iridium(III) complex-based photoelectrochemical sensor was proposed for DNA detection via hybridization chain reaction (HCR) signal amplification. Under optimal conditions, the biosensor was found to be linearly proportional to the logarithm of target DNA concentration in the range from 0.025 to 100 pmol L(-1) with a detection limit of 9.0 fmol L(-1) (3σ). Moreover, the proposed sensor displayed high selectivity and good reproducibility, demonstrating efficient and stable photoelectric conversion ability of the Ir(III) complex.

  18. In situ-generated nano-gold plasmon-enhanced photoelectrochemical aptasensing based on carboxylated perylene-functionalized graphene.

    PubMed

    Li, Jing; Tu, Wenwen; Li, Hongbo; Han, Min; Lan, Yaqian; Dai, Zhihui; Bao, Jianchun

    2014-01-21

    A novel in situ-generated nanogold plasmon-enhanced photoelectrochemical aptasensor for Hg(2+) ions was fabricated using a perylene-3,4,9,10-tetracarboxylic acid/graphene (PTCA-GR) heterojunction. The fabricated photoelectrochemical aptasensor was based on thymine-Hg(2+)-thymine coordination chemistry and the plasmonic near-field absorption enhancement effect of the subsequent specific catalytic formation of nanogold. The energetic electrons from the surface plasmons of the nanogold were injected into the LUMO orbit of the organic PTCA semiconductor and then rapidly transferred to the electrode through GR due to the possible Hg(2+)-DNA molecular wires following irradiation with the visible light (λ > 450 nm) and at a bias voltage of 0.2 V. The fabricated aptasensor was linear in its response to the concentration of Hg(2+) ions in the range of 5-500 pmol L(-1), with a detection limit of 2 pmol L(-1). The presence of up to 200-fold greater concentrations of other common metal ions did not interfere with the detection of Hg(2+) ions in an aqueous system, and the results corresponded well with those obtained by ICP-MS. This novel plasmon-enhanced photoelectrochemical aptasensor exhibited good performance with its high sensitivity, good selectivity, low cost, and portable features. The strategy of the localized surface plasmon resonance through the in situ generation of noble metal nanoparticles paves the way for improvements in PEC aptasensor performance.

  19. Study of a solid state microdosemeter based on a monolithic silicon telescope: irradiations with low-energy neutrons and direct comparison with a cylindrical TEPC.

    PubMed

    Agosteo, S; Colautti, P; Fanton, I; Fazzi, A; Introini, M V; Moro, D; Pola, A; Varoli, V

    2011-02-01

    A silicon device based on the monolithic silicon telescope technology coupled to a tissue-equivalent converter was proposed and investigated for solid state microdosimetry. The detector is constituted by a ΔE stage about 2 µm in thickness geometrically segmented in a matrix of micrometric diodes and a residual-energy measurement stage E about 500 µm in thickness. Each thin diode has a cylindrical sensitive volume 9 µm in nominal diameter, similar to that of a cylindrical tissue-equivalent proportional counter (TEPC). The silicon device and a cylindrical TEPC were irradiated in the same experimental conditions with quasi-monoenergetic neutrons of energy between 0.64 and 2.3 MeV at the INFN-Legnaro National Laboratories (LNL-INFN, Legnaro, Italy). The aim was to study the capability of the silicon-based system of reproducing microdosimetric spectra similar to those measured by a reference microdosemeter. The TEPC was set in order to simulate a tissue site about 2 μm in diameter. The spectra of the energy imparted to the ▵E stage of the silicon telescope were corrected for tissue-equivalence through an optimized procedure that exploits the information from the residual energy measurement stage E. A geometrical correction based on parametric criteria for shape-equivalence was also applied. The agreement between the dose distributions of lineal energy and the corresponding mean values is satisfactory at each neutron energy considered.

  20. Photoelectrochemical sensing of 4-chlorophenol based on Au/BiOCl nanocomposites.

    PubMed

    Yan, Pengcheng; Xu, Li; Xia, Jiexiang; Huang, Yan; Qiu, Jingxia; Xu, Qian; Zhang, Qi; Li, Huaming

    2016-08-15

    The Au/BiOCl composites have been prepared by a facile one-pot ethylene glycol (EG) assisted solvothermal reaction in the presence of ionic liquid 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl). During the synthesis procedure, the [C16mim]Cl has been used as Cl source, solvent of this system, and dispersing agent to effectively disperse Au on the surface of BiOCl. The as-prepared samples have been systematically characterized by multiple instruments to investigate the structure, morphology, and photoelectrochemical properties. According to the photoelectrochemical data, the Au/BiOCl composites exhibit better photoelectrochemical performance toward the detection of 4-chlorophenol than that of the pure BiOCl. The photocurrent response of Au/BiOCl modified electrode is high and stable under light irradiation. The proposed Au/BiOCl modified electrode shows a wide linear response ranging from 0.16 to 20mgL(-1) with detection limit of 0.05mgL(-1). It indicates a dramatically promising application of bismuth oxyhalides in photoelectrochemical detection. It will be expected that the present study may be lightly extended to the monitor of other organic pollutants by photoelectrochemical detection of the Au/BiOCl composites.

  1. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites

    SciTech Connect

    Ouskova, Elena; Sio, Luciano De Vergara, Rafael; Tabiryan, Nelson; White, Timothy J.; Bunning, Timothy J.

    2014-12-08

    A different generation of polymer-dispersed liquid crystals (PDLCs) based on a liquid crystalline polymer host is reported wherein the fluid behavior of the reactive mesogenic monomer is an enabler to concentration windows (liquid crystal polymer/liquid crystal) (and subsequent morphologies) not previously explored. These liquid crystal (LC) polymer/LC composites, LCPDLCs, exhibit excellent optical and electro-optical properties with negligible scattering losses in both the ON and OFF states. These systems thus have application in systems where fast phase modulation of optical signal instead of amplitude control is needed. Polarized optical microscopy and high resolution scanning electron microscopy confirm a bicontinuous morphology composed of aligned LC polymer coexisting with a phase separated LC fluid. Operating voltages, switching times, and spectra of LCPDLCs compare favourably to conventional PDLC films. The LCPDLCs exhibit a low switching voltage (4–5 V/μm), symmetric and submillisecond (200 μs) on/off response times, and high transmission in both the as formed and switched state in a phase modulation geometry.

  2. Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-Dimensional-graphene/graphite-paper

    NASA Astrophysics Data System (ADS)

    Ramadoss, Ananthakumar; Yoon, Ki-Yong; Kwak, Myung-Jun; Kim, Sun-I.; Ryu, Seung-Tak; Jang, Ji-Hyun

    2017-01-01

    Realization of a highly flexible, lightweight, and high performance flexible supercapacitor was achieved using three-dimensional graphene on flexible graphite-paper. A simple and fast self-assembly approach was utilized for the uniform deposition of chemical vapor deposition (CVD)-grown high quality 3D-graphene powders on a flexible graphite-paper substrate. The fabricated paper-based symmetric supercapacitor exhibited a maximum capacitance of 260 F g-1 (15.6 mF cm-2) in a three electrode system, 80 F g-1 (11.1 mF cm-2) in a full cell, high capacitance retention and a high energy density of 8.8 Wh kg-1 (1.24 μWh cm-2) at a power density of 178.5 W kg-1 (24.5 μW cm-2). The flexible supercapacitor maintained its supercapacitor performance well, even under bent, rolled, or twisted conditions, signifying the excellent flexibility of the fabricated device. Our straightforward approach to the fabrication of highly flexible and lightweight supercapacitors offers new design opportunities for flexible/wearable electronics and miniaturized device applications that require energy storage units that meet the demands of the multifarious applications.

  3. Nanoelectronic devices and measurements toward nanocrystal-based optoelectronics and DNA sequencing with solid-state nanopores

    NASA Astrophysics Data System (ADS)

    Willis, Lauren J.

    Nanoelectronics are critical to exploring nanoscale materials: including nanocrystals, which could revolutionize optoelectronics, and DNA, which could revolutionize medicine. Our suspended silicon nitride membranes combined with electron beam lithography and transmission electron microscopy have been essential to our device fabrication and measurements. Nanocyrstal-based optoelectronics have garnered much interest, and thus new ways of increasing their transport are constantly being researched. We used ligand exchanges to decrease the interparticle spacing of nanocrystal films, which is known to augment transport. Using gaps only a few nanoparticles-wide, we measured transport and found that current could be controlled with annealing, hydrazine treatment, and voltage-sweeping. Annealing destroyed the insulating ligand surrounding each nanocrystal and allowed the particles to move closer. This usually increased the photocurrent, without significantly increasing the dark current. However, this was ineffective on sub-monolayers. Hydrazine was similar, except it replaced the ligand, rather than destroying it, and it was effective on sub-monolayers; however, it caused a large increase in the dark current as well as the photocurrent. Sweeping the voltage overnight could increase or decrease the photocurrent of a sample depending on whether the sample was illuminated or in the dark, corresponding to traps being emptied or filled. In addition to nanocrystals, our devices were used in solution to sense DNA. We fabricated nanelectrodes and nanowires next to nanopores and showed DNA translocations ionically. We also developed methods to make the pores hydrophilic without the use of piranha; we instead used rapid thermal annealing, heated ozone treatments, and oxygen/hydrogen plasmas. While high rates of device failure was a challenge, recommendations for future experiments are presented, including grounding of all equipment and an extreme focus on sample cleanliness. We have

  4. Semiconductor-based photoelectrochemical water splitting at the limit of very wide depletion region

    SciTech Connect

    Liu, Mingzhao; Lyons, John L.; Yan, Danhua H.; Hybertsen, Mark S.

    2015-11-23

    In semiconductor-based photoelectrochemical (PEC) water splitting, carrier separation and delivery largely relies on the depletion region formed at the semiconductor/water interface. As a Schottky junction device, the trade-off between photon collection and minority carrier delivery remains a persistent obstacle for maximizing the performance of a water splitting photoelectrode. Here, it is demonstrated that the PEC water splitting efficiency for an n-SrTiO3 (n-STO) photoanode is improved very significantly despite its weak indirect band gap optical absorption (α < 10⁴ cm⁻¹), by widening the depletion region through engineering its doping density and profile. Graded doped n-SrTiO3 photoanodes are fabricated with their bulk heavily doped with oxygen vacancies but their surface lightly doped over a tunable depth of a few hundred nanometers, through a simple low temperature re-oxidation technique. The graded doping profile widens the depletion region to over 500 nm, thus leading to very efficient charge carrier separation and high quantum efficiency (>70%) for the weak indirect transition. As a result, this simultaneous optimization of the light absorption, minority carrier (hole) delivery, and majority carrier (electron) transport by means of a graded doping architecture may be useful for other indirect band gap photocatalysts that suffer from a similar problem of weak optical absorption.

  5. Semiconductor-based photoelectrochemical water splitting at the limit of very wide depletion region

    DOE PAGES

    Liu, Mingzhao; Lyons, John L.; Yan, Danhua H.; ...

    2015-11-23

    In semiconductor-based photoelectrochemical (PEC) water splitting, carrier separation and delivery largely relies on the depletion region formed at the semiconductor/water interface. As a Schottky junction device, the trade-off between photon collection and minority carrier delivery remains a persistent obstacle for maximizing the performance of a water splitting photoelectrode. Here, it is demonstrated that the PEC water splitting efficiency for an n-SrTiO3 (n-STO) photoanode is improved very significantly despite its weak indirect band gap optical absorption (α < 10⁴ cm⁻¹), by widening the depletion region through engineering its doping density and profile. Graded doped n-SrTiO3 photoanodes are fabricated with their bulkmore » heavily doped with oxygen vacancies but their surface lightly doped over a tunable depth of a few hundred nanometers, through a simple low temperature re-oxidation technique. The graded doping profile widens the depletion region to over 500 nm, thus leading to very efficient charge carrier separation and high quantum efficiency (>70%) for the weak indirect transition. As a result, this simultaneous optimization of the light absorption, minority carrier (hole) delivery, and majority carrier (electron) transport by means of a graded doping architecture may be useful for other indirect band gap photocatalysts that suffer from a similar problem of weak optical absorption.« less

  6. Novel Solid-State Solar Cell Based on Hole-Conducting MOF-Sensitizer Demonstrating Power Conversion Efficiency of 2.1.

    PubMed

    Ahn, Do Young; Lee, Deok Yeon; Shin, Chan Yong; Bui, Hoa Thi; Shrestha, Nabeen K; Giebeler, Lars; Noh, Yong-Young; Han, Sung-Hwan

    2017-04-05

    This work reports on designing of first successful MOF-sensitizer based solid-state photovoltaic device, perticularly with a meaningful output power conversion efficiency. In this study, an intrinsically conductive cobalt-based MOFs (Co-DAPV) formed by the coordination between Co (II) ions and a redox active di(3-diaminopropyl)-viologen (i.e., DAPV) ligand is investigated as sensitizer. Hall-effect measurement shows p-type conductivity of the Co-DAPV film with hole mobility of 0.017 cm(2) V(-1) s(-1), suggesting its potential application as hole transporting sensitizer. Further, the energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of Co-DAPV are well-matched to be suitably employed for sensitizing TiO2. Thus, by layer-by-layer deposition of hole conducting MOF-sensitizer onto mesoporous TiO2 film, a power conversion efficiency of as high as 2.1% is achieved, which exceeds the highest efficiency values of MOF-sensitized liquid-junction solar cells reported so far.

  7. An all-solid-state screen-printed carbon paste reference electrode based on poly(3,4-ethylenedioxythiophene) as solid contact transducer

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Pan, Yiwen; Wang, You; Li, Guang; Chen, Ying; Ye, Ying

    2012-12-01

    The paper presents the design of an all-solid-state portable reference electrode based on a screen-printed carbon paste electrode suitable for rapid human serum testing. The electrode was covered by electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) as an internal solid contact layer and polyvinyl chloride (PVC) membrane containing lipophilic anion and cation additives. The electrochemical properties of PEDOT(PSS) and PEDOT(PSS)/PVC film on a carbon paste electrode were studied by electrochemical impedance spectroscopy and cyclic voltammetry methods. The reference electrode exhibited good potential stability (for H+, Na+, K+, Ca2+, Cl- and CO2 -3/HCO-3), good reproducibility and long-term stability. The structure is applied as reference electrodes in human serum pH analysis with pH ion selective planar electrodes, forming a serum pH sensor. The response time of such a pH sensor was 15 s and the sensitivity was -52.2 ± 1.0 mV per decade. Other properties, such as repeatability, reproducibility and stability, were also evaluated. Clinical trials were carried out and compared with the results obtained from the routine hospital electrolyte analyzer, which demonstrated that their analytical performance was closely matched.

  8. Solid-state supramolecular synthesis based on the N-H…O heterosynthon: an approach to solve the polymorphism problem in famotidine.

    PubMed

    Russo, Marcos G; Brusau, Elena V; Ellena, Javier; Narda, Griselda E

    2014-11-01

    Famotidine (FMT), a histamine H2 -receptor antagonist, is a drug commonly used in treatments of gastroesophageal diseases that presents solid-state polymorphism (A and B forms), the marketed form being the metastable polymorph B. A new stable salt was obtained by combination of FMT and maleic acid as coformer. FMT maleate (FMT-MLT) was prepared either by solvent evaporation or comilling methods. Single-crystal X-ray diffraction reveals that (FMT)(+) in FMT-MLT adopts an extended conformation that is stabilized by classical and nonclassical H-bonds. The three-dimensional packing consists of tapes along the axis b that further develop a columnar array based on H-bonds involving (FMT)(+) side chain. Nonconventional π-stacking interactions between adjacent tapes were also identified. Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, polarized light thermal microscopy, and scanning electron microscopy were employed to characterize the multicomponent complex. According to the solubility values in water and simulated gastric fluid, FMT-MLT exhibits such a performance that improves on the solubility of the commercially available polymorph. Finally, the higher stability of FMT-MLT regarding both FMT forms, as well as its easy preparation from either A or B forms or a mixture of them, also allows to consider this salt as a valuable alternative to avoid the polymorphism issue in marketed formulations containing FMT.

  9. Photoelectrochemical sensor for pentachlorophenol on microfluidic paper-based analytical device based on the molecular imprinting technique.

    PubMed

    Sun, Guoqiang; Wang, Panpan; Ge, Shenguang; Ge, Lei; Yu, Jinghua; Yan, Mei

    2014-06-15

    Combining microfluidic paper-based analytical device (μ-PAD) and the molecular imprinting technique, a visible light photoelectrochemical (PEC) sensing platform for the detection of pentachlorophenol (PCP) was established on gold nanoparticles (AuNPs) decorated paper working electrode using polypyrrole-functionalized ZnO nanoparticles. Ascorbic acid (AA) was exploited as an efficient and nontoxic electron donor for scavenging photogenerated holes under mild solution medium and facilitating the generation of stable photocurrent. The microfluidic molecular imprinted polymer-based PEC analytical origami device is developed for the detection of PCP in the linear range from 0.01 ng mL(-1) to 100 ng mL(-1) with a low detection limit of 4 pg mL(-1). This disposable microfluidic PEC origami device would provide a new platform for sensitive, specific, and multiplex assay in public health, environmental monitoring, and the developing world.

  10. NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations.

    PubMed

    Casabianca, Leah B; Shaibat, Medhat A; Cai, Weiwei W; Park, Sungjin; Piner, Richard; Ruoff, Rodney S; Ishii, Yoshitaka

    2010-04-28

    Chemically modified graphenes and other graphite-based materials have attracted growing interest for their unique potential as lightweight electronic and structural nanomaterials. It is an important challenge to construct structural models of noncrystalline graphite-based materials on the basis of NMR or other spectroscopic data. To address this challenge, a solid-state NMR (SSNMR)-based structural modeling approach is presented on graphite oxide (GO), which is a prominent precursor and interesting benchmark system of modified graphene. An experimental 2D (13)C double-quantum/single-quantum correlation SSNMR spectrum of (13)C-labeled GO was compared with spectra simulated for different structural models using ab initio geometry optimization and chemical shift calculations. The results show that the spectral features of the GO sample are best reproduced by a geometry-optimized structural model that is based on the Lerf-Klinowski model (Lerf, A. et al. Phys. Chem. B 1998, 102, 4477); this model is composed of interconnected sp(2), 1,2-epoxide, and COH carbons. This study also convincingly excludes the possibility of other previously proposed models, including the highly oxidized structures involving 1,3-epoxide carbons (Szabo, I. et al. Chem. Mater. 2006, 18, 2740). (13)C chemical shift anisotropy (CSA) patterns measured by a 2D (13)C CSA/isotropic shift correlation SSNMR were well reproduced by the chemical shift tensor obtained by the ab initio calculation for the former model. The approach presented here is likely to be applicable to other chemically modified graphenes and graphite-based systems.

  11. Modern solid state laser materials

    NASA Astrophysics Data System (ADS)

    Krupke, W. F.

    1984-06-01

    Visual aids used in an invited talk entitled Modern Solid State Laser Materials are presented. Interest at LLNL in solid state lasers focuses on evaluating the potential inertial fusion power production. The relevant bulk material parameters characterizing average power capacity are identified and chromium and neodymium co-doped gadolinium scandium gallium garnet (Nd:Cr:GSGG) are used as an example of a laser material with improved laser properties relative to Nd:YAG (plausible large scale growth, more efficient spectral coupling to xenon flashlamp radiation, reduced stimulated emission cross section, adequate thermal shock and optical damage threshold parameters, etc.). Recently measured spectroscopic, kinetic, and thermomechanical properties of Nd:Cr:GSGG are given.

  12. Solid-state membrane module

    DOEpatents

    Gordon, John Howard; Taylor, Dale M.

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  13. Solid state cell with anolyte

    SciTech Connect

    Barnette, L. H.; Liang, C. C.

    1985-06-25

    A solid state cell having a solid cathode, a solid electrolyte, and a solid anolyte comprised of at least 50% by volume of ionically conductive materials such as the electrolye and 50% or less by volume of an active metal. The anolyte is either the cell anode or alternatively the anolyte is an additional structural member within said cell positioned between an anode, comprised of the same active metal, and the solid electrolyte.

  14. Solid-State Nuclear Power

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  15. Radiation sensitive solid state switch

    NASA Technical Reports Server (NTRS)

    Hutto, R. J. (Inventor)

    1973-01-01

    A mechanically operable solid state switch suited for use in achieving a variable circuit-switching function is described. This switch is characterized by an annular array of photoresponsive switching devices, disposed in communication with an included source of radiation, and a plurality of interchangeable, mechanically operable interrupter disks. Each disk has a predetermined pattern of transparent and opaque portions. Operative displacement of each disk serves to make and break selected electrical circuits through the photo responsive devices of said array.

  16. Solid state electrochemical current source

    DOEpatents

    Potanin, Alexander Arkadyevich; Vedeneev, Nikolai Ivanovich

    2002-04-30

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  17. Solid-state membrane module

    DOEpatents

    Hinklin, Thomas Ray; Lewinsohn, Charles Arthur

    2015-06-30

    A module for separating oxygen from an oxygen-containing gaseous mixture comprising planar solid-state membrane units, each membrane unit comprising planar dense mixed conducting oxides layers, planar channel-free porous support layers, and one or more planar intermediate support layers comprising at least one channeled porous support layer. The porosity of the planar channeled porous support layers is less than the porosity of the planar channel-free porous support layers.

  18. Structural color-tunable mesoporous bragg stack layers based on graft copolymer self-assembly for high-efficiency solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Chang Soo; Park, Jung Tae; Kim, Jong Hak

    2016-08-01

    We present a facile fabrication route for structural color-tunable mesoporous Bragg stack (BS) layers based on the self-assembly of a cost-effective graft copolymer. The mesoporous BS layers are prepared through the alternating deposition of organized mesoporous-TiO2 (OM-TiO2) and -SiO2 (OM-SiO2) films on the non-conducting side of the counter electrode in dye-sensitized solar cells (DSSCs). The OM layers with controlled porosity, pore size, and refractive index are templated with amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM. The morphology and properties of the structural color-tunable mesoporous BS-functionalized electrodes are characterized using energy filtered transmission electron microscopy (EF-TEM), field emission-scanning electron microscopy (FE-SEM), spectroscopic ellipsometry, and reflectance spectroscopy. The solid-state DSSCs (ssDSSCs) based on a structural color-tunable mesoporous BS counter electrode with a single-component solid electrolyte show an energy conversion efficiency (η) of 7.1%, which is much greater than that of conventional nanocrystalline TiO2-based cells and one of the highest values for N719 dye-based ssDSSCs. The enhancement of η is due to the enhancement of current density (Jsc), attributed to the improved light harvesting properties without considerable decrease in fill factor (FF) or open-circuit voltage (Voc), as confirmed by incident photon-to-electron conversion efficiency (IPCE) and electrochemical impedance spectroscopy (EIS).

  19. An ultrasensitive and universal photoelectrochemical immunoassay based on enzyme mimetics enhanced signal amplification.

    PubMed

    Wang, Guang-Li; Shu, Jun-Xian; Dong, Yu-Ming; Wu, Xiu-Ming; Li, Zai-Jun

    2015-04-15

    An ultrasensitive photoelectrochemical (PEC) immunoassay based on signal amplification by enzyme mimetics was fabricated for the detection of mouse IgG (as a model protein). The PEC immunosensor was constructed by a layer-by-layer assembly of poly (diallyldimethylammonium chloride) (PDDA), CdS quantum dots (QDs), primary antibody (Ab1, polyclonal goat antimouse IgG), and the antigen (Ag, mouse IgG) on an indium-tin oxide (ITO) electrode. Then, the secondary antibody (Ab2, polyclonal goat antimouse IgG) combined to a bio-bar-coded Pt nanoparticle(NP)-G-quadruplex/hemin probe was used for signal amplification. The bio-bar-coded Pt NP-G-quadruplex/hemin probe could catalyze the oxidation of hydroquinone (HQ) using H2O2 as an oxidant, demonstrating its intrinsic enzyme-like activity. High sensitivity for the target Ag was achieved by using the bio-bar-coded probe as signal amplifier due to its high catalytic activity, a competitive nonproductive absorption of hemin and the steric hindrance caused by the polymeric oxidation products of HQ. For most important, the oxidation product of HQ acted as an efficient electron acceptor of the illuminated CdS QDs. The target Ag could be detected from 0.01pg/mL to 1.0ng/mL with a low detection limit of 6.0fg/mL. The as-obtained immunosensor exhibited high sensitivity, good stability and acceptable reproducibility. This method might be attractive for clinical and biomedical applications.

  20. Final report on grand challenge LDRD project : a revolution in lighting : building the science and technology base for ultra-efficient solid-state lighting.

    SciTech Connect

    Copeland, Robert Guild; Mitchell, Christine Charlotte; Follstaedt, David Martin; Lee, Stephen Roger; Shul, Randy John; Fischer, Arthur Joseph; Chow, Weng Wah Dr.; Myers, Samuel Maxwell, Jr.; Thoma, Steven George; Gee, James Martin; Coltrin, Michael Elliott; Burdick, Brent A.; Salamone, Angelo, L., Jr.; Hadley, G. Ronald; Elliott, Russell D.; Campbell, Jonathan M.; Abrams, Billie Lynn; Wendt, Joel Robert; Pawlowski, Roger Patrick; Simpson, Regina Lynn; Kurtz, Steven Ross; Cole, Phillip James; Fullmer, Kristine Wanta; Seager, Carleton Hoover; Bogart, Katherine Huderle Andersen; Biefeld, Robert Malcolm; Kerley, Thomas M.; Norman, Adam K.; Tallant, David Robert; Woessner, Stephen Matthew; Figiel, Jeffrey James; Moffat, Harry K.; Provencio, Paula Polyak; Emerson, John Allen; Kaplar, Robert James; Wilcoxon, Jess Patrick; Waldrip, Karen Elizabeth; Rohwer, Lauren Elizabeth Shea; Cross, Karen Charlene; Wright, Alan Francis; Gonzales, Rene Marie; Salinger, Andrew Gerhard; Crawford, Mary Hagerott; Garcia, Marie L.; Allen, Mark S.; Southwell, Edwin T.; Bauer, Tom M.; Monson, Mary Ann; Tsao, Jeffrey Yeenien; Creighton, James Randall; Allerman, Andrew Alan; Simmons, Jerry A.; Boyack, Kevin W.; Jones, Eric Daniel; Moran, Michael P.; Pinzon, Marcia J.; Pinson, Ariane O.; Miksovic, Ann E.; Wang, George T.; Ashby, Carol Iris Hill; Missert, Nancy A.; Koleske, Daniel David; Rahal, Nabeel M.

    2004-06-01

    This SAND report is the final report on Sandia's Grand Challenge LDRD Project 27328, 'A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-state Lighting.' This project, which for brevity we refer to as the SSL GCLDRD, is considered one of Sandia's most successful GCLDRDs. As a result, this report reviews not only technical highlights, but also the genesis of the idea for Solid-state Lighting (SSL), the initiation of the SSL GCLDRD, and the goals, scope, success metrics, and evolution of the SSL GCLDRD over the course of its life. One way in which the SSL GCLDRD was different from other GCLDRDs was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and other Department of Energy (DOE) national laboratories - to support a national initiative in SSL R&D. Sandia was a major player in publicizing the tremendous energy savings potential of SSL, and in helping to develop, unify and support community consensus for such an initiative. Hence, our activities in this area, discussed in Chapter 6, were substantial: white papers; SSL technology workshops and roadmaps; support for the Optoelectronics Industry Development Association (OIDA), DOE and Senator Bingaman's office; extensive public relations and media activities; and a worldwide SSL community website. Many science and technology advances and breakthroughs were also enabled under this GCLDRD, resulting in: 55 publications; 124 presentations; 10 book chapters and reports; 5 U.S. patent applications including 1 already issued; and 14 patent disclosures not yet applied for. Twenty-six invited talks were given, at prestigious venues such as the American Physical Society Meeting, the Materials Research Society Meeting, the AVS International Symposium, and the Electrochemical Society Meeting. This report contains a summary of these science and technology advances and breakthroughs

  1. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1993-01-01

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  2. Solid-state optical microscope

    DOEpatents

    Young, I.T.

    1981-01-07

    A solid state optical microscope is described wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. Means for scanning in one of two orthogonal directions are provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  3. Solid-State Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.

    2005-01-01

    This document is a web site page, and a data sheet about Personal protection (i.e., space suits) presented to the Radiation and Micrometeoroid Mitigation Technology Focus Group meeting. The website describes the work of the PI to improve solid state personal radiation dosimetry. The data sheet presents work on the active personal radiation detection system that is to provide real-time local radiation exposure information during EVA. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.

  4. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1993-12-07

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  5. Photoelectrochemical cell

    DOEpatents

    Rauh, R. David; Boudreau, Robert A.

    1983-06-14

    A photoelectrochemical cell comprising a sealed container having a light-transmitting window for admitting light into the container across a light-admitting plane, an electrolyte in the container, a photoelectrode in the container having a light-absorbing surface arranged to receive light from the window and in contact with the electrolyte, the surface having a plurality of spaced portions oblique to the plane, each portion having dimensions at least an order of magnitude larger than the maximum wavelength of incident sunlight, the total surface area of the surface being larger than the area of the plane bounded by the container, and a counter electrode in the container in contact with the electrolyte.

  6. Photoelectrochemical water splitting for hydrogen production with metal oxide (hematite and cupric oxide) based photocatalysts

    NASA Astrophysics Data System (ADS)

    Tang, Houwen

    Solar hydrogen is one ideal energy source to replace fossil fuel, as it is sustainable and environmentally friendly. Solar hydrogen can be generated in a number of ways. Photoelectrochemical (PEC) water splitting is one of the most promising methods for solar-to-chemical energy conversion. In this research project, metal oxide-based photocatalysts, especially hematite (α-Fe 2O3) and cupric oxide (CuO), were investigated for use as electrodes in PEC water splitting for solar hydrogen production. In our research project of hematite-based electrodes, we started with the incorporation of transition metal, particularly titanium (Ti), in hematite thin films to modify the valence and conduction band edges of hematite. We found that Ti impurities improve the electron conductivity of hematite and consequently lead to significantly enhanced photocurrents. We further investigated the Ti and Mg co-alloyed hematite. In this case, Ti is the donor and Mg is the acceptor in hematite. The co-alloying approach enhanced the solubility of Mg and Ti, which led to reduced electron effective mass and therefore increased electron mobility. Also, co-alloying tunes the carrier density and therefore allows the optimization of electrical conductivity. The densities of charged defects were found to be reduced, and therefore carrier recombinations were reduced. As a result, the Ti and Mg co-alloyed hematite thin films exhibited much improved performance in PEC water splitting as compared to pure hematite thin films. For the study of cupric oxide-based electrodes, we first investigated the possibility of reducing the electrode corrosion of cupric oxide in aqueous solutions by incorporating Ti as an electrode corrosion inhibitor. We found that Ti alloying can enhance the stability of cupric oxide in base solutions at the cost of reducing its crystallinity and optical absorption, and consequently lowering its photon-to-electron conversion efficiency. In order to balance the stability and the

  7. Solid-state X-band Combiner Study

    NASA Technical Reports Server (NTRS)

    Pitzalis, O., Jr.; Russell, K. J.

    1979-01-01

    The feasibility of developing solid-state amplifiers at 4 and 10 GHz for application in spacecraft altimeters was studied. Bipolar-transistor, field-effect-transistor, and Impatt-diode amplifier designs based on 1980 solid-state technology are investigated. Several output power levels of the pulsed, low-duty-factor amplifiers are considered at each frequency. Proposed transistor and diode amplifier designs are illustrated in block diagrams. Projections of size, weight, and primary power requirements are given for each design.

  8. Solid state nuclear magnetic resonance investigation of polymer backbone dynamics in poly(ethylene oxide) based lithium and sodium polyether-ester-sulfonate ionomers

    NASA Astrophysics Data System (ADS)

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

    2013-05-01

    Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (Tg) have been investigated using solid-state nuclear magnetic resonance. Experiments detecting 13C with 1H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) 1H-13C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and 1H spin-lattice relaxation rate measurements. Previous 1H and 7Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of 13C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time 1H-13C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from 1H to 13C nuclei, becomes similar for T ˜x 1{.1} Tg in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of previous findings, for the

  9. Solid State Nuclear Magnetic Resonance Investigation of Polymer Backbone Dynamics in Poly(Ethylene Oxide) Based Lithium and Sodium Polyether-ester-sulfonate Ionomers

    SciTech Connect

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

    2013-01-01

    Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (Tg) have been investigated using solid-state nuclear magnetic resonance (NMR). Experiments detecting 13C with 1H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) 1H-13C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and 1H spin-lattice relaxation rate measurements. Previous 1H and 7Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of 13C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time 1H-13C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from 1H to 13C nuclei, becomes similar for T ≳ 1.1 Tg in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of previous findings, for

  10. Solid State Marx Modulators for Emerging Applications

    SciTech Connect

    Kemp, M.A.; /SLAC

    2012-09-14

    Emerging linear accelerator applications increasingly push the boundaries of RF system performance and economics. The power modulator is an integral part of RF systems whose characteristics play a key role in the determining parameters such as efficiency, footprint, cost, stability, and availability. Particularly within the past decade, solid-state switch based modulators have become the standard in high-performance, high power modulators. One topology, the Marx modulator, has characteristics which make it particularly attractive for several emerging applications. This paper is an overview of the Marx topology, some recent developments, and a case study of how this architecture can be applied to a few proposed linear accelerators.

  11. Solid state opening switches of new type

    NASA Astrophysics Data System (ADS)

    Kudasov, Yu. B.; Makarov, I. V.; Pavlov, V. N.

    2001-04-01

    We discuss two new types of high-current solid-state opening switches based on nonlinear diffusion of a strong magnetic field into a substance. In the first case, a magnetic field penetrates into solid solution (V 1- xCr x) 2O 3, which undergoes a metal-insulator phase transition of the first order under Joule heating. In the second case, a switching of current occurs due to the Hall diffusion of magnetic field into n-InAs. Results of numerical analysis are presented.

  12. A Quasi-Solid-State Li-Ion Capacitor Based on Porous TiO2 Hollow Microspheres Wrapped with Graphene Nanosheets.

    PubMed

    Wang, Faxing; Wang, Chun; Zhao, Yujuan; Liu, Zaichun; Chang, Zheng; Fu, Lijun; Zhu, Yusong; Wu, Yuping; Zhao, Dongyuan

    2016-12-01

    The quasi-solid-state Li-ion capacitor is demonstrated with graphene nanosheets prepared by an electrochemical exfoliation as the positive electrode and the porous TiO2 hollow microspheres wrapped with the same graphene nanosheets as the negative electrode, using a Li-ion conducting gel polymer electrolyte. This device may be the key to bridging the gap between conventional lithium-ion batteries and supercapacitors, meanwhile meeting the safety demands of electronic devices.

  13. Tunable visible solid-state lasers based on second-harmonic generation of LiF:F(2) in potassium titanyl phosphate.

    PubMed

    Giffin, S M; McKinnie, I T; Ter-Mikirtychev, V V

    1998-02-01

    A new broadly tunable visible solid-state laser is reported. Wavelengths between 550 and 610 nm are generated by intracavity frequency doubling of tuned and free-running room-temperature pulsed LiF:F(2)(-) lasers in potassium titanyl phosphate. Second-harmonic energy of 1.3 mJ has been achieved, corresponding to a fundamental-to-second-harmonic conversion efficiency of 20%. Operation is optimized with respect to LiF:F(2)(-) laser parameters.

  14. All solid-state solar cells based on CH3NH3PbI3-sensitized TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Yang, Xiuchun; Liu, Wei; Ren, Peng

    2016-09-01

    TiO2 nanotube arrays (TiO2 NTAs) were firstly used as photoanode in methylammonium lead iodide (CH3NH3PbI3) perovskite/TiO2 NTAs heterojunction solar cell, where CH3NH3PbI3 functions as both light absorber and hole conductor. The composition, structure and photoelectrochemical properties of the as-prepared samples were characterized by x-ray diffractometer (XRD), field-emission scanning electron microscope (FE-SEM), ultraviolet-visible (UV-vis) spectrophotometer and electrochemical workstation. The results indicate that the as-prepared CH3NH3PbI3 belongs to the cubic crystal system, and TiO2 NTAs sensitized by 0.3 M CH3NH3I and PbI2 exhibit the best photoelectrochemical properties with an open-circuit voltage of 0.422 V and a short-circuit current density of 173.4 μA cm-2. The EIS result shows that the extremely large resistance at CH3NH3PbI3/FTO interface contributes to the low current density of the perovskite solar cell.

  15. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    PubMed

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  16. A photoelectrochemical immunosensor for detection of α-fetoprotein based on Au-ZnO flower-rod heterostructures

    NASA Astrophysics Data System (ADS)

    Han, Zhizhong; Luo, Min; Chen, Li; Chen, Jinghua; Li, Chunyan

    2017-04-01

    In this work, a novel label free photoelectrochemical (PEC) immunosensor has been developed for the detection of α-fetoprotein (AFP). The immunosensor was based on Au-ZnO flower-rods (FRs) heterostructure, where Au nanoparticles (NPs) were firstly electrodeposited by cyclic voltammetry methods. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Mott-Schottky plot (MS), UV-vis diffuse reflectance spectrum and fluorescence emission spectrum were used for the characterizations of Au-ZnO FRs. The results demonstrated that Au NPs not only obviously enhanced the visible light absorption of ZnO FRs due to surface plasmon resonance (SPR) but also improved the separation of photo-generated electron-hole pairs. Therefore, the photocurrent of Au-ZnO FRs was increased under simulated sunlight. The photocurrent was reduced after the specific antibody-antigen immune reaction. And the photocurrent decrement was linear with the logarithm of AFP antigen concentration in the range from 0.005 ng mL-1 to 50 ng mL-1 with a low detection limit of 0.56 pg mL-1 (S/N = 3). The PEC immunosensor also exhibited high anti-interference property and acceptable stability. This work would provide a promising photoelectrochemical strategy for the detection of other proteins in clinical diagnosis.

  17. Room-temperature solid-state maser.

    PubMed

    Oxborrow, Mark; Breeze, Jonathan D; Alford, Neil M

    2012-08-16

    The invention of the laser has resulted in many innovations, and the device has become ubiquitous. However, the maser, which amplifies microwave radiation rather than visible light, has not had as large an impact, despite being instrumental in the laser's birth. The maser's relative obscurity has mainly been due to the inconvenience of the operating conditions needed for its various realizations: atomic and free-electron masers require vacuum chambers and pumping; and solid-state masers, although they excel as low-noise amplifiers and are occasionally incorporated in ultrastable oscillators, typically require cryogenic refrigeration. Most realizations of masers also require strong magnets, magnetic shielding or both. Overcoming these various obstacles would pave the way for improvements such as more-sensitive chemical assays, more-precise determinations of biomolecular structure and function, and more-accurate medical diagnostics (including tomography) based on enhanced magnetic resonance spectrometers incorporating maser amplifiers and oscillators. Here we report the experimental demonstration of a solid-state maser operating at room temperature in pulsed mode. It works on a laboratory bench, in air, in the terrestrial magnetic field and amplifies at around 1.45 gigahertz. In contrast to the cryogenic ruby maser, in our maser the gain medium is an organic mixed molecular crystal, p-terphenyl doped with pentacene, the latter being photo-excited by yellow light. The maser's pumping mechanism exploits spin-selective molecular intersystem crossing into pentacene's triplet ground state. When configured as an oscillator, the solid-state maser's measured output power of around -10 decibel milliwatts is approximately 100 million times greater than that of an atomic hydrogen maser, which oscillates at a similar frequency (about 1.42 gigahertz). By exploiting the high levels of spin polarization readily generated by intersystem crossing in photo-excited pentacene and other

  18. Proteins as solid-state electronic conductors.

    PubMed

    Ron, Izhar; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2010-07-20

    Protein structures can facilitate long-range electron transfer in solution. But a fundamental question remains: can these structures also serve as solid-state electronic conductors? Answering this question requires methods for studying conductivity of the "dry" protein (which only contains tightly bound structured water molecules) sandwiched between two electronic conductors in a solid-state type configuration. If successful, such systems could serve as the basis for future, bioinspired electronic device technology. In this Account, we survey, analyze, and compare macroscopic and nanoscopic (scanning probe) solid-state conductivities of proteins, noting the inherent constraints of each of these, and provide the first status report on this research area. This analysis shows convincing evidence that "dry" proteins pass orders of magnitude higher currents than saturated molecules with comparable thickness and that proteins with known electrical activity show electronic conductivity, nearly comparable to that of conjugated molecules ("wires"). These findings suggest that the structural features of proteins must have elements that facilitate electronic conductivity, even if they do not have a known electron transfer function. As a result, proteins could serve not only as sensing, polar,or photoactive elements in devices (such as field-effect transistor configurations) but also as electronic conductors. Current knowledge of peptide synthesis and protein modification paves the way toward a greater understanding of how changes in a protein's structure affect its conductivity. Such an approach could minimize the need for biochemical cascades in systems such as enzyme-based circuits, which transduce the protein's response to electronic current. In addition, as precision and sensitivity of solid-state measurements increase, and as knowledge of the structure and function of "dry" proteins grows, electronic conductivity may become an additional approach to study electron

  19. Photoelectrochemical and photovoltaic characteristics of amorphous-silicon-based tandem cells as photocathodes for water splitting.

    PubMed

    Ziegler, Jürgen; Kaiser, Bernhard; Jaegermann, Wolfram; Urbain, Félix; Becker, Jan-Philipp; Smirnov, Vladimir; Finger, Friedhelm

    2014-12-15

    In this study amorphous silicon tandem solar cells are successfully utilized as photoelectrodes in a photoelectrochemical cell for water electrolysis. The tandem cells are modified with various amounts of platinum and are combined with a ruthenium oxide counter electrode. In a two-electrode arrangement this system is capable of splitting water without external bias with a short-circuit current of 4.50 mA cm(-2). On the assumption that no faradaic losses occur, a solar-to-hydrogen efficiency of 5.54% is achieved. In order to identify the relevant loss processes, additional three-electrode measurements were performed for each involved half-cell.

  20. Measurement of submilliwatt, picosecond terahertz emission from a femtosecond-laser-pumped solid-state dc to ac radiation converter based on a ZnSe crystal

    SciTech Connect

    Yugami, Noboru; Ohata, Nobuo; Yaegashi, Kenta; Kawanago, Hiroshi

    2006-11-15

    We measured the terahertz pulse emission from a femtosecond-laser-pumped solid-state dc to ac radiation converter using a 150 fs Ti:sapphire laser pulse for dense plasma diagnostics. The laser-produced ionization front was directly modulated from a periodic electrostatic field to pulsed emission. The central frequency of the emission was measured to be 0.13 THz having a bandwidth of 0.1 THz and a peak power of 0.2 mW. This emission source is suitable for use in various novel diagnostic techniques, such as dense plasma diagnostics.

  1. Solid-state rechargeable magnesium battery

    DOEpatents

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  2. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: Interfacial resistance

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Ren, Yaoyu; Shen, Yang; Zhao, Shi-Xi; Lin, Yuanhua; Nan, Ce-Wen

    2016-08-01

    A bulk-type all-solid-state lithium ion battery based on Ta-doped Li6.75La3Zr1.75Ta0.25O12 (LLZ-Ta) is prepared by a simple solid state process with high capacity of 279.0 μAh cm-2 at 80 °C. However, severe polarization is discovered during charging/discharging cycles at room temperature (RT) for battery with a higher active cathode loading. Large interfacial resistance due to the poor contact at the interfaces between cathode and LLZ-Ta solid electrolyte and at the interfaces within the composite cathode layer is proven to be the main reason for the poor electrochemical performance of the battery at RT. The polarization could be suppressed at elevated temperature, which is attributed to the decreased interfacial resistance as indicated by the results of impedance measurements and gives rise to much enhanced performance of the all-solid-state battery.

  3. Amplified solid-state electrochemiluminescence detection of cholesterol in near-infrared range based on CdTe quantum dots decorated multiwalled carbon nanotubes@reduced graphene oxide nanoribbons.

    PubMed

    Huan, Juan; Liu, Qian; Fei, Airong; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun

    2015-11-15

    An amplified solid-state electrochemiluminescence (ECL) biosensor for detection of cholesterol in near-infrared (NIR) range was constructed based on CdTe quantum dots (QDs) decorated multiwalled carbon nanotubes@reduced graphene nanoribbons (CdTe-MWCNTs@rGONRs), which were prepared by electrostatic interactions. The CdTe QDs decorated on the MWCNTs@rGONRs resulted in the amplified ECL intensity by ~4.5 fold and decreased onset potential by ~100 mV. By immobilization of the cholesterol oxidase (ChOx) and NIR CdTe-MWCNTs@rGONRs on the electrode surface, a solid-state ECL biosensor for cholesterol detection was constructed. When cholesterol was added to the detection solution, the immobilized ChOx catalyzed the oxidation of cholesterol to generate H2O2, which could be used as the co-reactant in the ECL system of CdTe-MWCNTs@rGONRs. The as-prepared biosensor exhibited good performance for cholesterol detection including good reproducibility, selectivity, and acceptable linear range from 1 μM to 1mM with a relative low detection limit of 0.33 μM (S/N=3). The biosensor was successfully applied to the determination of cholesterol in biological fluid and food sample, which would open a new possibility for development of solid-state ECL biosensors with NIR emitters.

  4. Effect of Ionic Conductivity on Response Speed of SrTiO3-Based All-Solid-State Electric-Double-Layer Transistor.

    PubMed

    Tsuchiya, Takashi; Ochi, Masanori; Higuchi, Tohru; Terabe, Kazuya; Aono, Masakazu

    2015-06-10

    An all-solid-state electric-double-layer transistor (EDLT) with a Y-stabilized ZrO₂ (YSZ) proton conductor/SrTiO₃ (STO) single crystal has been fabricated to investigate ionic conductivity effect on the response speed, which should be a key parameter for development of next-generation EDLTs. The drain current exhibited a 4-order-of-magnitude increment by electrostatic carrier doping at the YSZ/STO interface due to ion migration, and the behavior strongly depended on the operation temperature. An Arrhenius-type plot of the ionic conductivity (σ(i)) in the YSZ and t(c)⁻¹, which is a current-rise time needed for charge accumulation at the YSZ/STO interface, shows a synchronized variation, indicating a proportional relationship between the two parameters. Analysis of the σ(i)-t(c) diagram shows that, in contrast to conventional EDLTs, the response speed should reach picosecond order at room temperature by using extreme miniaturization and superionic conductors. Furthermore, the diagram indicates that plenty of solid electrolytes, which have not been used due to the lack of criteria for evaluation, can be a candidate for all-solid-state EDLTs exceeding the carrier density of conventional EDLTs, even though the response speed becomes comparably lower than those of FETs.

  5. Molecular engineering and theoretical investigation of organic sensitizers based on indoline dyes for quasi-solid state dye-sensitized solar cells.

    PubMed

    Liu, Bo; Wu, Wenjun; Li, Xiaoyan; Li, Lei; Guo, Shaofu; Wei, Xiaoru; Zhu, Weihong; Liu, Qingbin

    2011-05-21

    Novel indoline dyes, I-1-I-4, with structural modification of π-linker group in the D-π-A system have been synthesized and fully characterized. Molecular engineering through expanding the π-linker segment has been performed. The ground and excited state properties of the dyes have been studied by means of density functional theory (DFT) and time-dependent DFT (TD-DFT). Larger π-conjugation linkers would lead to broader spectral response and higher molar extinction coefficient but would decrease dye-loaded amount on TiO(2) electrode and LUMO level. While applied in DSSCs, the variation trends in short-circuit current density (J(sc)) and open-circuit voltage (V(oc)) were observed to be opposite to each other. The internal reasons were studied by experimental data and theoretical calculations in detail. Notably, I-2 showed comparable photocurrent values with liquid and quasi-solid state electrolyte, which suggested through molecular engineering of organic sensitizers the dilemma between optical absorption and charge diffusion lengths can be balanced well. Through studies of photophysical, electrochemical, and theoretical calculation results, the internal relations between chemical structure and efficiency have been revealed, which serve to enhance our knowledge regarding design and optimization of new sensitizers for quasi-solid state DSSCs, providing a powerful strategy for prediction of photovoltaic performances.

  6. Dual Cation- and Anion-Based Redox Process in Lithium Titanium Oxysulfide Thin Film Cathodes for All-Solid-State Lithium-Ion Batteries.

    PubMed

    Dubois, Vincent; Pecquenard, Brigitte; Soulé, Samantha; Martinez, Hervé; Le Cras, Frédéric

    2017-01-25

    A dual redox process involving Ti(3+)/Ti(4+) cation species and S(2-)/(S2)(2-) anion species is highlighted in oxygenated lithium titanium sulfide thin film electrodes during lithium (de)insertion, leading to a high specific capacity. These cathodes for all-solid-state lithium-ion microbatteries are synthesized by sputtering of LiTiS2 targets prepared by different means. The limited oxygenation of the films that is induced during the sputtering process favors the occurrence of the S(2-)/(S2)(2-) redox process at the expense of the Ti(3+)/Ti(4+) one during the battery operation, and influences its voltage profile. Finally, a perfect reversibility of both electrochemical processes is observed, whatever the initial film composition. All-solid-state lithium microbatteries using these amorphous lithiated titanium disulfide thin films and operated between 1.5 and 3.0 V/Li(+)/Li deliver a greater capacity (210-270 mAh g(-1)) than LiCoO2, with a perfect capacity retention (-0.0015% cycle(-1)).

  7. Solid state radiative heat pump

    DOEpatents

    Berdahl, Paul H.

    1986-01-01

    A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

  8. Solid state radiative heat pump

    DOEpatents

    Berdahl, P.H.

    1984-09-28

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  9. Photoelectrochemical lab-on-paper device based on molecularly imprinted polymer and porous Au-paper electrode.

    PubMed

    Wang, Panpan; Sun, Guoqiang; Ge, Lei; Ge, Shenguang; Yu, Jinghua; Yan, Mei

    2013-09-07

    In this work, microfluidic paper-based analytical device (μ-PAD) was applied in a photoelectrochemical (PEC) method and thus a truly low-cost, simple, portable, and disposable microfluidic PEC origami device (μ-PECOD) was demonstrated. The molecular imprinting technique was introduced into microfluidic paper-based analytical devices (μ-PADs) through electropolymerization of molecular imprinted polyaniline (MPANI) in a novel Au nanoparticle (AuNP)-modified paper working electrode (Au-PWE). This is fabricated through the growth of an AuNP layer on the surfaces of cellulose fibers in the PWE. Under visible light irradiation, MPANI can generate the photoelectric transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO), delivering the excited electrons to the AuNPs, and then to the carbon working electrode. Simultaneously, it is believed that a positively charged hole of MPANI that took part in the oxidation process was consumed by ascorbic acid (AA) to promote the amplifying photocurrent response. On the basis of this novel MPANI-Au-PWE and the principle of origami, a microfluidic molecular imprinted polymer (MIP)-based photoelectrochemical analytical origami device (μ-MPECOD), comprised of an auxiliary tab and a sample tab, is developed for the detection of heptachlor in the linear range from 0.03 nmol L(-1) to 10.0 nmol L(-1) with a low detection limit of 8.0 pmol L(-1). The selectivity, reproducibility, and stability of this μ-MPECOD are investigated. This μ-MPECOD would provide a new platform for high-throughput, sensitive, specific, and multiplex assay in public health, environmental monitoring, and the developing world.

  10. Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical (PEC) solar cells

    NASA Astrophysics Data System (ADS)

    Harmon, Michael; Gamba, Irene M.; Ren, Kui

    2016-12-01

    This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.

  11. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-05-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm-3 at 0.8 A cm-3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm-3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors.

  12. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    PubMed Central

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-01-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm−3 at 0.8 A cm−3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm−3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors. PMID:27225484

  13. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  14. Electrochemical photovoltaic and photoelectrochemical storage cells based on II-VI polycrystalline thin film materials

    SciTech Connect

    Wallace, W.L.

    1983-06-01

    Research on electrochemical photovoltaic cells incorporating thin film CdSe and CdSe /SUB x/ Te /SUB 1-x/ photoanodes has progressed to the point where efficiencies of up to 7% can be achieved on small area electrodes using a polysulfide electrolyte. Higher efficiencies can be obtained in alternate electrolytes in significantly less stable systems. The major limitations on cell efficiency are associated with the open circuit voltage and fill factor. At present, the most promising photoelectrochemical storage system is an in situ three electrode cell which consists of an n-CdSe /SUB x/ Te /SUB 1-x/ photoanode and CoS counterelectrode in a sulfide/polysulfide electrolyte and a Sn/SnS storage electrode isolated in an aqueous sulfide electrolyte.

  15. Enhanced performance of quasi-solid-state dye-sensitized solar cells by branching the linear substituent in sensitizers based on thieno[3,4-c]pyrrole-4,6-dione.

    PubMed

    Feng, Quanyou; Zhang, Weiyi; Zhou, Gang; Wang, Zhong-Sheng

    2013-01-01

    Thieno[3,4-c]pyrrole-4,6-dione-based organic sensitizers with triphenylamine (FNE38 and FNE40) or julolidine (FNE39 and FNE41) as electron-donating unit have been designed and synthesized. A linear hexyl group or a branched alkyl chain, the 2-ethylhexyl group, is incorporated into molecular skeleton of the dyes to minimize intermolecular interactions. The absorption, electrochemical, and photovoltaic properties for these sensitizers were then systematically investigated. It is found that the sensitizers have similar photophysical and electrochemical properties, such as absorption spectra and energy levels, owing to their close chemical structures. However, the quasi-solid-state dye-sensitized solar cells (DSSCs) based on the two types of sensitizers exhibit very different performance parameters. Upon the incorporation of the short ethyl group on the hexyl moiety, enhancements in both open-circuit voltage (V(oc)) and short-circuit current (J(sc)) are achieved for the quasi-solid-state DSSCs. The V(oc) gains originating from the suppression of charge recombination were quantitatively investigated and are in good agreement with the experimentally observed V(oc) enhancements. Therefore, an enhanced solar energy conversion efficiency (η) of 6.16%, constituting an increase by 23%, is achieved under standard AM 1.5 sunlight without the use of coadsorbant agents for the quasi-solid-state DSSC based on sensitizer FNE40, which bears the branched alkyl group, in comparison with that based on FNE38 carrying the linear alkyl group. This work presents a design concept for considering the crucial importance of the branched alkyl substituent in novel metal-free organic sensitizers.

  16. Development and evaluation of a new radiographic and fluoroscopic imager based on electron-multiplying CCDs: The solid state x-ray image intensifier

    NASA Astrophysics Data System (ADS)

    Kuhls-Gilcrist, Andrew Thomas

    A new dual detector system was developed which utilizes a low resolution, large field-of-view x-ray image intensifier (II) and a high resolution, region-of-interest microangiographic (MA) detector on the same c-arm gantry. With this new MA-II system, the larger field-of-view (FOV) II can be operated when the demands of the task are not as high, and a larger imaging area is desired. However, when a higher-resolution image with greater image quality is desired at a targeted region-of-interest (ROI), the MA can be deployed to take on these greater demands. To quantitatively and qualitatively assess the imaging performance of each detector under realistic conditions, angiographic images of simulated vessels and rabbit neurovasculature were acquired with both detectors under nearly identical conditions. With the MA detector deployed, vessels as small as 95 mum were visible, whereas the II could not detect vessels smaller than 235 mum. The ROI MA mode was also shown to provide sharper images with higher contrast-to-noise ratios and was four times as likely to successfully detect overlapping vessels as compared to the II. More accurate three-dimensional center lines of vasculature using multi-view reconstruction techniques were also obtained with the MA. The solid state x-ray image intensifier (SSXII) was developed to provide similar high-resolution imaging capabilities as the MA and a built in adjustable gain to provide high-sensitivity imaging capabilities for operation at all exposures used in medical x-ray imaging procedures. The imaging components used in construction of the prototype SSXII were selected based on a theoretical performance evaluation, using a Fourier-based linear-systems model analysis. The performance of the prototype SSXII was then extensively evaluated. Images of various objects and image comparisons with current state-of-the-art detectors qualitatively demonstrated that the SSXII is capable of providing substantial improvements. A quantitative

  17. Solid State Reactor Final Report

    SciTech Connect

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas of research

  18. Solid State Technology Meets Collider Challenge

    SciTech Connect

    Hazi, A

    2005-09-20

    Probing the frontiers of particle physics and delving into the mysteries of the universe and its beginnings require machines that can accelerate beams of fundamental particles to very high energies and then collide those beams together, producing a multitude of exotic subatomic particles. The proposed Next Linear Collider (NLC), being developed by Stanford Linear Accelerator Center (SLAC), Lawrence Livermore and Lawrence Berkeley national laboratories, and Fermi National Accelerator Laboratory (Fermilab), is such a machine. The NLC is expected to produce a variety of subatomic particles by smashing together electrons and their antimatter counterparts (positrons) at nearly the speed of light with energies in the teraelectronvolt (TeV) range. Plans are that the NLC will initially operate at 0.5 TeV and ultimately be scaled up to 1.5 TeV. (See S&TR, April 2000, pp. 12-16.) Work at the facility will complement the research to be conducted at another high-energy particle accelerator, the 14-TeV Large Hadron Collider at the European Laboratory for Particle Physics (commonly known by the acronym CERN from its former name) in Geneva, which is scheduled for completion in 2007. Achieving beam energy levels in the TeV range requires modulator systems that can convert ac line power--the same type of power one gets from the wall plug--into dc pulses. Ultimately, these pulses are transformed into radiofrequency (rf) pulses that ''kick'' the particles up to the required energy levels. Livermore scientists and engineers have designed a solid-state modulator to replace oldstyle modulators based on vacuum-tube technology. These new modulators promise to be far more efficient, reliable, and serviceable than the previous components. Livermore's Laboratory Directed Research and Development Program supported the basic research and development on the solid-state modulator technology, and SLAC supported the systems integration.

  19. Wideband Waveform Design principles for Solid-state Weather Radars

    SciTech Connect

    Bharadwaj, Nitin; Chandrasekar, V.

    2012-01-01

    The use of solid-state transmitter is becoming a key part of the strategy to realize a network of low cost electronically steered radars. However, solid-state transmitters have low peak powers and this necessitates the use of pulse compression waveforms. In this paper a frequency diversity wideband waveforms design is proposed to mitigate low sensitivity of solid-state transmitters. In addition, the waveforms mitigate the range eclipsing problem associated with long pulse compression. An analysis of the performance of pulse compression using mismatched compression filters designed to minimize side lobe levels is presented. The impact of range side lobe level on the retrieval of Doppler moments are presented. Realistic simulations are performed based on CSU-CHILL radar data and Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) Integrated Project I (IP1) radar data.

  20. Tunable solid-state fluorescent materials for supramolecular encryption

    PubMed Central

    Hou, Xisen; Ke, Chenfeng; Bruns, Carson J.; McGonigal, Paul R.; Pettman, Roger B.; Stoddart, J. Fraser

    2015-01-01

    Tunable solid-state fluorescent materials are ideal for applications in security printing technologies. A document possesses a high level of security if its encrypted information can be authenticated without being decoded, while also being resistant to counterfeiting. Herein, we describe a heterorotaxane with tunable solid-state fluorescent emissions enabled through reversible manipulation of its aggregation by supramolecular encapsulation. The dynamic nature of this fluorescent material is based on a complex set of equilibria, whose fluorescence output depends non-linearly on the chemical inputs and the composition of the paper. By applying this system in fluorescent security inks, the information encoded in polychromic images can be protected in such a way that it is close to impossible to reverse engineer, as well as being easy to verify. This system constitutes a unique application of responsive complex equilibria in the form of a cryptographic algorithm that protects valuable information printed using tunable solid-state fluorescent materials. PMID:25901677

  1. Solid-state ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Schwartz, S.

    The ring laser gyroscope is a rotation sensor used in most kinds of inertial navigation units. It usually consists in a ring cavity filled with a mixture of helium and neon, together with high-voltage pumping electrodes. The use of a gaseous gain medium, while resulting naturally in a stable bidirectional regime enabling rotation sensing, is however the main industrially limiting factor for the ring laser gyroscopes in terms of cost, reliability and lifetime. We study in this book the possibility of substituting for the gaseous gain medium a solid-state medium (diode-pumped Nd-YAG). For this, a theoretical and experimental overview of the lasing regimes of the solid-state ring laser is reported. We show that the bidirectional emission can be obtained thanks to a feedback loop acting on the states of polarization and inducing differential losses proportional to the difference of intensity between the counterpropagating modes. This leads to the achievement of a solid-state ring laser gyroscope, whose frequency response is modified by mode coupling effects. Several configurations, either mechanically or optically based, are then successively studied, with a view to improving the quality of this frequency response. In particular, vibration of the gain crystal along the longitudinal axis appears to be a very promising technique for reaching high inertial performances with a solid-state ring laser gyroscope. Gyrolaser à état solide. Le gyrolaser est un capteur de rotation utilisé dans la plupart des centrales de navigation inertielle. Dans sa forme usuelle, il est constitué d'une cavité laser en anneau remplie d'un mélange d'hélium et de néon pompé par des électrodes à haute tension. L'utilisation d'un milieu amplificateur gazeux, si elle permet de garantir naturellement le fonctionnement bidirectionnel stable nécessaire à la mesure des rotations, constitue en revanche la principale limitation industrielle des gyrolasers actuels en termes de coût, fiabilit

  2. A solid-state heat pump using electrocaloric ceramic elements

    NASA Astrophysics Data System (ADS)

    Hilt, Matthew G.

    The thermoacoustic cycle is a robust thermodynamic cycle that can be generalized to describe and develop an all-solid-state heat pump using generic caloric elements. Ferroelectric barium strontium titanate (BST) and relaxor lead magnesium niobate - lead titanate (PMN-PT) are two candidate materials for the caloric elements using the electrocaloric effect. I developed a procedure to repeatably produce high quality BST and PMN-PT ceramics so that the electrocaloric and dielectric properties could be accurately measured. The measured electrocaloric properties serve as the baseline numbers for calculating the performance of a proposed all-solid-state cooler based on thermoacoustic principles.

  3. Solid State Li-ion Batteries

    DTIC Science & Technology

    2013-10-23

    demonstrated that the vapor deposition of thin lithium films onto Li2S-P2S5 glass-ceramic solid -state electrolyte (SSE) pellets can improve...and S.-H. Lee, “Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all- solid -state lithium ...Kitaura, A. Hayashi, T. Ohtomo, S. Hama and M. Tatsumisago, “Fabrication of electrode– electrolyte interfaces in all- solid -state rechargeable lithium

  4. Influence of Nitrogen Doping on Device Operation for TiO₂-Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices.

    PubMed

    Wang, Jin; Tapio, Kosti; Habert, Aurélie; Sorgues, Sebastien; Colbeau-Justin, Christophe; Ratier, Bernard; Scarisoreanu, Monica; Toppari, Jussi; Herlin-Boime, Nathalie; Bouclé, Johann

    2016-02-23

    Solid-state dye-sensitized solar cells (ssDSSC) constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, organic chromophores, and hole transporters. Among the various strategies used to push the performance ahead, doping of the nanocrystalline titanium dioxide (TiO₂) electrode is regularly proposed to extend the photo-activity of the materials into the visible range. However, although various beneficial effects for device performance have been observed in the literature, they remain strongly dependent on the method used for the production of the metal oxide, and the influence of nitrogen atoms on charge kinetics remains unclear. To shed light on this open question, we synthesized a set of N-doped TiO₂ nanopowders with various nitrogen contents, and exploited them for the fabrication of ssDSSC. Particularly, we carefully analyzed the localization of the dopants using X-ray photo-electron spectroscopy (XPS) and monitored their influence on the photo-induced charge kinetics probed both at the material and device levels. We demonstrate a strong correlation between the kinetics of photo-induced charge carriers probed both at the level of the nanopowders and at the level of working solar cells, illustrating a direct transposition of the photo-physic properties from materials to devices.

  5. Disposable all-solid-state pH and glucose sensors based on conductive polymer covered hierarchical AuZn oxide.

    PubMed

    Kim, Dong-Min; Cho, Seong Je; Cho, Chul-Ho; Kim, Kwang Bok; Kim, Min-Yeong; Shim, Yoon-Bo

    2016-05-15

    Poly(terthiophene benzoic acid) (pTBA) layered-AuZn alloy oxide (AuZnOx) deposited on the screen printed carbon electrode (pTBA/AuZnOx/SPCE) was prepared to create a disposable all-solid-state pH sensor at first. Further, FAD-glucose oxidase (GOx) was immobilized onto the pTBA/AuZnOx/SPCE to fabricate a glucose sensor. The characterizations of the sensor probe reveal that AuZnOx forms a homogeneous hierarchical structure, and that the polymerized pTBA layer on the alloy oxide surface captures GOx covalently. The benzoic acid group of pTBA coated on the probe layer synergetically improved the pH response of the alloy oxide and provide chemical binding sites to enzyme, which resulted in a Nernstian behavior (59.2 ± 0.5 mV/pH) in the pH range of 2-13. The experimental parameters affecting the glucose analysis were studied in terms of pH, temperature, humidity, and interferences. The sensor exhibited a fast response time <1s and a dynamic range between 30 and 500 mg/dL glucose with a detection limit of 17.23 ± 0.32 mg/dL. The reliabilities of the disposable pH and glucose sensors were examined for biological samples.

  6. Alignment of druglike compounds in lipid bilayers analyzed by solid-state (19)F-NMR and molecular dynamics, based on dipolar couplings of adjacent CF3 groups.

    PubMed

    Dürr, Ulrich H N; Afonin, Sergii; Hoff, Barbara; de Luca, Giuseppina; Emsley, James W; Ulrich, Anne S

    2012-04-26

    Solid-state (19)F-NMR spectroscopy is frequently used to analyze the structure and dynamics of lipophilic drugs and peptides embedded in biomembranes. The homonuclear dipolar couplings of trifluoromethyl (CF3) labels can provide valuable parameters such as orientational constraints and/or distances. To characterize the complex dipolar patterns of multiple (19)F spin interactions, three different model compounds carrying two CF3 groups in meta-position on a phenyl ring were incorporated in macroscopically aligned DMPC bilayers. The dipolar patterns obtained with the CPMG (Carr-Purcell-Meiboom-Gill) multipulse sequence were analyzed to yield simultaneously the intra-CF3 and intergroup dipolar coupling values. The fluorine-fluorine distances were predicted by a density functional calculation, and the alignment of the labeled molecular segment could be determined from these distances and the dipolar coupling values. The different compounds were found to align in the lipid bilayer according to their amphiphilic properties, though with a weak anisotropic preference that is typical of solutes in liquid crystals. The residual dipolar couplings were used to calculate Saupe order parameters. For the least complex molecule, (CF3)2-BA, an orientational probability function for the solute in the lipid matrix could be derived. The overall description of how (CF3)2-BA is embedded in the bilayer was independently assessed by molecular dynamics simulations, and compared in structural and dynamical terms with the results of the NMR experiments.

  7. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches.

    PubMed

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.

  8. Synthesis and characterisation of composite based biohydroxyapatite bovine bone mandible waste (BHAp) doped with 10 wt % amorphous SiO2 from rice husk by solid state reaction

    NASA Astrophysics Data System (ADS)

    Asmi, Dwi; Sulaiman, Ahmad; Oktavia, Irene Lucky; Badaruddin, Muhammad; Zulfia, Anne

    2016-04-01

    Effect of 10 wt% amorphous SiO2 from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO2 powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations, functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO2 composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO2. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.

  9. Influence of Nitrogen Doping on Device Operation for TiO2-Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices

    PubMed Central

    Wang, Jin; Tapio, Kosti; Habert, Aurélie; Sorgues, Sebastien; Colbeau-Justin, Christophe; Ratier, Bernard; Scarisoreanu, Monica; Toppari, Jussi; Herlin-Boime, Nathalie; Bouclé, Johann

    2016-01-01

    Solid-state dye-sensitized solar cells (ssDSSC) constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, organic chromophores, and hole transporters. Among the various strategies used to push the performance ahead, doping of the nanocrystalline titanium dioxide (TiO2) electrode is regularly proposed to extend the photo-activity of the materials into the visible range. However, although various beneficial effects for device performance have been observed in the literature, they remain strongly dependent on the method used for the production of the metal oxide, and the influence of nitrogen atoms on charge kinetics remains unclear. To shed light on this open question, we synthesized a set of N-doped TiO2 nanopowders with various nitrogen contents, and exploited them for the fabrication of ssDSSC. Particularly, we carefully analyzed the localization of the dopants using X-ray photo-electron spectroscopy (XPS) and monitored their influence on the photo-induced charge kinetics probed both at the material and device levels. We demonstrate a strong correlation between the kinetics of photo-induced charge carriers probed both at the level of the nanopowders and at the level of working solar cells, illustrating a direct transposition of the photo-physic properties from materials to devices. PMID:28344292

  10. In situ gelation of Al(III)-4-tert-butylpyridine based metal-organic gel electrolyte for efficient quasi-solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Dong, Yu-Jie; Rao, Hua-Shang; Cao, Yang; Chen, Hong-Yan; Kuang, Dai-Bin; Su, Cheng-Yong

    2017-03-01

    A novel Al(III)-4-tert-butylpyridine (TBP) gel electrolyte is successfully achieved by a simple and facile in situ gelation method and applied as quasi-solid-state electrolyte for dye-sensitized solar cells (DSSCs). Through directly adding Al3+ into the TBP solution, the induced hydrolysis of Al3+ and the coordination interaction between Al3+ and TBP facilitates the formation of metal-organic gels(MOGs), in which such bi-functional TBP molecules will act as both gelators and active additives to tailor the performance of electrolytes. In addition, the gel electrolytes can largely preserve the properties of liquid electrolyte and penetrate well into the TiO2 photoanode film. Both Al3+ and TBP in the gel electrolytes affect the performance of cells. The Jsc of gel electrolytes decrease with the increasing concentration of gelators due to the enhanced strength and viscosity of the gel electrolytes, while the competition between Al3+ and TBP causes conduction band edge shift and electron recombination, leading to a variation of Voc. Herein, by tuning the molar ratio of Al3+/TBP, an impressive conversion efficiency of 8.25% is obtained, indicating a promising protocol of preparing MOGs not only to achieve high performance in solar cells, but also opens up extended scopes in other energy-related fields such as catalysis.

  11. Prospects for inertial fusion energy based on a diode-pumped solid-state laser (DPSSL) driver: Overview and development path

    SciTech Connect

    Orth, C.D.

    1997-03-01

    It is now known with certainty that the type of fusion known as inertial fusion will work with sufficient energy input, so inertial fusion is really beyond the ``scientific breakeven`` point in many respects. The most important question that remains for inertial fusion energy (IFE) is whether this type of fusion can operate with sufficiently low input energy to make it economically feasible for energy production. The constraint for low input energy demands operation near the inertial fusion ignition threshold, and such operation creates enormous challenges to discover a target design that will produce sufficient energy gain. There are also multiple issues relating to the scientific feasibility of using a laboratory-type ``driver`` to energize a target, such as those concerning bandwidth and beam smoothing for ``direct drive,`` and extension of hohlraum plasma physics to the IFE scale for ``indirect drive.`` One driver that appears as though it will be able to meet the IFE requirements, assuming modest development and sufficient target gain, is a diode-pumped solid-state laser (DPSSL). We give an overview of this type of laser system, and explain what development remains for the economic production of electricity using this type of driver for IFE.

  12. Solid state and solution dynamics of pyridine based tetraaza-macrocyclic lanthanide chelates possessing phosphonate ligating functionality (Ln-PCTMB): effect on relaxometry and optical properties.

    PubMed

    Kiefer, Garry E; Woods, Mark

    2009-12-21

    The macrocyclic ligand 3,6,9-tris(methylenebutyl phosphonic acid)-3,6,9-15-tetraazabicyclo [9.3.1]pentadeca-1(15),11,13-triene (PCTMB) was synthesized and complexes of Eu(3+), Tb(3+), and Gd(3+) studied by X-ray crystallography, luminescence, and relaxometry. In the crystal these complexes are dimeric and possess 8-coordinate Ln(3+) centers that are linked by bridging phosphonates. The rigidity introduced by the pyridyl nucleus forces the EuPCTMB and TbPCTMB to adopt a twisted snub disphenoid (TSD) coordination geometry. Examination of the (5)D(0) --> (7)F(0) luminescent transition of EuPCTMB in the solid state confirmed the existence of a single distinct Eu(3+) coordination environment, whereas two Eu(3+) coordination environments were observed in aqueous solution. Lifetime analysis of aqueous TbPCTMB solutions determined that q = 0.1 and q = 1.0 for the two coordination environments and Stern-Volmer quenching constants (K(SV)(tau) = 1101 M(-1), K(SV)(Phi) = 40780 M(-1)) support the presence of a complicated monomer/dimer equilibrium. Relaxivity studies of GdPCTMB in H(2)O/CH(3)OH exhibited a concentration dependency (0.02 mM-10.00 mM) ranging from r(1) = 7.0 mM(-1) s(-1) to 4.0 mM(-1) s(-1) consistent with the trend observed by luminescence.

  13. Solid state laser technology - A NASA perspective

    NASA Technical Reports Server (NTRS)

    Allario, F.

    1985-01-01

    NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.

  14. Standards Development for Solid-State Lighting

    SciTech Connect

    2011-12-16

    To accelerate the development and implementation of needed standards for solid-state lighting products, DOE works closely with a network of standards-setting organizations and offers technical assistance and support

  15. Solid-state light sources getting smart.

    PubMed

    Schubert, E Fred; Kim, Jong Kyu

    2005-05-27

    More than a century after the introduction of incandescent lighting and half a century after the introduction of fluorescent lighting, solid-state light sources are revolutionizing an increasing number of applications. Whereas the efficiency of conventional incandescent and fluorescent lights is limited by fundamental factors that cannot be overcome, the efficiency of solid-state sources is limited only by human creativity and imagination. The high efficiency of solid-state sources already provides energy savings and environmental benefits in a number of applications. However, solid-state sources also offer controllability of their spectral power distribution, spatial distribution, color temperature, temporal modulation, and polarization properties. Such "smart" light sources can adjust to specific environments and requirements, a property that could result in tremendous benefits in lighting, automobiles, transportation, communication, imaging, agriculture, and medicine.

  16. N-doped TiO2 based visible light activated label-free photoelectrochemical biosensor for detection of Hg(2+) through quenching of photogenerated electrons.

    PubMed

    Han, Qianqian; Wang, Kewei; Xu, Lijun; Yan, Xiang; Zhang, Kunchi; Chen, Xing; Wang, Qinglin; Zhang, Lan; Pei, Renjun

    2015-06-21

    A novel photoelectrochemical (PEC) biosensor was fabricated based on N-doped TiO2 for the detection of Hg(2+) through the quenching of photogenerated electrons. The N-doped TiO2 was synthesized by a sol-gel method with urea and tetrabutyl titanate as the N and Ti sources. Compared with the undoped TiO2, the N-doped TiO2 showed an enhanced photocurrent response under visible light (λ > 420 nm). The sensing surface was functionalized with 5'-amino-modified T-rich oligonucleotides. The photoelectrochemical biosensor bound Hg(2+) on the surface by a highly specific T-Hg(2+)-T recognition. Hg(2+) on the surface of the N-doped TiO2 film withdrew the photogenerated electrons and decreased the recorded current signal. The dynamic linear range for Hg(2+) has been determined to be as low as 2-6 μM.

  17. A highly selective photoelectrochemical biosensor for uric acid based on core-shell Fe3O4@C nanoparticle and molecularly imprinted TiO2.

    PubMed

    Zhang, Chunjing; Si, Shihui; Yang, Zhengpeng

    2015-03-15

    Combining the surface modification and molecular imprinting technique, a novel photoelectrochemical sensing platform with excellent photochemical catalysis and molecular recognition capabilities was established for the detection of uric acid based on the magnetic immobilization of Fe3O4@C nanoparticles onto magnetic glassy carbon electrode (MGCE) and modification of molecularly imprinted TiO2 film on Fe3O4@C. The developed biosensor was highly sensitive to uric acid in solutions, with a linear range from 0.3 to 34µM and a limit of detection of 0.02μM. Furthermore, the biosensor exhibited outstanding selectivity while used in coexisting systems containing various interferents with high concentration. The practical application of the biosensor was also realized for the selective detection of uric acid in spiked samples. The study made a successful attempt in the development of highly selective and sensitive photoelectrochemical biosensor for urine monitoring.

  18. Performance predictions for solar-chemical converters based on photoelectrochemical I-V curves

    SciTech Connect

    Luttmer, J.D.; Trachtenberg, I.

    1985-06-01

    Texas Instruments' solar energy system contains a solar-chemical converter (SCC) which converts solar energy into chemical energy via the electrolysis of hydrobromic acid (HBr) into hydrogen (H/sub 2/) and bromine (Br/sub 2/). Previous predictions of SCC performance have employed electrical dry-probe data and a computer simulation model to predict the H/sub 2/ generation rates. The method of prediction described here makes use of the photoelectrochemical Icurves to determine the ''wet'' probe parameters of V /SUB oc/ J /SUB sc/ FF, and efficiency for anodes and cathodes. The advantages of this technique over the dry-probe/computer simulation method are discussed. A comparison of predicted and measured H/sub 2/ generation rates is presented. Solar to chemical efficiencies of 8.6% have been both predicted and measured for the electrolysis of 48% HBr to hydrogen and bromine by a full anode/cathode array. Individual cathode solar to hydrogen efficiencies of 9.5% have been obtained.

  19. Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting.

    PubMed

    Zhou, Min; Bao, Jian; Xu, Yang; Zhang, Jiajia; Xie, Junfeng; Guan, Meili; Wang, Chengliang; Wen, Liaoyong; Lei, Yong; Xie, Yi

    2014-07-22

    BiVO4 has been regarded as a promising material for photoelectrochemical water splitting, but it suffers from a major challenge on charge collection and utilization. In order to meet this challenge, we design a nanoengineered three-dimensional (3D) ordered macro-mesoporous architecture (a kind of inverse opal) of Mo:BiVO4 through a controllable colloidal crystal template method with the help of a sandwich solution infiltration method and adjustable post-heating time. Within expectation, a superior photocurrent density is achieved in return for this design. This enhancement originates primarily from effective charge collection and utilization according to the analysis of electrochemical impedance spectroscopy and so on. All the results highlight the great significance of the 3D ordered macro-mesoporous architecture as a promising photoelectrode model for the application in solar conversion. The cooperating amplification effects of nanoengineering from composition regulation and morphology innovation are helpful for creating more purpose-designed photoelectrodes with highly efficient performance.

  20. Self-Powered Photoelectrochemical Biosensor Based on CdS/RGO/ZnO Nanowire Array Heterostructure.

    PubMed

    Zhao, Kun; Yan, Xiaoqin; Gu, Yousong; Kang, Zhuo; Bai, Zhiming; Cao, Shiyao; Liu, Yichong; Zhang, Xiaohui; Zhang, Yue

    2016-01-13

    A CdS/reduced graphene oxide (RGO)/ZnO nanowire array (NWAs) heterostructure is designed, which exhibits enhanced photoelectrochemical (PEC) activity compared to pure ZnO, RGO/ZnO, and CdS/ZnO. The enhancement can be attributed to the synergistic effect of the high electron mobility of ordered 1D ZnO NWAs, extended visible-light absorption of CdS nanocrystals, and the formed type II band alignment between them. Moreover, the incorporation of RGO further promotes the charge carrier separation and transfer process due to its excellent charge collection and shuttling characteristics. Subsequently, the CdS/RGO/ZnO heterostructure is successfully utilized for the PEC bioanalysis of glutathione at 0 V (vs Ag/AgCl). The self-powered device demonstrates satisfactory sensing performance with rapid response, a wide detection range from 0.05 mm to 1 mm, an acceptable detection limit of 10 μm, as well as certain selectivity, reproducibility, and stability. Therefore, the CdS/RGO/ZnO heterostructure has opened up a promising channel for the development of PEC biosensors.

  1. Metal-based anode for high performance bioelectrochemical systems through photo-electrochemical interaction

    NASA Astrophysics Data System (ADS)

    Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Long, Yuyang; Li, Na; Zhou, Yuyang; Ying, Xianbin; Gu, Yuan; Wang, Yanfeng

    2016-08-01

    This paper introduces a novel composite anode that uses light to enhance current generation and accelerate biofilm formation in bioelectrochemical systems. The composite anode is composed of 316L stainless steel substrate and a nanostructured α-Fe2O3 photocatalyst (PSS). The electrode properties, current generation, and biofilm properties of the anode are investigated. In terms of photocurrent, the optimal deposition and heat-treatment times are found to be 30 min and 2 min, respectively, which result in a maximum photocurrent of 0.6 A m-2. The start-up time of the PSS is 1.2 days and the maximum current density is 2.8 A m-2, twice and 25 times that of unmodified anode, respectively. The current density of the PSS remains stable during 20 days of illumination. Confocal laser scanning microscope images show that the PSS could benefit biofilm formation, while electrochemical impedance spectroscopy indicates that the PSS reduce the charge-transfer resistance of the anode. Our findings show that photo-electrochemical interaction is a promising way to enhance the biocompatibility of metal anodes for bioelectrochemical systems.

  2. Grating enhanced solid-state laser amplifiers

    DOEpatents

    Erlandson, Alvin C.; Britten, Jerald A.

    2010-11-09

    A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. Such an invention, as disclosed herein, uses diffraction gratings to increase gain, stored energy density, and pumping efficiency of solid-state laser gain media, such as, but not limited to rods, disks and slabs. By coupling predetermined gratings to solid-state gain media, such as crystal or ceramic laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

  3. Realistic Theory of Solid-State Qubits

    DTIC Science & Technology

    2006-03-20

    limited by decoherence due to the many extra degrees of freedom of a solid state system. We investigate a system of two solid state qubits that are...of systems with finite degrees of freedom whose dynamics are Lie-algebraically closed. vi) Transfer of knowledge to quantum dot charge qubis We studied...the stationary current depending on the internal degrees of freedom . In particular, it turns out that at fixed transport voltage, the current through

  4. Quasi-solid-state dye-sensitized solar cells based on TiO2/NiO core-shell nanocomposites.

    PubMed

    Mekprasart, Wanichaya; Noonuruk, Russameeruk; Jarernboon, Wirat; Pecharapa, Wisanu

    2011-07-01

    The core-shell nanocomposites of titanium dioxide (TiO2) and nickel oxide (NiO) used as modified photoelectrode materials in a quasi-solid-state dye-sensitized solar cell (quasi-DSSC) were synthesized using TiO2 P-25 and a nickel acetate precursor, via ball milling. The as-obtained intermediate products were annealed at 350, 450, and 550 degrees C. The structural properties of the NiO/TiO2 nanocomposites were well characterized via X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The results imply that NiO-shell-coated TiO2 nanoparticles can be obtained with the assistance of sufficient thermal energy in the system. The crystallite size of the composite increased as the annealing temperature increased. Among all the prepared conditions, the composite with 0.1 wt% NiO exhibited the best performance, with an optimized solar-energy conversion efficiency of 2.29% and with a short-circuit current density of 7.21 mA/cm2. The significant enhancement of the device's current density may be associated with the charge recombination suppression by the NiO shell, which acted as a potential barrier in the composite. The decrease in the recombination of the photo-injected electrons, and the increase in the number of electrons tunneling through the NiO layer at the interface, may have resulted from the presence of a NiO layer on the TiO2 nanoparticles.

  5. Photoelectrochemical enzymatic biosensors.

    PubMed

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist.

  6. Probing the structural flexibility of MOFs by constructing metal oxide@MOF-based heterostructures for size-selective photoelectrochemical response

    NASA Astrophysics Data System (ADS)

    Zhan, Wenwen; He, Yue; Guo, Jiangbin; Chen, Luning; Kong, Xiangjian; Zhao, Haixia; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun

    2016-07-01

    It is becoming a challenge to achieve simpler characterization and wider application of flexible metal organic frameworks (MOFs) exhibiting the gate-opening or breathing behavior. Herein, we designed an intelligent MOF-based system where the gate-opening or breathing behavior of MOFs can be facially visualized in solution. Two types of metal oxide@MOF core-shell heterostructures, ZnO@ZIF-7 and ZnO@ZIF-71, were prepared using ZnO nanorods as self-sacrificial templates. The structural flexibility of both the MOFs can be easily judged from the distinct molecular-size-related formation modes and photoelectrochemical performances between the two ZnO@ZIF heterostructures. Moreover, the rotational dynamics of the flexible parts of ZIF-7 were studied by analyzing the intrinsic physical properties, such as dielectric constants, of the structure. The present work reminds us to pay particular attention to the influences of the structural flexibility of MOFs on the structure and properties of MOF-involved heterostructures in future studies.It is becoming a challenge to achieve simpler characterization and wider application of flexible metal organic frameworks (MOFs) exhibiting the gate-opening or breathing behavior. Herein, we designed an intelligent MOF-based system where the gate-opening or breathing behavior of MOFs can be facially visualized in solution. Two types of metal oxide@MOF core-shell heterostructures, ZnO@ZIF-7 and ZnO@ZIF-71, were prepared using ZnO nanorods as self-sacrificial templates. The structural flexibility of both the MOFs can be easily judged from the distinct molecular-size-related formation modes and photoelectrochemical performances between the two ZnO@ZIF heterostructures. Moreover, the rotational dynamics of the flexible parts of ZIF-7 were studied by analyzing the intrinsic physical properties, such as dielectric constants, of the structure. The present work reminds us to pay particular attention to the influences of the structural flexibility of

  7. Biomolecule-free, selective detection of o-diphenol and its derivatives with WS2/TiO2-based photoelectrochemical platform.

    PubMed

    Ma, Weiguang; Wang, Lingnan; Zhang, Nan; Han, Dongxue; Dong, Xiandui; Niu, Li

    2015-01-01

    Herein, a novel photoelectrochemical platform with WS2/TiO2 composites as optoelectronic materials was designed for selective detection of o-diphenol and its derivatives without any biomolecule auxiliary. First, catechol was chosen as a model compound for the discrimination from resorcinol and hydroquinone; then several o-diphenol derivatives such as dopamine, caffeic acid, and catechin were also detected by employing this proposed photoelectrochemical sensor. Finally, the mechanism of such a selective detection has been elaborately explored. The excellent selectivity and high sensitivity should be attributed to two aspects: (i) chelate effect of adjacent double oxygen atoms in the o-diphenol with the Ti(IV) surface site to form a five/six-atom ring structure, which is considered as the key point for distinction and selective detection. (ii) This selected WS2/TiO2 composites with proper band level between WS2 and TiO2, which could make the photogenerated electron and hole easily separated and results in great improvement of sensitivity. By employing such a photoelectrochemical platform, practical samples including commercial clinic drugs and human urine samples have been successfully performed for dopamine detection. This biomolecule-free WS2/TiO2 based photoelectrochemical platform demonstrates excellent stability, reproducibility, remarkably convenient, and cost-effective advantages, as well as low detection limit (e.g., 0.32 μmol L(-1) for dopamine). It holds great promise to be applied for detection of o-diphenol kind species in environment and food fields.

  8. Nanoparticle size and shape characterization with Solid State Nanopores

    NASA Astrophysics Data System (ADS)

    Nandivada, Santoshi; Benamara, Mourad; Li, Jiali

    2015-03-01

    Solid State Nanopores are widely used in a variety of single molecule studies including DNA and biomolecule detection based on the principle of Resistive Pulse technique. This technique is based on electrophoretically driving charged particles through 35-60 nm solid state nanopores. The translocation of these particles produces current blockage events that provide an insight to the properties of the translocation particles and the nanopore. In this work we study the current blockage events produced by ~ 30nm negatively charged PS nanoparticles through Silicon Nitride solid state nanopores. We show how the current blockage amplitudes and durations are related to the ratio of the volume of the particle to the volume of the pore, the shape of the particle, charge of the particle and the nanopore surface, salt concentration, solution pH, and applied voltage. The solid-state nanopores are fabricated by a combination of Focus Ion Beam and low energy Ion beams in silicon nitride membranes. High resolution TEM is used to measure the 3D geometry of the nanopores and a finite element analysis program (COMSOL) is used to simulate the experimental results.

  9. Facile fabrication of an aptasensor for thrombin based on graphitic carbon nitride/TiO2 with high visible-light photoelectrochemical activity.

    PubMed

    Fan, Dawei; Guo, Cuijuan; Ma, Hongmin; Zhao, Di; Li, Yina; Wu, Dan; Wei, Qin

    2016-01-15

    A novel aptasensor for thrombin with high visible-light activity was facilely fabricated based on graphitic carbon nitride/TiO2 (g-C3N4/TiO2) photoelectrochemical (PEC) composite. Crystallization of TiO2 nanoparticles (NPs) and their strong interaction with g-C3N4 sheet were confirmed by high-resolution transmission electron microscope (HR-TEM), both of which contributed to the high photocurrent intensity under visible-light irradiation. Carboxyl functionalized thrombin aptamers were first successfully bound to the g-C3N4/TiO2 modified electrode as proven by photoelectrochemical test and electrochemical impedance spectroscopy (EIS) analysis. Ascorbic acid was utilized as the electron donor for scavenging photo-generated holes and inhibiting light driven electron-hole pair recombination. The specific recognition between thrombin aptamer and thrombin led to the linear decrease of photocurrent with the increase of logarithm of thrombin concentration in the range of 5.0×10(-13)molL(-1) to 5.0×10(-9)molL(-1) with a detection limit of 1.2×10(-13)molL(-1). This proposed low-cost, convenient and sensitive aptasensor showed promising applications in biosensor and photoelectrochemical analysis.

  10. A novel multi-amplification photoelectrochemical immunoassay based on copper(II) enhanced polythiophene sensitized graphitic carbon nitride nanosheet.

    PubMed

    Li, Rongxia; Liu, Yixin; Li, Xiaojian; Zhang, Sen; Wu, Dan; Zhang, Yong; Wei, Qin; Du, Bin

    2014-12-15

    A new sandwich photoelectrochemical (PEC) sensing strategy was proposed for the first time based on the increasing photocurrent of water-soluble polythiophene sensitized g-C3N4 nanosheet (PT-Cl/g-C3N4) in the presence of copper(II) (Cu(2+)), which was doped on the surface of titanium dioxide as labels for multi-amplification. Herein, the photoactive films of PT-Cl/g-C3N4 is employed as the photoactive antibody (Ab1) immobilization matrix for the subsequent sandwich-type antibody-antigen affinity interactions. Upon the presence of antigen (Ag), greatly enhanced photocurrent could be triggered in the PEC platform by the labels of second antibody (Ab2) of Cu(2+) doped titanium dioxide (Cu(2+)-TiO2). As a result of the multi-amplification in this Cu(2+)-TiO2 enhanced PT-Cl/g-C3N4-based PEC immunoassay, it possesses excellent analytical performance. The antigen could be detected from 0.01 pg mL(-1) to 100.0 ng mL(-1) with a detection limit of 5 fg mL(-1). This work opens up g-C3N4 nanosheet applied in PEC sensing. More importantly, the strategy of specific positive effect of Cu(2+) on the photocurrent of g-C3N4 opens an alternative horizon for PEC sensing.

  11. Nano-architecture based photoelectrochemical water oxidation efficiency enhancement by CdS photoanodes

    NASA Astrophysics Data System (ADS)

    Pareek, Alka; Kim, Hyun Gyu; Paik, Pradip; Joardar, Joydip; Borse, Pramod H.

    2017-02-01

    In the present work, 2D nanostructuring has been utilized to impart an efficiency improvement to the hexagonal phase CdS films for the photoelectrochemical (PEC) cells those were deposited by spray pyrolysis technique. By controlling the aerosol droplet- size, population and impingement time during the spray pyrolysis deposition, various nano-features viz. randomly aligned nanorods, nanotubes and nanowires of CdS has been demonstrated for the first time. A growth mechanism has been proposed to predict the temporal evolution of the nanostructures. The prominent nanoscale structures show improved optical properties in the visible range of solar spectrum. The structural studies validate the morphological differences of nanostructures in terms of the texture coefficient analysis as well as 2D micro x-ray diffraction imaging. Electrochemical characterization is carried out to understand the effect of nanostructuring on the PEC performance of the CdS photoanodes in the sulphide (0.1 M Na2S  +  0.02 M Na2SO3) electrolyte at applied bias of 0.2 V (versus SCE). The evolution of morphology from randomly aligned rods to nanowire is responsible for improved photocurrent (3.5 times). CdS film morphology can be tuned to nanotubes, nano- rose buds and nanorod bunches even by doping Zn2+ ions in CdS lattice. Nano-structuring of doped CdS has shown enhanced performance of the photoanodes. The nanotubes structures yielded highest photocurrent density of 1.6 mA cm‑2. Whereas modifying the 2D-nanostructured CdS film by simple MoO3 spray coating yields the photocurrent enhancement to 2.1 mA cm‑2.

  12. Coherent manipulation of single quantum systems in the solid state

    NASA Astrophysics Data System (ADS)

    Childress, Lilian Isabel

    2007-12-01

    The controlled, coherent manipulation of quantum-mechanical systems is an important challenge in modern science and engineering, with significant applications in quantum information science. Solid-state quantum systems such as electronic spins, nuclear spins, and superconducting islands are among the most promising candidates for realization of quantum bits (qubits). However, in contrast to isolated atomic systems, these solid-state qubits couple to a complex environment which often results in rapid loss of coherence, and, in general, is difficult to understand. Additionally, the strong interactions which make solid-state quantum systems attractive can typically only occur between neighboring systems, leading to difficulties in coupling arbitrary pairs of quantum bits. This thesis presents experimental progress in understanding and controlling the complex environment of a solid-state quantum bit, and theoretical techniques for extending the distance over which certain quantum bits can interact coherently. Coherent manipulation of an individual electron spin associated with a nitrogen-vacancy center in diamond is used to gain insight into its mesoscopic environment. Furthermore, techniques for exploiting coherent interactions between the electron spin and a subset of the environment are developed and demonstrated, leading to controlled interactions with single isolated nuclear spins. The quantum register thus formed by a coupled electron and nuclear spin provides the basis for a theoretical proposal for fault-tolerant long-distance quantum communication with minimal physical resource requirements. Finally, we consider a mechanism for long-distance coupling between quantum dots based on chip-scale cavity quantum electrodynamics.

  13. Solid-state lasers for x-ray lithography

    SciTech Connect

    Manes, K.R.

    1989-12-01

    Background technical and cost information are compiled on four solid-state laser systems for x-ray lithography. If one takes a single work station on an IBM synchrotron beam-line as a standard, there is no near-term glass laser driven source to equal it. Our least cost near-term solid-state laser which can meet all the requirements is CVL pumped Ti:sapphire, but the high cost of CVL pumping makes its long-term salability questionable. The most attractive long-term option appears to be diode pumped Nd:YAG with Vortek arc-lamp pumped Nd:YAG as a low risk backup. Both of these solid-state options appear to significantly undercut synchrotron based x-ray sources in capital cost and probably also in operating costs as well as safety considerations. Once engineering development of solid-state x-ray lithographic laser systems is complete, one to a few kilowatt crystalline lasers should be producible for between $1 million and $2 million. 23 refs., 25 figs., 4 tabs.

  14. Diode pumped solid-state laser oscillators for spectroscopic applications

    NASA Technical Reports Server (NTRS)

    Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.

    1987-01-01

    The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.

  15. Promises and challenges in solid-state lighting

    NASA Astrophysics Data System (ADS)

    Schubert, Fred

    2010-03-01

    Lighting technologies based on semiconductor light-emitting diodes (LEDs) offer unprecedented promises that include three major benefits: (i) Gigantic energy savings enabled by efficient conversion of electrical energy to optical energy; (ii) Substantial positive contributions to sustainability through reduced emissions of global-warming gases, acid-rain gases, and toxic substances such as mercury; and (iii) The creation of new paradigms in lighting driven by the unique controllability of solid-state lighting sources. Due to the powerful nature of these benefits, the transition from conventional lighting sources to solid-state lighting is virtually assured. This presentation will illustrate the new world of lighting and illustrate the pervasive changes to be expected in lighting, displays, communications, and biotechnology. The presentation will also address the formidable challenges that must be addressed to continue the further advancement of solid-state lighting technology. These challenges offer opportunities for research and innovation. Specific challenges include light management, carrier transport, and optical design. We will present some innovative approaches in order to solve known technical challenges faced by solid-state lighting. These approaches include the demonstration and use of new optical thin-film materials with a continuously tunable refractive index. These approaches also include the use of polarization-matched structures that reduce the polarization fields in GaInN LEDs and the hotly debated efficiency droop, that is, the decreasing LED efficiency at high currents.

  16. A novel bismuth oxychloride-graphene hybrid nanosheets based non-enzymatic photoelectrochemical glucose sensing platform for high performances.

    PubMed

    Gopalan, A I; Muthuchamy, N; Lee, K P

    2017-03-15

    A novel non-enzymatic photoelectrochemical (PEC) glucose sensor was first constructed based on the unique two-dimensional (2D) bismuth oxychloride-graphene nanohybrid sheets (BiOCl-G NHS). We have utilized a facile hydrothermal approach for the preparation of BiOCl-G NHS. Results from cyclic voltammetric and differential pulse voltammetric measurements revealed that the BiOCl-G NHS electrode is capable of generating photocurrent for glucose when its surface is irradiated with a light source (wavelength=365nm). The photocurrents produced for the presence of glucose at the bias potential of +0.50V showed a linear dependence on glucose concentration in the range between 0.5 and 10mM and had a detection limit of 0.22mM. The PEC detection of glucose at BiOCl-G NHS was not influenced by the presence of other common interfering species. The glucose levels, as determined by the BiOCl-G NHS sensor, agreed well with those obtained by the commercial glucometers. This novel non-enzymatic PEC glucose sensor exhibited good performances, such as a wider concentration range (500µM-10mM), high sensitivity (1.878µMmM(-1)cm(-2) (500µM-2mM) and 127.2µMmM(-1)cm(-2) (2mM-10mM)), good selectivity, reproducibility (RSD=2.4%) and applicability to real sample (human serum).

  17. A label-free photoelectrochemical aptasensor based on nitrogen-doped graphene quantum dots for chloramphenicol determination.

    PubMed

    Liu, Yong; Yan, Kai; Okoth, Otieno Kevin; Zhang, Jingdong

    2015-12-15

    A photoelectrochemical (PEC) sensing platform for chloramphenicol (CAP) detection was constructed using nitrogen-doped graphene quantum dots (N-GQDs) as transducer species and label-free aptamer as biological recognition element. N-GQDs, synthesized via a facile one-step hydrothermal method, were explored to achieve highly efficient photon-to-electricity conversion under visible light irradiation. The obtained N-GQDs were characterized by transmission electron microscopy (TEM), which displayed a narrow size distribution with a mean diameter of 2.14 nm. The X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared spectroscopic (FT-IR) analysis confirmed that nitrogen was successfully doped in GQDs. The UV-visible absorption spectra indicated that nitrogen doping obviously enhanced the absorption of GQDs in visible light region. As a result, the PEC activity of GQDs was promoted by nitrogen doping. Additionally, the π-conjugated structure of N-GQDs provided an excellent platform for aptamer immobilization via π-π stacking interaction. Such an aptamer/N-GQDs based sensor showed a linear PEC response to CAP concentration in the range of 10-250 nM with a detection limit (3 S/N) of 3.1 nM. The developed PEC aptasensor exhibited high sensitivity and selectivity, good reproducibility and high stability.

  18. Visible light photoelectrochemical aptasensor for adenosine detection based on CdS/PPy/g-C3N4 nanocomposites.

    PubMed

    Liu, Yixin; Ma, Hongmin; Zhang, Yong; Pang, Xuehui; Fan, Dawei; Wu, Dan; Wei, Qin

    2016-12-15

    In this work, a label-free photoelectrochemical (PEC) aptasensor was developed for adenosine detection based on CdS/PPy/g-C3N4 nanocomposites. The CdS/g-C3N4 heterojunction effectively prevented the photogenerated charges recombination of g-C3N4 and self-photocorrosion processes of CdS, improving photo-to-current conversion efficiency. The introduced polypyrrole (PPy) nanoparticles could lead to a more effective separation of photogenerated charges, thus resulting in a further increasing of photocurrent. The CdS/PPy/g-C3N4 was firstly employed as the photoactive materials for fabrication of aptasensor, and SH-aptamer was then adsorbed on the CdS/PPy/g-C3N4 modified electrodes through S-Cd bond. With increasing of adenosine concentration, the photocurrent decreased as the formation of SH-aptamer-adenosine bioaffinity complexes. Under optimal conditions, the PEC aptasensor had a sensitive response to adenosine in a linear range of 0.3nmolL(-1) to 200nmolL(-1) with a detection limit of 0.1nmolL(-1). Besides, the as-proposed aptasensor has also been applied in human serum samples analysis. The aptasensor exhibits high sensitivity and good stability, thus opening up a new promising PEC platform for some other small molecules analysis.

  19. A competitive photoelectrochemical immunosensor based on a CdS-induced signal amplification strategy for the ultrasensitive detection of dexamethasone

    PubMed Central

    Wang, Xueping; Yan, Tao; Li, Yan; Liu, Yixin; Du, Bin; Ma, Hongmin; Wei, Qin

    2015-01-01

    A novel photoelectrochemical immunosensor based on the competitive strategy is proposed for the specific detection of dexamethasone (DXM). Graphitic carbon nitride coupled with bismuth sulfide are used as the sensing matrix for the immobilization of BSA-DXM on the electrode surface, while cadmium sulfide functionalized titanium dioxide (TiO2@CdS) is used as the photoelectric active labels of anti-DXM. Due to the perfect matching of energy levels between TiO2 and CdS, the in situ prepared composite labels show excellent photocurrent response under visible lights. The competitive binding of DXM in sample solutions and BSA-DXM on the electrode surface reduces the specific attachment of labels to the electrode, resulting in a decrease of the photocurrent intensity. Greatly enhanced sensitivity is achieved after the optimization of the detection conditions. Under the optimal detection condition, the well-designed immunosensor for DXM exhibits a low detection limit of 2 pg∙mL−1. Additionally, the proposed immunoassay system shows high specificity, good reproducibility and acceptable stability, which is also expected to become a promising platform for the detection of other small molecules. PMID:26648409

  20. Solid-state dynamics of uranyl polyoxometalates.

    PubMed

    Alam, Todd M; Liao, Zuolei; Zakharov, Lev N; Nyman, May

    2014-07-01

    Understanding fundamental uranyl polyoxometalate (POM) chemistry in solution and the solid state is the first step to defining its future role in the development of new actinide materials and separation processes that are vital to every step of the nuclear fuel cycle. Many solid-state geometries of uranyl POMs have been described, but we are only beginning to understand their chemical behavior, which thus far includes the role of templates in their self-assembly, and the dynamics of encapsulated species in solution. This study provides unprecedented detail into the exchange dynamics of the encapsulated species in the solid state through Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy. Although it was previously recognized that capsule-like molybdate and uranyl POMs exchange encapsulated species when dissolved in water, analogous exchange in the solid state has not been documented, or even considered. Here, we observe the extremely high rate of transport of Li(+) and aqua species across the uranyl shell in the solid state, a process that is affected by both temperature and pore blocking by larger species. These results highlight the untapped potential of emergent f-block element materials and vesicle-like POMs.

  1. Excellent graphitic carbon nitride nanosheets-based photoelectrochemical platform motivated by Schottky barrier and LSPR effect and its sensing application.

    PubMed

    Dai, Hong; Zhang, Shupei; Li, Yilin; Lin, Yanyu

    2015-05-21

    A visible light responsive photocatalytic hybrid with excellent photoelectrochemical activity was first fabricated via the self-assembly of Au nanorods onto poly(l-cysteine) modified graphitic carbon nitride nanosheets. Herein, layered structural graphitic carbon nitride nanosheets with a proper band gap, high stability, and nontoxicity, as a photoactive material, demonstrate a high photocatalytic activity. Furthermore, the incorporation of multifunctional Au nanorods gave the hybrid a Schottky barrier and localized surface plasmonic resonance, which considerably enhanced the separation of the photo-excited electrons and holes, resulting in increased photoelectrochemical performance. As a proof of concept, mercapto-beta-cyclodextrin as a bionic recognition device was introduced into the hybrid to selectively detect naringin on the basis of the dramatic decreasing of photocurrent. The visible-light driven photoelectrochemical sensor exhibited excellent analytical performance, including high sensitivity, good selectivity and wide linear range from 1 × 10(-4) to 1 × 10(-10) M.

  2. Electrodes for solid state devices

    NASA Technical Reports Server (NTRS)

    Bickler, D. B. (Inventor)

    1983-01-01

    The invention relates to coated metal powders and to dispersions of such powders in liquid vehicles forming screenable, sinterable pastes for use in forming electrodes on photovoltaic devices. The primary nickel or copper metal particles are provided with a carrier of lower melting sintering metals such as 1-20% by weight, of a non-oxidizing metal such as lead or tin. The powdered metal systems operate on the basis of fusing together by way of eutectic alloying. As the paste is heated during firing the organic binder is first vaporized. An eutectic of the base metal (copper) and coating (tin) forms at the intersections of the base metal grains. This eutectic dissolves the grains and as the temperature is raised above the eutectic temperature, more of the base metal is dissolved. While the temperature is held at the higher value, the much smaller amount of sintering metal disappears as the eutectic dissolves and diffuses into the base metal until the composition of the eutectic is so enriched with base metal that it no longer has the eutectic properties and it solidifies. In this high temperature solidification, the base metal grains became thoroughly alloyed together and will not separate at the eutectic temperature (a lower temperature than their solidification by diffusion).

  3. Radiation-Hardened Solid-State Drive

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J.

    2010-01-01

    A method is provided for a radiationhardened (rad-hard) solid-state drive for space mission memory applications by combining rad-hard and commercial off-the-shelf (COTS) non-volatile memories (NVMs) into a hybrid architecture. The architecture is controlled by a rad-hard ASIC (application specific integrated circuit) or a FPGA (field programmable gate array). Specific error handling and data management protocols are developed for use in a rad-hard environment. The rad-hard memories are smaller in overall memory density, but are used to control and manage radiation-induced errors in the main, and much larger density, non-rad-hard COTS memory devices. Small amounts of rad-hard memory are used as error buffers and temporary caches for radiation-induced errors in the large COTS memories. The rad-hard ASIC/FPGA implements a variety of error-handling protocols to manage these radiation-induced errors. The large COTS memory is triplicated for protection, and CRC-based counters are calculated for sub-areas in each COTS NVM array. These counters are stored in the rad-hard non-volatile memory. Through monitoring, rewriting, regeneration, triplication, and long-term storage, radiation-induced errors in the large NV memory are managed. The rad-hard ASIC/FPGA also interfaces with the external computer buses.

  4. CW-EPR Spectral Simulations: Solid State.

    PubMed

    Stoll, Stefan

    2015-01-01

    This chapter summarizes the core concepts underlying the simulation of EPR spectra from biological samples in the solid state, from a user perspective. The key choices and decisions that have to be made by a user when simulating an experimental EPR spectrum are outlined. These include: the choice of the simulation model (the network of spins and the associated spin Hamiltonian), the dynamic regime (solid, liquid, slow motion), the level of theory used in the simulation (matrix diagonalization, perturbation theory, etc.), the treatment of orientational order and disorder (powder, crystal, partial ordering), the inclusion of the effects of structural disorder (strains), the effects of other line broadening mechanisms (unresolved hyperfine couplings, relaxation), and the inclusion of experimental distortions (field modulation, power saturation, filtering). Additionally, the salient aspects of utilizing least-squares fitting algorithms to aid the analysis of experimental spectra with the help of simulations are outlined. Although drawing from the experience gained from implementing EasySpin and from interacting with EasySpin's user base, this chapter applies to any EPR simulation software.

  5. Solid state replacement of rotating mirror cameras

    NASA Astrophysics Data System (ADS)

    Frank, Alan M.; Bartolick, Joseph M.

    2007-01-01

    Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed 'In-situ Storage Image Sensor' or 'ISIS', by Prof. Goji Etoh has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

  6. Solid State Replacement of Rotating Mirror Cameras

    SciTech Connect

    Frank, A M; Bartolick, J M

    2006-08-25

    Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed ''In-situ Storage Image Sensor'' or ''ISIS'', by Prof. Goji Etoh, has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

  7. Upgrading Mine Electricians in the Use of Solid State Electrical Controls. Student Curriculum.

    ERIC Educational Resources Information Center

    West Virginia State Vocational Curriculum Lab., Cedar Lakes.

    Twenty-one competency based instructional units are included in this solid-state electrical controls curriculum which is designed to upgrade the skills of coal mine electricians who work with mining equipment that has solid-state electrical controls. Each unit contains one or more student competency sheets with necessary attachments or handouts,…

  8. Monolithic solid-state lasers for spaceflight

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  9. Driver circuit for solid state light sources

    DOEpatents

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  10. Solid state recording current meter conversion

    USGS Publications Warehouse

    Cheng, Ralph T.; Wang, Lichen

    1985-01-01

    The authors describe the conversion of an Endeco-174 current meter to a solid-state recording current meter. A removable solid-state module was designed to fit in the space originally occupied by an 8-track tape cartridge. The module contains a CPU and 128 kilobytes of nonvolatile CMOS memory. The solid-state module communicates with any terminal or computer using an RS-232C interface at 4800 baud rate. A primary consideration for conversion was to keep modifications of the current meter to a minimum. The communication protocol was designed to emulate the Endeco tape translation unit, thus the need for a translation unit was eliminated and the original data reduction programs can be used without any modification. After conversion, the data recording section of the current meter contains no moving parts; the storage capacity of the module is equivalent to that of the original tape cartridge.

  11. Solid-state current transformer

    NASA Technical Reports Server (NTRS)

    Farnsworth, D. L. (Inventor)

    1976-01-01

    A signal transformation network which is uniquely characterized to exhibit a very low input impedance while maintaining a linear transfer characteristic when driven from a voltage source and when quiescently biased in the low microampere current range is described. In its simplest form, it consists of a tightly coupled two transistor network in which a common emitter input stage is interconnected directly with an emitter follower stage to provide virtually 100 percent negative feedback to the base input of the common emitter stage. Bias to the network is supplied via the common tie point of the common emitter stage collector terminal and the emitter follower base stage terminal by a regulated constant current source, and the output of the circuit is taken from the collector of the emitter follower stage.

  12. Preliminary Analysis of a Fully Solid State Magnetocaloric Refrigeration

    SciTech Connect

    Abdelaziz, Omar

    2016-01-01

    Magnetocaloric refrigeration is an alternative refrigeration technology with significant potential energy savings compared to conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. In this paper, we propose an alternative mechanism for heat transfer between the AMR and the heat source/sink. High-conductivity moving rods/sheets (e.g. copper, brass, iron, graphite, aluminum or composite structures from these) are utilized instead of heat transfer fluid significantly enhancing the heat transfer rate hence cooling/heating capacity. A one-dimensional model is developed to study the solid state AMR. In this model, the heat exchange between the solid-solid interfaces is modeled via a contact conductance, which depends on the interface apparent pressure, material hardness, thermal conductivity, surface roughness, surface slope between the interfaces, and material filled in the gap between the interfaces. Due to the tremendous impact of the heat exchange on the AMR cycle performance, a sensitivity analysis is conducted employing a response surface method, in which the apparent pressure, effective surface roughness and grease thermal conductivity are the uncertainty factors. COP and refrigeration capacity are presented as the response in the sensitivity analysis to reveal the important factors influencing the fully solid state AMR and optimize the solid state AMR efficiency. The performances of fully solid state AMR and traditional AMR are also compared and discussed in present work. The results of this study will provide general guidelines for designing high performance solid state AMR systems.

  13. Frequency stabilization of diode-laser-pumped solid state lasers

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.

  14. Scalar operators in solid-state NMR

    SciTech Connect

    Sun, Boqin

    1991-11-01

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.

  15. Solid State Lasers from an Efficiency Perspective

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2007-01-01

    Solid state lasers have remained a vibrant area of research because several major innovations expanded their capability. Major innovations are presented with emphasis focused on the laser efficiency. A product of efficiencies approach is developed and applied to describe laser performance. Efficiency factors are presented in closed form where practical and energy transfer effects are included where needed. In turn, efficiency factors are used to estimate threshold and slope efficiency, allowing a facile estimate of performance. Spectroscopic, thermal, and mechanical data are provided for common solid state laser materials.

  16. Solid state physics of transuranics

    SciTech Connect

    Terminello, L J; Allen, P G; Shuh, D K; Terry, J

    2000-08-22

    The experimental validation of first principals calculations of plutonium and its alloys is an important part of LLNL's science-based stockpile stewardship mission. This project has addressed this issue in the following ways. We have measured the electronic structure of U, Pu, and their alloys using valence band photoemission (PES), Soft X-Ray fluorescence (SXF), and X-Ray Absorption Spectroscopy (XAS). In the long term, this will allow a direct comparison between calculated and measured density of electronic states, identifying the degree of f-electron localization in the alloys, and thus, permit selection of the best modeling code.

  17. Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics.

    PubMed

    Huang, Yingyan; Ho, Seng-Tiong

    2006-04-17

    We report a general computational model of complex material media for electrodynamics simulation using the Finite-Difference Time-Domain (FDTD) method. It is based on a multi-level multi-electron quantum system with electron dynamics governed by Pauli Exclusion Principle, state filling, and dynamical Fermi-Dirac Thermalization, enabling it to treat various solid-state, molecular, or atomic media. The formulation is valid at near or far off resonance as well as at high intensity. We show its FDTD application to a semiconductor in which the carriers' intraband and interband dynamics, energy band filling, and thermal processes were all incorporated for the first time. The FDTD model is sufficiently complex and yet computationally efficient, enabling it to simulate nanophotonic devices with complex electromagnetic structures requiring simultaneous solution of the mediumfield dynamics in space and time. Applications to direct-gap semiconductors, ultrafast optical phenomena, and multimode microdisk lasers are illustrated.

  18. High power solid state switches

    NASA Astrophysics Data System (ADS)

    Gundersen, Martin

    1991-11-01

    We have successfully produced an optically triggered thyristor based in Gallium Arsenide, developed a model for breakdown, and are developing two related devices, including a Gallium Arsenide based static inductor thyristor. We are getting at the basic limitations of Gallium Arsenide for these applications, and are developing models for the physical processes that will determine device limitations. The previously supported gas phase work - resulting in the back-lighted thyratron (BLT) - has actually resulted in a very changed view of how switching can be accomplished, and this is impacting the design of important machines. The BLT is being studied internationally: in Japan for laser fusion and laser isotope separation. ITT has built a BLT that has switched 30 kA at 60 kV in testing at NSWC Dahlgren and the device is being commercialized by another American company. Versions of the switch are now being tested for excimer laser and other applications. Basically, the switch, which arose from pulse power physics studies at USC, can switch more current faster (higher di/dt), with less housekeeping, and with other advantageous properties. There are a large number of other new applications, include kinetic energy weapons, pulsed microwave sources and R.F. accelerators.

  19. Visible-light driven photoelectrochemical immunosensor for insulin detection based on MWCNTs@SnS2@CdS nanocomposites.

    PubMed

    Liu, Yixin; Zhang, Yifeng; Wu, Dan; Fan, Dawei; Pang, Xuehui; Zhang, Yong; Ma, Hongmin; Sun, Xu; Wei, Qin

    2016-12-15

    In this work, a label-free photoelectrochemical (PEC) immunosensor was developed for ultrasensitive detection of insulin based on MWCNTs@SnS2@CdS nanocomposites. As graphene-like 2D nanomaterial, SnS2 nanosheets loaded on the conducting framework of multi-walled carbon nanotubes (MWCNTs) were adopted for the construction of immunosensor for the first time, providing a favorable substrate for in-situ growth of CdS nanocrystal that had suitable band structure matching well with SnS2. The well-matched band structure of these two metal sulfides effectively inhibited the recombination of photogenerated electron-hole pairs, thus improving the photo-to-current conversion efficiency. Besides, the introduction of MWCNTs facilitated electron transfer across the surface of electrodes, leading to a further increment of photocurrent. The as constructed label-free PEC immunosensor based on MWCNTs@SnS2@CdS nanocomposites exhibited excellent PEC performance for the detection of insulin. The concentrations of insulin could be directly detected based on the decrement of photocurrent that was brought by the increased steric hindrances due to the formation of antigen-antibody immunocomplexes. Under the optimal conditions, the PEC immunosensor had a sensitive response to insulin in a linear range of 0.1pgmL(-1) to 5ngmL(-1) with a detection limit of 0.03pgmL(-1). Meanwhile, good stability and selectivity were achieved as well. The design and fabrication of this PEC immunosensor based on MWCNTs@SnS2@CdS nanocomposites not only provided an ideal platform for the detection of insulin, but also opened up a new avenue for the development of immunosensor for some other biomarkers analysis.

  20. SOLID STATE HYDRIDE SYSTEM ENGINEERING

    SciTech Connect

    Anton, D; Mark Jones, M; Bruce Hardy, B

    2007-10-31

    A typical hydrogen refueling station was designed based on DOE targets and existing gasoline filling station operations. The purpose of this design was to determine typical heat loads, how these heat loads will be handled, and approximate equipment sizes. For the station model, two DOE targets that had the most impact on the design were vehicle driving range and refueling time. The target that hydrogen fueled vehicles should have the equivalent driving range as present automobiles, requires 5 kg hydrogen storage. Assuming refueling occurs when the tank is 80% empty yields a refueling quantity of 4 kg. The DOE target for 2010 of a refueling time of 3 minutes was used in this design. There is additional time needed for payment of the fuel, and connecting and disconnecting hoses and grounds. It was assumed that this could be accomplished in 5 minutes. Using 8 minutes for each vehicle refueling gives a maximum hourly refueling rate of 7.5 cars per hour per fueling point.

  1. A solid-state dielectric elastomer switch for soft logic

    NASA Astrophysics Data System (ADS)

    Chau, Nixon; Slipher, Geoffrey A.; O'Brien, Benjamin M.; Mrozek, Randy A.; Anderson, Iain A.

    2016-03-01

    In this paper, we describe a stretchable solid-state electronic switching material that operates at high voltage potentials, as well as a switch material benchmarking technique that utilizes a modular dielectric elastomer (artificial muscle) ring oscillator. The solid-state switching material was integrated into our oscillator, which self-started after 16 s and performed 5 oscillations at a frequency of 1.05 Hz with 3.25 kV DC input. Our materials-by-design approach for the nickel filled polydimethylsiloxane based switch has resulted in significant improvements over previous carbon grease-based switches in four key areas, namely, sharpness of switching behavior upon applied stretch, magnitude of electrical resistance change, ease of manufacture, and production rate. Switch lifetime was demonstrated to be in the range of tens to hundreds of cycles with the current process. An interesting and potentially useful strain-based switching hysteresis behavior is also presented.

  2. Miniaturized radioisotope solid state power sources

    NASA Astrophysics Data System (ADS)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  3. The Pythagorean Theorem and the Solid State

    ERIC Educational Resources Information Center

    Kelly, Brenda S.; Splittgerber, Allan G.

    2005-01-01

    Packing efficiency and crystal density can be calculated from basic geometric principles employing the Pythagorean theorem, if the unit-cell structure is known. The procedures illustrated have applicability in courses such as general chemistry, intermediate and advanced inorganic, materials science, and solid-state physics.

  4. Density functional theory in the solid state.

    PubMed

    Hasnip, Philip J; Refson, Keith; Probert, Matt I J; Yates, Jonathan R; Clark, Stewart J; Pickard, Chris J

    2014-03-13

    Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure-property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program.

  5. Intracavity solid state Raman marine transmitters

    NASA Astrophysics Data System (ADS)

    Murray, James T.; Austin, William L.; Calmes, Lonnie K.; Powell, Richard C.; McLean, John W.; Bryan, Elisabeth L.

    1997-07-01

    The design and performance of a short-pulse (1.5 ns), high- energy (90 mJ/pulse) nonlinear cavity-dumped, frequency- doubled, solid-state intracavity Raman laser is presented. The laser described is utilized as the transmitter in a high- resolution surf-zone marine imaging lidar system.

  6. Solid-state NMR for bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Reichhardt, Courtney; Cegelski, Lynette

    2014-04-01

    Bacteria associate with surfaces and one another by elaborating an extracellular matrix to encapsulate cells, creating communities termed biofilms. Biofilms are beneficial in some ecological niches, but also contribute to the pathogenesis of serious and chronic infectious diseases. New approaches and quantitative measurements are needed to define the composition and architecture of bacterial biofilms to help drive the development of strategies to interfere with biofilm assembly. Solid-state nuclear magnetic resonance (NMR) is uniquely suited to the examination of insoluble and complex macromolecular and whole-cell systems. This article highlights three examples that implement solid-state NMR to deliver insights into bacterial biofilm composition and changes in cell-wall composition as cells transition to the biofilm lifestyle. Most recently, solid-state NMR measurements provided a total accounting of the protein and polysaccharide components in the extracellular matrix of an Escherichia coli biofilm and transformed our qualitative descriptions of matrix composition into chemical parameters that permit quantitative comparisons among samples. We present additional data for whole biofilm samples (cells plus the extracellular matrix) that complement matrix-only analyses. The study of bacterial biofilms by solid-state NMR is an exciting avenue ripe with many opportunities and we close the article by articulating some outstanding questions and future directions in this area.

  7. Density functional theory in the solid state

    PubMed Central

    Hasnip, Philip J.; Refson, Keith; Probert, Matt I. J.; Yates, Jonathan R.; Clark, Stewart J.; Pickard, Chris J.

    2014-01-01

    Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure–property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program. PMID:24516184

  8. SPS solid state antenna power combiner

    NASA Technical Reports Server (NTRS)

    Fitzsimmons, G. W.

    1980-01-01

    Solid state dc-rf converters offer potential improvements in reliability, mass and low voltage operation, provided that anticipated efficiencies in excess of 80 percent can be realized. Field effect transistors offer the greatest potential in the SPS frequency band at 2.45 GHz. To implement this approach it is essential that means be found to sum the power of many relatively low power solid state sources in a low-loss manner, and that means be provided to properly control the phase of the outputs of the large number of solid state sources required. To avoid the power combining losses associated with circuit hybrids it was proposed that the power from multiple solid state amplifiers be combined by direct coupling of each amplifier's output to the radiating antenna structure. The selected power-combining antenna consists of a unique printed (metalized) microstrip circuit on a ceramic type dielectric substrate which is backed by a shallow lightweight aluminum cavity which sums the power of four microwave sources. The antenna behaves like two one-half wavelength slot-line antennas coupled together via their common cavity structure.

  9. Friction Stir & Ultrasonic Solid State Joining Magnesium

    SciTech Connect

    Grant, Glenn J.; Hovanski, Yuri; Santella, M. L.

    2009-12-30

    Solid state joining between automotive sheet steel and magnesium alloys was investigated. Both friction stir welding and ultrasonic welding were utilized to study the potential for creating structural bonds between these dissimilar materials. A detailed investigation into the joint characteristics was undertaken including an evaluation of joint strength, microstructure, chemical structures, and alloy formation.

  10. High power diode and solid state lasers

    NASA Astrophysics Data System (ADS)

    Eichler, H. J.; Fritsche, H.; Lux, O.; Strohmaier, S. G.

    2017-01-01

    Diode lasers are now basic pump sources of crystal, glass fiber and other solid state lasers. Progress in the performance of all these lasers is related. Examples of recently developed diode pumped lasers and Raman frequency converters are described for applications in materials processing, Lidar and medical surgery.

  11. Solid state, S-band, power amplifier

    NASA Technical Reports Server (NTRS)

    Digrindakis, M.

    1973-01-01

    The final design and specifications for a solid state, S-band, power amplifier is reported. Modifications from a previously proposed design were incorporated to improve efficiency and meet input overdrive and noise floor requirements. Reports on the system design, driver amplifier, power amplifier, and voltage and current limiter are included along with a discussion of the testing program.

  12. DNA sequence functionalized with heterogeneous core-satellite nanoassembly for novel energy-transfer-based photoelectrochemical bioanalysis.

    PubMed

    Zhu, Yuan-Cheng; Xu, Fei; Zhang, Nan; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-05-15

    This work reports the use of compositionally heterogeneous asymmetric Ag@Au core-satellite nanoassembly functionalized with DNA sequence as unique signaling nanoprobes for the realization of new energy-transfer-based photoelectrochemical (PEC) immunoassay of prostate- specific antigen (PSA). Specifically, the Ag@Au asymmetric core-satellite nanoassemblies (Ag@Au ACS) were fabricated on a two-dimensional glass substrate by a modified controlled assembly technique, and then functionalized with DNA sequences containing PSA aptamers as signaling nanoprobes. Then, the sandwich complexing between the PSA, its antibodies, and the signaling nanoprobes was performed on a CdS QDs modified indium tin oxide (ITO) electrode. The single stranded DNA can server as a facile mediator that place the Ag@Au ACS in proximity of CdS QDs, stimulating the interparticle exciton-plasmon interactions between Ag@Au ACS and CdS QDs and thus quenching the excitonic states in the latter. Since the damping effect is closely related to the target concentration, a novel energy-transfer-based PEC bioanalysis could be achieved for the sensitive and specific PSA assay. The developed biosensor displayed a linear range from 1.0×10(-11)gmL(-1) to 1.0×10(-7)gmL(-1) and the detection limit was experimentally found to be of 0.3×10(-13)gmL(-1). This strategy used the Ag@Au ACS-DNA signaling nanoprobes and overcame the deficiency of short operating distance of the energy transfer process for feasible PEC immunoassay. More significantly, it provided a way to couple the plasmonic properties of the Ag NPs and Au NPs in a single PEC bioanalytical system. We expected this work could inspire more interests and further investigations on the advanced engineering of the core-satellite or other judiciously designed nanostructures for new PEC bioanalytical uses with novel properties.

  13. 2006 Fundamental Research Underlying Solid-State Lighting: Contractors Meeting

    SciTech Connect

    Fitzsimmons, Tim; Kini, Arvind; Kelley, Dick

    2006-02-01

    This volume highlights the scientific content of the 2006 Fundamental Research Underlying Solid-State Lighting Contractors Meeting sponsored by the Division of Materials Sciences and Engineering (DMS&E) in the Office of Basic Energy Sciences (BES) of the U. S. Department of Energy (DOE). This meeting is the second in a series of research theme-based Contractors Meetings and will focus on BES/DMS&E-funded research that underpins solid-state lighting technology. The meeting will feature research that cuts across several DMS&E core research program areas. The major programmatic emphasis is on developing a fundamental scientific base, in terms of new concepts and new materials that could be used or mimicked in designing novel materials, processes or devices.

  14. Solid-State Water Electrolysis with an Alkaline Membrane

    SciTech Connect

    Leng, YJ; Chen, G; Mendoza, AJ; Tighe, TB; Hickner, MA; Wang, CY

    2012-06-06

    We report high-performance, durable alkaline membrane water electrolysis in a solid-state cell. An anion exchange membrane (AEM) and catalyst layer ionomer for hydroxide ion conduction were used without the addition of liquid electrolyte. At 50 degrees C, an AEM electrolysis cell using iridium oxide as the anode catalyst and Pt black as the cathode catalyst exhibited a current density of 399 mA/cm(2) at 1.80 V. We found that the durability of the AEM-based electrolysis cell could be improved by incorporating a highly durable ionomer in the catalyst layer and optimizing the water feed configuration. We demonstrated an AEM-based electrolysis cell with a lifetime of > 535 h. These first-time results of water electrolysis in a solid-state membrane cell are promising for low-cost, scalable hydrogen production.

  15. Coordinated garbage collection for raid array of solid state disks

    DOEpatents

    Dillow, David A; Ki, Youngjae; Oral, Hakki S; Shipman, Galen M; Wang, Feiyi

    2014-04-29

    An optimized redundant array of solid state devices may include an array of one or more optimized solid-state devices and a controller coupled to the solid-state devices for managing the solid-state devices. The controller may be configured to globally coordinate the garbage collection activities of each of said optimized solid-state devices, for instance, to minimize the degraded performance time and increase the optimal performance time of the entire array of devices.

  16. Enabling smarter smart displays with solid state flash disks

    NASA Astrophysics Data System (ADS)

    Tsur, Ofer

    2006-05-01

    This paper discusses data storage requirements for Smart displays which are based of a display with a single-board computer built into the casing. This paper evaluates the ability of three of the most popular COTS data storage solutions - mechanical disk, ruggedized mechanical disk and solid-state flash disk - to meet these requirements today and in the future. It addresses issues of capacity, data reliability, endurance, form factor, cost and security features.

  17. Photoelectrochemical hydrogen production

    SciTech Connect

    Rocheleau, R.E.; Miller, E.; Zhang, Z.

    1995-09-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. Photoelectrochemical devices-direct photoconversion systems utilizing a photovoltaic-type structure coated with water-splitting catalysts-represent a promising option to meet this goal. Direct solar-to-chemical conversion efficiencies greater than 7% and photoelectrode lifetimes of up to 30 hours in 1 molar KOH have been demonstrated in our laboratory using low-cost, amorphous-silicon-based photoelectrodes. Loss analysis models indicate that the DOE`s goal of 10% solar-to-chemical conversion can be met with amorphous-silicon-based structures optimized for hydrogen production. In this report, we describe recent progress in the development of thin-film catalytic/protective coatings, improvements in photoelectrode efficiency and stability, and designs for higher efficiency and greater stability.

  18. Templated Solid-State Dewetting of Thin Silicon Films.

    PubMed

    Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Delobbe, Anne; Ronda, Antoine; Berbezier, Isabelle; Abbarchi, Marco

    2016-11-01

    Thin film dewetting can be efficiently exploited for the implementation of functionalized surfaces over very large scales. Although the formation of sub-micrometer sized crystals via solid-state dewetting represents a viable method for the fabrication of quantum dots and optical meta-surfaces, there are several limitations related to the intrinsic features of dewetting in a crystalline medium. Disordered spatial organization, size, and shape fluctuations are relevant issues not properly addressed so far. This study reports on the deterministic nucleation and precise positioning of Si- and SiGe-based nanocrystals by templated solid-state dewetting of thin silicon films. The dewetting dynamics is guided by pattern size and shape taking full control over number, size, shape, and relative position of the particles (islands dimensions and relative distances are in the hundreds nm range and fluctuate ≈11% for the volumes and ≈5% for the positioning).

  19. Fabrication of solid-state nanopores and its perspectives.

    PubMed

    Kudr, Jiri; Skalickova, Sylvie; Nejdl, Lukas; Moulick, Amitava; Ruttkay-Nedecky, Branislav; Adam, Vojtech; Kizek, Rene

    2015-10-01

    Nanofluidics is becoming an extensively developing technique in the field of bioanalytical chemistry. Nanoscale hole embed in an insulating membrane is employed in a vast variety of sensing platforms and applications. Although, biological nanopores have several attractive characteristics, in this paper, we focused on the solid-state nanopores due to their advantages as high stability, possibility of diameter control, and ease of surface functionalizing. A detection method, based on the translocation of analyzed molecules through nanochannels under applied voltage bias and resistive pulse sensing, is well established. Nevertheless, it seems that the new detection methods like measuring of transverse electron tunneling using nanogap electrodes or optical detection can offer significant additional advantages. The aim of this review is not to cite all related articles, but highlight the steps, which in our opinion, meant important progresses in solid-state nanopore analysis.

  20. Compact Solid State Cooling Systems: Compact MEMS Electrocaloric Module

    SciTech Connect

    2010-10-01

    BEETIT Project: UCLA is developing a novel solid-state cooling technology to translate a recent scientific discovery of the so-called giant electrocaloric effect into commercially viable compact cooling systems. Traditional air conditioners use noisy, vapor compression systems that include a polluting liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the environment. Electrocaloric materials achieve the same result by heating up when placed within an electric field and cooling down when removed—effectively pumping heat out from a cooler to warmer environment. This electrocaloric-based solid state cooling system is quiet and does not use liquid refrigerants. The innovation includes developing nano-structured materials and reliable interfaces for heat exchange. With these innovations and advances in micro/nano-scale manufacturing technologies pioneered by semiconductor companies, UCLA is aiming to extend the performance/reliability of the cooling module.

  1. Solid-State Ultracapacitor for Improved Energy Storage

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA's Marshall Space Flight Center has developed a solid-state ultracapacitor using a novel nanocomposite, dielectric material. The material's design is based on the internal barrier layer capacitance (IBLC) concept, and it uses novel dielectric and metallic conductive ink formulations. Novel processing methods developed by NASA provide for unique dielectric properties at the grain level. Nanoscale raw material powders are tailored using a variety of techniques and then formulated into a special ink. This dielectric ink is used with novel metallic conductive ink to print a capacitor layer structure into any design necessary to meet a range of technical requirements. The innovation is intended to replace current range safety batteries that NASA uses to power the systems that destroy off-course space vehicles. A solid-state design provides the needed robustness and safety for this demanding application.

  2. Detection of pulsed neutrons with solid-state electronics

    NASA Astrophysics Data System (ADS)

    Chatzakis, J.; Rigakis, I.; Hassan, S. M.; Clark, E. L.; Lee, P.

    2016-09-01

    Measurements of the spatial and time-resolved characteristics of pulsed neutron sources require large area detection materials and fast circuitry that can process the electronic pulses readout from the active region of the detector. In this paper, we present a solid-state detector based on the nuclear activation of materials by neutrons, and the detection of the secondary particle emission of the generated radionuclides’ decay. The detector utilizes a microcontroller that communicates using a modified SPI protocol. A solid-state, pulse shaping filter follows a charge amplifier, and it is designed as an inexpensive, low-noise solution for measuring pulses measured by a digital counter. An imaging detector can also be made by using an array of these detectors. The system can communicate with an interface unit and pass an image to a personal computer.

  3. Modeling of efficient solid-state cooler on layered multiferroics.

    PubMed

    Starkov, Ivan; Starkov, Alexander

    2014-08-01

    We have developed theoretical foundations for the design and optimization of a solid-state cooler working through caloric and multicaloric effects. This approach is based on the careful consideration of the thermodynamics of a layered multiferroic system. The main section of the paper is devoted to the derivation and solution of the heat conduction equation for multiferroic materials. On the basis of the obtained results, we have performed the evaluation of the temperature distribution in the refrigerator under periodic external fields. A few practical examples are considered to illustrate the model. It is demonstrated that a 40-mm structure made of 20 ferroic layers is able to create a temperature difference of 25K. The presented work tries to address the whole hierarchy of physical phenomena to capture all of the essential aspects of solid-state cooling.

  4. Target-induced nano-enzyme reactor mediated hole-trapping for high-throughput immunoassay based on a split-type photoelectrochemical detection strategy.

    PubMed

    Zhuang, Junyang; Tang, Dianyong; Lai, Wenqiang; Xu, Mingdi; Tang, Dianping

    2015-09-15

    Photoelectrochemical (PEC) detection is an emerging and promising analytical tool. However, its actual application still faces some challenges like potential damage of biomolecules (caused by itself system) and intrinsic low-throughput detection. To solve the problems, herein we design a novel split-type photoelectrochemical immunoassay (STPIA) for ultrasensitive detection of prostate specific antigen (PSA). Initially, the immunoreaction was performed on a microplate using a secondary antibody/primer-circular DNA-labeled gold nanoparticle as the detection tag. Then, numerously repeated oligonucleotide sequences with many biotin moieties were in situ synthesized on the nanogold tag via RCA reaction. The formed biotin concatamers acted as a powerful scaffold to bind with avidin-alkaline phosphatase (ALP) conjugates and construct a nanoenzyme reactor. By this means, enzymatic hydrolysate (ascorbic acid) was generated to capture the photogenerated holes in the CdS quantum dot-sensitized TiO2 nanotube arrays, resulting in amplification of the photocurrent signal. To elaborate, the microplate-based immunoassay and the high-throughput detection system, a semiautomatic detection cell (installed with a three-electrode system), was employed. Under optimal conditions, the photocurrent increased with the increasing PSA concentration in a dynamic working range from 0.001 to 3 ng mL(-1), with a low detection limit (LOD) of 0.32 pg mL(-1). Meanwhile, the developed split-type photoelectrochemical immunoassay exhibited high specificity and acceptable accuracy for analysis of human serum specimens in comparison with referenced electrochemiluminescence immunoassay method. Importantly, the system was not only suitable for the sandwich-type immunoassay mode, but also utilized for the detection of small molecules (e.g., aflatoxin B1) with a competitive-type assay format.

  5. Microscopic structure of heterogeneous lipid-based formulations revealed by 13C high-resolution solid-state and 1H PFG NMR methods.

    PubMed

    Guillermo, Armel; Gerbaud, Guillaume; Bardet, Michel

    2010-03-01

    Lipid-based formulations such as lip glosses that are very alike on the base of their components may have significant differences in their expected macroscopic properties as cosmetics. To differentiate such formulations, high-resolution (13)C NMR was performed under magic angle spinning to investigate the properties at both molecular and microscopic levels. Temperature studies were carried out and no polymorphism in the solid domains could be evidenced after the thermal treatment performed for obtaining the commercial lip glosses. (13)C NMR spectra also showed that some waxes remain partially solubilized in the oils of formulations. The microscopic structure of the wax-oil liquid domains was worked out on the basis of restricted diffusion properties obtained with proton pulsed-field gradient NMR. Changing a single wax component, in two identical formulations, yields significant morphological differences. In the first one the liquid phase appears as a continuum whereas in the second one, the liquid phase is fractionated into micrometric droplets.

  6. Ultrasensitive Self-Powered Solar-Blind Deep-Ultraviolet Photodetector Based on All-Solid-State Polyaniline/MgZnO Bilayer.

    PubMed

    Chen, Hongyu; Yu, Pingping; Zhang, Zhenzhong; Teng, Feng; Zheng, Lingxia; Hu, Kai; Fang, Xiaosheng

    2016-09-05

    A high sensitivity self-powered solar-blind photodetector is successfully constructed based on the polyaniline/MgZnO bilayer. The maximum responsivity of the photodetector is 160 μA W(-1) at 250 nm under 0 V bias. The device also exhibits a high on/off ratio of ≈10(4) under 250 nm illumination at a relatively weak light intensity of 130 μW cm(-2) without any power.

  7. One Kilowatt UHF Solid State Power Amplifier.

    DTIC Science & Technology

    1982-02-01

    den:fiy t, . .mber) One-Killowat t Satellite Communications UHF Hopping Filter Solid State Amplifier 20. ABSTRACT (Continue on reverse aide It neceeary...in this report are power input versus power output, intermodulation products measurement, thermal, and satellite tests.FORM13 DD , JAN73 1 3 EDITION OF...DESCRIPTIONS OF TESTS 18 1. Laboratory and Flight Preliminary Tests 18 2. Power Input vs Power Output Tests 27 3. Satellite Tests 30 4

  8. Rechargeable Sodium All-Solid-State Battery.

    PubMed

    Zhou, Weidong; Li, Yutao; Xin, Sen; Goodenough, John B

    2017-01-25

    A reversible plating/stripping of a dendrite-free metallic-sodium anode with a reduced anode/ceramic interfacial resistance is created by a thin interfacial interlayer formed in situ or by the introduction of a dry polymer film. Wetting of the sodium on the interfacial interlayer suppresses dendrite formation and growth at different discharge/charge C-rates. All-solid-state batteries were obtained with a high cycling stability and Coulombic efficiency at 65 °C.

  9. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.

  10. Pulsed solid state lasers for medicine

    NASA Astrophysics Data System (ADS)

    Kertesz, Ivan; Danileiko, A. Y.; Denker, Boris I.; Kroo, Norbert; Osiko, Vyacheslav V.; Prokhorov, Alexander M.

    1994-02-01

    The effect on living tissues of different pulsed solid state lasers: Nd:YAG ((lambda) equals 1.06 micrometers ) Er:glass (1.54 micrometers ), Ho:YAG (2.1 micrometers ) and Er:YAG (2.94 micrometers ) is compared with the continuous wave Nd:YAG- and CO2-lasers used in operating theaters. Portable Er:glass- and Er:YAG-lasers are developed for surgery/cosmetics and HIV-safe blood testing.

  11. Solid-state-laser-rod holder

    DOEpatents

    Gettemy, D.J.; Barnes, N.P.; Griggs, J.E.

    1981-08-11

    The disclosure relates to a solid state laser rod holder comprising Invar, copper tubing, and epoxy joints. Materials and coefficients of expansion of the components of the holder combine with the rod to produce a joint which will give before the rod itself will. The rod may be lased at about 70 to 80/sup 0/K and returned from such a temperature to room temperature repeatedly without its or the holder's destruction.

  12. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Investigations continue of diode-laser-pumped solid-state laser oscillators and nonlinear processes using them as sources. Diode laser array pumped Nd:YAG and Nd:glass lasers have been demonstrated. Theoretical studies of non-planar oscillators have been advanced, producing new designs which should be more resistant to feedback and offer better frequency stability. A monolithic, singly resonant Optical Parametric Oscillator in MgO:LiNbO3 has been operated.

  13. Solid state synthesis of poly(dichlorophosphazene)

    DOEpatents

    Allen, Christopher W.; Hneihen, Azzam S.; Peterson, Eric S.

    2001-01-01

    A method for making poly(dichlorophosphazene) using solid state reactants is disclosed and described. The present invention improves upon previous methods by removing the need for chlorinated hydrocarbon solvents, eliminating complicated equipment and simplifying the overall process by providing a "single pot" two step reaction sequence. This may be accomplished by the condensation reaction of raw materials in the melt phase of the reactants and in the absence of an environmentally damaging solvent.

  14. SPS solid state antenna power combiner

    NASA Technical Reports Server (NTRS)

    Fitzsimmons, G. W.

    1980-01-01

    A concept for a solar power satellite antenna power combiner which utilizes solid state dc-rf converters is described. To avoid the power combining losses associated with circuit hybrids it is proposed that the power from multiple solid state amplifiers be combined by direct coupling of each amplifier's output to the radiating antenna structure. The selected power-combining antenna consists of a printed (metalized) microstrip circuit on a ceramic type dielectric substrate which is backed by a shallow lightweight aluminum cavity which sums the power of four microwave sources. The antenna behaves like two one-half wavelength slot-line antennas coupled together via their common cavity structure. A significant feature of the antenna configuration selected is that the radiated energy is summed to yield a single radiated output phase which represents the average insertion phase of the four power amplifiers. This energy may be sampled and, by comparison with the input signal, one can phase error correct to maintain the insertion phase of all solid state power combining modules at exactly the same value. This insures that the insertion phase of each SPS power combining antenna module is identical. An experiment verification program is described.

  15. Advances in Theory of Solid-State Nuclear Magnetic Resonance.

    PubMed

    Mananga, Eugene S; Moghaddasi, Jalil; Sana, Ajaz; Akinmoladun, Andrew; Sadoqi, Mostafa

    Recent advances in theory of solid state nuclear magnetic resonance (NMR) such as Floquet-Magnus expansion and Fer expansion, address alternative methods for solving a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state NMR in particular. The power and the salient features of these theoretical approaches that are helpful to describe the time evolution of the spin system at all times are presented. This review article presents a broad view of manipulations of spin systems in solid-state NMR, based on milestones theories including the average Hamiltonian theory and the Floquet theory, and the approaches currently developing such as the Floquet-Magnus expansion and the Fer expansion. All these approaches provide procedures to control and describe the spin dynamics in solid-state NMR. Applications of these theoretical methods to stroboscopic and synchronized manipulations, non-synchronized experiments, multiple incommensurated frequencies, magic-angle spinning samples, are illustrated. We also reviewed the propagators of these theories and discussed their convergences. Note that the FME is an extension of the popular Magnus Expansion and Average Hamiltonian Theory. It aims is to bridge the AHT to the Floquet Theorem but in a more concise and efficient formalism. Calculations can then be performed in a finite-dimensional Hilbert space instead of an infinite dimensional space within the so-called Floquet theory. We expected that the FME will provide means for more accurate and efficient spin dynamics simulation and for devising new RF pulse sequence.

  16. Advances in Theory of Solid-State Nuclear Magnetic Resonance

    PubMed Central

    Mananga, Eugene S.; Moghaddasi, Jalil; Sana, Ajaz; Akinmoladun, Andrew; Sadoqi, Mostafa

    2015-01-01

    Recent advances in theory of solid state nuclear magnetic resonance (NMR) such as Floquet-Magnus expansion and Fer expansion, address alternative methods for solving a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state NMR in particular. The power and the salient features of these theoretical approaches that are helpful to describe the time evolution of the spin system at all times are presented. This review article presents a broad view of manipulations of spin systems in solid-state NMR, based on milestones theories including the average Hamiltonian theory and the Floquet theory, and the approaches currently developing such as the Floquet-Magnus expansion and the Fer expansion. All these approaches provide procedures to control and describe the spin dynamics in solid-state NMR. Applications of these theoretical methods to stroboscopic and synchronized manipulations, non-synchronized experiments, multiple incommensurated frequencies, magic-angle spinning samples, are illustrated. We also reviewed the propagators of these theories and discussed their convergences. Note that the FME is an extension of the popular Magnus Expansion and Average Hamiltonian Theory. It aims is to bridge the AHT to the Floquet Theorem but in a more concise and efficient formalism. Calculations can then be performed in a finite-dimensional Hilbert space instead of an infinite dimensional space within the so-called Floquet theory. We expected that the FME will provide means for more accurate and efficient spin dynamics simulation and for devising new RF pulse sequence. PMID:26878063

  17. Effects of microbial phytase, produced by solid-state fermentation, on the performance and nutrient utilisation of broilers fed maize- and wheat-based diets.

    PubMed

    Wu, Y B; Ravindran, V; Hendriks, W H

    2003-12-01

    1. The influence of a microbial phytase on the performance, toe ash contents and nutrient utilisation of male broilers fed diets based on maize and wheat was investigated. The experiment was conducted as 2 x 2 x 2 factorial arrangement of treatments. Within the factorial, two diet types (maize-soy or wheat-soy) containing two levels of non-phytate phosphorus (3.0 or 4.5 g/kg) were evaluated and each level of non-phytate phosphorus was supplemented with 0 or 500 PU phytase/kg diet. Each of the 8 dietary treatments were fed to 6 pens of 8 birds from d 1 to 21 post-hatching. 2. Main effects of diet type and phytase were observed for all parameters. Main effect of non-phytate phosphorus was significant only for feed/gain and toe ash contents. Phytase addition improved weight gains irrespective of diet type or non-phytate phosphorus level, but the magnitude of improvement in the phosphorus-deficient wheat-soy diet was greater, resulting in a diet type x non-phytate phosphorus interaction. Responses in toe ash contents were noted only in phosphorus-deficient diets, as indicated by a non-phytate phosphorus x phytase interaction. 3. Phytase addition improved apparent metabolisable energy values of wheat-based diets, but had little effect on the apparent metabolisable energy of maize-based diets as shown by a diet type x phytase interaction. The apparent metabolisable energy was not influenced by dietary non-phytate P. 4. Phytase improved ileal nitrogen digestibility in both diet types, but the responses to added phytase tended to be higher in wheat-based diets, as shown by a diet type x phytase interaction. 5. Increasing the dietary non-phytate phosphorus level reduced phosphorus digestibility and increased excreta phosphorus content. Addition of phytase improved phosphorus digestibility, but the increments were higher in low phosphorus diets resulting in a non-phytate phosphorus x phytase interaction. Phytase addition tended to lower the excreta phosphorus content, but

  18. Bi-based 2223 superconducting polycrystalline materials prepared by either a solid state route or a glassy ‘matrix’ precursor method: Chemical analysis as well as electrical and thermal transport properties

    NASA Astrophysics Data System (ADS)

    Cloots, R.; Bougrine, H.; Houssa, M.; Stassen, S.; D'Urzo, L.; Rulmont, A.; Ausloos, M.

    1994-10-01

    Two routes have been followed in order to prepare Bi 1.7Pb 0.3Sr 2Ca 2Cu 3O y superconducting materials. Bi 1.7Pb 0.3CuO 4 is always used as one of the starting basic materials. The first route involves a new experimental procedure based on the solid state synthesis of separate intermediate phases, mixed together in a two (Bi 1.7Pb 0.3CuO 4+2SrCaCuO 3), three (Bi 1.7Pb 0.3CuO 4+2SrCuO 2+2CaCO 3) or four (Bi 1.7Pb 0.3CuO 4+ ( {1}/{12}) Sr 8Ca 6Cu 24O 41+( {3}/{2}X) CaCO 3+( {4}/{3})SrCO 3) powder process. Electric resistivity versus temperature measurements are presented. Even though the Tc(0) of each sample is above 100 K, X-ray diffraction shows that the main phase is the 2212 phase in each case. Relatively pure 2223 materials have, however, successfully been produced by the second method, which starts from a glassy intermediate phase and involves a so-called ‘matrix’ method. The glass precursor phase is composed of one (Bi 1.7Pb 0.3CuO 4), two (Bi 1.7Pb 0.3CuO 4+2CaCo 3), and three (Bi 1.7Pb 0.3CuO 4+( {3}/{2})CaCO 3+( {4}/{3})SrCO 3) components as for the solid state routes. The role of both the added alkaline earth crystalline compounds and the glass matrix precursors in this second method turns out to be very important. We propose a schematic structural model in order to explain the selectivity of the starting materials. SrCaCuO 3 is found to be a good precursor of the 2212 phase, while SrCuO 2 gives rise to the 2223 phase. It seems that the presence of CaCO 3 in the glassy intermediate phase, thus acting as a cation reservoir, is very useful for the production of the 2223 phase. Electric resistivity, thermal conductivity and thermopower versus temperature measurements are also presented and discussed in terms of intergrowths and variations of cationic compositions in the Bi-based layers.

  19. Photoelectrochemical detection of alpha-fetoprotein based on ZnO inverse opals structure electrodes modified by Ag2S nanoparticles.

    PubMed

    Jiang, Yandong; Liu, Dali; Yang, Yudan; Xu, Ru; Zhang, Tianxiang; Sheng, Kuang; Song, Hongwei

    2016-12-06

    In this work, a new photoelectrochemical biosensor based on Ag2S nanoparticles (NPs) modified macroporous ZnO inverse opals structure (IOs) was developed for sensitive and rapid detection of alpha fetal protein (AFP). Small size and uniformly dispersed Ag2S NPs were prepared using the Successive Ionic Layer Adsorption And Reaction (SILAR) method, which were adsorbed on ZnO IOs surface and frame work as matrix for immobilization of AFP. The composite structure of ZnO/Ag2S expanded the scope of light absorption to long wavelength, which can make full use of the light energy. Meanwhile, an effective matching of energy levels between the conduction bands of Ag2S and ZnO are beneficial to the photo-generated electrons transfer. The biosensors based on FTO (fluorine-doped tinoxide) ZnO/Ag2S electrode showed enough sensitivity and a wide linear range from 0.05 ng/mL to 200 ng/mL with a low detection limit of 8 pg/mL for the detection of AFP. It also exhibited high reproducibility, specificity and stability. The proposed method was potentially attractive for achieving excellent photoelectrochemical biosensor for detection of other proteins.

  20. Photoelectrochemical detection of alpha-fetoprotein based on ZnO inverse opals structure electrodes modified by Ag2S nanoparticles

    PubMed Central

    Jiang, Yandong; Liu, Dali; Yang, Yudan; Xu, Ru; Zhang, Tianxiang; Sheng, Kuang; Song, Hongwei

    2016-01-01

    In this work, a new photoelectrochemical biosensor based on Ag2S nanoparticles (NPs) modified macroporous ZnO inverse opals structure (IOs) was developed for sensitive and rapid detection of alpha fetal protein (AFP). Small size and uniformly dispersed Ag2S NPs were prepared using the Successive Ionic Layer Adsorption And Reaction (SILAR) method, which were adsorbed on ZnO IOs surface and frame work as matrix for immobilization of AFP. The composite structure of ZnO/Ag2S expanded the scope of light absorption to long wavelength, which can make full use of the light energy. Meanwhile, an effective matching of energy levels between the conduction bands of Ag2S and ZnO are beneficial to the photo-generated electrons transfer. The biosensors based on FTO (fluorine-doped tinoxide) ZnO/Ag2S electrode showed enough sensitivity and a wide linear range from 0.05 ng/mL to 200 ng/mL with a low detection limit of 8 pg/mL for the detection of AFP. It also exhibited high reproducibility, specificity and stability. The proposed method was potentially attractive for achieving excellent photoelectrochemical biosensor for detection of other proteins. PMID:27922086

  1. Blue diode-pumped solid-state-laser based on ytterbium doped laser crystals operating on the resonance zero-phonon transition

    DOEpatents

    Krupke, William F.; Payne, Stephen A.; Marshall, Christopher D.

    2001-01-01

    The invention provides an efficient, compact means of generating blue laser light at a wavelength near .about.493+/-3 nm, based on the use of a laser diode-pumped Yb-doped laser crystal emitting on its zero phonon line (ZPL) resonance transition at a wavelength near .about.986+/-6 nm, whose fundamental infrared output radiation is harmonically doubled into the blue spectral region. The invention is applied to the excitation of biofluorescent dyes (in the .about.490-496 nm spectral region) utilized in flow cytometry, immunoassay, DNA sequencing, and other biofluorescence instruments. The preferred host crystals have strong ZPL fluorecence (laser) transitions lying in the spectral range from .about.980 to .about.992 nm (so that when frequency-doubled, they produce output radiation in the spectral range from 490 to 496 nm). Alternate preferred Yb doped tungstate crystals, such as Yb:KY(WO.sub.4).sub.2, may be configured to lase on the resonant ZPL transition near 981 nm (in lieu of the normal 1025 nm transition). The laser light is then doubled in the blue at 490.5 nm.

  2. Solid-state and flexible solar cells based on dye-sensitized TiO2: study by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Longo, Claudia; Nogueira, Flavia; Cachet, Hubert; De Paoli, Marco-Aurelio

    2002-02-01

    Dye sensitized TiO2 solar cells were assembled using rigid or flexible transparent electrodes (a conductive film deposited on glass or poly(ethylene terephthalate) as substrates and a polymer electrolyte based on (formula available in paper) and poly(epichlorohydrin-co-ethylene oxide). The cells were characterized by current-potential curves and electrochemical impedance spectroscopy under different light intensities. Under 100 mWcm-2 illumination, the rigid cell exhibited an open circuit potential VOC=0.75V, a short-circuit photocurrent ISC=2.5 mAcm-2 and an efficiency (eta) =0.9%; for the flexible cell, VOC=0.83V and (eta) and ISC were almost 10 times smaller. Under illumination, impedance spectra exhibited three semi-circles for the rigid cell. For the flexible cell the time constants were not well defined. In the dark, both systems presented very high impedance. The differences in the efficiency and the impedance spectra of both cells were compared and discussed.

  3. High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites

    PubMed Central

    Wang, Yongguang; Tang, Shaochun; Vongehr, Sascha; Ali Syed, Junaid; Wang, Xiangyu; Meng, Xiangkang

    2016-01-01

    Improving the solubility of conductive polymers to facilitate processing usually decreases their conductivity, and they suffer from poor cycling stability due to swelling-shrinking during charging cycles. We circumvent these problems with a novel preparation method for nitrogen-doped graphene (NG) enhanced polyacrylic acid/polyaniline (NG-PAA/PANI) composites, ensuring excellent processibility for scalable production. The content of PANI is maximized under the constraint of still allowing defect-free coatings on filaments of carbon cloth (CC). The NG content is then adjusted to optimize specific capacitance. The optimal CC electrodes have 32 wt.% PANI and 1.3 wt.% NG, thus achieving a high capacitance of 521 F/g at 0.5 F/g. A symmetric supercapacitor made from 20 wt.% PANI CC electrodes has more than four times the capacitance (68 F/g at 1 A/g) of previously reported flexible capacitors based on PANI-carbon nanotube composites, and it retains the full capacitance under large bending angles. The capacitor exhibits high energy and power densities (5.8 Wh/kg at 1.1 kW/kg), a superior rate capability (still 81% of the 1 A/g capacitance at 10 A/g), and long-term electrochemical stability (83.2% retention after 2000 cycles). PMID:26883179

  4. Solution and solid-state characterization of europium and gadolinium Schiff base complexes and assessment of their potential as contrast agents in magnetic resonance imaging

    SciTech Connect

    Smith, P.H.; Brainard, J.R.; Morris, D.E.; Jarvinen, G.D.; Ryan, R.R. )

    1989-09-13

    Two lanthanide Schiff base macrocyclic complexes, LnAM(OAc){sub 2}Cl{center dot}4H{sub 2}O (Ln = Eu, Gd; HAM - HexaAzaMacrocycle = C{sub 22}H{sub 26}N{sub 6}), have been characterized in view of the potential of the Gd complex as a magnetic resonance imaging (MRI) contrast agent. The relaxivity of GdHAM(OAc){sub 2}Cl was measured at 300 and 20 MHz and is as high as that for the gadolinium aquo ion. The number of coordinated waters, q, was measured by comparison of the luminescent lifetimes of EuHAM(OAc){sub 2}Cl in H{sub 2}O and D{sub 2}O and found to be between three and four. The complex GdHAM(OAc){sub 2}Cl{center dot}4H{sub 2}O was characterized by single-crystal X-ray diffraction. The complex crystallizes in space group P{bar 1} with Z = 2, a = 10.032 (2) {angstrom}, b = 12.765 (2) {angstrom}, c = 13.668 (3) {angstrom}, {alpha} = 69.190{degree} (9){degree}, {beta} = 72.405{degree} (9){degree}, and {gamma} = 74.07{degree} (1){degree}.

  5. Preparation of LiNi0.5Mn1.5O4 for Lithium Batteries Via Solid-State Redox Method using Nitrate and Acetate Based Reactants

    NASA Astrophysics Data System (ADS)

    Mat, A.; Sulaiman, K. S.; Sulaiman, M. A.; Hasim, M. F.

    2010-03-01

    LiNi0.5Mn1.5O4 is a potential cathode material for 5 V batteries. This material was prepared by the solid-state redox method using nitrate and acetate based reactants. The precursor material was obtained when the mixture reactants was heated at 500° C for 10 hours and calcined at different temperatures in the range between 650 and 950° C for 12 hours. The structures of the synthesized materials were verified with X- ray diffraction (XRD) measurement and Scanning Electron Microscope (SEM). The charge-discharge technique was determined using Solartron 1470. As calcination temperature increases, the well-ordered crystal growth oriented to [1 1 1] direction shows a clear octahedral morphology, which is the characteristic of the typical cubic spinel. The Li/LiNi0.5Mn1.5O4 prepared from acetate based reactants calcined at 750° C for 12 h delivered the discharge capacity of 140 mAh/g.

  6. A sensitive photoelectrochemical biosensor for AFP detection based on ZnO inverse opal electrodes with signal amplification of CdS-QDs.

    PubMed

    Xu, Ru; Jiang, Yandong; Xia, Lei; Zhang, Tianxiang; Xu, Lin; Zhang, Shuang; Liu, Dali; Song, Hongwei

    2015-12-15

    In this work, ZnO inverse opals structure (IOs) based photoelectrochemical (PEC) electrode was fabricated for alpha-fetoprotein (AFP) detection. Then, the uniform CdS quantum dots (QDs) were hydrothermally synthesized, which allowed the binding of AFP and glucose oxidase (GOD) on CdS QDs, forming the AFP-CdS-GOD composite. The competitive immunosensor of AFP and the AFP-CdS-GOD composite with anti-AFP antibodies (Ab) immobilized on FTO (fluorine-doped tin oxide) /ZnO IOs electrode was successfully applied to the detection of AFP. GOD could catalyze glucose to produce hydrogen peroxide (H2O2) acting as an electron donor to scavenge photogenerated holes in the valence band of CdS QDs, reducing the recombination of electrons and holes of CdS QDs. Also the effective energy level matching between the conduction bands of CdS QDs and ZnO widened the range of light absorption, allowing for electron injection from excited CdS QDs to ZnO upon visible light irradiation, which enhanced the photocurrent. The results show that the immunosensor of AFP possesses a large linear detection range of 0.1-500 ng/ml with a detection limit of 0.01 ng/ml. It also exhibits excellent anti-interference property and acceptable stability. This work provides a promising method for achieving excellent photoelectrochemical biosensor detection of other proteins.

  7. Photoelectrochemical Solar Cells.

    ERIC Educational Resources Information Center

    McDevitt, John T.

    1984-01-01

    This introduction to photoelectrochemical (PEC) cells reviews topics pertaining to solar energy conversion and demonstrates the ease with which a working PEC cell can be prepared with n-type silicon as the photoanode and a platinum counter electrode (both immersed in ethanolic ferrocene/ferricenium solutions). Experiments using the cell are…

  8. CdS/CdSe quantum dot shell decorated vertical ZnO nanowire arrays by spin-coating-based SILAR for photoelectrochemical cells and quantum-dot-sensitized solar cells.

    PubMed

    Zhang, Ran; Luo, Qiu-Ping; Chen, Hong-Yan; Yu, Xiao-Yun; Kuang, Dai-Bin; Su, Cheng-Yong

    2012-04-23

    A CdS/CdSe composite shell is assembled onto the surface of ZnO nanowire arrays with a simple spin-coating-based successive ionic layer adsorption and reaction method. The as-prepared photoelectrode exhibit a high photocurrent density in photoelectrochemical cells and also generates good power conversion efficiency in quantum-dot-sensitized solar cells.

  9. BOOK REVIEW: Solid State Physics: An Introduction

    NASA Astrophysics Data System (ADS)

    Jakoby, Bernhard

    2009-07-01

    There's a wealth of excellent textbooks on solid state physics. The author of the present book is well aware of this fact and does not attempt to write just another one. Rather, he has provided a very compact introduction to solid state physics for third-year students. As we are faced with the continuous appearance interdisciplinary fields and associated study curricula in natural and engineering sciences (biophysics, mechatronics, etc), a compact text in solid state physics would be appreciated by students of these disciplines as well. The book features 11 chapters where each is provided with supplementary discussion questions and problems. The first chapters deal with a review of chemical bonding mechanisms, crystal structures and mechanical properties of solids, which are brief but by no means superficial. The following, somewhat more detailed chapter on thermal properties of lattices includes a nice introduction to phonons. The foundations of solid state electronics are treated in the next three chapters. Here the author first discusses the classical treatment of electronic behaviour in metals (Drude model) and continues with a quantum-theoretical approach starting with the free-electron model and leading to the band structures in conductive solids. The next chapter is devoted to semiconductors and ends with a brief but, with respect to the topical scope, adequate discussion of semiconductor devices. The classical topics of magnetic and dielectric behaviour are treated in the sequel. The book closes with a chapter on superconductivity and a brief chapter covering the modern topics of quantum confinement and aspects of nanoscale physics. In my opinion, the author has succeeded in creating a very concise yet not superficial textbook. The account presented often probes subjects deep enough to lay the basis for a thorough understanding, preparing the reader for more specialized textbooks. For instance, I think that this book may serve as an excellent first

  10. Fast-neutron solid-state dosimeter

    DOEpatents

    Kecker, K.H.; Haywood, F.F.; Perdue, P.T.; Thorngate, J.H.

    1975-07-22

    This patent relates to an improved fast-neutron solid-state dosimeter that does not require separation of materials before it can be read out, that utilizes materials that do not melt or otherwise degrade at about 300$sup 0$C readout temperature, that provides a more efficient dosimeter, and that can be reused. The dosimeters are fabricated by intimately mixing a TL material, such as CaSO$sub 4$:Dy, with a powdered polyphenyl, such as p-sexiphenyl, and hot- pressing the mixture to form pellets, followed by out-gassing in a vacuum furnace at 150$sup 0$C prior to first use dosimeters. (auth)

  11. Passivation-free solid state battery

    DOEpatents

    Abraham, K.M.; Peramunage, D.

    1998-06-16

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li{sub 4}Ti{sub 5}O{sub 12} anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn{sub 2}O{sub 4}, LiCoO{sub 2}, LiNiO{sub 2} and LiV{sub 2}O{sub 5} and their derivatives. 5 figs.

  12. The Galileo Solid-State Imaging experiment

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Klaasen, Kenneth P.; Clary, Maurice C.; Anderson, James L.; Anger, Clifford D.; Carr, Michael H.; Chapman, Clark R.; Davies, Merton E.; Greeley, Ronald; Anderson, Donald

    1992-01-01

    The Galileo Orbiter's Solid-State Imaging (SSI) experiment uses a 1.5-m focal length TV camera with 800 x 800 pixel, virtual-phase CCD detector in order to obtain images of Jupiter and its satellites which possess a combination of sensitivity levels, spatial resolutions, geometric fidelity, and spectral range that are unmatched by earlier imaging data. After describing the performance of this equipment on the basis of ground calibrations, attention is given to the SSI experiment's Jupiter system observation objectives; these encompass atmospheric science, satellite surfaces, ring structure, and 'darkside' experiments.

  13. High Speed Solid State Circuit Breaker

    NASA Technical Reports Server (NTRS)

    Podlesak, Thomas F.

    1993-01-01

    The U.S. Army Research Laboratory, Fort Monmouth, NJ, has developed and is installing two 3.3 MW high speed solid state circuit breakers at the Army's Pulse Power Center. These circuit breakers will interrupt 4160V three phase power mains in no more than 300 microseconds, two orders of magnitude faster than conventional mechanical contact type circuit breakers. These circuit breakers utilize Gate Turnoff Thyristors (GTO's) and are currently utility type devices using air cooling in an air conditioned enclosure. Future refinements include liquid cooling, either water or two phase organic coolant, and more advanced semiconductors. Each of these refinements promises a more compact, more reliable unit.

  14. Entanglement and Squeezing in Solid State Circuits

    SciTech Connect

    Wen Yihuo; Gui Lulong

    2008-11-07

    We investigate the dynamics of a system consisting of a Cooper-pair box and two superconducting transmission line resonators. There exist both linear and nonlinear interactions in such a system. We show that single-photon entanglement state can be generated in a simple way in the linear interaction regime. In nonlinear interaction regime, we derive the Hamiltonian of degenerate three-wave mixing and propose a scheme for generating squeezed state of microwave using the three-wave mixing in solid state circuits. In the following, we design a system for generating squeezed states of nanamechanical resonator.

  15. Passivation-free solid state battery

    DOEpatents

    Abraham, Kuzhikalail M.; Peramunage, Dharmasena

    1998-01-01

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li.sub.4 Ti.sub.5 O.sub.12 anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn.sub.2 O.sub.4, LiCoO.sub.2, LiNiO.sub.2 and LiV.sub.2 O.sub.5 and their derivatives.

  16. Rechargeable Sodium All-Solid-State Battery

    PubMed Central

    2017-01-01

    A reversible plating/stripping of a dendrite-free metallic-sodium anode with a reduced anode/ceramic interfacial resistance is created by a thin interfacial interlayer formed in situ or by the introduction of a dry polymer film. Wetting of the sodium on the interfacial interlayer suppresses dendrite formation and growth at different discharge/charge C-rates. All-solid-state batteries were obtained with a high cycling stability and Coulombic efficiency at 65 °C. PMID:28149953

  17. Solid state nanopores for gene expression profiling

    NASA Astrophysics Data System (ADS)

    Mussi, V.; Fanzio, P.; Repetto, L.; Firpo, G.; Valbusa, U.; Scaruffi, P.; Stigliani, S.; Tonini, G. P.

    2009-07-01

    Recently, nanopore technology has been introduced for genome analysis. Here we show results related to the possibility of preparing "engineered solid state nanopores". The nanopores were fabricated on a suspended Si 3N 4 membrane by Focused Ion Beam (FIB) drilling and chemically functionalized in order to covalently bind oligonucleotides (probes) on their surface. Our data show the stable effect of DNA attachment on the ionic current measured through the nanopore, making it possible to conceive and develop a selective biosensor for gene expression profiling.

  18. Nanoengineering for solid-state lighting.

    SciTech Connect

    Schubert, E. Fred; Koleske, Daniel David; Wetzel, Christian; Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu; Crawford, Mary Hagerott; Fischer, Arthur Joseph

    2009-09-01

    This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

  19. The 60 GHz solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Mcclymonds, J.

    1991-01-01

    A new amplifier architecture was developed during this contract that is superior to any other solid state approach. The amplifier produced 6 watts with 4 percent efficiency over a 2 GHz band at 61.5 GHz. The unit was 7 x 9 x 3 inches in size, 5.5 pounds in weight, and the conduction cooling through the baseplate is suitable for use in space. The amplifier used high efficiency GaAs IMPATT diodes which were mounted in 1-diode circuits, called modules. Eighteen modules were used in the design, and power combining was accomplished with a proprietary passive component called a combiner plate.

  20. Pulsed Power for Solid-State Lasers

    SciTech Connect

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  1. Enhancing the photoelectrochemical water splitting characteristics of titanium and tungsten oxide based materials via doping and sensitization

    NASA Astrophysics Data System (ADS)

    Gakhar, Ruchi

    To better utilize solar energy for clean energy production, efforts are needed to overcome the natural diurnal variation and the diffuse nature of sunlight. Photoelectrochemical (PEC) hydrogen generation by water splitting is a promising approach to harvest solar energy. Hydrogen gas is a clean and high energy capacity fuel. However, the solar-to-hydrogen conversion efficiency is determined mainly by the properties of the materials employed as photoanodes. Improving the power-conversion efficiency of PEC water splitting requires the design of inexpensive and efficient photoanodes that have strong visible light absorption, fast charge separation, and lower charge recombination rate. In the present study, PEC characteristics of various semiconducting photoelectrodes such as TiO2, WO3 and CuWO4 were investigated. Due to the inherent wide gap, such metal oxides absorb only ultraviolet radiation. Since ultraviolet radiation only composes of 4% of the sun's spectrum, the wide band gap results in lower charge collection and efficiency. Thusto improve optical absorption and charge separation, it is necessary to modify the band gap with low band gap materials.The two approaches followed for modification of band gap are doping and sensitization. Here, TiO2 and WO3 based photoanodes were sensitized with ternary quatum dots, while doping was the primary method utilized to investigate the modification of the band gap of CuWO4. The first part of this dissertation reports the synthesis of ternary quantum dot - sensitized titania nanotube array photoelectrodes. Ternary quantum dots with varying band gaps and composition (MnCdSe, ZnCdSe and CdSSe) were tethered to the surface of TiO2 nanotubes using succcessive ionic layer adsorption and reaction (SILAR) technique. The stoichiometry of ternary quantum dots was estimated to beMn0.095Cd0.95Se, Zn0.16Cd0.84Se and CdS0.54Se0.46. The effect of varying number of sensitization cycles and annealing temperature on optical and

  2. Novel Li[(CF3SO2)(n-C4F9SO2)N]-Based Polymer Electrolytes for Solid-State Lithium Batteries with Superior Electrochemical Performance.

    PubMed

    Ma, Qiang; Qi, Xingguo; Tong, Bo; Zheng, Yuheng; Feng, Wenfang; Nie, Jin; Hu, Yong-Sheng; Li, Hong; Huang, Xuejie; Chen, Liquan; Zhou, Zhibin

    2016-11-02

    Solid polymer electrolytes (SPEs) would be promising candidates for application in high-energy rechargeable lithium (Li) batteries to replace the conventional organic liquid electrolytes, in terms of the enhanced safety and excellent design flexibility. Herein, we first report novel perfluorinated sulfonimide salt-based SPEs, composed of lithium (trifluoromethanesulfonyl)(n-nonafluorobutanesulfonyl)imide (Li[(CF3SO2)(n-C4F9SO2)N], LiTNFSI) and poly(ethylene oxide) (PEO), which exhibit relatively efficient ionic conductivity (e.g., 1.04 × 10(-4) S cm(-1) at 60 °C and 3.69 × 10(-4) S cm(-1) at 90 °C) and enough thermal stability (>350 °C), for rechargeable Li batteries. More importantly, the LiTNFSI-based SPEs could not only deliver the excellent interfacial compatibility with electrodes (e.g., Li-metal anode, LiFePO4 and sulfur composite cathodes), but also afford good cycling performances for the Li|LiFePO4 (>300 cycles at 1C) and Li-S cells (>500 cycles at 0.5C), in comparison with the conventional LiTFSI (Li[(CF3SO2)2N])-based SPEs. The interfacial impedance and morphology of the cycled Li-metal electrodes are also comparatively analyzed by electrochemical impedance spectra and scanning electron microscopy, respectively. These indicate that the LiTNFSI-based SPEs would be potential alternatives for application in high-energy solid-state Li batteries.

  3. Activities of the Solid State Division

    NASA Astrophysics Data System (ADS)

    Green, P. H.; Hinton, L. W.

    1994-08-01

    This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasis on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy.

  4. The Pythagorean Theorem and the Solid State

    NASA Astrophysics Data System (ADS)

    Kelly, Brenda S.; Splittgerber, Allen G.

    2005-05-01

    Solid-state parameters such as radius ratios, packing efficiencies, and crystal densities may be calculated for various crystal structures from basic Euclidean geometry relating to the Pythagorean theorem of right triangles. Because simpler cases are often discussed in the standard inorganic chemistry texts, this article only presents calculations for closest-packed A-type lattices (one type of particle) and several compound AB lattices (A and B particles) including sodium chloride, cesium chloride, zinc blende (sphalerite), wurtzite, and fluorite. For A-type metallic crystals, the use of recommended values of atomic radii results in calculated densities within 1% of observed values. For AB lattices, assuming ionic crystals, the use of recommended values of ionic radii results in density determinations that are usually but not always close to observed values. When there is covalent character to the bonding, the use of covalent radii results in calculated densities that correlate well with observed values. If interionic or interatomic spacings are used, the calculated densities are always close to the observed values. As indicated by a survey of the standard inorganic texts, these calculations are generally not presented. However, as an illustration of the application of simple mathematical principles to the study of chemistry, discussion of the methods presented in this manuscript may be of value in classroom presentations pertaining to the solid state.

  5. Nanocrystal-enabled solid state bonding.

    SciTech Connect

    San Diego State University, San Diego, CA; Puskar, Joseph David; Tikare, Veena; Garcia Cardona, Cristina; Reece, Mark; Brewer, Luke N.; Holm, Elizabeth Ann

    2010-10-01

    In this project, we performed a preliminary set of sintering experiments to examine nanocrystal-enabled diffusion bonding (NEDB) in Ag-on-Ag and Cu-on-Cu using Ag nanoparticles. The experimental test matrix included the effects of material system, temperature, pressure, and particle size. The nanoparticle compacts were bonded between plates using a customized hot press, tested in shear, and examined post mortem using microscopy techniques. NEDB was found to be a feasible mechanism for low-temperature, low-pressure, solid-state bonding of like materials, creating bonded interfaces that were able to support substantial loads. The maximum supported shear strength varied substantially within sample cohorts due to variation in bonded area; however, systematic variation with fabrication conditions was also observed. Mesoscale sintering simulations were performed in order to understand whether sintering models can aid in understanding the NEDB process. A pressure-assisted sintering model was incorporated into the SPPARKS kinetic Monte Carlo sintering code. Results reproduce most of the qualitative behavior observed in experiments, indicating that simulation can augment experiments during the development of the NEDB process. Because NEDB offers a promising route to low-temperature, low-pressure, solid-state bonding, we recommend further research and development with a goal of devising new NEDB bonding processes to support Sandia's customers.

  6. An ultrasensitive photoelectrochemical nucleic acid biosensor

    PubMed Central

    Gao, Zhiqiang; Tansil, Natalia C.

    2005-01-01

    A simple and ultrasensitive procedure for non-labeling detection of nucleic acids is described in this study. It is based on the photoelectrochemical detection of target nucleic acids by forming a nucleic acid/photoreporter adduct layer on an ITO electrode. The target nucleic acids were hybridized with immobilized oligonucleotide capture probes on the ITO electrode. A subsequent binding of a photoreporter—a photoactive threading bis-intercalator consisting of two N,N′-bis(3-propyl-imidazole)-1,4,5,8-naphthalene diimides (PIND) linked by a Ru(bpy)22+ (bpy = 2,2′-bipyridine) complex (PIND–Ru–PIND)—allowed for photoelectrochemical detection of the target nucleic acids. The extremely low dissociation rate of the adduct and the highly reversible photoelectrochemical response under visible light illumination (490 nm) make it possible to conduct nucleic acid detection, with a sensitivity enhancement of four orders of magnitude over voltammetry. These results demonstrate for the first time the potential of photoelectrochemical biosensors for PCR-free ultrasensitive detection of nucleic acids. PMID:16061935

  7. Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Hou, Xiandeng; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-04-01

    Ratiometric fluorescent sensors, which can provide built-in self-calibration for correction of a variety of analyte-independent factors, have attracted particular attention for analytical sensing and optical imaging with the potential to provide a precise and quantitative analysis. A wide variety of ratiometric sensing probes using small fluorescent molecules have been developed. Compared with organic dyes, exploiting semiconductor quantum dots (QDs) in ratiometric fluorescence sensing is even more intriguing, owing to their unique optical and photophysical properties that offer significant advantages over organic dyes. In this review, the main photophysical mechanism for generating dual-emission from QDs for ratiometry is discussed and categorized in detail. Typically, dual-emission can be obtained either with energy transfer from QDs to dyes or with independent dual fluorophores of QDs and dye/QDs. The recent discovery of intrinsic dual-emission from Mn-doped QDs offers new opportunities for ratiometric sensing. Particularly, the signal transduction of QDs is not restricted to fluorescence, and electrochemiluminescence and photoelectrochemistry from QDs are also promising for sensing, which can be made ratiometric for correction of interferences typically encountered in electrochemistry. All these unique photophysical properties of QDs lead to a new avenue of ratiometry, and the recent progress in this area is addressed and summarized here. Several interesting applications of QD-based ratiometry are presented for the determination of metal ions, temperature, and biomolecules, with specific emphasis on the design principles and photophysical mechanisms of these probes.

  8. Solid-State Modulator R&D at LLNL

    SciTech Connect

    Cook, E G; Allen, F V; Anaya, E M; Gower, E J; Hawkins, S A; Hickman, B C; Lee, B S; Sullivan, J S; Watson, J A; Brooksby, C A; Yuhas, J; Cassel, R; Nguyen, M; Pappas, C; deLamare, J

    2002-12-04

    The Beam Research Program at Lawrence Livermore National Laboratory (LLNL) has been developing solid-state modulators for accelerator applications for several years. These modulators are based on inductive adder circuit topology and have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. These modulators are also capable of being scaled to higher output voltage and power levels. An explanation of the circuit operation will be presented along with test data of several different hardware systems.

  9. Barocaloric effect and the pressure induced solid state refrigerator

    NASA Astrophysics Data System (ADS)

    de Oliveira, N. A.

    2011-03-01

    The current refrigerators are based on the heating and cooling of fluids under external pressure variation. The great inconvenience of this refrigeration technology is the damage caused to the environment by the refrigerant fluids. In this paper, we discuss the magnetic barocaloric effect, i.e., the heating or cooling of magnetic materials under pressure variation and its application in the construction of refrigerators using solid magnetic compounds as refrigerant materials and pressure as the external agent. The discussion presented in this paper points out that such a pressure induced solid state refrigerator can be very interesting because it is not harmful to the environment and can exhibit a good performance.

  10. Solid-state monolithic electrochromic switchable visors and spectacles

    NASA Astrophysics Data System (ADS)

    Demiryont, Hulya; Shannon, Kenneth, III

    2010-04-01

    There is a need for variable transmission technology for Goggles, Spectacles, and visors for Helmet-Mounted Displays (HMDs). At present, most HMD's do not allow the pilot to control the transmission level of a flight visor while transitioning from high to low light levels throughout flight. Sunglasses are often used for non-HMD conditions but become impractical for HMD use. For individuals moving from high to low brightness levels, momentary blindness is an issue in both recreational sports and military applications. A user-controlled or automatically controllable variabletransmittance lens is a possible solution. The Eclipse Visible Electrochromic Device (EclipseECDTM) is well suited for these light modulation applications. The EclipseECDTM modulates light intensity by changing the absorption level under an applied electric field. The optical density may be continuously changed by varying voltage allowing for analog instead of digital (on/off) light levels. EclipseECDTM is comprised of vacuum deposited layers of a transparent bottom electrode, an active element, and a transparent top electrode, incorporating an all, solid-state electrolyte. The solid-state electrolyte eliminates possible complications associated with gel-based or liquid crystal based technologies including lamination, and precludes the need for additional visor modifications. This all solid-state ECD system can be deposited on flexible substrates, eg. PET, PC, etc. The low-temperature deposition process enables direct application to polymer lenses and HMD flight visors. Additionally, the coating is easily manufactured; can be trimmed, has near spectral neutrality and fails in the clear (bleached) condition.

  11. Solid-state monolithic electrochromic switchable visors and spectacles

    NASA Astrophysics Data System (ADS)

    Demiryont, Hulya; Shannon, Kenneth, III

    2009-05-01

    There is a need for variable transmission technology for Goggles, Spectacles, and visors for Helmet-Mounted Displays (HMDs). At present, most HMDs do not allow the pilot to control the transmission level of a flight visor while transitioning from high to low light levels throughout flight. Sunglasses are often used for non-HMD conditions but become impractical for HMD use. For individuals moving from high to low brightness levels, momentary blindness is an issue in both recreational sports and military applications. A user-controlled or automatically controllable variabletransmittance lens is a possible solution. The Eclipse Visible Electrochromic Device (EclipseECDTM) is well suited for these light modulation applications. The EclipseECDTM modulates light intensity by changing the absorption level under an applied electric field. The optical density may be continuously changed by varying voltage allowing for analog instead of digital (on/off) light levels. EclipseECDTM is comprised of vacuum deposited layers of a transparent bottom electrode, an active element, and a transparent top electrode, incorporating an all, solid-state electrolyte. The solid-state electrolyte eliminates possible complications associated with gel-based or liquid crystal based technologies including lamination, and precludes the need for additional visor modifications. This all solid-state ECD system can be deposited on flexible substrates, eg. PET, PC, etc. The low-temperature deposition process enables direct application to polymer lenses and HMD flight visors. Additionally, the coating is easily manufactured; can be trimmed, has near spectral neutrality and fails in the clear (bleached) condition.

  12. Ultrathin two-dimensional inorganic materials: new opportunities for solid state nanochemistry.

    PubMed

    Sun, Yongfu; Gao, Shan; Lei, Fengcai; Xiao, Chong; Xie, Yi

    2015-01-20

    CONSPECTUS: The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties of solid state materials. Solid materials can generally be classified as amorphous, quasicrystalline, and crystalline based on their atomic arrangement, in which crystalline materials can be further divided into single crystals, microcrystals, and nanocrystals. Conventional solid state chemistry mainly focuses on studying single crystals and microcrystals, while recently nanocrystals have become a hot research topic in the field of solid state chemistry. As more and more nanocrystalline materials have been artificially fabricated, the solid state chemistry for studying those nanosolids has become a new subdiscipline: solid state nanochemistry. However, solid state nanochemistry, usually called "nanochemistry" for short, primarily studies the microstructures and macroscopic properties of a nanomaterial's aggregation states. Due to abundant microstructures in the aggregation states, it is only possible to build a simple but imprecise correlation between the microscopic morphology and the macroscopic properties of the nanostructures. Notably, atomically thin two-dimensional inorganic materials provide an ideal platform to establish clear structure-property relationships in the field of solid state nanochemistry, thanks to their homogeneous dispersion without the assistance of a capping ligand. In addition, their atomic structures including coordination number, bond length, and disorder degree of the examined atoms can be clearly disclosed by X-ray absorption fine structure spectroscopy. Also, their more exposed interior atoms would inevitably induce the formation of various defects, which would have a non-negligible effect on their physicochemical properties. Based on the obtained atomic and defect structural characteristics, density-functional calculations are performed to study their electronic structures

  13. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II) Ions.

    PubMed

    Ibrahim, I; Lim, H N; Huang, N M; Pandikumar, A

    2016-01-01

    A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.

  14. Design and development of 1 KW solid state RF amplifier

    NASA Astrophysics Data System (ADS)

    Ashok, Gayatri; Kadia, Bhavesh; Jain, Pragya; Kulkarni, S. V.; ICRH-RF Group

    2010-02-01

    Since low power tube based RF amplifiers are complicated, occupy a large space and are bulky, the efforts are on to develop indigenously 1 KW solid state technology based RF Power amplifier. A power level of 1KW is chosen for the initial design because RF power Mosfets upto 250 watt are easily available and by clubbing 3-4 stages the power level of 1 KW can be made. Presently design and testing of 100-watt stage is in progress. The first 2 stages are designed to give 5 Watt RF power using bipolar transistors and are operated in CE, Class A to provide low noise level at the output of the system. The 3rd stage will be MOSFET based MRF 174, which is ideally suited for class A operation and is designed for 100 Watt RF power. The last stage will be MOSFET based ARF446 power MOSFET in TO-247 plastic package. This amplifier will be used in the classical push- pull configuration. This paper describes the design aspects as well as the test results of 100 watt amplifier on 50 Ohm dummy load along with the specifications, design criteria, circuit used, operating parameters of 1 KW Solid State RF power amplifier to be used as driver for 91.2 MHz, 1.5 MW stage for ICRH experiments on SST-1 tokamak .

  15. Analysis of Technology for Solid State Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1997-01-01

    Over the past few years, considerable advances have been made in the areas of the diode-pumped, eye-safe, solid state lasers, wide bandwidth, semiconductor detectors operating in the near-infrared region. These advances have created new possibilities for the development of low-cost, reliable, and compact coherent lidar systems for measurements of atmospheric winds and aerosol backscattering from a space-based platform. The work performed by the UAH personnel concentrated on design and analyses of solid state pulsed coherent lidar systems capable of measuring atmospheric winds from space, and design and perform laboratory experiments and measurements in support of solid state laser radar remote sensing systems which are to be designed, deployed, and used by NASA to measure atmospheric processes and constituents. A lidar testbed system was designed and analyzed by considering the major space operational and environmental requirements, and its associated physical constraints. The lidar optical system includes a wedge scanner and the compact telescope designed by the UAH personnel. The other major optical components included in the design and analyses were: polarizing beam splitter, routing mirrors, wave plates, signal beam derotator, and lag angle compensator. The testbed lidar optical train was designed and analyzed, and different design options for mounting and packaging the lidar subsystems and components and support structure were investigated. All the optical components are to be mounted in a stress-free and stable manner to allow easy integration and alignment, and long term stability. This lidar system is also intended to be used for evaluating the performance of various lidar subsystems and components that are to be integrated into a flight unit and for demonstrating the integrity of the signal processing algorithms by performing actual atmospheric measurements from a ground station.

  16. Plasmon enhanced photoelectrochemical sensing of mercury (II) ions in human serum based on Au@Ag nanorods modified TiO₂ nanosheets film.

    PubMed

    Zhang, Yong; Shoaib, Anwer; Li, Jiaojiao; Ji, Muwei; Liu, Jiajia; Xu, Meng; Tong, Bin; Zhang, Jiatao; Wei, Qin

    2016-05-15

    Taking advantages of the monodisperse TiO2 nanosheets (NSs) with high active crystal face exposure and the tunable localized surface plasmon resonance (LSPR) properties of Au@Ag nanorods (NRs), this study demonstrated that TiO2 NSs film with trace amount of Au@Ag NRs modification possess a strong enhancement of photocurrent response, which was remarkably inhibited with the addition of mercury (II) ions (Hg(2+)). Based on the selective decrease of photocurrent with the addition of Hg(2+), a simple photoelectrochemical (PEC) sensor has been assembled. The PEC sensor exhibits wide linear range (0.01-10nM), low detection limit (2.5 pM), satisfying selectivity, reproducibility and acceptable stability for Hg(2+) detection. The feasibility of this method for practical application in human serum has been evaluated and the result was satisfactory. This PEC sensing method would provide a potential application for Hg(2+) detection in clinical diagnosis.

  17. Solid state synthesis of homoleptic tetracyanamidoaluminates.

    PubMed

    Unverfehrt, Leonid; Kalmutzki, Markus; Ströbele, Markus; Meyer, H-Jürgen

    2011-10-14

    Tetracyanamidoaluminates of the type LiM(2)[Al(CN(2))(4)] with M = Eu and Sr were prepared by solid-state metathesis reactions departing from EuF(2) (or SrF(2)), AlF(3), and Li(2)(CN(2)) in a 2 : 1 : 4 molar ratio. The ignition temperature of the exothermic formation of LiSr(2)[Al(CN(2))(4)] was obtained near 420 °C. An X-ray single-crystal structure refinement performed for LiEu(2)[Al(CN(2))(4)] revealed the presence of the novel homoleptic [Al(CN(2))(4)](5-) ion in the structure. The X-ray powder diffraction pattern of LiSr(2)[Al(CN(2))(4)] was indexed isotypically.

  18. An active solid state ring laser gyroscope

    SciTech Connect

    Valle, T.J.

    1992-01-01

    The properties of an active, solid state ring laser gyroscope were investigated. Two laser diode pumped monolithic nonplanar ring oscillators (NPRO), forced to lase in opposite directions, formed the NPRO-Gyro. It was unique in being an active ring laser gyroscope with a homogeneously broadened gain medium. This work examined sources of technical and fundamental noise. Associated calculations accounted for aspects of the NPRO-Gyro performance, suggested design improvements, and outlined limitations. The work brought out the need to stabilize the NPRO environment in order to achieve performance goals. Two Nd:YAG NPROs were mounted within an environment short term stabilized to microdegrees Celsius. The Allan variance of the NPRO-Gyro beat note was 500 Hz for a one second time delay. Unequal treatment of the NPROs appeared as noise on the beat frequency, therefore reducing its rotation sensitivity. The sensitivity to rotation was limited by technical noise sources.

  19. Solid-state single-photon emitters

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  20. High-efficiency solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)

    2005-01-01

    A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.

  1. Solid state potentiometric gaseous oxide sensor

    NASA Technical Reports Server (NTRS)

    Wachsman, Eric D. (Inventor); Azad, Abdul Majeed (Inventor)

    2003-01-01

    A solid state electrochemical cell (10a) for measuring the concentration of a component of a gas mixture (12) includes first semiconductor electrode (14) and second semiconductor electrode (16) formed from first and second semiconductor materials, respectively. The materials are selected so as to undergo a change in resistivity upon contacting a gas component, such as CO or NO. An electrolyte (18) is provided in contact with the first and second semiconductor electrodes. A reference cell can be included in contact with the electrolyte. Preferably, a voltage response of the first semiconductor electrode is opposite in slope direction to that of the second semiconductor electrode to produce a voltage response equal to the sum of the absolute values of the control system uses measured pollutant concentrations to direct adjustment of engine combustion conditions.

  2. New branch of solid-state physics

    NASA Astrophysics Data System (ADS)

    Panin, V. Ye.

    1987-10-01

    Research in solid-state physics branched out in a new direction, concerning highly excited states in crystals, upon publication of the article, Atom Vacancy States in Crystals. Perturbation theory and translational symmetry not being applicable here, new concepts had to be developed. Any distortion of the crystal structure must be treated not simply as a defect but as an allowed state genetically latent within the electron energy spectrum of a crystal. Five articles on the subject have been published: Highly Excited States in Crystals; Spectrum of Excited States and Vortical Mechanical Field in Deformed Crystal; Modification of Properties of Metals by High Power Ion Beams; Anomalous Hall Effect in Disordered Ferromagnetic Alloys of Transition Metals; and Restructurization of Atomic Condensed State Under Strong External Influencing Action. These articles are briefly discussed.

  3. Experimental aspects of solid-state voltammetry

    SciTech Connect

    Wooster, T.T.; Longmire, M.L.; Zhang, H.

    1992-05-15

    This paper describes the properties of poly(ether) polymer electrolytes as solvent media for solid-state voltammetry. Experimental requirements for microelectrode voltammetry and results for the dependency of diffusive transport of electroactive solutes on polymer solvent molecular weight, structure, and temperature (and related phase state) are described for eight poly(ether)s: linear poly(ethylene oxides) MW = 400, 1000, 2000, and 600 000 (Me{sub 2}PEG-400, Me{sub 2}PEG-1000, Me{sub 2}PEG-2000, PEO-600 000), linear poly(propylene oxide) MW = 4000 (PPO-4000), the comb polymer poly(bis[(methoxyethoxy)ethoxy]phosphazine) (MEEP), the block copolymer poly(ether)-poly(urethane urea)(PEUU), and the cross-linked poly(ether) network PEO. 28 refs., 10 figs., 1 tab.

  4. Solid state dye laser for medical applications

    NASA Astrophysics Data System (ADS)

    Aldag, Henry R.

    1994-06-01

    The development of solid state dye lasers could lead to a major breakthrough in the cost and compactness of a medical device. Advantages include: elimination of the flow system for the gain medium; ease with which to implement wavelength agility or the replacement of a degraded rod or sheet; and toxicity and flammability become a non-issue. Dye lasers have played a role in cardiology, dermatology, and urology. Of these cardiology is of interest to Palomar. The Palomar Model 3010 flashlamp-pumped dye laser medical device was used during phase 1 FDA clinical trials to break-up blood clots that cause heart attacks, a process known as coronary laser thrombolysis. It is the objective of this research and development effort to produce solid matrix lasers that will replace liquid dye lasers in these medical specialties.

  5. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  6. Solid-state curved focal plane arrays

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Hoenk, Michael (Inventor); Jones, Todd (Inventor)

    2010-01-01

    The present invention relates to curved focal plane arrays. More specifically, the present invention relates to a system and method for making solid-state curved focal plane arrays from standard and high-purity devices that may be matched to a given optical system. There are two ways to make a curved focal plane arrays starting with the fully fabricated device. One way, is to thin the device and conform it to a curvature. A second way, is to back-illuminate a thick device without making a thinned membrane. The thick device is a special class of devices; for example devices fabricated with high purity silicon. One surface of the device (the non VLSI fabricated surface, also referred to as the back surface) can be polished to form a curved surface.

  7. Supramolecular interactions in the solid state

    PubMed Central

    Resnati, Giuseppe; Boldyreva, Elena; Bombicz, Petra; Kawano, Masaki

    2015-01-01

    In the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state. The topics covered are: (1) an overview and historical review of halogen bonding; (2) exploring non-ambient conditions to investigate intermolecular interactions in crystals; (3) the role of intermolecular interactions in morphotropy, being the link between isostructurality and polymorphism; (4) strategic realisation of kinetic coordination polymers by exploiting multi-interactive linker molecules. The discussion touches upon many of the prerequisites for controlled preparation and characterization of crystalline materials. PMID:26594375

  8. Solid-state spectral transmissometer and radiometer

    NASA Technical Reports Server (NTRS)

    Carder, K. L.; Steward, R. G.; Payne, P. R.

    1985-01-01

    An in situ instrument designed to measure the spectral attenuation coefficient of seawater and the ocean remote-sensing reflectance from 400 to 750 nm is in the test and development stage. It employs a 256 channel, charge-coupled type of linear array measuring the spectral intensities diffracted by a grating. Examples of the types of data delivered by this instrument have been simulated using a breadboard laboratory instrument and an above-water, solid-state radiometer. Algorithms developed using data from these instruments provide measures of chlorophyll a plus phaeophytin a concentrations from less than 0.1 to 77.0 mg/cu m, gelbstoff spectral absorption coefficients, and detrital spectral backscattering coefficients for waters of the west Florida shelf.

  9. Solid-State Spectral Light Source System

    NASA Technical Reports Server (NTRS)

    Maffione, Robert; Dana, David

    2011-01-01

    A solid-state light source combines an array of light-emitting diodes (LEDs) with advanced electronic control and stabilization over both the spectrum and overall level of the light output. The use of LEDs provides efficient operation over a wide range of wavelengths and power levels, while electronic control permits extremely stable output and dynamic control over the output. In this innovation, LEDs are used instead of incandescent bulbs. Optical feedback and digital control are used to monitor and regulate the output of each LED. Because individual LEDs generate light within narrower ranges of wavelengths than incandescent bulbs, multiple LEDs are combined to provide a broad, continuous spectrum, or to produce light within discrete wavebands that are suitable for specific radiometric sensors.

  10. A solid state lightning propagation speed sensor

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Rust, W. David

    1989-01-01

    A device to measure the propagation speeds of cloud-to-ground lightning has been developed. The lightning propagation speed (LPS) device consists of eight solid state silicon photodetectors mounted behind precision horizontal slits in the focal plane of a 50-mm lens on a 35-mm camera. Although the LPS device produces results similar to those obtained from a streaking camera, the LPS device has the advantages of smaller size, lower cost, mobile use, and easier data collection and analysis. The maximum accuracy for the LPS is 0.2 microsec, compared with about 0.8 microsecs for the streaking camera. It is found that the return stroke propagation speed for triggered lightning is different than that for natural lightning if measurements are taken over channel segments less than 500 m. It is suggested that there are no significant differences between the propagation speeds of positive and negative flashes. Also, differences between natural and triggered dart leaders are discussed.

  11. Solid-state lighting technology perspective.

    SciTech Connect

    Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

    2006-08-01

    Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

  12. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  13. Enhanced electrodes for solid state gas sensors

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    2001-01-01

    A solid state gas sensor generates an electrical potential between an equilibrium electrode and a second electrode indicative of a gas to be sensed. A solid electrolyte substrate has the second electrode mounted on a first portion of the electrolyte substrate and a composite equilibrium electrode including conterminous transition metal oxide and Pt components mounted on a second portion of the electrolyte substrate. The composite equilibrium electrode and the second electrode are electrically connected to generate an electrical potential indicative of the gas that is being sensed. In a particular embodiment of the present invention, the second electrode is a reference electrode that is exposed to a reference oxygen gas mixture so that the electrical potential is indicative of the oxygen in a gas stream.

  14. Solid state neutron dosimeter for space applications

    SciTech Connect

    Nagarkar, V.; Entine, G.; Stoppel, P.; Cirignano, L. ); Swinehart, P. )

    1992-08-01

    One of the most important contributions to the radiation exposure of astronauts engaged in space flight is the significant flux of high energy neutrons arising from both primary and secondary sources of ionizing radiation. Under NASA sponsorship, the authors are developing a solid state neutron sensor capable of being incorporated into a very compact, flight instrument to provide high quality real time measurement of this important radiation flux. The dosimeter uses a special, high neutron sensitivity, PIN diode that is insensitive t the other forms of ionizing radiation. The dosimeter will have the ability to measure and record neutron dose over a range of 50 microgray to tens of milligrays (5 millirads to several rads) over a flight of up to 30 days. the performance characteristics of the PIN diode with a detailed description of the overall dosimeter is presented. in this paper.

  15. Electronically shielded solid state charged particle detector

    SciTech Connect

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1995-12-31

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  16. Compact high voltage solid state switch

    DOEpatents

    Glidden, Steven C.

    2003-09-23

    A compact, solid state, high voltage switch capable of high conduction current with a high rate of current risetime (high di/dt) that can be used to replace thyratrons in existing and new applications. The switch has multiple thyristors packaged in a single enclosure. Each thyristor has its own gate drive circuit that circuit obtains its energy from the energy that is being switched in the main circuit. The gate drives are triggered with a low voltage, low current pulse isolated by a small inexpensive transformer. The gate circuits can also be triggered with an optical signal, eliminating the trigger transformer altogether. This approach makes it easier to connect many thyristors in series to obtain the hold off voltages of greater than 80 kV.

  17. Nanoscale solid-state quantum computing

    NASA Astrophysics Data System (ADS)

    Ardavan, A.; Austwick, M.; Benjamin, S.C.; Briggs, G.A.D.; Dennis, T.J.S.; Ferguson, A.; Hasko, D.G.; Kanai, M.; Khlobystov, A.N.; Lovett, B.W.; Morley, G.W.; Oliver, R.A.; Pettifor, D.G.; Porfyrakis, K.; Reina, J.H.; Rice, J.H.; Smith, J.D.; Taylor, R.A.; Williams, D.A.; Adelmann, C.; Mariette, H.; Hamers, R.J.

    2003-07-01

    Most experts agree that it is too early to say how quantum computers will eventually be built, and several nanoscale solid-state schemes are being implemented in a range of materials. Nanofabricated quantum dots can be made in designer configurations, with established technology for controlling interactions and for reading out results. Epitaxial quantum dots can be grown in vertical arrays in semiconductors, and ultrafast optical techniques are available for controlling and measuring their excitations. Single-walled carbon nanotubes can be used for molecular self-assembly of endohedral fullerenes, which can embody quantum information in the electron spin. The challenges of individual addressing in such tiny structures could rapidly become intractable with increasing numbers of qubits, but these schemes are amenable to global addressing methods for computation.

  18. Magnetic resonance force microscopy and a solid state quantum computer.

    SciTech Connect

    Pelekhov, D. V.; Martin, I.; Suter, A.; Reagor, D. W.; Hammel, P. C.

    2001-01-01

    A Quantum Computer (QC) is a device that utilizes the principles of Quantum Mechanics to perform computations. Such a machine would be capable of accomplishing tasks not achievable by means of any conventional digital computer, for instance factoring large numbers. Currently it appears that the QC architecture based on an array of spin quantum bits (qubits) embedded in a solid-state matrix is one of the most promising approaches to fabrication of a scalable QC. However, the fabrication and operation of a Solid State Quantum Computer (SSQC) presents very formidable challenges; primary amongst these are: (1) the characterization and control of the fabrication process of the device during its construction and (2) the readout of the computational result. Magnetic Resonance Force Microscopy (MRFM)--a novel scanning probe technique based on mechanical detection of magnetic resonance-provides an attractive means of addressing these requirements. The sensitivity of the MRFM significantly exceeds that of conventional magnetic resonance measurement methods, and it has the potential for single electron spin detection. Moreover, the MRFM is capable of true 3D subsurface imaging. These features will make MRFM an invaluable tool for the implementation of a spin-based QC. Here we present the general principles of MRFM operation, the current status of its development and indicate future directions for its improvement.

  19. Higher-efficiency photoelectrochemical electrodes of titanium dioxide-based nanoarrays sensitized simultaneously with plasmonic silver nanoparticles and multiple metal sulfides photosensitizers

    NASA Astrophysics Data System (ADS)

    Guo, Keying; Liu, Zhifeng; Han, Jianhua; Zhang, Xueqi; Li, Yajun; Hong, Tiantian; Zhou, Cailou

    2015-07-01

    This paper describes a novel design of high-efficiency photoelectrochemical water splitting electrode, i.e., ordered TiO2 nanorod arrays (NRs) sensitized simultaneously with noble metal (Ag), binary metal sulfides (Ag2S) and ternary metal sulfides (Ag3CuS2) multiple photosensitizers for the first time. The TiO2/Ag/Ag2S/Ag3CuS2 NRs heterostructure is successfully synthesized through successive ion layer adsorption and reaction (SILAR) and a simple ion-exchange process based on ionic reaction mechanism. On the basis of an optimal quantity of Ag, Ag2S and Ag3CuS2 nanoparticles, such TiO2/Ag/Ag2S/Ag3CuS2 NRs exhibit a higher photoelectrochemical activity ever reported for TiO2-based nanoarrays in PEC water splitting, the photocurrent density is up to 9.82 mA cm-2 at 0.47 V versus Ag/AgCl, respectively. This novel architecture is able to increase electron collection efficiency and suppress carrier recombination via (i) a higher efficiency of light-harvesting through these multiple photosensitizers (Ag, Ag2S and Ag3CuS2); (ii) the efficient separation of photo-induced electrons and holes due to the direct electrical pathways; (iii) the surface plasmon resonance (SPR) effect of Ag nanoparticles, which enhances the efficient charge separation and high carrier mobility. This work is useful to explore feasible routes to further enhance the performance of oxide semiconductors for PEC water splitting to produce clean H2 energy.

  20. Solid-State High-Temperature Power Cells

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; West, William

    2008-01-01

    All-solid-state electrochemical power cells have been fabricated and tested in a continuing effort to develop batteries for instruments for use in environments as hot as 500 C. Batteries of this type are needed for exploration of Venus, and could be used on Earth for such applications as measuring physical and chemical conditions in geothermal and oil wells, processing furnaces, and combustion engines. In the state-of-the-art predecessors of the present solid-state power cells, fully packaged molten eutectic salts are used as electrolytes. The molten-salt-based cells can be susceptible to significant amounts of self-discharge and corrosion when used for extended times at elevated temperatures. In contrast, all-solid-state cells such as the present ones are expected to be capable of operating for many days at temperatures up to 500 C, without significant self-discharge. The solid-state cell described here includes a cathode made of FeS2, an electrolyte consisting of a crystalline solid solution of equimolar amounts of Li3PO4 and Li4SiO4, and an anode made of an alloy of Li and Si (see figure). The starting material for making the solid electrolyte is a stoichiometric mixture of Li3PO4, SiO2, and Li3CO2. This mixture is ball-milled, then calcined for two hours at a temperature of 1,100 C, then placed in a die atop the cathode material. Next, the layers in the die are squeezed together at a pressure between 60 and 120 MPa for one hour at a temperature of 600 C to form a unitary structure comprising the solid electrolyte and cathode bonded together. Finally, the lithium-alloy anode is pressure-bonded to the solid electrolyte layer, using an intermediate layer of pure lithium. In one test of a cell of this type, a discharge rate of about 1 mA per gram of cathode material was sustained for 72 hours at a temperature of about 460 C. This is about three times the discharge rate required to support some of the longer duration Venus-exploration mission scenarios.

  1. Self-assembly solid-state enhanced red emission of quinolinemalononitrile: optical waveguides and stimuli response.

    PubMed

    Shi, Chuanxing; Guo, Zhiqian; Yan, Yongli; Zhu, Shiqin; Xie, Yongshu; Zhao, Yong Sheng; Zhu, Weihong; Tian, He

    2013-01-01

    The fluorescence of luminescent emitters is often quenched in the solid state, because of the typical aggregation-caused quenching (ACQ) effect, which is a thorny obstacle to high-performance organic optoelectronic materials. The exploration of solid-state enhanced long wavelength, red-emitting chromophores, especially possessing one-dimensional (1D) assembly features, is of great importance. Interestingly, an excellent solid-state enhanced red emission system (denoted as ED) based on quinolinemalononitrile has been developed via the delicate modification of the conventional ACQ dicyanomethylene-4H-pyran (DCM) derivative (denoted as BD) through crystal engineering. ED exhibits extraordinary self-assembly property in a variety of solvents, even realizing the "waving ribbons" with a length of 6 mm and a diameter of 10 μm. Crystal analysis shows that the CH···π and CH···N supramolecular interactions of ED contribute to the twisted self-assembly solid-state enhanced emission phenomenon. However, for BD, strong face-to-face stacking leads to fluorescence quenching in the solid state. Because of such easy assembly and strong solid-state emission properties, application for optical waveguides of ED is realized with a low optical loss. Stimuli-responsive behavior is also elaborated with color change between orange and red by grinding/fuming or pressing/heating.

  2. Genomic Pathogen Typing Using Solid-State Nanopores

    PubMed Central

    Squires, Allison H.; Atas, Evrim; Meller, Amit

    2015-01-01

    In clinical settings, rapid and accurate characterization of pathogens is essential for effective treatment of patients; however, subtle genetic changes in pathogens which elude traditional phenotypic typing may confer dangerous pathogenic properties such as toxicity, antibiotic resistance, or virulence. Existing options for molecular typing techniques characterize the critical genomic changes that distinguish harmful and benign strains, yet the well-established approaches, in particular those that rely on electrophoretic separation of nucleic acid fragments on a gel, have room for only incremental future improvements in speed, cost, and complexity. Solid-state nanopores are an emerging class of single-molecule sensors that can electrophoretically characterize charged biopolymers, and which offer significant advantages in terms of sample and reagent requirements, readout speed, parallelization, and automation. We present here the first application of nanopores for single-molecule molecular typing using length based “fingerprints” of critical sites in bacterial genomes. This technique is highly adaptable for detection of different types of genetic variation; as we illustrate using prototypical examples including Mycobacterium tuberculosis and methicillin-resistant Streptococcus aureus, the solid-state nanopore diagnostic platform may be used to detect large insertions or deletions, small insertions or deletions, and even single-nucleotide variations in bacterial DNA. We further show that Bayesian classification of test samples can provide highly confident pathogen typing results based on only a few tens of independent single-molecule events, making this method extremely sensitive and statistically robust. PMID:26562833

  3. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II) Ions

    PubMed Central

    Ibrahim, I; Lim, H. N; Huang, N. M; Pandikumar, A

    2016-01-01

    A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5–120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection. PMID:27176635

  4. Solid state lighting devices and methods with rotary cooling structures

    DOEpatents

    Koplow, Jeffrey P.

    2017-03-21

    Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipation methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.

  5. Phenomena of solid state grain boundaries phase transition in technology

    SciTech Connect

    Minaev, Y. A.

    2015-03-30

    The results of study the phenomenon, discovered by author (1971), of the phase transition of grain boundary by the formation of two-dimensional liquid or quasi-liquid films have been done. The described phenomena of the first order phase transition (two-dimensional melting) at temperatures 0.6 – 0.9 T{sub S0} (of the solid state melting point) is a fundamental property of solid crystalline materials, which has allowed to revise radically scientific representations about a solid state of substance. Using the mathematical tools of the film thermodynamics it has been obtained the generalized equation of Clausius - Clapeyron type for two-dimensional phase transition. The generalized equation has been used for calculating grain boundary phase transition temperature T{sub Sf} of any metal, which value lies in the range of (0.55…0.86) T{sub S0}. Based on these works conclusions the develop strategies for effective forming of coatings (by thermo-chemical processing) on surface layers of functional alloys and hard metals have been made. The short overview of the results of some graded alloys characterization has been done.

  6. Tannase Production by Solid State Fermentation of Cashew Apple Bagasse

    NASA Astrophysics Data System (ADS)

    Podrigues, Tigressa H. S.; Dantas, Maria Alcilene A.; Pinto, Gustavo A. S.; Gonçalves, Luciana R. B.

    The ability of Aspergillus oryzae for the production of tannase by solid state fermentation was investigated using cashew apple bagasse (CAB) as substrate. The effect of initial water content was studied and maximum enzyme production was obtained when 60 mL of water was added to 100.0 g of CAB. The fungal strain was able to grow on CAB without any supplementation but a low enzyme activity was obtained, 0.576 U/g of dry substrate (gds). Optimization of process parameters such as supplementation with tannic acid, phosphorous, and different organic and inorganic nitrogen sources was studied. The addition of tannic acid affected the enzyme production and maximum tannase activity (2.40 U/gds) was obtained with 2.5% (w/w) supplementation. Supplementation with ammonium nitrate, peptone, and yeast extract exerted no influence on tannase production. Ammonium sulphate improved the enzyme production in 3.75-fold compared with control. Based on the experimental results, CAB is a promising substrate for solid state fermentation, enabling A. oryzae growth and the production of tannase, with a maximum activity of 3.42 U/gds and enzyme productivity of 128.5×10-3 U·gds -1·h-1.

  7. Fabrication of synthetic apatites by solid-state reactions.

    PubMed

    Fazan, F; Shahida, K B N

    2004-05-01

    The paper presents a method of producing synthetic Hydroxyapatite (HA) Ca10(PO4)6(OH)2 and other apatites for biological use by solid-state reaction. The solid-state reaction involves mix-grinding dry powders of beta-tricalcium phosphate powder (TCP) and either calcium hydroxide (Ca(OH)2) or calcium carbonate (CaCO3) or combination thereof, from pure commercial chemicals or derived from natural limestone or from seashells, of total calcium/phosphorus molar ratio between 1.5 to 2.0, to particle size of less than 10 microns, and firing the resultant powder to temperature between 600 degrees C - 1250 degrees C in atmosphere or in controlled atmospheric condition. The resultant apatites formed were characterised using XRD, SEM-EDX and FTIR. The presented reaction process was found to be much simpler compared to conventional methods of producing synthetic apatites since it involves only dry mix-grinding of the reactants before firing at high temperatures based on the required levels of purity. It can also produce synthetic apatites with good reproducibility in a shorter time. Thus the presented method has a great industrial value.

  8. High-speed microvia formation with UV solid state lasers

    NASA Astrophysics Data System (ADS)

    Dunsky, Corey M.; Matsumoto, Hisashi; Simenson, Glenn

    2002-02-01

    Laser drilling has emerged in the last five years as the most widely accepted method of creating microvias in high- density electronic inter connect and chip packaging devices. Most commercially available laser drilling tools are currently based on one of two laser types: far-IR CO2 lasers and UV solid state lasers at 355 nm. While CO2 lasers are recognized for their high average power and drilling throughput, UV lasers are known for high precision material removal and their ability to drill the smallest vias, with diameters down to about 25-30 micrometers now achievable in production. This paper presents a historical overview of techniques for drilling microvias with UV solid state lasers. Blind and through via formation by percussion drilling, trepanning, spiralling, and image projection with a shaped beam are discussed. Advantages and range of applicability of each technique are summarized. Drivers of throughput scaling over the last five years are outlined and representative current-generation performance is presented.

  9. Coherent characteristics of solid-state lasers with corner cubes.

    PubMed

    Cheng, Yong; Liu, Xu; Liu, Yang; Tan, Chaoyong; Chen, Xia; Zhu, Mengzhen; Mi, Chaowei; Sun, Bin

    2014-05-20

    A corner cube (CC) as a peculiar coherent combination element is first, to the best of our knowledge, theoretically and experimentally proved by the authors. When a CC is used as a total-reflecting mirror in the solid-state laser resonator it can improve the laser far-field energy focalization. Furthermore, the differences between the coherent characteristics of the lasers with a corner cube resonator (CCR) and those with a Fabry-Perot resonator have been investigated, respectively. Theoretical calculation and numerical simulation have proved that the symmetric output beams of the CCR laser are coherent and the adjacent output beams are partially coherent. Based on these special coherent characteristics, a new laser coherent combining configuration, in which a CC was utilized as a total-reflecting mirror, was proposed and experimentally investigated. In our experiments, the measured far-field intensity profiles of coherent combing laser arrays are in good agreement with the numerical simulation. These novel coherent characteristics of a CC may be important for applications in solid-state lasers and laser coherent combining systems, and coherent combination may be one of the development trends and future research directions for CCR lasers.

  10. Improved Detection of Fast Neutrons with Solid-State Electronics

    NASA Astrophysics Data System (ADS)

    Chatzakis, J.; Hassan, S. M.; Clark, E. L.; Talebitaher, A.; Lee, P.

    2014-02-01

    There is an increasing requirement for alternative and improved detection of fast neutrons due to the renewed interest in neutron diagnostics applications. Some applications require heavily shielded neutron sources that emit a substantial proportion of their emission as fast neutrons and so require high performance fast neutron detectors. In some applications, the detection of neutron bursts from pulsed neutron sources has to be synchronized to the repetition rate of the source. Typical fast neutron detectors incorporate scintillators that are sensitive to all kinds of ionizing radiations as well as neutrons, and their efficiency is low. In this paper, we present a device based on the principle of neutron activation coupled to solid-state p-i-n diodes connected to a charge amplifier. The charge amplifier is specially developed to operate with high capacitance detectors and has been optimized by the aid of the SPICE program. A solid-state pulse shaping filter follows the charge amplifier, as an inexpensive solution, capable to provide pulses that can be counted by a digital counter.

  11. Probe DNA-Cisplatin Interaction with Solid-State Nanopores

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Hu, Ying; Li, Wei; Xu, Zhi; Wang, Pengye; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua; Nanopore Collaboration

    2014-03-01

    Understanding the mechanism of DNA-cisplatin interaction is essential for clinical application and novel drug design. As an emerging single-molecule technology, solid-state nanopore has been employed in biomolecule detection and probing DNA-molecule interactions. Herein, we reported a real-time monitoring of DNA-cisplatin interaction by employing solid-state SiN nanopores. The DNA-cisplatin interacting process is clearly classified into three stages by measuring the capture rate of DNA-cisplatin adducts. In the first stage, the negative charged DNA molecules were partially discharged due to the bonding of positive charged cisplatin and forming of mono-adducts. In the second stage, forming of DNA-cisplatin di-adducts with the adjacent bases results in DNA bending and softening. The capture rate increases since the softened bi-adducts experience a lower barrier to thread into the nanopores. In the third stage, complex structures, such as micro-loop, are formed and the DNA-cisplatin adducts are aggregated. The capture rate decreases to zero as the aggregated adduct grows to the size of the pore. The characteristic time of this stage was found to be linear with the diameter of the nanopore and this dynamic process can be described with a second-order reaction model. We are grateful to Laboratory of Microfabrication, Dr. Y. Yao, and Prof. R.C. Yu (Institute of Physics, Chinese Academy of Sciences) for technical assistance.

  12. Lithium Polymer Electrolytes and Solid State NMR

    NASA Technical Reports Server (NTRS)

    Berkeley, Emily R.

    2004-01-01

    Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for

  13. A novel solid-state electrochemiluminescence sensor based on Ru(bpy)32 + immobilization on TiO2 nanotube arrays and its application for detection of amines in water

    NASA Astrophysics Data System (ADS)

    Xu, Zhihua; Yu, Jiaguo

    2010-06-01

    Many amines are proven or suspected to be carcinogenic and have been implicated in inducing cancer of the bladder. Therefore, the monitoring of their levels in environmental samples is important for the protection of health and the environment. Herein, a novel method for effective immobilization of Ru(bpy)32 + on the electrode surface of TiO2 nanotube arrays (TNs) is developed for the first time. The method involves Ru(bpy)32 + spontaneously adsorbed on the surface of negatively charged TiO2 nanotubes due to electrostatic interaction to produce a Ru(bpy)32 + /TNs/Ti (Ru-TNs-Ti) solid-state electrochemiluminescence (ECL) sensor. The prepared solid-state sensor was used to detect the changes of concentrations of pollutant tripropylamine (TPA) in water. The sensor exhibits excellent ECL behavior, very good stability and high sensitivity. This study may provide new insight into the design and preparation of an advanced solid-state ECL sensor for monitoring of amines in water.

  14. Modified Reference SPS with Solid State Transmitting Antenna

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.; Sperber, B. R.

    1980-01-01

    The development of solid state microwave power amplifiers for a solar power satellite transmitting antenna is discussed. State-of-the-art power-added efficiency, gain, and single device power of various microwave solid state devices are compared. The GaAs field effect transistors and the Si-bipolar transistors appear potentially feasible for solar power satellite use. The integration of solid state devices into antenna array elements is examined and issues concerning antenna integration and consequent satellite configurations are examined.

  15. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    SciTech Connect

    Miller, Michael A.; Page, Richard A.

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  16. Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics

    NASA Astrophysics Data System (ADS)

    Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.

    1994-07-01

    SO4 (X=Si, Ge, Ti) Systems * A DSC and Conductivity Study of the Influence of Cesium Ion on the Beta-Alpha Transition in Silver Iodide * Phase Diagrams, Stoichiometries and Properties of Bi4V2O11:M2+ Solid Electrolytes * Physical Properties of Electrodeposited Silver Chromotungstate * Pseudopotential Study of Bonding in the Superionic Material AgI: The Effect of Statistical Distribution of Mobile Ions * Cubic Phase Dominant Region in Submicron BaTiO3 Particles * The Crystallization of CoZr Amorphous Alloys via Electrical Resistivity * Cation Ratio Related Properties of Synthetic Mg/Al Layered Double Hydroxide and it's Nanocomposite * DC Conductivity of Nano-Particles of Silver Iodide * Effect of Anomalous Diffusion on Quasielastic Scattering in Superionic Conductors * Computer Simulation Study of Conductivity Enhancement in Superionic-Insulator Composites * Dynamics of Superionic Silver and Copper Iodide Salt Melts * Influence of Dopant Salt AgI, Glass Modifier Ag2O and Glass Formers (SeO3 + MoO3) on Electrical Conductivity in Quaternary Glassy System * Fast Ion Conductivity in the Presence of Competitive Network Formers * Role of Alkali Ions in Borate Glasses * Inelastic Light Scattering in Cadmium Borate Glasses * Investigation on Transport Properties of Mixed Glass System 0.75 [0.75AgI:0.25AgCl]. 0.25[Ag2O:CrO3] * Conduction Mechanism in Lithium Tellurite Glasses * Optimized Silver Tungstoarsenate Glass Electrolyte * Stabilized Superfine Zirconia Powder Prepared by Sol-Gel Process * Study of New PAN-based Electrolytes * Electrical and Thermal Characterization of PVA based Polymer Electrolytes * Conductive Electroactive Polymers: Versatile Solid State Ionic Materials * The Role of Ag2O Addition on the Superconducting Properties of Y-124 Compound * Absorption Spectra Studies of the C60 Films on Transition Metal Film Substrates * Effect of Alumina Dispersal on the Conductivity and Crystallite Size of Polymer Electrolyte * New Mixed Galss-Polymer Solid Electrolytes

  17. Solid state photomultiplier for astronomy, phase 2

    NASA Technical Reports Server (NTRS)

    Besser, P. J.; Hays, K. M.; Laviolette, R. A.

    1989-01-01

    Epitaxial layers with varying donor concentration profiles were grown on silicon substrate wafers using chemical vapor deposition (CVD) techniques, and solid state photomultiplier (SSPM) devices were fabricated from the wafers. Representative detectors were tested in a low background photon flux, low temperature environment to determine the device characteristics for comparison to NASA goals for astronomical applications. The SSPM temperatures varied between 6 and 11 K with background fluxes in the range from less than 5 x 10 to the 6th power to 10 to the 13th power photons/square cm per second at wavelengths of 3.2 and 20 cm. Measured parameters included quantum efficiency, dark count rate and bias current. Temperature for optimal performance is 10 K, the highest ever obtained for SSPMs. The devices exhibit a combination of the lowest dark current and highest quantum efficiency yet achieved. Experimental data were reduced, analyzed and used to generate recommendations for future studies. The background and present status of the microscopic theory of SSPM operation were reviewed and summarized. Present emphasis is on modeling of the avalanche process which is the basis for SSPM operation. Approaches to the solution of the Boltzmann transport equation are described and the treatment of electron scattering mechanisms is presented. The microscopic single-electron transport theory is ready to be implemented for large-scale computations.

  18. Solid-state NMR of inorganic semiconductors.

    PubMed

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  19. NASA developments in solid state power amplifiers

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.

    1990-01-01

    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  20. Demonstration of advanced solid state ladar (DASSL)

    NASA Astrophysics Data System (ADS)

    Broome, Kent W.; Carstens, Anne M.; Hudson, J. Roger; Yates, Kenneth L.

    1997-08-01

    The Armament Directorate of Wright Laboratory is tasked with pursuing technologies that lead towards autonomous guidance for conventional munitions. Seeker technologies pursued include SAR, imaging infrared, millimeter wave, and laser radar seekers. Laser Radar, or LADAR, systems using uncooled diode pumped solid state lasers operating around 1 micrometers are active sensors providing high resolution range and intensity imagery. LADAR is not susceptible to variations common to thermal IR systems, allowing greater simplicity of autonomous target acquisition algorithms. Therefore, LADAR sensors combined with advanced algorithms provide robust seeker technology capable of autonomous precision guidance. The small smart bomb (SSB) is a next generation weapon concept requiring this precision guidance. The 250 pound SSB penetrator provides the lethality of 2000 pound penetrators by delivering 50 pounds of high explosive with surgical precision. Space limitations, tightly controlled impact conditions, and high weapon velocities suggest laser radar as a candidate seeker. This paper discusses phase I of the DASSL program in which SSB weapon requirements are flowed down to seeker requirements through a structured system requirement analysis, and discusses how these seeker requirements affect seeker design.

  1. Inorganic membranes and solid state sciences

    NASA Astrophysics Data System (ADS)

    Cot, Louis; Ayral, André; Durand, Jean; Guizard, Christian; Hovnanian, Nadine; Julbe, Anne; Larbot, André

    2000-05-01

    The latest developments in inorganic membranes are closely related to recent advances in solid state science. Sol-gel processing, plasma-enhanced chemical vapor deposition and hydrothermal synthesis are methods that can be used for inorganic membrane preparation. Innovative concepts from material science (templating effect, nanophase materials, growing of continuous zeolite layers, hybrid organic-inorganic materials) have been applied by our group to the preparation of inorganic membrane materials. Sol-gel-derived nanophase ceramic membranes are presented with current applications in nanofiltration and catalytic membrane reactors. Silica membranes with an ordered porosity, due to liquid crystal phase templating effect, are described with potential application in pervaporation. Defect-free and thermally stable zeolite membranes can be obtained through an original synthesis method, in which zeolite crystals are grown inside the pores of a support. Hybrid organic-inorganic materials with permselective properties for gas separation and facilitated transport of solutes in liquid media, have been successfully adapted to membrane applications. Potential membrane developments offered by CVD deposition techniques are also illustrated through several examples related to the preparation of purely inorganic and hybrid organic-inorganic membrane materials.

  2. Solid state transmitters for spaceborne radars

    NASA Technical Reports Server (NTRS)

    Turlington, T. R.

    1983-01-01

    The SEASAT-A synthetic aperture radar, the first spaceborne SAR, utilized an all solid state RF signal synthesizer and L-band transmitter to drive a corporately fed flat plate array. The RF signal synthesizer generated a linear FM ""CHIRP'' waveform and provided stable CW reference signals used to upconvert the received signal to a unified S-band downlink channel, and to synchronize satellite control logic. The transmitter generated 1200 watts peak RF power (66 watts average) at a center frequency of 1.275 GHz from 354 watts of DC prime power. Linear FM CHIRP swept symmetrically around the center frequency with a bandwidth of 19.05 MHz and a pulse duration of 33.8 sec. Pulse repetition rate was variable from 1647 to 1944 pps. These transmitter signal parameters combined with the flat plate 34 x 7.5 ft aperture at an orbital altitude of 498 miles and a look angle 20 deg off nadir gave the SAR an 85 foot resolution over a 15.5 mile wide swath.

  3. Introduction to cryogenic solid state cooling

    NASA Astrophysics Data System (ADS)

    Heremans, Joseph P.

    2016-05-01

    Thermoelectric (Peltier) coolers have historically not been used for cooling to temperatures much below 200 K, because of limitations with existing thermoelectric materials. There are many advantages to solid-state coolers: they have no moving parts, are compact, vibration-free, inherently durable, and scalable to low power levels. A significant drawback is their low coefficient of performance. The figure of merit, zT, is the materials characteristic that sets this efficiency in Peltier coolers. The zT decreases rapidly with temperature, roughly following a T7/2 law. However, new material developments have taken place in the last decade that have made it possible to reach zT>0.5 down to 50 K. Many new ideas have also been put forward that enable better ZT's and lower temperatures. This article reviews the difficulties associated with Peltier cooling at cryogenic temperatures, as an introduction to the following presentations and proceeding entries that will present solutions that have been developed since 2010.

  4. Solid state long range surface plasmon polariton single mode lasers

    NASA Astrophysics Data System (ADS)

    Karami Keshmarzi, Elham; Tait, R. Niall; Berini, Pierre

    2013-10-01

    Incorporation of a solid-state gain medium in the cladding of a Long Range Surface Plasmon Polariton (LRSPP) waveguide in order to create a single-mode near-infrared laser source is proposed. LRSPP Bragg gratings based on stepping the width of the metal strip are used to form the laser's cavity. Three laser configurations are presented: The first 2 lasers employ DBRs (Distributed Bragg Reflectors) in ECL (External Cavity Laser) architecture while the third is based on the DFB (Distributed Feedback) configuration. All 3 configurations are thermally tunable by heating the gratings directly by injecting current. The lasers are convenient to fabricate leading to inexpensive sources that could be used in optical integrated circuits or waveguide biosensors.

  5. DNA translocations through solid-state plasmonic nanopores.

    PubMed

    Nicoli, Francesca; Verschueren, Daniel; Klein, Misha; Dekker, Cees; Jonsson, Magnus P

    2014-12-10

    Nanopores enable label-free detection and analysis of single biomolecules. Here, we investigate DNA translocations through a novel type of plasmonic nanopore based on a gold bowtie nanoantenna with a solid-state nanopore at the plasmonic hot spot. Plasmonic excitation of the nanopore is found to influence both the sensor signal (nanopore ionic conductance blockade during DNA translocation) and the process that captures DNA into the nanopore, without affecting the duration time of the translocations. Most striking is a strong plasmon-induced enhancement of the rate of DNA translocation events in lithium chloride (LiCl, already 10-fold enhancement at a few mW of laser power). This provides a means to utilize the excellent spatiotemporal resolution of DNA interrogations with nanopores in LiCl buffers, which is known to suffer from low event rates. We propose a mechanism based on plasmon-induced local heating and thermophoresis as explanation of our observations.

  6. Solid-State NMR-Restrained Ensemble Dynamics of a Membrane Protein in Explicit Membranes.

    PubMed

    Cheng, Xi; Jo, Sunhwan; Qi, Yifei; Marassi, Francesca M; Im, Wonpil

    2015-04-21

    Solid-state NMR has been used to determine the structures of membrane proteins in native-like lipid bilayer environments. Most structure calculations based on solid-state NMR observables are performed using simulated annealing with restrained molecular dynamics and an energy function, where all nonbonded interactions are represented by a single, purely repulsive term with no contributions from van der Waals attractive, electrostatic, or solvation energy. To our knowledge, this is the first application of an ensemble dynamics technique performed in explicit membranes that uses experimental solid-state NMR observables to obtain the refined structure of a membrane protein together with information about its dynamics and its interactions with lipids. Using the membrane-bound form of the fd coat protein as a model membrane protein and its experimental solid-state NMR data, we performed restrained ensemble dynamics simulations with different ensemble sizes in explicit membranes. For comparison, a molecular dynamics simulation of fd coat protein was also performed without any restraints. The average orientation of each protein helix is similar to a structure determined by traditional single-conformer approaches. However, their variations are limited in the resulting ensemble of structures with one or two replicas, as they are under the strong influence of solid-state NMR restraints. Although highly consistent with all solid-state NMR observables, the ensembles of more than two replicas show larger orientational variations similar to those observed in the molecular dynamics simulation without restraints. In particular, in these explicit membrane simulations, Lys(40), residing at the C-terminal side of the transmembrane helix, is observed to cause local membrane curvature. Therefore, compared to traditional single-conformer approaches in implicit environments, solid-state NMR restrained ensemble simulations in explicit membranes readily characterize not only protein

  7. Demonstration of surface plasmon-coupled emission using solid-state electrochemiluminescence

    NASA Astrophysics Data System (ADS)

    Yuk, Jong Seol; O'Reilly, Emmet; Forster, Robert J.; MacCraith, Brian D.; McDonagh, Colette

    2011-09-01

    We have presented novel surface plasmon-coupled emission (SPCE) based on solid-state electrochemiluminescence (ECL) of Nafion films containing tris(2,2'-bipyridyl)ruthenium(II). This approach combines the advantages of ECL, efficient emission in the absence of an external light source, with the highly directional emission of SPCE. We described theoretical calculations and optimal Nafion film thickness to get SPCE based on solid-state ECL. We confirmed the SPCE and dose-dependent SPCE response from the concentration range of 0.05-0.5% (w/v) [Ru(bpy) 3] 2+ in the Nafion film. SPCE based on solid-state ECL can be used as a useful platform for the analysis of chemical and biomolecular interactions.

  8. Nanoprobes, nanostructured materials and solid state materials

    NASA Astrophysics Data System (ADS)

    Yin, Houping

    2005-07-01

    Novel templates have been developed to prepare nanostructured porous materials through nonsurfactant templated pathway. And new applications of these materials, such as drug delivery and molecular imprinting, have been explored. The relationship between template content and pore structure has been investigated. The composition and pore structures were studied in detail using IR, TGA, SEM, TEM, BET and XRD. The obtained mesoporous materials have tunable diameters in the range of 2--12 nm. Due to the many advantages of this nonsurfactant templated pathway, such as environment friendly and biocompatibility, controlled release of antibiotics in the nanoporous materials were studied. The in vitro release properties were found to depend on the silica structures which were well tuned by varying the template content. A controlled long-term release pattern of vancomycin was achieved when the template content was 30 wt% or lower. Nanoscale electrochemical probes with dimensions as small as 50 nm in diameter and 1--2 mum in length were fabricated using electron beam deposition on the apex of conventional micron size electrodes. The electroactive region was limited to the extreme tip of the nanoprobe by coating with an insulating polymer and re-opening of the coating at the extreme tip. The novel nanoelectrodes thus prepared were employed to probe neurons in mouse brain slice and the results suggest that the nanoprobes were capable of recording neuronal excitatory postsynaptic potential signals. Interesting solid state chemistry was found in oxygenated iron phthalocyanine. Their Mossbauer spectra show the formation of four oxygenated species apart from the unoxygenated parent compound. The oxygen-bridged compounds formed in the solid matrix bear no resemblance to the one formed by solution chemistry. Tentative assignment of species has been made with the help of Mossbauer and IR spectroscopy. An effort to modify aniline trimer for potential nanoelectronics applications and to

  9. Electron correlations in solid state physics

    SciTech Connect

    Freericks, J.K.

    1991-04-01

    Exactly solvable models of electron correlations in solid state physics are presented. These models include the spinless Falicov- Kimball model, the t-t{prime}-J model, and the Hubbard model. The spinless Falicov-Kimball model is analyzed in one-dimension. Perturbation theory and numerical techniques are employed to determine the phase diagram at zero temperature. A fractal structure is found where the ground-state changes (discontinuously) at each rational electron filling. The t-t{prime}-J model (strongly interacting limit of a Hubbard model) is studied on eight-site small clusters in the simple-cubic, body-centered-cubic, face-centered-cubic, and square lattices. Symmetry is used to simplify the problem and determine the exact many-body wavefunctions. Ground states are found that exhibit magnetic order or heavy-fermionic character. Attempts to extrapolate to the thermodynamic limit are also made. The Hubbard model is examined on an eight-site square-lattice cluster in the presence of and in the absence of a magnetic field'' that couples only to orbital motion. A new magnetic phase is discovered for the ordinary Hubbard model at half-filling. In the magnetic field'' case, it is found that the strongly frustrated Heisenberg model may be studied from adiabatic continuation of a tight-binding model (from weak to strong coupling) at one point. The full symmetries of the Hamiltonian are utilized to make the exact diagonalization feasibile. Finally, the presence of hidden'' extra symmetry for finite size clusters with periodic boundary conditions is analyzed for a variety of clusters. Moderately sized systems allow nonrigid transformations that map a lattice onto itself preserving its neighbor structure; similar operations are not present in smaller or larger systems. The additional symmetry requires particular representations of the space group to stick together explaining many puzzling degeneracies found in exact diagonalization studies.

  10. SOLID-STATE CERAMIC LIGHTING PROJECT

    SciTech Connect

    Wayne D. Brown

    2003-06-01

    Meadow River Enterprises, Inc. (MRE) and the New York State College of Ceramics at Alfred University (NYSCC) received a DOE cooperative agreement award in September 1999 to develop an energy-efficient Solid-State Ceramic Lamp (SSCL). The program spanned a nominal two(2) year period ending in February of 2002. The federal contribution to the program totaled $1.6 million supporting approximately 78% of the program costs. The SSCL is a rugged electroluminescent lamp designed for outdoor applications. MRE has filed a provisional patent for this ''second generation'' technology and currently produces and markets blue-green phosphor SSCL devices. White phosphor SSCL devices are also available in prototype quantities. In addition to reducing energy consumption, the ceramic EL lamp offers several economic and societal advantages including lower lifecycle costs and reduced ''light pollution''. Significant further performance improvements are possible but will require a dramatic change in device physical construction related to the use of micro-powder materials and processes. The subject ''second-generation'' program spans a 27 month period and combines the materials and processing expertise of NYSCC, the manufacturing expertise of Meadow River Enterprises, and the phosphor development expertise of OSRAM Sylvania to develop an improved SSCL system. The development plan also includes important contributions by Marshall University (a part of the West Virginia University system). All primary development objectives have been achieved with the exception of improved phosphor powders. The performance characteristics of the first generation SSCL devices were carefully analyzed in year 1 and a second generation lamp was defined and optimized in year 2. The provisional patent was ''perfected'' through a comprehensive patent application filed in November 2002. Lamp efficiency was improved more than 2:1.

  11. Anionic structure-dependent photoelectrochemical responses of dye-sensitized solar cells based on a binary ionic liquid electrolyte.

    PubMed

    Hao, Feng; Lin, Hong; Liu, Yizhu; Li, Jianbao

    2011-04-14

    Room temperature ionic liquids (RTILs) have been used as electrolytes to investigate the anionic structure dependence of the photoelectrochemical responses of dye-sensitized solar cells (DSCs). A series of RTILs with a fixed cation structure coupling with various anion structures are employed, in which 1-methyl-3-propylimidazolium iodide (PMII) and I(2) are dissolved as redox couples. It is found that both the diffusivity of the electrolyte and the photovoltaic performance of the device show a strong dependence on the fluidity of the ionic liquids, which is primarily altered by the anion structure. Further insights into the structure-dependent physical properties of the employed RTILs are discussed in terms of the reported van der Waals radius, the atomic charge distribution over the anion backbones, the interaction energy of the anion and cation, together with the existence of ion-pairs and ion aggregates. Particularly, both the short-circuit photocurrent and open-circuit voltage exhibit obvious fluidity dependence. Electrochemical impedance and intensity-modulated photovoltage/photocurrent spectroscopy analysis further reveal that increasing the fluidity of the ionic liquid electrolytes could significantly decrease the diffusion resistance of I(3)(-) in the electrolyte, and retard the charge recombination between the injected electrons with triiodide in the high-viscous electrolyte, thus improving the electron diffusion length in the device, as well as the photovoltaic response. However, the variation of the electron diffusion coefficients is trivial primarily due to the effective charge screening of the high cation concentration.

  12. Solid-state production of ethanol from sorghum

    SciTech Connect

    Henk, L.L.; Linden, J.C.

    1996-12-31

    The main goal of this research is to study the solid-state fermentation of sorghum-sudangrass, Grazex II (F{sub 1} hybrid of Sorghum vulgare X Sorghum sudanese), to ethanol. Our research focuses on using a modified method of ensiling to produce ethanol directly in the silo. Thirty-eight liters of ethanol/metric ton (L/MT) on a wet-weight basis were produced from sorghum receiving cellulose compared to 23.4 L/MT for sorghum not receiving cellulose additives. Based on total free sugar content, 101 and 84% of theoretical yield are achieved for cellulase-amended and nonamended sorghum, respectively. 47 refs., 4 figs., 4 tabs.

  13. High brightness diode-pumped organic solid-state laser

    SciTech Connect

    Zhao, Zhuang; Mhibik, Oussama; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien

    2015-02-02

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  14. Solid-state power supply for gas lasers

    NASA Astrophysics Data System (ADS)

    Bertolini, A.; Beverini, N.; Carelli, G.; Francesconi, M.; Nannizzi, M.; Strumia, F.; Ioli, N.; Moretti, A.

    2004-08-01

    A novel pulsed power supply for gas lasers is presented. The device uses only solid state components and is based on a capacitor bank discharge. Fast switching of the discharge is triggered by an insulated gate bipolar transistor. The terminal section of the power supply is a transformer designed to match the reactive capacitance of a gas discharge. Strokes up to 30 kV and 30 mA are achieved across the secondary windings of this transformer. The power supply delivers high voltage pulses with a duration between 0.5 and 50 μs and a repetition rate up to some kHz. The power supply has been tested on a longitudinal discharge quasi-cw regime CO2 laser. Laser pulses were generated with a duration down to the microseconds region, a peak power exceeding some kilowatts, and a repetition rate ranging from 200 Hz to a few kHz.

  15. Diffuse-light all-solid-state invisibility cloak.

    PubMed

    Schittny, Robert; Niemeyer, Andreas; Kadic, Muamer; Bückmann, Tiemo; Naber, Andreas; Wegener, Martin

    2015-09-15

    An ideal invisibility cloak makes arbitrary macroscopic objects within the cloak indistinguishable from its surrounding—for all directions, illumination patterns, polarizations, and colors of visible light. Recently, we have approached such an ideal cloak for the diffusive regime of light propagation using a core-shell geometry and a mixture of water and white wall paint as the surrounding. Here, we present an all-solid-state version based on polydimethylsiloxane doped with titania nanoparticles for the surrounding/shell and on a high-reflectivity microporous ceramic for the core. By virtue of reduced effects of absorption, especially from the core, the cloaking performance and the overall light throughput are improved significantly.

  16. Focus issue introduction: Advanced solid-state lasers (ASSL) 2014.

    PubMed

    Schepler, Kenneth L; Jeong, Yoonchan; Jiang, Shibin; Gallo, Katia; Taira, Takunori; Ilday, F Ömer

    2015-03-23

    The editors introduce the focus issue on "Advanced Solid-State Lasers (ASSL) 2014," which is based on the topics presented at a congress of the same name held in Shanghai, China, from October 27 to November 1, 2014. This focus issue, jointly prepared by Optics Express and Optical Materials Express, includes 28 contributed papers (21 for Optics Express and 7 for Optical Materials Express) selected from the voluntary submissions by attendees who presented at the congress and have extended their work into complete research articles. We hope this focus issue offers a useful snapshot of the variety of topical discussions held at the congress and will contribute to the further expansion of the associated research areas.

  17. Focus issue introduction: Advanced Solid-State Lasers (ASSL) 2013.

    PubMed

    Jeong, Yoonchan; Jiang, Shibin; Gallo, Katia; Südmeyer, Thomas; Hehlen, Markus; Taira, Takunori

    2014-04-07

    The editors introduce the focus issue on "Advanced Solid-State Lasers (ASSL) 2013," which is based on the topics presented at a congress of the same name held in Paris, France, from October 27 to November 1, 2013. This focus issue, jointly prepared by Optics Express and Optical Materials Express, includes 21 contributed papers (18 for Optics Express and 3 for Optical Materials Express) selected from the voluntary submissions from attendees who presented at the congress and have extended their work into complete research articles. We hope this focus issue offers a good snapshot of a variety of topical discussions held at the congress and will contribute to the further expansion of the associated research areas.

  18. Analyses of Technology for Solid State Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1997-01-01

    Over past few years, considerable advances have been made in the areas of the diode-pumped, eye-safe, solid state lasers and room temperature, wide bandwidth, semiconductor detectors operating in the near-infrared region. These advances have created new possibilities for the development of reliable and compact coherent lidar systems for a wide range of applications. This research effort is aimed at further developing solid state coherent lidar technology for remote sensing of atmospheric processes such as wind, turbulence and aerosol concentration. The work performed by the UAH personnel under this Delivery Order concentrated on design and analyses of laboratory experiments and measurements, and development of advanced lidar optical subsystems in support of solid state laser radar remote sensing systems which are to be designed, deployed, and used to measure atmospheric processes and constituents. Under this delivery order, a lidar breadboard system was designed and analyzed by considering the major aircraft and space operational requirements. The lidar optical system was analyzed in detail using SYNOPSIS and Code V optical design packages. The lidar optical system include a wedge scanner and the compact telescope designed by the UAH personnel. The other major optical components included in the design and analyses were: polarizing beam splitter, routing mirrors, wave plates, signal beam derotator, and lag angle compensator. This lidar system is to be used for demonstrating all the critical technologies for the development of a reliable and low-cost space-based instrument capable of measuring global wind fields. A number of laboratory experiments and measurements were performed at the NASA/MSFC Detector Characterization Facility, previously developed by the UAH personnel. These laboratory measurements include the characterization of a 2-micron InGaAs detectors suitable for use in coherent lidars and characterization of Holographic Optical Element Scanners. UAH

  19. How to control solid state dewetting: A short review

    NASA Astrophysics Data System (ADS)

    Leroy, F.; Borowik, Ł.; Cheynis, F.; Almadori, Y.; Curiotto, S.; Trautmann, M.; Barbé, J. C.; Müller, P.

    2016-06-01

    In the past decade there have been many theoretical and experimental efforts to study the mechanisms of solid state dewetting, that means the spontaneous agglomeration of a thin solid film on a substrate into an assembly of 3D islands. The dewetting studies of solid films on solid substrates have not yet reached the degree of maturity achieved for liquids but there is now enough experimental data to consider the possibility of a future "dewetting engineering". By dewetting engineering we mean all the ways to tune and/or control the kinetics of dewetting as well as the morphology of the final dewetted state. The ultimate goal is to avoid dewetting when it complicates the fabrication of thin film-based devices or to use it for the spontaneous production of an assembly of nanoscaled islands on solid substrates. For this purpose we review the different parameters that influence the dewetting then illustrate how the dewetted state may be tuned by varying the thickness of the film, the annealing temperature, or the state of strain in the film. Moreover, adsorbed or absorbed species (by deposition or ionic impingement/ion bombardment) may modify the surface properties of the film or the mobility properties of the contact line film/substrate and thus the dewetting properties. Anisotropic properties of the film may also be used to initiate the dewetting from perfectly oriented edge fronts, leading to highly ordered 3D islands. New approaches using substrate pre-patterning or film patterning are very promising to achieve the dewetting engineering. Ideal systems for studying solid state dewetting are single crystalline films deposited or bonded on amorphous substrates, so that, among the numerous dewetting systems reported in the literature, ultra-thin crystalline silicon-on-insulator (SOI) film (a Si film bonded on an amorphous SiO2 substrate) is considered as a model system for studying how to control solid state dewetting. Other systems, as Ni epitaxially grown on MgO, are

  20. Study on phase-locked coherence of evanescent wave coupling in solid-state laser

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Liu, Xu; Zhu, Mengzhen; Lu, Changyong; Lu, Yimin; Tan, Caoyong; Wei, Shangfang

    2016-01-01

    The mechanism and characteristics of evanescent-wave coupling in solid-state laser is analyzed theoretically and experimentally. The results shown that self-organized phase locking between laser modes can be realized by evanescentwave coupling in solid-state laser. Based on "mutual injection and evanescent wave" characteristics of corner-cube prism, the paper reveals that far-field output of corner-cube laser is the inner reason and mechanism of coherent combining distribution by theory of evanescent wave and its coherence is better than plane parallel resonator. And "mutually coupled phase locking of six lasers based cube-corner resonator" scheme is proposed on this basis.