Science.gov

Sample records for based ui design

  1. The Academic English Language Needs of Industrial Design Students in UiTM Kedah, Malaysia

    ERIC Educational Resources Information Center

    Adzmi, Nor Aslah; Bidin, Samsiah; Ibrahim, Syazliyati; Jusoff, Kamaruzaman

    2009-01-01

    The purpose of this study was to analyse the academic English language lacks and needs of Industrial Design students in Universiti Teknologi MARA Kedah (UiTM). It highlights the lacks and needs for English for Academic Purposes in helping the students to succeed in the program through the usage of English language. The research tools used were in…

  2. Design and Fabrication of Nereid-UI: A Remotely Operated Underwater Vehicle for Oceanographic Access Under Ice

    NASA Astrophysics Data System (ADS)

    Whitcomb, L. L.; Bowen, A. D.; Yoerger, D.; German, C. R.; Kinsey, J. C.; Mayer, L. A.; Jakuba, M. V.; Gomez-Ibanez, D.; Taylor, C. L.; Machado, C.; Howland, J. C.; Kaiser, C. L.; Heintz, M.; Pontbriand, C.; Suman, S.; O'hara, L.

    2013-12-01

    -to-end propulsive efficiency of between 0.3 and 0.4 at a transit speed of 1 m/s based on testing conducted at WHOI. CAMERAS: Video imagery is one of the principal products of Nereid-UI. Two fiber-optic telemetry wavelengths deliver 1.5 Gb/s uncompressed HDSDI video to the support vessel in real time, supporting a Kongsberg OE14-522 hyperspherical pan and tilt HD camera and several utility cameras. PROJECT STATUS: The first shallow-water vehicle trials are scheduled for September 2013. The trials are designed to test core vehicle systems particularly the power system, main computer and control system, thrusters, video and telemetry system, and to refine camera, lighting and acoustic sensor placement for piloted and closed-loop control, especially as pertains to working near the underside of ice. Remaining vehicle design tasks include finalizing the single-body deployment concept and depressor, populating the scientific sensing suite, and the software development necessary to implement the planned autonomous return strategy. Final design and fabrication for these remaining components of the vehicle system will proceed through fall 2013, with trials under lake ice in early 2014, and potential polar trials beginning in 2014-15. SUPPORT: NSF OPP (ANT-1126311), WHOI, James Family Foundation, and George Frederick Jewett Foundation East.

  3. Megamodeling and Metamodel-Driven Engineering for Plastic User Interfaces: MEGA-UI

    NASA Astrophysics Data System (ADS)

    Sottet, Jean-Sébastien; Calvary, Gaelle; Favre, Jean-Marie; Coutaz, Jöelle

    Models are not new in Human Computer Interaction (HCI). Consider all the Model-Based Interface Design Environments (MB-IDE) that emerged in the 1990s for generating User Interfaces (UI) from more abstract descriptions. Unfortunately, the resulting poor usability killed the approach, burying the models in HCI for a long time until new requirements sprung, pushed by ubiquitous computing (e.g., the need for device independence). These requirements, bolstered by the large effort expended in Model-Driven Engineering (MDE) by the Software Engineering (SE) community, have brought the models back to life in HCI. This paper utilizes both the know-how in HCI and recent advances in MDE to address the challenge of engineering Plastic UIs, i.e., UIs capable of adapting to their context of use (User, Platform, Environment) while preserving usability. Although most of the work has concentrated on the functional aspect of adaptation so far, this chapter focuses on usability. The point is to acknowledge the strength of keeping trace of the UI’s design rationale at runtime so as to make it possible for the system to reason about its own design when the context of use changes. As design transformations link together different perspectives on the same UI (e.g., user’s tasks and workspaces for spatially grouping items together), the paper claims for embedding a graph that depicts a UI from different perspectives at runtime while explaining its design rationale. This meets the notion of Megamodel as promoted in MDE. The first Megamodel was used to make explicit the relations between the core concepts of MDE: System, Model, Metamodel, Mapping, and Transformation. When transposed to HCI, the Megamodel gives rise to the notion of Mega-UI that makes it possible for the user (designer and/or end-user) to browse and/or control the system from different levels of abstraction (e.g., user’s tasks, workspaces, interactors, code) and different levels of genericity (e.g., model, metamodel

  4. Structural study of Ni- or Mg-based complexes incorporated within UiO-66-NH{sub 2} framework and their impact on hydrogen sorption properties

    SciTech Connect

    Žunkovič, E.; Mazaj, M.; Mali, G.; Rangus, M.; Devic, T.; Serre, C.; Logar, N. Zabukovec

    2015-05-15

    Nickel and magnesium acetylacetonate molecular complexes were post-synthetically incorporated into microporous zirconium-based MOF (UiO-66-NH{sub 2}) in order to introduce active open-metal sites for hydrogen sorption. Elemental analysis, nitrogen physisorption and DFT calculations revealed that 5 molecules of Ni(acac){sub 2} or 2 molecules of Mg(acac){sub 2} were incorporated into one unit cell of UiO-66-NH{sub 2}. {sup 1}H–{sup 13}C CPMAS and {sup 1}H MAS NMR spectroscopy showed that, although embedded within the pores, both Ni- and Mg-complexes interacted with the UiO-66-NH{sub 2} framework only through weak van der Waals bonds. Inclusion of metal complexes led to the decrease of hydrogen sorption capacities in Ni-modified as well as in Mg-modified samples in comparison with the parent UiO-66-NH{sub 2}. The isosteric hydrogen adsorption enthalpy slightly increased in the case of Ni-modified material, but not in the case of Mg-modified analogue. - Graphical abstract: A post-synthesis impregnation of Mg- and Ni-acetylacetonate complexes performed on zirconium-based MOF UiO-66-NH{sub 2} does influence the hydrogen sorption performance with respect to the parent matrix. The structural study revealed that Mg- and Ni-acetylacetonate molecules interact with zirconium-terephthalate framework only by weak interactions and they are not covalently bonded to aminoterephthalate ligand. Still, they remain confined into the pores even after hydrogen sorption experiments. - Highlights: • Mg- and Ni-acetylacetonate molecules embedded in the pores of UiO-66-NH{sub 2} by PSM. • Molecules of complexes interact with framework only by van der Waals interactions. • Type/structure of deposited metal-complex impact hydrogen enthalpy of adsorption.

  5. Metal-Organic Gel Material Based on UiO-66-NH2 Nanoparticles for Improved Adsorption and Conversion of Carbon Dioxide.

    PubMed

    Liu, Liping; Zhang, Jianyong; Fang, Haobin; Chen, Liuping; Su, Cheng-Yong

    2016-08-19

    Metal-organic frameworks (MOFs) including the UiO-66 series show potential application in the adsorption and conversion of CO2 . Herein, we report the first tetravalent metal-based metal-organic gels constructed from Zr(IV) and 2-aminoterephthalic acid (H2 BDC-NH2 ). The ZrBDC-NH2 gel materials are based on UiO-66-NH2 nanoparticles and were easily prepared under mild conditions (80 °C for 4.5 h). The ZrBDC-NH2 -1:1-0.2 gel material has a high surface area (up to 1040 m(2)  g(-1) ) and showed outstanding performance in CO2 adsorption (by using the dried material) and conversion (by using the wet gel) arising from the combined advantages of the gel and the UiO-66-NH2 MOF. The ZrBDC-NH2 -1:1-0.2 dried material showed 38 % higher capture capacity for CO2 at 298 K than microcrystalline UiO-66-NH2 . It showed high ideal adsorbed solution theory selectivity (71.6 at 298 K) for a CO2 /N2 gas mixture (molar ratio 15:85). Furthermore, the ZrBDC-NH2 -1:1-0.2 gel showed activity as a heterogeneous catalyst in the chemical fixation of CO2 and an excellent catalytic performance was achieved for the cycloaddition of atmospheric pressure of CO2 to epoxides at 373 K. In addition, the gel catalyst could be reused over multiple cycles with no considerable loss of catalytic activity. PMID:27332669

  6. Selective dispersive solid phase extraction-chromatography tandem mass spectrometry based on aptamer-functionalized UiO-66-NH2 for determination of polychlorinated biphenyls.

    PubMed

    Lin, Saichai; Gan, Ning; Cao, Yuting; Chen, Yinji; Jiang, Qianli

    2016-05-13

    In this paper, a novel dispersive solid phase extraction (dSPE) adsorbent based on aptamer-functionalized magnetic metal-organic framework material was developed for selective enrichment of the trace polychlorinated biphenyls (PCBs) from soil sample. Firstly, we developed a simple, versatile synthetic strategy to prepare highly reproducible magnetic amino-functionalized UiO-66 (Fe3O4@PDA@UiO-66-NH2) by using polydopamine (PDA) as covalent linker. Then amino-functionalized aptamers which can recognize 2,3',5,5'-tetrachlorobiphenyl (PCB72), 2',3',4',5,5'-pentachlorobiphenyl (PCB106) were covalent immobilized on UiO-66-NH2 through coupling reagent of glutaraldehyde. Aptamer-functionalized adsorbent (Fe3O4@PDA@UiO-66-Apt) can specifically capture PCBs from complex matrix with high adsorption capacity based on the specific affinity of aptamer towards target. Moreover, the adsorbent can be easily isolated from the solution through magnetic separation after extraction. Afterwards, the detection was carried out with gas chromatography tandem mass spectrometry (GC-MS). The selective dSPE pretreatment coupled with GC-MS possessed high selectivity, good binding capacity, stability, repeatability and reproducibility for the extraction of PCBs. Furthermore, the adsorbent possessed good mechanical stability which can be applied in replicate at least for 60 extraction cycles with recovery over 80%. It provided a linear range of 0.02-400ngmL(-1) with a good correlation coefficient (R(2)=0.9994-0.9996), and the limit of detection was found to be 0.010-0.015ngmL(-1). The method was successfully utilized for the determination of PCBs in soil samples. PMID:27083256

  7. The role of autophagy in cytotoxicity induced by new oncogenic B-Raf inhibitor UI-152 in v-Ha-ras transformed fibroblasts

    SciTech Connect

    Ahn, Jun-Ho; Ahn, Soon Kil; Lee, Michael

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer We recently discovered a potent and selective B-Raf inhibitor, UI-152. Black-Right-Pointing-Pointer UI-152 displayed a selective cytotoxicity toward v-Ha-ras transformed cells. Black-Right-Pointing-Pointer UI-152-induced growth inhibition was largely meditated by autophagy. Black-Right-Pointing-Pointer UI-152 induced paradoxical activation of Raf-1. -- Abstract: In human cancers, B-Raf is the most frequently mutated protein kinase in the MAPK signaling cascade, making it an important therapeutic target. We recently discovered a potent and selective B-Raf inhibitor, UI-152, by using a structure-based drug design strategy. In this study, we examined whether B-Raf inhibition by UI-152 may be an effective therapeutic strategy for eliminating cancer cells transformed with v-Ha-ras (Ras-NIH 3T3). UI-152 displayed selective cytotoxicity toward Ras-NIH 3T3 cells while having little to no effect on non-transformed NIH 3T3 cells. We found that treatment with UI-152 markedly increased autophagy and, to a lesser extent, apoptosis. However, inhibition of autophagy by addition of 3-MA failed to reverse the cytotoxic effects of UI-152 on Ras-NIH 3T3 cells, demonstrating that apoptosis and autophagy can act as cooperative partners to induce growth inhibition in Ras-NIH 3T3 cells treated with UI-152. Most interestingly, cell responses to UI-152 appear to be paradoxical. Here, we showed that although UI-152 inhibited ERK, it induced B-Raf binding to Raf-1 as well as Raf-1 activation. This paradoxical activation of Raf-1 by UI-152 is likely to be coupled with the inhibition of the mTOR pathway, an intracellular signaling pathway involved in autophagy. We also showed for the first time that, in multi-drug resistant cells, the combination of UI-152 with verapamil significantly decreased cell proliferation and increased autophagy. Thus, our findings suggest that the inhibition of autophagy, in combination with UI-152, offers a more effective

  8. Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst

    NASA Astrophysics Data System (ADS)

    Shen, Lijuan; Wu, Weiming; Liang, Ruowen; Lin, Rui; Wu, Ling

    2013-09-01

    Proper design and preparation of high-performance and stable dual functional photocatalytic materials remains a significant objective of research. In this work, highly dispersed Pd nanoparticles of about 3-6 nm in diameter are immobilized in the metal-organic framework (MOF) UiO-66(NH2) via a facile one-pot hydrothermal method. The resulting Pd@UiO-66(NH2) nanocomposite exhibits an excellent reusable and higher visible light photocatalytic activity for reducing Cr(vi) compared with UiO-66(NH2) owing to the high dispersion of Pd nanoparticles and their close contact with the matrix, which lead to the enhanced light harvesting and more efficient separation of photogenerated electron-hole pairs. More significantly, the Pd@UiO-66(NH2) could be used for simultaneous photocatalytic degradation of organic pollutants, like methyl orange (MO) and methylene blue (MB), and reduction of Cr(vi) with even further enhanced activity in the binary system, which could be attributed to the synergetic effect between photocatalytic oxidation and reduction by individually consuming photogenerated holes and electrons. This work represents the first example of using the MOFs-based materials as dual functional photocatalyst to remove different categories of pollutants simultaneously. Our finding not only proves great potential for the design and application of MOFs-based materials but also might bring light to new opportunities in the development of new high-performance photocatalysts.Proper design and preparation of high-performance and stable dual functional photocatalytic materials remains a significant objective of research. In this work, highly dispersed Pd nanoparticles of about 3-6 nm in diameter are immobilized in the metal-organic framework (MOF) UiO-66(NH2) via a facile one-pot hydrothermal method. The resulting Pd@UiO-66(NH2) nanocomposite exhibits an excellent reusable and higher visible light photocatalytic activity for reducing Cr(vi) compared with UiO-66(NH2) owing to the

  9. H2 storage in isostructural UiO-67 and UiO-66 MOFs.

    PubMed

    Chavan, Sachin; Vitillo, Jenny G; Gianolio, Diego; Zavorotynska, Olena; Civalleri, Bartolomeo; Jakobsen, Søren; Nilsen, Merete H; Valenzano, Loredana; Lamberti, Carlo; Lillerud, Karl Petter; Bordiga, Silvia

    2012-02-01

    The recently discovered UiO-66/67/68 class of isostructural metallorganic frameworks (MOFs) [J. H. Cavka et al. J. Am. Chem. Soc., 2008, 130, 13850] has attracted great interest because of its remarkable stability at high temperatures, high pressures and in the presence of different solvents, acids and bases [L. Valenzano et al. Chem. Mater., 2011, 23, 1700]. UiO-66 is obtained by connecting Zr(6)O(4)(OH)(4) inorganic cornerstones with 1,4-benzene-dicarboxylate (BDC) as linker resulting in a cubic MOF, which has already been successfully reproduced in several laboratories. Here we report the first complete structural, vibrational and electronic characterization of the isostructural UiO-67 material, obtained using the longer 4,4'-biphenyl-dicarboxylate (BPDC) linker, by combining laboratory XRPD, Zr K-edge EXAFS, TGA, FTIR, and UV-Vis studies. Comparison between experimental and periodic calculations performed at the B3LYP level of theory allows a full understanding of the structural, vibrational and electronic properties of the material. Both materials have been tested for molecular hydrogen storage at high pressures and at liquid nitrogen temperature. In this regard, the use of a longer ligand has a double benefit: (i) it reduces the density of the material and (ii) it increases the Langmuir surface area from 1281 to 2483 m(2) g(-1) and the micropore volume from 0.43 to 0.85 cm(3) g(-1). As a consequence, the H(2) uptake at 38 bar and 77 K increases from 2.4 mass% for UiO-66 up to 4.6 mass% for the new UiO-67 material. This value is among the highest values reported so far but is lower than those reported for MIL-101, IRMOF-20 and MOF-177 under similar pressure and temperature conditions (6.1, 6.2 and 7.0 mass%, respectively) [A. G. Wong-Foy et al. J. Am. Chem. Soc., 2006, 128, 3494; M. Dinca and J. R. Long. Angew. Chem., Int. Ed., 2008, 47, 6766]. Nevertheless the remarkable chemical and thermal stability of UiO-67 and the absence of Cr in its structure would

  10. User Interface Composition with COTS-UI and Trading Approaches: Application for Web-Based Environmental Information Systems

    NASA Astrophysics Data System (ADS)

    Criado, Javier; Padilla, Nicolás; Iribarne, Luis; Asensio, Jose-Andrés

    Due to the globalization of the information and knowledge society on the Internet, modern Web-based Information Systems (WIS) must be flexible and prepared to be easily accessible and manageable in real-time. In recent times it has received a special interest the globalization of information through a common vocabulary (i.e., ontologies), and the standardized way in which information is retrieved on the Web (i.e., powerful search engines, and intelligent software agents). These same principles of globalization and standardization should also be valid for the user interfaces of the WIS, but they are built on traditional development paradigms. In this paper we present an approach to reduce the gap of globalization/standardization in the generation of WIS user interfaces by using a real-time "bottom-up" composition perspective with COTS-interface components (type interface widgets) and trading services.

  11. Registration of ‘UI Darwin’ Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    UI Darwin’ (PI 639953) is a hard white winter wheat (Triticum aestivum L.) developed by the Idaho Agricultural Experiment Station and released in February 2006. UI Darwin, named for English naturalist Charles Darwin, was released for selected improvements in bread quality relative to hard white wi...

  12. Use of Design Patterns According to Hand Dominance in a Mobile User Interface

    ERIC Educational Resources Information Center

    Al-Samarraie, Hosam; Ahmad, Yusof

    2016-01-01

    User interface (UI) design patterns for mobile applications provide a solution to design problems and can improve the usage experience for users. However, there is a lack of research categorizing the uses of design patterns according to users' hand dominance in a learning-based mobile UI. We classified the main design patterns for mobile…

  13. Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies.

    PubMed

    Lin, Kun-Yi Andrew; Liu, Yu-Ting; Chen, Shen-Yi

    2016-01-01

    To provide safe drinking water, fluoride in water must be removed and adsorption processes appear to be the most widely used method. Metal organic frameworks (MOFs) represent a new class of adsorbents that have been used in various adsorption applications. To study the adsorption mechanism of fluoride to MOFs in water and obtain related adsorption parameters, we synthesized a zirconium-based MOF with a primary amine group on its ligand, named UiO-66-NH2. The kinetics, adsorption isotherm and thermodynamics of fluoride adsorption to UiO-66-NH2 were investigated. The crystalline structure of UiO-66-NH2 remained intact and the local structure of zirconium in UiO-66-NH2 did not change significantly after being exposed to fluoride. The kinetics of the fluoride adsorption in UiO-66-NH2 could be well represented by the pseudo second order rate law. The enthalpy of the adsorption indicates that the F(-) adsorption to UiO-66-NH2 was classified as a physical adsorption. However, the comparison between the adsorption capacities of UiO-66-NH2 and UiO-66 suggests that the fluoride adsorption to UiO-66-NH2 might primarily involve a strong interaction between F(-) and the metal site. The fluoride adsorption capacity of UiO-66-NH2 was found to decrease when pH>7. While the presence of chloride/bromide ions did not noticeably change the adsorption capacity of UiO-66-NH2, the ionic surfactants slightly affected the adsorption capacity of UiO-66-NH2. These findings provide insights to further optimize the adsorption process for removal of fluoride using zirconium-based MOFs. PMID:26397913

  14. Study of the Inorganic Substitution in a Functionalized UiO-66 Metal-Organic Framework

    NASA Astrophysics Data System (ADS)

    Yasin, Alhassan Salman

    Metal-Organic Frameworks (MOFs) have received considerable attention and fast development in the past few years. These materials have demonstrated a wide range of applications due to their porosity, tailorability of optical properties, and chemical selectivity. This report catalogs common MOF designs based on application and diversity in various fields, as well as conduct an in-depth study of inorganic substitution in a functionalized MOF. This study investigates the band gap modulation in response to inorganic ion substitution within a thermally stable UiO-66 Metal-Organic Framework (MOF). A combination of density functional theory (DFT) predictions in conjunction with experimental predictions were used to map out the complete composition space for three inorganic ions (Zr, Hf, Ti) and three functional groups. The three functional groups include an amino group (NH2), a nitro group (NO2), and a hydrogenated case (H). The smallest determined band gap was for a partially substituted UiO-66(Ti5Zr1)-NH2 resulting in 2.60eV. Theoretical findings sup-port that Ti can be fully substituted within the lattice resulting in a predicted band gap as low as 1.62(2.77)eV. Band gap modulation was reasoned to be a result of a mid gap state introduced through the amino functionalization and HOMO shifting as a result of increased binding of the Ti-O-C bonds.

  15. Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH 2

    DOE PAGESBeta

    Katz, Michael J.; Moon, Su-Young; Mondloch, Joseph E.; Beyzavi, M. Hassan; Stephenson, Casey J.; Hupp, Joseph T.; Farha, Omar K.

    2015-02-24

    The hydrolysis of nerve agents is of primary concern due to the severe toxicity of these agents. Using a MOF-based catalyst (UiO-66), we have previously demonstrated that the hydrolysis can occur with relatively fast half-lives of 50 minutes. However, these rates are still prohibitively slow to be efficiently utilized for some practical applications (e.g., decontamination wipes used to clean exposed clothing/skin/vehicles). We thus turned our attention to derivatives of UiO-66 in order to probe the importance of functional groups on the hydrolysis rate. Three UiO-66 derivatives were explored; UiO-66-NO2 and UiO-66-(OH)2 showed little to no change in hydrolysis rate. However,more » UiO-66-NH2 showed a 20 fold increase in hydrolysis rate over the parent UiO-66 MOF. Half-lives of 1 minute were observed with this MOF. In order to probe the role of the amino moiety, we turned our attention to UiO-67, UiO-67-NMe2 and UiO-67-NH2. In these MOFs, the amino moiety is in close proximity to the zirconium node. We observed that UiO-67-NH2 is a faster catalyst than UiO-67 and UiO-67-NMe2. We conclude that the role of the amino moiety is to act as a proton-transfer agent during the catalytic cycle and not to hydrogen bond or to form a phosphorane intermediate.« less

  16. Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH 2

    SciTech Connect

    Katz, Michael J.; Moon, Su-Young; Mondloch, Joseph E.; Beyzavi, M. Hassan; Stephenson, Casey J.; Hupp, Joseph T.; Farha, Omar K.

    2015-02-24

    The hydrolysis of nerve agents is of primary concern due to the severe toxicity of these agents. Using a MOF-based catalyst (UiO-66), we have previously demonstrated that the hydrolysis can occur with relatively fast half-lives of 50 minutes. However, these rates are still prohibitively slow to be efficiently utilized for some practical applications (e.g., decontamination wipes used to clean exposed clothing/skin/vehicles). We thus turned our attention to derivatives of UiO-66 in order to probe the importance of functional groups on the hydrolysis rate. Three UiO-66 derivatives were explored; UiO-66-NO2 and UiO-66-(OH)2 showed little to no change in hydrolysis rate. However, UiO-66-NH2 showed a 20 fold increase in hydrolysis rate over the parent UiO-66 MOF. Half-lives of 1 minute were observed with this MOF. In order to probe the role of the amino moiety, we turned our attention to UiO-67, UiO-67-NMe2 and UiO-67-NH2. In these MOFs, the amino moiety is in close proximity to the zirconium node. We observed that UiO-67-NH2 is a faster catalyst than UiO-67 and UiO-67-NMe2. We conclude that the role of the amino moiety is to act as a proton-transfer agent during the catalytic cycle and not to hydrogen bond or to form a phosphorane intermediate.

  17. High-, Middle-, and Low-Wage Job Preparatory Programs--The Creation and Use of Policy Tool Based on UI Wages Data. Technical Report.

    ERIC Educational Resources Information Center

    Whittaker, Doug

    This is a report on the 2001 after-college earnings of students from Washington State's community and technical colleges. The state board created a wage-based category system for all 500 vocational/job-preparatory programs offered by the 34 state two-year colleges. The programs were divided into high- ($12 or more per hour), middle- ($10.50-$12…

  18. Release of ‘UI Platinum’ hard white spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    UI Platinum’ (Reg. No. CV------, PI 672533) hard white spring wheat (Triticum aestivum L.) was developed by the Idaho Agricultural Experiment Station and released in 2014. UI Platinum was derived from the cross ‘Blanca Grande’ x ‘Jerome’ and tested under experimental numbers A01178S, IDO694, and I...

  19. 78 FR 68865 - Announcement Regarding a Change in Eligibility for Unemployment Insurance (UI) Claimants in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Employment and Training Administration Announcement Regarding a Change in Eligibility for Unemployment Insurance (UI) Claimants in Alaska, Mississippi, and Wisconsin in the Emergency Unemployment Compensation..., 2013. Based on data from Alaska for the week ending August 3, 2013, the 13 week insured...

  20. 75 FR 43557 - Wire Products Company, Inc., Including Workers Whose Unemployment Insurance (UI) Wages Are Paid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... Register on May 28, 2010 (75 FR 30067). At the request of a company official, the Department reviewed the... Employment and Training Administration Wire Products Company, Inc., Including Workers Whose Unemployment... unemployment insurance (UI) tax account under the name Globe Pipe Hanger Products, Inc. Based on these...

  1. 78 FR 59374 - Announcement Regarding a Change in Eligibility for Unemployment Insurance (UI) Claimants in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... Employment and Training Administration Announcement Regarding a Change in Eligibility for Unemployment Insurance (UI) Claimants in Alaska, Mississippi, and Wisconsin in the Emergency Unemployment Compensation..., 2013. Based on data from Alaska for the week ending August 3, 2013, the 13 week insured...

  2. Development of Nereid-UI: A Remotely Operated Underwater Vehicle for Oceanographic Access Under Ice

    NASA Astrophysics Data System (ADS)

    Whitcomb, L. L.; Bowen, A.; Yoerger, D. R.; German, C. R.; Kinsey, J. C.; Mayer, L. A.; Jakuba, M.; Gomez-Ibanez, D.; Taylor, C. L.; Machado, C.; Howland, J. C.; Kaiser, C. L.; Heintz, M.

    2012-12-01

    The Woods Hole Oceanographic Institution and collaborators from the Johns Hopkins University and the University of New Hampshire are developing a remotely-controlled underwater robotic vehicle to provide the Polar Research Community with a capability to be tele-operated under ice under direct real-time human supervision. The Nereid Under-Ice (Nereid-UI) vehicle, Figure 1, will enable exploration and detailed examination of biological and physical environments at glacial ice-tongues and ice-shelf margins through the use of HD video in addition to acoustic, chemical, and biological sensors, Table 1. We anticipate propulsion system optimization that will enable us to attain distances up to 20 km from an ice-edge boundary, as dictated by the current maximum tether length. The goal of the Nereid-UI system is to provide scientific access to under-ice and ice-margin environments that is presently impractical or infeasible. The project design phase is underway, with incremental field testing planned in 2014. We welcome input from the Polar Science Community on how best to serve your scientific objectives. The Nereid-UI vehicle will employ technology developed during the Nereus HROV project including lightweight expendable tethers and tolerance of communications failures. Performance goals include: 1. Extreme horizontal and vertical mobility - access to under-ice crevasses and glacier grounding- lines, close inspection and mapping. 2. Real-time exploration under direct human control. 3. Response to features of interest by altering sensing modality and trajectory as desired 4. Access to the calving front 5. Access to the under-ice boundary layer 6. Future manipulation, sample retrieval, and instrument emplacement capability Supported by NSF OPP under ANT-1126311, James Family Foundation, George Frederick Jewett Foundation East, and the Woods Hole Oceanographic Institution Fig. 1: Nereid-UI Concept of Operations. Table 1: Nereid-UI Specifications;

  3. Earthdata User Interface Patterns: Building Usable Web Interfaces Through a Shared UI Pattern Library

    NASA Astrophysics Data System (ADS)

    Siarto, J.

    2014-12-01

    As more Earth science software tools and services move to the web--the design and usability of those tools become ever more important. A good user interface is becoming expected and users are becoming increasingly intolerant of websites and web applications that work against them. The Earthdata UI Pattern Library attempts to give these scientists and developers the design tools they need to make usable, compelling user interfaces without the associated overhead of using a full design team. Patterns are tested and functional user interface elements targeted specifically at the Earth science community and will include web layouts, buttons, tables, typography, iconography, mapping and visualization/graphing widgets. These UI elements have emerged as the result of extensive user testing, research and software development within the NASA Earthdata team over the past year.

  4. Utilizing the Southwest Ultraviolet Imaging System (SwUIS) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Schindhelm, Eric; Stern, S. Alan; Ennico-Smith, Kimberly

    2013-09-01

    We present the Southwest Ultraviolet Imaging System (SwUIS), a compact, low-cost instrument designed for remote sensing observations from a manned platform in space. It has two chief configurations; a high spatial resolution mode with a 7-inch Maksutov-Cassegrain telescope, and a large field-of-view camera mode using a lens assembly. It can operate with either an intensified CCD or an electron multiplying CCD camera. Interchangeable filters and lenses enable broadband and narrowband imaging at UV/visible/near-infrared wavelengths, over a range of spatial resolution. SwUIS has flown previously on Space Shuttle flights STS-85 and STS-93, where it recorded multiple UV images of planets, comets, and vulcanoids. We describe the instrument and its capabilities in detail. The SWUIS's broad wavelength coverage and versatile range of hardware configurations make it an attractive option for use as a facility instrument for Earth science and astronomical imaging investigations aboard the International Space Station.

  5. Ag2CO3/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation.

    PubMed

    Sha, Zhou; Chan, Hardy Sze On; Wu, Jishan

    2015-12-15

    Because of their excellent properties, metal-organic frameworks (MOFs) are considered as ideal materials for the development of visible-light photocatalyst. Particularly, although increasing research interests have been put on MOF based photocatalysts, the MOF supported Ag2CO3 as photocatalyst has not been reported in the field of water treatment. In this study, a zirconium based MOF, UiO-66, was incorporated with Ag2CO3 through a convenient solution method and used for visible-light prompted dye degradation. Compared to the mixture of pristine UiO-66 and Ag2CO3, the developed Ag2CO3/UiO-66 composite exhibited enhanced photocatalytic activity to the degradation of rhodamine B (RhB) under visible-light irradiation. It was supposed that the participation of UiO-66 during the synthesis of Ag2CO3 was crucial for such improvement. In addition, the Ag2CO3/UiO-66 composite demonstrated good structural stability after the degradation experiment, and most of its photocatalytic activity was still preserved after the recycle test. Moreover, the photocatalytic mechanism of the Ag2CO3/UiO-66 composite was investigated and a possible pathway of RhB degradation was also proposed.

  6. Pd(0)@UiO-68-AP: chelation-directed bifunctional heterogeneous catalyst for stepwise organic transformations.

    PubMed

    Li, Yan-An; Yang, Song; Liu, Qi-Kui; Chen, Gong-Jun; Ma, Jian-Ping; Dong, Yu-Bin

    2016-05-01

    A bifunctional heterogeneous catalyst Pd(0)@UiO-68-AP based on a chelation-directed post-synthetic approach is reported. It exhibits typical heterogeneous catalytic behaviour and can promote benzyl alcohol oxidiation-Knoevenagel condensation in a stepwise way. PMID:27035589

  7. Modular user interface design for integrated surgical workplaces.

    PubMed

    Benzko, Julia; Krause, Lisa; Janß, Armin; Marschollek, Björn; Merz, Paul; Dell'Anna, Jasmin; Radermacher, Klaus

    2016-04-01

    Severe bottlenecks in usability and human technology interaction (HTI) of existing surgical workplaces and operating room (OR) equipment can occur today: lack of space, cable as trip hazard, communication problems between sterile and non-sterile staff, and operating errors in the handling of the medical devices. In fact, risks that are caused by poor usability can be critical, and studies show that most are preventable. This issue gets even more challenging in the context of open-OR networks regarding consistent and usable integration of user interfaces (UIs) of independently designed systems in one integrated surgical work system. In this work, a concept of generic UI profiles for the modular integration of a UI has been developed and first prototypes have been implemented. The concept is essentially based on the approach of device profiles developed in the context of the Bundesministerium für Bildung und Forschung project OR.NET (www.ornet.org). We developed generic UI profiles to map the different interfaces of the medical devices on an integrated surgical UI. The integrated UI design shall be automatically verified according to agreed usability criteria, guidelines, and human error taxonomies.

  8. 77 FR 54927 - Comment Request for Information Collection for Unemployment Insurance (UI) Benefit Accuracy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... Employment and Training Administration Comment Request for Information Collection for Unemployment Insurance... written comments to Andrew Spisak, Office of Unemployment Insurance, Room S-4524, Employment and Training... UI benefit payments in three programs: State UI, Unemployment Compensation for Federal...

  9. Liaison based assembly design

    SciTech Connect

    Ames, A.; Kholwadwala, D.; Wilson, R.H.

    1996-12-01

    Liaison Based Assembly Design extends the current information infrastructure to support design in terms of kinematic relationships between parts, or liaisons. These liaisons capture information regarding contact, degrees-of-freedom constraints and containment relationships between parts in an assembly. The project involved defining a useful collection of liaison representations, investigating their properties, and providing for maximum use of the data in downstream applications. We tested our ideas by implementing a prototype system involving extensions to Pro/Engineer and the Archimedes assembly planner. With an expanded product model, the design system is more able to capture design intent. When a product update is attempted, increased knowledge availability improves our ability to understand the effect of design changes. Manufacturing and analysis disciplines benefit from having liaison information available, so less time is wasted arguing over incomplete design specifications and our enterprise can be more completely integrated.

  10. Post-Synthetic Polymerization of UiO-66-NH2 Nanoparticles and Polyurethane Oligomer toward Stand-Alone Membranes for Dye Removal and Separation.

    PubMed

    Yao, Bing-Jian; Jiang, Wei-Ling; Dong, Ying; Liu, Zhi-Xian; Dong, Yu-Bin

    2016-07-18

    Metal-organic frameworks (MOFs) are widely used as porous materials in the fields of adsorption and separation. However, their practical application is largely hindered by limitations to their processability. Herein, new UiO-66-Urea-based flexible membranes with MOF loadings of 50 (1), 60 (2), and 70 wt % (3) were designed and prepared by post-synthetic polymerization of UiO-66-NH2 nanoparticles and a polyurethane oligomer under mild conditions. The adsorption behavior of membrane 3 towards four hydrophilic dyes, namely, eosin Y (EY), rhodamine B (RB), malachite green (MG), and methylene blue (MB), in aqueous solution was studied in detail. It exhibits strong adsorption of EY and RB but weak adsorption of MG and MB in aqueous solution. Owing to the selective adsorption of these hydrophilic dyes, membrane 3 can remove EY and RB from aqueous solution and completely separate EY/MB, RB/MG, and RB/MB mixtures in aqueous solution. In addition, the membrane is uniformly textured, easily handled, and can be reused for dye adsorption and separation. PMID:27304754

  11. WATERSHED BASED SURVEY DESIGNS

    EPA Science Inventory

    The development of watershed-based design and assessment tools will help to serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional condition to meet Section 305(b), identification of impaired water bodies or wate...

  12. UiO-66 MOF end-face-coated optical fiber in aqueous contaminant detection.

    PubMed

    Nazari, Marziyeh; Forouzandeh, Mohammad Ali; Divarathne, Chamath M; Sidiroglou, Fotios; Martinez, Marta Rubio; Konstas, Kristina; Muir, Benjamin W; Hill, Anita J; Duke, Mikel C; Hill, Matthew R; Collins, Stephen F

    2016-04-15

    Optical quality metal organic framework (MOF) thin films were integrated, for the first time, to the best of our knowledge, with structured optical fiber substrates to develop MOF-fiber sensors. The MOF-fiber structure, UiO-66 (Zr-based MOF is well known for its water stability), is a thin film that acts as an effective analyte collector. This provided a Fabry-Perot sensor in which concentrations of up to 15 mM Rhodamine-B were detected via wavelength shifts in the interference spectrum.

  13. UiO-66 MOF end-face-coated optical fiber in aqueous contaminant detection.

    PubMed

    Nazari, Marziyeh; Forouzandeh, Mohammad Ali; Divarathne, Chamath M; Sidiroglou, Fotios; Martinez, Marta Rubio; Konstas, Kristina; Muir, Benjamin W; Hill, Anita J; Duke, Mikel C; Hill, Matthew R; Collins, Stephen F

    2016-04-15

    Optical quality metal organic framework (MOF) thin films were integrated, for the first time, to the best of our knowledge, with structured optical fiber substrates to develop MOF-fiber sensors. The MOF-fiber structure, UiO-66 (Zr-based MOF is well known for its water stability), is a thin film that acts as an effective analyte collector. This provided a Fabry-Perot sensor in which concentrations of up to 15 mM Rhodamine-B were detected via wavelength shifts in the interference spectrum. PMID:27082322

  14. Mechanical interactions of UIS support columns. [LMFBR

    SciTech Connect

    Kennedy, J.M.; Belytschko, T.B.

    1983-01-01

    Code development involving above-core structures (ACS) has recently focused on modeling the complexities of mechanical interactions in the ACS support columns which play a very important role in their behavior. These developments are directed toward two considerations: (1) the prediction of the forces exerted by the column in a hypothetical core-disruptive accident (HCDA) in order that the motion of the ACS can be predicted in a coupled fluid-structure analysis, (2) the calculation of the strains and deformations of the support columns so that situations which lead to complete failure can be identified. Finite element capabilities have been developed to handle various types of plant design for the analysis of coupled hydrodynamics and structural response. Beam elements, which previously represented the support columns were able to account for geometric nonlinearities and material nonlinearities, however, changes in the column cross section were not treated. Therefore, one of the aims of this study was to examine the effect of the change in cross section on the behavior of the support columns. A second effect which has been studied is the behavior of support columns consisting of two concentric cylinders.

  15. Efficient alkene epoxidation catalyzed by molybdenyl acetylacetonate supported on aminated UiO-66 metal-organic framework

    NASA Astrophysics Data System (ADS)

    Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz

    2015-03-01

    Metal-organic frameworks (MOFs) containing Mo Schiff base complexes were prepared by post-synthesis method and applied as efficient catalysts in the epoxidation of alkenes with tert-BuOOH. In this manner, UiO-66-NH2 (UiO=University of Oslo) MOF was reacted with salicylaldehyde and thiophene-2-carbaldehyde to produce bidentate Schiff bases. Then, the Schiff base ligands were used for immobilization of molybdenyl acetylacetonate. These new catalysts were characterized by FT-IR, UV-vis spectroscopic techniques, X-ray diffraction (XRD), BET, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). These catalytic systems showed excellent activity in the epoxidation of alkenes such as cyclic and linear ones with tert-butyl hydroperoxide (TBHP) in 1,2-dichloroethane, and reused several times without any appreciable loss of their activity.

  16. Efficient alkene epoxidation catalyzed by molybdenyl acetylacetonate supported on aminated UiO-66 metal−organic framework

    SciTech Connect

    Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz

    2015-03-15

    Metal–organic frameworks (MOFs) containing Mo Schiff base complexes were prepared by post-synthesis method and applied as efficient catalysts in the epoxidation of alkenes with tert-BuOOH. In this manner, UiO-66-NH{sub 2} (UiO=University of Oslo) MOF was reacted with salicylaldehyde and thiophene-2-carbaldehyde to produce bidentate Schiff bases. Then, the Schiff base ligands were used for immobilization of molybdenyl acetylacetonate. These new catalysts were characterized by FT-IR, UV–vis spectroscopic techniques, X-ray diffraction (XRD), BET, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). These catalytic systems showed excellent activity in the epoxidation of alkenes such as cyclic and linear ones with tert-butyl hydroperoxide (TBHP) in 1,2-dichloroethane, and reused several times without any appreciable loss of their activity. - Graphical abstract: Efficient alkene epoxidation with TBHP catalyzed by heterogeneous and reusable molybdenum base catalysts is reported. - Highlights: • UiO-66-NH{sub 2} was modified with salicylaldehyde and thiophene-2-carbaldehyde. • The Schiff base groups were used for immobilization of MoO{sub 2}(acac){sub 2}. • The heterogeneous catalysts were prepared. • The prepared catalysts were used for epoxidation of alkenes. • Compared to other catalyst, our catalysts were more efficient and forceful.

  17. Colorimetric sensing of bithiols using photocatalytic UiO-66(NH2) as H2O2-free peroxidase mimics.

    PubMed

    Hu, Zhangmei; Jiang, Xue; Xu, Fujian; Jia, Jia; Long, Zhou; Hou, Xiandeng

    2016-09-01

    A facile colorimetric sensing method for biothiols was developed, based on photocatalytic property of metal-organic frameworks (MOFs), UiO-66(NH2) nanoparticles (NPs), as peroxidase mimics under light irradiation. By the irradiation of a light emitting diode (LED) source, the colorless chromogenic substrate, 3,3',5,5'-tetramethylbenzydine (TMB), was oxidized into blue oxTMB with the aid of the catalytic UiO-66(NH2) NPs. With the existence of biothiols, the oxidization was prohibited, with the blue color paled and absorbance intensity decreased with the concentration of biothiols in a linear manner. Real samples of cysteine, glutathione, and homocysteine were analyzed under the optimized conditions, with high sensitivity (the limit of detection was calculated as 306nM, 310nM, and 330nm respectively) and selectivity. The recovery ranged from 93% to 107% with good precisions (RSD%≤5%). This photocatalytic property of UiO-66(NH2) as peroxidase mimics was studied based on steady-state kinetics, and the mechanism of oxidization process was also briefly discussed. This developed MOFs-based colorimetric sensing method demonstrated advantages over others for biothiols sensing, including high photo-catalytic activity compared to other nanomaterials, oxidation without H2O2, ease of regulation with the LED source, and low cost without expensive instrument and technically demanding. PMID:27343606

  18. Actinide Binding by Kläui Ligands: REDOX Speciation and Sorption on an Extraction Chromatography Resin

    SciTech Connect

    Levitskaia, Tatiana G.; Sinkov, Sergey I.; Lumetta, Gregg J.

    2008-12-01

    The sorption of Eu(III) and actinide ions in various oxidation states from nitric acid solutions by an extraction chromatography resin containing 1 wt% of the Kläui ligand Cp*Co[P(O)(OR)2]3– [Cp* = pentamethylcyclopentadienyl, R = –CH2 CH2CH3] on Amberlite® XAD-7HP was examined. At 0.3 M HNO3 and a metal-to-ligand ratio of 0.07, the relative affinity of the resin for the ions investigated followed the order: tetravalent >> hexavalent > trivalent > pentavalent; however, the relative affinity for the trivalent and hexavalent ions can be reversed, depending on the extent of ligand loading and the nitric acid concentration. The sorption of the tetravalent ions was exceptionally strong in the entire range of nitric acid concentration examined (0.2 to 8 M HNO3). Resin samples loaded with various actinide ions were examined spectrophotometrically. No Np(V) and Pu(III) species were identified on the resin; rather, reduction-oxidation (REDOX) reactions occurred during equilibration, resulting in their complete conversion to M(IV) species bound by the Kläui ligand. Similarly, the sorption behavior of Pu(VI) and Np(VI) was complicated by their reduction to M(IV) upon sorption. The observed REDOX processes were apparently driven by the extremely high affinity of the Kläui ligand for the tetravalent ions. The acid-base properties of the methyl derivative of the Kläui ligand were investigated in aqueous solution, and its pKa was found to be highly dependent upon the solution ionic strength. The binding constants of this ligand with various actinide ions measured in a mixed methanol/carbon tetrachloride solvent exhibited qualitative agreement with the sorption selectivity trends.

  19. The Changing UI Claimant Population: Is It Time To Retool Reemployment Services? Issue Brief.

    ERIC Educational Resources Information Center

    Needels, Karen; Corson, Walter; Nicholson, Walter

    Data from national administrative and telephone surveys of nationally representative samples of unemployment insurance (UI) recipients who began collecting benefits in 1998 were analyzed to identify changes in the UI claimant population over the past 10 years and determine whether the time has come to retool the nation's reemployment services. The…

  20. UIS2: A Unique Phosphatase Required for the Development of Plasmodium Liver Stages

    PubMed Central

    Zhang, Min; Mishra, Satish; Sakthivel, Ramanavelan; Fontoura, Beatriz M. A.; Nussenzweig, Victor

    2016-01-01

    Plasmodium salivary sporozoites are the infectious form of the malaria parasite and are dormant inside salivary glands of Anopheles mosquitoes. During dormancy, protein translation is inhibited by the kinase UIS1 that phosphorylates serine 59 in the eukaryotic initiation factor 2α (eIF2α). De-phosphorylation of eIF2α-P is required for the transformation of sporozoites into the liver stage. In mammalian cells, the de-phosphorylation of eIF2α-P is mediated by the protein phosphatase 1 (PP1). Using a series of genetically knockout parasites we showed that in malaria sporozoites, contrary to mammalian cells, the eIF2α-P phosphatase is a member of the PP2C/PPM phosphatase family termed UIS2. We found that eIF2α was highly phosphorylated in uis2 conditional knockout sporozoites. These mutant sporozoites maintained the crescent shape after delivery into mammalian host and lost their infectivity. Both uis1 and uis2 were highly transcribed in the salivary gland sporozoites but uis2 expression was inhibited by the Pumilio protein Puf2. The repression of uis2 expression was alleviated when sporozoites developed into liver stage. While most eukaryotic phosphatases interact transiently with their substrates, UIS2 stably bound to phosphorylated eIF2α, raising the possibility that high-throughput searches may identify chemicals that disrupt this interaction and prevent malaria infection. PMID:26735921

  1. 77 FR 59986 - Announcement Regarding a Change in Eligibility for Unemployment Insurance (UI) Claimants in New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... Employment and Training Administration Announcement Regarding a Change in Eligibility for Unemployment Insurance (UI) Claimants in New York in the Emergency Unemployment Compensation 2008 (EUC08) Program and the...: Notice. SUMMARY: Announcement regarding a change in eligibility for Unemployment Insurance (UI)...

  2. American white pelican predation on Cui-ui in Pyramid Lake, Nevada

    USGS Publications Warehouse

    Scoppettone, Gayton G.; Rissler, Peter H.; Fabes, Mark C.; Withers, Donna

    2014-01-01

    Anthropogenic changes to the Pyramid Lake–Truckee River ecosystem in Nevada are suspected to have altered the predator–prey balance between American white pelican Pelecanus erythrorhynchos and Cui-ui Chasmistes cujus. We estimated the loss of the adult Cui-ui population to pelican predation over a 13-year period by netting and tagging Cui-uis as they aggregated at the mouth of the Truckee River prior to their spawning migration into the Truckee River. Cui-ui access to the Truckee River typically required traversing a shallow delta (a foraging advantage for these American white pelicans). Dams and greater frequency of low stream flows also contributed to American white pelican foraging success. We used tag recoveries from Pyramid Lake's nesting colony of American white pelicans along with an experiment to estimate the chance of tag recovery within the colony to calculate the number of tagged fish taken by American white pelicans. We also used numbered tags to test whether there was a size preference for Cui-uis taken. Our results showed that the primary source of adult Cui-ui mortality was from American white pelican predation in the Truckee River. Within a 13-year period American white pelicans had taken 90% of the tags deployed during the first 7 years of the interval. There was no preference for the size of Cui-uis taken. A better understanding of the effects of heavy cropping by American white pelicans on Cui-ui population dynamics is still needed.

  3. Cui-ui reproductive success from potential egg deposition to larval emigration

    USGS Publications Warehouse

    Scoppettone, G. Gary; Rissler, Peter H.

    2012-01-01

    From 1985 to 2006, we tracked cui-ui, Chasmistes cujus, survival from potential egg deposition of migrating spawners to emigrating larvae. Tahoe sucker larvae emigrated to Pyramid Lake the same time as cui-ui larvae, but cui-ui was the predominant catostomid larvae we captured. Survival of cui-ui larvae ranged from 0.46% to 21.17%, declining significantly with decreased flow and increased number of spawners (P < 0.01). Mean total length of emigrating larvae ranged from 11.5 to 12.6 mm and may have been affected by stream flow. Removal of impediments to upstream migrating cui-ui spawners, along with sufficient stream flows, may enhance early life-stage survival.

  4. Free Energy of Ligand Removal in the Metal–Organic Framework UiO-66

    PubMed Central

    2016-01-01

    We report an investigation of the “missing-linker phenomenon” in the Zr-based metal–organic framework UiO-66 using atomistic force field and quantum chemical methods. For a vacant benzene dicarboxylate ligand, the lowest energy charge-capping mechanism involves acetic acid or Cl–/H2O. The calculated defect free energy of formation is remarkably low, consistent with the high defect concentrations reported experimentally. A dynamic structural instability is identified for certain higher defect concentrations. In addition to the changes in material properties upon defect formation, we assess the formation of molecular aggregates, which provide an additional driving force for ligand loss. These results are expected to be of relevance to a wide range of metal–organic frameworks.

  5. Free Energy of Ligand Removal in the Metal–Organic Framework UiO-66

    PubMed Central

    2016-01-01

    We report an investigation of the “missing-linker phenomenon” in the Zr-based metal–organic framework UiO-66 using atomistic force field and quantum chemical methods. For a vacant benzene dicarboxylate ligand, the lowest energy charge-capping mechanism involves acetic acid or Cl–/H2O. The calculated defect free energy of formation is remarkably low, consistent with the high defect concentrations reported experimentally. A dynamic structural instability is identified for certain higher defect concentrations. In addition to the changes in material properties upon defect formation, we assess the formation of molecular aggregates, which provide an additional driving force for ligand loss. These results are expected to be of relevance to a wide range of metal–organic frameworks. PMID:27610208

  6. Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications.

    PubMed

    Jeremias, Felix; Lozan, Vasile; Henninger, Stefan K; Janiak, Christoph

    2013-12-01

    Sorption-based heat transformation and storage appliances are very promising for utilizing solar heat and waste heat in cooling or heating applications. The economic and ecological efficiency of sorption-based heat transformation depends on the availability of suitable hydrophilic and hydrothermally stable sorption materials. We investigated the feasibility of using the metal-organic frameworks UiO-66(Zr), UiO-67(Zr), H2N-UiO-66(Zr) and H2N-MIL-125(Ti) as sorption materials in heat transformations by means of volumetric water adsorption measurements, determination of the heat of adsorption and a 40-cycle ad/desorption stress test. The amino-modified compounds H2N-UiO-66 and H2N-MIL-125 feature high heat of adsorption (89.5 and 56.0 kJ mol(-1), respectively) and a very promising H2O adsorption isotherm due to their enhanced hydrophilicity. For H2N-MIL-125 the very steep rise of the H2O adsorption isotherm in the 0.1 < p/p0 < 0.2 region is especially beneficial for the intended heat pump application. PMID:23864023

  7. Supporting our scientists with Google Earth-based UIs.

    SciTech Connect

    Scott, Janine

    2010-10-01

    Google Earth and Google Maps are incredibly useful for researchers looking for easily-digestible displays of data. This presentation will provide a step-by-step tutorial on how to begin using Google Earth to create tools that further the mission of the DOE national lab complex.

  8. Reliability-based casing design

    SciTech Connect

    Maes, M.A.; Gulati, K.C.; Johnson, R.C.; McKenna, D.L.; Brand, P.R.; Lewis, D.B.

    1995-06-01

    The present paper describes the development of reliability-based design criteria for oil and/or gas well casing/tubing. The approach is based on the fundamental principles of limit state design. Limit states for tubulars are discussed and specific techniques for the stochastic modeling of loading and resistance variables are described. Zonation methods and calibration techniques are developed which are geared specifically to the characteristic tubular design for both hydrocarbon drilling and production applications. The application of quantitative risk analysis to the development of risk-consistent design criteria is shown to be a major and necessary step forward in achieving more economic tubular design.

  9. 78 FR 19735 - Announcement Regarding a Change in Eligibility for Unemployment Insurance (UI) Claimants in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... Employment and Training Administration. Announcement Regarding a Change in Eligibility for Unemployment..., South Carolina and Texas in the Emergency Unemployment Compensation 2008 (EUC08) Program, and the...: Notice. SUMMARY: Announcement regarding a change in eligibility for Unemployment Insurance (UI)...

  10. 78 FR 38074 - Announcement Regarding a Change in Eligibility for Unemployment Insurance (UI) Claimants in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... Employment and Training Administration Announcement Regarding a Change in Eligibility for Unemployment... Virgin Islands and Wisconsin in the Emergency Unemployment Compensation 2008 (EUC08) Program, and the...: Notice. SUMMARY: Announcement regarding a change in eligibility for Unemployment Insurance (UI)...

  11. 75 FR 22630 - Vital Signs Minnesota, Inc., Including Workers Whose Unemployment Insurance (UI) Wages Are Paid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... FR 59253). At the request of the State, the Department reviewed the certification for workers of the... Employment and Training Administration Vital Signs Minnesota, Inc., Including Workers Whose Unemployment... separate unemployment insurance (UI) tax account under the name Biomedical Dynamics...

  12. 75 FR 20387 - Contech Castings, LLC, Including Workers Whose Unemployment Insurance (UI) Wages Are Reported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Contech Castings, LLC, Including Workers Whose Unemployment Insurance... subject firm had their wages reported under a separate unemployment insurance (UI) tax account under...

  13. Efficient microwave assisted synthesis of metal-organic framework UiO-66: optimization and scale up.

    PubMed

    Taddei, Marco; Dau, Phuong V; Cohen, Seth M; Ranocchiari, Marco; van Bokhoven, Jeroen A; Costantino, Ferdinando; Sabatini, Stefano; Vivani, Riccardo

    2015-08-21

    A highly efficient and scalable microwave assisted synthesis of zirconium-based metal-organic framework UiO-66 was developed. In order to identify the best conditions for optimizing the process, a wide range of parameters was investigated. The efficiency of the process was evaluated with the aid of four quantitative indicators. The properties of the materials prepared by microwave irradiation were compared with those synthesized by conventional heating, and no significant effects on morphology, crystal size, or defects were found from the use of microwave assisted heating. Scale up was performed maintaining the high efficiency of the process.

  14. Intuitive user interface for mobile devices based on visual motion detection

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan; Rangaswamy, Karthik; Zhou, ZhiYing

    2007-02-01

    The small form factor and unergonomic keys of mobile phones call for new and more natural approaches in user interface (UI) design. In this paper, we propose intuitive motion-based UI controls for mobile devices with built-in cameras based on the visual detection of the device's self-motion. We developed a car-racing game to test our new interface, and we conducted a user study to evaluate the accuracy, sensitivity, responsiveness and usability of our proposed system. Results show that our motion-based interface is well received by the users and clearly preferred over traditional button-based controls.

  15. Role-Based Design: Design Experiences

    ERIC Educational Resources Information Center

    Miller, Charles; Hokanson, Brad; Doering, Aaron; Brandt, Tom

    2010-01-01

    This is the fourth and final installment in a series of articles presenting a new outlook on the methods of instructional design. These articles examine the nature of the process of instructional design and are meant to stimulate discussion about the roles of designers in the fields of instructional design, the learning sciences, and interaction…

  16. Family of the Sun-and-Stars Time-Determining Instruments (Ilseong-jeongsi-ui) Invented During the Joseon Dynasty

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sam; Kim, Sang Hyuk; Mihn, Byeong-Hee

    2016-09-01

    We analyze the design and specifications of the Sun-and-Stars Time-Determining group of instruments (Ilseong-jeongsi-ui, 日星定時儀) made during the Joseon dynasty. According to the records of the Sejong Sillok (Veritable Records of King Sejong), Sun-and-Stars Time-Determining Instruments measure the solar time of day and the sidereal time of night through three rings and an alidade. One such instrument, the Simplified Time-Determining Instrument (So-jeongsi-ui, 小定時儀), is made without the essential component for alignment with the celestial north pole. Among this group of instruments, only two bronze Hundred-Interval-Ring Sundials (Baekgak-hwan-Ilgu, 百刻環日晷) currently exist. A comparison of the functions of these two relics with two Time-Determining Instruments suggests that the Hundred-Interval-Ring Sundial is a Simplified Sundial (So-ilyeong, 小日影), as recorded in the Sejong Sillok and the Seongjong Sillok (Veritable Records of King Seongjong). Furthermore, the Simplified Sundial is a model derived from the Simplified Time-Determining Instrument. During the King Sejong reign, the Sun-and-Stars Time-Determining Instruments were used in military camps of the kingdom’s frontiers, in royal ancestral rituals, and in royal astronomical observatories.

  17. Reusing Design Knowledge Based on Design Cases and Knowledge Map

    ERIC Educational Resources Information Center

    Yang, Cheng; Liu, Zheng; Wang, Haobai; Shen, Jiaoqi

    2013-01-01

    Design knowledge was reused for innovative design work to support designers with product design knowledge and help designers who lack rich experiences to improve their design capacity and efficiency. First, based on the ontological model of product design knowledge constructed by taxonomy, implicit and explicit knowledge was extracted from some…

  18. Upper incisor to Soft Tissue Plane (UI-STP): a new reference for diagnosis and planning in dentofacial deformities.

    PubMed

    Hernandez-Alfaro, Federico

    2010-09-01

    Planning in orthognathic surgery has been and still is an open issue. We have evolved from 2D classical cephalometric hard-tissue planning to 2D soft tissue planning, and finally to 3D and hard and soft tissue evaluation. This, to our knowledge, is the first description of a new Soft Tissue Plane (STP) and its relationship with the anterior position of the upper incisor (UI). Profile photographs of 110 "attractive individuals" with lips at rest or smiling and with upper incisor shown were used. The photographs used were of 65 professional models from two international agencies and 45 individuals considered most attractive in the internet forums, which included catwalk models and actors. In 86 cases (78.18 %), the incisor was located in front of the STP (A). In 15 cases (13.63%), it was on the plane (N); and in the remaining 9 cases (8.18%), it was behind (P). Despite the limitations of this study and based on our series, we can conclude that the upper incisor is located at or in front of the Soft Tissue Plane (STP) in 91.81% of the attractive facial profiles studied. On the other hand, the relative position of the upper incisor to the soft tissue plane (UI-STP) could be a useful diagnostic and planning tool in orthodontic and surgical management of dentofacial deformities.

  19. Upper incisor to Soft Tissue Plane (UI-STP): a new reference for diagnosis and planning in dentofacial deformities.

    PubMed

    Hernandez-Alfaro, Federico

    2010-09-01

    Planning in orthognathic surgery has been and still is an open issue. We have evolved from 2D classical cephalometric hard-tissue planning to 2D soft tissue planning, and finally to 3D and hard and soft tissue evaluation. This, to our knowledge, is the first description of a new Soft Tissue Plane (STP) and its relationship with the anterior position of the upper incisor (UI). Profile photographs of 110 "attractive individuals" with lips at rest or smiling and with upper incisor shown were used. The photographs used were of 65 professional models from two international agencies and 45 individuals considered most attractive in the internet forums, which included catwalk models and actors. In 86 cases (78.18 %), the incisor was located in front of the STP (A). In 15 cases (13.63%), it was on the plane (N); and in the remaining 9 cases (8.18%), it was behind (P). Despite the limitations of this study and based on our series, we can conclude that the upper incisor is located at or in front of the Soft Tissue Plane (STP) in 91.81% of the attractive facial profiles studied. On the other hand, the relative position of the upper incisor to the soft tissue plane (UI-STP) could be a useful diagnostic and planning tool in orthodontic and surgical management of dentofacial deformities. PMID:20383095

  20. Watershed-based survey designs.

    PubMed

    Detenbeck, Naomi E; Cincotta, Dan; Denver, Judith M; Greenlee, Susan K; Olsen, Anthony R; Pitchford, Ann M

    2005-04-01

    Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream-downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs. PMID:15861987

  1. WATERSHED-BASED SURVEY DESIGNS

    EPA Science Inventory

    Water-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification if impaired water bodies or watersheds to meet Sectio...

  2. Watershed-based survey designs

    USGS Publications Warehouse

    Detenbeck, N.E.; Cincotta, D.; Denver, J.M.; Greenlee, S.K.; Olsen, A.R.; Pitchford, A.M.

    2005-01-01

    Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream-downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs. ?? Springer Science + Business Media, Inc. 2005.

  3. Analysis-Based Message Design: Rethinking Screen Design Guidelines.

    ERIC Educational Resources Information Center

    Beriswill, Joanne E.

    This article describes the evolution of computer interface research issues from text-based interface design guidelines to more complex issues, including media selection, interface design, and visual design. This research is then integrated into the Analysis-based Message Design (AMD) process. The AMD process divides the interface design process…

  4. Development of error-compensating UI for autonomous production cells.

    PubMed

    Luczak, Holger; Reuth, Ralph; Schmidt, Ludger

    2003-01-15

    This contribution deals with the impact of human error on the overall system reliability in flexible manufacturing systems (FMS). Autonomous production cells are used to illustrate an error-compensating system design on the basis of Sheridan's (1997) paradigm of supervisory control. In order to specify human errors and their effects in terms of system disturbances, a taxonomy of system disturbances is recommended. This taxonomic approach was derived by a value benefit analysis and is based on HEDOMS (Human Error and Disturbance Occurrence in Manufacturing Systems) with slight modifications and Reason's GEMS (Generic Error Modelling System). The taxonomy is used for data acquisition. Next, a risk priority equivalent to FMEA (Failure Mode and Effect Analysis) is introduced to structure the data according to their relevance. Then, Vicente's and Rasmussen's guidelines (1987) for an ecological interface design are related to the paradigm of supervisory control. On the basis of these guidelines four case studies are presented to show their successful applicability for interface design in FMS.

  5. Model-based software design

    NASA Technical Reports Server (NTRS)

    Iscoe, Neil; Liu, Zheng-Yang; Feng, Guohui; Yenne, Britt; Vansickle, Larry; Ballantyne, Michael

    1992-01-01

    Domain-specific knowledge is required to create specifications, generate code, and understand existing systems. Our approach to automating software design is based on instantiating an application domain model with industry-specific knowledge and then using that model to achieve the operational goals of specification elicitation and verification, reverse engineering, and code generation. Although many different specification models can be created from any particular domain model, each specification model is consistent and correct with respect to the domain model.

  6. Highly Water-Stable Zirconium Metal-Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination.

    PubMed

    Liu, Xinlei; Demir, Nilay Keser; Wu, Zhentao; Li, Kang

    2015-06-10

    In this study, continuous zirconium(IV)-based metal-organic framework (Zr-MOF) membranes were prepared. The pure-phase Zr-MOF (i.e., UiO-66) polycrystalline membranes were fabricated on alumina hollow fibers using an in situ solvothermal synthesis method. Single-gas permeation and ion rejection tests were carried out to confirm membrane integrity and functionality. The membrane exhibited excellent multivalent ion rejection (e.g., 86.3% for Ca(2+), 98.0% for Mg(2+), and 99.3% for Al(3+)) on the basis of size exclusion with moderate permeance (0.14 L m(-2) h(-1) bar(-1)) and good permeability (0.28 L m(-2) h(-1) bar(-1) μm). Benefiting from the exceptional chemical stability of the UiO-66 material, no degradation of membrane performance was observed for various tests up to 170 h toward a wide range of saline solutions. The high separation performance combined with its outstanding water stability suggests the developed UiO-66 membrane as a promising candidate for water desalination.

  7. A Computational and Experimental Approach Linking Disorder, High-Pressure Behavior, and Mechanical Properties in UiO Frameworks.

    PubMed

    Hobday, Claire L; Marshall, Ross J; Murphie, Colin F; Sotelo, Jorge; Richards, Tom; Allan, David R; Düren, Tina; Coudert, François-Xavier; Forgan, Ross S; Morrison, Carole A; Moggach, Stephen A; Bennett, Thomas D

    2016-02-12

    Whilst many metal-organic frameworks possess the chemical stability needed to be used as functional materials, they often lack the physical strength required for industrial applications. Herein, we have investigated the mechanical properties of two UiO-topology Zr-MOFs, the planar UiO-67 ([Zr6O4(OH)4 (bpdc)6], bpdc: 4,4'-biphenyl dicarboxylate) and UiO-abdc ([Zr6O4(OH)4 (abdc)6], abdc: 4,4'-azobenzene dicarboxylate) by single-crystal nanoindentation, high-pressure X-ray diffraction, density functional theory calculations, and first-principles molecular dynamics. On increasing pressure, both UiO-67 and UiO-abdc were found to be incompressible when filled with methanol molecules within a diamond anvil cell. Stabilization in both cases is attributed to dynamical linker disorder. The diazo-linker of UiO-abdc possesses local site disorder, which, in conjunction with its longer nature, also decreases the capacity of the framework to compress and stabilizes it against direct compression, compared to UiO-67, characterized by a large elastic modulus. The use of non-linear linkers in the synthesis of UiO-MOFs therefore creates MOFs that have more rigid mechanical properties over a larger pressure range. PMID:26797762

  8. A Computational and Experimental Approach Linking Disorder, High‐Pressure Behavior, and Mechanical Properties in UiO Frameworks

    PubMed Central

    Hobday, Claire L.; Marshall, Ross J.; Murphie, Colin F.; Sotelo, Jorge; Richards, Tom; Allan, David R.; Düren, Tina; Coudert, François‐Xavier

    2016-01-01

    Abstract Whilst many metal–organic frameworks possess the chemical stability needed to be used as functional materials, they often lack the physical strength required for industrial applications. Herein, we have investigated the mechanical properties of two UiO‐topology Zr‐MOFs, the planar UiO‐67 ([Zr6O4(OH)4(bpdc)6], bpdc: 4,4′‐biphenyl dicarboxylate) and UiO‐abdc ([Zr6O4(OH)4(abdc)6], abdc: 4,4′‐azobenzene dicarboxylate) by single‐crystal nanoindentation, high‐pressure X‐ray diffraction, density functional theory calculations, and first‐principles molecular dynamics. On increasing pressure, both UiO‐67 and UiO‐abdc were found to be incompressible when filled with methanol molecules within a diamond anvil cell. Stabilization in both cases is attributed to dynamical linker disorder. The diazo‐linker of UiO‐abdc possesses local site disorder, which, in conjunction with its longer nature, also decreases the capacity of the framework to compress and stabilizes it against direct compression, compared to UiO‐67, characterized by a large elastic modulus. The use of non‐linear linkers in the synthesis of UiO‐MOFs therefore creates MOFs that have more rigid mechanical properties over a larger pressure range. PMID:26797762

  9. A Computational and Experimental Approach Linking Disorder, High-Pressure Behavior, and Mechanical Properties in UiO Frameworks.

    PubMed

    Hobday, Claire L; Marshall, Ross J; Murphie, Colin F; Sotelo, Jorge; Richards, Tom; Allan, David R; Düren, Tina; Coudert, François-Xavier; Forgan, Ross S; Morrison, Carole A; Moggach, Stephen A; Bennett, Thomas D

    2016-02-12

    Whilst many metal-organic frameworks possess the chemical stability needed to be used as functional materials, they often lack the physical strength required for industrial applications. Herein, we have investigated the mechanical properties of two UiO-topology Zr-MOFs, the planar UiO-67 ([Zr6O4(OH)4 (bpdc)6], bpdc: 4,4'-biphenyl dicarboxylate) and UiO-abdc ([Zr6O4(OH)4 (abdc)6], abdc: 4,4'-azobenzene dicarboxylate) by single-crystal nanoindentation, high-pressure X-ray diffraction, density functional theory calculations, and first-principles molecular dynamics. On increasing pressure, both UiO-67 and UiO-abdc were found to be incompressible when filled with methanol molecules within a diamond anvil cell. Stabilization in both cases is attributed to dynamical linker disorder. The diazo-linker of UiO-abdc possesses local site disorder, which, in conjunction with its longer nature, also decreases the capacity of the framework to compress and stabilizes it against direct compression, compared to UiO-67, characterized by a large elastic modulus. The use of non-linear linkers in the synthesis of UiO-MOFs therefore creates MOFs that have more rigid mechanical properties over a larger pressure range.

  10. Fragment-based drug design.

    PubMed

    Feyfant, Eric; Cross, Jason B; Paris, Kevin; Tsao, Désirée H H

    2011-01-01

    Fragment-based drug design (FBDD), which is comprised of both fragment screening and the use of fragment hits to design leads, began more than 15 years ago and has been steadily gaining in popularity and utility. Its origin lies on the fact that the coverage of chemical space and the binding efficiency of hits are directly related to the size of the compounds screened. Nevertheless, FBDD still faces challenges, among them developing fragment screening libraries that ensure optimal coverage of chemical space, physical properties and chemical tractability. Fragment screening also requires sensitive assays, often biophysical in nature, to detect weak binders. In this chapter we will introduce the technologies used to address these challenges and outline the experimental advantages that make FBDD one of the most popular new hit-to-lead process. PMID:20981527

  11. Effects of population increase on cui-ui growth and maturation

    USGS Publications Warehouse

    Scoppettone, G.G.; Rissler, P.H.

    2007-01-01

    Cui-ui Chasmistes cujus is endemic to Pyramid Lake, Nevada. The cui-ui population declined during much of the 20th century as a result of water diversion and the formation of a shallow and virtually impassable delta at the mouth of the Truckee River, its spawning habitat. The population increased more than 10-fold to more than 1 million adults after access to the river was restored, creating a period of relatively higher density. This change presented the opportunity to test intraspecific density effects on cui-ui age and length at maturity and on growth. We also compared the year-class structure of the adult population before and after improved access. At low density, cui-ui mean age at maturation was 9.2 years for males and 9.6 for females; at high density, it was significantly higher: 11.8 years for males and 12.0 for females. There was no significant change in mean fork length at maturity related to population increase. Growth patterns differed between high and low density, the low-density fish growing faster than high-density fish before their respective mean age of maturity; past their mean age at maturity, high-density fish grew significantly faster than low-density fish. Fish in both density periods reached similar lengths by about 19-20 years of age. Year-class structure for both density periods consisted of strong year-classes, which predominated the adult population for several years.

  12. 76 FR 75561 - Information Collection Request for Unemployment Insurance (UI) Trust Fund Activities Reports...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... Information Collection Request for Unemployment Insurance (UI) Trust Fund Activities Reports: Extension... Unemployment Tax Act (FUTA) require that all monies received in the unemployment fund of a state be paid immediately to the Secretary of Treasury to the credit of the Unemployment Trust Fund (UTF). This is...

  13. 75 FR 22846 - Norgren Automation Solutions, Including Workers Whose Unemployment Insurance (UI) Wages Are Paid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... published in the Federal Register on March 5, 2010 (75 FR 10320). At the request of the state, the... Employment and Training Administration Norgren Automation Solutions, Including Workers Whose Unemployment... under a separated unemployment insurance (UI) tax account under the name Syron Engineering....

  14. 75 FR 26793 - Fypon, Ltd., Parkersburg, WV, Including Workers Whose Unemployment Insurance, (UI) Wages Are Paid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Federal Register on March 5, 2010 (75 FR 10321). At the request of the state, the Department reviewed the... Employment and Training Administration Fypon, Ltd., Parkersburg, WV, Including Workers Whose Unemployment... Leased Workers From Job1 USA, Including Workers Whose Unemployment Insurance, (UI) Wages Are Paid...

  15. 75 FR 34170 - Circuit Science, Inc., Including Workers Whose Unemployment Insurance (UI) Wages Are Reported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... (75 FR 3929). At the request of the state, the Department reviewed the certification for workers of... Employment and Training Administration Circuit Science, Inc., Including Workers Whose Unemployment Insurance... subject firm had their wages reported under a separated unemployment insurance (UI) tax account under...

  16. 76 FR 9052 - Comment Request for Information Collection for the Unemployment Insurance (UI) Facilitation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... Request for Information Collection for the Unemployment Insurance (UI) Facilitation of Claimant... set annually for each state. The ALPs take into account the state's total unemployment rate and the... notably by the economic conditions in the state, as measured by the total unemployment rate, and...

  17. 75 FR 52981 - Bluescope Buildings North America, Including Workers Whose Unemployment Insurance (UI) Wages Are...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Register on June 7, 2010 (75 FR 32224). At the request of the State Agency, the Department reviewed the... Unemployment Insurance (UI) Wages Are Reported Through Butler Manufacturing Company, Laurinburg, NC; Amended...Scope Buildings North America had their wages reported through a separate unemployment insurance...

  18. 77 FR 59669 - Comment Request for Information Collection; Unemployment Insurance (UI) Title XII Advances and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... Employment and Training Administration Comment Request for Information Collection; Unemployment Insurance (UI..., Office of Unemployment Insurance, Employment and Training Administration, U.S. Department of Labor, 200...) provides for advances to states from the Federal Unemployment Account (FUA). The law further sets...

  19. 77 FR 44678 - Lawson Software, Inc., Including Workers Whose Unemployment Insurance (UI) Wages Were Reported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... the Federal Register on July 18, 2012 (77 FR 42336). The Department reviewed the certification for... Employment and Training Administration Lawson Software, Inc., Including Workers Whose Unemployment Insurance (UI) Wages Were Reported Through Lawson Software Americas, Inc. and Infor, Inc., St. Paul,...

  20. 76 FR 30396 - Tektronix, Inc., Including Workers Whose UI Wages Were Reported Under Tektronix Component...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... Tektronix, Inc. and Including On-Site Leased Workers From Adecco Employment Services Beaverton, OR; Amended... Services, Beaverton, Oregon, who became totally or partially separated from employment on or after November... Employment and Training Administration Tektronix, Inc., Including Workers Whose UI Wages Were Reported...

  1. 77 FR 7604 - Notice Requesting Public Comment on Two Proposed Unemployment Insurance (UI) Program Performance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... in order to be in compliance with the law. According to section 3(a)(3) of IPERA: The term... defining acceptable performance according to the measure. If a State's performance does not attain these... has developed UI overpayment recovery targets for FY 2011, FY 2012 and FY 2013. According to Part...

  2. Reproductive longevity and fecundity associated with nonannual spawning in cui-ui

    USGS Publications Warehouse

    Scoppettone, G.G.; Rissler, P.H.; Buettner, M.E.

    2000-01-01

    The cui-ui Chasmistes cujus, a long-lived (40 years or more) and highly fecund catostomid, is often prevented from spawning in drought years. We studied the effect of cui-ui age on egg viability and the effect of nonannual spawning on fecundity in relation to length, age, and growth rate. Egg hatching and survival of swim-up larvae were examined for the offspring of first-time spawners, intermediate-aged females, and old females. Fecundity was tested for three growth categories (fast, intermediate, and slow) in years that were sufficiently wet to allow fish to spawn in the Truckee River and after dry years when fish did not spawn because of river inaccessibility. Females in the fast-growth category were first-time spawners, those in the middle-growth category were young to middle aged, and those in the slow-growth category were middle aged to old. Females up to 44 years of age still had viable eggs and a reproductive life of at least 29 years. Fecundity was greater after no-spawn years (dry year) compared with a spawn year (wet year), especially for fish in the slow-growth category. This study provides insight into the reproductive adaptation of a long-lived western North American catostomid and suggests possible reasons for the wide variation in fecundity in other long-lived catostomids. Our data will be used to improve the accuracy of an existing cui-ui population viability model. The revised model will have greater sensitivity to cui-ui survival relative to their spawning frequency and, thus, contribute to better management of conditions needed for the long-term survival of endangered cui-ui.

  3. Visualizing K48 Ubiquitination during Presynaptic Formation By Ubiquitination-Induced Fluorescence Complementation (UiFC)

    PubMed Central

    Pinto, Maria J.; Pedro, Joana R.; Costa, Rui O.; Almeida, Ramiro D.

    2016-01-01

    In recent years, signaling through ubiquitin has been shown to be of great importance for normal brain development. Indeed, fluctuations in ubiquitin levels and spontaneous mutations in (de)ubiquitination enzymes greatly perturb synapse formation and neuronal transmission. In the brain, expression of lysine (K) 48-linked ubiquitin chains is higher at a developmental stage coincident with synaptogenesis. Nevertheless, no studies have so far delved into the involvement of this type of polyubiquitin chains in synapse formation. We have recently proposed a role for polyubiquitinated conjugates as triggering signals for presynaptic assembly. Herein, we aimed at characterizing the axonal distribution of K48 polyubiquitin and its dynamics throughout the course of presynaptic formation. To accomplish so, we used an ubiquitination-induced fluorescence complementation (UiFC) strategy for the visualization of K48 polyubiquitin in live hippocampal neurons. We first validated its use in neurons by analyzing changing levels of polyubiquitin. UiFC signal is diffusely distributed with distinct aggregates in somas, dendrites and axons, which perfectly colocalize with staining for a K48-specific antibody. Axonal UiFC aggregates are relatively stable and new aggregates are formed as an axon grows. Approximately 65% of UiFC aggregates colocalize with synaptic vesicle clusters and they preferentially appear in the axonal domains of axo-somatodendritic synapses when compared to isolated axons. We then evaluated axonal accumulation of K48 ubiquitinated signals in bead-induced synapses. We observed rapid accumulation of UiFC signal and endogenous K48 ubiquitin at the sites of newly formed presynapses. Lastly, we show by means of a microfluidic platform, for the isolation of axons, that presynaptic clustering on beads is dependent on E1-mediated ubiquitination at the axonal level. Altogether, these results indicate that enrichment of K48 polyubiquitin at the site of nascent presynaptic

  4. 20 CFR 652.210 - What are the Act's requirements for administration of the work test and assistance to UI claimants?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... establish the requirements under which UI claimants must register and search for work in order to fulfill... receive the necessary guidance and counseling to ensure they make a meaningful and realistic work search; and (3) UI program staff receive information about UI claimants' ability or availability for work,...

  5. A Discussion of Knowledge Based Design

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A discussion of knowledge and Knowledge- Based design as related to the design of aircraft is presented. The paper discusses the perceived problem with existing design studies and introduces the concepts of design and knowledge for a Knowledge- Based design system. A review of several Knowledge-Based design activities is provided. A Virtual Reality, Knowledge-Based system is proposed and reviewed. The feasibility of Virtual Reality to improve the efficiency and effectiveness of aerodynamic and multidisciplinary design, evaluation, and analysis of aircraft through the coupling of virtual reality technology and a Knowledge-Based design system is also reviewed. The final section of the paper discusses future directions for design and the role of Knowledge-Based design.

  6. Results-Based Interaction Design

    ERIC Educational Resources Information Center

    Weiss, Meredith

    2008-01-01

    Interaction design is a user-centered approach to development in which users and their goals are the driving force behind a project's design. Interaction design principles are fundamental to the design and implementation of effective websites, but they are not sufficient. This article argues that, to reach its full potential, a website should also…

  7. Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation.

    PubMed

    Phang, Won Ju; Jo, Hyuna; Lee, Woo Ram; Song, Jeong Hwa; Yoo, Kicheon; Kim, BongSoo; Hong, Chang Seop

    2015-04-20

    Facile postsynthetic oxidation of the thiol-laced UiO-66-type framework UiO-66(SH)2 enabled the generation of UiO-66(SO3 H)2 with sulfonic acid groups covalently linked to the backbone of the system. The oxidized material exhibited a superprotonic conductivity of 8.4×10(-2)  S cm(-1) at 80 °C and 90 % relative humidity, and long-term stability of the conductivity was observed. This level of conductivity exceeds that of any proton-conducting MOF reported to date and is equivalent to the conductivity of the most effective known electrolyte, Nafion.

  8. Team Based Engineering Design Thinking

    ERIC Educational Resources Information Center

    Mentzer, Nathan

    2014-01-01

    The objective of this research was to explore design thinking among teams of high school students. This objective was encompassed in the research question driving the inquiry: How do teams of high school students allocate time across stages of design? Design thinking on the professional level typically occurs in a team environment. Many…

  9. Team Based Engineering Design Thinking

    ERIC Educational Resources Information Center

    Mentzer, Nathan

    2012-01-01

    The objective of this research was to explore design thinking among teams of high school students. This objective is encompassed in the research question driving this inquiry: How do teams of high school students allocate time across stages of design? Design thinking on the professional level typically occurs in a team environment. Many…

  10. Designer: A Knowledge-Based Graphic Design Assistant.

    ERIC Educational Resources Information Center

    Weitzman, Louis

    This report describes Designer, an interactive tool for assisting with the design of two-dimensional graphic interfaces for instructional systems. The system, which consists of a color graphics interface to a mathematical simulation, provides enhancements to the Graphics Editor component of Steamer (a computer-based training system designed to aid…

  11. Multidisciplinary Expert-aided Analysis and Design (MEAD)

    NASA Technical Reports Server (NTRS)

    Hummel, Thomas C.; Taylor, James

    1989-01-01

    The MEAD Computer Program (MCP) is being developed under the Multidisciplinary Expert-Aided Analysis and Design (MEAD) Project as a CAD environment in which integrated flight, propulsion, and structural control systems can be designed and analyzed. The MCP has several embedded computer-aided control engineering (CACE) packages, a user interface (UI), a supervisor, a data-base manager (DBM), and an expert system (ES). The supervisor monitors and coordinates the operation of the CACE packages, the DBM; the ES, and the UI. The DBM tracks the control design process. Models created or installed by the MCP are tracked by date and version, and results are associated with the specific model version with which they were generated. The ES is used to relieve the control engineer from tedious and cumbersome tasks in the iterative design process. The UI provides the capability for a novice as well as an expert to utilize the MCP easily and effectively. The MCP version 2(MCP-2.0) is fully developed for flight control system design and analysis. Propulsion system modeling, analysis, and simulation is also supported; the same is true for structural models represented in state-space form. The ultimate goal is to cover the integration of flight, propulsion, and structural control engineering, including all discipline-specific functionality and interfaces. The current MCP-2.0 components and functionality are discussed.

  12. Postsynthetic bromination of UiO-66 analogues: altering linker flexibility and mechanical compliance.

    PubMed

    Marshall, Ross J; Richards, Tom; Hobday, Claire L; Murphie, Colin F; Wilson, Claire; Moggach, Stephen A; Bennett, Thomas D; Forgan, Ross S

    2016-03-14

    A new member of the UiO-66 series of zirconium metal-organic frameworks (MOFs) is reported, and the postsynthetic bromination of its integral alkene moeities in a single-crystal to single-crystal manner is fully characterised. Nanoindentation is used to probe the bromination of unsaturated carbon-carbon bonds, in it and an analogous Zr MOF, which leads to more compliant materials with lower elastic moduli.

  13. Postsynthetic bromination of UiO-66 analogues: altering linker flexibility and mechanical compliance.

    PubMed

    Marshall, Ross J; Richards, Tom; Hobday, Claire L; Murphie, Colin F; Wilson, Claire; Moggach, Stephen A; Bennett, Thomas D; Forgan, Ross S

    2016-03-14

    A new member of the UiO-66 series of zirconium metal-organic frameworks (MOFs) is reported, and the postsynthetic bromination of its integral alkene moeities in a single-crystal to single-crystal manner is fully characterised. Nanoindentation is used to probe the bromination of unsaturated carbon-carbon bonds, in it and an analogous Zr MOF, which leads to more compliant materials with lower elastic moduli. PMID:26583777

  14. Tuning the properties of the UiO-66 metal organic framework by Ce substitution.

    PubMed

    Nouar, Farid; Breeze, Matthew I; Campo, Betiana C; Vimont, Alexandre; Clet, Guillaume; Daturi, Marco; Devic, Thomas; Walton, Richard I; Serre, Christian

    2015-10-01

    Crystallisation of a mixed-metal form of the porous framework UiO-66 in which Zr is partially replaced by Ce produces a ligand-defective material, that contains some Ce(III) as well as a majority of Ce(IV). Infrared spectroscopy shows enhanced binding of methanol in the substituted material that leads to catalytic decomposition of the alcohol, which may be due to a combination of defects and redox activity. PMID:26278204

  15. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66

    PubMed Central

    Wang, Chenghong; Liu, Xinlei; Chen, J. Paul; Li, Kang

    2015-01-01

    In this study, water stable zirconium metal-organic framework (UiO-66) has been synthesized and for the first time applied as an adsorbent to remove aquatic arsenic contamination. The as-synthesized UiO-66 adsorbent functions excellently across a broad pH range of 1 to 10, and achieves a remarkable arsenate uptake capacity of 303 mg/g at the optimal pH, i.e., pH = 2. To the best of our knowledge, this is the highest arsenate As(V) adsorption capacity ever reported, much higher than that of currently available adsorbents (5–280 mg/g, generally less than 100 mg/g). The superior arsenic uptake performance of UiO-66 adsorbent could be attributed to the highly porous crystalline structure containing zirconium oxide clusters, which provides a large contact area and plenty of active sites in unit space. Two binding sites within the adsorbent framework are proposed for arsenic species, i.e., hydroxyl group and benzenedicarboxylate ligand. At equilibrium, seven equivalent arsenic species can be captured by one Zr6 cluster through the formation of Zr-O-As coordination bonds. PMID:26559001

  16. Evaluation of the ruggedness of power DMOS transistor from electro-thermal simulation of UIS behaviour

    NASA Astrophysics Data System (ADS)

    Donoval, Daniel; Vrbicky, Andrej; Marek, Juraj; Chvala, Ales; Beno, Peter

    2008-06-01

    High-voltage power MOSFETs have been widely used in switching mode power supply circuits as output drivers for industrial and automotive electronic control systems. However, as the device size is reduced, the energy handling capability is becoming a very important issue to be addressed together with the trade-off between the series on-resistance RON and breakdown voltage VBR. Unclamped inductive switching (UIS) condition represents the circuit switching operation for evaluating the "ruggedness", which characterizes the device capability to handle high avalanche currents during the applied stress. In this paper we present an experimental method which modifies the standard UIS test and allows extraction of the maximum device temperature after the applied standard stress pulse vanishes. Corresponding analysis and non-destructive prediction of the ruggedness of power DMOSFETs devices supported by advanced 2-D mixed mode electro-thermal device and circuit simulation under UIS conditions using calibrated physical models is provided also. The results of numerical simulation are in a very good correlation with experimental characteristics and contribute to their physical interpretation by identification of the mechanism of heat generation and heat source location and continuous temperature extraction.

  17. Reproduction by the endangered cui-ui in the lower Truckee River

    USGS Publications Warehouse

    Scoppettone, G.G.; Wedemeyer, G.A.; Coleman, M.; Burge, H.

    1983-01-01

    Adult spawning behavior and emigration of larvae of the endangered cui-ui Chasmistes cujus were studied in a natural side channel of the lower Truckee River. External radio-tags placed on eight apparently did not affect spawning behavior. Cui-uis spawned in clusters of two to seven fish; usually a single female was flanked by two males. Each spawning act lasted 3–6 seconds, and individual fish spawned numerous times. The most active tagged male and female spawned at least 294 times and 114 times, respectively. Individual females broadcast eggs over an area of up to 50 m2. Males spawned over a 4–5-day period, and females over 2.5–4 days. Most spawning occurred at night in water depths ranging from 9 to 43 cm, water velocities ranging from 23 to 87 cm/second, and temperatures of 12–17 C. The preferred spawning substrate was gravel. Peak emergence and out-migration of cui-ui larvae occurred 14 days after peak spawning.

  18. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66

    NASA Astrophysics Data System (ADS)

    Wang, Chenghong; Liu, Xinlei; Chen, J. Paul; Li, Kang

    2015-11-01

    In this study, water stable zirconium metal-organic framework (UiO-66) has been synthesized and for the first time applied as an adsorbent to remove aquatic arsenic contamination. The as-synthesized UiO-66 adsorbent functions excellently across a broad pH range of 1 to 10, and achieves a remarkable arsenate uptake capacity of 303 mg/g at the optimal pH, i.e., pH = 2. To the best of our knowledge, this is the highest arsenate As(V) adsorption capacity ever reported, much higher than that of currently available adsorbents (5-280 mg/g, generally less than 100 mg/g). The superior arsenic uptake performance of UiO-66 adsorbent could be attributed to the highly porous crystalline structure containing zirconium oxide clusters, which provides a large contact area and plenty of active sites in unit space. Two binding sites within the adsorbent framework are proposed for arsenic species, i.e., hydroxyl group and benzenedicarboxylate ligand. At equilibrium, seven equivalent arsenic species can be captured by one Zr6 cluster through the formation of Zr-O-As coordination bonds.

  19. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66.

    PubMed

    Wang, Chenghong; Liu, Xinlei; Chen, J Paul; Li, Kang

    2015-11-12

    In this study, water stable zirconium metal-organic framework (UiO-66) has been synthesized and for the first time applied as an adsorbent to remove aquatic arsenic contamination. The as-synthesized UiO-66 adsorbent functions excellently across a broad pH range of 1 to 10, and achieves a remarkable arsenate uptake capacity of 303 mg/g at the optimal pH, i.e., pH = 2. To the best of our knowledge, this is the highest arsenate As(V) adsorption capacity ever reported, much higher than that of currently available adsorbents (5-280 mg/g, generally less than 100 mg/g). The superior arsenic uptake performance of UiO-66 adsorbent could be attributed to the highly porous crystalline structure containing zirconium oxide clusters, which provides a large contact area and plenty of active sites in unit space. Two binding sites within the adsorbent framework are proposed for arsenic species, i.e., hydroxyl group and benzenedicarboxylate ligand. At equilibrium, seven equivalent arsenic species can be captured by one Zr6 cluster through the formation of Zr-O-As coordination bonds.

  20. Tailoring the Pore Size and Functionality of UiO-Type Metal-Organic Frameworks for Optimal Nerve Agent Destruction.

    PubMed

    Peterson, Gregory W; Moon, Su-Young; Wagner, George W; Hall, Morgan G; DeCoste, Jared B; Hupp, Joseph T; Farha, Omar K

    2015-10-19

    Evaluation of UiO-66 and UiO-67 metal-organic framework derivatives as catalysts for the degradation of soman, a chemical warfare agent, showed the importance of both the linker size and functionality. The best catalysts yielded half-lives of less than 1 min. Further testing with a nerve agent simulant established that different rate-assessment techniques yield similar values for degradation half-lives. PMID:26431370

  1. Design-Based Science and Student Learning

    ERIC Educational Resources Information Center

    Fortus, David; Dershimer, R. Charles; Krajcik, Joseph; Marx, Ronald W.; Mamlok-Naaman, Rachel

    2004-01-01

    Design-Based Science (DBS) is a pedagogy in which the goal of designing an artifact contextualizes all curricular activities. Design is viewed as a vehicle through which scientific knowledge and real-world problem-solving skills can be constructed. Following Anderson and Hogan's (1999) call to document the design of new science pedagogies, this…

  2. Research on optimization-based design

    NASA Astrophysics Data System (ADS)

    Balling, R. J.; Parkinson, A. R.; Free, J. C.

    1989-04-01

    Research on optimization-based design is discussed. Illustrative examples are given for cases involving continuous optimization with discrete variables and optimization with tolerances. Approximation of computationally expensive and noisy functions, electromechanical actuator/control system design using decomposition and application of knowledge-based systems and optimization for the design of a valve anti-cavitation device are among the topics covered.

  3. PMIS: Data Base Design Report

    ERIC Educational Resources Information Center

    Fiddleman, Richard; Gorman, Michael M.

    1972-01-01

    PMIS is a computer-based planning and management information system for local school districts. This report centers on the PMIS data bases that contain school system data by reviewing the major phases involved in their creation, explaining the factors that caused the unique orientation of the data bases, reviewing the two tasks that comprise the…

  4. Separations of substituted benzenes and polycyclic aromatic hydrocarbons using normal- and reverse-phase high performance liquid chromatography with UiO-66 as the stationary phase.

    PubMed

    Zhao, Wei-Wei; Zhang, Chao-Yan; Yan, Zeng-Guang; Bai, Li-Ping; Wang, Xiayan; Huang, Hongliang; Zhou, You-Ya; Xie, Yabo; Li, Fa-Sheng; Li, Jian-Rong

    2014-11-28

    Metal-organic frameworks (MOFs) have great potential for applications in chromatography due to their highly tailorable porous structures and unique properties. In this work, the stable MOF UiO-66 was evaluated as both a normal-phase (NP-) and a reverse-phase (RP-) stationary phase in the high performance liquid chromatography (HPLC) to separate substituted benzenes (SBs) and polycyclic aromatic hydrocarbons (PAHs). It was found that the mobile phase composition has a significant effect on the HPLC separation. Baseline RP-HPLC separations of xylene isomers; naphthalene and anthracene; naphthalene and chrysene; and naphthalene, fluorene, and chrysene were achieved using MeOH/H2O ratios of 80:20, 75:25, 85:15, and 75:25, respectively, on the UiO-66 column. Similarly, baseline NP-HPLC separations of xylene isomers and ethylbenzene; ethylbenzene, styrene, o-xylene, and m-xylene; and several PAHs were also obtained on the UiO-66 column with different mobile phase compositions. The relative standard deviations (RSDs) of retention time, peak height, peak area, and half peak width for five replicate separations of the tested analytes were within the ranges 0.2-0.4%, 0.2-1.6%, 0.7-3.9%, 0.4-1.1%, respectively. We also evaluated other critical HPLC parameters, including injected sample mass, column temperature, and the thermodynamic characters of both the RP-HPLC and the NP-HPLC separation processes. It was confirmed that the separation of SBs on a UiO-66 column was an exothermic process, controlled by both enthalpy change (ΔH) and entropy change (ΔS). The reverse shape selectivity, size selectivity, stacking effect, and electrostatic force played vital roles in the separations of these analytes. To the best of our knowledge, this method is one of the very few examples of using MOFs as the stationary phase in both NP-HPLC and RP-HPLC. MOF-based stationary phases may thus be applied in the separations and analyses of SBs and PAHs in environmental samples.

  5. Design versus manufacturing data base management requirements

    NASA Technical Reports Server (NTRS)

    Mckenna, E. G.

    1984-01-01

    Data base management systems are valuable manufacturing and design tools as these disciplines are exceptionally information intensive, requiring precise organization and control of data processing and utilization. One such data base manager is the IPAD* system, which was originally developed to support the design process but was expanded to incorporate the additional needs of manufacturing. To set the stage, an overview of the design and manufacturing process is presented. The different functions of computers in these processes are then discussed. Finally, the design and manufacturing requirements for a data base manager are compared and contrasted.

  6. Methodological Alignment in Design-Based Research

    ERIC Educational Resources Information Center

    Hoadley, Christopher M.

    2004-01-01

    Empirical research is all about trying to model and predict the world. In this article, I discuss how design-based research methods can help do this effectively. In particular, design-based research methods can help with the problem of methodological alignment: ensuring that the research methods we use actually test what we think they are testing.…

  7. Observations from the Microgravity Smoldering Combustion (MSC) Ultrasound Imaging System (UIS)

    NASA Technical Reports Server (NTRS)

    Walther, D.C.; Fernandez-Pello, A. C.; Anthenien, R. A.; Urban, D. L.

    1999-01-01

    The Microgravity Smoldering Combustion (MSC) experiment is a study of the smolder characteristics of porous combustible materials in a microgravity environment. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal earth gravity. Experiments have been conducted aboard the NASA Space Shuttle in the GAS-CAN, an apparatus requiring completely remote operation. Future GAS-CAN experiments will utilize an ultrasound imaging system (UIS). Thermocouples are currently used to measure temperature and reaction front velocities, but a less intrusive method is desirable, as smolder is affected by heat transfer along the thermocouple. It is expected that the UIS will eventually replace the existing array of thermocouples as a non-intrusive technique without compromising data acquisition. Smoldering is defined as a non-flaming, self-sustaining, propagating, exothermic, surface reaction, deriving its principal heat from heterogeneous oxidation of the fuel. Smolder of cable insulation is of particular concern in the space program; to date there have been a few minor incidents of overheated and charred cables and electrical components reported on Space Shuttle flights. Recently, the establishment of the International Space Station and other space facilities has increased interest in the study of smoldering in microgravity because of the need to preempt the possibility, and/or to minimize the effect of a smolder initiated fire during the operation of these facilities. The ignition and propagation of smolder are examined using both thermocouples and the UIS. The UIS has been implemented into the MSC flight hardware. The system provides information about local permeability variations within a smoldering sample, which can, in turn, be interpreted to track the propagation of the smolder reaction. The method utilizes the observation that transmission of an ultrasonic signal through a porous material

  8. Design of Fusion Safety Data Base

    NASA Astrophysics Data System (ADS)

    Aoki, Isao; Seki, Yasushi

    1994-03-01

    This report presents a data base architecture with its circumstance which is designed to be used for safety design and analysis studies. Design of Fusion Safety Data Base has been carried out to take into account a great number of published references on operation and control of fusion energy and engineering features to secure safety of fusion devices. Data Base of Fiscal Year 1993 - which has been established over an extended year - realized on PC (Personal Computer) peripherals is reported. The concept of data base architecture with its attributive issues and a manipulating way for users are also shown.

  9. MTJ based MRAM System Design

    NASA Astrophysics Data System (ADS)

    Tehrani, Saied

    2001-03-01

    Magnetoresistive Random Access Memory (MRAM) is based on magnetic memory elements integrated with CMOS. Key attributes of MRAM technology are nonvolatility and unlimited read and write endurance. MRAM has the potential for high speed, low operating voltage, and high density solid state memory. Our bit architecture is based on a minimum sized active transistor as the isolation device in conjunction with a magnetic tunnel junction element (MTJ) to define the MRAM bit. Our MTJ material stack is composed of two magnetic layers separated by a thin dielectric barrier and a mechanism to pin the polarization of one of the magnetic layers in a fixed direction. The resistance of the memory bit is either low or high dependent on the relative polarization, parallel or anti-parallel, of the free layer with respect to the pinned layer. In this talk we will summarize our progress on Magnetoresistive Random Access Memory (MRAM) based on Magnetic Tunnel Junctions (MTJ). We have demonstrated MTJ material in the 1-1000 kohms-um2 range with MR values above 40mainly governed by the magnetic shape anisotropy that arises from the element boundaries. The switching repeatability, as well as hard axis selectability, are shown to be dependent on both shape and aspect ratio. The MRAM module is inserted in the back-end-of-line (BEOL) interconnect using four additional lithography steps. The source and isolation are shared between neighboring cells to minimize cell area. In this particular architecture, the cell size is 7.2um2, corresponding to 9f2, where f is one-half the metal pitch. Results of 256kb MRAM memory based on integration of MTJ and CMOS will be discussed. The memory cell is a 1T1MTJ, which consists of one transistor and one Magnetic Tunnel Junction, and the organization of the memory is 16kx16. Nonvolatile data storage and read cycle times of less than 50ns have been demonstrated. Read power consumption at 3.0V and 20MHz is about 24mW.This performance is very encouraging for a 0

  10. The genome of Syntrophorhabdus aromaticivorans strain UI provides new insights for syntrophic aromatic compound metabolism and electron flow.

    PubMed

    Nobu, Masaru K; Narihiro, Takashi; Hideyuki, Tamaki; Qiu, Yan-Ling; Sekiguchi, Yuji; Woyke, Tanja; Goodwin, Lynne; Davenport, Karen W; Kamagata, Yoichi; Liu, Wen-Tso

    2015-12-01

    How aromatic compounds are degraded in various anaerobic ecosystems (e.g. groundwater, sediments, soils and wastewater) is currently poorly understood. Under methanogenic conditions (i.e. groundwater and wastewater treatment), syntrophic metabolizers are known to play an important role. This study explored the draft genome of Syntrophorhabdus aromaticivorans strain UI and identified the first syntrophic phenol-degrading phenylphosphate synthase (PpsAB) and phenylphosphate carboxylase (PpcABCD) and syntrophic terephthalate-degrading decarboxylase complexes. The strain UI genome also encodes benzoate degradation through hydration of the dienoyl-coenzyme A intermediate as observed in Geobacter metallireducens and Syntrophus aciditrophicus. Strain UI possesses electron transfer flavoproteins, hydrogenases and formate dehydrogenases essential for syntrophic metabolism. However, the biochemical mechanisms for electron transport between these H2 /formate-generating proteins and syntrophic substrate degradation remain unknown for many syntrophic metabolizers, including strain UI. Analysis of the strain UI genome revealed that heterodisulfide reductases (HdrABC), which are poorly understood electron transfer genes, may contribute to syntrophic H2 and formate generation. The genome analysis further identified a putative ion-translocating ferredoxin : NADH oxidoreductase (IfoAB) that may interact with HdrABC and dissimilatory sulfite reductase gamma subunit (DsrC) to perform novel electron transfer mechanisms associated with syntrophic metabolism.

  11. Towards Risk Based Design for NASA's Missions

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; Barrientos, Francesca; Meshkat, Leila

    2004-01-01

    This paper describes the concept of Risk Based Design in the context of NASA s low volume, high cost missions. The concept of accounting for risk in the design lifecycle has been discussed and proposed under several research topics, including reliability, risk analysis, optimization, uncertainty, decision-based design, and robust design. This work aims to identify and develop methods to enable and automate a means to characterize and optimize risk, and use risk as a tradeable resource to make robust and reliable decisions, in the context of the uncertain and ambiguous stage of early conceptual design. This paper first presents a survey of the related topics explored in the design research community as they relate to risk based design. Then, a summary of the topics from the NASA-led Risk Colloquium is presented, followed by current efforts within NASA to account for risk in early design. Finally, a list of "risk elements", identified for early-phase conceptual design at NASA, is presented. The purpose is to lay the foundation and develop a roadmap for future work and collaborations for research to eliminate and mitigate these risk elements in early phase design.

  12. Thermodynamic Insight in the High-Pressure Behavior of UiO-66: Effect of Linker Defects and Linker Expansion

    PubMed Central

    2016-01-01

    In this Article, we present a molecular-level understanding of the experimentally observed loss of crystallinity in UiO-66-type metal–organic frameworks, including the pristine UiO-66 to -68 as well as defect-containing UiO-66 materials, under the influence of external pressure. This goal is achieved by constructing pressure-versus-volume profiles at finite temperatures using a thermodynamic approach relying on ab initio derived force fields. On the atomic level, the phenomenon is reflected in a sudden drop in the number of symmetry operators for the crystallographic unit cell because of the disordered displacement of the organic linkers with respect to the inorganic bricks. For the defect-containing samples, a reduced mechanical stability is observed, however, critically depending on the distribution of these defects throughout the material, hence demonstrating the importance of judiciously characterizing defects in these materials. PMID:27594765

  13. Thermodynamic Insight in the High-Pressure Behavior of UiO-66: Effect of Linker Defects and Linker Expansion

    PubMed Central

    2016-01-01

    In this Article, we present a molecular-level understanding of the experimentally observed loss of crystallinity in UiO-66-type metal–organic frameworks, including the pristine UiO-66 to -68 as well as defect-containing UiO-66 materials, under the influence of external pressure. This goal is achieved by constructing pressure-versus-volume profiles at finite temperatures using a thermodynamic approach relying on ab initio derived force fields. On the atomic level, the phenomenon is reflected in a sudden drop in the number of symmetry operators for the crystallographic unit cell because of the disordered displacement of the organic linkers with respect to the inorganic bricks. For the defect-containing samples, a reduced mechanical stability is observed, however, critically depending on the distribution of these defects throughout the material, hence demonstrating the importance of judiciously characterizing defects in these materials.

  14. A rule based computer aided design system

    NASA Technical Reports Server (NTRS)

    Premack, T.

    1986-01-01

    A Computer Aided Design (CAD) system is presented which supports the iterative process of design, the dimensional continuity between mating parts, and the hierarchical structure of the parts in their assembled configuration. Prolog, an interactive logic programming language, is used to represent and interpret the data base. The solid geometry representing the parts is defined in parameterized form using the swept volume method. The system is demonstrated with a design of a spring piston.

  15. Multimedia-Based Chip Design Education.

    ERIC Educational Resources Information Center

    Catalkaya, Tamer; Golze, Ulrich

    This paper focuses on multimedia computer-based training programs on chip design. Their development must be fast and economical, in order to be affordable by technical university institutions. The self-produced teaching program Illusion, which demonstrates a monitor controller as an example of a small but complete chip design, was implemented to…

  16. Web-Based Learning Design Tool

    ERIC Educational Resources Information Center

    Bruno, F. B.; Silva, T. L. K.; Silva, R. P.; Teixeira, F. G.

    2012-01-01

    Purpose: The purpose of this paper is to propose a web-based tool that enables the development and provision of learning designs and its reuse and re-contextualization as generative learning objects, aimed at developing educational materials. Design/methodology/approach: The use of learning objects can facilitate the process of production and…

  17. Advances in Design-Based Research

    ERIC Educational Resources Information Center

    Svihla, Vanessa

    2014-01-01

    Design-based research (DBR) is a core methodology of the Learning Sciences. Historically rooted as a movement away from the methods of experimental psychology, it is a means to develop "humble" theory that takes into account numerous contextual effects for understanding how and why a design supported learning. DBR involves iterative…

  18. Population dynamics of the Cui-ui of Pyramid Lake, Nevada: a Potamodromous catostomid subject to failed reproduction

    USGS Publications Warehouse

    Scoppettone, Gayton G.; Rissler, Peter H.; Fabes, Mark C.; Shea, Sean P.

    2015-01-01

    Fishes of the Truckee River basin (California and Nevada) evolved in an aquatic system that has been episodically diminished by extended drought. For potamodromous species, such as the endangered Cui-ui endemic to Pyramid Lake, Nevada, prehistoric episodic severe drought presumably led to periods of failed reproduction due to restricted access to spawning habitat. The response of the Cui-ui population to more recent failed reproduction caused by anthropogenic activity was studied to learn how to manage this species through periods of spawning disruption. Adult Cui-ui survival averaged 91% and 89% for females and males, respectively, in drought years when spawning migrations were either precluded or few fish migrated because of no or low stream flow. In each of 2 years when stream access was precluded, the adult survival was nearly 100% suggesting that Cui-ui survival is extended in the absence of a spawning migration. Survival averaged 62% and 60% for females and males, respectively, in years of spawning migrations. Strong predominant year-classes developed in the year immediately following a period of failed reproduction, indicating the species’ capacity for population rebound. Year-class predominance persisted for 6–10 years and through years of low survival associated with migration years, and this predominance is probably due, in part, to a diverse age at maturity. Contemporary water diversions from the Truckee River provided the opportunity to study the response of the Cui-ui population to years of failed reproduction. A projected drier Truckee River basin associated with global climate change will test the Cui-ui’s adaptive capacity to endure periods of reproductive failure. This study is aimed at assisting Cui-ui managers in conserving the species in this highly regulated and changing system. The study also adds insight into the prehistoric population dynamics of a potamodromous species in the arid western United States subject to wide fluctuations in

  19. Assembly design system based on engineering connection

    NASA Astrophysics Data System (ADS)

    Yin, Wensheng

    2016-05-01

    An assembly design system is an important part of computer-aided design systems, which are important tools for realizing product concept design. The traditional assembly design system does not record the connection information of production on the engineering layer; consequently, the upstream design idea cannot be fully used in the downstream design. An assembly design model based on the relationship of engineering connection is presented. In this model, all nodes are divided into two categories: The component and the connection. Moreover, the product is constructed on the basis of the connection relationship of the components. The model is an And/Or graph and has the ability to record all assembly schemes. This model records only the connection information that has engineering application value in the product design. In addition, this model can significantly reduce the number of combinations, and is very favorable for the assembly sequence planning in the downstream. The system contains a connection knowledge system that can be mapped to the connection node, and the connection knowledge obtained in practice can be returned to the knowledge system. Finally, VC++ 6.0 is used to develop a prototype system called Connect-based Assembly Planning (CAP). The relationship between the CAP system and the commercial assembly design system is also established.

  20. VIEWCACHE: An incremental pointer-base access method for distributed databases. Part 1: The universal index system design document. Part 2: The universal index system low-level design document. Part 3: User's guide. Part 4: Reference manual. Part 5: UIMS test suite

    NASA Technical Reports Server (NTRS)

    Kelley, Steve; Roussopoulos, Nick; Sellis, Timos

    1992-01-01

    The goal of the Universal Index System (UIS), is to provide an easy-to-use and reliable interface to many different kinds of database systems. The impetus for this system was to simplify database index management for users, thus encouraging the use of indexes. As the idea grew into an actual system design, the concept of increasing database performance by facilitating the use of time-saving techniques at the user level became a theme for the project. This Final Report describes the Design, the Implementation of UIS, and its Language Interfaces. It also includes the User's Guide and the Reference Manual.

  1. Evidence for a chemical clock in oscillatory formation of UiO-66

    PubMed Central

    Goesten, M. G.; de Lange, M. F.; Olivos-Suarez, A. I.; Bavykina, A. V.; Serra-Crespo, P.; Krywka, C.; Bickelhaupt, F. M.; Kapteijn, F.; Gascon, Jorge

    2016-01-01

    Chemical clocks are often used as exciting classroom experiments, where an induction time is followed by rapidly changing colours that expose oscillating concentration patterns. This type of reaction belongs to a class of nonlinear chemical kinetics also linked to chaos, wave propagation and Turing patterns. Despite its vastness in occurrence and applicability, the clock reaction is only well understood for liquid-state processes. Here we report a chemical clock reaction, in which a solidifying entity, metal–organic framework UiO-66, displays oscillations in crystal dimension and number, as shown by X-ray scattering. In rationalizing this result, we introduce a computational approach, the metal–organic molecular orbital methodology, to pinpoint interaction between the tectonic building blocks that construct the metal–organic framework material. In this way, we show that hydrochloric acid plays the role of autocatalyst, bridging separate processes of condensation and crystallization. PMID:27282410

  2. Evidence for a chemical clock in oscillatory formation of UiO-66.

    PubMed

    Goesten, M G; de Lange, M F; Olivos-Suarez, A I; Bavykina, A V; Serra-Crespo, P; Krywka, C; Bickelhaupt, F M; Kapteijn, F; Gascon, Jorge

    2016-01-01

    Chemical clocks are often used as exciting classroom experiments, where an induction time is followed by rapidly changing colours that expose oscillating concentration patterns. This type of reaction belongs to a class of nonlinear chemical kinetics also linked to chaos, wave propagation and Turing patterns. Despite its vastness in occurrence and applicability, the clock reaction is only well understood for liquid-state processes. Here we report a chemical clock reaction, in which a solidifying entity, metal-organic framework UiO-66, displays oscillations in crystal dimension and number, as shown by X-ray scattering. In rationalizing this result, we introduce a computational approach, the metal-organic molecular orbital methodology, to pinpoint interaction between the tectonic building blocks that construct the metal-organic framework material. In this way, we show that hydrochloric acid plays the role of autocatalyst, bridging separate processes of condensation and crystallization. PMID:27282410

  3. Evidence for a chemical clock in oscillatory formation of UiO-66

    NASA Astrophysics Data System (ADS)

    Goesten, M. G.; de Lange, M. F.; Olivos-Suarez, A. I.; Bavykina, A. V.; Serra-Crespo, P.; Krywka, C.; Bickelhaupt, F. M.; Kapteijn, F.; Gascon, Jorge

    2016-06-01

    Chemical clocks are often used as exciting classroom experiments, where an induction time is followed by rapidly changing colours that expose oscillating concentration patterns. This type of reaction belongs to a class of nonlinear chemical kinetics also linked to chaos, wave propagation and Turing patterns. Despite its vastness in occurrence and applicability, the clock reaction is only well understood for liquid-state processes. Here we report a chemical clock reaction, in which a solidifying entity, metal-organic framework UiO-66, displays oscillations in crystal dimension and number, as shown by X-ray scattering. In rationalizing this result, we introduce a computational approach, the metal-organic molecular orbital methodology, to pinpoint interaction between the tectonic building blocks that construct the metal-organic framework material. In this way, we show that hydrochloric acid plays the role of autocatalyst, bridging separate processes of condensation and crystallization.

  4. Biourbanism: Solar based urban and regional design

    SciTech Connect

    Williams, D.

    1999-07-01

    New neighborhoods for an additional one billion people will need to be constructed on the planet within the next 10 years. If the historic patterns of growth continue--the sprawl, the congestion, the draining of swamps, the loss of agricultural land--the requirement for all basic resources will outstrip the availability. While this is of great concern, it is the destruction of an acceptable quality of life--the sense of place--that will be the most difficult and expensive to change. An essential step to reverse the direction of this undesirable future is changing the design and planning of these communities to work with resident solar energies, regional biology, local renewable resources, and sustainable urban planning and design principles. Design can make a difference. This paper develops the view that the solar approach must include urban and regional design and presents solar-based renewable resources example of the design of regions.

  5. Radiometer Design Analysis Based Upon Measurement Uncertainty

    NASA Technical Reports Server (NTRS)

    Racette, Paul E.; Lang, Roger H.

    2004-01-01

    This paper introduces a method for predicting the performance of a radiometer design based on calculating the measurement uncertainty. The variety in radiometer designs and the demand for improved radiometric measurements justify the need for a more general and comprehensive method to assess system performance. Radiometric resolution, or sensitivity, is a figure of merit that has been commonly used to characterize the performance of a radiometer. However when evaluating the performance of a calibration design for a radiometer, the use of radiometric resolution has limited application. These limitations are overcome by considering instead the measurement uncertainty. A method for calculating measurement uncertainty for a generic radiometer design including its calibration algorithm is presented. The result is a generalized technique by which system calibration architectures and design parameters can be studied to optimize instrument performance for given requirements and constraints. Example applications demonstrate the utility of using measurement uncertainty as a figure of merit.

  6. Computer vision based room interior design

    NASA Astrophysics Data System (ADS)

    Ahmad, Nasir; Hussain, Saddam; Ahmad, Kashif; Conci, Nicola

    2015-12-01

    This paper introduces a new application of computer vision. To the best of the author's knowledge, it is the first attempt to incorporate computer vision techniques into room interior designing. The computer vision based interior designing is achieved in two steps: object identification and color assignment. The image segmentation approach is used for the identification of the objects in the room and different color schemes are used for color assignment to these objects. The proposed approach is applied to simple as well as complex images from online sources. The proposed approach not only accelerated the process of interior designing but also made it very efficient by giving multiple alternatives.

  7. Data base systems in electronic design engineering

    NASA Technical Reports Server (NTRS)

    Williams, D.

    1980-01-01

    The concepts of an integrated design data base system (DBMS) as it might apply to an electronic design company are discussed. Data elements of documentation, project specifications, project tracking, firmware, software, electronic and mechanical design can be integrated and managed through a single DBMS. Combining the attributes of a DBMS data handler with specialized systems and functional data can provide users with maximum flexibility, reduced redundancy, and increased overall systems performance. Although some system overhead is lost due to redundancy in transitory data, it is believed the combination of the two data types is advisable rather than trying to do all data handling through a single DBMS.

  8. Habitat quality and recruitment success of cui-ui in the Truckee River downstream of Marble Bluff Dam, Pyramid Lake, Nevada

    USGS Publications Warehouse

    Scoppettone, G. Gary; Rissler, Peter H.; Salgado, J. Antonio; Harry, Beverly

    2013-01-01

    We compared cui-ui (Chasmistes cujus) recruitment from two reaches of the Truckee River with histories of severe erosional downcutting caused by a decline in Pyramid Lake surface elevation. In 1975, Marble Bluff Dam (MBD) was constructed 5 kilometers upstream of the extant mouth of the Truckee River to stabilize the upstream reach of the river; the downstream reach of the river remained unstable and consequently unsuitable for cui-ui recruitment. By the early 2000s, there was a decrease in the Truckee River’s slope from MBD to Pyramid Lake after a series of wet years in the 1990s. This was followed by changes in river morphology and erosion abatement. These changes led to the question as to cui-ui recruitment potential in the Truckee River downstream of MBD. In 2012, more than 7,000 cui-ui spawners were passed upstream of MBD, although an indeterminate number of cui-ui spawned downstream of MBD. In this study, we compared cui-ui recruitment upstream and downstream of MBD during a Truckee River low-flow year (2012). Cui-ui larvae emigration to Pyramid Lake began earlier and ended later downstream of MBD. A greater number of cui-ui larvae was produced downstream of MBD than upstream. This also was true for native Tahoe sucker (Catostomus tahoensis) and Lahontan redside (Richardsonius egregius). The improved Truckee River stability downstream of MBD and concomitant cui-ui recruitment success is attributed to a rise in Pyramid Lake's surface elevation. A decline in lake elevation may lead to a shift in stream morphology and substrate composition to the detriment of cui-ui reproductive success as well as the reproductive success of other native fishes.

  9. Unilateral incompatibility gene ui1.1 encodes an S-locus F-box protein expressed in pollen of Solanum species

    PubMed Central

    Li, Wentao; Chetelat, Roger T.

    2015-01-01

    Unilateral interspecific incompatibility (UI) is a postpollination, prezygotic reproductive barrier that prevents hybridization between related species when the female parent is self-incompatible (SI) and the male parent is self-compatible (SC). In tomato and related Solanum species, two genes, ui1.1 and ui6.1, are required for pollen compatibility on pistils of SI species or hybrids. We previously showed that ui6.1 encodes a Cullin1 (CUL1) protein. Here we report that ui1.1 encodes an S-locus F-box (SLF) protein. The ui1.1 gene was mapped to a 0.43-cM, 43.2-Mbp interval at the S-locus on chromosome 1, but positional cloning was hampered by low recombination frequency. We hypothesized that ui1.1 encodes an SLF protein(s) that interacts with CUL1 and Skp1 proteins to form an SCF-type (Skp1, Cullin1, F-box) ubiquitin E3 ligase complex. We identified 23 SLF genes in the S. pennellii genome, of which 19 were also represented in cultivated tomato (S. lycopersicum). Data from recombination events, expression analysis, and sequence annotation highlighted 11 S. pennellii genes as candidates. Genetic transformations demonstrated that one of these, SpSLF-23, is sufficient for ui1.1 function. A survey of cultivated and wild tomato species identified SLF-23 orthologs in each of the SI species, but not in the SC species S. lycopersicum, S. cheesmaniae, and S. galapagense, pollen of which lacks ui1.1 function. These results demonstrate that pollen compatibility in UI is mediated by protein degradation through the ubiquitin–proteasome pathway, a mechanism related to that which controls pollen recognition in SI. PMID:25831517

  10. Unilateral incompatibility gene ui1.1 encodes an S-locus F-box protein expressed in pollen of Solanum species.

    PubMed

    Li, Wentao; Chetelat, Roger T

    2015-04-01

    Unilateral interspecific incompatibility (UI) is a postpollination, prezygotic reproductive barrier that prevents hybridization between related species when the female parent is self-incompatible (SI) and the male parent is self-compatible (SC). In tomato and related Solanum species, two genes, ui1.1 and ui6.1, are required for pollen compatibility on pistils of SI species or hybrids. We previously showed that ui6.1 encodes a Cullin1 (CUL1) protein. Here we report that ui1.1 encodes an S-locus F-box (SLF) protein. The ui1.1 gene was mapped to a 0.43-cM, 43.2-Mbp interval at the S-locus on chromosome 1, but positional cloning was hampered by low recombination frequency. We hypothesized that ui1.1 encodes an SLF protein(s) that interacts with CUL1 and Skp1 proteins to form an SCF-type (Skp1, Cullin1, F-box) ubiquitin E3 ligase complex. We identified 23 SLF genes in the S. pennellii genome, of which 19 were also represented in cultivated tomato (S. lycopersicum). Data from recombination events, expression analysis, and sequence annotation highlighted 11 S. pennellii genes as candidates. Genetic transformations demonstrated that one of these, SpSLF-23, is sufficient for ui1.1 function. A survey of cultivated and wild tomato species identified SLF-23 orthologs in each of the SI species, but not in the SC species S. lycopersicum, S. cheesmaniae, and S. galapagense, pollen of which lacks ui1.1 function. These results demonstrate that pollen compatibility in UI is mediated by protein degradation through the ubiquitin-proteasome pathway, a mechanism related to that which controls pollen recognition in SI.

  11. A Study of the Yang-gyeong-gyu-il-ui (兩景揆日儀) in the Joseon Dynasty

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sam; Kim, Sang Hyuk; Mihn, Byeong-Hee

    2015-03-01

    The Yang-gyeong-gyu-il-ui (兩景揆日儀) is a kind of elevation sundial using three wooden plates. Sang-hyeok Lee (李尙爀, 1810~?) and Byeong-cheol Nam (南秉哲, 1817~1863) gave descriptions of this sundial and explained how to use it in their Gyu-il-go (揆日考) and Ui-gi-jip-seol (儀器輯說), respectively. According to Gyu-il-go (揆日考) there are two horizontal plates and two vertical plates that have lines of season and time. Subseasonal (節候) lines are engraved between seasonal (節氣) lines, subdividing the interval into three equal lines of Cho-hu (初候, early subseason), Jung-hu (中候, mid subseason) and Mal-hu (末候, late subseason); there are 13 seasonal lines for a year, thus resulting in 37 subseasonal lines; also, there are 12 double-hour (時辰) lines for a day engraved on these plates. The only remaining artifact of Yang-gyeong-gyu-il-ui was made in 1849 (the 15th year of Heon-jong) and is kept at the Korea University Museum. We have compared and analyzed Yanggyeong- gyu-il-ui and similar western sundials. Also, we have reviewed the scientific aspect of this artifact and built a replica. Yang-gyeong-gyu-il-ui is a new model enhanced from the miniaturization development in the early Joseon Dynasty and can be applied to the southern part of the tropic line through a structure change.

  12. THEMIS Ground Based Observatory System Design

    NASA Astrophysics Data System (ADS)

    Harris, S. E.; Mende, S. B.; Angelopoulos, V.; Rachelson, W.; Donovan, E.; Jackel, B.; Greffen, M.; Russell, C. T.; Pierce, D. R.; Dearborn, D. J.; Rowe, K.; Connors, M.

    2008-12-01

    The comprehensive THEMIS approach to solving the substorm problem calls for monitoring the nightside auroral oval with low-cost, robust white-light imagers and magnetometers that can deliver high time resolution data (0.33 and 2 Hz, respectively). A network of 20 Ground-Based Observatories (GBOs) are deployed across Canada and Alaska to support the collection of data from these instruments. Here we describe the system design of the observatory, with emphasis on how the design meets the environmental and data-collection requirements. We also review the design of the All Sky Imager (ASI), discuss how it was built to survive Arctic deployments, and summarize the optical characterizations performed to qualify the design to meet THEMIS mission requirements.

  13. Rainwater harvesting: model-based design evaluation.

    PubMed

    Ward, S; Memon, F A; Butler, D

    2010-01-01

    The rate of uptake of rainwater harvesting (RWH) in the UK has been slow to date, but is expected to gain momentum in the near future. The designs of two different new-build rainwater harvesting systems, based on simple methods, are evaluated using three different design methods, including a continuous simulation modelling approach. The RWH systems are shown to fulfill 36% and 46% of WC demand. Financial analyses reveal that RWH systems within large commercial buildings maybe more financially viable than smaller domestic systems. It is identified that design methods based on simple approaches generate tank sizes substantially larger than the continuous simulation. Comparison of the actual tank sizes and those calculated using continuous simulation established that the tanks installed are oversized for their associated demand level and catchment size. Oversizing tanks can lead to excessive system capital costs, which currently hinders the uptake of systems. Furthermore, it is demonstrated that the catchment area size is often overlooked when designing UK-based RWH systems. With respect to these findings, a recommendation for a transition from the use of simple tools to continuous simulation models is made.

  14. Design Concepts for Muon-Based Accelerators

    SciTech Connect

    Ryne, R. D.; Berg, J. S.; Kirk, H. G.; Palmer, R. B.; Stratkis, D.; Alexahin, Y.; Bross, A.; Gollwitzer, K.; Mokhov, N. V.; Neuffer, D.; Palmer, M. A.; Yonehara, K.; Snopok, P.; Bogacz, A.; Roberts, T. J.; Delahaye, J. -P.

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  15. Design strategies for aptamer-based biosensors.

    PubMed

    Han, Kun; Liang, Zhiqiang; Zhou, Nandi

    2010-01-01

    Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications.

  16. Design requirements for a Mars base greenhouse

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Mancinelli, Rocco

    1988-01-01

    One potential method of supplying life support to a manned base on Mars utilizes a Controlled Ecological Life Support Systems (CELSS). A major component of the CELSS is a plant growth unit to produce food. This paper describes the results of several experiments conducted to determine whether or not a low atmospheric pressure greenhouse could be used to grow crop plants on the Martian surface. The results of these experiments are described and integrated with other information to produce a set of design requirements and a conceptual design for such a greenhouse.

  17. Performance-based asphalt mixture design methodology

    NASA Astrophysics Data System (ADS)

    Ali, Al-Hosain Mansour

    performance based design procedure. Finally, the developed guidelines with easy-to-use flow charts for the integrated mix design methodology are presented.

  18. In Situ X-ray Absorption Spectroscopy Studies of Kinetic Interaction between Platinum(II) Ions and UiO-66 Series Metal–Organic Frameworks

    SciTech Connect

    Xiao, Chaoxian; Goh, Tian Wei; Brashler, Kyle; Pei, Yuchen; Guo, Zhiyong; Huang, Wenyu

    2014-09-07

    The interaction of guest Pt(II) ions with UiO-66–X (X = NH2, H, NO2, OMe, F) series metal–organic frameworks (MOFs) in aqueous solution was investigated using in situ X-ray absorption spectroscopy. All of these MOFs were found to be able to coordinate with Pt(II) ions. The Pt(II) ions in UiO-66–X MOFs generally coordinate with 1.6–2.4 Cl and 1.4–2.4 N or O atoms. We also studied the time evolution of the coordination structure and found that Pt(II) maintained a coordination number of 4 throughout the whole process. Furthermore, the kinetic parameters of the interaction of Pt(II) ions with UiO-66–X series MOFs (X = NH2, H, NO2, OMe, F) were determined by combinational linear fitting of extended X-ray absorption fine structure (EXAFS) spectra of the samples. The Pt(II) adsorption rate constants were found to be 0.063 h–1 for UiO-66–NH2 and 0.011–0.017 h–1 for other UiO-66–X (X = H, NO2, OMe, F) MOFs, which means that Pt(II) adsorption in UiO-66–NH2 is 4–6 times faster than that in other UiO-66 series MOFs. FTIR studies suggested that the carboxyl groups could be the major host ligands binding with Pt(II) ions in UiO-66 series MOFs, except for UiO-66–NH2, in which amino groups coordinate with Pt(II) ions.

  19. Value-based management of design reuse

    NASA Astrophysics Data System (ADS)

    Carballo, Juan Antonio; Cohn, David L.; Belluomini, Wendy; Montoye, Robert K.

    2003-06-01

    Effective design reuse in electronic products has the potential to provide very large cost savings, substantial time-to-market reduction, and extra sources of revenue. Unfortunately, critical reuse opportunities are often missed because, although they provide clear value to the corporation, they may not benefit the business performance of an internal organization. It is therefore crucial to provide tools to help reuse partners participate in a reuse transaction when the transaction provides value to the corporation as a whole. Value-based Reuse Management (VRM) addresses this challenge by (a) ensuring that all parties can quickly assess the business performance impact of a reuse opportunity, and (b) encouraging high-value reuse opportunities by supplying value-based rewards to potential parties. In this paper we introduce the Value-Based Reuse Management approach and we describe key results on electronic designs that demonstrate its advantages. Our results indicate that Value-Based Reuse Management has the potential to significantly increase the success probability of high-value electronic design reuse.

  20. Design Study: Rocket Based MHD Generator

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.

  1. Design and Construction of Manned Lunar Base

    NASA Astrophysics Data System (ADS)

    Li, Zhijie

    2016-07-01

    Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under

  2. 'Flu' and structure-based drug design.

    PubMed

    Wade, R C

    1997-09-15

    The threat of a catastrophic outbreak of influenza is ever present. Vaccines are only partially effective and the two compounds, amantidine and rimantidine, used clinically against influenza A cause side-effects and rapid viral resistance. Recent advances bring hope that specific and potent drugs against influenza may soon be available in the clinic. These compounds were designed to inhibit influenza neuraminidase (NA), one of the viral coat glycoproteins, using the crystal structure of NA which was first published in 1983. In this review, the application of structure-based drug design approaches to the design of anti-influenza agents targeted at NA and haemagglutinin (HA), the other viral surface glycoprotein, is discussed. PMID:9331424

  3. Neurocomputing strategies in decomposition based structural design

    NASA Technical Reports Server (NTRS)

    Szewczyk, Z.; Hajela, P.

    1993-01-01

    The present paper explores the applicability of neurocomputing strategies in decomposition based structural optimization problems. It is shown that the modeling capability of a backpropagation neural network can be used to detect weak couplings in a system, and to effectively decompose it into smaller, more tractable, subsystems. When such partitioning of a design space is possible, parallel optimization can be performed in each subsystem, with a penalty term added to its objective function to account for constraint violations in all other subsystems. Dependencies among subsystems are represented in terms of global design variables, and a neural network is used to map the relations between these variables and all subsystem constraints. A vector quantization technique, referred to as a z-Network, can effectively be used for this purpose. The approach is illustrated with applications to minimum weight sizing of truss structures with multiple design constraints.

  4. Designer protein-based performance materials.

    PubMed

    Kumar, Manoj; Sanford, Karl J; Cuevas, William A; Cuevas, William P; Du, Mai; Collier, Katharine D; Chow, Nicole

    2006-09-01

    Repeat sequence protein polymer (RSPP) technology provides a platform to design and make protein-based performance polymers and represents the best nature has to offer. We report here that the RSPP platform is a novel approach to produce functional protein polymers that have both biomechanical and biofunctional blocks built into one molecule by design, using peptide motifs. We have shown that protein-based designer biopolymers can be made using recombinant DNA technology and fermentation and offer the ability to screen for desired properties utilizing the tremendous potential diversity of amino acid combinations. The technology also allows for large-scale manufacturing with a favorable fermentative cost-structure to deliver commercially viable performance polymers. Using three diverse examples with antimicrobial, textile targeting, and UV-protective agent, we have introduced functional attributes into structural protein polymers and shown, for example, that the functionalized RSPPs have possible applications in biodefense, industrial biotechnology, and personal care areas. This new class of biobased materials will simulate natural biomaterials that can be modified for desired function and have many advantages over conventional petroleum-based polymers.

  5. A XAFS study of the local environment and reactivity of Pt- sites in functionalized UiO-67 MOFs

    NASA Astrophysics Data System (ADS)

    Borfecchia, E.; Øien, S.; Svelle, S.; Mino, L.; Braglia, L.; Agostini, G.; Gallo, E.; Lomachenko, K. A.; Bordiga, S.; Guda, A. A.; Soldatov, M. A.; Soldatov, A. V.; Olsbye, U.; Lillerud, K. P.; Lamberti, C.

    2016-05-01

    We synthesized UiO-67 Metal Organic Frameworks (MOFs) functionalized with bpydcPt(II)Cl2 and bpydcPt(IV)Cl4 complexes (bpydc = bipyridine-dicarboxylate), as attractive candidates for the heterogenization of homogeneous catalytic reactions. Pt L3-edge XAFS experiments allowed us to thoroughly characterize these materials, in the local environment of the Pt centers. XAFS studies evidenced the rich reactivity of UiO-67-Pt(II) MOFs, including reduction to bpydcPt(0) under H2 flow in the 600-700 K range, room-temperature oxidation to bpydcPt(IV)Br4 through oxidative addition of liquid Br2 and ligand exchange between 2 Cl- and even bulky ligands such as toluene-3,4-dithiol. Preliminary XANES simulations with ADF code provide additional information on the oxidation state of Pt sites.

  6. A User-Centered Framework for Deriving A Conceptual Design From User Experiences: Leveraging Personas and Patterns to Create Usable Designs

    NASA Astrophysics Data System (ADS)

    Javahery, Homa; Deichman, Alexander; Seffah, Ahmed; Taleb, Mohamed

    Patterns are a design tool to capture best practices, tackling problems that occur in different contexts. A user interface (UI) design pattern spans several levels of design abstraction ranging from high-level navigation to low-level idioms detailing a screen layout. One challenge is to combine a set of patterns to create a conceptual design that reflects user experiences. In this chapter, we detail a user-centered design (UCD) framework that exploits the novel idea of using personas and patterns together. Personas are used initially to collect and model user experiences. UI patterns are selected based on personas pecifications; these patterns are then used as building blocks for constructing conceptual designs. Through the use of a case study, we illustrate how personas and patterns can act as complementary techniques in narrowing the gap between two major steps in UCD: capturing users and their experiences, and building an early design based on that information. As a result of lessons learned from the study and by refining our framework, we define a more systematic process called UX-P (User Experiences to Pattern), with a supporting tool. The process introduces intermediate analytical steps and supports designers in creating usable designs.

  7. A decision-based perspective for the design of methods for systems design

    NASA Technical Reports Server (NTRS)

    Mistree, Farrokh; Muster, Douglas; Shupe, Jon A.; Allen, Janet K.

    1989-01-01

    Organization of material, a definition of decision based design, a hierarchy of decision based design, the decision support problem technique, a conceptual model design that can be manufactured and maintained, meta-design, computer-based design, action learning, and the characteristics of decisions are among the topics covered.

  8. Design and Construction of Manned Lunar Base

    NASA Astrophysics Data System (ADS)

    Li, Zhijie

    2016-07-01

    Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under

  9. Design strategies for computational fragment-based drug design.

    PubMed

    Konteatis, Zenon D

    2015-01-01

    The computational design method described in this chapter is an approach to de-risking the design process due to the limitations of current computational algorithms with respect to predictive accuracy. The method takes advantage of the crystallographically demonstrated interactions between a ligand and its protein target, and through systematic, one fragment replacements allows for quick feedback on the direction of the designs. This design approach can still be useful in the future as computational algorithms improve and become more predictive and reliable.

  10. Carbon dioxide adsorption in amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology.

    PubMed

    Ethiraj, Jayashree; Albanese, Elisa; Civalleri, Bartolomeo; Vitillo, Jenny G; Bonino, Francesca; Chavan, Sachin; Shearer, Greig C; Lillerud, Karl Petter; Bordiga, Silvia

    2014-12-01

    A series of mixed-ligand [1,4-benzenedicarboxylic acid (BDC)/2-amino-1,4-benzenedicarboxylic acid (ABDC)] UiO-66 metal-organic frameworks (MOFs) synthesized through two different methods (low (LT) and high temperature (HT)) have been investigated for their carbon dioxide adsorption properties from 0 to 1 bar to clarify the role of amino loading on carbon dioxide uptake. Volumetric CO2 isotherms show that the CO2 capacity (normalized to the Langmuir surface area) increases with a degree of functionalization of about 46%; for similar NH2 contents, the same values are found for both synthetic procedures. Microcalorimetric isotherms reveal that amino-functionalized materials have a larger differential heat of adsorption (q(diff) ) towards CO2 ; reaching 27(25) and 20(22) kJ mol(-1) on HT(LT)-UiO-66-NH2 and UiO-66, respectively, at the lowest equilibrium pressures used in this study. All experimental results are supported by values obtained through quantum mechanical calculations. PMID:25302675

  11. Carbon dioxide adsorption in amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology.

    PubMed

    Ethiraj, Jayashree; Albanese, Elisa; Civalleri, Bartolomeo; Vitillo, Jenny G; Bonino, Francesca; Chavan, Sachin; Shearer, Greig C; Lillerud, Karl Petter; Bordiga, Silvia

    2014-12-01

    A series of mixed-ligand [1,4-benzenedicarboxylic acid (BDC)/2-amino-1,4-benzenedicarboxylic acid (ABDC)] UiO-66 metal-organic frameworks (MOFs) synthesized through two different methods (low (LT) and high temperature (HT)) have been investigated for their carbon dioxide adsorption properties from 0 to 1 bar to clarify the role of amino loading on carbon dioxide uptake. Volumetric CO2 isotherms show that the CO2 capacity (normalized to the Langmuir surface area) increases with a degree of functionalization of about 46%; for similar NH2 contents, the same values are found for both synthetic procedures. Microcalorimetric isotherms reveal that amino-functionalized materials have a larger differential heat of adsorption (q(diff) ) towards CO2 ; reaching 27(25) and 20(22) kJ mol(-1) on HT(LT)-UiO-66-NH2 and UiO-66, respectively, at the lowest equilibrium pressures used in this study. All experimental results are supported by values obtained through quantum mechanical calculations.

  12. Reliability-Based Electronics Shielding Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; O'Neill, P. J.; Zang, T. A.; Pandolf, J. E.; Tripathi, R. K.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2007-01-01

    Shielding design on large human-rated systems allows minimization of radiation impact on electronic systems. Shielding design tools require adequate methods for evaluation of design layouts, guiding qualification testing, and adequate follow-up on final design evaluation.

  13. Comparing Linkage Designs Based on Land Facets to Linkage Designs Based on Focal Species

    PubMed Central

    Brost, Brian M.; Beier, Paul

    2012-01-01

    Least-cost modeling for focal species is the most widely used method for designing conservation corridors and linkages. However, these designs depend on today's land covers, which will be altered by climate change. We recently proposed an alternative approach based on land facets (recurring landscape units of relatively uniform topography and soils). The rationale is that corridors with high continuity of individual land facets will facilitate movement of species associated with each facet today and in the future. Conservation practitioners might like to know whether a linkage design based on land facets is likely to provide continuity of modeled breeding habitat for species needing connectivity today, and whether a linkage for focal species provides continuity and interspersion of land facets. To address these questions, we compared linkages designed for focal species and land facets in three landscapes in Arizona, USA. We used two variables to measure linkage utility, namely distances between patches of modeled breeding habitat for 5–16 focal species in each linkage, and resistance profiles for focal species and land facets between patches connected by the linkage. Compared to focal species designs, linkage designs based on land facets provided as much or more modeled habitat connectivity for 25 of 28 species-landscape combinations, failing only for the three species with the most narrowly distributed habitat. Compared to land facets designs, focal species linkages provided lower connectivity for about half the land facets in two landscapes. In areas where a focal species approach to linkage design is not possible, our results suggest that conservation practitioners may be able to implement a land facets approach with some confidence that the linkage design would serve most potential focal species. In areas where focal species designs are possible, we recommend using the land facet approach to complement, rather than replace, focal species approaches. PMID

  14. Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66

    NASA Astrophysics Data System (ADS)

    Jakobsen, Søren; Gianolio, Diego; Wragg, David S.; Nilsen, Merete Hellner; Emerich, Hermann; Bordiga, Silvia; Lamberti, Carlo; Olsbye, Unni; Tilset, Mats; Lillerud, Karl Petter

    2012-09-01

    High-resolution synchrotron radiation x-ray powder diffraction (HR-XRPD) combined with Hf L3-edge extended x-ray absorption fine structure allowed us to determine the structure of a Hf-UiO-66 metal-organic framework (MOF) showing that it is isoreticular to Zr-UiO-66 MOF [Cavka , J. Am. Chem. Soc.JACSAT0002-786310.1021/ja8057953 130, 13850 (2008).]. Thermal gravimetric measurements (coupled with mass spectroscopy) and temperature-dependent synchrotron radiation XRPD proved the high thermal stability of the Hf-UiO-66 MOF. The Langmuir surface area (849 m2/g) combined with the high stability of the UiO-66 framework and with the high neutron absorption cross section of Hf suggest that among all microporous crystalline materials the Hf-UiO-66 MOF possesses the physical and chemical requirements for the interim storage of radioactive waste in a much safer way than is currently available. The first results proving the synthesis of a MOF material with UiO-66 topology realized by a B-containing linker are also reported, allowing a further improvement of the neutron shielding power of this class of materials.

  15. Advances in structure-based vaccine design

    PubMed Central

    Kulp, Daniel W; Schief, William R

    2014-01-01

    Despite the tremendous successes of current vaccines, infectious diseases still take a heavy toll on the global population, and that provides strong rationale for broadening our vaccine development repertoire. Structural vaccinology, in which protein structure information is utilized to design immunogens, has promise to provide new vaccines against traditionally difficult targets. Crystal structures of antigens containing one or more protection epitopes, especially when in complex with a protective antibody, are the launching point for immunogen design. Integrating structure and sequence information for families of broadly neutralizing antibodies (bNAbs) has recently enabled the creation of germline-targeting immunogens that bind and activate germline B-cells in order to initiate the elicitation of such antibodies. The contacts between antigen and neutralizing antibody define a structural epitope, and methods have been developed to transplant epitopes to scaffold proteins for structural stabilization, and to design minimized antigens that retain one or more key epitopes while eliminating other potentially distracting or unnecessary features. To develop vaccines that protect against antigenically variable pathogens, pioneering structure-based work demonstrated that multiple strain-specific epitopes could be engineered onto a single immunogen. We review these recent structural vaccinology efforts to engineer germline-targeting, epitope-specific, and/or broad coverage immunogens. PMID:23806515

  16. Advances in structure-based vaccine design.

    PubMed

    Kulp, Daniel W; Schief, William R

    2013-06-01

    Despite the tremendous successes of current vaccines, infectious diseases still take a heavy toll on the global population, and that provides strong rationale for broadening our vaccine development repertoire. Structural vaccinology, in which protein structure information is utilized to design immunogens, has promise to provide new vaccines against traditionally difficult targets. Crystal structures of antigens containing one or more protection epitopes, especially when in complex with a protective antibody, are the launching point for immunogen design. Integrating structure and sequence information for families of broadly neutralizing antibodies (bNAbs) has recently enabled the creation of germline-targeting immunogens that bind and activate germline B-cells in order to initiate the elicitation of such antibodies. The contacts between antigen and neutralizing antibody define a structural epitope, and methods have been developed to transplant epitopes to scaffold proteins for structural stabilization, and to design minimized antigens that retain one or more key epitopes while eliminating other potentially distracting or unnecessary features. To develop vaccines that protect against antigenically variable pathogens, pioneering structure-based work demonstrated that multiple strain-specific epitopes could be engineered onto a single immunogen. We review these recent structural vaccinology efforts to engineer germline-targeting, epitope-specific, and/or broad coverage immunogens.

  17. Design of nanostructured-based glucose biosensors

    NASA Astrophysics Data System (ADS)

    Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani

    2012-04-01

    This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.

  18. Heterogenized Water Oxidation Catalysts Prepared by Immobilizing Kläui-Type Organometallic Precursors.

    PubMed

    Pastori, Gabriele; Wahab, Khaja; Bucci, Alberto; Bellachioma, Gianfranco; Zuccaccia, Cristiano; Llorca, Jordi; Idriss, Hicham; Macchioni, Alceo

    2016-09-12

    An efficient heterogenized water oxidation catalyst (2_TiO2 ) has been synthesized by immobilizing the Kläui-type organometallic precursor [Cp*Ir{P(O)(OH)2 }3 ]Na (2, Cp*=1,2,3,4,5-pentamethylcyclopentadienyl ligand) onto rutile TiO2 . Iridium is homogeneously distributed at the molecular and atomic/small cluster level in 2_TiO2 and 2'_TiO2 (solid catalyst recovered after the first catalytic run), respectively, as indicated by STEM-HAADF (scanning transmission electron microscopy - high angle annular dark field) studies. 2'_TiO2 exhibits TOF values up to 23.7 min(-1) in the oxidation of water to O2 driven by NaIO4 at nearly neutral pH, and a TON only limited by the amount of NaIO4 used, as indicated by multiple run experiments. Furthermore, while roughly 40 % leaching is observed during the first catalytic run, 2'_TiO2 does not undergo any further leaching even when in contact with strongly basic solutions and completely maintains its activity for thousands of cycles. NMR studies, in combination with ICP-OES (inductively coupled plasma optical emission spectrometry), indicate that the activation of 2_TiO2 occurs through the initial oxidative dissociation of PO4 (3-) , ultimately leading to active centers in which a 1:1 P/Ir ratio is present (derived from the removal of two PO4 (3-) units) likely missing the Cp* ligand. PMID:27246987

  19. Design-Based Research and Technology-Enhanced Learning Environments

    ERIC Educational Resources Information Center

    Wang, Feng; Hannafin, Michael J.

    2005-01-01

    During the past decade, design-based research has demonstrated its potential as a methodology suitable to both research and design of technology-enhanced learning environments (TELEs). In this paper, we define and identify characteristics of design-based research, describe the importance of design-based research for the development of TELEs,…

  20. Construction and design principles for microprocessor-based conductometric analyzers

    SciTech Connect

    Gerasimov, B.I.; Mishchenko, S.V.; Glinkin, E.I.

    1995-04-01

    We consider questions connected with design of microprocessor-based conductometric analyzers and cases of the utilization of microprocessor technology to design automated instruments for analytical control.

  1. Component design bases - A template approach

    SciTech Connect

    Pabst, L.F. ); Strickland, K.M. )

    1991-01-01

    A well-documented nuclear plant design basis can enhance plant safety and availability. Older plants, however, often lack historical evidence of the original design intent, particularly for individual components. Most plant documentation describes the actual design (what is) rather than the bounding limits of the design. Without knowledge of these design limits, information from system descriptions and equipment specifications is often interpreted as inviolate design requirements. Such interpretations may lead to unnecessary design conservatism in plant modifications and unnecessary restrictions on plant operation. In 1986, Florida Power and Light Company's (FP and L's) Turkey Point plant embarked on one of the first design basis reconstitution programs in the United States to catalog the true design requirements. As the program developed, design basis users expressed a need for additional information at the component level. This paper outlines a structured (template) approach to develop useful component design basis information (including the WHYs behind the design).

  2. NGDS USER CENTERED DESIGN MEETING THE NEEDS OF THE GEOTHERMAL COMMUNITY

    SciTech Connect

    Boyd, Suzanne; Zheng, Sam Xianjun; Patten, Kim; Blackman, Harold

    2013-12-23

    In order to ensure the widest and greatest utility of IT and software projects designed for geothermal reservoir engineering the full consideration of end users’ task and workflow needs must be evaluated. This paper describes the user-centered design (UCD) approach taken in the development of a user interface (UI) solution for the National Geothermal Data System (NGDS). This development process has been researched based, highly collaborative, and incorporates state-of-the-art practices to ensure a quality user experience. Work is continuing on the interface, including future usability tests to further refine the interfaces as the overall system is developed.

  3. NGDS User Centered Design Meeting the Needs of the Geothermal Community

    SciTech Connect

    Boyd, Suzanne; Zheng, Sam; Patten, Kim; Blackman, Harold

    2013-10-01

    In order to ensure the widest and greatest utility of IT and software projects designed for geothermal reservoir engineer- ing the full consideration of end users’ task and workflow needs must be evaluated. This paper describes the user-centered design (UCD) approach taken in the development of a user interface (UI) solution for the National Geothermal Data System (NGDS). This development process has been research based, highly collabora- tive, and incorporates state-of-the-art practices to ensure a quality user experience. Work is continuing on the interface, including future usability tests to further refine the interfaces as the overall system is developed.

  4. Problem Based Learning in Constructed Textile Design

    ERIC Educational Resources Information Center

    Sayer, Kate; Wilson, Jacquie; Challis, Simon

    2006-01-01

    Staff observing undergraduate students enrolled on the BSc Hons Textile Design and Design Management programme in The School of Materials, The University of Manchester, identified difficulties with knowledge retention in the area of constructed textile design. Consequently an experimental pilot was carried out in seamless knitwear design using a…

  5. CFD based draft tube hydraulic design optimization

    NASA Astrophysics Data System (ADS)

    McNabb, J.; Devals, C.; Kyriacou, S. A.; Murry, N.; Mullins, B. F.

    2014-03-01

    The draft tube design of a hydraulic turbine, particularly in low to medium head applications, plays an important role in determining the efficiency and power characteristics of the overall machine, since an important proportion of the available energy, being in kinetic form leaving the runner, needs to be recovered by the draft tube into static head. For large units, these efficiency and power characteristics can equate to large sums of money when considering the anticipated selling price of the energy produced over the machine's life-cycle. This same draft tube design is also a key factor in determining the overall civil costs of the powerhouse, primarily in excavation and concreting, which can amount to similar orders of magnitude as the price of the energy produced. Therefore, there is a need to find the optimum compromise between these two conflicting requirements. In this paper, an elaborate approach is described for dealing with this optimization problem. First, the draft tube's detailed geometry is defined as a function of a comprehensive set of design parameters (about 20 of which a subset is allowed to vary during the optimization process) and are then used in a non-uniform rational B-spline based geometric modeller to fully define the wetted surfaces geometry. Since the performance of the draft tube is largely governed by 3D viscous effects, such as boundary layer separation from the walls and swirling flow characteristics, which in turn governs the portion of the available kinetic energy which will be converted into pressure, a full 3D meshing and Navier-Stokes analysis is performed for each design. What makes this even more challenging is the fact that the inlet velocity distribution to the draft tube is governed by the runner at each of the various operating conditions that are of interest for the exploitation of the powerhouse. In order to determine these inlet conditions, a combined steady-state runner and an initial draft tube analysis, using a

  6. Designing Tools for Reflection on Problem-Based Instruction and Problem-Based Instructional Design

    ERIC Educational Resources Information Center

    Keefer, Matthew W.; Hui, Diane; RuffusDoerr, Amy Marie

    2009-01-01

    The objective of this research project into teacher education was to document the collaborative development and refection on teachers' tools in a problem-based learning (PBL) program. These results were then used to design materials and formats for the transmission of this teaching knowledge to less-experienced PBL teachers. The tools were…

  7. Design and Demonstration of Minimal Lunar Base

    NASA Astrophysics Data System (ADS)

    Boche-Sauvan, L.; Foing, B. H.; Exohab Team

    2009-04-01

    Introduction: We propose a conceptual analysis of a first minimal lunar base, in focussing on the system aspects and coordinating every different part as part an evolving architecture [1-3]. We justify the case for a scientific outpost allowing experiments, sample analysis in laboratory (relevant to the origin and evolution of the Earth, geophysical and geochemical studies of the Moon, life sciences, observation from the Moon). Research: Research activities will be conducted with this first settlement in: - science (of, from and on the Moon) - exploration (robotic mobility, rover, drilling), - technology (communication, command, organisation, automatism). Life sciences. The life sciences aspects are considered through a life support for a crew of 4 (habitat) and a laboratory activity with biological experiments performed on Earth or LEO, but then without any magnetosphere protection and therefore with direct cosmic rays and solar particle effects. Moreover, the ability of studying the lunar environment in the field will be a big asset before settling a permanent base [3-5]. Lunar environment. The lunar environment adds constraints to instruments specifications (vacuum, extreme temperature, regolith, seism, micrometeorites). SMART-1 and other missions data will bring geometrical, chemical and physical details about the environment (soil material characteristics, on surface conditions …). Test bench. To assess planetary technologies and operations preparing for Mars human exploration. Lunar outpost predesign modular concept: To allow a human presence on the moon and to carry out these experiments, we will give a pre-design of a human minimal lunar base. Through a modular concept, this base will be possibly evolved into a long duration or permanent base. We will analyse the possibilities of settling such a minimal base by means of the current and near term propulsion technology, as a full Ariane 5 ME carrying 1.7 T of gross payload to the surface of the Moon

  8. Chip Design Process Optimization Based on Design Quality Assessment

    NASA Astrophysics Data System (ADS)

    Häusler, Stefan; Blaschke, Jana; Sebeke, Christian; Rosenstiel, Wolfgang; Hahn, Axel

    2010-06-01

    Nowadays, the managing of product development projects is increasingly challenging. Especially the IC design of ASICs with both analog and digital components (mixed-signal design) is becoming more and more complex, while the time-to-market window narrows at the same time. Still, high quality standards must be fulfilled. Projects and their status are becoming less transparent due to this complexity. This makes the planning and execution of projects rather difficult. Therefore, there is a need for efficient project control. A main challenge is the objective evaluation of the current development status. Are all requirements successfully verified? Are all intermediate goals achieved? Companies often develop special solutions that are not reusable in other projects. This makes the quality measurement process itself less efficient and produces too much overhead. The method proposed in this paper is a contribution to solve these issues. It is applied at a German design house for analog mixed-signal IC design. This paper presents the results of a case study and introduces an optimized project scheduling on the basis of quality assessment results.

  9. Autonomous entropy-based intelligent experimental design

    NASA Astrophysics Data System (ADS)

    Malakar, Nabin Kumar

    2011-07-01

    The aim of this thesis is to explore the application of probability and information theory in experimental design, and to do so in a way that combines what we know about inference and inquiry in a comprehensive and consistent manner. Present day scientific frontiers involve data collection at an ever-increasing rate. This requires that we find a way to collect the most relevant data in an automated fashion. By following the logic of the scientific method, we couple an inference engine with an inquiry engine to automate the iterative process of scientific learning. The inference engine involves Bayesian machine learning techniques to estimate model parameters based upon both prior information and previously collected data, while the inquiry engine implements data-driven exploration. By choosing an experiment whose distribution of expected results has the maximum entropy, the inquiry engine selects the experiment that maximizes the expected information gain. The coupled inference and inquiry engines constitute an autonomous learning method for scientific exploration. We apply it to a robotic arm to demonstrate the efficacy of the method. Optimizing inquiry involves searching for an experiment that promises, on average, to be maximally informative. If the set of potential experiments is described by many parameters, the search involves a high-dimensional entropy space. In such cases, a brute force search method will be slow and computationally expensive. We develop an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment. This helps to reduce the number of computations necessary to find the optimal experiment. We also extended the method of maximizing entropy, and developed a method of maximizing joint entropy so that it could be used as a principle of collaboration between two robots. This is a major achievement of this thesis, as it allows the information-based collaboration between two robotic units towards a same

  10. Aligning Theory and Web-Based Instructional Design Practice with Design Patterns.

    ERIC Educational Resources Information Center

    Frizell, Sherri S.; Hubscher, Roland

    Designing instructionally sound Web courses is a difficult task for instructors who lack experience in interaction and Web-based instructional design. Learning theories and instructional strategies can provide course designers with principles and design guidelines associated with effective instruction that can be utilized in the design of…

  11. Simulation-based disassembly systems design

    NASA Astrophysics Data System (ADS)

    Ohlendorf, Martin; Herrmann, Christoph; Hesselbach, Juergen

    2004-02-01

    Recycling of Waste of Electrical and Electronic Equipment (WEEE) is a matter of actual concern, driven by economic, ecological and legislative reasons. Here, disassembly as the first step of the treatment process plays a key role. To achieve sustainable progress in WEEE disassembly, the key is not to limit analysis and planning to merely disassembly processes in a narrow sense, but to consider entire disassembly plants including additional aspects such as internal logistics, storage, sorting etc. as well. In this regard, the paper presents ways of designing, dimensioning, structuring and modeling different disassembly systems. Goal is to achieve efficient and economic disassembly systems that allow recycling processes complying with legal requirements. Moreover, advantages of applying simulation software tools that are widespread and successfully utilized in conventional industry sectors are addressed. They support systematic disassembly planning by means of simulation experiments including consecutive efficiency evaluation. Consequently, anticipatory recycling planning considering various scenarios is enabled and decisions about which types of disassembly systems evidence appropriateness for specific circumstances such as product spectrum, throughput, disassembly depth etc. is supported. Furthermore, integration of simulation based disassembly planning in a holistic concept with configuration of interfaces and data utilization including cost aspects is described.

  12. Evidence from NMR interaction studies challenges the hypothesis of direct lipid transfer from L-FABP to malaria sporozoite protein UIS3.

    PubMed

    Favretto, Filippo; Assfalg, Michael; Molinari, Henriette; D'Onofrio, Mariapina

    2013-02-01

    UIS3 is a malaria parasite protein essential for liver stage development of Plasmodium species, presumably localized to the membrane of the parasitophorous vacuole formed in infected cells. It has been recently proposed that the soluble domain of UIS3 interacts with the host liver fatty acid binding protein (L-FABP), providing the parasite with a pathway for importing exogenous lipids required for its rapid growth. This finding may suggest novel strategies for arresting parasite development. In this study, we have investigated the interaction between human L-FABP and the soluble domain of Plasmodium falciparum UIS3 by NMR spectroscopy. The amino acid residue-specific analysis of (1)H,(15) N-2D NMR spectra excluded the occurrence of a direct interaction between L-FABP (in its unbound and oleate-loaded forms) and Pf-UIS3. Furthermore, the spectrum of Pf-UIS3 was unchanged when oleate or phospholipids were added. The present investigation entails a reformulation of the current model of host-pathogen lipid transfer, possibly redirecting research for early intervention against malaria.

  13. An operational-based ALARA design program

    SciTech Connect

    Wagner, W.A.; Stocknoff, M.S. ); Pike, D.L.; Ward, K.D. )

    1985-01-01

    A frequent criticism of the nuclear power plant design and construction process is that operational considerations for maintaining occupational radiation exposures as low as reasonably achievable are not addressed until it is too late to incorporate desirable modifications. Lessons that have been learned in the construction and operation of another plants and problems foreseen by the utility's radiation protection and engineering personnel often simply do not get the attention they deserve during the design and field engineering stages. Stone and Webster Engineering Corporation and Niagara Mohawk Power Corporation have sought to avoid just such problems by jointly implementing a comprehensive, multidisciplinary ALARA design program for the Nine Mile Point Unit 2 nuclear power plant. This paper reports that this ALARA design program is organized to: directly incorporate NMPC's operational experience and philosophy, efficiently review the design and identify improvements from an occupational exposure viewpoint, and expedite design modifications while minimizing cost and schedule impacts.

  14. Design and Demonstration of Minimal Lunar Base

    NASA Astrophysics Data System (ADS)

    Boche-Sauvan, L.; Foing, B. H.; Exohab Team

    2009-04-01

    Introduction: We propose a conceptual analysis of a first minimal lunar base, in focussing on the system aspects and coordinating every different part as part an evolving architecture [1-3]. We justify the case for a scientific outpost allowing experiments, sample analysis in laboratory (relevant to the origin and evolution of the Earth, geophysical and geochemical studies of the Moon, life sciences, observation from the Moon). Research: Research activities will be conducted with this first settlement in: - science (of, from and on the Moon) - exploration (robotic mobility, rover, drilling), - technology (communication, command, organisation, automatism). Life sciences. The life sciences aspects are considered through a life support for a crew of 4 (habitat) and a laboratory activity with biological experiments performed on Earth or LEO, but then without any magnetosphere protection and therefore with direct cosmic rays and solar particle effects. Moreover, the ability of studying the lunar environment in the field will be a big asset before settling a permanent base [3-5]. Lunar environment. The lunar environment adds constraints to instruments specifications (vacuum, extreme temperature, regolith, seism, micrometeorites). SMART-1 and other missions data will bring geometrical, chemical and physical details about the environment (soil material characteristics, on surface conditions …). Test bench. To assess planetary technologies and operations preparing for Mars human exploration. Lunar outpost predesign modular concept: To allow a human presence on the moon and to carry out these experiments, we will give a pre-design of a human minimal lunar base. Through a modular concept, this base will be possibly evolved into a long duration or permanent base. We will analyse the possibilities of settling such a minimal base by means of the current and near term propulsion technology, as a full Ariane 5 ME carrying 1.7 T of gross payload to the surface of the Moon

  15. Do Alternative Base Periods Increase Unemployment Insurance Receipt among Low-Educated Unemployed Workers? National Poverty Center Working Paper Series #12-19

    ERIC Educational Resources Information Center

    Gould-Werth, Alix; Shaefer, H. Luke

    2012-01-01

    Unemployment Insurance (UI) is the major social insurance program that protects against lost earnings resulting from involuntary unemployment. Existing literature finds that low-earning unemployed workers experience difficulty accessing UI benefits. The most prominent policy reform designed to increase rates of monetary eligibility, and thus UI…

  16. Hybrid Polymer/UiO-66(Zr) and Polymer/NaY Fiber Sorbents for Mercaptan Removal from Natural Gas.

    PubMed

    Chen, Grace; Koros, William J; Jones, Christopher W

    2016-04-20

    Zeolite NaY and metal organic frameworks MIL-53(Al) and UiO-66(Zr) are spun with cellulose acetate (CA) polymer to create hybrid porous composite fibers for the selective adsorption of sulfur odorant compounds from pipeline natural gas. Odorant removal is desirable to limit corrosion associated with sulfur oxide production, thereby increasing lifetime in gas turbines used for electricity generation. In line with these goals, the performance of the hybrid fibers is evaluated on the basis of sulfur sorption capacity and selectivity, as well as fiber stability and regenerability, compared to their polymer-free sorbent counterparts. The capacities of the powder sorbents are also measured using various desorption temperatures to evaluate the potential for lower temperature, energy, and cost-efficient system operation. Both NaY/CA and UiO-66(Zr)/CA hybrid fibers are prepared with high sorbent loadings, and both have high capacities and selectivities for t-butyl mercaptan (TBM) odorant sorption from a model natural gas (NG), while being stable to multiple regeneration cycles. The different advantages and disadvantages of both types of fibers relative are discussed, with both offering the potential advantages of low pressure drop, rapid heat and mass transfer, and low energy requirements over traditional sulfur removal technologies such as hydrodesulfurization (HDS) or adsorption in a pellet packed beds.

  17. Hybrid Polymer/UiO-66(Zr) and Polymer/NaY Fiber Sorbents for Mercaptan Removal from Natural Gas.

    PubMed

    Chen, Grace; Koros, William J; Jones, Christopher W

    2016-04-20

    Zeolite NaY and metal organic frameworks MIL-53(Al) and UiO-66(Zr) are spun with cellulose acetate (CA) polymer to create hybrid porous composite fibers for the selective adsorption of sulfur odorant compounds from pipeline natural gas. Odorant removal is desirable to limit corrosion associated with sulfur oxide production, thereby increasing lifetime in gas turbines used for electricity generation. In line with these goals, the performance of the hybrid fibers is evaluated on the basis of sulfur sorption capacity and selectivity, as well as fiber stability and regenerability, compared to their polymer-free sorbent counterparts. The capacities of the powder sorbents are also measured using various desorption temperatures to evaluate the potential for lower temperature, energy, and cost-efficient system operation. Both NaY/CA and UiO-66(Zr)/CA hybrid fibers are prepared with high sorbent loadings, and both have high capacities and selectivities for t-butyl mercaptan (TBM) odorant sorption from a model natural gas (NG), while being stable to multiple regeneration cycles. The different advantages and disadvantages of both types of fibers relative are discussed, with both offering the potential advantages of low pressure drop, rapid heat and mass transfer, and low energy requirements over traditional sulfur removal technologies such as hydrodesulfurization (HDS) or adsorption in a pellet packed beds. PMID:27010604

  18. Mirror-based hybrids of recent design

    NASA Astrophysics Data System (ADS)

    Moir, R. W.; Martovetsky, N. N.; Molvik, A. W.; Ryutov, Dimitri; Simonen, T. C.

    2012-06-01

    Early application of the simple axisymmetric mirror, requiring intermediate performance between a neutron source for materials testing Q=Pfusion/Pinput ˜0.05 and pure fusion Q>10, are the hybrid applications. The Axisymmetric Mirror has attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, as well as the typical mirror features of inherently steady-state operation, and natural divertors in the form of end tanks. Operation at Q˜0.7 allows for relatively low electron temperatures, in the range of 3 keV, for the DT injection energy ˜ 80 keV from existing positive ion neutral beams designed for steady state. This level of physics performance has the virtue of being low risk with only modest R&D needed; and its simplicity promises economy advantages. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror 2.5 T solenoid length of 40 m is discussed. Simple circular steady state superconducting coils at each end are based on 15 T technology development of the ITER central solenoid. Hybrids obtain important revenues from the sale of both electricity and fuel production or waste burning. Burning fission reactor wastes by fissioning transuranics in the hybrid will multiply fusion's neutron energy by a factor of ˜10 or more and diminish the Q needed to overcome the cost of recirculating power for good economics to less than 2 and for minor actinides with multiplication over 50 to Q˜0.2. Hybrids that produce fissile fuel with fissioning blankets might need Q<2 while suppressing fissioning might be the most economical application of fusion but will require Q>4.

  19. Applying Learning Design to Work-Based Learning

    ERIC Educational Resources Information Center

    Miao, Yongwu; Hoppe, Heinz Ulrich

    2011-01-01

    Learning design is currently slanted to reflect a course-based approach to learning. This article explores whether the concept of learning design could be applied to support the informal aspects of work-based learning (WBL). It also discusses the characteristics of WBL and presents a WBL-specific learning design that highlights the key features…

  20. Impact of the Nature of the Organic Spacer on the Crystallization Kinetics of UiO-66(Zr)-Type MOFs.

    PubMed

    Ragon, Florence; Chevreau, Hubert; Devic, Thomas; Serre, Christian; Horcajada, Patricia

    2015-05-01

    The influence of the constitutive dicarboxylate linkers (size, functional group) over the crystallization kinetics of a series of porous Zr metal-organic frameworks with the UiO-66 topology has been investigated by in situ time-resolved energy dispersive X-ray diffraction (EDXRD). Both large aromatic spacers (2,6-naphthalene-, 4,4'-biphenyl- and 3,3'-dichloro-4,4'-azobenzene-dicarboxylates) and a series of X-functionalized terephthalates (X=NH2 , NO2 , Br, CH3 ) were investigated in dimethylformamide (DMF) at different temperatures and compared with the parent UiO-66. Using different crystallization models, rate constants and further kinetic parameters (such as activation energy) have been extracted. Finally, the impact of the replacement of the toxic DMF by water on the crystallization kinetics was studied through the synthesis of the functionalized UiO-66-NO2 solid.

  1. Gated Channels and Selectivity Tuning of CO2 over N2 Sorption by Post-Synthetic Modification of a UiO-66-Type Metal-Organic Framework.

    PubMed

    Kronast, Alexander; Eckstein, Sebastian; Altenbuchner, Peter T; Hindelang, Konrad; Vagin, Sergei I; Rieger, Bernhard

    2016-08-26

    The highly porous and stable metal-organic framework (MOF) UiO-66 was altered using post-synthetic modifications (PSMs). Prefunctionalization allowed the introduction of carbon double bonds into the framework through a four-step synthesis from 2-bromo-1,4-benzenedicarboxylic acid; the organic linker 2-allyl-1,4-benzenedicarboxylic acid was obtained. The corresponding functionalized MOF (UiO-66-allyl) served as a platform for further PSMs. From UiO-66-allyl, epoxy, dibromide, thioether, diamine, and amino alcohol functionalities were synthesized. The abilities of these compounds to adsorb CO2 and N2 were compared, which revealed the structure-selectivity correlations. All synthesized MOFs showed profound thermal stability together with an increased ability for selective CO2 uptake and molecular gate functionalities at low temperatures. PMID:27483397

  2. Ordering design tasks based on coupling strengths

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.; Bloebaum, Christina L.

    1994-01-01

    The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.

  3. Ordering Design Tasks Based on Coupling Strengths

    NASA Technical Reports Server (NTRS)

    Rogers, J. L.; Bloebaum, C. L.

    1994-01-01

    The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.

  4. Getting Teachers in on the Act: Evaluation of a Theater- and Classroom-Based Youth Violence Prevention Program

    ERIC Educational Resources Information Center

    Zucker, Marla; Spinazzola, Joseph; Pollack, Amie Alley; Pepe, Lauren; Barry, Stephanie; Zhang, Lynda; van der Kolk, Bessel

    2010-01-01

    This study replicated and extended our previous evaluation of Urban Improv (UI), a theater-based youth violence prevention (YVP) program developed for urban youth. It assessed the replicability of positive program impacts when implemented by nonprogram originators, as well as the utility of a comprehensive version of the UI program that included a…

  5. Starshade Design for Occulter Based Exoplanet Missions

    NASA Technical Reports Server (NTRS)

    Thomson, Mark W.; Lisman, P. Douglas; Helms, Richard; Walkemeyer, Phil; Kissil, Andrew; Polanco, Otto; Lee, Siu-Chun

    2010-01-01

    We present a lightweight starshade design that delivers the requisite profile figure accuracy with a compact stowed volume that permits launching both the occulter system (starshade and spacecraft) and a 1 to 2m-class telescope system on a single existing launch vehicle. Optimal figure stability is achieved with a very stiff and mass-efficient deployable structure design that has a novel configuration. The reference design is matched to a 1.1m telescope and consists of a 15m diameter inner disc and 24 flower-like petals with 7.5m length. The total tip-to-tip diameter of 30m provides an inner working angle of 75 mas. The design is scalable to accommodate larger telescopes and several options have been assessed. A proof of concept petal is now in production at JPL for deployment demonstrations and as a testbed for developing additional elements of the design. Future plans include developing breadboard and prototype hardware of increasing fidelity for use in demonstrating critical performance capabilities such as deployed optical edge profile figure tolerances and stability thereof.

  6. Design of Viterbi Decoder Based on FPGA

    NASA Astrophysics Data System (ADS)

    Wang, Xiumin; Zhang, Yang; Chen, Haowei

    The minimum bit width of the path metrics at the premise of not affecting the performance are calculated out, in order to reduce the storage resources cost in the design of convolutional code decoders. A simple method is proposed to judge the state nodes which the decoder can reach at each clock cycle during the setup process. Simulation platform to verify the proposed scheme has been set up with the matlab software, after that a decoder of (2,1,8) convolutional code with generating polynomial (561,753) is designed. Result of comparison with other designs shows that the scheme proposed greatly improves the throughput of the decoder at the cost of fewer resources.

  7. Sequential sampling designs based on space reduction

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Xu, Shengli; Wang, Xiaofang

    2015-07-01

    In the field of engineering design and optimization, metamodels are widely used to replace expensive simulation models in order to reduce computing costs. To improve the accuracy of metamodels effectively and efficiently, sequential sampling designs have been developed. In this article, a sequential sampling design using the Monte Carlo method and space reduction strategy (MCSR) is implemented and discussed in detail. The space reduction strategy not only maintains good sampling properties but also improves the efficiency of the sampling process. Furthermore, a local boundary search (LBS) algorithm is proposed to efficiently improve the performance of MCSR, which is called LBS-MCSR. Comparative results with several sequential sampling approaches from low to high dimensions indicate that the space reduction strategy generates samples with better sampling properties (and thus better metamodel accuracy) in less computing time.

  8. Knowledge-based system for the design of heat exchangers

    NASA Astrophysics Data System (ADS)

    Cochran, W. J.; Hainley, Don; Khartabil, Loay

    1993-03-01

    A knowledge based system has been developed to assist engineers in the design of compact heat exchangers. The main objectives of this project were to: (1) automate aspects of heat exchanger design; (2) produce multiple successful designs quickly; and (3) optimize these designs based on specific constraints or criteria. Productivity improvements from use of this system have been as much as two orders of magnitude. The design of heat exchangers is a time-consuming, iterative process. For a given set of requirements a design engineer uses his knowledge and experience to pick an initial design point and then calculates (with a large Fortran program) the performance for that design. If performance data do not meet requirements, various design parameters are modified and performance is calculated again. An expert system now embodies design expertise (rules for design decisions) allowing automation of this iterative process and substantial time savings for engineers. In addition, optimizing successful designs is now practical, whereas in the past it was generally infeasible due to the amount of labor involved. A configuration system was also developed that serves as a `front- end' for the design system. The configuration system matches design requirements to existing products and offers suggestions for initial design points. Both were developed with the KAPPA knowledge based system shell. The two KAPPA programs and the Fortran program for numerical calculations are integrated within a Windows 3.1 environment on a 486 PC.

  9. Lunar base CELSS design and analysis.

    PubMed

    Sirko, R J; Smith, G C; Hamlin, L A; Tazawa, R; Uchida, T; Suzuki, S

    1994-11-01

    This paper describes the conceptual development of a hybrid biological-physical/chemical (P/C) life support system model for a lunar outpost. It presents steps that lead to loop closure and determines mass flow characteristics for an inedible biomass enzyme reactor and an activated sludge bioreactor. Computer modeling techniques were used to determine that the cellulose reactor has the design capabilities to provide significant increases in the plant harvest index. Activated sludge was found to fit design demands for a small, continuous-flow, steady-state system. Systems analysis and component sizing for these two bioreactors and information regarding supporting bioregenerative and physical/chemical components are presented.

  10. Lunar base CELSS design and analysis.

    PubMed

    Sirko, R J; Smith, G C; Hamlin, L A; Tazawa, R; Uchida, T; Suzuki, S

    1994-11-01

    This paper describes the conceptual development of a hybrid biological-physical/chemical (P/C) life support system model for a lunar outpost. It presents steps that lead to loop closure and determines mass flow characteristics for an inedible biomass enzyme reactor and an activated sludge bioreactor. Computer modeling techniques were used to determine that the cellulose reactor has the design capabilities to provide significant increases in the plant harvest index. Activated sludge was found to fit design demands for a small, continuous-flow, steady-state system. Systems analysis and component sizing for these two bioreactors and information regarding supporting bioregenerative and physical/chemical components are presented. PMID:11540172

  11. Lunar base CELSS design and analysis

    NASA Astrophysics Data System (ADS)

    Sirko, R. J.; Smith, G. C.; Hamlin, L. A.; Tazawa, R.; Uchida, T.; Suzuki, S.

    1994-11-01

    This paper describes the conceptual development of a hybrid biological-physical/chemical (P/C) life support system model for a lunar outpost. It presents steps that lead to loop closure and determines mass flow characteristics for an inedible biomass enzyme reactor and an activated sludge bioreactor. Computer modeling techniques were used to determine that the cellulose reactor has the design capabilities to provide significant increases in the plant harvest index. Activated sludge was found to fit design demands for a small, continuous-flow, steady-state system. Systems analysis and component sizing for these two bioreactors and information regarding supporting bioregenerative and physical/chemical components are presented.

  12. A Web Based Collaborative Design Environment for Spacecraft

    NASA Technical Reports Server (NTRS)

    Dunphy, Julia

    1998-01-01

    In this era of shrinking federal budgets in the USA we need to dramatically improve our efficiency in the spacecraft engineering design process. We have come up with a method which captures much of the experts' expertise in a dataflow design graph: Seamlessly connectable set of local and remote design tools; Seamlessly connectable web based design tools; and Web browser interface to the developing spacecraft design. We have recently completed our first web browser interface and demonstrated its utility in the design of an aeroshell using design tools located at web sites at three NASA facilities. Multiple design engineers and managers are now able to interrogate the design engine simultaneously and find out what the design looks like at any point in the design cycle, what its parameters are, and how it reacts to adverse space environments.

  13. The LACIE data bases: Design considerations

    NASA Technical Reports Server (NTRS)

    Westberry, L. E. (Principal Investigator)

    1979-01-01

    The implementation of direct access storage devices for LACIE is discussed with emphasis on the storage and retrieval of image data. Topics covered include the definition of the problem, the solution methodology (design decisions), the initial operational structure, and the modifications which were incorporated. Some conclusions and projections of future problems to be solved are also presented.

  14. DESIGN STREAM FLOWS BASED ON HARMONIC MEANS.

    EPA Science Inventory

    Design streamflows are frequently used in water quality studies to provide adequate protection against pollutant exposure periods of a given duration. By analyzing the effect that simple streamflow dilution has on x-day average exposure levels of a pollutant, it appears that the ...

  15. Nuclear Safety Design Base for License Application

    SciTech Connect

    R.J. Garrett

    2005-09-29

    The purpose of this report is to identify and document the nuclear safety design requirements that are specific to structures, systems, and components (SSCs) of the repository that are important to safety (ITS) during the preclosure period and to support the preclosure safety analysis and the license application for the high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. The scope of this report includes the assignment of nuclear safety design requirements to SSCs that are ITS and does not include the assignment of design requirements to SSCs or natural or engineered barriers that are important to waste isolation (ITWI). These requirements are used as input for the design of the SSCs that are ITS such that the preclosure performance objectives of 10 CFR 63.111(b) [DIRS 173273] are met. The natural or engineered barriers that are important to meeting the postclosure performance objectives of 10 CFR 63.113(b) and (c) [DIRS 173273] are identified as ITWI. Although a structure, system, or component (SSC) that is ITS may also be ITWI, this report is only concerned with providing the nuclear safety requirements for SSCs that are ITS to prevent or mitigate event sequences during the repository preclosure period.

  16. NUCLEAR SAFETY DESIGN BASES FOR LICENSE APPLICATION

    SciTech Connect

    R.J. Garrett

    2005-03-08

    The purpose of this report is to identify and document the nuclear safety design requirements that are specific to structures, systems, and components (SSCs) of the repository that are important to safety (ITS) during the preclosure period and to support the preclosure safety analysis and the license application for the high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. The scope of this report includes the assignment of nuclear safety design requirements to SSCs that are ITS and does not include the assignment of design requirements to SSCs or natural or engineered barriers that are important to waste isolation (ITWI). These requirements are used as input for the design of the SSCs that are ITS such that the preclosure performance objectives of 10 CFR 63.111 [DIRS 156605] are met. The natural or engineered barriers that are important to meeting the postclosure performance objectives of 10 CFR 63.113 [DIRS 156605] are identified as ITWI. Although a structure, system, or component (SSC) that is ITS may also be ITWI, this report is only concerned with providing the nuclear safety requirements for SSCs that are ITS to prevent or mitigate event sequences during the repository preclosure period.

  17. EvoDesign: De novo protein design based on structural and evolutionary profiles.

    PubMed

    Mitra, Pralay; Shultis, David; Zhang, Yang

    2013-07-01

    Protein design aims to identify new protein sequences of desirable structure and biological function. Most current de novo protein design methods rely on physics-based force fields to search for low free-energy states following Anfinsen's thermodynamic hypothesis. A major obstacle of such approaches is the inaccuracy of the force field design, which cannot accurately describe the atomic interactions or distinguish correct folds. We developed a new web server, EvoDesign, to design optimal protein sequences of given scaffolds along with multiple sequence and structure-based features to assess the foldability and goodness of the designs. EvoDesign uses an evolution-profile-based Monte Carlo search with the profiles constructed from homologous structure families in the Protein Data Bank. A set of local structure features, including secondary structure, torsion angle and solvation, are predicted by single-sequence neural-network training and used to smooth the sequence motif and accommodate the physicochemical packing. The EvoDesign algorithm has been extensively tested in large-scale protein design experiments, which demonstrate enhanced foldability and structural stability of designed sequences compared with the physics-based designing methods. The EvoDesign server is freely available at http://zhanglab.ccmb.med.umich.edu/EvoDesign.

  18. Finite element based electric motor design optimization

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren

    1993-01-01

    The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.

  19. Finite element based electric motor design optimization

    NASA Astrophysics Data System (ADS)

    Campbell, C. Warren

    1993-11-01

    The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.

  20. Sequential experimental design based generalised ANOVA

    NASA Astrophysics Data System (ADS)

    Chakraborty, Souvik; Chowdhury, Rajib

    2016-07-01

    Over the last decade, surrogate modelling technique has gained wide popularity in the field of uncertainty quantification, optimization, model exploration and sensitivity analysis. This approach relies on experimental design to generate training points and regression/interpolation for generating the surrogate. In this work, it is argued that conventional experimental design may render a surrogate model inefficient. In order to address this issue, this paper presents a novel distribution adaptive sequential experimental design (DA-SED). The proposed DA-SED has been coupled with a variant of generalised analysis of variance (G-ANOVA), developed by representing the component function using the generalised polynomial chaos expansion. Moreover, generalised analytical expressions for calculating the first two statistical moments of the response, which are utilized in predicting the probability of failure, have also been developed. The proposed approach has been utilized in predicting probability of failure of three structural mechanics problems. It is observed that the proposed approach yields accurate and computationally efficient estimate of the failure probability.

  1. Early-Stage Software Design for Usability

    ERIC Educational Resources Information Center

    Golden, Elspeth

    2010-01-01

    In spite of the goodwill and best efforts of software engineers and usability professionals, systems continue to be built and released with glaring usability flaws that are costly and difficult to fix after the system has been built. Although user interface (UI) designers, be they usability or design experts, communicate usability requirements to…

  2. Growth and longevity of the cui-ui and longevity of other catostomids and cyprinids in western North America

    USGS Publications Warehouse

    Scoppettone, G.G.; Coleman, M.E.

    1988-01-01

    Annulus formation on opercula of the cui-ui Chasmistes cujus in Pyramid Lake, Nevada, was validated over an 8-year interval. Many fish were old, as old as 41 years of age, As many as three annuli were hidden (covered by supporting bone) in older fish. Growth was rapid during the first 10 years, slow from 10 to 20 years, and extremely slow or nil after 20 years. Age and growth were strongly correlated for about the first 10 years of life, but less so when fish became sexually mature. Examination of opercula of 15 additional species of large catostomids and cyprinids of western North America revealed that they were older than had previously been thought.

  3. Using Evidence-Based Design to Improve Pharmacy Department Efficiency.

    PubMed

    Greenroyd, Fraser L; Hayward, Rebecca; Price, Andrew; Demian, Peter; Sharma, Shrikant

    2016-10-01

    Using a case study of a pharmacy department rebuild in the South West of England, this article examines the use of evidence-based design to improve the efficiency and staff well-being with a new design. This article compares three designs, the current design, an anecdotal design, and an evidence-based design, to identify how evidence-based design can improve efficiency and staff well-being by reducing walking time and distance. Data were collected from the existing building and used to measure the efficiency of the department in its current state. These data were then mapped onto an anecdotal design, produced by architects from interviews and workshops with the end users, and an evidence-based design, produced by highlighting functions with high adjacencies. This changed the view on the working processes within the department, shifting away from a focus on the existing robotic dispensing system. Using evidence-based design was found to decrease the walking time and distance for staff by 24%, as opposed to the anecdotal design, which increased these parameters by 9%, and is predicted to save the department 248 min across 2 days in staff time spent walking.

  4. Atlas based kinematic optimum design of the Stewart parallel manipulator

    NASA Astrophysics Data System (ADS)

    Shao, Zhufeng; Tang, Xiaoqiang; Wang, Liping; Sun, Dengfeng

    2015-01-01

    Optimum design is a key approach to make full use of potential advantages of a parallel manipulator. The optimum design of multi-parameter parallel manipulators(more than three design parameters), such as Stewart manipulator, relies on analysis based and algorithm based optimum design methods, which fall to be accurate or intuitive. To solve this problem and achieve both accurate and intuition, atlas based optimum design of a general Stewart parallel manipulator is established, with rational selection of design parameters. Based on the defined spherical usable workspace(SUW), primary kinematic performance indices of the Stewart manipulator, involving workspace and condition number are introduced and analyzed. Then, corresponding performance atlases are drawn with the established non-dimensional design space, and impact of joint distribution angles on the manipulator performance is analyzed and illustrated. At last, an example on atlas based optimum design of the Stewart manipulator is accomplished to illustrate the optimum design process, considering the end-effector posture. Deduced atlases can be flexibly applied to both quantitative and qualitative analysis to get the desired optimal design for the Stewart manipulator with respect to related performance requirements. Besides, the established optimum design method can be further applied to other multi-parameter parallel manipulators.

  5. Design considerations for lunar base photovoltaic power systems

    NASA Technical Reports Server (NTRS)

    Hickman, J. M.; Curtis, Henry B.; Landis, Geoffrey A.

    1990-01-01

    A survey was made of factors that may affect the design of photovoltaic arrays for a lunar base. These factors, which include the lunar environment and system design criteria, are examined. A photovoltaic power system design with a triangular array geometry is discussed and compared to a nuclear reactor power system and a power system utilizing both nuclear and solar power sources.

  6. Design considerations for lunar base photovoltaic power systems

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Curtis, Henry B.; Landis, Geoffrey A.

    1990-01-01

    A survey was made of factors that may affect the design of photovoltaic arrays for a lunar base. These factors, which include the lunar environment and system design criteria, are examined. A photovoltaic power system design with a triangular array geometry is discussed and compared to a nuclear reactor power systems and a power system utilizing both nuclear and solar power sources.

  7. Developing Spanish Online Readings Using Design-Based Research

    ERIC Educational Resources Information Center

    Pardo-Ballester, Cristina; Rodriguez, Julio Cesar

    2010-01-01

    This article reports on the use of design-based research (DBR) in the development of online reading materials for beginning and intermediate Spanish learners. The report focuses on four studies of two main aspects of the development, namely, interface design and learner perceptions. The discussion of interface design includes the analysis of…

  8. Design-Based Research: Designing a Multimedia Environment to Support Language Learning

    ERIC Educational Resources Information Center

    Hung, Hsiu-Ting

    2011-01-01

    The present study examined 89 English language learners' experiences of reflective tasks in three systematically designed courses. Adopting a design-based research method, the purpose of this paper was to investigate a pedagogical design with a focus on tailoring digital video technology to support reflective tasks for language learning in…

  9. Preparing Instructional Designers for Game-Based Learning: Part III. Game Design as a Collaborative Process

    ERIC Educational Resources Information Center

    Hirumi, Atsusi; Appelman, Bob; Rieber, Lloyd; Van Eck, Richard

    2010-01-01

    In this three part series, four professors who teach graduate level courses on the design of instructional video games discuss their perspectives on preparing instructional designers to optimize game-based learning. Part I set the context for the series and one of four panelists discussed what he believes instructional designers should know about…

  10. Reflection: Research by Design: Design-Based Research and the Higher Degree Research Student

    ERIC Educational Resources Information Center

    Kennedy-Clark, Shannon

    2015-01-01

    The article "Research by design: Design-based research and the higher degree research student" (Kennedy-Clark, 2013) appeared in the "Journal of Learning Design" Volume 6, Issue 2 in 2013. Two years on, Shannon Kennedy-Clark reflects upon her original article. Upon being asked to revisit this article the author reflected upon…

  11. Process-based design of dynamical biological systems

    NASA Astrophysics Data System (ADS)

    Tanevski, Jovan; Todorovski, Ljupčo; Džeroski, Sašo

    2016-09-01

    The computational design of dynamical systems is an important emerging task in synthetic biology. Given desired properties of the behaviour of a dynamical system, the task of design is to build an in-silico model of a system whose simulated be- haviour meets these properties. We introduce a new, process-based, design methodology for addressing this task. The new methodology combines a flexible process-based formalism for specifying the space of candidate designs with multi-objective optimization approaches for selecting the most appropriate among these candidates. We demonstrate that the methodology is general enough to both formulate and solve tasks of designing deterministic and stochastic systems, successfully reproducing plausible designs reported in previous studies and proposing new designs that meet the design criteria, but have not been previously considered.

  12. Process-based design of dynamical biological systems

    PubMed Central

    Tanevski, Jovan; Todorovski, Ljupčo; Džeroski, Sašo

    2016-01-01

    The computational design of dynamical systems is an important emerging task in synthetic biology. Given desired properties of the behaviour of a dynamical system, the task of design is to build an in-silico model of a system whose simulated be- haviour meets these properties. We introduce a new, process-based, design methodology for addressing this task. The new methodology combines a flexible process-based formalism for specifying the space of candidate designs with multi-objective optimization approaches for selecting the most appropriate among these candidates. We demonstrate that the methodology is general enough to both formulate and solve tasks of designing deterministic and stochastic systems, successfully reproducing plausible designs reported in previous studies and proposing new designs that meet the design criteria, but have not been previously considered. PMID:27686219

  13. Simulation-based design using wavelets

    NASA Astrophysics Data System (ADS)

    Williams, John R.; Amaratunga, Kevin S.

    1994-03-01

    The design of large-scale systems requires methods of analysis which have the flexibility to provide a fast interactive simulation capability, while retaining the ability to provide high-order solution accuracy when required. This suggests that a hierarchical solution procedure is required that allows us to trade off accuracy for solution speed in a rational manner. In this paper, we examine the properties of the biorthogonal wavelets recently constructed by Dahlke and Weinreich and show how they can be used to implement a highly efficient multiscale solution procedure for solving a certain class of one-dimensional problems.

  14. In situ energy-dispersive X-ray diffraction for the synthesis optimization and scale-up of the porous zirconium terephthalate UiO-66.

    PubMed

    Ragon, Florence; Horcajada, Patricia; Chevreau, Hubert; Hwang, Young Kyu; Lee, U-Hwang; Miller, Stuart R; Devic, Thomas; Chang, Jong-San; Serre, Christian

    2014-03-01

    The synthesis optimization and scale-up of the benchmarked microporous zirconium terephthalate UiO-66(Zr) were investigated by evaluating the impact of several parameters (zirconium precursors, acidic conditions, addition of water, and temperature) over the kinetics of crystallization by time-resolved in situ energy-dispersive X-ray diffraction. Both the addition of hydrochloric acid and water were found to speed up the reaction. The use of the less acidic ZrOCl2·8H2O as the precursor seemed to be a suitable alternative to ZrCl4·xH2O, avoiding possible reproducibility issues as a consequence of the high hygroscopic character of ZrCl4. ZrOCl2·8H2O allowed the formation of smaller good quality UiO-66(Zr) submicronic particles, paving the way for their use within the nanotechnology domain, in addition to higher reaction yields, which makes this synthesis route suitable for the preparation of UiO-66(Zr) at a larger scale. In a final step, UiO-66(Zr) was prepared using conventional reflux conditions at the 0.5 kg scale, leading to a rather high space-time yield of 490 kg m(-3) day(-1), while keeping physicochemical properties similar to those obtained from smaller scale solvothermally prepared batches.

  15. Definition of Design Case Similarity Based on Physical Quantities and Terms for Engineering Design Aid

    NASA Astrophysics Data System (ADS)

    Murakami, Tamotsu; Shimamura, Jun; Nakajima, Naomasa

    This paper proposes computerized methods of case-based design aid using similarity and relevance between design cases. First, we introduce methods of describing and recording design cases and design modification cases by physical quantities and their calculations to represent physical phenomena and terms to explain them. Then, we introduce a quantity dimension space defined by nine fundamental and supplementary quantities in SI. In quantity dimension space, a distance between physical quantities is mathematically defined based on city-block distance, and then physical quantity similarity by dimension is defined using the physical quantity distance. Then, similarity between physical quantities is defined by combining the similarity by dimension and similarity of quantity calculation structures. Also, similarity between terms is defined by combining literal similarity and cooccurrence statistics. Finally, similarity between design (modification) cases is defined based on physical quantity similarity and term similarity. By using design case similarity, designers can retrieve and consult the similar or relevant cases to a new design problem in a design case library. Also, design modification knowledge such as “which physical quantity or design parameter should be modified to solve specific trouble” can be extracted by analyzing recorded design modification cases and clustering them using design (modification) case similarity. The proposed methods are implemented as a Lisp program and are examined through some examples.

  16. Adapting Cognitive Walkthrough to Support Game Based Learning Design

    ERIC Educational Resources Information Center

    Farrell, David; Moffat, David C.

    2014-01-01

    For any given Game Based Learning (GBL) project to be successful, the player must learn something. Designers may base their work on pedagogical research, but actual game design is still largely driven by intuition. People are famously poor at unsupported methodical thinking and relying so much on instinct is an obvious weak point in GBL design…

  17. Case-based reasoning in design: An apologia

    NASA Technical Reports Server (NTRS)

    Pulaski, Kirt

    1990-01-01

    Three positions are presented and defended: the process of generating solutions in problem solving is viewable as a design task; case-based reasoning is a strong method of problem solving; and a synergism exists between case-based reasoning and design problem solving.

  18. Issues in Text Design and Layout for Computer Based Communications.

    ERIC Educational Resources Information Center

    Andresen, Lee W.

    1991-01-01

    Discussion of computer-based communications (CBC) focuses on issues involved with screen design and layout for electronic text, based on experiences with electronic messaging, conferencing, and publishing within the Australian Open Learning Information Network (AOLIN). Recommendations for research on design and layout for printed text are also…

  19. Tailor-Made Stable Zr(IV)-Based Metal-Organic Frameworks for Laser Desorption/Ionization Mass Spectrometry Analysis of Small Molecules and Simultaneous Enrichment of Phosphopeptides.

    PubMed

    Chen, Lianfang; Ou, Junjie; Wang, Hongwei; Liu, Zhongshan; Ye, Mingliang; Zou, Hanfa

    2016-08-10

    Although thousands of metal-organic frameworks (MOFs) have been fabricated and widely applied in gas storage/separations, adsorption, catalysis, and so on, few kinds of MOFs have been used as adsorption materials while simultaneously serving as matrixes to analyze small molecules for laser desorption/ionization mass spectrometry (LDI-MS). Herein, a new concept is introduced to design and synthesize MOFs as both adsorption materials and matrixes according to the structure of ligands and common matrixes. The proof of concept design was demonstrated by selection of 2,5-pyridinedicarboxylic acid (PDC) and 2,5-dihydroxyterephthalic acid (DHT) as ligands for synthesis of MOFs. Two Zr(IV)-based MOFs of UiO-66-PDC and UiO-66-(OH)2 were synthesized and applied for the first time as new matrixes for analysis of small molecules by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Both of them showed low matrix interferences, high ionization efficiency, and good reproducibility when used as matrixes. A variety of small molecules, including saccharides, amino acids, nucleosides, peptides, alkaline drugs, and natural products, were analyzed. In addition, UiO-66-(OH)2 exhibited potential for application in the quantitative determination of glucose and pyridoxal 5'-phosphate. Furthermore, thanks to its intrinsically large surface area and highly ordered pores, UiO-66-(OH)2 also showed sensitive and specific enrichment of phosphopeptides prior to MS analysis. These results demonstrated that this strategy can be used to efficiently screen tailor-made MOFs as matrixes to analyze small molecules by MALDI-TOF-MS. PMID:27427857

  20. Model-Based Design of Biochemical Microreactors

    PubMed Central

    Elbinger, Tobias; Gahn, Markus; Neuss-Radu, Maria; Hante, Falk M.; Voll, Lars M.; Leugering, Günter; Knabner, Peter

    2016-01-01

    Mathematical modeling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation, and optimization of metabolic processes in biochemical microreactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first microreactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments of the reactor multienzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions. The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multienzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the microreactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P) was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns, which differ for different experimental arrangements. Furthermore, the total output of G6P

  1. Model-Based Design of Biochemical Microreactors.

    PubMed

    Elbinger, Tobias; Gahn, Markus; Neuss-Radu, Maria; Hante, Falk M; Voll, Lars M; Leugering, Günter; Knabner, Peter

    2016-01-01

    Mathematical modeling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation, and optimization of metabolic processes in biochemical microreactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first microreactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments of the reactor multienzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions. The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multienzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the microreactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P) was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns, which differ for different experimental arrangements. Furthermore, the total output of G6P

  2. Designing Personalization in Technology-Based Services

    ERIC Educational Resources Information Center

    Lee, Min Kyung

    2013-01-01

    Personalization technology has the potential to optimize service for each person's unique needs and characteristics. One way to optimize service is to allow people to customize the service themselves; another is to proactively tailor services based on information provided by people or inferred from their past behaviors. These approaches function…

  3. Case-Based Capture and Reuse of Aerospace Design Rationale

    NASA Technical Reports Server (NTRS)

    Leake, David B.

    2001-01-01

    The goal of this project was to apply artificial intelligence techniques to facilitate capture and reuse of aerospace design rationale. The project combined case-based reasoning (CBR) and concept maps (CMaps) to develop methods for capturing, organizing, and interactively accessing records of experiences encapsulating the methods and rationale underlying expert aerospace design, in order to bring the captured knowledge to bear to support future reasoning. The project's results contribute both principles and methods for effective design-aiding systems that aid capture and access of useful design knowledge. The project has been guided by the tenets that design-aiding systems must: (1) Leverage a designer's knowledge, rather than attempting to replace it; (2) Be able to reflect different designers' differing conceptualizations of the design task, and to clarify those conceptualizations to others; (3) Include capabilities to capture information both by interactive knowledge modeling and during normal use; and (4) Integrate into normal designer tasks as naturally and unobtrusive as possible.

  4. A bootstrap lunar base: Preliminary design review 2

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A bootstrap lunar base is the gateway to manned solar system exploration and requires new ideas and new designs on the cutting edge of technology. A preliminary design for a Bootstrap Lunar Base, the second provided by this contractor, is presented. An overview of the work completed is discussed as well as the technical, management, and cost strategies to complete the program requirements. The lunar base design stresses the transforming capabilities of its lander vehicles to aid in base construction. The design also emphasizes modularity and expandability in the base configuration to support the long-term goals of scientific research and profitable lunar resource exploitation. To successfully construct, develop, and inhabit a permanent lunar base, however, several technological advancements must first be realized. Some of these technological advancements are also discussed.

  5. Development of a Design-Based Learning Curriculum through Design-Based Research for a Technology-Enabled Science Classroom

    ERIC Educational Resources Information Center

    Kim, Paul; Suh, Esther; Song, Donggil

    2015-01-01

    This exploratory study provides a deeper look into the aspects of students' experience from design-based learning (DBL) activities for fifth grade students. Using design-based research (DBR), this study was conducted on a series of science learning activities leveraging mobile phones with relevant applications and sensors. We observed 3 different…

  6. Data base design for a worldwide multicrop information system

    NASA Technical Reports Server (NTRS)

    Driggers, W. G.; Downs, J. M.; Hickman, J. R.; Packard, R. L. (Principal Investigator)

    1979-01-01

    A description of the USDA Application Test System data base design approach and resources is presented. The data is described in detail by category, with emphasis on those characteristics which influenced the design most. It was concluded that the use of a generalized data base in support of crop assessment is a sound concept. The IDMS11 minicomputer base system is recommended for this purpose.

  7. Physiological Based Simulator Fidelity Design Guidance

    NASA Technical Reports Server (NTRS)

    Schnell, Thomas; Hamel, Nancy; Postnikov, Alex; Hoke, Jaclyn; McLean, Angus L. M. Thom, III

    2012-01-01

    The evolution of the role of flight simulation has reinforced assumptions in aviation that the degree of realism in a simulation system directly correlates to the training benefit, i.e., more fidelity is always better. The construct of fidelity has several dimensions, including physical fidelity, functional fidelity, and cognitive fidelity. Interaction of different fidelity dimensions has an impact on trainee immersion, presence, and transfer of training. This paper discusses research results of a recent study that investigated if physiological-based methods could be used to determine the required level of simulator fidelity. Pilots performed a relatively complex flight task consisting of mission task elements of various levels of difficulty in a fixed base flight simulator and a real fighter jet trainer aircraft. Flight runs were performed using one forward visual channel of 40 deg. field of view for the lowest level of fidelity, 120 deg. field of view for the middle level of fidelity, and unrestricted field of view and full dynamic acceleration in the real airplane. Neuro-cognitive and physiological measures were collected under these conditions using the Cognitive Avionics Tool Set (CATS) and nonlinear closed form models for workload prediction were generated based on these data for the various mission task elements. One finding of the work described herein is that simple heart rate is a relatively good predictor of cognitive workload, even for short tasks with dynamic changes in cognitive loading. Additionally, we found that models that used a wide range of physiological and neuro-cognitive measures can further boost the accuracy of the workload prediction.

  8. XML-based product information processing method for product design

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen Yu

    2011-12-01

    Design knowledge of modern mechatronics product is based on information processing as the center of the knowledge-intensive engineering, thus product design innovation is essentially the knowledge and information processing innovation. Analysis of the role of mechatronics product design knowledge and information management features, a unified model of XML-based product information processing method is proposed. Information processing model of product design includes functional knowledge, structural knowledge and their relationships. For the expression of product function element, product structure element, product mapping relationship between function and structure based on the XML model are proposed. The information processing of a parallel friction roller is given as an example, which demonstrates that this method is obviously helpful for knowledge-based design system and product innovation.

  9. XML-based product information processing method for product design

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen Yu

    2012-01-01

    Design knowledge of modern mechatronics product is based on information processing as the center of the knowledge-intensive engineering, thus product design innovation is essentially the knowledge and information processing innovation. Analysis of the role of mechatronics product design knowledge and information management features, a unified model of XML-based product information processing method is proposed. Information processing model of product design includes functional knowledge, structural knowledge and their relationships. For the expression of product function element, product structure element, product mapping relationship between function and structure based on the XML model are proposed. The information processing of a parallel friction roller is given as an example, which demonstrates that this method is obviously helpful for knowledge-based design system and product innovation.

  10. Designing a successful HMD-based experience

    NASA Technical Reports Server (NTRS)

    Pierce, J. S.; Pausch, R.; Sturgill, C. B.; Christiansen, K. D.; Kaiser, M. K. (Principal Investigator)

    1999-01-01

    For entertainment applications, a successful virtual experience based on a head-mounted display (HMD) needs to overcome some or all of the following problems: entering a virtual world is a jarring experience, people do not naturally turn their heads or talk to each other while wearing an HMD, putting on the equipment is hard, and people do not realize when the experience is over. In the Electric Garden at SIGGRAPH 97, we presented the Mad Hatter's Tea Party, a shared virtual environment experienced by more than 1,500 SIGGRAPH attendees. We addressed these HMD-related problems with a combination of back story, see-through HMDs, virtual characters, continuity of real and virtual objects, and the layout of the physical and virtual environments.

  11. m-LoCoS UI: A Universal Visible Language for Global Mobile Communication

    NASA Astrophysics Data System (ADS)

    Marcus, Aaron

    The LoCoS universal visible language developed by the graphic/sign designer Yukio Ota in Japan in 1964 may serve as a usable, useful, and appealing basis for a mobile phone application that can provide capabilities for communication and storytelling among people who do not share a spoken language. User-interface design issues including display and input are discussed in conjunction with prototype screens showing the use of LoCoS for a mobile phone.

  12. Structural control design based on reduced-order observer

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1991-01-01

    An observer-based structural control design method is proposed in this paper. The method is a semi-inverse design procedure in that the control law is not designed before the observer system, but is a result that comes from the observer design. However, the observer design is not completely independent of the control design either, but seeks to yield a control law that is close to a prescribed control law. First, the observer design problem is considered as the reconstruction of a linear function of the state vector. The linear state function to be reconstructed is the given control law. Then, based on the derivation for linear state function observers, the observer design is formulated as a parameter optimization problem. The optimization objective is to generate a matrix that is close to the optimal feedback gain matrix. Based on that matrix, the form of the observer and a new control law can be determined. The semi-inverse design procedure can yield a reduced-order observer with dimension considerably smaller than that of the system. Two examples are used to demonstrate the proposed design procedure.

  13. A Model-Based Expert System For Digital Systems Design

    NASA Astrophysics Data System (ADS)

    Wu, J. G.; Ho, W. P. C.; Hu, Y. H.; Yun, D. Y. Y.; Parng, T. M.

    1987-05-01

    In this paper, we present a model-based expert system for automatic digital systems design. The goal of digital systems design is to generate a workable and efficient design from high level specifications. The formalization of the design process is a necessity for building an efficient automatic CAD system. Our approach combines model-based, heuristic best-first search, and meta-planning techniques from AI to facilitate the design process. The design process is decomposed into three subprocesses. First, the high-level behavioral specifications are translated into sequences of primitive behavioral operations. Next, primitive operations are grouped to form intermediate-level behavioral functions. Finally, structural function modules are selected to implement these functions. Using model-based reasoning on the primitive behavioral operations level extends the solution space considered in design and provides more opportunity for minimization. Heuristic best-first search and meta-planning tech-niques control the decision-making in the latter two subprocesses to optimize the final design. They also facilitate system maintenance by separating design strategy from design knowledge.

  14. Case-based reasoning support for engineering design

    NASA Astrophysics Data System (ADS)

    Lees, Brian; Hamza, Meer; Irgens, Chris

    2000-10-01

    The potential application of case-based reasoning (CBR) in design support is illustrated through examples drawn from research at the University of Paisley, demonstrating the suitability of CBR for different aspects of design, different problem areas, and different design goals. A quality advisory system has been developed for the early stages of mechanical engineering design, the aim of which is to provide quality advice in a variant design situation. In the domain of software engineering CBR has been applied to advise on which metrics are appropriate fora assessing the quality of the software currently under design. The system integrates CBR with concepts from quality function deployment (QFD) and incorporates a case library holding past software quality histories. CBR has been applied in support of conceptual design: to capture detailed design histories by monitoring designer actions, and thereby support design reuse through the evaluation of designs, through the provision of query, browsing and replay facilities. The resulting system is aimed to support the design of safety critical systems, by assisting in the construction of safety arguments, and cooperative design.

  15. Learning through Interaction: Improving Practice with Design-Based Research

    ERIC Educational Resources Information Center

    Voigt, Christian; Swatman, Paula M. C.

    2006-01-01

    This article presents the first stage of a design-based research project to introduce case-based learning using existing interactive technologies in a major Australian university. The paper initially outlines the relationship between case-based learning, student interaction and the study of interactions--and includes a review of research into…

  16. Conceptual design of distillation-based hybrid separation processes.

    PubMed

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  17. Agent-based models in robotized manufacturing cells designing

    NASA Astrophysics Data System (ADS)

    Sekala, A.; Gwiazda, A.; Foit, K.; Banas, W.; Hryniewicz, P.; Kost, G.

    2015-11-01

    The complexity of the components, presented in robotized manufacturing workcells, causes that already at the design phase is necessary to develop models presenting various aspects of their structure and functioning. These models are simplified representation of real systems and allow to, among others, systematize knowledge about the designed manufacturing workcell. They also facilitate defining and analyzing the interrelationships between its particular components. This paper proposes the agent-based approach applied for designing robotized manufacturing cells.

  18. Modeling Web-Based Educational Systems: Process Design Teaching Model

    ERIC Educational Resources Information Center

    Rokou, Franca Pantano; Rokou, Elena; Rokos, Yannis

    2004-01-01

    Using modeling languages is essential to the construction of educational systems based on software engineering principles and methods. Furthermore, the instructional design is undoubtedly the cornerstone of the design and development of educational systems. Although several methodologies and languages have been proposed for the specification of…

  19. Instructional Design for Heuristic-Based Problem Solving.

    ERIC Educational Resources Information Center

    Ingram, Albert L.

    1988-01-01

    Discussion of instructional design models focuses on a study concerned with developing effective instruction in heuristic-based problem solving for computer programing. Highlights include distinctions between algorithms and heuristics; pretests and posttests; revised instructional design procedures; student attitudes; task analysis; and…

  20. Teaching Database Design with Constraint-Based Tutors

    ERIC Educational Resources Information Center

    Mitrovic, Antonija; Suraweera, Pramuditha

    2016-01-01

    Design tasks are difficult to teach, due to large, unstructured solution spaces, underspecified problems, non-existent problem solving algorithms and stopping criteria. In this paper, we comment on our approach to develop KERMIT, a constraint-based tutor that taught database design. In later work, we re-implemented KERMIT as EER-Tutor, and…

  1. Designing, Developing and Implementing WWW-Based Distance Learning.

    ERIC Educational Resources Information Center

    Riley, Peter C.

    The rapid advancement of communication technologies is resulting in a wide array of design and development choices for distance learning projects. The 58th Special Operations Wing at Kirtland Air Force Base, New Mexico, is developing a prototype distance learning project designed to serve geographically separated learner populations. Project staff…

  2. Group-Based Life Design Counseling in an Italian Context

    ERIC Educational Resources Information Center

    Di Fabio, Annamaria; Maree, Jacobus Gideon

    2012-01-01

    This study examined the effectiveness of group-based Life Design Counseling using the Career-Story Interview. Written exercises were used to implement the seven topics in the Career-Story Interview. The present study employed an experimental design that involved two groups of Italian entrepreneurs from the agricultural and trade sectors, namely an…

  3. Design and Construction Documents Associated with N232, Sustainability Base

    NASA Technical Reports Server (NTRS)

    Zornetzer, Steven F.; Schuler, Raymond F.; Grymes, Rosalind A.

    2014-01-01

    This request comprehensively covers documents associated with the design and construction of Sustainability Base, N232. The intent of this project specifically envisioned broad dissemination of these materials to others undertaking the design and construction of high-performing energy- and resource-efficient buildings in comparable climate zones.

  4. A New Design Approach to Game-Based Learning

    ERIC Educational Resources Information Center

    Larsen, Lasse Juel

    2012-01-01

    This paper puts forward a new design perspective for game-based learning. The general idea is to abandon the long sought-after dream of designing a closed learning system, where students in both primary and secondary school could learn--without the interference of teachers--whatever subject they wanted while sitting in front of a computer. This…

  5. A Multilevel Analysis of Problem-Based Learning Design Characteristics

    ERIC Educational Resources Information Center

    Scott, Kimberly S.

    2014-01-01

    The increasing use of experience-centered approaches like problem-based learning (PBL) by learning and development practitioners and management educators has raised interest in how to design, implement and evaluate PBL in that field. Of particular interest is how to evaluate the relative impact of design characteristics that exist at the…

  6. Optimal Test Design with Rule-Based Item Generation

    ERIC Educational Resources Information Center

    Geerlings, Hanneke; van der Linden, Wim J.; Glas, Cees A. W.

    2013-01-01

    Optimal test-design methods are applied to rule-based item generation. Three different cases of automated test design are presented: (a) test assembly from a pool of pregenerated, calibrated items; (b) test generation on the fly from a pool of calibrated item families; and (c) test generation on the fly directly from calibrated features defining…

  7. Preparing Instructional Designers for Game-Based Learning: Part 1

    ERIC Educational Resources Information Center

    Hirumi, Atsusi; Appelman, Bob; Rieber, Lloyd; Van Eck, Richard

    2010-01-01

    Like many rapidly growing industries, advances in video game technology are far outpacing research on its design and effectiveness. Relatively little is understood about how to apply what we know about teaching and learning to optimize game-based learning. For the most part, instructional designers know little about game development and video game…

  8. Using Design-Based Research in Informal Environments

    ERIC Educational Resources Information Center

    Reisman, Molly

    2008-01-01

    Design-Based Research (DBR) has been a tool of the learning sciences since the early 1990s, used as a way to improve and study learning environments. Using an iterative process of design with the goal of reining theories of learning, researchers and educators now use DBR seek to identify "how" to make a learning environment work. They then draw…

  9. A Design and Control Environment for Internet-Based Telerobotics

    NASA Technical Reports Server (NTRS)

    Oboe, Roberto; Fiorini, Paolo

    1997-01-01

    This paper describes an environment for the design, simulation and control of Internet-based force-relflecting telerobotc systems. We define these systems as using a segment of the computer network to connect the master to the slave.

  10. A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2001-01-01

    An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.

  11. Design and Implementation of a Project-Based Active/Cooperative Engineering Design Course for Freshmen

    ERIC Educational Resources Information Center

    Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.

    2011-01-01

    A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long…

  12. Balancing Expression and Structure in Game Design: Developing Computational Participation Using Studio-Based Design Pedagogy

    ERIC Educational Resources Information Center

    DeVane, Ben; Steward, Cody; Tran, Kelly M.

    2016-01-01

    This article reports on a project that used a game-creation tool to introduce middle-school students ages 10 to 13 to problem-solving strategies similar to those in computer science through the lens of studio-based design arts. Drawing on historic paradigms in design pedagogy and contemporary educational approaches in the digital arts to teach…

  13. Research by Design: Design-Based Research and the Higher Degree Research student

    ERIC Educational Resources Information Center

    Kennedy-Clark, Shannon

    2013-01-01

    Design-based research lends itself to educational research as the aim of this approach is to develop and refine the design of artefacts, tools and curriculum and to advance existing theory or develop new theories that can support and lead to a deepened understanding of learning. This paper provides an overview of the potential benefits of using a…

  14. The research-design interaction: lessons learned from an evidence-based design studio.

    PubMed

    Haq, Saif; Pati, Debajyoti

    2010-01-01

    As evidence-based design (EBD) emerges as a model of design practice, considerable attention has been given to its research component. However, this overshadows another essential component of EBD-the change agent, namely the designer. EBD introduced a new skill set to the practitioner: the ability to interact with scientific evidence. Industry sources suggest adoption of the EBD approach across a large number of design firms. How comfortable are these designers in integrating research with design decision making? Optimizing the interaction between the primary change agent (the designer) and the evidence is crucial to producing the desired outcomes. Preliminary to examining this question, an architectural design studio was used as a surrogate environment to examine how designers interact with evidence. Twelve students enrolled in a healthcare EBD studio during the spring of 2009. A three-phase didactic structure was adopted: knowing a hospital, knowing the evidence, and designing with knowledge and evidence. Products of the studio and questionnaire responses from the students were used as the data for analysis. The data suggest that optimization of the research-design relationship warrants consideration in four domains: (1) a knowledge structure that is easy to comprehend; (2) phase-complemented representation of evidence; (3) access to context and precedence information; and (4) a designer-friendly vocabulary.

  15. Design of Composite Structures Using Knowledge-Based and Case Based Reasoning

    NASA Technical Reports Server (NTRS)

    Lambright, Jonathan Paul

    1996-01-01

    A method of using knowledge based and case based reasoning to assist designers during conceptual design tasks of composite structures was proposed. The cooperative use of heuristics, procedural knowledge, and previous similar design cases suggests a potential reduction in design cycle time and ultimately product lead time. The hypothesis of this work is that the design process of composite structures can be improved by using Case-Based Reasoning (CBR) and Knowledge-Based (KB) reasoning in the early design stages. The technique of using knowledge-based and case-based reasoning facilitates the gathering of disparate information into one location that is easily and readily available. The method suggests that the inclusion of downstream life-cycle issues into the conceptual design phase reduces potential of defective, and sub-optimal composite structures. Three industry experts were interviewed extensively. The experts provided design rules, previous design cases, and test problems. A Knowledge Based Reasoning system was developed using the CLIPS (C Language Interpretive Procedural System) environment and a Case Based Reasoning System was developed using the Design Memory Utility For Sharing Experiences (MUSE) xviii environment. A Design Characteristic State (DCS) was used to document the design specifications, constraints, and problem areas using attribute-value pair relationships. The DCS provided consistent design information between the knowledge base and case base. Results indicated that the use of knowledge based and case based reasoning provided a robust design environment for composite structures. The knowledge base provided design guidance from well defined rules and procedural knowledge. The case base provided suggestions on design and manufacturing techniques based on previous similar designs and warnings of potential problems and pitfalls. The case base complemented the knowledge base and extended the problem solving capability beyond the existence of

  16. Elderly Healthcare Monitoring Using an Avatar-Based 3D Virtual Environment

    PubMed Central

    Pouke, Matti; Häkkilä, Jonna

    2013-01-01

    Homecare systems for elderly people are becoming increasingly important due to both economic reasons as well as patients’ preferences. Sensor-based surveillance technologies are an expected future trend, but research so far has devoted little attention to the User Interface (UI) design of such systems and the user-centric design approach. In this paper, we explore the possibilities of an avatar-based 3D visualization system, which exploits wearable sensors and human activity simulations. We present a technical prototype and the evaluation of alternative concept designs for UIs based on a 3D virtual world. The evaluation was conducted with homecare providers through focus groups and an online survey. Our results show firstly that systems taking advantage of 3D virtual world visualization techniques have potential especially due to the privacy preserving and simplified information presentation style, and secondly that simple representations and glancability should be emphasized in the design. The identified key use cases highlight that avatar-based 3D presentations can be helpful if they provide an overview as well as details on demand. PMID:24351747

  17. Elderly healthcare monitoring using an avatar-based 3D virtual environment.

    PubMed

    Pouke, Matti; Häkkilä, Jonna

    2013-12-17

    Homecare systems for elderly people are becoming increasingly important due to both economic reasons as well as patients' preferences. Sensor-based surveillance technologies are an expected future trend, but research so far has devoted little attention to the User Interface (UI) design of such systems and the user-centric design approach. In this paper, we explore the possibilities of an avatar-based 3D visualization system, which exploits wearable sensors and human activity simulations. We present a technical prototype and the evaluation of alternative concept designs for UIs based on a 3D virtual world. The evaluation was conducted with homecare providers through focus groups and an online survey. Our results show firstly that systems taking advantage of 3D virtual world visualization techniques have potential especially due to the privacy preserving and simplified information presentation style, and secondly that simple representations and glancability should be emphasized in the design. The identified key use cases highlight that avatar-based 3D presentations can be helpful if they provide an overview as well as details on demand.

  18. LMI-based controller design for dynamic variable structure systems

    NASA Astrophysics Data System (ADS)

    Ohtake, Hiroshi; Tanaka, Kazuo

    2005-12-01

    This paper presents controller design conditions for dynamic variable structure systems in terms of linear matrix inequalities (LMIs). In our previous paper, we proposed the dynamic variable structure system and derived its controller design conditions using switching fuzzy model-based control approach. However, the controller design conditions were given in terms of bilinear matrix inequalities (BMIs). In this paper, by introducing the augmented system which consists of the switching fuzzy model and a stable linear system, we derive new controller design conditions in terms of linear matrix inequalities (LMIs) for the dynamic variable structure systems. A simulation result shows the utility of this control approach.

  19. Reliability based design including future tests and multiagent approaches

    NASA Astrophysics Data System (ADS)

    Villanueva, Diane

    The initial stages of reliability-based design optimization involve the formulation of objective functions and constraints, and building a model to estimate the reliability of the design with quantified uncertainties. However, even experienced hands often overlook important objective functions and constraints that affect the design. In addition, uncertainty reduction measures, such as tests and redesign, are often not considered in reliability calculations during the initial stages. This research considers two areas that concern the design of engineering systems: 1) the trade-off of the effect of a test and post-test redesign on reliability and cost and 2) the search for multiple candidate designs as insurance against unforeseen faults in some designs. In this research, a methodology was developed to estimate the effect of a single future test and post-test redesign on reliability and cost. The methodology uses assumed distributions of computational and experimental errors with re-design rules to simulate alternative future test and redesign outcomes to form a probabilistic estimate of the reliability and cost for a given design. Further, it was explored how modeling a future test and redesign provides a company an opportunity to balance development costs versus performance by simultaneously designing the design and the post-test redesign rules during the initial design stage. The second area of this research considers the use of dynamic local surrogates, or surrogate-based agents, to locate multiple candidate designs. Surrogate-based global optimization algorithms often require search in multiple candidate regions of design space, expending most of the computation needed to define multiple alternate designs. Thus, focusing on solely locating the best design may be wasteful. We extended adaptive sampling surrogate techniques to locate multiple optima by building local surrogates in sub-regions of the design space to identify optima. The efficiency of this method

  20. Statistically Based Approach to Broadband Liner Design and Assessment

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    A broadband liner design optimization includes utilizing in-duct attenuation predictions with a statistical fan source model to obtain optimum impedance spectra over a number of flow conditions for one or more liner locations in a bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners having impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increasing weighting to specific frequencies and/or operating conditions. One or more broadband design approaches are utilized to produce a broadband liner that targets a full range of frequencies and operating conditions.

  1. Conceptional design of the laser ion source based hadrontherapy facility

    NASA Astrophysics Data System (ADS)

    Xie, Xiu-Cui; Song, Ming-Tao; Zhang, Xiao-Hu

    2014-04-01

    A laser ion source (LIS), which can provide a carbon beam with highly stripped state (C6+) and high intensity (several tens mA), would significantly change the overall design of the hadrontherapy facility. The proposed LIS based hadrontherapy facility has the advantages of short linac length, simple injection scheme, and small synchrotron size. With the experience from the DPIS and HITFiL projects that have been conducted in IMP, a conceptional design of the LIS based hadrontherapy facility will be presented, with special attention given to APF type IH DTL design and simulation.

  2. Optimization of Designs for Nanotube-based Scanning Probes

    NASA Technical Reports Server (NTRS)

    Harik, V. M.; Gates, T. S.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Optimization of designs for nanotube-based scanning probes, which may be used for high-resolution characterization of nanostructured materials, is examined. Continuum models to analyze the nanotube deformations are proposed to help guide selection of the optimum probe. The limitations on the use of these models that must be accounted for before applying to any design problem are presented. These limitations stem from the underlying assumptions and the expected range of nanotube loading, end conditions, and geometry. Once the limitations are accounted for, the key model parameters along with the appropriate classification of nanotube structures may serve as a basis for the design optimization of nanotube-based probe tips.

  3. Computer-based creativity enhanced conceptual design model for non-routine design of mechanical systems

    NASA Astrophysics Data System (ADS)

    Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.

    2014-11-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  4. Evidence-centered design for simulation-based assessment.

    PubMed

    Mislevy, Robert J

    2013-10-01

    Simulations provide opportunities for people to learn and to develop skills for situations that are expensive, time-consuming, or dangerous. Careful design can support their learning by tailoring the features of situations to their levels of skill, allowing repeated attempts, and providing timely feedback. The same environments provide opportunities for assessing people's capabilities to act in these situations. This article describes an assessment design framework that can help projects develop effective simulation-based assessments. It reviews the rationale and terminology of the "evidence-centered" assessment design framework, discusses how it aligns with the principles of simulation design, and illustrates ideas with examples from engineering and medicine. Advice is offered for designing a new simulation-based assessment and for adapting an existing simulation system for assessment purposes.

  5. Limit states and reliability-based pipeline design. Final report

    SciTech Connect

    Zimmerman, T.J.E.; Chen, Q.; Pandey, M.D.

    1997-06-01

    This report provides the results of a study to develop limit states design (LSD) procedures for pipelines. Limit states design, also known as load and resistance factor design (LRFD), provides a unified approach to dealing with all relevant failure modes combinations of concern. It explicitly accounts for the uncertainties that naturally occur in the determination of the loads which act on a pipeline and in the resistance of the pipe to failure. The load and resistance factors used are based on reliability considerations; however, the designer is not faced with carrying out probabilistic calculations. This work is done during development and periodic updating of the LSD document. This report provides background information concerning limits states and reliability-based design (Section 2), gives the limit states design procedures that were developed (Section 3) and provides results of the reliability analyses that were undertaken in order to partially calibrate the LSD method (Section 4). An appendix contains LSD design examples in order to demonstrate use of the method. Section 3, Limit States Design has been written in the format of a recommended practice. It has been structured so that, in future, it can easily be converted to a limit states design code format. Throughout the report, figures and tables are given at the end of each section, with the exception of Section 3, where to facilitate understanding of the LSD method, they have been included with the text.

  6. Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle

    NASA Technical Reports Server (NTRS)

    Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.

    2004-01-01

    This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.

  7. Market-based transit-facility design. Final report

    SciTech Connect

    Beimborn, E.A.; Rabinowitz, H.; Lindquist, P.S.; Opper, D.M.

    1989-02-01

    This document reflects the view that transit services and facilities should be designed from a market-based point of view. The report provides planning and design guidelines for transit stations, stops and terminals. Design elements are suggested that directly relate promoting the success of development activities and transit services. The report discusses general development policies and provides guidelines for the planning and design of six station types: CBD rail stations, neighborhood rail, Park-and-Ride stations, transit malls, transfer centers, and local stops. These stations are examined through four phases of planning and design: Systems planning, Site planning, Station design, and Operations/Management. Each station type is discussed in terms of location, market, connections, access, information, image, user comfort, safety and security, operations, and management.

  8. A novel methodology for building robust design rules by using design based metrology (DBM)

    NASA Astrophysics Data System (ADS)

    Lee, Myeongdong; Choi, Seiryung; Choi, Jinwoo; Kim, Jeahyun; Sung, Hyunju; Yeo, Hyunyoung; Shim, Myoungseob; Jin, Gyoyoung; Chung, Eunseung; Roh, Yonghan

    2013-03-01

    This paper addresses a methodology for building robust design rules by using design based metrology (DBM). Conventional method for building design rules has been using a simulation tool and a simple pattern spider mask. At the early stage of the device, the estimation of simulation tool is poor. And the evaluation of the simple pattern spider mask is rather subjective because it depends on the experiential judgment of an engineer. In this work, we designed a huge number of pattern situations including various 1D and 2D design structures. In order to overcome the difficulties of inspecting many types of patterns, we introduced Design Based Metrology (DBM) of Nano Geometry Research, Inc. And those mass patterns could be inspected at a fast speed with DBM. We also carried out quantitative analysis on PWQ silicon data to estimate process variability. Our methodology demonstrates high speed and accuracy for building design rules. All of test patterns were inspected within a few hours. Mass silicon data were handled with not personal decision but statistical processing. From the results, robust design rules are successfully verified and extracted. Finally we found out that our methodology is appropriate for building robust design rules.

  9. Bilateral consecutive rupture of the quadriceps tendon in a man with BstUI polymorphism of the COL5A1 gene.

    PubMed

    Longo, Umile Giuseppe; Fazio, Vito; Poeta, Maria Luana; Rabitti, Carla; Franceschi, Francesco; Maffulli, Nicola; Denaro, Vincenzo

    2010-04-01

    A genetic component has been implicated in tendinopathies involving tendon rupture. Type V collagen, a quantitatively minor fibrillar collagen which forms heterotypic fibrils with type I collagen, plays a role in the regulation of the size and configuration of fibrils of the much more abundant component type I collagen. To date, no data on the genetic component of bilateral rupture of the quadriceps tendon have been reported. We describe the presence of BstUI polymorphism of the COL5A1 gene in a man with bilateral rupture of the quadriceps tendon. The COL5A1 (the variant rs12722, BstUI RFLP) can be a candidate gene associated with the development of bilateral quadriceps tendon rupture.

  10. Connecting defects and amorphization in UiO-66 and MIL-140 metal–organic frameworks: a combined experimental and computational study.

    PubMed

    Bennett, Thomas D; Todorova, Tanya K; Baxter, Emma F; Reid, David G; Gervais, Christel; Bueken, Bart; Van de Voorde, B; De Vos, Dirk; Keen, David A; Mellot-Draznieks, Caroline

    2016-01-21

    The mechanism and products of the structural collapse of the metal–organic frameworks (MOFs) UiO-66, MIL-140B and MIL-140C upon ball-milling are investigated through solid state 13C NMR and pair distribution function (PDF) studies, finding amorphization to proceed by the breaking of a fraction of metal–ligand bonding in each case. The amorphous products contain inorganic–organic bonding motifs reminiscent of the crystalline phases. Whilst the inorganic Zr6O4(OH)4 clusters of UiO-66 remain intact upon structural collapse, the ZrO backbone of the MIL-140 frameworks undergoes substantial distortion. Density functional theory calculations have been performed to investigate defective models of MIL-140B and show, through comparison of calculated and experimental 13C NMR spectra, that amorphization and defects in the materials are linked. PMID:27144237

  11. Designing a Programming-Based Approach for Modelling Scientific Phenomena

    ERIC Educational Resources Information Center

    Simpson, Gordon; Hoyles, Celia; Noss, Richard

    2005-01-01

    We describe an iteratively designed sequence of activities involving the modelling of one-dimensional collisions between moving objects based on programming in ToonTalk. Students aged 13-14 years in two settings (London and Cyprus) investigated a number of collision situations, classified into six classes based on the relative velocities and…

  12. Designing Metacognitive Maps for Web-Based Learning

    ERIC Educational Resources Information Center

    Lee, Miyoung; Baylor, Amy L.

    2006-01-01

    This paper provides guidelines for designing metacognitive maps in web-based learning environments. A metacognitive map is a visual interface-based tool that supports metacognition throughout the entire learning process. Inspired by the four key metacognitive skills of planning, monitoring, evaluating, and revising, the metacognitive map is…

  13. Designing a Family-Centered, Housing-Based Employment Program.

    ERIC Educational Resources Information Center

    Kramer, Fredrica D.

    2000-01-01

    This publication is designed to help TANF [Temporary Assistance for Needy Families] agencies create specific program interventions to serve TANF recipients in place-based (in particular, housing-based) programs that help welfare recipients find and keep jobs. TANF programs increasingly serve welfare recipients with multiple barriers to steady…

  14. Image processing and applications based on visualizing navigation service

    NASA Astrophysics Data System (ADS)

    Hwang, Chyi-Wen

    2015-07-01

    When facing the "overabundant" of semantic web information, in this paper, the researcher proposes the hierarchical classification and visualizing RIA (Rich Internet Application) navigation system: Concept Map (CM) + Semantic Structure (SS) + the Knowledge on Demand (KOD) service. The aim of the Multimedia processing and empirical applications testing, was to investigating the utility and usability of this visualizing navigation strategy in web communication design, into whether it enables the user to retrieve and construct their personal knowledge or not. Furthermore, based on the segment markets theory in the Marketing model, to propose a User Interface (UI) classification strategy and formulate a set of hypermedia design principles for further UI strategy and e-learning resources in semantic web communication. These research findings: (1) Irrespective of whether the simple declarative knowledge or the complex declarative knowledge model is used, the "CM + SS + KOD navigation system" has a better cognition effect than the "Non CM + SS + KOD navigation system". However, for the" No web design experience user", the navigation system does not have an obvious cognition effect. (2) The essential of classification in semantic web communication design: Different groups of user have a diversity of preference needs and different cognitive styles in the CM + SS + KOD navigation system.

  15. Front end design of smartphone-based mobile health

    NASA Astrophysics Data System (ADS)

    Zhang, Changfan; He, Lingsong; Gao, Zhiqiang; Ling, Cong; Du, Jianhao

    2015-02-01

    Mobile health has been a new trend all over the world with the rapid development of intelligent terminals and mobile internet. It can help patients monitor health in-house and is convenient for doctors to diagnose remotely. Smart-phone-based mobile health has big advantages in cost and data sharing. Front end design of it mainly focuses on two points: one is implementation of medical sensors aimed at measuring kinds of medical signal; another is acquisition of medical signal from sensors to smart phone. In this paper, the above two aspects were both discussed. First, medical sensor implementation was proposed to refer to mature measurement solutions with ECG (electrocardiograph) sensor design taken for example. And integrated chip using can simplify design. Then second, typical data acquisition architecture of smart phones, namely Bluetooth and MIC (microphone)-based architecture, were compared. Bluetooth architecture should be equipped with an acquisition card; MIC design uses sound card of smart phone instead. Smartphone-based virtual instrument app design corresponding to above acquisition architecture was discussed. In experiments, Bluetooth and MIC architecture were used to acquire blood pressure and ECG data respectively. The results showed that Bluetooth design can guarantee high accuracy during the acquisition and transmission process, and MIC design is competitive because of low cost and convenience.

  16. Metal-organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples.

    PubMed

    Shang, Hai-Bo; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2014-08-29

    Effective solid-phase microextraction (SPME) of polar phenols from water samples is usually difficult due to the strong interaction between polar phenols and aqueous matrix. Here, we report the fabrication of a metal-organic framework UiO-66 coated stainless steel fiber via physical adhesion for the SPME of polar phenols (phenol, o-cresol, p-cresol, 2,6-dimethylphenol, 2,4-dichlorophenol and 2,6-dichlorophenol) in water samples before gas chromatographic separation with flame ionic detection. Headspace SPME of 10mL sample solution with the fabricated UiO-66 coated fiber gave the enhancement factors of 160 (phenol) - 3769 (2,4-dichlorophenol), and the linear ranges of 1-1000μgL(-1) (2,6-dimethylphenol, 2,4-dichlorophenol and 2,6-dichlorophenol), 1-500μgL(-1) (o-cresol and p-cresol) and 5-500μgL(-1) (phenol). The detection limits ranged from 0.11μgL(-1) (2,6-dimethylphenol) to 1.23μgL(-1) (phenol). The precision (relative standard deviations, RSDs) for six replicate determinations of the analytes at 100μgL(-1) using a single UiO-66 coated fiber ranged from 2.8% to 6.2%. The fiber-to-fiber reproducibility (RSDs) for three parallel UiO-66 coated fibers varied from 5.9% to 10%. The recoveries obtained by spiking 5μgL(-1) of the phenols in the water samples ranged from 80% to 115%.

  17. Advanced Information Technology in Simulation Based Life Cycle Design

    NASA Technical Reports Server (NTRS)

    Renaud, John E.

    2003-01-01

    In this research a Collaborative Optimization (CO) approach for multidisciplinary systems design is used to develop a decision based design framework for non-deterministic optimization. To date CO strategies have been developed for use in application to deterministic systems design problems. In this research the decision based design (DBD) framework proposed by Hazelrigg is modified for use in a collaborative optimization framework. The Hazelrigg framework as originally proposed provides a single level optimization strategy that combines engineering decisions with business decisions in a single level optimization. By transforming this framework for use in collaborative optimization one can decompose the business and engineering decision making processes. In the new multilevel framework of Decision Based Collaborative Optimization (DBCO) the business decisions are made at the system level. These business decisions result in a set of engineering performance targets that disciplinary engineering design teams seek to satisfy as part of subspace optimizations. The Decision Based Collaborative Optimization framework more accurately models the existing relationship between business and engineering in multidisciplinary systems design.

  18. Concept Design of Cardiovascular Stents Based on Load Identification

    NASA Astrophysics Data System (ADS)

    Liu, Q.

    2015-04-01

    The concept design is an important design phase for the cardiovascular stents. The topology optimization methods can be applied to the concept design of the cardiovascular stents. However, the interaction analysis between the stent and artery involves material nonlinearity, geometrical nonlinearity and boundary nonlinearity. The interaction analysis is not easy to be successful if these three types of nonlinearities are considered simultaneously. Therefore, the topology optimization process may be suspended if the nonlinear interaction analysis fails. The aim of this paper is to develop a design method to obtain the concept design of cardiovascular stents based on the load identification and homogenization method. A displacement control method is proposed to identify the design load of the cardiovascular stents. The identified design load is then applied to the stent and the nonlinear interaction analysis is replaced by the linear analysis. Further, the nonlinear analysis is completely avoided in the topology optimization process. The numerical results show that the proposed design method can obtain the legible concept design of cardiovascular stents.

  19. Cutoff Designs for Community-Based Intervention Studies

    PubMed Central

    Pennell, Michael L.; Hade, Erinn M.; Murray, David M.; Rhoda, Dale A.

    2011-01-01

    Summary Public health interventions are often designed to target communities defined either geographically (e.g., cities, counties) or socially (e.g., schools or workplaces). The group randomized trial (GRT) is regarded as the gold standard for evaluating these interventions. However, community leaders may object to randomization as some groups may be denied a potentially beneficial intervention. Under a regression discontinuity design (RDD), individuals may be assigned to treatment based on the levels of a pretest measure, thereby allowing those most in need of the treatment to receive it. In this article, we consider analysis, power, and sample size issues in applying the RDD and related cutoff designs in community-based intervention studies. We examine the power of these designs as a function of intraclass correlation, number of groups, and number of members per group and compare results to the traditional GRT. PMID:21500240

  20. A Design-Based Research Investigation of a Web-Based Learning Environment Designed to Support the Reading Process

    ERIC Educational Resources Information Center

    Kidwai, Khusro

    2009-01-01

    This research study had two purposes, (a) to design and develop a Web-based learning environment that supports the use of a set of reading strategies, and (b) to investigate the impact of this Web-based learning environment on readers' "memory" and "understanding" of an instructional unit on the human heart (Dwyer &…

  1. The design of a microprocessor-based data logger

    USGS Publications Warehouse

    Leap, K.J.; Dedini, L.A.

    1982-01-01

    The design of a microprocessor-based data logger, which collects and digitizes analog voltage signals from a continuous-measuring instrumentation system and transmits serial data to a magnetic tape recorder, is discussed. The data logger was assembled from commercially-available components and can be user-programmed for greater flexibility. A description of the data logger hardware and software designs, general operating instructions, the microprocessor program listing, and electrical schematic diagrams are presented.

  2. Design of integration-ready metasurface-based infrared absorbers

    SciTech Connect

    Ogando, Karim Pastoriza, Hernán

    2015-07-28

    We introduce an integration ready design of metamaterial infrared absorber, highly compatible with many kinds of fabrication processes. We present the results of an exhaustive experimental characterization, including an analysis of the effects of single meta-atom geometrical parameters and collective arrangement. We confront the results with the theoretical interpretations proposed in the literature. Based on the results, we develop a set of practical design rules for metamaterial absorbers in the infrared region.

  3. Novel parameter-based flexure bearing design method

    NASA Astrophysics Data System (ADS)

    Amoedo, Simon; Thebaud, Edouard; Gschwendtner, Michael; White, David

    2016-06-01

    A parameter study was carried out on the design variables of a flexure bearing to be used in a Stirling engine with a fixed axial displacement and a fixed outer diameter. A design method was developed in order to assist identification of the optimum bearing configuration. This was achieved through a parameter study of the bearing carried out with ANSYS®. The parameters varied were the number and the width of the arms, the thickness of the bearing, the eccentricity, the size of the starting and ending holes, and the turn angle of the spiral. Comparison was made between the different designs in terms of axial and radial stiffness, the natural frequency, and the maximum induced stresses. Moreover, the Finite Element Analysis (FEA) was compared to theoretical results for a given design. The results led to a graphical design method which assists the selection of flexure bearing geometrical parameters based on pre-determined geometric and material constraints.

  4. Automated AI-based designer of electrical distribution systems

    NASA Astrophysics Data System (ADS)

    Sumic, Zarko

    1992-03-01

    Designing the electrical supply system for new residential developments (plat design) is an everyday task for electric utility engineers. Presently this task is carried out manually resulting in an overdesigned, costly, and nonstandardized solution. As an ill-structured and open-ended problem, plat design is difficult to automate with conventional approaches such as operational research or CAD. Additional complexity in automating plat design is imposed by the need to process spatial data such as circuits' maps, records, and construction plans. The intelligent decision support system for automated electrical plate design (IDSS for AEPD) is an engineering tool aimed at automating plate design. IDSS for AEPD combines the functionality of geographic information systems (GIS) a geographically referenced database, with the sophistication of artificial intelligence (AI) to deal with the complexity inherent in design problems. Blackboard problem solving architecture, concentrated around INGRES relational database and NEXPERT object expert system shell have been chosen to accommodate the diverse knowledge sources and data models. The GIS's principal task it to create, structure, and formalize the real world representation required by the rule based reasoning portion of the AEPD. IDSS's capability to support and enhance the engineer's design, rather than only automate the design process through a prescribed computation, makes it a preferred choice among the possible techniques for AEPD. This paper presents the results of knowledge acquisition and the knowledge engineering process with AEPD tool conceptual design issues. To verify the proposed concept, the comparison of results obtained by the AEPD tool with the design obtained by an experienced human designer is given.

  5. Is function-based control room design human-centered?

    SciTech Connect

    Norros, L.; Savioja, P.

    2006-07-01

    Function-based approaches to system interface design appears an appealing possibility in helping designers and operators to cope with the vast amount of information needed to control complex processes. In this paper we provide evidence of operator performance analyses showing that outcome-centered performance measures may not be sufficiently informative for design. We need analyses indicating habitual patterns of using information, operator practices. We argue that practices that portray functional orienting to the task support mastery of the process. They also create potential to make use of function-based information presentation. We see that functional design is not an absolute value. Instead, such design should support communication of the functional significance of the process information to the operators in variable situations. Hence, it should facilitate development of practices that focus to interpreting this message. Successful function-based design facilitates putting operations into their contexts and is human-centered in an extended sense: It aids making sense in the complex, dynamic and uncertain environment. (authors)

  6. Fatigue reliability based optimal design of planar compliant micropositioning stages.

    PubMed

    Wang, Qiliang; Zhang, Xianmin

    2015-10-01

    Conventional compliant micropositioning stages are usually developed based on static strength and deterministic methods, which may lead to either unsafe or excessive designs. This paper presents a fatigue reliability analysis and optimal design of a three-degree-of-freedom (3 DOF) flexure-based micropositioning stage. Kinematic, modal, static, and fatigue stress modelling of the stage were conducted using the finite element method. The maximum equivalent fatigue stress in the hinges was derived using sequential quadratic programming. The fatigue strength of the hinges was obtained by considering various influencing factors. On this basis, the fatigue reliability of the hinges was analysed using the stress-strength interference method. Fatigue-reliability-based optimal design of the stage was then conducted using the genetic algorithm and MATLAB. To make fatigue life testing easier, a 1 DOF stage was then optimized and manufactured. Experimental results demonstrate the validity of the approach.

  7. Fatigue reliability based optimal design of planar compliant micropositioning stages

    NASA Astrophysics Data System (ADS)

    Wang, Qiliang; Zhang, Xianmin

    2015-10-01

    Conventional compliant micropositioning stages are usually developed based on static strength and deterministic methods, which may lead to either unsafe or excessive designs. This paper presents a fatigue reliability analysis and optimal design of a three-degree-of-freedom (3 DOF) flexure-based micropositioning stage. Kinematic, modal, static, and fatigue stress modelling of the stage were conducted using the finite element method. The maximum equivalent fatigue stress in the hinges was derived using sequential quadratic programming. The fatigue strength of the hinges was obtained by considering various influencing factors. On this basis, the fatigue reliability of the hinges was analysed using the stress-strength interference method. Fatigue-reliability-based optimal design of the stage was then conducted using the genetic algorithm and MATLAB. To make fatigue life testing easier, a 1 DOF stage was then optimized and manufactured. Experimental results demonstrate the validity of the approach.

  8. Design of a finger base-type pulse oximeter

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Shyh; Huang, Cheng-Yang; Chen, Chien-Yue; Lin, Jiun-Hung

    2016-01-01

    A pulse oximeter is a common medical instrument used for noninvasively monitoring arterial oxygen saturation (SpO2). Currently, the fingertip-type pulse oximeter is the prevalent type of pulse oximeter used. However, it is inconvenient for long-term monitoring, such as that under motion. In this study, a wearable and wireless finger base-type pulse oximeter was designed and implemented using the tissue optical simulation technique and the Monte Carlo method. The results revealed that a design involving placing the light source at 135°-165° and placing the detector at 75°-90° or 90°-105° yields the optimal conditions for measuring SpO2. Finally, the wearable and wireless finger base-type pulse oximeter was implemented and compared with the commercial fingertip-type pulse oximeter. The experimental results showed that the proposed optimal finger base-type pulse oximeter design can facilitate precise SpO2 measurement.

  9. Design of a finger base-type pulse oximeter.

    PubMed

    Lin, Bor-Shyh; Huang, Cheng-Yang; Chen, Chien-Yue; Lin, Jiun-Hung

    2016-01-01

    A pulse oximeter is a common medical instrument used for noninvasively monitoring arterial oxygen saturation (SpO2). Currently, the fingertip-type pulse oximeter is the prevalent type of pulse oximeter used. However, it is inconvenient for long-term monitoring, such as that under motion. In this study, a wearable and wireless finger base-type pulse oximeter was designed and implemented using the tissue optical simulation technique and the Monte Carlo method. The results revealed that a design involving placing the light source at 135°-165° and placing the detector at 75°-90° or 90°-105° yields the optimal conditions for measuring SpO2. Finally, the wearable and wireless finger base-type pulse oximeter was implemented and compared with the commercial fingertip-type pulse oximeter. The experimental results showed that the proposed optimal finger base-type pulse oximeter design can facilitate precise SpO2 measurement.

  10. Fatigue reliability based optimal design of planar compliant micropositioning stages.

    PubMed

    Wang, Qiliang; Zhang, Xianmin

    2015-10-01

    Conventional compliant micropositioning stages are usually developed based on static strength and deterministic methods, which may lead to either unsafe or excessive designs. This paper presents a fatigue reliability analysis and optimal design of a three-degree-of-freedom (3 DOF) flexure-based micropositioning stage. Kinematic, modal, static, and fatigue stress modelling of the stage were conducted using the finite element method. The maximum equivalent fatigue stress in the hinges was derived using sequential quadratic programming. The fatigue strength of the hinges was obtained by considering various influencing factors. On this basis, the fatigue reliability of the hinges was analysed using the stress-strength interference method. Fatigue-reliability-based optimal design of the stage was then conducted using the genetic algorithm and MATLAB. To make fatigue life testing easier, a 1 DOF stage was then optimized and manufactured. Experimental results demonstrate the validity of the approach. PMID:26520994

  11. Probabilistic Based Design Methodology for Solid Oxide Fuel Cell Stacks

    SciTech Connect

    Sun, Xin; Tartakovsky, Alexandre M.; Khaleel, Mohammad A.

    2009-05-01

    A probabilistic-based component design methodology is developed for solid oxide fuel cell (SOFC) stack. This method takes into account the randomness in SOFC material properties as well as the stresses arising from different manufacturing and operating conditions. The purpose of this work is to provide the SOFC designers a design methodology such that desired level of component reliability can be achieved with deterministic design functions using an equivalent safety factor to account for the uncertainties in material properties and structural stresses. Multi-physics-based finite element analyses were used to predict the electrochemical and thermal mechanical responses of SOFC stacks with different geometric variations and under different operating conditions. Failures in the anode and the seal were used as design examples. The predicted maximum principal stresses in the anode and the seal were compared with the experimentally determined strength characteristics for the anode and the seal respectively. Component failure probabilities for the current design were then calculated under different operating conditions. It was found that anode failure probability is very low under all conditions examined. The seal failure probability is relatively high, particularly for high fuel utilization rate under low average cell temperature. Next, the procedures for calculating the equivalent safety factors for anode and seal were demonstrated such that uniform failure probability of the anode and seal can be achieved. Analysis procedures were also included for non-normal distributed random variables such that more realistic distributions of strength and stress can be analyzed using the proposed design methodology.

  12. Partial gravity habitat study: With application to lunar base design

    NASA Technical Reports Server (NTRS)

    Capps, Stephen; Lorandos, Jason; Akhidime, Eval; Bunch, Michael; Lund, Denise; Moore, Nathan; Murakawa, Kio; Bell, Larry; Trotti, Guillermo; Neubek, Deb

    1989-01-01

    Comprehensive design requirements associated with designing habitats for humans in a partial gravity environment were investigated and then applied to a lunar base design. Other potential sites for application include planetary surfaces such as Mars, variable gravity research facilities, or a rotating spacecraft. Design requirements for partial gravity environments include: (1) locomotion changes in less than normal Earth gravity; (2) facility design issues, such as interior configuration, module diameter and geometry; and (3) volumetric requirements based on the previous as well as psychological issues involved in prolonged isolation. For application to a Lunar Base, it was necessary to study the exterior architecture and configuration to insure optimum circulation patterns while providing dual egress. Radiation protection issues were addressed to provide a safe and healthy environment for the crew, and finally, the overall site was studied to locate all associated facilities in context with the habitat. Mission planning was not the purpose of this study; therefore, a Lockheed scenario was used as an outline for the Lunar Base application, which was then modified to meet the project needs.

  13. A knowledge-based design framework for airplane conceptual and preliminary design

    NASA Astrophysics Data System (ADS)

    Anemaat, Wilhelmus A. J.

    The goal of work described herein is to develop the second generation of Advanced Aircraft Analysis (AAA) into an object-oriented structure which can be used in different environments. One such environment is the third generation of AAA with its own user interface, the other environment with the same AAA methods (i.e. the knowledge) is the AAA-AML program. AAA-AML automates the initial airplane design process using current AAA methods in combination with AMRaven methodologies for dependency tracking and knowledge management, using the TechnoSoft Adaptive Modeling Language (AML). This will lead to the following benefits: (1) Reduced design time: computer aided design methods can reduce design and development time and replace tedious hand calculations. (2) Better product through improved design: more alternative designs can be evaluated in the same time span, which can lead to improved quality. (3) Reduced design cost: due to less training and less calculation errors substantial savings in design time and related cost can be obtained. (4) Improved Efficiency: the design engineer can avoid technically correct but irrelevant calculations on incomplete or out of sync information, particularly if the process enables robust geometry earlier. Although numerous advancements in knowledge based design have been developed for detailed design, currently no such integrated knowledge based conceptual and preliminary airplane design system exists. The third generation AAA methods are tested over a ten year period on many different airplane designs. Using AAA methods will demonstrate significant time savings. The AAA-AML system will be exercised and tested using 27 existing airplanes ranging from single engine propeller, business jets, airliners, UAV's to fighters. Data for the varied sizing methods will be compared with AAA results, to validate these methods. One new design, a Light Sport Aircraft (LSA), will be developed as an exercise to use the tool for designing a new airplane

  14. Correlates of 1-year incidence of urinary incontinence in older Latino adults enrolled in a community-based physical activity trial.

    PubMed

    Morrisroe, Shelby N; Rodriguez, Larissa V; Wang, Pin-Chieh; Smith, Ariana L; Trejo, Laura; Sarkisian, Catherine A

    2014-04-01

    The prevalence of urinary incontinence (UI) among older urban Latinos is high. Insight into etiologies of and contributing factors to the development of this condition is needed. This longitudinal cohort study identified correlates of 1-year incidence of UI in older community-dwelling Latino adults participating in a senior center-based physical activity trial in Los Angeles, California. Three hundred twenty-eight Latinos aged 60 to 93 participating in Caminemos, a randomized trial to increase walking, were studied. Participants completed an in-person survey and physical performance measures at baseline and 1 year. UI was measured using the International Consultation on Incontinence item: "How often do you leak urine?" Potential correlates of 1-year incidence of UI included sociodemographic, behavioral, medical, physical, and psychosocial characteristics. The overall incidence of UI at 1 year was 17.4%. Incident UI was associated with age, baseline activity of daily living impairment, health-related quality of life (HRQoL), mean steps per day, and depressive symptoms. Multivariate logistic regression models revealed that improvement in physical performance score (odds ratio (OR) = 0.69, 95% confidence interval (CI) = 0.50-0.95) and high baseline physical (OR = 0.60, 95% CI = 0.40-0.89) and mental (OR = 0.62, 95% CI = 0.43-0.91) HRQoL were independently associated with lower rates of 1-year incident UI. An increase in depressive symptoms at 1 year (OR = 4.48, 95% CI = 1.02-19.68) was independently associated with a higher rate of incident UI. One-year UI incidence in this population of older urban Latino adults participating in a walking trial was high but was lower in those who improved their physical performance. Interventions aimed at improving physical performance may help prevent UI in older Latino adults.

  15. Lunar base launch and landing facilities conceptual design

    NASA Technical Reports Server (NTRS)

    Phillips, Paul G.; Simonds, Charles H.; Stump, William R.

    1992-01-01

    The purpose of this study was to perform a first look at the requirements for launch and landing facilities for early lunar bases and to prepared conceptual designs for some of these facilities. The emphasis of the study is on the facilities needed from the first manned landing until permanent occupancy, the Phase 2 lunar base. Factors including surface characteristics, navigation system, engine blast effects, and expected surface operations are used to develop landing pad designs, and definitions fo various other elements of the launch and landing facilities. Finally, the dependence of the use of these elements and the evolution of the facilities are established.

  16. CFD-Based Design Optimization for Single Element Rocket Injector

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajkumar; Tucker, Kevin; Papila, Nilay; Shyy, Wei

    2003-01-01

    To develop future Reusable Launch Vehicle concepts, we have conducted design optimization for a single element rocket injector, with overall goals of improving reliability and performance while reducing cost. Computational solutions based on the Navier-Stokes equations, finite rate chemistry, and the k-E turbulence closure are generated with design of experiment techniques, and the response surface method is employed as the optimization tool. The design considerations are guided by four design objectives motivated by the consideration in both performance and life, namely, the maximum temperature on the oxidizer post tip, the maximum temperature on the injector face, the adiabatic wall temperature, and the length of the combustion zone. Four design variables are selected, namely, H2 flow angle, H2 and O2 flow areas with fixed flow rates, and O2 post tip thickness. In addition to establishing optimum designs by varying emphasis on the individual objectives, better insight into the interplay between design variables and their impact on the design objectives is gained. The investigation indicates that improvement in performance or life comes at the cost of the other. Best compromise is obtained when improvements in both performance and life are given equal importance.

  17. A knowledge-based system design/information tool

    NASA Technical Reports Server (NTRS)

    Allen, James G.; Sikora, Scott E.

    1990-01-01

    The objective of this effort was to develop a Knowledge Capture System (KCS) for the Integrated Test Facility (ITF) at the Dryden Flight Research Facility (DFRF). The DFRF is a NASA Ames Research Center (ARC) facility. This system was used to capture the design and implementation information for NASA's high angle-of-attack research vehicle (HARV), a modified F/A-18A. In particular, the KCS was used to capture specific characteristics of the design of the HARV fly-by-wire (FBW) flight control system (FCS). The KCS utilizes artificial intelligence (AI) knowledge-based system (KBS) technology. The KCS enables the user to capture the following characteristics of automated systems: the system design; the hardware (H/W) design and implementation; the software (S/W) design and implementation; and the utilities (electrical and hydraulic) design and implementation. A generic version of the KCS was developed which can be used to capture the design information for any automated system. The deliverable items for this project consist of the prototype generic KCS and an application, which captures selected design characteristics of the HARV FCS.

  18. Multi-mode reliability-based design of horizontal curves.

    PubMed

    Essa, Mohamed; Sayed, Tarek; Hussein, Mohamed

    2016-08-01

    Recently, reliability analysis has been advocated as an effective approach to account for uncertainty in the geometric design process and to evaluate the risk associated with a particular design. In this approach, a risk measure (e.g. probability of noncompliance) is calculated to represent the probability that a specific design would not meet standard requirements. The majority of previous applications of reliability analysis in geometric design focused on evaluating the probability of noncompliance for only one mode of noncompliance such as insufficient sight distance. However, in many design situations, more than one mode of noncompliance may be present (e.g. insufficient sight distance and vehicle skidding at horizontal curves). In these situations, utilizing a multi-mode reliability approach that considers more than one failure (noncompliance) mode is required. The main objective of this paper is to demonstrate the application of multi-mode (system) reliability analysis to the design of horizontal curves. The process is demonstrated by a case study of Sea-to-Sky Highway located between Vancouver and Whistler, in southern British Columbia, Canada. Two noncompliance modes were considered: insufficient sight distance and vehicle skidding. The results show the importance of accounting for several noncompliance modes in the reliability model. The system reliability concept could be used in future studies to calibrate the design of various design elements in order to achieve consistent safety levels based on all possible modes of noncompliance.

  19. Multi-mode reliability-based design of horizontal curves.

    PubMed

    Essa, Mohamed; Sayed, Tarek; Hussein, Mohamed

    2016-08-01

    Recently, reliability analysis has been advocated as an effective approach to account for uncertainty in the geometric design process and to evaluate the risk associated with a particular design. In this approach, a risk measure (e.g. probability of noncompliance) is calculated to represent the probability that a specific design would not meet standard requirements. The majority of previous applications of reliability analysis in geometric design focused on evaluating the probability of noncompliance for only one mode of noncompliance such as insufficient sight distance. However, in many design situations, more than one mode of noncompliance may be present (e.g. insufficient sight distance and vehicle skidding at horizontal curves). In these situations, utilizing a multi-mode reliability approach that considers more than one failure (noncompliance) mode is required. The main objective of this paper is to demonstrate the application of multi-mode (system) reliability analysis to the design of horizontal curves. The process is demonstrated by a case study of Sea-to-Sky Highway located between Vancouver and Whistler, in southern British Columbia, Canada. Two noncompliance modes were considered: insufficient sight distance and vehicle skidding. The results show the importance of accounting for several noncompliance modes in the reliability model. The system reliability concept could be used in future studies to calibrate the design of various design elements in order to achieve consistent safety levels based on all possible modes of noncompliance. PMID:27180287

  20. A reusability and efficiency oriented software design method for mobile land inspection

    NASA Astrophysics Data System (ADS)

    Cai, Wenwen; He, Jun; Wang, Qing

    2008-10-01

    Aiming at the requirement from the real-time land inspection domain, a land inspection handset system was presented in this paper. In order to increase the reusability of the system, a design pattern based framework was presented. Encapsulation for command like actions by applying COMMAND pattern was proposed for the problem of complex UI interactions. Integrating several GPS-log parsing engines into a general parsing framework was archived by introducing STRATEGY pattern. A network transmission module based network middleware was constructed. For mitigating the high coupling of complex network communication programs, FACTORY pattern was applied to facilitate the decoupling. Moreover, in order to efficiently manipulate huge GIS datasets, a VISITOR pattern and Quad-tree based multi-scale representation method was presented. It had been proved practically that these design patterns reduced the coupling between the subsystems, and improved the expansibility.

  1. Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr6-Based Metal-Organic Frameworks.

    PubMed

    Moon, Su-Young; Wagner, George W; Mondloch, Joseph E; Peterson, Gregory W; DeCoste, Jared B; Hupp, Joseph T; Farha, Omar K

    2015-11-16

    The nerve agent VX is among the most toxic chemicals known to mankind, and robust solutions are needed to rapidly and selectively deactivate it. Herein, we demonstrate that three Zr6-based metal-organic frameworks (MOFs), namely, UiO-67, UiO-67-NH2, and UiO-67-N(Me)2, are selective and highly active catalysts for the hydrolysis of VX. Utilizing UiO-67, UiO-67-NH2, and UiO-67-N(Me)2 in a pH 10 buffered solution of N-ethylmorpholine, selective hydrolysis of the P-S bond in VX was observed. In addition, UiO-67-N(Me)2 was found to catalyze VX hydrolysis with an initial half-life of 1.8 min. This half-life is nearly 3 orders of magnitude shorter than that of the only other MOF tested to date for hydrolysis of VX and rivals the activity of the best nonenzymatic materials. Hydrolysis utilizing Zr-based MOFs is also selective and facile in the absence of pH 10 buffer (just water) and for the destruction of the toxic byproduct EA-2192.

  2. Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr6-Based Metal-Organic Frameworks.

    PubMed

    Moon, Su-Young; Wagner, George W; Mondloch, Joseph E; Peterson, Gregory W; DeCoste, Jared B; Hupp, Joseph T; Farha, Omar K

    2015-11-16

    The nerve agent VX is among the most toxic chemicals known to mankind, and robust solutions are needed to rapidly and selectively deactivate it. Herein, we demonstrate that three Zr6-based metal-organic frameworks (MOFs), namely, UiO-67, UiO-67-NH2, and UiO-67-N(Me)2, are selective and highly active catalysts for the hydrolysis of VX. Utilizing UiO-67, UiO-67-NH2, and UiO-67-N(Me)2 in a pH 10 buffered solution of N-ethylmorpholine, selective hydrolysis of the P-S bond in VX was observed. In addition, UiO-67-N(Me)2 was found to catalyze VX hydrolysis with an initial half-life of 1.8 min. This half-life is nearly 3 orders of magnitude shorter than that of the only other MOF tested to date for hydrolysis of VX and rivals the activity of the best nonenzymatic materials. Hydrolysis utilizing Zr-based MOFs is also selective and facile in the absence of pH 10 buffer (just water) and for the destruction of the toxic byproduct EA-2192. PMID:26505999

  3. A Simulation-Based LED Design Project in Photonics Instruction Based on Industry-University Collaboration

    ERIC Educational Resources Information Center

    Chang, S. -H.; Chen, M. -L.; Kuo, Y. -K.; Shen, Y. -C.

    2011-01-01

    In response to the growing industrial demand for light-emitting diode (LED) design professionals, based on industry-university collaboration in Taiwan, this paper develops a novel instructional approach: a simulation-based learning course with peer assessment to develop students' professional skills in LED design as required by industry as well as…

  4. An evolutionary based Bayesian design optimization approach under incomplete information

    NASA Astrophysics Data System (ADS)

    Srivastava, Rupesh; Deb, Kalyanmoy

    2013-02-01

    Design optimization in the absence of complete information about uncertain quantities has been recently gaining consideration, as expensive repetitive computation tasks are becoming tractable due to the invention of faster and parallel computers. This work uses Bayesian inference to quantify design reliability when only sample measurements of the uncertain quantities are available. A generalized Bayesian reliability based design optimization algorithm has been proposed and implemented for numerical as well as engineering design problems. The approach uses an evolutionary algorithm (EA) to obtain a trade-off front between design objectives and reliability. The Bayesian approach provides a well-defined link between the amount of available information and the reliability through a confidence measure, and the EA acts as an efficient optimizer for a discrete and multi-dimensional objective space. Additionally, a GPU-based parallelization study shows computational speed-up of close to 100 times in a simulated scenario wherein the constraint qualification checks may be time consuming and could render a sequential implementation that can be impractical for large sample sets. These results show promise for the use of a parallel implementation of EAs in handling design optimization problems under uncertainties.

  5. Design and implementation of semantics-based image retrieval system

    NASA Astrophysics Data System (ADS)

    Ni, Chundi; Liu, Shenkui; Pan, Ligong; Yin, Xiaowei

    2015-07-01

    Through the study of the existing image retrieval technology, in this paper, a new design scheme of semantics-based image retrieval system is presented. Based on the establishment of mapping relationship between the low-level image features and the low layer of semantic image, this scheme associates the low layer of semantic image with high-level semantics, thus realizing hierarchical semantics description structure, to improve the high-level semantic image recognition accuracy rate.

  6. Introduction to Neutron Coincidence Counter Design Based on Boron-10

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2012-01-22

    The Department of Energy Office of Nonproliferation Policy (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is ultimately to design, build and demonstrate a boron-lined proportional tube based alternative system in the configuration of a coincidence counter. This report, providing background information for this project, is the deliverable under Task 1 of the project.

  7. Structure-based design of combinatorial mutagenesis libraries

    PubMed Central

    Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris

    2015-01-01

    The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called “Structure-based Optimization of Combinatorial Mutagenesis” (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. PMID:25611189

  8. Structure-based design of combinatorial mutagenesis libraries.

    PubMed

    Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris

    2015-05-01

    The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called "Structure-based Optimization of Combinatorial Mutagenesis" (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states.

  9. Decomposition-Based Decision Making for Aerospace Vehicle Design

    NASA Technical Reports Server (NTRS)

    Borer, Nicholas K.; Mavris, DImitri N.

    2005-01-01

    reader to observe how this technique can be applied to aerospace systems design and compare the results of this so-called Decomposition-Based Decision Making to more traditional design approaches.

  10. Design-based and model-based inference in surveys of freshwater mollusks

    USGS Publications Warehouse

    Dorazio, R.M.

    1999-01-01

    Well-known concepts in statistical inference and sampling theory are used to develop recommendations for planning and analyzing the results of quantitative surveys of freshwater mollusks. Two methods of inference commonly used in survey sampling (design-based and model-based) are described and illustrated using examples relevant in surveys of freshwater mollusks. The particular objectives of a survey and the type of information observed in each unit of sampling can be used to help select the sampling design and the method of inference. For example, the mean density of a sparsely distributed population of mollusks can be estimated with higher precision by using model-based inference or by using design-based inference with adaptive cluster sampling than by using design-based inference with conventional sampling. More experience with quantitative surveys of natural assemblages of freshwater mollusks is needed to determine the actual benefits of different sampling designs and inferential procedures.

  11. Design of Grid Portal System Based on RIA

    NASA Astrophysics Data System (ADS)

    Cao, Caifeng; Luo, Jianguo; Qiu, Zhixin

    Grid portal is an important branch of grid research. In order to solve the weak expressive force, the poor interaction, the low operating efficiency and other insufficiencies of the first and second generation of grid portal system, RIA technology was introduced to it. A new portal architecture was designed based on RIA and Web service. The concrete realizing scheme of portal system was presented by using Adobe Flex/Flash technology, which formed a new design pattern. In system architecture, the design pattern has B/S and C/S superiorities, balances server and its client side, optimizes the system performance, realizes platform irrelevance. In system function, the design pattern realizes grid service call, provides client interface with rich user experience, integrates local resources by using FABridge, LCDS, Flash player and some other components.

  12. Model-Based Design of Tree WSNs for Decentralized Detection.

    PubMed

    Tantawy, Ashraf; Koutsoukos, Xenofon; Biswas, Gautam

    2015-01-01

    The classical decentralized detection problem of finding the optimal decision rules at the sensor and fusion center, as well as variants that introduce physical channel impairments have been studied extensively in the literature. The deployment of WSNs in decentralized detection applications brings new challenges to the field. Protocols for different communication layers have to be co-designed to optimize the detection performance. In this paper, we consider the communication network design problem for a tree WSN. We pursue a system-level approach where a complete model for the system is developed that captures the interactions between different layers, as well as different sensor quality measures. For network optimization, we propose a hierarchical optimization algorithm that lends itself to the tree structure, requiring only local network information. The proposed design approach shows superior performance over several contentionless and contention-based network design approaches. PMID:26307989

  13. Multiobjective optimization-based design of wearable electrocardiogram monitoring systems.

    PubMed

    Martinez-Tabares, F J; Jaramillo-Garzón, J A; Castellanos-Dominguez, G

    2014-01-01

    Nowadays, the use of Wearable User Interfaces has been extensively growing in medical monitoring applications. However, production and manufacture of prototypes without automation tools may lead to non viable results since it is often common to find an optimization problem where several variables are in conflict with each other. Thus, it is necessary to design a strategy for balancing the variables and constraints, systematizing the design in order to reduce the risks that are present when it is exclusively guided by the intuition of the developer. This paper proposes a framework for designing wearable ECG monitoring systems using multi-objective optimization. The main contributions of this work are the model to automate the design process, including a mathematical expression relating the principal variables that make up the criteria of functionality and wearability. We also introduce a novel yardstick for deciding the location of electrodes, based on reducing interference from ECG by maximizing the electrode-skin contact.

  14. Design of a vehicle based system to prevent ozone loss

    NASA Technical Reports Server (NTRS)

    Talbot, Matthew D.; Eby, Steven C.; Ireland, Glen J.; Mcwithey, Michael C.; Schneider, Mark S.; Youngblood, Daniel L.; Johnson, Matt; Taylor, Chris

    1994-01-01

    This project is designed to be completed over a three year period. Overall project goals are: (1) to understand the processes that contribute to stratospheric ozone loss; (2) to determine the best scheme to prevent ozone loss; and (3) to design a vehicle based system to carry out the prevention scheme. The 1993/1994 design objectives included: (1) to review the results of the 1992/1993 design team, including a reevaluation of the key assumptions used; (2) to develop a matrix of baseline vehicle concepts as candidates for the delivery vehicle; and (3) to develop a selection criteria and perform quantitative trade studies to use in the selection of the specific vehicle concept.

  15. Design of Embedded Web Module Based on SOPC

    NASA Astrophysics Data System (ADS)

    Wu, Yi; Huang, Yu; Wang, Yao; Yang, Ruixia; Liu, Xiaojuan

    In this paper an embedded web module based on SOPC is designed to solve the problem that some intelligent instruments cannot access to the Internet at present. The design of the module was implemented at Cyclone II series chip EP2C35 based on SOPC technology. The soft-core processor Nios II and other peripheral interfaces required by the module were custom-built in SOPC Builder. The transplantation of modified UC/OS-II kernel and the light weight TCP/IP protocol LWIP was implemented in Nios II IDE. Experimental results show that, the web module works more efficiently. This design firstly adopts modified UC/OS-II kernel, which can deal with more tasks. So it is very flexible and can be applied to many occasions.

  16. Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.

    2004-01-01

    An analysis-based approach .for developing shell-buckling design criteria for laminated-composite cylindrical shells that accurately accounts for the effects of initial geometric imperfections is presented. With this approach, measured initial geometric imperfection data from six graphite-epoxy shells are used to determine a manufacturing-process-specific imperfection signature for these shells. This imperfection signature is then used as input into nonlinear finite-element analyses. The imperfection signature represents a "first-approximation" mean imperfection shape that is suitable for developing preliminary-design data. Comparisons of test data and analytical results obtained by using several different imperfection shapes are presented for selected shells. Overall, the results indicate that the analysis-based approach presented for developing reliable preliminary-design criteria has the potential to provide improved, less conservative buckling-load estimates, and to reduce the weight and cost of developing buckling-resistant shell structures.

  17. Reliability-based design optimization under stationary stochastic process loads

    NASA Astrophysics Data System (ADS)

    Hu, Zhen; Du, Xiaoping

    2016-08-01

    Time-dependent reliability-based design ensures the satisfaction of reliability requirements for a given period of time, but with a high computational cost. This work improves the computational efficiency by extending the sequential optimization and reliability analysis (SORA) method to time-dependent problems with both stationary stochastic process loads and random variables. The challenge of the extension is the identification of the most probable point (MPP) associated with time-dependent reliability targets. Since a direct relationship between the MPP and reliability target does not exist, this work defines the concept of equivalent MPP, which is identified by the extreme value analysis and the inverse saddlepoint approximation. With the equivalent MPP, the time-dependent reliability-based design optimization is decomposed into two decoupled loops: deterministic design optimization and reliability analysis, and both are performed sequentially. Two numerical examples are used to show the efficiency of the proposed method.

  18. Design and performance comparison of fuzzy logic based tracking controllers

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1992-01-01

    Several camera tracking controllers based on fuzzy logic principles have been designed and tested in software simulation in the software technology branch at the Johnson Space Center. The fuzzy logic based controllers utilize range measurement and pixel positions from the image as input parameters and provide pan and tilt gimble rate commands as output. Two designs of the rulebase and tuning process applied to the membership functions are discussed in light of optimizing performance. Seven test cases have been designed to test the performance of the controllers for proximity operations where approaches like v-bar, fly-around and station keeping are performed. The controllers are compared in terms of responsiveness, and ability to maintain the object in the field-of-view of the camera. Advantages of the fuzzy logic approach with respect to the conventional approach have been discussed in terms of simplicity and robustness.

  19. A Context Awareness System for Online Learning: Design Based Research

    ERIC Educational Resources Information Center

    Laffey, James; Amelung, Chris; Goggins, Sean

    2009-01-01

    A design based research strategy examining the impressions and behavior of members of courses taught entirely online is used for refining a context-aware activity notification system (CANS). The findings show that CANS must address substantial variety in courses and members while also fitting with multitasking between online and real world…

  20. Designing Navigation Support in Hypertext Systems Based on Navigation Patterns

    ERIC Educational Resources Information Center

    Puntambekar, Sadhana; Stylianou, Agni

    2005-01-01

    In this paper, we present two studies designed to help students navigate effectively and learn from a hypertext system, CoMPASS. Our first study ("N" = 74) involved an analysis of students' navigation patterns to group them into clusters, using a "k"-means clustering technique. Based on this analysis, navigation patterns were grouped into four…

  1. Single-Subject Experimental Design for Evidence-Based Practice

    ERIC Educational Resources Information Center

    Byiers, Breanne J.; Reichle, Joe; Symons, Frank J.

    2012-01-01

    Purpose: Single-subject experimental designs (SSEDs) represent an important tool in the development and implementation of evidence-based practice in communication sciences and disorders. The purpose of this article is to review the strategies and tactics of SSEDs and their application in speech-language pathology research. Method: The authors…

  2. Educational Facility Design and Project Based Learning: "The Real Connection"

    ERIC Educational Resources Information Center

    Schrader, David L.; Sole, John

    2009-01-01

    There is a case to be made for the integration of the Project Based Service Learning (PBSL) process and the design and construction of educational facilities. A growing body of research supports the notion that the formulaic educational system of the last hundred years may no longer serve the learning styles of new and future generations. Their…

  3. Teaching Construction: A Design-Based Course Model

    ERIC Educational Resources Information Center

    Love, Tyler S.; Salgado, Carlos A.

    2016-01-01

    The focus on construction in T&E education has drastically changed. This article presents a series of topics and design-based labs that can be taught at various grade levels to integrate STEM concepts while also increasing students' overall awareness of construction and structural technologies.

  4. A Problem-Based Learning Design for Teaching Biochemistry.

    ERIC Educational Resources Information Center

    Dods, Richard F.

    1996-01-01

    Describes the design of a biochemistry course that uses problem-based learning. Provides opportunities for students to question, dispute, confirm, and disconfirm their understanding of basic concepts. Emphasizes self-correction through dialogue. Topics covered include amino acids, metabolic pathways and inherited disease, proteins, enzymes and…

  5. Empowering Design-Based Implementation Research: The Need for Infrastructure

    ERIC Educational Resources Information Center

    Sabelli, Nora; Dede, Chris

    2013-01-01

    This chapter discusses frameworks and conceptual lenses that help orient design-based implementation research (DBIR) work to the types of infrastructure required for success, while contributing to theories about the processes of educational improvement. Such infrastructures can be conceived as a framework: a set of interconnected elements that…

  6. Design Based Research Methodology for Teaching with Technology in English

    ERIC Educational Resources Information Center

    Jetnikoff, Anita

    2015-01-01

    Design based research (DBR) is an appropriate method for small scale educational research projects involving collaboration between teachers, students and researchers. It is particularly useful in collaborative projects where an intervention is implemented and evaluated in a grounded context. The intervention can be technological, or a new program…

  7. Coverage estimation-based system design in wireless communications

    NASA Astrophysics Data System (ADS)

    Aktul, Kavas

    2004-04-01

    A coverage estimation based cellular system design in microcell structure under shadowing and multipath conditions is presented. The effect of the signal weakening conditions is examined by log-normal shadowing/Rayleigh fading distribution. By taking the application values of GSM operating systems and cellular phones, area reliability and cell radius are calculated and reliable RF coverage is investigated.

  8. The Design Consideration for Game-Based Learning

    ERIC Educational Resources Information Center

    Liang, Chaoyun; Lee, Yuan-Zone; Chou, Wen-Shou

    2010-01-01

    The integration of game playing with online education has recently become one of the most discussed issues in the e-learning field for its potentially positive impact on the development of related industries and on the social lives of young people. In this article, the authors propose a set of design considerations to assist game-based learning…

  9. Designing a Virtual-Reality-Based, Gamelike Math Learning Environment

    ERIC Educational Resources Information Center

    Xu, Xinhao; Ke, Fengfeng

    2016-01-01

    This exploratory study examined the design issues related to a virtual-reality-based, gamelike learning environment (VRGLE) developed via OpenSimulator, an open-source virtual reality server. The researchers collected qualitative data to examine the VRGLE's usability, playability, and content integration for math learning. They found it important…

  10. Commentary: The Growing Utilization of Design-Based Research

    ERIC Educational Resources Information Center

    Dede, Chris

    2005-01-01

    In the series introduction, Roblyer (2005) presents a conceptual framework for improving typical research on educational technology. This commentary is intended to extend and deepen Roblyer's very brief discussion of one particular type of research--studies of technology-based instructional designs--that she describes as "almost…

  11. Using Design-Based Research in Gifted Education

    ERIC Educational Resources Information Center

    Jen, Enyi; Moon, Sidney; Samarapungavan, Ala

    2015-01-01

    Design-based research (DBR) is a new methodological framework that was developed in the context of the learning sciences; however, it has not been used very often in the field of gifted education. Compared with other methodologies, DBR is more process-oriented and context-sensitive. In this methodological brief, the authors introduce DBR and…

  12. Design Model for Learner-Centered, Computer-Based Simulations.

    ERIC Educational Resources Information Center

    Hawley, Chandra L.; Duffy, Thomas M.

    This paper presents a model for designing computer-based simulation environments within a constructivist framework for the K-12 school setting. The following primary criteria for the development of simulations are proposed: (1) the problem needs to be authentic; (2) the cognitive demand in learning should be authentic; (3) scaffolding supports a…

  13. Designing Digital Problem Based Learning Tasks that Motivate Students

    ERIC Educational Resources Information Center

    van Loon, Anne-Marieke; Ros, Anje; Martens, Rob

    2013-01-01

    This study examines whether teachers are able to apply the principles of autonomy support and structure support in designing digital problem based learning (PBL) tasks. We examine whether these tasks are more autonomy- and structure-supportive and whether primary and secondary school students experience greater autonomy, competence, and motivation…

  14. Preliminary design document: Ground based testbed for avionics systems

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design and interface requirements for an avionics Ground Based Test bed (GBT) to support Heavy Lift Cargo Vehicles (HLCV) is presented. It also contains data on the vehicle subsystem configurations that are to be supported during their early, pre-PDR developmental phases. Several emerging technologies are also identified for support. A Preliminary Specification Tree is also presented.

  15. Zeroth order resonator (ZOR) based RFID antenna design

    NASA Astrophysics Data System (ADS)

    Masud, Muhammad Mubeen

    Meander-line and multi-layer antennas have been used extensively to design compact UHF radio frequency identification (RFID) tags; however the overall size reduction of meander-line antennas is limited by the amount of parasitic inductance that can be introduced by each meander-line segment, and multi-layer antennas can be too costly. In this study, a new compact antenna topology for passive UHF RFID tags based on zeroth order resonant (ZOR) design techniques is presented. The antenna consists of lossy coplanar conductors and either inter-connected inter-digital capacitor (IDC) or shunt inductor unit-cells with a ZOR frequency near the operating frequency of the antenna. Setting the ZOR frequency near the operating frequency is a key component in the design process because the unit-cells chosen for the design are inductive at the operating frequency. This makes the unit-cells very useful for antenna miniaturization. These new designs in this work have several benefits: the coplanar layout can be printed on a single layer, matching inductive loops that reduce antenna efficiency are not required and ZOR analysis can be used for the design. Finally, for validation, prototype antennas are designed, fabricated and tested.

  16. Separation of Lanthanide Ions with Kläui Ligand Resin

    SciTech Connect

    Granger, Trinity D.; Henry, Victoria A.; Latesky, Stanley

    2007-07-01

    Separation and pre-concentration of the desired analyte is often a critical step in many radioanalytical methods. Current procedures for separating and concentrating analytes for detection are complex, and can be both expensive and time consuming. Therefore, the purpose of this research is to develop an alternative method of separating lanthanide ions through the use of an extraction chromatography resin containing a Klaui ligand salt. This research is a continuation of a concerted effort to develop new methods of detecting small concentrations of radionuclides and lanthanides using Klaui ligands. The Klaui ligands, C5Me5Co(OP(OR)2)3- (R=Me, Et, n-Pr) (LOR-), have unique affinity for lanthanide and actinide ions in the presence of competing metal ions. The use of 1 wt% NaLOR (R=Et or n-Pr) adsorbed onto resin support has been shown to extract lanthanide ions from aqueous nitric acid solutions of different concentrations. In order to further evaluate the utility of these materials in radiochemical separation, the selectivity of the resins for the different lanthanide ions was examined by measuring the distribution coefficients (Kd) for a series of lanthanides over a range of solution conditions. Based on prior research with actinide ions, it was hypothesized that the lanthanide ions would bond strongly with the Klaui ligands. The success of this research is important, because it will assist in expanding and improving current automated radiochemical methods, which will decrease the cost of developing and implementing radiochemical methods. To date, Kd values have been determined for Eu+3, Nd+3 and Pr+3 under varying nitric acid (HNO3) concentration, using a resin consisting of 1.0 wt% NaLOPr on Amberlite XAD-7HP. The dependence of the Kd values for Eu+3 has also been examined as a function of the ligand-to-europium ratio and the nitrate concentration. Decreasing Kd values were obtained upon increasing the nitric acid concentration, indicating protonation of the

  17. Knowledge-based optical coatings design and manufacturing

    NASA Astrophysics Data System (ADS)

    Guenther, Karl H.; Gonzalez, Avelino J.; Yoo, Hoi J.

    1990-12-01

    The theory of thin film optics is well developed for the spectral analysis of a given optical coating. The inverse synthesis - designing an optical coating for a certain spectral performance - is more complicated. Usually a multitude of theoretical designs is feasible because most design problems are over-determined with the number of layers possible with three variables each (n, k, t). The expertise of a good thin film designer comes in at this point with a mostly intuitive selection of certain designs based on previous experience and current manufacturing capabilities. Manufacturing a designed coating poses yet another subset of multiple solutions, as thin if in deposition technology has evolved over the years with a vast variety of different processes. The abundance of published literature may often be more confusing than helpful to the practicing thin film engineer, even if he has time and opportunity to read it. The choice of the right process is also severely limited by the given manufacturing hardware and cost considerations which may not easily allow for the adaption of a new manufacturing approach, even if it promises to be better technically (it ought to be also cheaper). On the user end of the thin film coating business, the typical optical designer or engineer who needs an optical coating may have limited or no knowledge at all about the theoretical and manufacturing criteria for the optimum selection of what he needs. This can be sensed frequently by overly tight tolerances and requirements for optical performance which sometimes stretch the limits of mother nature. We introduce here a know1edge-based system (KBS) intended to assist expert designers and manufacturers in their task of maximizing results and minimizing errors, trial runs, and unproductive time. It will help the experts to manipulate parameters which are largely determined through heuristic reasoning by employing artificial intelligence techniques. In a later state, the KBS will include a

  18. Design and control of the precise tracking bed based on complex electromechanical design theory

    NASA Astrophysics Data System (ADS)

    Ren, Changzhi; Liu, Zhao; Wu, Liao; Chen, Ken

    2010-05-01

    The precise tracking technology is wide used in astronomical instruments, satellite tracking and aeronautic test bed. However, the precise ultra low speed tracking drive system is one high integrated electromechanical system, which one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The precise Tracking Bed is one ultra-exact, ultra-low speed, high precision and huge inertial instrument, which some kind of mechanism and environment of the ultra low speed is different from general technology. This paper explores the design process based on complex electromechanical optimizing design theory, one non-PID with a CMAC forward feedback control method is used in the servo system of the precise tracking bed and some simulation results are discussed.

  19. Web Design Curriculum and Syllabus Based on Web Design Practice and Students' Prior Knowledge

    ERIC Educational Resources Information Center

    Krunic, Tanja; Ruzic-Dimitrijevic, Ljiljana; Petrovic, Branka; Farkas, Robert

    2006-01-01

    The Advanced Technical School from Novi Sad set up a completely new study group for web design in 2004. The main goals of the paper are to explain the steps that were taken in starting this group, and to present the educational program based on our own research through the organization of the group and course descriptions. Since there is a…

  20. Designing Collaborative E-Learning Environments Based upon Semantic Wiki: From Design Models to Application Scenarios

    ERIC Educational Resources Information Center

    Li, Yanyan; Dong, Mingkai; Huang, Ronghuai

    2011-01-01

    The knowledge society requires life-long learning and flexible learning environment that enables fast, just-in-time and relevant learning, aiding the development of communities of knowledge, linking learners and practitioners with experts. Based upon semantic wiki, a combination of wiki and Semantic Web technology, this paper designs and develops…

  1. Design Research on Inquiry-Based Multivariable Calculus: Focusing on Students' Argumentation and Instructional Design

    ERIC Educational Resources Information Center

    Kwon, Oh Nam; Bae, Younggon; Oh, Kuk Hwan

    2015-01-01

    In this study, researchers design and implement an inquiry based multivariable calculus course in a university which aims at enhancing students' argumentation in rich mathematical discussions. This research aims to understand the characteristics of students' argumentation in activities involving proof constructions through mathematical…

  2. Differentiation, Outcomes, Transparency, and Value-based Insurance Design.

    PubMed

    Fine, Stuart H

    2015-07-01

    Practitioners in the surgical and procedural specialties must prepare to differentiate themselves and the performance of their care delivery teams through the use of substantive, objective metrics along with the provision of service guarantees. As purchasers of surgical and procedural services move toward outcomes-focused value-based insurance design (VBID) and purchasing, practitioners must move well beyond branding and process measure-focused "Value Based Purchasing" initiatives and be prepared to compete with transparency- not just regionally, but nationally-based upon objectively established outcomes metrics.

  3. Human friendly architectural design for a small Martian base

    NASA Astrophysics Data System (ADS)

    Kozicki, J.; Kozicka, J.

    2011-12-01

    The manned mission to Mars is expected to last almost three years. A human factor must be taken seriously into account in such a long-term mission. A big comfortable habitat can help to overcome sociopsychological problems, that occur in ICEs (Isolated and Confined Environments). Authors have come forward to this issue and have developed a Martian base design as a human friendly habitat. The project is based on researches of extreme conditions on Mars, architecture in ICEs and contemporary building technologies. The base consists of five modules: a Central Module (CM), an Agriculture Dome (AD), a Residential Dome (RD), a Laboratory Dome (LD) and a Garage (G). Each element has its own functional purpose. The CM is a metal capsule similar to the Reference Mission module (RM, NASA, 1997). Domes are inflatable multilayer structures, which interiors are "open planned". Interiors can be arranged and divided into rooms by using modular partition walls designed by authors.

  4. Structural Design Methodology Based on Concepts of Uncertainty

    NASA Technical Reports Server (NTRS)

    Lin, K. Y.; Du, Jiaji; Rusk, David

    2000-01-01

    In this report, an approach to damage-tolerant aircraft structural design is proposed based on the concept of an equivalent "Level of Safety" that incorporates past service experience in the design of new structures. The discrete "Level of Safety" for a single inspection event is defined as the compliment of the probability that a single flaw size larger than the critical flaw size for residual strength of the structure exists, and that the flaw will not be detected. The cumulative "Level of Safety" for the entire structure is the product of the discrete "Level of Safety" values for each flaw of each damage type present at each location in the structure. Based on the definition of "Level of Safety", a design procedure was identified and demonstrated on a composite sandwich panel for various damage types, with results showing the sensitivity of the structural sizing parameters to the relative safety of the design. The "Level of Safety" approach has broad potential application to damage-tolerant aircraft structural design with uncertainty.

  5. Advanced microgrid design and analysis for forward operating bases

    NASA Astrophysics Data System (ADS)

    Reasoner, Jonathan

    This thesis takes a holistic approach in creating an improved electric power generation system for a forward operating base (FOB) in the future through the design of an isolated microgrid. After an extensive literature search, this thesis found a need for drastic improvement of the FOB power system. A thorough design process analyzed FOB demand, researched demand side management improvements, evaluated various generation sources and energy storage options, and performed a HOMERRTM discrete optimization to determine the best microgrid design. Further sensitivity analysis was performed to see how changing parameters would affect the outcome. Lastly, this research also looks at some of the challenges which are associated with incorporating a design which relies heavily on inverter-based generation sources, and gives possible solutions to help make a renewable energy powered microgrid a reality. While this thesis uses a FOB as the case study, the process and discussion can be adapted to aide in the design of an off-grid small-scale power grid which utilizes high-penetration levels of renewable energy.

  6. SP-100 power system conceptual design for lunar base applications

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Bloomfield, Harvey S.; Hainley, Donald C.

    1989-01-01

    A conceptual design is presented for a nuclear power system utilizing an SP-100 reactor and multiple Stirling cycle engines for operation on the lunar surface. Based on the results of this study, it was concluded that this power plant could be a viable option for an evolutionary lunar base. The design concept consists of a 2500 kWt (kilowatt thermal) SP-100 reactor coupled to eight free-piston Stirling engines. Two of the engines are held in reserve to provide conversion system redundancy. The remaining engines operate at 91.7 percent of their rated capacity of 150 kWe. The design power level for this system is 825 kWe. Each engine has a pumped heat-rejection loop connected to a heat pipe radiator. Power system performance, sizing, layout configurations, shielding options, and transmission line characteristics are described. System components and integration options are compared for safety, high performance, low mass, and ease of assembly. The power plant was integrated with a proposed human lunar base concept to ensure mission compatibility. This study should be considered a preliminary investigation; further studies are planned to investigate the effect of different technologies on this baseline design.

  7. Game Theory and Risk-Based Levee System Design

    NASA Astrophysics Data System (ADS)

    Hui, R.; Lund, J. R.; Madani, K.

    2014-12-01

    Risk-based analysis has been developed for optimal levee design for economic efficiency. Along many rivers, two levees on opposite riverbanks act as a simple levee system. Being rational and self-interested, land owners on each river bank would tend to independently optimize their levees with risk-based analysis, resulting in a Pareto-inefficient levee system design from the social planner's perspective. Game theory is applied in this study to analyze decision making process in a simple levee system in which the land owners on each river bank develop their design strategies using risk-based economic optimization. For each land owner, the annual expected total cost includes expected annual damage cost and annualized construction cost. The non-cooperative Nash equilibrium is identified and compared to the social planner's optimal distribution of flood risk and damage cost throughout the system which results in the minimum total flood cost for the system. The social planner's optimal solution is not feasible without appropriate level of compensation for the transferred flood risk to guarantee and improve conditions for all parties. Therefore, cooperative game theory is then employed to develop an economically optimal design that can be implemented in practice. By examining the game in the reversible and irreversible decision making modes, the cost of decision making myopia is calculated to underline the significance of considering the externalities and evolution path of dynamic water resource problems for optimal decision making.

  8. Restoration as a science-based design problem

    NASA Astrophysics Data System (ADS)

    Pasternack, G.; Wheaton, J.

    2003-04-01

    Existing approaches for performing environmental restoration either involve problem diagnosis and assessment with little implementation or ad hoc construction with little forethought. Environmental assessment is an important aspect of stewardship that leads to the diagnosis and prioritization of problems requiring restoration. It should come before and inform restoration. Projects that are built ad hoc have been widely reported to fail due to a lack of recognition of key natural processes. By contrast, other creative human endeavors make extensive use of the science of design. Among other concepts, it is inherent in the design process to generate many alternatives, as open-ended problems always have multiple correct solutions. For environmental restoration, such alternatives can be created by integrating widely accepted concepts from hydrology, civil engineering, aquatic biology, riparian ecology, and geomorphology. Then the specifics of each alternative should be analyzed for their relative performance using predictive computer models and other analytical tools. A river restoration approach that makes use of a comprehensive science-based design process has been developed to address the specific problem of fish spawning habitat enhancement. The approach was used in summer 2001 and 2002. In the latter case, science-based design was used at multiple spatial scales. At the reach scale, designs aimed to elevate the bed and increase slopes over constructed riffles. At the sub-reach scale, designs incorporated a complex assemblage of geomorphic units including broad riffles (to encourage divergent flow and gravel deposition at high discharge), small pools (whose widths were constricted by bars to encourage convergent flow and scour at high discharge) and boulder complexes. After thorough analysis and evaluation, the best performing project was selected by a multidisciplinary design team according to habitat and geomorphic goals and then built. A long-term monitoring

  9. Design optimization for a space based, reusable orbit transfer vehicle

    NASA Technical Reports Server (NTRS)

    Redd, L.

    1985-01-01

    Future NASA and DOD missions will benefit from high performance, reusable orbit transfer vehicles. With the advent of a space station, advanced engine technology, and various new vehicle concepts, reusable orbit transfer vehicles that provide significant economic benefits and mission capability improvements will be realized. Engine and vehicle design criteria previously have lacked definition with regard to issues such as space basing and servicing, man-rating and reliability, performance, mission flexibility, and life cycle cost for a reusable vehicle. The design study described here has resulted in the definition of a reusable orbit transfer vehicle concept and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine. These design criteria include number of engines per vehicle, nozzle design, etc. The major characteristics of the vehicle preliminary design include low lift to drag aerocapture capability, a main propulsion system failure criteria of fail operational/fail safe, and either two main engines with a high performance attitude control system for back-up or three main engines with which to meet this failure criteria. In addition, a maintenance approach has been established for the advanced vehicle concept.

  10. Robustness-Based Design Optimization Under Data Uncertainty

    NASA Technical Reports Server (NTRS)

    Zaman, Kais; McDonald, Mark; Mahadevan, Sankaran; Green, Lawrence

    2010-01-01

    This paper proposes formulations and algorithms for design optimization under both aleatory (i.e., natural or physical variability) and epistemic uncertainty (i.e., imprecise probabilistic information), from the perspective of system robustness. The proposed formulations deal with epistemic uncertainty arising from both sparse and interval data without any assumption about the probability distributions of the random variables. A decoupled approach is proposed in this paper to un-nest the robustness-based design from the analysis of non-design epistemic variables to achieve computational efficiency. The proposed methods are illustrated for the upper stage design problem of a two-stage-to-orbit (TSTO) vehicle, where the information on the random design inputs are only available as sparse point and/or interval data. As collecting more data reduces uncertainty but increases cost, the effect of sample size on the optimality and robustness of the solution is also studied. A method is developed to determine the optimal sample size for sparse point data that leads to the solutions of the design problem that are least sensitive to variations in the input random variables.

  11. Meta-case based realization of design rationale management systems

    SciTech Connect

    Paul, G.

    1996-12-31

    System design is an iterative, creative, and cooperative process where informal ideas are transformed into a detailed definition of how a system can be implemented. Design rationale aims at capturing and preserving the why underlying the what, the argument behind the artifact in the design process. Recording deliberations of the design process therefore promises benefits for the overall system engineering life cycle. Providing adequate computer support for design rationale is an interesting issue and a real need for effective application. A design rationale management system (DRMS) supports the capturing, storing and retrieval of interaction rationale in a shared corporate knowledge base and allows organizational learning through long-term and inter-project reuse. The intent of meta-CASE systems is to capture the specification of a required CASE tool and then generate the tool for actual production from the specification. In this paper we identify the requirements for a DRMS and investigate the applicability of meta-CASE tools for the implementation of DRMS`s. Furthermore we describe the experiences gained in the development of two DRMS`s adopting the meta CASE tools MaestroII GED/TCI and Hardy.

  12. Design of Wireless GPIB Interface Module Based on Bluetooth

    NASA Astrophysics Data System (ADS)

    Fu, P.; Ma, W. J.; Huang, C. J.

    2006-10-01

    GPIB interface is widely used in the testing and control field. In this paper a wireless GPIB interface module based on Bluetooth is developed. Programming with Verilog HDL language on the hardware of ROK 101 008 and a FPGA chip, the complicated logical design of GPIB interface and the Bluetooth data processing unit are implemented. On basis of Bluetooth specifications, the software for the control computer is developed. In order to provide a standard software interface for users, a VISA library that is compatible with the VPP specifications is also designed.

  13. Design of fire detection equipment based on ultraviolet detection technology

    NASA Astrophysics Data System (ADS)

    Liu, Zhenji; Liu, Jin; Chu, Sheng; Ping, Chao; Yuan, Xiaobing

    2015-03-01

    Utilized the feature of wide bandgap semiconductor of MgZnO, researched and developed a kind of Mid-Ultraviolet-Band(MUV) ultraviolet detector which has passed the simulation experiment in the sun circumstance. Based on the ultraviolet detector, it gives out a design scheme of gun-shot detection device, which is composed of twelve ultraviolet detectors, signal amplifier, processor, annunciator , azimuth indicator and the bracket. Through Analysing the feature of solar blind, ultraviolet responsivity, fire feature of gunshots and detection distance, the feasibility of this design scheme is proved.

  14. Design of panoramic lens based on ogive and aspheric surface.

    PubMed

    Wang, Junhua; Liang, Yuechao; Xu, Min

    2015-07-27

    A new method improving the design of panoramic lens with a long focal length based on ogive and aspheric surface is proposed. In this design, we use a special conjugation between "annular entrance pupil" and aperture stop to correct the chromatic transverse aberrations. Moreover, we use a new imaging relationship to increase the Effective Focal Length (EFL) of the panoramic lens and the CCD utilization. We realize a panoramic lens with a 360° × (45°~85°)field of view (FOV) and a 10.375mm EFL, which is 1.54 times than the conventional imaging relationship.

  15. Simplified Virtual Instrument Design Based on Mini Interface

    NASA Astrophysics Data System (ADS)

    Li, Lei; Li, Wenshi

    The most simplified virtual instrument (SVI) is designed through the mini-interface board (seven components), general PC Sound card and MATLAB programs. To deal with the limits followed by our mini-interface board, we cram necessary filters and noise-depressor into PC in form of software. The other key technologies include impedance matching for optimal signal transportation and near-infrared wavelength selection for improving the acquisition signal sensitivity in verification tests aiming at smile versus calm. Also three important contrast cases are discussed to support further our design validity. This work may enhance the base on brain health monitoring at home.

  16. Structure-Based Strategies for Drug Design and Discovery

    NASA Astrophysics Data System (ADS)

    Kuntz, Irwin D.

    1992-08-01

    Most drugs have been discovered in random screens or by exploiting information about macromolecular receptors. One source of this information is in the structures of critical proteins and nucleic acids. The structure-based approach to design couples this information with specialized computer programs to propose novel enzyme inhibitors and other therapeutic agents. Iterated design cycles have produced compounds now in clinical trials. The combination of molecular structure determination and computation is emerging as an important tool for drug development. These ideas will be applied to acquired immunodeficiency syndrome (AIDS) and bacterial drug resistance.

  17. Design of panoramic lens based on ogive and aspheric surface.

    PubMed

    Wang, Junhua; Liang, Yuechao; Xu, Min

    2015-07-27

    A new method improving the design of panoramic lens with a long focal length based on ogive and aspheric surface is proposed. In this design, we use a special conjugation between "annular entrance pupil" and aperture stop to correct the chromatic transverse aberrations. Moreover, we use a new imaging relationship to increase the Effective Focal Length (EFL) of the panoramic lens and the CCD utilization. We realize a panoramic lens with a 360° × (45°~85°)field of view (FOV) and a 10.375mm EFL, which is 1.54 times than the conventional imaging relationship. PMID:26367607

  18. Structural design methodologies for ceramic-based material systems

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Chulya, Abhisak; Gyekenyesi, John P.

    1991-01-01

    One of the primary pacing items for realizing the full potential of ceramic-based structural components is the development of new design methods and protocols. The focus here is on low temperature, fast-fracture analysis of monolithic, whisker-toughened, laminated, and woven ceramic composites. A number of design models and criteria are highlighted. Public domain computer algorithms, which aid engineers in predicting the fast-fracture reliability of structural components, are mentioned. Emphasis is not placed on evaluating the models, but instead is focused on the issues relevant to the current state of the art.

  19. Molecular rectifiers: a new design based on asymmetric anchoring moieties.

    PubMed

    Van Dyck, Colin; Ratner, Mark A

    2015-03-11

    The quest for a molecular rectifier is among the major challenges of molecular electronics. We introduce three simple rules to design an efficient rectifying molecule and demonstrate its functioning at the theoretical level, relying on the NEGF-DFT technique. The design rules notably require both the introduction of asymmetric anchoring moieties and a decoupling bridge. They lead to a new rectification mechanism based on the compression and control of the HOMO/LUMO gap by the electrode Fermi levels, arising from a pinning effect. Significant rectification ratios up to 2 orders of magnitude are theoretically predicted as the mechanism opposes resonant to nonresonant tunneling. PMID:25706442

  20. Disturbance Rejection Based Test Rocket Control System Design and Validation

    NASA Astrophysics Data System (ADS)

    Yang, H.; Zhang, S.; Li, T.; Zhang, Y.

    2015-09-01

    This paper presents a novel design and validation for the three-channel attitude controller of a STT test rocket based on the extended state observer approach. The uniform second order integral-chain state space model is firstly established for the control variable of the angle of attack, angle of sideslip and roll angle. Combined with the pole placement, the extended state observer is applied to the disturbance rejection design of the attitude controller. Through numerical and hardware-in-the-loop simulation with uncertainties considered, the effectiveness and robustness of the controller are illustrated and verified. Finally, the performance of the controller is validated by flight-test with satisfactory results.

  1. Structural design methodologies for ceramic-based material systems

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Chulya, Abhisak; Gyekenyesi, John P.

    1992-01-01

    One of the primary pacing items for realizing the full potential of ceramic-based structural components is the development of new design methods and protocols. The focus here is on low temperature, fast-fracture analysis of monolithic, whisker-toughened, laminated, and woven ceramic composites. A number of design models and criteria are highlighted. Public domain computer algorithms, which aid engineers in predicting the fast-fracture reliability of structural components, are mentioned. Emphasis is not placed on evaluating the models, but instead is focused on the issues relevant to the current state of the art.

  2. Design of the storage location based on the ABC analyses

    NASA Astrophysics Data System (ADS)

    Jemelka, Milan; Chramcov, Bronislav; Kříž, Pavel

    2016-06-01

    The paper focuses on process efficiency and saving storage costs. Maintaining inventory through putaway strategy takes personnel time and costs money. The aim is to control inventory in the best way. The ABC classification based on Villefredo Pareto theory is used for a design of warehouse layout. New design of storage location reduces the distance of fork-lifters, total costs and it increases inventory process efficiency. The suggested solutions and evaluation of achieved results are described in detail. Proposed solutions were realized in real warehouse operation.

  3. INFORMATION DISPLAY: CONSIDERATIONS FOR DESIGNING COMPUTER-BASED DISPLAY SYSTEMS.

    SciTech Connect

    O'HARA,J.M.; PIRUS,D.; BELTRATCCHI,L.

    2004-09-19

    This paper discussed the presentation of information in computer-based control rooms. Issues associated with the typical displays currently in use are discussed. It is concluded that these displays should be augmented with new displays designed to better meet the information needs of plant personnel and to minimize the need for interface management tasks (the activities personnel have to do to access and organize the information they need). Several approaches to information design are discussed, specifically addressing: (1) monitoring, detection, and situation assessment; (2) routine task performance; and (3) teamwork, crew coordination, collaborative work.

  4. Design and implementation of a project-based active/cooperative engineering design course for freshmen

    NASA Astrophysics Data System (ADS)

    Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.

    2011-08-01

    A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long learning, realistic constraints and awareness of current domestic and global challenges. Throughout successive design reports and in-class assignments, the students are required by the end of the semester to communicate, clearly and concisely, the details of their design both orally and in writing through a functional artefact/prototype, a design notebook, an A0 project poster and a final oral presentation. In addition to these direct assessment tools, several indirect measures are used to ensure triangulation. Assignments are based on customer expectations using a detailed checklist. This paper shows the direct and indirect assessment tools that indicated a high level of achievement of course learning outcomes and a high level of student satisfaction.

  5. Design and Implementation of a Laboratory-Based Drug Design and Synthesis Advanced Pharmacy Practice Experience

    PubMed Central

    Philip, Ashok; Stephens, Mark; Mitchell, Sheila L.

    2015-01-01

    Objective. To provide students with an opportunity to participate in medicinal chemistry research within the doctor of pharmacy (PharmD) curriculum. Design. We designed and implemented a 3-course sequence in drug design or drug synthesis for pharmacy students consisting of a 1-month advanced elective followed by two 1-month research advanced pharmacy practice experiences (APPEs). To maximize student involvement, this 3-course sequence was offered to third-year and fourth-year students twice per calendar year. Assessment. Students were evaluated based on their commitment to the project’s success, productivity, and professionalism. Students also evaluated the course sequence using a 14-item course evaluation rubric. Student feedback was overwhelmingly positive. Students found the experience to be a valuable component of their pharmacy curriculum. Conclusion. We successfully designed and implemented a 3-course research sequence that allows PharmD students in the traditional 4-year program to participate in drug design and synthesis research. Students report the sequence enhanced their critical-thinking and problem-solving skills and helped them develop as independent learners. Based on the success achieved with this sequence, efforts are underway to develop research APPEs in other areas of the pharmaceutical sciences. PMID:25995518

  6. Cradle Enhanced UI Development

    NASA Technical Reports Server (NTRS)

    Jentsch, Samuel

    2016-01-01

    This summer I have been working in the EDI (Exploration, Development, and Integration) office. The primary goal of my office is to facilitate the integration, cooperation, and communication between programs, projects and departments throughout the agency. The majority of my efforts has been focused on Cradle, a requirements management and systems engineering tool. This tool is utilized by teams throughout NASA to plan and track the development of a variety of ongoing projects.

  7. Place-Based Design: An Instructional Design Theory for Supporting Community-Based Inquiry and Design Projects

    ERIC Educational Resources Information Center

    Mathews, James M.

    2013-01-01

    Place-based education has been forwarded as a pedagogical approach that has the potential to contextualize learning, increase student engagement, and strengthen the relationship between schools and the broader community. Despite this promise, however, many teachers struggle to develop learning experiences that incorporate the key components of…

  8. Design-based inference in time-location sampling.

    PubMed

    Leon, Lucie; Jauffret-Roustide, Marie; Le Strat, Yann

    2015-07-01

    Time-location sampling (TLS), also called time-space sampling or venue-based sampling is a sampling technique widely used in populations at high risk of infectious diseases. The principle is to reach individuals in places and at times where they gather. For example, men who have sex with men meet in gay venues at certain times of the day, and homeless people or drug users come together to take advantage of services provided to them (accommodation, care, meals). The statistical analysis of data coming from TLS surveys has been comprehensively discussed in the literature. Two issues of particular importance are the inclusion or not of sampling weights and how to deal with the frequency of venue attendance (FVA) of individuals during the course of the survey. The objective of this article is to present TLS in the context of sampling theory, to calculate sampling weights and to propose design-based inference taking into account the FVA. The properties of an estimator ignoring the FVA and of the design-based estimator are assessed and contrasted both through a simulation study and using real data from a recent cross-sectional survey conducted in France among drug users. We show that the estimators of prevalence or a total can be strongly biased if the FVA is ignored, while the design-based estimator taking FVA into account is unbiased even when declarative errors occur in the FVA.

  9. Docking methods for structure-based library design.

    PubMed

    Cavasotto, Claudio N; Phatak, Sharangdhar S

    2011-01-01

    The drug discovery process mainly relies on the experimental high-throughput screening of huge compound libraries in their pursuit of new active compounds. However, spiraling research and development costs and unimpressive success rates have driven the development of more rational, efficient, and cost-effective methods. With the increasing availability of protein structural information, advancement in computational algorithms, and faster computing resources, in silico docking-based methods are increasingly used to design smaller and focused compound libraries in order to reduce screening efforts and costs and at the same time identify active compounds with a better chance of progressing through the optimization stages. This chapter is a primer on the various docking-based methods developed for the purpose of structure-based library design. Our aim is to elucidate some basic terms related to the docking technique and explain the methodology behind several docking-based library design methods. This chapter also aims to guide the novice computational practitioner by laying out the general steps involved for such an exercise. Selected successful case studies conclude this chapter. PMID:20981523

  10. Small Area Array-Based LED Luminaire Design

    SciTech Connect

    Thomas Yuan

    2008-01-09

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency LED luminaire designs based on small area array-based gallium nitride diodes. Novel GaN-based LED array designs are described, specifically addressing the thermal, optical, electrical and mechanical requirements for the incorporation of such arrays into viable solid-state LED luminaires. This work resulted in the demonstration of an integrated luminaire prototype of 1000 lumens cool white light output with reflector shaped beams and efficacy of 89.4 lm/W at CCT of 6000oK and CRI of 73; and performance of 903 lumens warm white light output with reflector shaped beams and efficacy of 63.0 lm/W at CCT of 2800oK and CRI of 82. In addition, up to 1275 lumens cool white light output at 114.2 lm/W and 1156 lumens warm white light output at 76.5 lm/W were achieved if the reflector was not used. The success to integrate small area array-based LED designs and address thermal, optical, electrical and mechanical requirements was clearly achieved in these luminaire prototypes with outstanding performance and high efficiency.

  11. Docking methods for structure-based library design.

    PubMed

    Cavasotto, Claudio N; Phatak, Sharangdhar S

    2011-01-01

    The drug discovery process mainly relies on the experimental high-throughput screening of huge compound libraries in their pursuit of new active compounds. However, spiraling research and development costs and unimpressive success rates have driven the development of more rational, efficient, and cost-effective methods. With the increasing availability of protein structural information, advancement in computational algorithms, and faster computing resources, in silico docking-based methods are increasingly used to design smaller and focused compound libraries in order to reduce screening efforts and costs and at the same time identify active compounds with a better chance of progressing through the optimization stages. This chapter is a primer on the various docking-based methods developed for the purpose of structure-based library design. Our aim is to elucidate some basic terms related to the docking technique and explain the methodology behind several docking-based library design methods. This chapter also aims to guide the novice computational practitioner by laying out the general steps involved for such an exercise. Selected successful case studies conclude this chapter.

  12. Improving Discrete-Sensitivity-Based Approach for Practical Design Optimization

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Cordero, Yvette; Pandya, Mohagna J.

    1997-01-01

    In developing the automated methodologies for simulation-based optimal shape designs, their accuracy, efficiency and practicality are the defining factors to their success. To that end, four recent improvements to the building blocks of such a methodology, intended for more practical design optimization, have been reported. First, in addition to a polynomial-based parameterization, a partial differential equation (PDE) based parameterization was shown to be a practical tool for a number of reasons. Second, an alternative has been incorporated to one of the tedious phases of developing such a methodology, namely, the automatic differentiation of the computer code for the flow analysis in order to generate the sensitivities. Third, by extending the methodology for the thin-layer Navier-Stokes (TLNS) based flow simulations, the more accurate flow physics was made available. However, the computer storage requirement for a shape optimization of a practical configuration with the -fidelity simulations (TLNS and dense-grid based simulations), required substantial computational resources. Therefore, the final improvement reported herein responded to this point by including the alternating-direct-implicit (ADI) based system solver as an alternative to the preconditioned biconjugate (PbCG) and other direct solvers.

  13. Anthropometric data base for power plant design. Special report

    SciTech Connect

    Parris, H.L.

    1981-07-01

    The primary study objective is to develop anthropometric data based upon the men and women who operate and maintain nuclear power plants. Age, stature, and weight information were obtained by a questionnaire survey of current operator and maintenance personnel, and the data extracted from the questionnaires were analyzed to derive body-size information for a number of anthropometric variables of interest to designers. Body-size information was developed separately for both men and women. Results achieved for the male population can be utilized by designers with a high level of confidence for the design of general workplaces. While the number of women respondents in the sample proved to be too small to derive results to which a similarly high level of reliability could be attached, the data can nevertheless be used as reasonable indicators of the probable body-size variability to be found among female power plant employees.

  14. New methodology for shaft design based on life expectancy

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1986-01-01

    The design of power transmission shafting for reliability has not historically received a great deal of attention. However, weight sensitive aerospace and vehicle applications and those where the penalties of shaft failure are great, require greater confidence in shaft design than earlier methods provided. This report summarizes a fatigue strength-based, design method for sizing shafts under variable amplitude loading histories for limited or nonlimited service life. Moreover, applications factors such as press-fitted collars, shaft size, residual stresses from shot peening or plating, corrosive environments can be readily accommodated into the framework of the analysis. Examples are given which illustrate the use of the method, pointing out the large life penalties due to occasional cyclic overloads.

  15. A Web-Based Monitoring System for Multidisciplinary Design Projects

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; Salas, Andrea O.; Weston, Robert P.

    1998-01-01

    In today's competitive environment, both industry and government agencies are under pressure to reduce the time and cost of multidisciplinary design projects. New tools have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. One such tool, a framework for multidisciplinary computational environments, is defined as a hardware and software architecture that enables integration, execution, and communication among diverse disciplinary processes. An examination of current frameworks reveals weaknesses in various areas, such as sequencing, displaying, monitoring, and controlling the design process. The objective of this research is to explore how Web technology, integrated with an existing framework, can improve these areas of weakness. This paper describes a Web-based system that optimizes and controls the execution sequence of design processes; and monitors the project status and results. The three-stage evolution of the system with increasingly complex problems demonstrates the feasibility of this approach.

  16. Reliability-Based Control Design for Uncertain Systems

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.

    2005-01-01

    This paper presents a robust control design methodology for systems with probabilistic parametric uncertainty. Control design is carried out by solving a reliability-based multi-objective optimization problem where the probability of violating design requirements is minimized. Simultaneously, failure domains are optimally enlarged to enable global improvements in the closed-loop performance. To enable an efficient numerical implementation, a hybrid approach for estimating reliability metrics is developed. This approach, which integrates deterministic sampling and asymptotic approximations, greatly reduces the numerical burden associated with complex probabilistic computations without compromising the accuracy of the results. Examples using output-feedback and full-state feedback with state estimation are used to demonstrate the ideas proposed.

  17. Preliminary Polar Sea Trials of Nereid-UI: A Remotely Operated Underwater Vehicle for Oceanographic Access Under Ice

    NASA Astrophysics Data System (ADS)

    Whitcomb, L. L.; Jakuba, M.; German, C. R.; Bowen, A.; Yoerger, D.; Kinsey, J. C.; Mayer, L.; McFarland, C.; Suman, S.; Bailey, J.; Judge, C.; Elliott, S.; Gomez-Ibanez, D.; Taylor, C. L.; Machado, C.; Howland, J. C.; Kaiser, C.; Heintz, M.; Pontbriand, C.; O'Hara, L.; McDonald, G.; Boetius, A.

    2014-12-01

    We report the development and deployment of a remotely-controlled underwater robotic vehicle capable of being teleoperated under ice under real-time human supervision. The Nereid Under-Ice (Nereid-UI or NUI) vehicle enables exploration and detailed examination of biological and physical environments including the ice-ocean interface in marginal ice zones, in the water column of ice-covered seas, at glacial ice-tongues, and ice-shelf margins, delivering realtime high definition video in addition to survey data from on board acoustic, optical, chemical, and biological sensors. The vehicle employs a novel lightweight fiber-optic tether that will enable it to be deployed from a ship to attain standoff distances of up to 20 km from an ice-edge boundary. We conducted NUI's first under-ice deployments during the July 2014 F/V Polarstern PS86 expedition at 86° N 6 W° in the Arctic Ocean - near the Aurora hydrothermal vent site on the Gakkel Ridge approximately 200 km NE of Greenland. We conducted 4 dives to evaluate and develop NUI's overall functioning and its individual engineered subsystems. On each dive, dead-reckoning (Ice-locked Doppler sonar and north-seeking gyrocompass) complemented by acoustic ranging provided navigation, supporting closed-loop control of heading, depth, and XY position relative to the ice. Science operations included multibeam transects of under-ice topography, precision vertical profiles for the bio-sensor suite and IR/radiance sensor suite, IR/radiance/multibeam transects at constant depth interlaced with vertical profiles and upward-looking digital still-camera surveys of the ice, including areas rich with algal material. The fiber-optic tether remained intact throughout most of all 4 dives. Consistent with the NUI concept of operations, in 3 of 4 dives the fiber-optic tether eventually failed, and the vehicle was then commanded acoustically in a series of short-duration maneuvers to return to Polarstern for recovery. These preliminary

  18. Disturbance observer based control system design for inertially stabilized platform

    NASA Astrophysics Data System (ADS)

    Wu, Chunnan; Lin, Zhe

    2012-09-01

    Inertially stabilized platform (ISP) is indispensable for various imaging systems to segregate the base angular movement and achieve high LOS (Line-Of-Sight) stability. The disturbance rejection ratio and command following performance are of primary concern in designing ISP control systems. In this paper, the redundant gimbals ISP system is considered and it is shown to experience complex disturbance and parameter variation during operation. To meet advanced LOS stabilization requirement, a disturbance observer based (DOB) dual-loop controller design for ISP is proposed of which the DOB is the internal-loop. Using a nominal plant model and a low-pass filter, the disturbance signal is estimated and used as a cancellation input added to the current command of torque motor. If the DOB works well, the disturbance torque and mismatch between nominal plant and actual plant will be compensated and the internal-loop will behave as nominal model parameters. On the other hand, the external-loop will be designed for nominal model parameters to meet stabilization requirements. This paper will mainly focus on the DOB design method. Since the low-pass filter of DOB determines the sensitivity and complementary sensitivity function as will be shown in this paper, designing the filter is the most important consideration. In this paper, an optimal low-pass filter design method is proposed. The method is intuitive, simple to implement and allows on-line tuning. Simulation results show the performance enhancement of our control structure in the presence of disturbance and measurement noise.

  19. Planetary gear profile modification design based on load sharing modelling

    NASA Astrophysics Data System (ADS)

    Iglesias, Miguel; Fernández Del Rincón, Alfonso; De-Juan, Ana Magdalena; Garcia, Pablo; Diez, Alberto; Viadero, Fernando

    2015-07-01

    In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is focused on the understanding of some of the underlying phenomena involved in this mechanical system. Through the development of models capable of reproduce the system behavior, research in this area contributes to improve gear transmission insight, helping developing better maintenance practices and more efficient design processes. A planetary gear model used for the design of profile modifications ratio based on the levelling of the load sharing ratio is presented. The gear profile geometry definition, following a vectorial approach that mimics the real cutting process of gears, is thoroughly described. Teeth undercutting and hypotrochoid definition are implicitly considered, and a procedure for the incorporation of a rounding arc at the tooth tip in order to deal with corner contacts is described. A procedure for the modeling of profile deviations is presented, which can be used for the introduction of both manufacturing errors and designed profile modifications. An easy and flexible implementation of the profile deviation within the planetary model is accomplished based on the geometric overlapping. The contact force calculation and dynamic implementation used in the model are also introduced, and parameters from a real transmission for agricultural applications are presented for the application example. A set of reliefs is designed based on the levelling of the load sharing ratio for the example transmission, and finally some other important dynamic factors of the transmission are analyzed to assess the changes in the dynamic behavior with respect to the non-modified case. Thus, the main innovative aspect of the proposed planetary transmission model is the capacity of providing a simulated load sharing ratio which serves as design variable for the calculation of the tooth profile modifications.

  20. RELIABILITY BASED DESIGN OF FIXED FOUNDATION WIND TURBINES

    SciTech Connect

    Nichols, R.

    2013-10-14

    Recent analysis of offshore wind turbine foundations using both applicable API and IEC standards show that the total load demand from wind and waves is greatest in wave driven storms. Further, analysis of overturning moment loads (OTM) reveal that impact forces exerted by breaking waves are the largest contributor to OTM in big storms at wind speeds above the operating range of 25 m/s. Currently, no codes or standards for offshore wind power generators have been adopted by the Bureau of Ocean Energy Management Regulation and Enforcement (BOEMRE) for use on the Outer Continental Shelf (OCS). Current design methods based on allowable stress design (ASD) incorporate the uncertainty in the variation of loads transferred to the foundation and geotechnical capacity of the soil and rock to support the loads is incorporated into a factor of safety. Sources of uncertainty include spatial and temporal variation of engineering properties, reliability of property measurements applicability and sufficiency of sampling and testing methods, modeling errors, and variability of estimated load predictions. In ASD these sources of variability are generally given qualitative rather than quantitative consideration. The IEC 61400‐3 design standard for offshore wind turbines is based on ASD methods. Load and resistance factor design (LRFD) methods are being increasingly used in the design of structures. Uncertainties such as those listed above can be included quantitatively into the LRFD process. In LRFD load factors and resistance factors are statistically based. This type of analysis recognizes that there is always some probability of failure and enables the probability of failure to be quantified. This paper presents an integrated approach consisting of field observations and numerical simulation to establish the distribution of loads from breaking waves to support the LRFD of fixed offshore foundations.

  1. Case-Based Capture and Reuse of Aerospace Design Rationale

    NASA Technical Reports Server (NTRS)

    Leake, David B.

    1998-01-01

    The goal of this project is to apply artificial intelligence techniques to facilitate capture and reuse of aerospace design rationale. The project applies case-based reasoning (CBR) and concept mapping (CMAP) tools to the task of capturing, organizing, and interactively accessing experiences or "cases" encapsulating the methods and rationale underlying expert aerospace design. As stipulated in the award, Indiana University and Ames personnel are collaborating on performance of research and determining the direction of research, to assure that the project focuses on high-value tasks. In the first five months of the project, we have made two visits to Ames Research Center to consult with our NASA collaborators, to learn about the advanced aerospace design tools being developed there, and to identify specific needs for intelligent design support. These meetings identified a number of task areas for applying CBR and concept mapping technology. We jointly selected a first task area to focus on: Acquiring the convergence criteria that experts use to guide the selection of useful data from a set of numerical simulations of high-lift systems. During the first funding period, we developed two software systems. First, we have adapted a CBR system developed at Indiana University into a prototype case-based reasoning shell to capture and retrieve information about design experiences, with the sample task of capturing and reusing experts' intuitive criteria for determining convergence (work conducted at Indiana University). Second, we have also adapted and refined existing concept mapping tools that will be used to clarify and capture the rationale underlying those experiences, to facilitate understanding of the expert's reasoning and guide future reuse of captured information (work conducted at the University of West Florida). The tools we have developed are designed to be the basis for a general framework for facilitating tasks within systems developed by the Advanced Design

  2. Design of airborne imaging spectrometer based on curved prism

    NASA Astrophysics Data System (ADS)

    Nie, Yunfeng; Xiangli, Bin; Zhou, Jinsong; Wei, Xiaoxiao

    2011-11-01

    A novel moderate-resolution imaging spectrometer spreading from visible wavelength to near infrared wavelength range with a spectral resolution of 10 nm, which combines curved prisms with the Offner configuration, is introduced. Compared to conventional imaging spectrometers based on dispersive prism or diffractive grating, this design possesses characteristics of small size, compact structure, low mass as well as little spectral line curve (smile) and spectral band curve (keystone or frown). Besides, the usage of compound curved prisms with two or more different materials can greatly reduce the nonlinearity inevitably brought by prismatic dispersion. The utilization ratio of light radiation is much higher than imaging spectrometer of the same type based on combination of diffractive grating and concentric optics. In this paper, the Seidel aberration theory of curved prism and the optical principles of Offner configuration are illuminated firstly. Then the optical design layout of the spectrometer is presented, and the performance evaluation of this design, including spot diagram and MTF, is analyzed. To step further, several types of telescope matching this system are provided. This work provides an innovational perspective upon optical system design of airborne spectral imagers; therefore, it can offer theoretic guide for imaging spectrometer of the same kind.

  3. Comparison of Two Independent Lidar-Based Pitch Control Designs

    SciTech Connect

    Dunne, F.; Schlipf, D.; Pao, L. Y.; Wright, A. D.; Jonkman, B.; Kelley, N.; Simley, E.

    2012-01-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. One uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. The other uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  4. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    SciTech Connect

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  5. Structure-based design of covalent Siah inhibitors.

    PubMed

    Stebbins, John L; Santelli, Eugenio; Feng, Yongmei; De, Surya K; Purves, Angela; Motamedchaboki, Khatereh; Wu, Bainan; Ronai, Ze'ev A; Liddington, Robert C; Pellecchia, Maurizio

    2013-08-22

    The E3 ubiquitin ligase Siah regulates key cellular events that are central to cancer development and progression. A promising route to Siah inhibition is disrupting its interactions with adaptor proteins. However, typical of protein-protein interactions, traditional unbiased approaches to ligand discovery did not produce viable hits against this target, despite considerable effort and a multitude of approaches. Ultimately, a rational structure-based design strategy was successful for the identification of Siah inhibitors in which peptide binding drives specific covalent bond formation with the target. X-ray crystallography, mass spectrometry, and functional data demonstrate that these peptide mimetics are efficient covalent inhibitors of Siah and antagonize Siah-dependent regulation of Erk and Hif signaling in the cell. The proposed strategy may result useful as a general approach to the design of peptide-based inhibitors of other protein-protein interactions.

  6. Design and Analyses of a MEMS Based Resonant Magnetometer

    PubMed Central

    Ren, Dahai; Wu, Lingqi; Yan, Meizhi; Cui, Mingyang; You, Zheng; Hu, Muzhi

    2009-01-01

    A novel design of a MEMS torsional resonant magnetometer based on Lorentz force is presented and fabricated. The magnetometer consists of a silicon resonator, torsional beam, excitation coil, capacitance plates and glass substrate. Working in a resonant condition, the sensor’s vibration amplitude is converted into the sensing capacitance change, which reflects the outside magnetic flux-density. Based on the simulation, the key structure parameters are optimized and the air damping effect is estimated. The test results of the prototype are in accordance with the simulation results of the designed model. The resolution of the magnetometer can reach 30 nT. The test results indicate its sensitivity of more than 400 mV/μT when operating in a 10 Pa vacuum environment. PMID:22399981

  7. Facilitating an accelerated experience-based co-design project.

    PubMed

    Tollyfield, Ruth

    This article describes an accelerated experience-based co-design (AEBCD) quality improvement project that was undertaken in an adult critical care setting and the facilitation of that process. In doing so the aim is to encourage other clinical settings to engage with their patients, carers and staff alike and undertake their own quality improvement project. Patient, carer and staff experience and its place in the quality sphere is outlined and the importance of capturing patient, carer and staff feedback established. Experience-based co-design (EBCD) is described along with the recently tested accelerated version of the process. An overview of the project and outline of the organisational tasks and activities undertaken by the facilitator are given. The facilitation of the process and key outcomes are discussed and reflected on. Recommendations for future undertakings of the accelerated process are given and conclusions drawn.

  8. Design principles for clinical network-based proteomics.

    PubMed

    Goh, Wilson Wen Bin; Wong, Limsoon

    2016-07-01

    Integrating biological networks with proteomics is a tantalizing option for system-level analysis; for example it can help remove false-positives from proteomics data and improve coverage by detecting false-negatives, as well as resolving inconsistent inter-sample protein expression due to biological heterogeneity. Yet, designing a robust network-based analysis strategy on proteomics data is nontrivial. The issues include dealing with test set bias caused by, for example, inappropriate normalization procedure, devising appropriate benchmarking criteria and formulating statistically robust feature-selection techniques. Given the increasing importance of proteomics in contemporary clinical studies, more powerful network-based approaches are needed. We provide some design principles and considerations that can help achieve this, while taking into account the idiosyncrasies of proteomics data. PMID:27240775

  9. Design and Analyses of a MEMS Based Resonant Magnetometer.

    PubMed

    Ren, Dahai; Wu, Lingqi; Yan, Meizhi; Cui, Mingyang; You, Zheng; Hu, Muzhi

    2009-01-01

    A novel design of a MEMS torsional resonant magnetometer based on Lorentz force is presented and fabricated. The magnetometer consists of a silicon resonator, torsional beam, excitation coil, capacitance plates and glass substrate. Working in a resonant condition, the sensor's vibration amplitude is converted into the sensing capacitance change, which reflects the outside magnetic flux-density. Based on the simulation, the key structure parameters are optimized and the air damping effect is estimated. The test results of the prototype are in accordance with the simulation results of the designed model. The resolution of the magnetometer can reach 30 nT. The test results indicate its sensitivity of more than 400 mV/μT when operating in a 10 Pa vacuum environment.

  10. Design and development of magnetorheological fluid-based passive actuator.

    PubMed

    Shokrollahi, Elnaz; Price, Karl; Drake, James M; Goldenberg, Andrew A

    2015-08-01

    We present the design and experimental validation of a magnetorheological (MR) fluid-based passive actuator for tele-robotic bone biopsy procedures. With Finite Element Method Magnet (FEMM) software, the required uniform magnetic field circuit design was simulated. An 1100 turn 24 AWG copper wire coil wrapped around a magnetic core was used to create a magnetic field. The field strength was measured with a Hall effect sensor, and compared to the simulation. The maximum magnetic field flux produced by a constant current of 1.4 A was 0.2 T, similar to the simulation results. A series of quasi-static experiments were conducted to characterize the forces generated by the MR fluid-based actuator under various currents up to 12 N. An analytical model was developed to validate the measurements from the passive actuator. PMID:26737387

  11. Optical design of LED-based automotive tail lamps

    NASA Astrophysics Data System (ADS)

    Domhardt, André; Rohlfing, Udo; Klinger, Karsten; Manz, Karl; Kooß, Dieter; Lemmer, Uli

    2007-09-01

    The application of ultra bright monochromatic and white High-Power-LEDs in the range of automotive lighting systems is now state of the art. These LEDs offer new possibilities in optical design and engineering within different fields of automotive lighting, e.g., tail lamps, signal lamps, headlamps and interior lighting. This contribution describes the process of the optical design of an automotive LED tail lamp based on a practical example. We will elaborate the principal geometric approach, the radiometric conditions and the optical design by using standard and advanced mathematical optimization methods. Special attention will be paid to the following topics: efficient light coupling from the LED into the optical device, adaptation of the illuminance and optimization with respect to the requirements from SAE/ECE regulations. It will be shown that the development of LED-lamps requires the complex interaction of several factors. The challenge for the optical designer is to fulfill the technical demands while also considering the appearance of the final product desired by the customer. Further design specifications emerge from the electrical and thermal layout of the lamp.

  12. Perspectives for the structure-based design of acetylcholinesterase reactivators.

    PubMed

    Ochoa, Rodrigo; Rodriguez, Carlos A; Zuluaga, Andres F

    2016-07-01

    Rational design of active molecules through structure-based methods has been gaining adepts during the last decades due to the wider availability of protein structures, most of them conjugated with relevant ligands. Acetylcholinesterase (AChE) is a molecular target with a considerable amount of data related to its sequence and 3-dimensional structure. In addition, there are structural insights about the mechanism of action of the natural substrate and drugs used in Alzheimer's disease, organophosphorus compounds, among others. We looked for AChE structural data useful for in silico design of potential interacting molecules. In particular, we focused on information regarding the design of ligands aimed to reactivate AChE catalytic activity. The structures of 178 AChE were annotated and categorized on different subsets according to the nature of the ligand, source organisms and experimental details. We compared sequence homology among the active site from Torpedo californica, Mus musculus and Homo sapiens with the latter two species having the closest relationship (88.9% identity). In addition, the mechanism of organophosphorus binding and the design of effective reactivators are reviewed. A curated data collection obtained with information from several sources was included for researchers working on the field. Finally, a molecular dynamics simulation with human AChE indicated that the catalytic pocket volume stabilizes around 600 Å(3), providing additional clues for drug design. PMID:27450771

  13. Fragment-based QSAR: perspectives in drug design.

    PubMed

    Salum, Lívia B; Andricopulo, Adriano D

    2009-08-01

    Drug design is a process driven by innovation and technological breakthroughs involving a combination of advanced experimental and computational methods. A broad variety of medicinal chemistry approaches can be used for the identification of hits, generation of leads, as well as to accelerate the optimization of leads into drug candidates. Quantitative structure-activity relationship (QSAR) methods are among the most important strategies that can be applied for the successful design of small molecule modulators having clinical utility. Hologram QSAR (HQSAR) is a modern 2D fragment-based QSAR method that employs specialized molecular fingerprints. HQSAR can be applied to large data sets of compounds, as well as traditional-size sets, being a versatile tool in drug design. The HQSAR approach has evolved from a classical use in the generation of standard QSAR models for data correlation and prediction into advanced drug design tools for virtual screening and pharmacokinetic property prediction. This paper provides a brief perspective on the evolution and current status of HQSAR, highlighting present challenges and new opportunities in drug design.

  14. A Web Services Composition Design framework based on Agent Organization

    NASA Astrophysics Data System (ADS)

    Li, JiaJia; Li, Bin; Zhang, Xiaowei

    Computing environments are becoming more open, distributed and pervasive. The web services compositions build for these dynamic environments will need to become more adaptable and adaptive to unexpected event. This paper defines a way for web services composition which based on agent organization. The functions of three layers, classification of agent, and agent model and agents design in this framework are introduced in details. It realizes a reliable and flexible web services composition using this framework.

  15. Design of a distributed CORBA based image processing server.

    PubMed

    Giess, C; Evers, H; Heid, V; Meinzer, H P

    2000-01-01

    This paper presents the design and implementation of a distributed image processing server based on CORBA. Existing image processing tools were encapsulated in a common way with this server. Data exchange and conversion is done automatically inside the server, hiding these tasks from the user. The different image processing tools are visible as one large collection of algorithms and due to the use of CORBA are accessible via intra-/internet.

  16. Design and Implementation of Telemedicine based on Java Media Framework

    NASA Astrophysics Data System (ADS)

    Xiong, Fengguang; Jia, Zhiyan

    According to analyze the importance and problem of telemedicine in this paper, a telemedicine system based on JMF is proposed to design and implement capturing, compression, storage, transmission, reception and play of a medical audio and video. The telemedicine system can solve existing problems that medical information is not shared, platform-dependent is high, software is incompatibilities and so on. Experimental data prove that the system has low hardware cost, and is easy to transmission and storage, and is portable and powerful.

  17. Hydrological Monitoring System Design and Implementation Based on IOT

    NASA Astrophysics Data System (ADS)

    Han, Kun; Zhang, Dacheng; Bo, Jingyi; Zhang, Zhiguang

    In this article, an embedded system development platform based on GSM communication is proposed. Through its application in hydrology monitoring management, the author makes discussion about communication reliability and lightning protection, suggests detail solutions, and also analyzes design and realization of upper computer software. Finally, communication program is given. Hydrology monitoring system from wireless communication network is a typical practical application of embedded system, which has realized intelligence, modernization, high-efficiency and networking of hydrology monitoring management.

  18. Probabilistic based design rules for intersystem LOCAS in ABWR piping

    SciTech Connect

    Ware, A.G.; Wesley, D.A.

    1993-05-01

    A methodology has been developed for probability-based standards for low-pressure piping systems that are attached to the reactor coolant loops of advanced light water reactors (ALWRs) which could experience reactor coolant loop temperatures and pressures because of multiple isolation valve failures. This accident condition is called an intersystem loss-of-coolant accident (ISLOCA). The methodology was applied to various sizes of carbon and stainless steel piping designed to advanced boiling water reactor (ABWR) temperatures and pressures.

  19. [Design of Electrocardiogram Signal Generator Based on Typical Electrocardiogram Database].

    PubMed

    Wang, Yuting; Wang, Xiaofei; Li, Dongshang; Liu, Guili

    2016-02-01

    Using LabVIEW programming and high-speed multifunction data acquisition card PCI-6251, we designed an electrocardiogram (ECG) signal generator based on Chinese typical ECG database. When the ECG signals are given off by the generator, the generator can also display the ECG information annotations at the same time, including waveform data and diagnostic results. It could be a useful assisting tool of ECG automatic diagnose instruments.

  20. [Design of Electrocardiogram Signal Generator Based on Typical Electrocardiogram Database].

    PubMed

    Wang, Yuting; Wang, Xiaofei; Li, Dongshang; Liu, Guili

    2016-02-01

    Using LabVIEW programming and high-speed multifunction data acquisition card PCI-6251, we designed an electrocardiogram (ECG) signal generator based on Chinese typical ECG database. When the ECG signals are given off by the generator, the generator can also display the ECG information annotations at the same time, including waveform data and diagnostic results. It could be a useful assisting tool of ECG automatic diagnose instruments. PMID:27382747

  1. Parallel CFD design on network-based computer

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1995-01-01

    Combining multiple engineering workstations into a network-based heterogeneous parallel computer allows application of aerodynamic optimization with advanced computational fluid dynamics codes, which can be computationally expensive on mainframe supercomputers. This paper introduces a nonlinear quasi-Newton optimizer designed for this network-based heterogeneous parallel computing environment utilizing a software called Parallel Virtual Machine. This paper will introduce the methodology behind coupling a Parabolized Navier-Stokes flow solver to the nonlinear optimizer. This parallel optimization package is applied to reduce the wave drag of a body of revolution and a wing/body configuration with results of 5% to 6% drag reduction.

  2. Design-based practice: a new perspective for social work.

    PubMed

    Cohen, Burton J

    2011-10-01

    Evidence-based practice (EBP) has emerged as an alternative to traditional social work practice and has ignited a new round in the decades-old debate about the relationship between knowledge and practice in the field. This article identifies several limitations inherent in the EBP perspective and argues that it would be unfortunate if EBP were to become the new paradigm for social work practice and education. It also presents a new perspective for social work called design-based practice (DBP), which is based on the work of Herbert Simon and Mary Parker Follett, and compares this perspective with EBP and authority-based practice. DBP rests on the belief that knowledge is derived from experience and interactions between practitioners and clients and that professional practice should be primarily concerned with "how things ought to be."

  3. CFD-Based Design Optimization Tool Developed for Subsonic Inlet

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The traditional approach to the design of engine inlets for commercial transport aircraft is a tedious process that ends with a less-than-optimum design. With the advent of high-speed computers and the availability of more accurate and reliable computational fluid dynamics (CFD) solvers, numerical optimization processes can effectively be used to design an aerodynamic inlet lip that enhances engine performance. The designers' experience at Boeing Corporation showed that for a peak Mach number on the inlet surface beyond some upper limit, the performance of the engine degrades excessively. Thus, our objective was to optimize efficiency (minimize the peak Mach number) at maximum cruise without compromising performance at other operating conditions. Using a CFD code NPARC, the NASA Lewis Research Center, in collaboration with Boeing, developed an integrated procedure at Lewis to find the optimum shape of a subsonic inlet lip and a numerical optimization code, ADS. We used a GRAPE-based three-dimensional grid generator to help automate the optimization procedure. The inlet lip shape at the crown and the keel was described as a superellipse, and the superellipse exponents and radii ratios were considered as design variables. Three operating conditions: cruise, takeoff, and rolling takeoff, were considered in this study. Three-dimensional Euler computations were carried out to obtain the flow field. At the initial design, the peak Mach numbers for maximum cruise, takeoff, and rolling takeoff conditions were 0.88, 1.772, and 1.61, respectively. The acceptable upper limits on the takeoff and rolling takeoff Mach numbers were 1.55 and 1.45. Since the initial design provided by Boeing was found to be optimum with respect to the maximum cruise condition, the sum of the peak Mach numbers at takeoff and rolling takeoff were minimized in the current study while the maximum cruise Mach number was constrained to be close to that at the existing design. With this objective, the

  4. Design of time interval generator based on hybrid counting method

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Wang, Zhaoqi; Lu, Houbing; Chen, Lian; Jin, Ge

    2016-10-01

    Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some "off-the-shelf" TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.

  5. Design of a finger base-type pulse oximeter.

    PubMed

    Lin, Bor-Shyh; Huang, Cheng-Yang; Chen, Chien-Yue; Lin, Jiun-Hung

    2016-01-01

    A pulse oximeter is a common medical instrument used for noninvasively monitoring arterial oxygen saturation (SpO2). Currently, the fingertip-type pulse oximeter is the prevalent type of pulse oximeter used. However, it is inconvenient for long-term monitoring, such as that under motion. In this study, a wearable and wireless finger base-type pulse oximeter was designed and implemented using the tissue optical simulation technique and the Monte Carlo method. The results revealed that a design involving placing the light source at 135°-165° and placing the detector at 75°-90° or 90°-105° yields the optimal conditions for measuring SpO2. Finally, the wearable and wireless finger base-type pulse oximeter was implemented and compared with the commercial fingertip-type pulse oximeter. The experimental results showed that the proposed optimal finger base-type pulse oximeter design can facilitate precise SpO2 measurement. PMID:26827310

  6. User-oriented design strategies for a Lunar base

    NASA Astrophysics Data System (ADS)

    Jukola, Paivi

    'Form follows function can be translated, among other, to communicate a desire to prioritize functional objectives for a particular design task. Thus it is less likely that a design program for a multi-functional habitat, for an all-purpose vehicle, or for a general community, will lead to most optimal, cost-effective and sustainable solutions. A power plant, a factory, a farm and a research center have over centuries had different logistical and functional requirements, despite of the local culture on various parts around the planet Earth. 'The same size fits all' concept is likely to lead to less user-friendly solutions. The paper proposes to rethink and to investigate alternative strategies to formulate objectives for a Lunar base. Diverse scientific experiments and potential future research programs for the Moon have a number of functional requirements that differ from each other. A crew of 4-6 may not be optimal for the most innovative research. The discussion is based on research of Human Factors and Design for visiting professor lectures for a Lunar base project with Howard University and NASA Marshall Space Center 2009-2010.

  7. X-33 Base Region Thermal Protection System Design Study

    NASA Technical Reports Server (NTRS)

    Lycans, Randal W.

    1998-01-01

    The X-33 is an advanced technology demonstrator for validating critical technologies and systems required for an operational Single-Stage-to-Orbit (SSTO) Reusuable Launch Vehicle (RLV). Currently under development by a unique contractor/government team led by Lockheed- Martin Skunk Works (LMSW), and managed by Marshall Space Flight Center (MSFC), the X-33 will be the prototype of the first new launch system developed by the United States since the advent of the space shuttle. This paper documents a design trade study of the X-33 base region thermal protection system (TPS). Two candidate designs were evaluated for thermal performance and weight. The first candidate was a fully reusable metallic TPS using Inconel honeycomb panels insulated with high temperature fibrous insulation, while the second was an ablator/insulator sprayed on the metallic skin of the vehicle. The TPS configurations and insulation thickness requirements were determined for the predicted main engine plume heating environments and base region entry aerothermal environments. In addition to thermal analysis of the design concepts, sensitivity studies were performed to investigate the effect of variations in key parameters of the base TPS analysis.

  8. Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry

    ERIC Educational Resources Information Center

    Sun, Daner; Looi, Chee-Kit

    2013-01-01

    The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as…

  9. Integrated Teaching of Structure-Based Drug Design and Biopharmaceutics: A Computer-Based Approach

    ERIC Educational Resources Information Center

    Sutch, Brian T.; Romero, Rebecca M.; Neamati, Nouri; Haworth, Ian S.

    2012-01-01

    Rational drug design requires expertise in structural biology, medicinal chemistry, physiology, and related fields. In teaching structure-based drug design, it is important to develop an understanding of the need for early recognition of molecules with "drug-like" properties as a key component. That is, it is not merely sufficient to teach…

  10. Design-Based Research and Video Game Based Learning: Developing the Educational Video Game "Citizen Science"

    ERIC Educational Resources Information Center

    Gaydos, Matthew J.

    2013-01-01

    This paper presents a series of studies detailing the research and development of the educational science video game "Citizen Science." It documents the design process, beginning with the initial grant and ending with a case study of two teachers who used the game in their classrooms. Following a design-based research approach, this…

  11. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer

    2005-05-01

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  12. Design and Development of Physics Module Based on Learning Style and Appropriate Technology by Employing Isman Instructional Design Model

    ERIC Educational Resources Information Center

    Alias, Norlidah; Siraj, Saedah

    2012-01-01

    The study was aimed at designing and developing a Physics module based on learning style and appropriate technology in secondary educational setting by employing Isman Instructional Design Model and to test the effectiveness of the module. The paper draws attention to the design principles which employs Isman Instructional Design Model. The…

  13. Architectural design proposal for a Martian base to continue NASA Mars Design Reference Mission

    NASA Astrophysics Data System (ADS)

    Kozicki, Janek

    The issue of extraterrestrial bases has recently been a very vivid one. There are orbital stations currently existing and humans will travel to Mars around 2030. They will need stations established there, which will provide them the proper living conditions. Firstly, it might be a small module brought from Earth (e.g. NASA Mars Design Reference Mission module (DRM)), in later stages equivalents of Earth houses may be built from local resources. The goal of this paper is to propose an architectural design for an intermediate stage — for a larger habitable unit transported from Earth. It is inspired by terrestrial portable architecture ideas. A pneumatic structure requires small volume during transportation. However, it provides large habitable space after deployment. It is designed for transport by DRM transportation module and its deployment is considerable easy and brief. An architectural solution analogous to a terrestrial house with a studio and a workshop was assumed. Its form was a result of technical and environmental limitations, and the need for an ergonomic interior. The spatial placement of following zones was carefully considered: residential, agricultural and science, as well as a garage with a workshop, transportation routes, and a control and communication center. The issues of Life Support System, energy, food, water and waste recycling were also discussed. This Martian base was designed to be crewed by a team of eight people to stay on Mars for at least 1.5 year. An Open Plan architectural solution was assumed in pneumatic modules, with a high level of modularity. Walls of standardized sizes with zip-fasteners allow free rearrangement of the interior to adapt to a new situation (e.g. damage of one of the pneumatic modules or a psychological ,,need of a change"). The architectural design focuses on ergonomic and psychological aspects of longer stay in hostile Martian environment. This solution provides Martian crew with a comfortable habitable

  14. Microsystem design framework based on tool adaptations and library developments

    NASA Astrophysics Data System (ADS)

    Karam, Jean Michel; Courtois, Bernard; Rencz, Marta; Poppe, Andras; Szekely, Vladimir

    1996-09-01

    Besides foundry facilities, Computer-Aided Design (CAD) tools are also required to move microsystems from research prototypes to an industrial market. This paper describes a Computer-Aided-Design Framework for microsystems, based on selected existing software packages adapted and extended for microsystem technology, assembled with libraries where models are available in the form of standard cells described at different levels (symbolic, system/behavioral, layout). In microelectronics, CAD has already attained a highly sophisticated and professional level, where complete fabrication sequences are simulated and the device and system operation is completely tested before manufacturing. In comparison, the art of microsystem design and modelling is still in its infancy. However, at least for the numerical simulation of the operation of single microsystem components, such as mechanical resonators, thermo-elements, elastic diaphragms, reliable simulation tools are available. For the different engineering disciplines (like electronics, mechanics, optics, etc) a lot of CAD-tools for the design, simulation and verification of specific devices are available, but there is no CAD-environment within which we could perform a (micro-)system simulation due to the different nature of the devices. In general there are two different approaches to overcome this limitation: the first possibility would be to develop a new framework tailored for microsystem-engineering. The second approach, much more realistic, would be to use the existing CAD-tools which contain the most promising features, and to extend these tools so that they can be used for the simulation and verification of microsystems and of the devices involved. These tools are assembled with libraries in a microsystem design environment allowing a continuous design flow. The approach is driven by the wish to make microsystems accessible to a large community of people, including SMEs and non-specialized academic institutions.

  15. Biotechnology-based odour control: design criteria and performance data.

    PubMed

    Quigley, C; Easter, C; Burrowes, P; Witherspoon, J

    2004-01-01

    As neighbouring areas continue to encroach upon wastewater treatment plants, there is an increasing need for odour control to mitigate potential negative offsite odorous impacts. One technology that is gaining widespread acceptance is biotechnology, which utilises the inherent ability of certain microorganisms to biodegrade offensive odorous compounds. Two main advantages of this form of treatment over other odour control technologies include the absence of hazardous chemicals and relatively low operation and maintenance requirements. The purpose of this paper is to provide information related to odour control design criteria used in sizing/selecting biotechnology-based odour control technologies, and to provide odour removal performance data obtained from several different biotechnology-based odour control systems. CH2M HILL has collected biotechnology-based odour control performance data over the last several years in order to track the continued performance of various biofilters and biotowers over time. Specifically, odour removal performance data have been collected from soil-, organic- and inorganic-media biofilters and inert inorganic media biotowers. Results indicate that biotechnology-based odour control is a viable and consistent technology capable of achieving high removal performance for odour and hydrogen sulphide. It is anticipated that the information presented in this paper will be of interest to anyone involved with odour control technology evaluation/selection or design review.

  16. Biotechnology-based odour control: design criteria and performance data.

    PubMed

    Quigley, C; Easter, C; Burrowes, P; Witherspoon, J

    2004-01-01

    As neighbouring areas continue to encroach upon wastewater treatment plants, there is an increasing need for odour control to mitigate potential negative offsite odorous impacts. One technology that is gaining widespread acceptance is biotechnology, which utilises the inherent ability of certain microorganisms to biodegrade offensive odorous compounds. Two main advantages of this form of treatment over other odour control technologies include the absence of hazardous chemicals and relatively low operation and maintenance requirements. The purpose of this paper is to provide information related to odour control design criteria used in sizing/selecting biotechnology-based odour control technologies, and to provide odour removal performance data obtained from several different biotechnology-based odour control systems. CH2M HILL has collected biotechnology-based odour control performance data over the last several years in order to track the continued performance of various biofilters and biotowers over time. Specifically, odour removal performance data have been collected from soil-, organic- and inorganic-media biofilters and inert inorganic media biotowers. Results indicate that biotechnology-based odour control is a viable and consistent technology capable of achieving high removal performance for odour and hydrogen sulphide. It is anticipated that the information presented in this paper will be of interest to anyone involved with odour control technology evaluation/selection or design review. PMID:15484776

  17. Design of a knowledge-based welding advisor

    SciTech Connect

    Kleban, S.D.

    1996-06-01

    Expert system implementation can take numerous forms ranging form traditional declarative rule-based systems with if-then syntax to imperative programming languages that capture expertise in procedural code. The artificial intelligence community generally thinks of expert systems as rules or rule-bases and an inference engine to process the knowledge. The welding advisor developed at Sandia National Laboratories and described in this paper deviates from this by codifying expertise using object representation and methods. Objects allow computer scientists to model the world as humans perceive it giving us a very natural way to encode expert knowledge. The design of the welding advisor, which generates and evaluates solutions, will be compared and contrasted to a traditional rule- based system.

  18. A WEB based approach in biomedical engineering design education.

    PubMed

    Enderle, J D; Browne, A F; Hallowell, M B

    1997-01-01

    As part of the accreditation process for university engineering programs, students are required to complete a minimum number of design credits in their course of study, typically at the senior level. Many call this the capstone course. Engineering design is a course or series of courses that bring together concepts and principles that students learn in their field of study--it involves the integration and extension of material learned in their major toward a specific project. Most often, the student is exposed to system-wide analysis, critique and evaluation for the first time. Design is an iterative, decision making process in which the student optimally applies previously learned material to meet a stated objective. At the University of Connecticut, students work in teams of 3-4 members and work on externally sponsored projects. To facilitate working with sponsors, a WEB based approach is used for reporting the progress on projects. Students are responsible for creating their own WEB sites that support both html and pdf formats. Students provide the following deliverables: weekly progress reports, project statement, specifications, project proposal, interim report, and final report. A senior design homepage also provides links to data books and other resources for use by students. We are also planning distance learning experiences between two campuses so students can work on projects that involve the use of video conferencing. PMID:9603053

  19. The discourse of design-based science classroom activities

    NASA Astrophysics Data System (ADS)

    Azevedo, Flávio S.; Martalock, Peggy L.; Keser, Tugba

    2015-06-01

    This paper is an initial contribution to a general theory in which science classroom activity types and epistemological discourse practices are systematically linked. The idea is that activities and discourse are reflexively related, so that different types of science classroom activities (e.g., scientific argumentation, modeling, and design) recruit characteristically distinct forms of participants' (students and teacher) discourse. Such a general theory would eventually map out the full spectrum of discourse practices (and their patterns of manifestation) across various kinds of science classroom activities, and reveal new relationships between forms of both discourse and activities. Because this defines a complex and long-term project, here our aim is simply to delineate this larger theoretical program and to illustrate it with a detailed case study—namely, that of mapping out and characterizing the discourse practices of design- based science classroom activities. To do so, we draw on data from an activity that is prototypically design-based—i.e., one in which students iteratively design and refine an artifact (in this case, pictorial representations of moving objects)—and examine the structure and dynamics of the whole-class discourse practices that emerge around these representational forms. We then compare and contrast these discourse practices to those of an activity that is prototypical of scientific argumentation (taken from the literature)—i.e., one in which students argue between competing theories and explanations of a phenomenon—and begin to illustrate the kinds of insights our theoretical program might afford.

  20. Design and Simulation of an Electrothermal Actuator Based Rotational Drive

    NASA Astrophysics Data System (ADS)

    Beeson, Sterling; Dallas, Tim

    2008-10-01

    As a participant in the Micro and Nano Device Engineering (MANDE) Research Experience for Undergraduates program at Texas Tech University, I learned how MEMS devices operate and the limits of their operation. Using specialized AutoCAD-based design software and the ANSYS simulation program, I learned the MEMS fabrication process used at Sandia National Labs, the design limitations of this process, the abilities and drawbacks of micro devices, and finally, I redesigned a MEMS device called the Chevron Torsional Ratcheting Actuator (CTRA). Motion is achieved through electrothermal actuation. The chevron (bent-beam) actuators cause a ratcheting motion on top of a hub-less gear so that as voltage is applied the CTRA spins. The voltage applied needs to be pulsed and the frequency of the pulses determine the angular frequency of the device. The main objective was to design electromechanical structures capable of transforming the electrical signals into mechanical motion without overheating. The design was optimized using finite element analysis in ANSYS allowing multi-physics simulations of our model system.

  1. Best practices for team-based assistive technology design courses.

    PubMed

    Goldberg, Mary R; Pearlman, Jonathan L

    2013-09-01

    Team-based design courses focused on products for people with disabilities have become relatively common, in part because of training grants such as the NSF Research to Aid Persons with Disabilities course grants. An output from these courses is an annual description of courses and projects but has yet to be complied into a "best practices guide," though it could be helpful for instructors. To meet this need, we conducted a study to generate best practices for assistive technology product development courses and how to use these courses to teach students the fundamentals of innovation. A full list of recommendations is comprised in the manuscript and include identifying a client through a reliable clinical partner; allowing for transparency between the instructors, the client, and the team(s); establishing multi-disciplinary teams; using a process-oriented vs. solution-oriented product development model; using a project management software to facilitate and archive communication and outputs; facilitating client interaction through frequent communication; seeking to develop professional role confidence to inspire students' commitment to engineering and (where applicable) rehabilitation field; publishing student designs on repositories; incorporating both formal and informal education opportunities related to design; and encouraging students to submit their designs to local or national entrepreneurship competitions.

  2. Computer-based mechanical design of overhead lines

    NASA Astrophysics Data System (ADS)

    Rusinaru, D.; Bratu, C.; Dinu, R. C.; Manescu, L. G.

    2016-02-01

    Beside the performance, the safety level according to the actual standards is a compulsory condition for distribution grids’ operation. Some of the measures leading to improvement of the overhead lines reliability ask for installations’ modernization. The constraints imposed to the new lines components refer to the technical aspects as thermal stress or voltage drop, and look for economic efficiency, too. The mechanical sizing of the overhead lines is after all an optimization problem. More precisely, the task in designing of the overhead line profile is to size poles, cross-arms and stays and locate poles along a line route so that the total costs of the line's structure to be minimized and the technical and safety constraints to be fulfilled.The authors present in this paper an application for the Computer-Based Mechanical Design of the Overhead Lines and the features of the corresponding Visual Basic program, adjusted to the distribution lines. The constraints of the optimization problem are adjusted to the existing weather and loading conditions of Romania. The outputs of the software application for mechanical design of overhead lines are: the list of components chosen for the line: poles, cross-arms, stays; the list of conductor tension and forces for each pole, cross-arm and stay for different weather conditions; the line profile drawings.The main features of the mechanical overhead lines design software are interactivity, local optimization function and high-level user-interface

  3. A novel magnetorheological damper based parallel planar manipulator design

    NASA Astrophysics Data System (ADS)

    Hoyle, A.; Arzanpour, S.; Shen, Y.

    2010-05-01

    This paper presents a novel parallel planar robot design which is low cost and simple in structure. The design addresses some of the problems, such as concentration of excessive load on the links and joints, due to wrong commanding signals being given by the controller. In this application two of the conventional actuators are replaced by magnetorheological (MR) dampers, and only one actuator is used to generate motion. The design paradigm is based on the concept that a moving object 'intuitively' follows the path with minimum resistance to its motion. This implies that virtual adoptable constraints can be used effectively to define motion trajectories. In fact, motion generation and adaptive constraints are two elements essential to implementing this strategy. In this paper, MR dampers are used to provide adjustable constraints and to guide the platform that is moved by the linear motor. The model of the MR dampers is derived using the Bouc-Wen model. This model is then used for manipulator simulation and controller design. Two controllers are developed for this manipulator: (1) a closed loop on/off one and (2) a proportional-derivative controller. Also, three different trajectories are defined and used for both the simulations and experiments. The results indicate a good agreement between the simulations and experiments. The experimental results also demonstrate the capability of the manipulator for following sophisticated trajectories.

  4. Design of a Condensation-Based Contact Angle Goniometer

    NASA Astrophysics Data System (ADS)

    Roopesh, Ajay; Damle, Viraj; Rykaczewski, Konrad

    2014-11-01

    Condensation of low surface tension fluids such as refrigerants, natural gas, and carbon dioxide is important to a variety of industrial processes. Condensation of these fluids often occurs at elevated pressures and/or cryogenic temperatures, making measurement of their wetting properties using standard approaches challenging. It was recently demonstrated that these properties are critical in designing omniphobic surfaces for low surface tension fluid condensation rate enhancement. To this end, we have developed an alternative goniometer design capable of contact angle measurement at wide pressure and temperature range. In this design, droplets are not dispensed through a pipette but generated through localized condensation on a tip of a preferentially cooled small metal wire encapsulated within a thick thermal insulator layer. Here we present a computational and an experimental study of the relation between the condensation-based goniometer geometry, subcooling, and droplet generation rate. We also compare water contact angle measurements using standard and condensation-based goniometer. KR acknowledges startup funding from ASU.

  5. Orthogonalizing EM: A design-based least squares algorithm

    PubMed Central

    Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z. G.

    2016-01-01

    We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p. Supplementary materials for this article are available online. PMID:27499558

  6. Fault Tolerance Implementation within SRAM Based FPGA Designs based upon Single Event Upset Occurrence Rates

    NASA Technical Reports Server (NTRS)

    Berg, Melanie

    2006-01-01

    Emerging technology is enabling the design community to consistently expand the amount of functionality that can be implemented within Integrated Circuits (ICs). As the number of gates placed within an FPGA increases, the complexity of the design can grow exponentially. Consequently, the ability to create reliable circuits has become an incredibly difficult task. In order to ease the complexity of design completion, the commercial design community has developed a very rigid (but effective) design methodology based on synchronous circuit techniques. In order to create faster, smaller and lower power circuits, transistor geometries and core voltages have decreased. In environments that contain ionizing energy, such a combination will increase the probability of Single Event Upsets (SEUs) and will consequently affect the state space of a circuit. In order to combat the effects of radiation, the aerospace community has developed several "Hardened by Design" (fault tolerant) design schemes. This paper will address design mitigation schemes targeted for SRAM Based FPGA CMOS devices. Because some mitigation schemes may be over zealous (too much power, area, complexity, etc.. . .), the designer should be conscious that system requirements can ease the amount of mitigation necessary for acceptable operation. Therefore, various degrees of Fault Tolerance will be demonstrated along with an analysis of its effectiveness.

  7. SYSTEM DESIGN AND ANALYSIS FOR CONCEPTUAL DESIGN OF OXYGEN-BASED PC BOILER

    SciTech Connect

    Zhen Fan; Andrew Seltzer

    2003-11-01

    The objective of the system design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the PC boiler plant by maximizing system efficiency. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 Mw plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.1% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 44% of the air-fired reference case. Compared to other CO{sub 2} sequestration technologies, the O{sub 2}-fired PC is substantially better than both natural gas combined cycles and post CO{sub 2} removal PCs and is slightly better than integrated gasification combined cycles.

  8. Multistep Reaction Based De Novo Drug Design: Generating Synthetically Feasible Design Ideas.

    PubMed

    Masek, Brian B; Baker, David S; Dorfman, Roman J; DuBrucq, Karen; Francis, Victoria C; Nagy, Stephan; Richey, Bree L; Soltanshahi, Farhad

    2016-04-25

    We describe a "multistep reaction driven" evolutionary algorithm approach to de novo molecular design. Structures generated by the approach include a proposed synthesis path intended to aid the chemist in assessing the synthetic feasibility of the ideas that are generated. The methodology is independent of how the design ideas are scored, allowing multicriteria drug design to address multiple issues including activity at one or more pharmacological targets, selectivity, physical and ADME properties, and off target liabilities; the methods are compatible with common computer-aided drug discovery "scoring" methodologies such as 2D- and 3D-ligand similarity, docking, desirability functions based on physiochemical properties, and/or predictions from 2D/3D QSAR or machine learning models and combinations thereof to be used to guide design. We have performed experiments to assess the extent to which known drug space can be covered by our approach. Using a library of 88 generic reactions and a database of ∼20 000 reactants, we find that our methods can identify "close" analogs for ∼50% of the known small molecule drugs with molecular weight less than 300. To assess the quality of the in silico generated synthetic pathways, synthesis chemists were asked to rate the viability of synthesis pathways: both "real" and in silico generated. In silico reaction schemes generated by our methods were rated as very plausible with scores similar to known literature synthesis schemes. PMID:27031173

  9. Crystallization of interleukin-18 for structure-based inhibitor design

    PubMed Central

    Krumm, Brian; Meng, Xiangzhi; Xiang, Yan; Deng, Junpeng

    2015-01-01

    Interleukin-18 (IL-18) is a pleiotropic pro-inflammatory cytokine belonging to the IL-1 superfamily. IL-18 plays an important role in host innate and acquired immune defense, with its activity being modulated in vivo by its naturally occurring antagonist IL-18 binding protein (IL-18BP). Recent crystal structures of human IL-18 (hIL-18) in complex with its antagonist or cognate receptor(s) have revealed a conserved binding interface on hIL-18 representing a promising drug target. An important step in this process is obtaining crystals of apo hIL-18 or hIL-18 in complex with small-molecule inhibitors, preferably under low ionic strength conditions. In this study, surface-entropy reduction (SER) and rational protein design were employed to facilitate the crystallization of hIL-18. The results provide an excellent platform for structure-based drug design. PMID:26057800

  10. Design of Nanoparticle-Based Carriers for Targeted Drug Delivery

    PubMed Central

    Ren, Muqing; Duval, Kayla; Guo, Xing; Chen, Zi

    2016-01-01

    Nanoparticles have shown promise as both drug delivery vehicles and direct antitumor systems, but they must be properly designed in order to maximize efficacy. Computational modeling is often used both to design new nanoparticles and to better understand existing ones. Modeled processes include the release of drugs at the tumor site and the physical interaction between the nanoparticle and cancer cells. In this article, we provide an overview of three different targeted drug delivery methods (passive targeting, active targeting and physical targeting), compare methods of action, advantages, limitations, and the current stage of research. For the most commonly used nanoparticle carriers, fabrication methods are also reviewed. This is followed by a review of computational simulations and models on nanoparticle-based drug delivery. PMID:27398083

  11. Statistical design of quantitative mass spectrometry-based proteomic experiments.

    PubMed

    Oberg, Ann L; Vitek, Olga

    2009-05-01

    We review the fundamental principles of statistical experimental design, and their application to quantitative mass spectrometry-based proteomics. We focus on class comparison using Analysis of Variance (ANOVA), and discuss how randomization, replication and blocking help avoid systematic biases due to the experimental procedure, and help optimize our ability to detect true quantitative changes between groups. We also discuss the issues of pooling multiple biological specimens for a single mass analysis, and calculation of the number of replicates in a future study. When applicable, we emphasize the parallels between designing quantitative proteomic experiments and experiments with gene expression microarrays, and give examples from that area of research. We illustrate the discussion using theoretical considerations, and using real-data examples of profiling of disease.

  12. Value-Based Insurance Design: More Health at Any Price

    PubMed Central

    Fendrick, A Mark; Martin, Jenifer J; Weiss, Alison E

    2012-01-01

    When everyone is required to pay the same out-of-pocket amount for health care services regardless of clinical indication, there is evidence of underuse of high-value services and overuse of interventions of no or marginal clinical benefit. Unlike most current health plan designs, value-based insurance design (V-BID) acknowledges heterogeneity of clinical interventions and patient characteristics. It encourages the use of services with strong evidence of clinical benefit and likewise discourages the use of low-value services. Implementing this concept into the national policy debate required a strategy that included conceptual framework development, program implementation, rigorous evaluation, media outreach, and an advocacy plan. Upon completion of this strategy involving several colleagues from multiple disciplines, Congress included language specifically authorizing V-BID in the Patient Protection and Affordable Care Act. A wide-ranging approach, planned as early as possible, can lead to the successful translation of health services research to policy. PMID:22150718

  13. Value-based insurance design: more health at any price.

    PubMed

    Fendrick, A Mark; Martin, Jenifer J; Weiss, Alison E

    2012-02-01

    When everyone is required to pay the same out-of-pocket amount for health care services regardless of clinical indication, there is evidence of underuse of high-value services and overuse of interventions of no or marginal clinical benefit. Unlike most current health plan designs, value-based insurance design (V-BID) acknowledges heterogeneity of clinical interventions and patient characteristics. It encourages the use of services with strong evidence of clinical benefit and likewise discourages the use of low-value services. Implementing this concept into the national policy debate required a strategy that included conceptual framework development, program implementation, rigorous evaluation, media outreach, and an advocacy plan. Upon completion of this strategy involving several colleagues from multiple disciplines, Congress included language specifically authorizing V-BID in the Patient Protection and Affordable Care Act. A wide-ranging approach, planned as early as possible, can lead to the successful translation of health services research to policy. PMID:22150718

  14. Control theory based airfoil design using the Euler equations

    NASA Technical Reports Server (NTRS)

    Jameson, Antony; Reuther, James

    1994-01-01

    This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using the potential flow equation with either a conformal mapping or a general coordinate system. The goal of our present work is to extend the development to treat the Euler equations in two-dimensions by procedures that can readily be generalized to treat complex shapes in three-dimensions. Therefore, we have developed methods which can address airfoil design through either an analytic mapping or an arbitrary grid perturbation method applied to a finite volume discretization of the Euler equations. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented for both the inverse problem and drag minimization problem.

  15. Learning through Web-Based Multistoryline Case Studies: A Design-Based Research

    ERIC Educational Resources Information Center

    Zeng, Rui; Blasi, Laura

    2010-01-01

    This article describes a design-based research in an undergraduate measurement and evaluation course. The study employed web-based multistoryline case studies grounded on Spiro's cognitive flexibility theory to improve students' comprehension of concepts and knowledge. The findings of this research reveal that students demonstrated positive…

  16. Post-synthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes

    PubMed Central

    Smith, Stefan J. D.; Ladewig, Bradley P.; Hill, Anita J.; Lau, Cher Hon; Hill, Matthew R.

    2015-01-01

    Gas separation membranes are one of the lowest energy technologies available for the separation of carbon dioxide from flue gas. Key to handling the immense scale of this separation is maximised membrane permeability at sufficient selectivity for CO2 over N2. For the first time it is revealed that metals can be post-synthetically exchanged in MOFs to drastically enhance gas transport performance in membranes. Ti-exchanged UiO-66 MOFs have been found to triple the gas permeability without a loss in selectivity due to several effects that include increased affinity for CO2 and stronger interactions between the polymer matrix and the Ti-MOFs. As a result, it is also shown that MOFs optimized in previous works for batch-wise adsorption applications can be applied to membranes, which have lower demands on material quantities. These membranes exhibit exceptional CO2 permeability enhancement of as much as 153% when compared to the non-exchanged UiO-66 mixed-matrix controls, which places them well above the Robeson upper bound at just a 5 wt.% loading. The fact that maximum permeability enhancement occurs at such low loadings, significantly less than the optimum for other MMMs, is a major advantage in large-scale application due to the more attainable quantities of MOF needed. PMID:25592747

  17. [Family and population in China from the sixteenth to the eighteenth century in the light of a recent work by Liu Ts'ui-Jung].

    PubMed

    Cartier, M

    1995-01-01

    Taking as its starting point the huge sample of 260,000 people born in China between the 13th and the 19th century used by Liu Ts'ui-Jung in her recent study on Lineage population, our study aims at assessing the premodern demographic evolution of China. Inasmuch the method of family reconstruction actually limited the scope of her book, Liu Ts'ui-Jung was not able to go beyond the description of a specific demographic regime defined by three elements: 1) universal marriage; 2) a moderate level of masculine fertility; and 3) a life expectation at 15 comprised between 30 and 40. These conditions would not allow the constitution of many extended households, whereas the annual rate of growth would be somewhere around 1%, a situation having little in common with the present day "population explosion". Using data included in the book, but not considered for the demonstration, we have been able to establish a dramatic deterioration of the mortality pattern from the middle of the 18th century onwards. Accordingly, the proportion of widows increases whereas population which would be characterized with a long period of growth followed by a crisis generated by a surge of the mortality rate.

  18. Nanotechnology-based intelligent drug design for cancer metastasis treatment.

    PubMed

    Gao, Yu; Xie, Jingjing; Chen, Haijun; Gu, Songen; Zhao, Rongli; Shao, Jingwei; Jia, Lee

    2014-01-01

    Traditional chemotherapy used today at clinics is mainly inherited from the thinking and designs made four decades ago when the Cancer War was declared. The potency of those chemotherapy drugs on in-vitro cancer cells is clearly demonstrated at even nanomolar levels. However, due to their non-specific effects in the body on normal tissues, these drugs cause toxicity, deteriorate patient's life quality, weaken the host immunosurveillance system, and result in an irreversible damage to human's own recovery power. Owing to their unique physical and biological properties, nanotechnology-based chemotherapies seem to have an ability to specifically and safely reach tumor foci with enhanced efficacy and low toxicity. Herein, we comprehensively examine the current nanotechnology-based pharmaceutical platforms and strategies for intelligent design of new nanomedicines based on targeted drug delivery system (TDDS) for cancer metastasis treatment, analyze the pros and cons of nanomedicines versus traditional chemotherapy, and evaluate the importance that nanomaterials can bring in to significantly improve cancer metastasis treatment.

  19. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    PubMed

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-01-01

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process. PMID:27438863

  20. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors

    PubMed Central

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-01-01

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process. PMID:27438863

  1. Design of energy-based terrain following flight control system

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Aijun; Xie, Yanwu; Tan, Jian

    2006-11-01

    Historically, aircraft longitudinal control has been realized by means of two loops: flight path (the control variable is elevator displacement) and speed control (the control variable is propulsive thrust or engine power). Both the elevator and throttle control cause coupled altitude and speed response, which exerts negative effects on longitudinal flight performance of aircraft, especially for Terrain Following(TF) flight. Energy-based method can resolve coupled problem between flight speed and path by controlling total energy rate and energy distribution rate between elevator and throttle. In this paper, energy-based control method is applied to design a TF flight control system for controlling flight altitude directly. An error control method of airspeed and altitude is adopted to eliminate the stable error of the total energy control system when decoupling control. Pitch loop and pitch rate feedback loop are designed for the system to damp the oscillatory response produced by TF system. The TF flight control system structure diagram and an aircraft point-mass energy motion model including basic control loops are given and used to simulate decoupling performance of the TF fight control system. Simulation results show that the energy-based TF flight control system can decouple flight velocity and flight path angle, exactly follow planned flight path, and greatly reduce altitude error, which is between +10m and -8m.

  2. A Design of Neural-Net Based Decouplers

    NASA Astrophysics Data System (ADS)

    Tokuda, Makoto; Yamamoto, Toru; Monden, Yoshimi

    In process industries such as the chemical plants, a good control performance cannot be obtained by simply using the linear controllers, since most processes are nonlinear multivariable systems with mutual interactions. And now, in various fields, the neural networks are well known as the representative schemes to describe the nonlinear elements included in the systems. Also, many types of neural-net based control systems have been proposed, since they have the ability of function approximation, the training ability and versatility. However, the neural networks tend to require great deal of training iteration or careful adjustments of user-specified parameters. In this paper, a design method of neural-net based decouplers is proposed for nonlinear multivariable systems. Here, the decoupler is generated by the sum of a static decoupler and a neural-net based decoupler. The former is used so that the influence of mutual interactions is roughly removed, and the latter plays a role of compensating the nonlinearities and decoupling the remaining mutual interactions. Thus, by designing the control system as the hybrid system, the burden in training the neural networks can be considerably reduced. Finally, the effectiveness of the proposed control scheme is evaluated on a simulation example.

  3. Genetic-evolution-based optimization methods for engineering design

    NASA Technical Reports Server (NTRS)

    Rao, S. S.; Pan, T. S.; Dhingra, A. K.; Venkayya, V. B.; Kumar, V.

    1990-01-01

    This paper presents the applicability of a biological model, based on genetic evolution, for engineering design optimization. Algorithms embodying the ideas of reproduction, crossover, and mutation are developed and applied to solve different types of structural optimization problems. Both continuous and discrete variable optimization problems are solved. A two-bay truss for maximum fundamental frequency is considered to demonstrate the continuous variable case. The selection of locations of actuators in an actively controlled structure, for minimum energy dissipation, is considered to illustrate the discrete variable case.

  4. The Rapid Crystallization Strategy for Structure-Based Inhibitor Design

    NASA Astrophysics Data System (ADS)

    Bergfors, Terese

    RAPID (Rapid Approaches to Pathogen Inhibitor Discovery) is an integrated center for structural biology, computational chemistry, and medicinal chemistry at Uppsala University, Sweden. The main target of the structural biology section is Mycobacterium tuberculosis. Key concepts in the crystallization strategy include minimal screening and buffer optimization. Examples are presented showing how these concepts have been successful in RAPID projects. Three screening methods are used: vapor-diffusion, micro-batch, and microfluidics. Our experiences may be relevant for other small, academic laboratories involved in structure-based inhibitor design.

  5. Odorant design based on the carbon/silicon switch strategy.

    PubMed

    Tacke, Reinhold; Metz, Stefan

    2008-06-01

    Silicon chemistry has been demonstrated to be a novel source of chemical diversity in odorant design. The carbon/silicon switch strategy, i.e., sila-replacement in known odorants, is one of the methods currently used for the development of silicon-based odorants. Examples resulting from this strategy are sila-coranol, sila-dimetol, sila-linalool, sila-muguetalcohol, sila-majantol, sila-hydratropyl acetate, sila-bourgeonal, sila-lilial, disila-versalide, and disila-okoumal.

  6. TROPO: A microcomputer based troposcatter communications system design program

    NASA Astrophysics Data System (ADS)

    Siomacco, E. M.

    1985-09-01

    This thesis presents a microcomputer based, computer-aided design program for tactical military tropospheric scatter radio systems. The program has the capability of predicting the system performance and reliability for both analog (FM/FDM) and digital troposcatter radiolinks for both analog (FM/FDM) and digital tropospheric ducting. A height gain computational model for specific elevated tropospheric ducts is derived from statistical radiosonde data. A terrain profile plot, real time radiosonde data analysis, and the probability of error for digital radiolinks are provided as program options.

  7. Laser based metal and plastics joining for lightweight design

    NASA Astrophysics Data System (ADS)

    Kahmann, Max; Quentin, Ulf; Kirchhoff, Marc; Brockmann, Rüdiger; Löffler, Klaus

    2015-03-01

    One of the most important issues in automotive industry is lightweight design, especially since the CO2 emission of new cars has to be reduced by 2020. Plastic and fiber reinforced plastics (e.g. CFRP and GFRP) receive besides new manufacturing methods and the employment of high-strength steels or non-ferrous metals increasing interest. Especially the combination of different materials such as metals and plastics to single components exhausts the entire potential on weight reduction. This article presents an approach based on short laser pulses to join such dissimilar materials in industrial applications.

  8. Optimal Constellation Design for Satellite Based Augmentation System

    NASA Astrophysics Data System (ADS)

    Kawano, Isao

    Global Positioning System (GPS) is widely utilized in daily life, for instance car navigation. Wide Area Augmentation System (WAAS) and Local Area Augmentation System (LAAS) are proposed so as to provide GPS better navigation accuracy and integrity capability. Satellite Based Augmentation System (SBAS) is a kind of WAAS and Multi-functional Transportation Satellite (MTSAT) has been developed in Japan. To improve navigation accuracy most efficiently, augmentation satellites should be so placed that minimize Geometric Dilution of Precision (GDOP) of constellation. In this paper the result of optimal constellation design for SBAS is shown.

  9. Design & implementation of distributed spatial computing node based on WPS

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Li, Guoqing; Xie, Jibo

    2014-03-01

    Currently, the research work of SIG (Spatial Information Grid) technology mostly emphasizes on the spatial data sharing in grid environment, while the importance of spatial computing resources is ignored. In order to implement the sharing and cooperation of spatial computing resources in grid environment, this paper does a systematical research of the key technologies to construct Spatial Computing Node based on the WPS (Web Processing Service) specification by OGC (Open Geospatial Consortium). And a framework of Spatial Computing Node is designed according to the features of spatial computing resources. Finally, a prototype of Spatial Computing Node is implemented and the relevant verification work under the environment is completed.

  10. Value-based insurance design: benefits beyond cost and utilization.

    PubMed

    Gibson, Teresa B; Maclean, Ross J; Chernew, Michael E; Fendrick, A Mark; Baigel, Colin

    2015-01-01

    As value-based insurance design (VBID) programs proliferate, evidence is emerging on the impact of VBID. To date, studies have largely measured VBID impact on utilization, and a few studies have assessed its impact on quality, outcomes, and cost. In this commentary we discuss these domains, summarize evidence, and propose the extension of measurement of VBID impact into areas including workplace productivity and quality of life, employee and patient engagement, and talent attraction and retention. We contend that VBID evaluations should consider a broad variety of programmatic dividends on both humanistic and health-related outcomes.

  11. Research and design of web application framework based on AJAX

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-feng; Liu, San-jun

    2013-03-01

    AJAX is an emerging presentation layer technology of Web, which allows dynamic, fast, and flexible Web application procedures to be built. AJAX can eliminate the dependence on the form in the tradition HTTP communication mode, which can achieve a fast and lightweight asynchronous communication. This paper firstly introduces the work principle of the AJAX technology, and combines the AJAX technology with the Web services technology to design a new Web application framework based on AJAX, to achieve an asynchronous communication of the browser directly with the back-end services.

  12. Lessons in risk- versus resilience-based design and management.

    PubMed

    Park, Jeryang; Seager, Thomas P; Rao, P Suresh C

    2011-07-01

    The implications of recent catastrophic disasters, including the Fukushima Daiichi nuclear power plant accident, reach well beyond the immediate, direct environmental and human health risks. In a complex coupled system, disruptions from natural disasters and man-made accidents can quickly propagate through a complex chain of networks to cause unpredictable failures in other economic or social networks and other parts of the world. Recent disasters have revealed the inadequacy of a classical risk management approach. This study calls for a new resilience-based design and management paradigm that draws upon the ecological analogues of diversity and adaptation in response to low-probability and high-consequence disruptions.

  13. Development and Validation of a Hypersonic Vehicle Design Tool Based On Waverider Design Technique

    NASA Astrophysics Data System (ADS)

    Dasque, Nastassja

    Methodologies for a tool capable of assisting design initiatives for practical waverider based hypersonic vehicles were developed and validated. The design space for vehicle surfaces was formed using an algorithm that coupled directional derivatives with the conservation laws to determine a flow field defined by a set of post-shock streamlines. The design space is used to construct an ideal waverider with a sharp leading edge. A blunting method was developed to modify the ideal shapes to a more practical geometry for real-world application. Empirical and analytical relations were then systematically applied to the resulting geometries to determine local pressure, skin-friction and heat flux. For the ideal portion of the geometry, flat plate relations for compressible flow were applied. For the blunted portion of the geometry modified Newtonian theory, Fay-Riddell theory and Modified Reynolds analogy were applied. The design and analysis methods were validated using analytical solutions as well as empirical and numerical data. The streamline solution for the flow field generation technique was compared with a Taylor-Maccoll solution and showed very good agreement. The relationship between the local Stanton number and skin friction coefficient with local Reynolds number along the ideal portion of the body showed good agreement with experimental data. In addition, an automated grid generation routine was formulated to construct a structured mesh around resulting geometries in preparation for Computational Fluid Dynamics analysis. The overall analysis of the waverider body using the tool was then compared to CFD studies. The CFD flow field showed very good agreement with the design space. However, the distribution of the surface properties was near CFD results but did not have great agreement.

  14. Design of an adaptive neural network based power system stabilizer.

    PubMed

    Liu, Wenxin; Venayagamoorthy, Ganesh K; Wunsch, Donald C

    2003-01-01

    Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation system in order to damp the low frequency power system oscillations. To overcome the drawbacks of conventional PSS (CPSS), numerous techniques have been proposed in the literature. Based on the analysis of existing techniques, this paper presents an indirect adaptive neural network based power system stabilizer (IDNC) design. The proposed IDNC consists of a neuro-controller, which is used to generate a supplementary control signal to the excitation system, and a neuro-identifier, which is used to model the dynamics of the power system and to adapt the neuro-controller parameters. The proposed method has the features of a simple structure, adaptivity and fast response. The proposed IDNC is evaluated on a single machine infinite bus power system under different operating conditions and disturbances to demonstrate its effectiveness and robustness. PMID:12850048

  15. Design and Construction of a Modular Lunar Base

    NASA Astrophysics Data System (ADS)

    Grandl, Dipl. Ing Werner

    DESIGN and CONSTRUCTION of a MODULAR LUNAR BASE Purpose: The Lunar Base Design Study is a concept for the return of humans from 2020 to the end of the century. Structure: The proposed lunar station is built of 6 cylindrical modules, each one 17 m long and 6 m in diameter. Each module is made of aluminium sheets and trapezoidal aluminium sheeting and has a weight (on earth) of approx.10.2 tonnes, including the interior equipment and furnishing. The outer wall of the cylinders is built as a double-shell system, stiffened by radial bulkheads. 8 astronauts or scientists can live and work in the station, using the modules as follows: -1 Central Living Module -2 Living Quater Modules, with private rooms for each person -1 Laboratory Module for scientific research and engineering -1 Airlock Module, containing outdoor equipment, space suits, etc. -1 Energy Plant Module, carrying solar panels a small nuclear reactor and antennas for communication. Shielding: To protect the astronauts micrometeorites and radiation, the caves between the two shells of the outer wall are filled with a 0.6 m thick layer or regolith in situ by a small teleoperated digger vehicle. Using lunar material for shielding the payload for launching can be minimized. Launch and Transport: For launching a modified ARIANE 5 launcher or similar US, Russian, Chinese or Indian rockets can be used. For the flight from Earth Orbit to Lunar Orbit a "Space-Tug", which is deployed in Earth Orbit, can be used. To land the modules on the lunar surface a "Teleoperated Rocket Crane" has been developed by the author. This vehicle will be assembled in lunar orbit and is built as a structural framework, carrying rocket engines, fuel tanks and teleoperated crawlers to move the modules on the lunar surface. To establish this basic stage of the Lunar Base 11 launches are necessary: -1 Lunar Orbiter, a small manned spaceship (3 astronauts) -1 Manned Lander and docking module for the orbiter -1 Teleoperated Rocket Crane -6

  16. Real cell overlay measurement through design based metrology

    NASA Astrophysics Data System (ADS)

    Yoo, Gyun; Kim, Jungchan; Park, Chanha; Lee, Taehyeong; Ji, Sunkeun; Jo, Gyoyeon; Yang, Hyunjo; Yim, Donggyu; Yamamoto, Masahiro; Maruyama, Kotaro; Park, Byungjun

    2014-04-01

    Until recent device nodes, lithography has been struggling to improve its resolution limit. Even though next generation lithography technology is now facing various difficulties, several innovative resolution enhancement technologies, based on 193nm wavelength, were introduced and implemented to keep the trend of device scaling. Scanner makers keep developing state-of-the-art exposure system which guarantees higher productivity and meets a more aggressive overlay specification. "The scaling reduction of the overlay error has been a simple matter of the capability of exposure tools. However, it is clear that the scanner contributions may no longer be the majority component in total overlay performance. The ability to control correctable overlay components is paramount to achieve the desired performance.(2)" In a manufacturing fab, the overlay error, determined by a conventional overlay measurement: by using an overlay mark based on IBO and DBO, often does not represent the physical placement error in the cell area of a memory device. The mismatch may arise from the size or pitch difference between the overlay mark and the cell pattern. Pattern distortion, caused by etching or CMP, also can be a source of the mismatch. Therefore, the requirement of a direct overlay measurement in the cell pattern gradually increases in the manufacturing field, and also in the development level. In order to overcome the mismatch between conventional overlay measurement and the real placement error of layer to layer in the cell area of a memory device, we suggest an alternative overlay measurement method utilizing by design, based metrology tool. A basic concept of this method is shown in figure1. A CD-SEM measurement of the overlay error between layer 1 and 2 could be the ideal method but it takes too long time to extract a lot of data from wafer level. An E-beam based DBM tool provides high speed to cover the whole wafer with high repeatability. It is enabled by using the design as a

  17. Design of HIV Protease Inhibitors Based on Inorganic Polyhedral Metallacarboranes

    SciTech Connect

    Rezacova, Pavlina; Pokorna, Jana; Brynda, Ji; Kozisek, Milan; Cigler, Petr; Lesik, Martin; Fanfrlik, Jindrich; Rezac, Jan; Saskova, Klara Grantz; Sieglova, Irena; Plesek, Jaromir; Sicha, Vaclav; Gruner, Bohumir; Oberwinkler, Heike; Sedlacek, Juraj; Krausslich, Hans-Georg; Hobza, Pavel; Kral, Vladimir; Konvalinka, Jan

    2010-04-19

    HIV protease (HIV PR) is a primary target for anti-HIV drug design. We have previously identified and characterized substituted metallacarboranes as a new class of HIV protease inhibitors. In a structure-guided drug design effort, we connected the two cobalt bis(dicarbollide) clusters with a linker to substituted ammonium group and obtained a set of compounds based on a lead formula [H{sub 2}N-(8-(C{sub 2}H{sub 4}O){sub 2}-1,2-C{sub 2}B{sub 9}H{sub 10})(1',2'-C{sub 2}B{sub 9}H{sub 11})-3,3'-Co){sub 2}]Na. We explored inhibition properties of these compounds with various substitutions, determined the HIV PR:inhibitor crystal structure, and computationally explored the conformational space of the linker. Our results prove the capacity of linker-substituted dual-cage cobalt bis(dicarbollides) as lead compounds for design of more potent inhibitors of HIV PR.

  18. Design, modeling and simulation of MEMS-based silicon Microneedles

    NASA Astrophysics Data System (ADS)

    Amin, F.; Ahmed, S.

    2013-06-01

    The advancement in semiconductor process engineering and nano-scale fabrication technology has made it convenient to transport specific biological fluid into or out of human skin with minimum discomfort. Fluid transdermal delivery systems such as Microneedle arrays are one such emerging and exciting Micro-Electro Mechanical System (MEMS) application which could lead to a total painless fluid delivery into skin with controllability and desirable yield. In this study, we aimed to revisit the problem with modeling, design and simulations carried out for MEMS based silicon hollow out of plane microneedle arrays for biomedical applications particularly for transdermal drug delivery. An approximate 200 μm length of microneedle with 40 μm diameter of lumen has been successfully shown formed by isotropic and anisotropic etching techniques using MEMS Pro design tool. These microneedles are arranged in size of 2 × 4 matrix array with center to center spacing of 750 μm. Furthermore, comparisons for fluid flow characteristics through these microneedle channels have been modeled with and without the contribution of the gravitational forces using mathematical models derived from Bernoulli Equation. Physical Process simulations have also been performed on TCAD SILVACO to optimize the design of these microneedles aligned with the standard Si-Fabrication lines.

  19. Host defense mechanism-based rational design of live vaccine.

    PubMed

    Jang, Yo Han; Byun, Young Ho; Lee, Kwang-Hee; Park, Eun-Sook; Lee, Yun Ha; Lee, Yoon-Jae; Lee, Jinhee; Kim, Kyun-Hwan; Seong, Baik Lin

    2013-01-01

    Live attenuated vaccine (LAV), mimicking natural infection, provides an excellent protection against microbial infection. The development of LAV, however, still remains highly empirical and the rational design of clinically useful LAV is scarcely available. Apoptosis and caspase activation are general host antiviral responses in virus-infected cells. Utilizing these tightly regulated host defense mechanisms, we present a novel apoptosis-triggered attenuation of viral virulence as a rational design of live attenuated vaccine with desired levels of safety, efficacy, and productivity. Mutant influenza viruses carrying caspase recognition motifs in viral NP and the interferon-antagonist NS1 proteins were highly attenuated both in vitro and in vivo by caspase-mediated cleavage of those proteins in infected cells. Both viral replication and interferon-resistance were substantially reduced, resulting in a marked attenuation of virulence of the virus. Despite pronounced attenuation, the viruses demonstrated high growth phenotype in embryonated eggs at lower temperature, ensuring its productivity. A single dose vaccination with the mutant virus elicited high levels of systemic and mucosal antibody responses and provided complete protection against both homologous and heterologous lethal challenges in mouse model. While providing a practical means to generate seasonal or pandemic influenza live vaccines, the sensitization of viral proteins to pathogen-triggered apoptotic signals presents a potentially universal, mechanism-based rational design of live vaccines against many viral infections.

  20. Rethinking Physics for Biologists: A design-based research approach

    NASA Astrophysics Data System (ADS)

    Sawtelle, Vashti

    2015-03-01

    Biology majors at the University of Maryland are required to take courses in biology, chemistry, and physics - but they often see these courses as disconnected. Over the past three years the NEXUS/Physics course has been working to develop an interdisciplinary learning environment that bridges the disciplinary domains of biology and physics. Across the three years we have gone from teaching in a small class with one instructor to teaching in a large lecture hall with multiple instructors. We have used a design-based research approach to support critical reflection of the course at multiple-time scales. In this presentation I will detail our process of collecting systematic data, listening to and valuing students' reasoning, and bridging diverse perspectives led. I will demonstrate how this process led to improved curricular design, refined assessment objectives, and new design heuristics. This work is supported by NSF-TUES DUE 11-22818, the HHMI NEXUS grant, and a NSF Graduate Research Fellowship (DGE 0750616).

  1. Compressive Sensing Based Design of Sparse Tripole Arrays.

    PubMed

    Hawes, Matthew; Liu, Wei; Mihaylova, Lyudmila

    2015-12-10

    This paper considers the problem of designing sparse linear tripole arrays. In such arrays at each antenna location there are three orthogonal dipoles, allowing full measurement of both the horizontal and vertical components of the received waveform. We formulate this problem from the viewpoint of Compressive Sensing (CS). However, unlike for isotropic array elements (single antenna), we now have three complex valued weight coefficients associated with each potential location (due to the three dipoles), which have to be simultaneously minimised. If this is not done, we may only set the weight coefficients of individual dipoles to be zero valued, rather than complete tripoles, meaning some dipoles may remain at each location. Therefore, the contributions of this paper are to formulate the design of sparse tripole arrays as an optimisation problem, and then we obtain a solution based on the minimisation of a modified l1 norm or a series of iteratively solved reweighted minimisations, which ensure a truly sparse solution. Design examples are provided to verify the effectiveness of the proposed methods and show that a good approximation of a reference pattern can be achieved using fewer tripoles than a Uniform Linear Array (ULA) of equivalent length.

  2. Compressive Sensing Based Design of Sparse Tripole Arrays

    PubMed Central

    Hawes, Matthew; Liu, Wei; Mihaylova, Lyudmila

    2015-01-01

    This paper considers the problem of designing sparse linear tripole arrays. In such arrays at each antenna location there are three orthogonal dipoles, allowing full measurement of both the horizontal and vertical components of the received waveform. We formulate this problem from the viewpoint of Compressive Sensing (CS). However, unlike for isotropic array elements (single antenna), we now have three complex valued weight coefficients associated with each potential location (due to the three dipoles), which have to be simultaneously minimised. If this is not done, we may only set the weight coefficients of individual dipoles to be zero valued, rather than complete tripoles, meaning some dipoles may remain at each location. Therefore, the contributions of this paper are to formulate the design of sparse tripole arrays as an optimisation problem, and then we obtain a solution based on the minimisation of a modified l1 norm or a series of iteratively solved reweighted minimisations, which ensure a truly sparse solution. Design examples are provided to verify the effectiveness of the proposed methods and show that a good approximation of a reference pattern can be achieved using fewer tripoles than a Uniform Linear Array (ULA) of equivalent length. PMID:26690436

  3. Duckweed based wastewater treatment (DWWT): design guidelines for hot climates.

    PubMed

    Smith, M D; Moelyowati, I

    2001-01-01

    Conventional wastewater treatment systems are expensive in either investment or running costs. On the other hand, waste stabilisation ponds may be unable to meet effluent standards for nutrients. Wastewater treatment using duckweed therefore becomes more significant as an option capable of achieving effluent standards and generating revenue from selling the duckweed. However existing duckweed based wastewater treatment (DWWT) systems have high land requirements despite being able to reduce concentrations of organic compounds and pathogens to acceptable levels. Improved guidelines for the design of DWWT are necessary to obtain a reliable and cost-effective wastewater treatment plant using duckweed. This guideline provides a DWWT design program using spreadsheets for different configurations of wastewater treatment units using duckweed. The design program developed suggests that a combination of anaerobic ponds, DWWT systems and maturation ponds can minimise land requirements and capital costs while achieving specified effluent standards. In order to achieve effluent standards, the land required is typically from 1.5 to 1.8 m2/capita (excluding associated facilities), capital costs are in the range from 7.9 to 9.7 USD/capita, with a retention time from 15 to 18 days. Income generation is dependent mainly on the social and cultural acceptability of duckweed use within the community.

  4. Contourlet Filter Design Based on Chebyshev Best Uniform Approximation

    NASA Astrophysics Data System (ADS)

    Yang, Guoan; Fang, Xiaofeng; Jing, Mingli; Zhang, Songjun; Hou, Ming

    2010-12-01

    The contourlet transform can deal effectively with images which have directional information such as contour and texture. In contrast to wavelets for which there exists many good filters, the contourlet filter design for image processing applications is still an ongoing work. Therefore, this paper presents an approach for designing the contourlet filter based on the Chebyshev best uniform approximation for achieving an efficient image denoising applications using hidden Markov tree models in the contourlet domain. Here, we design both the optimal 9/7 wavelet filter banks with rational coefficients and new pkva 12 filter. In this paper, the Laplacian pyramid followed by the direction filter banks decomposition in the contourlet transform using the two filter banks above and the image denoising applications in the contourlet hidden Markov tree model are implemented, respectively. The experimental results show that the denoising performance of the test image Zelda in terms of peak signal-to-noise ratio is improved by 0.33 dB than using CDF 9/7 filter banks with irrational coefficients on the JPEG2000 standard and standard pkva 12 filter, and visual effects are as good as compared with the research results of Duncan D.-Y. Po and Minh N. Do.

  5. Design of a vehicle based system to prevent ozone loss

    NASA Technical Reports Server (NTRS)

    Lynn, Sean R.; Bunker, Deborah; Hesbach, Thomas D., Jr.; Howerton, Everett B.; Hreinsson, G.; Mistr, E. Kirk; Palmer, Matthew E.; Rogers, Claiborne; Tischler, Dayna S.; Wrona, Daniel J.

    1993-01-01

    Reduced quantities of ozone in the atmosphere allow greater levels of ultraviolet light (UV) radiation to reach the earth's surface. This is known to cause skin cancer and mutations. Chlorine liberated from Chlorofluorocarbons (CFC's) and natural sources initiate the destruction of stratospheric ozone through a free radical chain reaction. The project goals are to understand the processes which contribute to stratospheric ozone loss, examine ways to prevent ozone loss, and design a vehicle-based system to carry out the prevention scheme. The 1992/1993 design objectives were to accomplish the first two goals and define the requirements for an implementation vehicle to be designed in detail starting next year. Many different ozone intervention schemes have been proposed though few have been researched and none have been tested. A scheme proposed by R.J. Cicerone, Scott Elliot and R.P.Turco late in 1991 was selected because of its research support and economic feasibility. This scheme uses hydrocarbon injected into the Antarctic ozone hole to form stable compounds with free chlorine, thus reducing ozone depletion. Because most polar ozone depletion takes place during a 3-4 week period each year, the hydrocarbon must be injected during this time window. A study of the hydrocarbon injection requirements determined that 100 aircraft traveling Mach 2.4 at a maximum altitude of 66,000 ft. would provide the most economic approach to preventing ozone loss. Each aircraft would require an 8,000 nm. range and be able to carry 35,000 lbs. of propane. The propane would be stored in a three-tank high pressure system. Missions would be based from airport regions located in South America and Australia. To best provide the requirements of mission analysis, an aircraft with L/D(sub cruise) = 10.5, SFC = 0.65 (the faculty advisor suggested that this number is too low) and a 250,000 lb TOGW was selected as a baseline. Modularity and multi-role functionality were selected to be key

  6. Do Performance-Based Codes Support Universal Design in Architecture?

    PubMed

    Grangaard, Sidse; Frandsen, Anne Kathrine

    2016-01-01

    The research project 'An analysis of the accessibility requirements' studies how Danish architectural firms experience the accessibility requirements of the Danish Building Regulations and it examines their opinions on how future regulative models can support innovative and inclusive design - Universal Design (UD). The empirical material consists of input from six workshops to which all 700 Danish Architectural firms were invited, as well as eight group interviews. The analysis shows that the current prescriptive requirements are criticized for being too homogenous and possibilities for differentiation and zoning are required. Therefore, a majority of professionals are interested in a performance-based model because they think that such a model will support 'accessibility zoning', achieving flexibility because of different levels of accessibility in a building due to its performance. The common understanding of accessibility and UD is directly related to buildings like hospitals and care centers. When the objective is both innovative and inclusive architecture, the request of a performance-based model should be followed up by a knowledge enhancement effort in the building sector. Bloom's taxonomy of educational objectives is suggested as a tool for such a boost. The research project has been financed by the Danish Transport and Construction Agency. PMID:27534292

  7. Design and simulation of microspectrometer based on torsional MEMS grating

    NASA Astrophysics Data System (ADS)

    Yan, Bin; Yuan, Weizheng; Sun, Ruikang; Qiao, Dayong; Yu, Yiting; Li, Taiping

    2010-10-01

    Micro-opto-electro-mechanical systems (MOEMS) has prominent advantages over conventional optical devices, such as smaller, lighter, more stable, lower cost and power consumption. It has been widely applied in the last few years. This paper presents a micro spectrometer based on torsional MEMS grating with micromachining process. As a diffractive component in the micro spectrometer, the torsional MEMS grating is actuated by electrostatic force to scan the spectrum. In contrast to common linear detector arrays with stationary diffraction grating and non-fixed grating rotated by stepper motor to scan spectrum used in most micro spectrometer, MEMS-based spectrometer is dynamically controllable, and has no mechanical moving parts with small size. ZEMAX is used for design, optimization, and simulation analysis of the micro spectrometer with multi-configurations in the cross Czerny-Turner optical system. The results indicate that torsional MEMS grating operates at a torsion angle of +/-3 degree, the spectrometer can scan spectral range of 800-1600nm in NIR (near infrared), spectral resolution is around 10 nm, and the whole spectrometer has a volume of 80mm×55mm×30mm. The study provides an initial theoretical foundation for the further development and design.

  8. Entropy-Based Search Algorithm for Experimental Design

    NASA Astrophysics Data System (ADS)

    Malakar, N. K.; Knuth, K. H.

    2011-03-01

    The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. This algorithm is inspired by Skilling's nested sampling algorithm used in inference and borrows the concept of a rising threshold while a set of experiment samples are maintained. We demonstrate that this algorithm not only selects highly relevant experiments, but also is more efficient than brute force search. Such entropic search techniques promise to greatly benefit autonomous experimental design.

  9. Do Performance-Based Codes Support Universal Design in Architecture?

    PubMed

    Grangaard, Sidse; Frandsen, Anne Kathrine

    2016-01-01

    The research project 'An analysis of the accessibility requirements' studies how Danish architectural firms experience the accessibility requirements of the Danish Building Regulations and it examines their opinions on how future regulative models can support innovative and inclusive design - Universal Design (UD). The empirical material consists of input from six workshops to which all 700 Danish Architectural firms were invited, as well as eight group interviews. The analysis shows that the current prescriptive requirements are criticized for being too homogenous and possibilities for differentiation and zoning are required. Therefore, a majority of professionals are interested in a performance-based model because they think that such a model will support 'accessibility zoning', achieving flexibility because of different levels of accessibility in a building due to its performance. The common understanding of accessibility and UD is directly related to buildings like hospitals and care centers. When the objective is both innovative and inclusive architecture, the request of a performance-based model should be followed up by a knowledge enhancement effort in the building sector. Bloom's taxonomy of educational objectives is suggested as a tool for such a boost. The research project has been financed by the Danish Transport and Construction Agency.

  10. Design of Functional Materials based on Liquid Crystalline Droplets

    PubMed Central

    Miller, Daniel S.; Wang, Xiaoguang; Abbott, Nicholas L.

    2014-01-01

    This brief perspective focuses on recent advances in the design of functional soft materials that are based on confinement of low molecular weight liquid crystals (LCs) within micrometer-sized droplets. While the ordering of LCs within micrometer-sized domains has been explored extensively in polymer-dispersed LC materials, recent studies performed with LC domains with precisely defined size and interfacial chemistry have unmasked observations of confinement-induced ordering of LCs that do not follow previously reported theoretical predictions. These new findings, which are enabled in part by advances in the preparation of LCs encapsulated in polymeric shells, are opening up new opportunities for the design of soft responsive materials based on surface-induced ordering transitions. These materials are also providing new insights into the self-assembly of biomolecular and colloidal species at defects formed by LCs confined to micrometer-sized domains. The studies presented in this perspective serve additionally to highlight gaps in knowledge regarding the ordering of LCs in confined systems. PMID:24882944

  11. Design, fabrication and characterization of LTCC-based electromagnetic microgenerators

    NASA Astrophysics Data System (ADS)

    Gierczak, M.; Markowski, P.; Dziedzic, A.

    2016-02-01

    Design, manufacturing process and properties of electromagnetic microgenerators fabricated in LTCC (Low Temperature Co-fired Ceramics) technology are presented in this paper. Electromagnetic microgenerators consist of planar coils spatially arranged on several layers of LTCC and of a multipole permanent magnet. Two different patterns of coils with 2-, 8-,10- and 12-layers and outer diameter of 50 mm were designed and fabricated. Silver-based pastes ESL 903-A or DuPont 6145 were used. In order to estimate the inductance of a single spatial coil the Greenhouse (self-inductance) and Hoer (mutual inductance) calculation methods were used. To verify the calculation results a single-layer coil was fabricated for each pattern and its inductance was measured using the precision RLC Meter. Fabricated LTCC microgenerators with embedded coils allow to generate voltage higher than ten volts and the electrical output power of approximately 600 mW at the rotor rotation speed of 12 thousands rpm. The self-made system was used for characterization of LTCC-based electromagnetic microgenerators.

  12. Design of transient light signal simulator based on FPGA

    NASA Astrophysics Data System (ADS)

    Kang, Jing; Chen, Rong-li; Wang, Hong

    2014-11-01

    A design scheme of transient light signal simulator based on Field Programmable gate Array (FPGA) was proposed in this paper. Based on the characteristics of transient light signals and measured feature points of optical intensity signals, a fitted curve was created in MATLAB. And then the wave data was stored in a programmed memory chip AT29C1024 by using SUPERPRO programmer. The control logic was realized inside one EP3C16 FPGA chip. Data readout, data stream cache and a constant current buck regulator for powering high-brightness LEDs were all controlled by FPGA. A 12-Bit multiplying CMOS digital-to-analog converter (DAC) DAC7545 and an amplifier OPA277 were used to convert digital signals to voltage signals. A voltage-controlled current source constituted by a NPN transistor and an operational amplifier controlled LED array diming to achieve simulation of transient light signal. LM3405A, 1A Constant Current Buck Regulator for Powering LEDs, was used to simulate strong background signal in space. Experimental results showed that the scheme as a transient light signal simulator can satisfy the requests of the design stably.

  13. a Wave-Based Controller Design for General Flexible Structures

    NASA Astrophysics Data System (ADS)

    Matsuda, K.; Kanemitsu, Y.; Kijimoto, S.

    1998-09-01

    This paper treats a travelling-wave approach to suppressing vibration of general flexible structures. This approach aims to minimize all of the reflective waves at actuator positions located at the structural boundaries. A variation of the transfer matrix method shows the property that the elastic motion is obtained by superposing the waves travelling in a flexible structure; this transfer matrix method is based on the finite element method for structural analysis. Moreover, the method gives the propagation and scattering relations of the waves in the structure. Since these relations are described by a complex-valued function with respect to Laplace variable, they are transformed into a real-valued form to design a controller by a lot of state-space methods. This transformation is given by diagonalizing the unity transfer matrix into a real-Jordan form. The problem is then formulated as an Hxoptimization problem to find a compensator minimizing the reflective waves at the actuators. The designed compensator is based only on the scattering relations at the controller positions and on the sensor-input/controller-output relations. A multispan flexible beam is used to verify the validity of the present approach. It is numerically shown that the approach is able to achieve good damping improvement in the closed-loop system.

  14. Computer Based Porosity Design by Multi Phase Topology Optimization

    NASA Astrophysics Data System (ADS)

    Burblies, Andreas; Busse, Matthias

    2008-02-01

    A numerical simulation technique called Multi Phase Topology Optimization (MPTO) based on finite element method has been developed and refined by Fraunhofer IFAM during the last five years. MPTO is able to determine the optimum distribution of two or more different materials in components under thermal and mechanical loads. The objective of optimization is to minimize the component's elastic energy. Conventional topology optimization methods which simulate adaptive bone mineralization have got the disadvantage that there is a continuous change of mass by growth processes. MPTO keeps all initial material concentrations and uses methods adapted from molecular dynamics to find energy minimum. Applying MPTO to mechanically loaded components with a high number of different material densities, the optimization results show graded and sometimes anisotropic porosity distributions which are very similar to natural bone structures. Now it is possible to design the macro- and microstructure of a mechanical component in one step. Computer based porosity design structures can be manufactured by new Rapid Prototyping technologies. Fraunhofer IFAM has applied successfully 3D-Printing and Selective Laser Sintering methods in order to produce very stiff light weight components with graded porosities calculated by MPTO.

  15. Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer; Zhen Fan

    2005-09-01

    sequestration. FW has developed a conceptual design of an O{sub 2} fired boiler to determine overall plant performance and economics. Five subtasks were conducted: (1) a literature review, (2) a system design and analysis, (3) a low NOx burner design and analysis, (4) a furnace and heat recovery area design analysis, and (5) an economic analysis. The objective of the literature search is to locate any data/information relevant to the Oxygen-Based PC Boiler conceptual design. The objective of the system design and analysis task is to optimize the PC boiler plant by maximizing system efficiency within practical considerations. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 MW plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.6% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 65% of the air-fired reference case. The objective of the low NOx burner design and analysis task is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent CFD computer program. Four burner designs were developed: (1) with no OFG and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall

  16. Antibody humanization by structure-based computational protein design

    PubMed Central

    Choi, Yoonjoo; Hua, Casey; Sentman, Charles L; Ackerman, Margaret E; Bailey-Kellogg, Chris

    2015-01-01

    Antibodies derived from non-human sources must be modified for therapeutic use so as to mitigate undesirable immune responses. While complementarity-determining region (CDR) grafting-based humanization techniques have been successfully applied in many cases, it remains challenging to maintain the desired stability and antigen binding affinity upon grafting. We developed an alternative humanization approach called CoDAH (“Computationally-Driven Antibody Humanization”) in which computational protein design methods directly select sets of amino acids to incorporate from human germline sequences to increase humanness while maintaining structural stability. Retrospective studies show that CoDAH is able to identify variants deemed beneficial according to both humanness and structural stability criteria, even for targets lacking crystal structures. Prospective application to TZ47, a murine anti-human B7H6 antibody, demonstrates the approach. Four diverse humanized variants were designed, and all possible unique VH/VL combinations were produced as full-length IgG1 antibodies. Soluble and cell surface expressed antigen binding assays showed that 75% (6 of 8) of the computationally designed VH/VL variants were successfully expressed and competed with the murine TZ47 for binding to B7H6 antigen. Furthermore, 4 of the 6 bound with an estimated KD within an order of magnitude of the original TZ47 antibody. In contrast, a traditional CDR-grafted variant could not be expressed. These results suggest that the computational protein design approach described here can be used to efficiently generate functional humanized antibodies and provide humanized templates for further affinity maturation. PMID:26252731

  17. Structure-based design of a new bisintercalating anthracycline antibiotic.

    PubMed

    Chaires, J B; Leng, F; Przewloka, T; Fokt, I; Ling, Y H; Perez-Soler, R; Priebe, W

    1997-01-31

    A new bisintercalating anthracycline antibiotic, WP631, has been designed and synthesized. The rational design of the new compound was based upon the geometry of monomeric anthracyclines bound to DNA oligonucleotides observed in high-resolution crystal structures. Monomeric units of daunorubicin have been linked through their reactive 3' NH2 substituents on the daunosamine moieties to form the new bisanthracycline WP631. Viscosity studies confirmed that WP631 binds to DNA by bisintercalation. Differential scanning calorimetry and UV melting experiments were used to measure the ultratight binding of WP631 to DNA. The binding constant for the interaction of WP631 with herring sperm DNA was determined to be 2.7 x 10(11) M-1 at 20 degrees C. The large, favorable binding free energy of -15.3 kcal mol-1 was found to result from a large, negative enthalpic contribution of -30.2 kcal mol-1. A molecular model was generated that shows the favorable stereochemical fit of the linker in the DNA minor groove. The cytotoxicity of WP631 was compared to that of doxorubicin using MCF-7-sensitive and MCF-7/VP-16 MRP-mediated multidrug-resistant cell lines. These initial studies showed that while WP631 is slightly less cytotoxic than doxorubicin in the sensitive cell line, it appears to overcome MRP-mediated multidrug resistance and was much more cytotoxic against the MCF-7/VP-16 cell line than was doxorubicin. The design of new potential anticancer agents based on known structural principles was found to produce a compound with significantly increased DNA binding affinity and with interesting biological activity.

  18. Vaccines based on structure-based design provide protection against infectious diseases.

    PubMed

    Thomas, Sunil; Luxon, Bruce A

    2013-11-01

    Vaccines elicit immune responses, provide protection against microorganisms and are considered as one of the most successful medical interventions against infectious diseases. Vaccines can be produced using attenuated virus or bacteria, recombinant proteins, bacterial polysaccharides, carbohydrates or plasmid DNA. Conventional vaccines rely on the induction of immune responses against antigenic proteins to be effective. The genetic diversity of microorganisms, coupled with the high degree of sequence variability in antigenic proteins, presents a challenge to developing broadly effective conventional vaccines. The observation that whole protein antigens are not necessarily essential for inducing immunity has led to the emergence of a new branch of vaccine design termed 'structural vaccinology'. Structure-based vaccines are designed on the rationale that protective epitopes should be sufficient to induce immune responses and provide protection against pathogens. Recent studies demonstrated that designing structure-based vaccine candidates with multiple epitopes induce a higher immune response. As yet there are no commercial vaccines available based on structure-based design and most of the structure-based vaccine candidates are in the preclinical stages of development. This review focuses on recent advances in structure-based vaccine candidates and their application in providing protection against infectious diseases.

  19. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials.

    PubMed

    Yao, Huifeng; Ye, Long; Zhang, Hao; Li, Sunsun; Zhang, Shaoqing; Hou, Jianhui

    2016-06-22

    Advances in the design and application of highly efficient conjugated polymers and small molecules over the past years have enabled the rapid progress in the development of organic photovoltaic (OPV) technology as a promising alternative to conventional solar cells. Among the numerous OPV materials, benzodithiophene (BDT)-based polymers and small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking 10% efficiency barrier in the single junction OPV devices. Remarkably, the OPV device featured by BDT-based polymer has recently demonstrated an impressive PCE of 11.21%, indicating the great potential of this class of materials in commercial photovoltaic applications. In this review, we offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship. We believe more exciting BDT-based photovoltaic materials and devices will be developed in the near future. PMID:27251307

  20. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials.

    PubMed

    Yao, Huifeng; Ye, Long; Zhang, Hao; Li, Sunsun; Zhang, Shaoqing; Hou, Jianhui

    2016-06-22

    Advances in the design and application of highly efficient conjugated polymers and small molecules over the past years have enabled the rapid progress in the development of organic photovoltaic (OPV) technology as a promising alternative to conventional solar cells. Among the numerous OPV materials, benzodithiophene (BDT)-based polymers and small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking 10% efficiency barrier in the single junction OPV devices. Remarkably, the OPV device featured by BDT-based polymer has recently demonstrated an impressive PCE of 11.21%, indicating the great potential of this class of materials in commercial photovoltaic applications. In this review, we offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship. We believe more exciting BDT-based photovoltaic materials and devices will be developed in the near future.

  1. Designing the Cloud-based DOE Systems Biology Knowledgebase

    SciTech Connect

    Lansing, Carina S.; Liu, Yan; Yin, Jian; Corrigan, Abigail L.; Guillen, Zoe C.; Kleese van Dam, Kerstin; Gorton, Ian

    2011-09-01

    Systems Biology research, even more than many other scientific domains, is becoming increasingly data-intensive. Not only have advances in experimental and computational technologies lead to an exponential increase in scientific data volumes and their complexity, but increasingly such databases themselves are providing the basis for new scientific discoveries. To engage effectively with these community resources, integrated analyses, synthesis and simulation software is needed, regularly supported by scientific workflows. In order to provide a more collaborative, community driven research environment for this heterogeneous setting, the Department of Energy (DOE) has decided to develop a federated, cloud based cyber infrastructure - the Systems Biology Knowledgebase (Kbase). Pacific Northwest National Laboratory (PNNL) with its long tradition in data intensive science lead two of the five initial pilot projects, these two focusing on defining and testing the basic federated cloud-based system architecture and develop a prototype implementation. Hereby the community wide accessibility of biological data and the capability to integrate and analyze this data within its changing research context were seen as key technical functionalities the Kbase needed to enable. In this paper we describe the results of our investigations into the design of a cloud based federated infrastructure for: (1) Semantics driven data discovery, access and integration; (2) Data annotation, publication and sharing; (3) Workflow enabled data analysis; and (4) Project based collaborative working. We describe our approach, exemplary use cases and our prototype implementation that demonstrates the feasibility of this approach.

  2. Design Considerations of Help Options in Computer-Based L2 Listening Materials Informed by Participatory Design

    ERIC Educational Resources Information Center

    Cárdenas-Claros, Mónica Stella

    2015-01-01

    This paper reports on the findings of two qualitative exploratory studies that sought to investigate design features of help options in computer-based L2 listening materials. Informed by principles of participatory design, language learners, software designers, language teachers, and a computer programmer worked collaboratively in a series of…

  3. User Preferences for Web-Based Module Design Layout and Design Impact on Information Recall Considering Age

    ERIC Educational Resources Information Center

    Pomales-García, Cristina; Rivera-Nivar, Mericia

    2015-01-01

    Research in design of Web-based modules should incorporate aging as an important factor given the diversity of the current workforce. This work aims to understand how Web-Based Learning modules can be designed to accommodate young (25-35 years) as well as older (55-65 years) users by: (1) identifying how information sources (instructor video,…

  4. Designing and Implementing a PBL Course on Educational Digital Video Production: Lessons Learned from a Design-Based Research

    ERIC Educational Resources Information Center

    Hakkarainen, Paivi

    2009-01-01

    This paper reports on a design-based research (DBR) process for designing, implementing, and refining a problem-based learning (PBL) course on educational digital video (DV) use and production at the University of Lapland's Faculty of Education. The study focuses on the students' learning processes and outcomes from the viewpoint of meaningful…

  5. The Design of Model-Based Training Programs

    NASA Technical Reports Server (NTRS)

    Polson, Peter; Sherry, Lance; Feary, Michael; Palmer, Everett; Alkin, Marty; McCrobie, Dan; Kelley, Jerry; Rosekind, Mark (Technical Monitor)

    1997-01-01

    This paper proposes a model-based training program for the skills necessary to operate advance avionics systems that incorporate advanced autopilots and fight management systems. The training model is based on a formalism, the operational procedure model, that represents the mission model, the rules, and the functions of a modem avionics system. This formalism has been defined such that it can be understood and shared by pilots, the avionics software, and design engineers. Each element of the software is defined in terms of its intent (What?), the rationale (Why?), and the resulting behavior (How?). The Advanced Computer Tutoring project at Carnegie Mellon University has developed a type of model-based, computer aided instructional technology called cognitive tutors. They summarize numerous studies showing that training times to a specified level of competence can be achieved in one third the time of conventional class room instruction. We are developing a similar model-based training program for the skills necessary to operation the avionics. The model underlying the instructional program and that simulates the effects of pilots entries and the behavior of the avionics is based on the operational procedure model. Pilots are given a series of vertical flightpath management problems. Entries that result in violations, such as failure to make a crossing restriction or violating the speed limits, result in error messages with instruction. At any time, the flightcrew can request suggestions on the appropriate set of actions. A similar and successful training program for basic skills for the FMS on the Boeing 737-300 was developed and evaluated. The results strongly support the claim that the training methodology can be adapted to the cockpit.

  6. A design approach for small vision-based autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Edwards, Barrett B.; Fife, Wade S.; Archibald, James K.; Lee, Dah-Jye; Wilde, Doran K.

    2006-10-01

    This paper describes the design of a small autonomous vehicle based on the Helios computing platform, a custom FPGA-based board capable of supporting on-board vision. Target applications for the Helios computing platform are those that require lightweight equipment and low power consumption. To demonstrate the capabilities of FPGAs in real-time control of autonomous vehicles, a 16 inch long R/C monster truck was outfitted with a Helios board. The platform provided by such a small vehicle is ideal for testing and development. The proof of concept application for this autonomous vehicle was a timed race through an environment with obstacles. Given the size restrictions of the vehicle and its operating environment, the only feasible on-board sensor is a small CMOS camera. The single video feed is therefore the only source of information from the surrounding environment. The image is then segmented and processed by custom logic in the FPGA that also controls direction and speed of the vehicle based on visual input.

  7. [Design of hyperspectral imaging system based on LCTF].

    PubMed

    Zhang, Dong-ying; Hong, Jin; Tang, Wei-ping; Yang, Wei-feng; Luo, Jun; Qiao, Yan-li; Zhang, Xie

    2008-10-01

    A new compact lightweight imaging system for hyperspectral imaging is described. The system can be thought of as the substitute for traditional mechanical filter-wheel sensor. The system is based on different techniques. It uses an electronic controlled LCTF(liquid crystal tunable filter) which provided rapid and vibrationless selection of any wavelength in the visible to IR range. The imaging system consisted of an optic lens, a CRI VariSpec LCTF and a Dalsa 1M30 camera. First the outline of this system setup is presented, then the optics designed is introduced, next the working principle of LCTF is described in details. A field experiment with the imaging system loaded on an airship was carried out and collected hyperspectral solid image. The images obtained had higher spectral and spatial resolution. Some parts of the 540-600 nm components of the 16-band image cube were also shown. Finally, the data acquired were rough processed to get reflection spectrum(from 420 to 720 nm) of three targets. It is concluded that the experiment has proved that the imaging system is effective in obtaining hyperspectral data. The image captured by the system can be applied to spectral estimation, spectra based classification and spectral based analysis. PMID:19123429

  8. Designing a Calibrated Full Matrix Capture Based Inspection

    NASA Astrophysics Data System (ADS)

    Duxbury, D.; Russell, J.; Lowe, M.

    2011-06-01

    Full Matrix Capture (FMC) technology is becoming increasingly attractive to industry. The development of FMC based inspection techniques is an active area of research, offering benefits in terms of defect detection and sizing and increased flexibility. However, before this technology can be fully transferred into industry there must be a method of reliably and robustly selecting the most appropriate inspection technique. A suitable calibration procedure must also be developed. A Huygens based array beam model has been developed and validated against the commercial software CIVA in a number of test cases. The model has been used as a tool to quickly allow visualisation of beams currently not supported by CIVA, or other available packages. A method of calibration is also presented that allows DAC curves to be extracted from a single scan of a calibration block for any beam type. The calibration algorithm is also used to set inspection sensitivity. This paper demonstrates through the use of a case study how a fully calibrated FMC based inspection can be designed, using the array beam model, to detect and accurately size a defect using multiple beam types.

  9. Shared Knowledge among Graphic Designers, Instructional Designers and Subject Matter Experts in Designing Multimedia-Based Instructional Media

    ERIC Educational Resources Information Center

    Razak, Rafiza Abdul

    2013-01-01

    The research identified and explored the shared knowledge among the instructional multimedia design and development experts comprising of subject matter expert, graphic designer and instructional designer. The knowledge shared by the team was categorized into three groups of multimedia design principles encompasses of basic principles, authoring…

  10. Microseismic network design assessment based on 3D ray tracing

    NASA Astrophysics Data System (ADS)

    Näsholm, Sven Peter; Wuestefeld, Andreas; Lubrano-Lavadera, Paul; Lang, Dominik; Kaschwich, Tina; Oye, Volker

    2016-04-01

    There is increasing demand on the versatility of microseismic monitoring networks. In early projects, being able to locate any triggers was considered a success. These early successes led to a better understanding of how to extract value from microseismic results. Today operators, regulators, and service providers work closely together in order to find the optimum network design to meet various requirements. In the current study we demonstrate an integrated and streamlined network capability assessment approach. It is intended for use during the microseismic network design process prior to installation. The assessments are derived from 3D ray tracing between a grid of event points and the sensors. Three aspects are discussed: 1) Magnitude of completeness or detection limit; 2) Event location accuracy; and 3) Ground-motion hazard. The network capability parameters 1) and 2) are estimated at all hypothetic event locations and are presented in the form of maps given a seismic sensor coordinate scenario. In addition, the ray tracing traveltimes permit to estimate the point-spread-functions (PSFs) at the event grid points. PSFs are useful in assessing the resolution and focusing capability of the network for stacking-based event location and imaging methods. We estimate the performance for a hypothetical network case with 11 sensors. We consider the well-documented region around the San Andreas Fault Observatory at Depth (SAFOD) located north of Parkfield, California. The ray tracing is done through a detailed velocity model which covers a 26.2 by 21.2 km wide area around the SAFOD drill site with a resolution of 200 m both for the P-and S-wave velocities. Systematic network capability assessment for different sensor site scenarios prior to installation facilitates finding a final design which meets the survey objectives.

  11. Lunar base thermal management/power system analysis and design

    NASA Technical Reports Server (NTRS)

    Mcghee, Jerry R.

    1992-01-01

    A compilation of several lunar surface thermal management and power system studies completed under contract and IR&D is presented. The work includes analysis and preliminary design of all major components of an integrated thermal management system, including loads determination, active internal acquisition and transport equipment, external transport systems (active and passive), passive insulation, solar shielding, and a range of lunar surface radiator concepts. Several computer codes were utilized in support of this study, including RADSIM to calculate radiation exchange factors and view factors, RADIATOR (developed in-house) for heat rejection system sizing and performance analysis over a lunar day, SURPWER for power system sizing, and CRYSTORE for cryogenic system performance predictions. Although much of the work was performed in support of lunar rover studies, any or all of the results can be applied to a range of surface applications. Output data include thermal loads summaries, subsystem performance data, mass, and volume estimates (where applicable), integrated and worst-case lunar day radiator size/mass and effective sink temperatures for several concepts (shielded and unshielded), and external transport system performance estimates for both single and two-phase (heat pumped) transport loops. Several advanced radiator concepts are presented, along with brief assessments of possible system benefits and potential drawbacks. System point designs are presented for several cases, executed in support of the contract and IR&D studies, although the parametric nature of the analysis is stressed to illustrate applicability of the analysis procedure to a wide variety of lunar surface systems. The reference configuration(s) derived from the various studies will be presented along with supporting criteria. A preliminary design will also be presented for the reference basing scenario, including qualitative data regarding TPS concerns and issues.

  12. Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry

    NASA Astrophysics Data System (ADS)

    Sun, Daner; Looi, Chee-Kit

    2013-02-01

    The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as develop critical learning skills through model-based collaborative inquiry approach. It is intended to support collaborative inquiry, real-time social interaction, progressive modeling, and to provide multiple sources of scaffolding for students. We first discuss the theoretical underpinnings for synthesizing the WiMVT design framework, introduce the components and features of the system, and describe the proposed work flow of WiMVT instruction. We also elucidate our research approach that supports the development of the system. Finally, the findings of a pilot study are briefly presented to demonstrate of the potential for learning efficacy of the WiMVT implementation in science learning. Implications are drawn on how to improve the existing system, refine teaching strategies and provide feedback to researchers, designers and teachers. This pilot study informs designers like us on how to narrow the gap between the learning environment's intended design and its actual usage in the classroom.

  13. Breathlessness is associated with urinary incontinence in men: A community-based study

    PubMed Central

    2010-01-01

    Background Urinary incontinence (UI) is a distressing problem for older people. To investigate the relationship between UI and respiratory symptoms among middle-aged and older men, a community-based study was conducted in Japan. Methods A convenience sample of 668 community-dwelling men aged 40 years or above was recruited from middle and southern Japan. The International Consultation on Incontinence Questionnaire-Short Form, the Medical Research Council's dyspnoea scale and the Australian Lung Foundation's Feeling Short of Breath scale, were administered by face-to-face interviews to ascertain their UI status and respiratory symptoms. Results The overall prevalence of UI was 7.6%, with urge-type leakage (59%) being most common among the 51 incontinent men. The presence of respiratory symptoms was significantly higher among incontinent men than those without the condition, especially for breathlessness (45% versus 30%, p = 0.025). The odds of UI for breathlessness was 2.11 (95% confidence interval 1.10-4.06) after accounting for age, body mass index, smoking and alcohol drinking status of each individual. Conclusions The findings suggested a significant association between UI and breathlessness in middle-aged and older men. PMID:20053271

  14. A disturbance based control/structure design algorithm

    NASA Technical Reports Server (NTRS)

    Mclaren, Mark D.; Slater, Gary L.

    1989-01-01

    Some authors take a classical approach to the simultaneous structure/control optimization by attempting to simultaneously minimize the weighted sum of the total mass and a quadratic form, subject to all of the structural and control constraints. Here, the optimization will be based on the dynamic response of a structure to an external unknown stochastic disturbance environment. Such a response to excitation approach is common to both the structural and control design phases, and hence represents a more natural control/structure optimization strategy than relying on artificial and vague control penalties. The design objective is to find the structure and controller of minimum mass such that all the prescribed constraints are satisfied. Two alternative solution algorithms are presented which have been applied to this problem. Each algorithm handles the optimization strategy and the imposition of the nonlinear constraints in a different manner. Two controller methodologies, and their effect on the solution algorithm, will be considered. These are full state feedback and direct output feedback, although the problem formulation is not restricted solely to these forms of controller. In fact, although full state feedback is a popular choice among researchers in this field (for reasons that will become apparent), its practical application is severely limited. The controller/structure interaction is inserted by the imposition of appropriate closed-loop constraints, such as closed-loop output response and control effort constraints. Numerical results will be obtained for a representative flexible structure model to illustrate the effectiveness of the solution algorithms.

  15. Stereo vision based hand-held laser scanning system design

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Wang, Jinming

    2011-11-01

    Although 3D scanning system is used more and more broadly in many fields, such computer animate, computer aided design, digital museums, and so on, a convenient scanning device is expansive for most people to afford. In another hand, imaging devices are becoming cheaper, a stereo vision system with two video cameras cost little. In this paper, a hand held laser scanning system is design based on stereo vision principle. The two video cameras are fixed tighter, and are all calibrated in advance. The scanned object attached with some coded markers is in front of the stereo system, and can be changed its position and direction freely upon the need of scanning. When scanning, the operator swept a line laser source, and projected it on the object. At the same time, the stereo vision system captured the projected lines, and reconstructed their 3D shapes. The code markers are used to translate the coordinate system between scanned points under different view. Two methods are used to get more accurate results. One is to use NURBS curves to interpolate the sections of the laser lines to obtain accurate central points, and a thin plate spline is used to approximate the central points, and so, an exact laser central line is got, which guards an accurate correspondence between tow cameras. Another way is to incorporate the constraint of laser swept plane on the reconstructed 3D curves by a PCA (Principle Component Analysis) algorithm, and more accurate results are obtained. Some examples are given to verify the system.

  16. Investigating triazine-based modification of hyaluronan using statistical designs.

    PubMed

    Liang, Jue; Cheng, Lulu; Struckhoff, Jessica J; Ravi, Nathan

    2015-11-01

    Hyaluronan (HA) and its derivatives have been extensively researched for many biomedical applications. To precisely tailor the property of HA by derivatizing it to a pre-determined extent is challenging, yet critical. In this paper, we used 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) and N-methylmorpholine (NMM) to derivatize HA via a triazine-based coupling reaction. Using a fractional factorial (FF) design, we observed that water content in the solvent, and molar ratios of CDMT and NaHCO3 to the carboxylate were the significant factors controlling the derivatization. We investigated how the effect of each factor changes as reaction conditions change. Moreover, by altering the amount of CDMT and NaHCO3, we developed a cubic regression model for precise control of the extent of derivatization using a response surface methodology (RSM) with a D-optimal design. No spurious peaks were detected by (1)H NMR spectrum and only 10% decrease of molecular weight of the derivatized HA was determined by GPC. The HA with 6% modification was relatively biocompatible up to 15 mg/mL. PMID:26256372

  17. Pocket-based drug design: exploring pocket space.

    PubMed

    Zheng, Xiliang; Gan, Linfeng; Wang, Erkang; Wang, Jin

    2013-01-01

    The identification and application of druggable pockets of targets play a key role in in silico drug design, which is a fundamental step in structure-based drug design. Herein, some recent progresses and developments of the computational analysis of pockets have been covered. Also, the pockets at the protein-protein interfaces (PPI) have been considered to further explore the pocket space for drug discovery. We have presented two case studies targeting the kinetic pockets generated by normal mode analysis and molecular dynamics method, respectively, in which we focus upon incorporating the pocket flexibility into the two-dimensional virtual screening with both affinity and specificity. We applied the specificity and affinity (SPA) score to quantitatively estimate affinity and evaluate specificity using the intrinsic specificity ratio (ISR) as a quantitative criterion. In one of two cases, we also included some applications of pockets located at the dimer interfaces to emphasize the role of PPI in drug discovery. This review will attempt to summarize the current status of this pocket issue and will present some prospective avenues of further inquiry.

  18. Advanced process control with design-based metrology

    NASA Astrophysics Data System (ADS)

    Yang, Hyunjo; Kim, Jungchan; Hong, Jongkyun; Yim, Donggyu; Kim, Jinwoong; Hasebe, Toshiaki; Yamamoto, Masahiro

    2007-03-01

    K1 factor for development and mass-production of memory devices has been decreased down to below 0.30 in recent years. Process technology has responded with extreme resolution enhancement technologies (RET) and much more complex OPC technologies than before. ArF immersion lithography is expected to remain the major patterning technology through under 35 nm node, where the degree of process difficulties and the sensitivity to process variations grow even higher. So, Design for manufacturing (DFM) is proposed to lower the degree of process difficulties and advanced process control (APC) is required to reduce the process variations. However, both DFM and APC need much feed-back from the wafer side such as hot spot inspection results and total CDU measurements at the lot, wafer, field and die level. In this work, we discuss a new design based metrology which can compare SEM image with CAD data and measure the whole CD deviations from the original layouts in a full die. It can provide the full information of hot spots and the whole CD distribution diagram of various transistors in peripheral regions as well as cell layout. So, it is possible to analyze the root cause of the CD distribution of some specific transistors or cell layout, such as OPC error, mask CDU, lens aberrations or etch process variation and so on. The applications of this new inspection tool will be introduced and APC using the analysis result will be presented in detail.

  19. Task-based lens design with application to digital mammography

    PubMed Central

    Chen, Liying; Barrett, Harrison H.

    2006-01-01

    Recent advances in model observers that predict human perceptual performance now make it possible to optimize medical imaging systems for human task performance. We illustrate the procedure by considering the design of a lens for use in an optically coupled digital mammography system. The channelized Hotelling observer is used to model human performance, and the channels chosen are differences of Gaussians. The task performed by the model observer is detection of a lesion at a random but known location in a clustered lumpy background mimicking breast tissue. The entire system is simulated with a Monte Carlo application according to physics principles, and the main system component under study is the imaging lens that couples a fluorescent screen to a CCD detector. The signal-to-noise ratio (SNR) of the channelized Hotelling observer is used to quantify this detectability of the simulated lesion (signal) on the simulated mammographic background. Plots of channelized Hotelling SNR versus signal location for various lens apertures, various working distances, and various focusing places are presented. These plots thus illustrate the trade-off between coupling efficiency and blur in a task-based manner. In this way, the channelized Hotelling SNR is used as a merit function for lens design. PMID:15669625

  20. Design of extensible meteorological data acquisition system based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Liu, Yin-hua; Zhang, Hui-jun; Li, Xiao-hui

    2015-02-01

    In order to compensate the tropospheric refraction error generated in the process of satellite navigation and positioning. Temperature, humidity and air pressure had to be used in concerned models to calculate the value of this error. While FPGA XC6SLX16 was used as the core processor, the integrated silicon pressure sensor MPX4115A and digital temperature-humidity sensor SHT75 are used as the basic meteorological parameter detection devices. The core processer was used to control the real-time sampling of ADC AD7608 and to acquire the serial output data of SHT75. The data was stored in the BRAM of XC6SLX16 and used to generate standard meteorological parameters in NEMA format. The whole design was based on Altium hardware platform and ISE software platform. The system was described in the VHDL language and schematic diagram to realize the correct detection of temperature, humidity, air pressure. The 8-channel synchronous sampling characteristics of AD7608 and programmable external resources of FPGA laid the foundation for the increasing of analog or digital meteorological element signal. The designed meteorological data acquisition system featured low cost, high performance, multiple expansions.