Science.gov

Sample records for based ui design

  1. The Academic English Language Needs of Industrial Design Students in UiTM Kedah, Malaysia

    ERIC Educational Resources Information Center

    Adzmi, Nor Aslah; Bidin, Samsiah; Ibrahim, Syazliyati; Jusoff, Kamaruzaman

    2009-01-01

    The purpose of this study was to analyse the academic English language lacks and needs of Industrial Design students in Universiti Teknologi MARA Kedah (UiTM). It highlights the lacks and needs for English for Academic Purposes in helping the students to succeed in the program through the usage of English language. The research tools used were in…

  2. Design and Fabrication of Nereid-UI: A Remotely Operated Underwater Vehicle for Oceanographic Access Under Ice

    NASA Astrophysics Data System (ADS)

    Whitcomb, L. L.; Bowen, A. D.; Yoerger, D.; German, C. R.; Kinsey, J. C.; Mayer, L. A.; Jakuba, M. V.; Gomez-Ibanez, D.; Taylor, C. L.; Machado, C.; Howland, J. C.; Kaiser, C. L.; Heintz, M.; Pontbriand, C.; Suman, S.; O'hara, L.

    2013-12-01

    -to-end propulsive efficiency of between 0.3 and 0.4 at a transit speed of 1 m/s based on testing conducted at WHOI. CAMERAS: Video imagery is one of the principal products of Nereid-UI. Two fiber-optic telemetry wavelengths deliver 1.5 Gb/s uncompressed HDSDI video to the support vessel in real time, supporting a Kongsberg OE14-522 hyperspherical pan and tilt HD camera and several utility cameras. PROJECT STATUS: The first shallow-water vehicle trials are scheduled for September 2013. The trials are designed to test core vehicle systems particularly the power system, main computer and control system, thrusters, video and telemetry system, and to refine camera, lighting and acoustic sensor placement for piloted and closed-loop control, especially as pertains to working near the underside of ice. Remaining vehicle design tasks include finalizing the single-body deployment concept and depressor, populating the scientific sensing suite, and the software development necessary to implement the planned autonomous return strategy. Final design and fabrication for these remaining components of the vehicle system will proceed through fall 2013, with trials under lake ice in early 2014, and potential polar trials beginning in 2014-15. SUPPORT: NSF OPP (ANT-1126311), WHOI, James Family Foundation, and George Frederick Jewett Foundation East.

  3. Bifunctional Imidazolium-Based Ionic Liquid Decorated UiO-67 Type MOF for Selective CO2 Adsorption and Catalytic Property for CO2 Cycloaddition with Epoxides.

    PubMed

    Ding, Luo-Gang; Yao, Bing-Jian; Jiang, Wei-Ling; Li, Jiang-Tao; Fu, Qi-Juan; Li, Yan-An; Liu, Zhen-Hua; Ma, Jian-Ping; Dong, Yu-Bin

    2017-02-20

    A bifunctional robust and highly porous imidazolium-based ionic liquid decorated UiO-67 type MOF (UiO-67-IL, 1) was successfully constructed via solvothermal assembly of the imidazolium-based ligand and Zr(IV) ions. It exhibits a highly selective adsorption for CO2 over CH4 and N2. Furthermore, 1 herein can be used as a highly active heterogeneous catalyst for CO2 cycloaddition with epoxides under atmospheric pressure with or without cocatalyst TBAB (n-Bu4NBr).

  4. Structural study of Ni- or Mg-based complexes incorporated within UiO-66-NH{sub 2} framework and their impact on hydrogen sorption properties

    SciTech Connect

    Žunkovič, E.; Mazaj, M.; Mali, G.; Rangus, M.; Devic, T.; Serre, C.; Logar, N. Zabukovec

    2015-05-15

    Nickel and magnesium acetylacetonate molecular complexes were post-synthetically incorporated into microporous zirconium-based MOF (UiO-66-NH{sub 2}) in order to introduce active open-metal sites for hydrogen sorption. Elemental analysis, nitrogen physisorption and DFT calculations revealed that 5 molecules of Ni(acac){sub 2} or 2 molecules of Mg(acac){sub 2} were incorporated into one unit cell of UiO-66-NH{sub 2}. {sup 1}H–{sup 13}C CPMAS and {sup 1}H MAS NMR spectroscopy showed that, although embedded within the pores, both Ni- and Mg-complexes interacted with the UiO-66-NH{sub 2} framework only through weak van der Waals bonds. Inclusion of metal complexes led to the decrease of hydrogen sorption capacities in Ni-modified as well as in Mg-modified samples in comparison with the parent UiO-66-NH{sub 2}. The isosteric hydrogen adsorption enthalpy slightly increased in the case of Ni-modified material, but not in the case of Mg-modified analogue. - Graphical abstract: A post-synthesis impregnation of Mg- and Ni-acetylacetonate complexes performed on zirconium-based MOF UiO-66-NH{sub 2} does influence the hydrogen sorption performance with respect to the parent matrix. The structural study revealed that Mg- and Ni-acetylacetonate molecules interact with zirconium-terephthalate framework only by weak interactions and they are not covalently bonded to aminoterephthalate ligand. Still, they remain confined into the pores even after hydrogen sorption experiments. - Highlights: • Mg- and Ni-acetylacetonate molecules embedded in the pores of UiO-66-NH{sub 2} by PSM. • Molecules of complexes interact with framework only by van der Waals interactions. • Type/structure of deposited metal-complex impact hydrogen enthalpy of adsorption.

  5. Megamodeling and Metamodel-Driven Engineering for Plastic User Interfaces: MEGA-UI

    NASA Astrophysics Data System (ADS)

    Sottet, Jean-Sébastien; Calvary, Gaelle; Favre, Jean-Marie; Coutaz, Jöelle

    Models are not new in Human Computer Interaction (HCI). Consider all the Model-Based Interface Design Environments (MB-IDE) that emerged in the 1990s for generating User Interfaces (UI) from more abstract descriptions. Unfortunately, the resulting poor usability killed the approach, burying the models in HCI for a long time until new requirements sprung, pushed by ubiquitous computing (e.g., the need for device independence). These requirements, bolstered by the large effort expended in Model-Driven Engineering (MDE) by the Software Engineering (SE) community, have brought the models back to life in HCI. This paper utilizes both the know-how in HCI and recent advances in MDE to address the challenge of engineering Plastic UIs, i.e., UIs capable of adapting to their context of use (User, Platform, Environment) while preserving usability. Although most of the work has concentrated on the functional aspect of adaptation so far, this chapter focuses on usability. The point is to acknowledge the strength of keeping trace of the UI’s design rationale at runtime so as to make it possible for the system to reason about its own design when the context of use changes. As design transformations link together different perspectives on the same UI (e.g., user’s tasks and workspaces for spatially grouping items together), the paper claims for embedding a graph that depicts a UI from different perspectives at runtime while explaining its design rationale. This meets the notion of Megamodel as promoted in MDE. The first Megamodel was used to make explicit the relations between the core concepts of MDE: System, Model, Metamodel, Mapping, and Transformation. When transposed to HCI, the Megamodel gives rise to the notion of Mega-UI that makes it possible for the user (designer and/or end-user) to browse and/or control the system from different levels of abstraction (e.g., user’s tasks, workspaces, interactors, code) and different levels of genericity (e.g., model, metamodel

  6. m-YouTube Mobile UI: Video Selection Based on Social Influence

    NASA Astrophysics Data System (ADS)

    Marcus, Aaron; Perez, Angel

    The ease-of-use of Web-based video-publishing services provided by applications like YouTube has encouraged a new means of asynchronous communication, in which users can post videos not only to make them public for review and criticism, but also as a way to express moods, feelings, or intentions to an ever-growing network of friends. Following the current trend of porting Web applications onto mobile platforms, the authors sought to explore user-interface design issues of a mobile-device-based YouTube, which they call m-YouTube. They first analyzed the elements of success of the current YouTube Web site and observed its functionality. Then, they looked for unsolved issues that could give benefit through information-visualization design for small screens on mobile phones to explore a mobile version of such a product/service. The biggest challenge was to reduce the number of functions and amount information to fit into a mobile phone screen, but still be usable, useful, and appealing within the YouTube context of use and user experience. Borrowing ideas from social research in the area of social influence processes, they made design decisions aiming to help YouTube users to make the decision of what video content to watch and to increase the chances of YouTube authors being evaluated and observed by peers. The paper proposes a means to visualize large amounts of video relevant to YouTube users by using their friendship network as a relevance indicator to help in the decision-making process.

  7. Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67.

    PubMed

    Zhu, Xiangyang; Li, Bing; Yang, Jian; Li, Yongsheng; Zhao, Wenru; Shi, Jianlin; Gu, Jinlou

    2015-01-14

    Though many efforts have been devoted to the adsorptive removal of hazardous materials of organophosphorus pesticides (OPs), it is still highly desirable to develop novel adsorbents with high adsorption capacities. In the current work, the removal of two representative OPs, glyphosate (GP) and glufosinate (GF), was investigated by the exceptionally stable Zr-based MOFs of UiO-67. The abundant Zr-OH groups, resulting from the missing-linker induced terminal hydroxyl groups and the inherent bridging ones in Zr-O clusters of UiO-67 particles, served as natural anchorages for efficient GP and GF capture in relation with their high affinity toward phosphoric groups in OPs. The correlation between the most significant parameters such as contact time, OPs concentration, adsorbent dose, pH, as well as ionic strength with the adsorption capacities was optimized, and the effects of these parameters on the removal efficiency of GP and GF from the polluted aqueous solution were investigated. The adsorption of GP on UiO-67 was faster than that of GF, and a pseudo-second-order rate equation effectively described the uptake kinetics. The Langmuir model exhibited a better fit to adsorption isotherm than the Freundlich model. Thanks to the strong affinity and adequate pore size, the adsorption capacities in UiO-67 approached as high as 3.18 mmol (537 mg) g(-1) for GP and 1.98 mmol (360 mg) g(-1) for GF, which were much higher than those of many other reported adsorbents. The excellent adsorption characteristics of the current adsorbents toward OPs were preserved in a wide pH window and high concentration of the background electrolytes. These prefigured the promising potentials of UiO-67 as novel adsorbent for the efficient removal of OPs from aqueous solution.

  8. The role of autophagy in cytotoxicity induced by new oncogenic B-Raf inhibitor UI-152 in v-Ha-ras transformed fibroblasts

    SciTech Connect

    Ahn, Jun-Ho; Ahn, Soon Kil; Lee, Michael

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer We recently discovered a potent and selective B-Raf inhibitor, UI-152. Black-Right-Pointing-Pointer UI-152 displayed a selective cytotoxicity toward v-Ha-ras transformed cells. Black-Right-Pointing-Pointer UI-152-induced growth inhibition was largely meditated by autophagy. Black-Right-Pointing-Pointer UI-152 induced paradoxical activation of Raf-1. -- Abstract: In human cancers, B-Raf is the most frequently mutated protein kinase in the MAPK signaling cascade, making it an important therapeutic target. We recently discovered a potent and selective B-Raf inhibitor, UI-152, by using a structure-based drug design strategy. In this study, we examined whether B-Raf inhibition by UI-152 may be an effective therapeutic strategy for eliminating cancer cells transformed with v-Ha-ras (Ras-NIH 3T3). UI-152 displayed selective cytotoxicity toward Ras-NIH 3T3 cells while having little to no effect on non-transformed NIH 3T3 cells. We found that treatment with UI-152 markedly increased autophagy and, to a lesser extent, apoptosis. However, inhibition of autophagy by addition of 3-MA failed to reverse the cytotoxic effects of UI-152 on Ras-NIH 3T3 cells, demonstrating that apoptosis and autophagy can act as cooperative partners to induce growth inhibition in Ras-NIH 3T3 cells treated with UI-152. Most interestingly, cell responses to UI-152 appear to be paradoxical. Here, we showed that although UI-152 inhibited ERK, it induced B-Raf binding to Raf-1 as well as Raf-1 activation. This paradoxical activation of Raf-1 by UI-152 is likely to be coupled with the inhibition of the mTOR pathway, an intracellular signaling pathway involved in autophagy. We also showed for the first time that, in multi-drug resistant cells, the combination of UI-152 with verapamil significantly decreased cell proliferation and increased autophagy. Thus, our findings suggest that the inhibition of autophagy, in combination with UI-152, offers a more effective

  9. Benzimidazole-functionalized Zr-UiO-66 nanocrystals for luminescent sensing of Fe3+ in water

    NASA Astrophysics Data System (ADS)

    Dong, Yingying; Zhang, Hanzhuo; Lei, Fan; Liang, Mei; Qian, Xuefeng; Shen, Peilian; Xu, Hui; Chen, Zhihui; Gao, Junkuo; Yao, Juming

    2017-01-01

    Zr-based MOF structure UiO-66 exhibits unprecedented high thermal and chemical stability, making it to be one of the most used MOFs in various applications. Yet, the poor photoluminescent (PL) properties of UiO-66 limit its applications in luminescent sensing. Herein, a new benzimidazole-functionalized UiO-66 nanocrystal (UiO-66-BI) was successfully fabricated via microwave synthesis. UiO-66-BI displayed octahedral nanocrystal morphology with a diameter smaller than 200 nm and could disperse well in water and common organic solvents. UiO-66-BI demonstrated extended optical absorption in the visible-light region and efficiently improved PL emission compared with UiO-66 pristine. The sensing properties of UiO-66-BI nanocrystals towards different ions were studied, and the results demonstrated that UiO-66-BI showed excellent selective luminescent sensing of Fe3+ ions in water.

  10. Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst

    NASA Astrophysics Data System (ADS)

    Shen, Lijuan; Wu, Weiming; Liang, Ruowen; Lin, Rui; Wu, Ling

    2013-09-01

    Proper design and preparation of high-performance and stable dual functional photocatalytic materials remains a significant objective of research. In this work, highly dispersed Pd nanoparticles of about 3-6 nm in diameter are immobilized in the metal-organic framework (MOF) UiO-66(NH2) via a facile one-pot hydrothermal method. The resulting Pd@UiO-66(NH2) nanocomposite exhibits an excellent reusable and higher visible light photocatalytic activity for reducing Cr(vi) compared with UiO-66(NH2) owing to the high dispersion of Pd nanoparticles and their close contact with the matrix, which lead to the enhanced light harvesting and more efficient separation of photogenerated electron-hole pairs. More significantly, the Pd@UiO-66(NH2) could be used for simultaneous photocatalytic degradation of organic pollutants, like methyl orange (MO) and methylene blue (MB), and reduction of Cr(vi) with even further enhanced activity in the binary system, which could be attributed to the synergetic effect between photocatalytic oxidation and reduction by individually consuming photogenerated holes and electrons. This work represents the first example of using the MOFs-based materials as dual functional photocatalyst to remove different categories of pollutants simultaneously. Our finding not only proves great potential for the design and application of MOFs-based materials but also might bring light to new opportunities in the development of new high-performance photocatalysts.Proper design and preparation of high-performance and stable dual functional photocatalytic materials remains a significant objective of research. In this work, highly dispersed Pd nanoparticles of about 3-6 nm in diameter are immobilized in the metal-organic framework (MOF) UiO-66(NH2) via a facile one-pot hydrothermal method. The resulting Pd@UiO-66(NH2) nanocomposite exhibits an excellent reusable and higher visible light photocatalytic activity for reducing Cr(vi) compared with UiO-66(NH2) owing to the

  11. Registration of ‘UI Darwin’ Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    UI Darwin’ (PI 639953) is a hard white winter wheat (Triticum aestivum L.) developed by the Idaho Agricultural Experiment Station and released in February 2006. UI Darwin, named for English naturalist Charles Darwin, was released for selected improvements in bread quality relative to hard white wi...

  12. 75 FR 43557 - Wire Products Company, Inc., Including Workers Whose Unemployment Insurance (UI) Wages Are Paid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... Employment and Training Administration Wire Products Company, Inc., Including Workers Whose Unemployment... unemployment insurance (UI) tax account under the name Globe Pipe Hanger Products, Inc. Based on these findings..., Inc., including workers whose unemployment insurance (UI) wages are paid through Globe Pipe...

  13. Use of Design Patterns According to Hand Dominance in a Mobile User Interface

    ERIC Educational Resources Information Center

    Al-Samarraie, Hosam; Ahmad, Yusof

    2016-01-01

    User interface (UI) design patterns for mobile applications provide a solution to design problems and can improve the usage experience for users. However, there is a lack of research categorizing the uses of design patterns according to users' hand dominance in a learning-based mobile UI. We classified the main design patterns for mobile…

  14. High-, Middle-, and Low-Wage Job Preparatory Programs--The Creation and Use of Policy Tool Based on UI Wages Data. Technical Report.

    ERIC Educational Resources Information Center

    Whittaker, Doug

    This is a report on the 2001 after-college earnings of students from Washington State's community and technical colleges. The state board created a wage-based category system for all 500 vocational/job-preparatory programs offered by the 34 state two-year colleges. The programs were divided into high- ($12 or more per hour), middle- ($10.50-$12…

  15. Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH 2

    SciTech Connect

    Katz, Michael J.; Moon, Su-Young; Mondloch, Joseph E.; Beyzavi, M. Hassan; Stephenson, Casey J.; Hupp, Joseph T.; Farha, Omar K.

    2015-02-24

    The hydrolysis of nerve agents is of primary concern due to the severe toxicity of these agents. Using a MOF-based catalyst (UiO-66), we have previously demonstrated that the hydrolysis can occur with relatively fast half-lives of 50 minutes. However, these rates are still prohibitively slow to be efficiently utilized for some practical applications (e.g., decontamination wipes used to clean exposed clothing/skin/vehicles). We thus turned our attention to derivatives of UiO-66 in order to probe the importance of functional groups on the hydrolysis rate. Three UiO-66 derivatives were explored; UiO-66-NO2 and UiO-66-(OH)2 showed little to no change in hydrolysis rate. However, UiO-66-NH2 showed a 20 fold increase in hydrolysis rate over the parent UiO-66 MOF. Half-lives of 1 minute were observed with this MOF. In order to probe the role of the amino moiety, we turned our attention to UiO-67, UiO-67-NMe2 and UiO-67-NH2. In these MOFs, the amino moiety is in close proximity to the zirconium node. We observed that UiO-67-NH2 is a faster catalyst than UiO-67 and UiO-67-NMe2. We conclude that the role of the amino moiety is to act as a proton-transfer agent during the catalytic cycle and not to hydrogen bond or to form a phosphorane intermediate.

  16. Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH 2

    DOE PAGES

    Katz, Michael J.; Moon, Su-Young; Mondloch, Joseph E.; ...

    2015-02-24

    The hydrolysis of nerve agents is of primary concern due to the severe toxicity of these agents. Using a MOF-based catalyst (UiO-66), we have previously demonstrated that the hydrolysis can occur with relatively fast half-lives of 50 minutes. However, these rates are still prohibitively slow to be efficiently utilized for some practical applications (e.g., decontamination wipes used to clean exposed clothing/skin/vehicles). We thus turned our attention to derivatives of UiO-66 in order to probe the importance of functional groups on the hydrolysis rate. Three UiO-66 derivatives were explored; UiO-66-NO2 and UiO-66-(OH)2 showed little to no change in hydrolysis rate. However,more » UiO-66-NH2 showed a 20 fold increase in hydrolysis rate over the parent UiO-66 MOF. Half-lives of 1 minute were observed with this MOF. In order to probe the role of the amino moiety, we turned our attention to UiO-67, UiO-67-NMe2 and UiO-67-NH2. In these MOFs, the amino moiety is in close proximity to the zirconium node. We observed that UiO-67-NH2 is a faster catalyst than UiO-67 and UiO-67-NMe2. We conclude that the role of the amino moiety is to act as a proton-transfer agent during the catalytic cycle and not to hydrogen bond or to form a phosphorane intermediate.« less

  17. Probabalistic projections for recovery of the endangered Cui-ui

    USGS Publications Warehouse

    Emlen, John M.; Strekal, Thomas A.; Buchanan , Chester C.

    1993-01-01

    The cui-ui Chamistes cujus, a lake sucker found in only Pyramid Lake, Nevada, is listed as endangered under the U.S. Endangered Species Act, and a recovery plan has been formulated in an effort to save it. We used a population simulation model that incorporated environmental stochasticity in water availability to project the persistence of cui-ui over 200 years, Based on this approach, recovery of the species in terms of persistence was evaluated for the existing hydrological situation and for situations involving water supplementation in various amounts. Our calculations indicate that immediate (as of spring 1991) acquisition of 70,000 acre-feet per year of supplemental water to raise levels in Pyramid Lake would have assured recovery and persistence over 200 years with a probability of 0.95. Postponement of acquisition for 3 years followed by incremental increases of 3,000 or 10,000 acre-feet per year would require, respectively, 83,000 and 120,000 acre-feet of annual supplemental water to assure persistence. The approach is applicable to a wide range of species and conditions.

  18. Integrated Information Support System (IISS). Volume 8. User Interface Subsystem. Part 3. User Interface (UI) Services Product Specification

    DTIC Science & Technology

    1990-09-30

    APPDEF APPlication DEFinition data declarations CICODE Command Interpreter CODEs CURSORI CURSOR description DBNAME DataBase field NAMEs DEFCOM DEFCOM data...Module Module File Name Purpose DBNAME DBOPEN OPEN DATA BASE PROCDF PROCess DeFine form PROCPW PROCESS PSWORD FORM DEFCOM PROCDC PROCess Define Command...SUBSYSTEM: UI SUBDIRECTORY: UIS DOCUMENTATION GROUP: UISERV DESCRIPTION: THIS MODULE PROCESSES THE DEFCOM FORM OF THE UIMS SYSTEM SERVICES. ARGUMENTS

  19. Release of ‘UI Platinum’ hard white spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    UI Platinum’ (Reg. No. CV------, PI 672533) hard white spring wheat (Triticum aestivum L.) was developed by the Idaho Agricultural Experiment Station and released in 2014. UI Platinum was derived from the cross ‘Blanca Grande’ x ‘Jerome’ and tested under experimental numbers A01178S, IDO694, and I...

  20. 78 FR 68865 - Announcement Regarding a Change in Eligibility for Unemployment Insurance (UI) Claimants in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Employment and Training Administration Announcement Regarding a Change in Eligibility for Unemployment Insurance (UI) Claimants in Alaska, Mississippi, and Wisconsin in the Emergency Unemployment Compensation..., 2013. Based on data from Alaska for the week ending August 3, 2013, the 13 week insured...

  1. 78 FR 59374 - Announcement Regarding a Change in Eligibility for Unemployment Insurance (UI) Claimants in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... Employment and Training Administration Announcement Regarding a Change in Eligibility for Unemployment Insurance (UI) Claimants in Alaska, Mississippi, and Wisconsin in the Emergency Unemployment Compensation..., 2013. Based on data from Alaska for the week ending August 3, 2013, the 13 week insured...

  2. 75 FR 52981 - Bluescope Buildings North America, Including Workers Whose Unemployment Insurance (UI) Wages Are...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Unemployment Insurance (UI) Wages Are Reported Through Butler Manufacturing Company, Laurinburg, NC; Amended...Scope Buildings North America had their wages reported through a separate unemployment insurance (UI... America, including workers whose unemployment insurance (UI) wages are reported through...

  3. 77 FR 33490 - Long Elevator & Machine Company, Inc., Including Workers Whose Unemployment Insurance (UI) Wages...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... Unemployment Insurance (UI) Wages Were Reported Through Kone, Inc., Riverton, IL; Notice of Affirmative...., including workers whose unemployment insurance (UI) wages were reported through KONE Inc.,...

  4. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition

    PubMed Central

    Lausund, Kristian Blindheim; Nilsen, Ola

    2016-01-01

    Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic–inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios. PMID:27876797

  5. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lausund, Kristian Blindheim; Nilsen, Ola

    2016-11-01

    Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic-inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios.

  6. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition.

    PubMed

    Lausund, Kristian Blindheim; Nilsen, Ola

    2016-11-23

    Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic-inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios.

  7. Development of Nereid-UI: A Remotely Operated Underwater Vehicle for Oceanographic Access Under Ice

    NASA Astrophysics Data System (ADS)

    Whitcomb, L. L.; Bowen, A.; Yoerger, D. R.; German, C. R.; Kinsey, J. C.; Mayer, L. A.; Jakuba, M.; Gomez-Ibanez, D.; Taylor, C. L.; Machado, C.; Howland, J. C.; Kaiser, C. L.; Heintz, M.

    2012-12-01

    The Woods Hole Oceanographic Institution and collaborators from the Johns Hopkins University and the University of New Hampshire are developing a remotely-controlled underwater robotic vehicle to provide the Polar Research Community with a capability to be tele-operated under ice under direct real-time human supervision. The Nereid Under-Ice (Nereid-UI) vehicle, Figure 1, will enable exploration and detailed examination of biological and physical environments at glacial ice-tongues and ice-shelf margins through the use of HD video in addition to acoustic, chemical, and biological sensors, Table 1. We anticipate propulsion system optimization that will enable us to attain distances up to 20 km from an ice-edge boundary, as dictated by the current maximum tether length. The goal of the Nereid-UI system is to provide scientific access to under-ice and ice-margin environments that is presently impractical or infeasible. The project design phase is underway, with incremental field testing planned in 2014. We welcome input from the Polar Science Community on how best to serve your scientific objectives. The Nereid-UI vehicle will employ technology developed during the Nereus HROV project including lightweight expendable tethers and tolerance of communications failures. Performance goals include: 1. Extreme horizontal and vertical mobility - access to under-ice crevasses and glacier grounding- lines, close inspection and mapping. 2. Real-time exploration under direct human control. 3. Response to features of interest by altering sensing modality and trajectory as desired 4. Access to the calving front 5. Access to the under-ice boundary layer 6. Future manipulation, sample retrieval, and instrument emplacement capability Supported by NSF OPP under ANT-1126311, James Family Foundation, George Frederick Jewett Foundation East, and the Woods Hole Oceanographic Institution Fig. 1: Nereid-UI Concept of Operations. Table 1: Nereid-UI Specifications;

  8. Earthdata User Interface Patterns: Building Usable Web Interfaces Through a Shared UI Pattern Library

    NASA Astrophysics Data System (ADS)

    Siarto, J.

    2014-12-01

    As more Earth science software tools and services move to the web--the design and usability of those tools become ever more important. A good user interface is becoming expected and users are becoming increasingly intolerant of websites and web applications that work against them. The Earthdata UI Pattern Library attempts to give these scientists and developers the design tools they need to make usable, compelling user interfaces without the associated overhead of using a full design team. Patterns are tested and functional user interface elements targeted specifically at the Earth science community and will include web layouts, buttons, tables, typography, iconography, mapping and visualization/graphing widgets. These UI elements have emerged as the result of extensive user testing, research and software development within the NASA Earthdata team over the past year.

  9. Utilizing the Southwest Ultraviolet Imaging System (SwUIS) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Schindhelm, Eric; Stern, S. Alan; Ennico-Smith, Kimberly

    2013-09-01

    We present the Southwest Ultraviolet Imaging System (SwUIS), a compact, low-cost instrument designed for remote sensing observations from a manned platform in space. It has two chief configurations; a high spatial resolution mode with a 7-inch Maksutov-Cassegrain telescope, and a large field-of-view camera mode using a lens assembly. It can operate with either an intensified CCD or an electron multiplying CCD camera. Interchangeable filters and lenses enable broadband and narrowband imaging at UV/visible/near-infrared wavelengths, over a range of spatial resolution. SwUIS has flown previously on Space Shuttle flights STS-85 and STS-93, where it recorded multiple UV images of planets, comets, and vulcanoids. We describe the instrument and its capabilities in detail. The SWUIS's broad wavelength coverage and versatile range of hardware configurations make it an attractive option for use as a facility instrument for Earth science and astronomical imaging investigations aboard the International Space Station.

  10. Comparative Statistical Study of Some SAP UI Technologies

    NASA Astrophysics Data System (ADS)

    Berdie, Adela; Osaci, Mihaela; Dan Lemle, Ludovic

    2011-09-01

    The goal of this paper is to present a comparative study on some web UI (User Interface) technologies that involve the creation of web applications on the platform SAP Net Weaver AS 7.01 of the integrated SAP (System Application Products) system. The attention will be directed mainly to the ABAP (Advanced Business Application Programing) development environment and to the Web Dynpro (WD) technologies, Floor Plan Manager (FPM) and Web Client UI. Through this study, we make an assesment regarding the decision of choosing a technology for the realisation of a project which consists of a web application.

  11. Mapping Education for the New Millennium: A UI Perspective.

    ERIC Educational Resources Information Center

    Heide, Tuula; Kozicki, Kim; Pedras, Melvin J.

    The College of Education at the University of Idaho (UI) is embarking on the first year of a project to restructure its teacher education program and refocus it to reflect national standards and place K-12 students at the center of preservice learning. Teacher education students are being prepared to meet the needs of school students through an…

  12. 75 FR 22846 - Norgren Automation Solutions, Including Workers Whose Unemployment Insurance (UI) Wages Are Paid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... Employment and Training Administration Norgren Automation Solutions, Including Workers Whose Unemployment... under a separated unemployment insurance (UI) tax account under the name Syron Engineering. Accordingly... unemployment insurance (UI) wages are paid through Syron Engineering, Erie Engineering and Automation...

  13. 75 FR 34170 - Circuit Science, Inc., Including Workers Whose Unemployment Insurance (UI) Wages Are Reported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Employment and Training Administration Circuit Science, Inc., Including Workers Whose Unemployment Insurance... subject firm had their wages reported under a separated unemployment insurance (UI) tax account under the... workers whose unemployment insurance (UI) wages are reported through Circuit, Plymouth, Minnesota,...

  14. 77 FR 54927 - Comment Request for Information Collection for Unemployment Insurance (UI) Benefit Accuracy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... Employment and Training Administration Comment Request for Information Collection for Unemployment Insurance... written comments to Andrew Spisak, Office of Unemployment Insurance, Room S-4524, Employment and Training... UI benefit payments in three programs: State UI, Unemployment Compensation for Federal...

  15. 75 FR 22630 - Vital Signs Minnesota, Inc., Including Workers Whose Unemployment Insurance (UI) Wages Are Paid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Employment and Training Administration Vital Signs Minnesota, Inc., Including Workers Whose Unemployment... separate unemployment insurance (UI) tax account under the name Biomedical Dynamics Corporation... unemployment insurance (UI) wages are paid through Biomedical Dynamics Corporation, including on-site...

  16. 75 FR 26793 - Fypon, Ltd., Parkersburg, WV, Including Workers Whose Unemployment Insurance, (UI) Wages Are Paid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ...] Fypon, Ltd., Parkersburg, WV, Including Workers Whose Unemployment Insurance, (UI) Wages Are Paid..., Including Workers Whose Unemployment Insurance, (UI) Wages Are Paid Through Therma-Tru Doors, Archbold, OH... reported under a separate unemployment insurance (UI) tax account under the name Therma-Tru...

  17. 77 FR 3500 - Hugo Boss Cleveland, Inc., Including Workers Whose Unemployment Insurance (UI) Wages Are Paid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... Cleveland, Inc., Including Workers Whose Unemployment Insurance (UI) Wages Are Paid Through Tjfc... wages reported under a separate unemployment insurance (UI) tax account under the name TJFC Distribution...: All workers of Hugo Boss Cleveland, Inc., including workers whose unemployment insurance (UI)...

  18. Liaison based assembly design

    SciTech Connect

    Ames, A.; Kholwadwala, D.; Wilson, R.H.

    1996-12-01

    Liaison Based Assembly Design extends the current information infrastructure to support design in terms of kinematic relationships between parts, or liaisons. These liaisons capture information regarding contact, degrees-of-freedom constraints and containment relationships between parts in an assembly. The project involved defining a useful collection of liaison representations, investigating their properties, and providing for maximum use of the data in downstream applications. We tested our ideas by implementing a prototype system involving extensions to Pro/Engineer and the Archimedes assembly planner. With an expanded product model, the design system is more able to capture design intent. When a product update is attempted, increased knowledge availability improves our ability to understand the effect of design changes. Manufacturing and analysis disciplines benefit from having liaison information available, so less time is wasted arguing over incomplete design specifications and our enterprise can be more completely integrated.

  19. Definitive molecular level characterization of defects in UiO-66 crystals.

    PubMed

    Trickett, Christopher A; Gagnon, Kevin J; Lee, Seungkyu; Gándara, Felipe; Bürgi, Hans-Beat; Yaghi, Omar M

    2015-09-14

    The identification and characterization of defects, on the molecular level, in metal-organic frameworks (MOFs) remain a challenge. With the extensive use of single-crystal X-ray diffraction (SXRD), the missing linker defects in the zirconium-based MOF UiO-66, Zr6 O4 (OH)4 (C8 H4 O4 )6 , have been identified as water molecules coordinated directly to the zirconium centers. Charge balancing is achieved by hydroxide anions, which are hydrogen bonded within the pores of the framework. Furthermore, the precise nature of the defects and their concentration can be manipulated by altering the starting materials, synthesis conditions, and post-synthetic modifications.

  20. UiO-66 MOF end-face-coated optical fiber in aqueous contaminant detection.

    PubMed

    Nazari, Marziyeh; Forouzandeh, Mohammad Ali; Divarathne, Chamath M; Sidiroglou, Fotios; Martinez, Marta Rubio; Konstas, Kristina; Muir, Benjamin W; Hill, Anita J; Duke, Mikel C; Hill, Matthew R; Collins, Stephen F

    2016-04-15

    Optical quality metal organic framework (MOF) thin films were integrated, for the first time, to the best of our knowledge, with structured optical fiber substrates to develop MOF-fiber sensors. The MOF-fiber structure, UiO-66 (Zr-based MOF is well known for its water stability), is a thin film that acts as an effective analyte collector. This provided a Fabry-Perot sensor in which concentrations of up to 15 mM Rhodamine-B were detected via wavelength shifts in the interference spectrum.

  1. WATERSHED BASED SURVEY DESIGNS

    EPA Science Inventory

    The development of watershed-based design and assessment tools will help to serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional condition to meet Section 305(b), identification of impaired water bodies or wate...

  2. Sprinkler arrangement for UiTM's stadium field

    NASA Astrophysics Data System (ADS)

    Abdullah, Nur Lina; Kadir, Norhidayah A.; Safaron, Saiful Bahri; Suder, Nurazeera Md; Omar, Nurul Wahidah

    2013-09-01

    The purpose of this paper is to study the arrangement of water sprinkler at Universiti Teknologi MARA (UiTM), Shah Alam stadium field. There are 35 number of sprinklers used with 7 × 5 arrangement. The current problem is that as there are too many sprinkler used, the overlapping area becomes too large and hence leads to waste. In order to minimize the number of sprinklers used as well as the overlapping area, new arrangement of sprinklers is proposed. The validity of the developed arrangement is tested by using Microsoft Excel and mathematical software, MAPLE 14. Finally, there are six possible arrangements that can be used to replace the current arrangement.

  3. The Ultrasonic Inspection System (UIS) for inspection of steam generator materials of NPP`s VVER440

    SciTech Connect

    Kuna, M.; Macecek, M.

    1994-12-31

    Ultrasonic Inspection System (UIS) is a complex ultrasonic control system working in conjunction with a mechanical manipulator which provides a complete evaluation of collected data. The system was designed and manufactured by Techno Scientific Inc. (TSI) in Woodbridge, Ontario, Canada to specifications by the Nuclear Power Plants Research Institute for full compatibility with manipulator ZOK PG1. The system is used for the automated control of material and welds of primary collectors of steam generator of Nuclear Plants VVER440. The control unit of the manipulator acts as a master to UIS and synchronizes data collection with the reading of co-ordinates for ultrasonic probes. Data is evaluated by software. Defect sizing and 3D displays are performed.

  4. Efficient alkene epoxidation catalyzed by molybdenyl acetylacetonate supported on aminated UiO-66 metal−organic framework

    SciTech Connect

    Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz

    2015-03-15

    Metal–organic frameworks (MOFs) containing Mo Schiff base complexes were prepared by post-synthesis method and applied as efficient catalysts in the epoxidation of alkenes with tert-BuOOH. In this manner, UiO-66-NH{sub 2} (UiO=University of Oslo) MOF was reacted with salicylaldehyde and thiophene-2-carbaldehyde to produce bidentate Schiff bases. Then, the Schiff base ligands were used for immobilization of molybdenyl acetylacetonate. These new catalysts were characterized by FT-IR, UV–vis spectroscopic techniques, X-ray diffraction (XRD), BET, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). These catalytic systems showed excellent activity in the epoxidation of alkenes such as cyclic and linear ones with tert-butyl hydroperoxide (TBHP) in 1,2-dichloroethane, and reused several times without any appreciable loss of their activity. - Graphical abstract: Efficient alkene epoxidation with TBHP catalyzed by heterogeneous and reusable molybdenum base catalysts is reported. - Highlights: • UiO-66-NH{sub 2} was modified with salicylaldehyde and thiophene-2-carbaldehyde. • The Schiff base groups were used for immobilization of MoO{sub 2}(acac){sub 2}. • The heterogeneous catalysts were prepared. • The prepared catalysts were used for epoxidation of alkenes. • Compared to other catalyst, our catalysts were more efficient and forceful.

  5. 77 FR 59986 - Announcement Regarding a Change in Eligibility for Unemployment Insurance (UI) Claimants in New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... Employment and Training Administration Announcement Regarding a Change in Eligibility for Unemployment Insurance (UI) Claimants in New York in the Emergency Unemployment Compensation 2008 (EUC08) Program and the...: Notice. SUMMARY: Announcement regarding a change in eligibility for Unemployment Insurance (UI)...

  6. The Changing UI Claimant Population: Is It Time To Retool Reemployment Services? Issue Brief.

    ERIC Educational Resources Information Center

    Needels, Karen; Corson, Walter; Nicholson, Walter

    Data from national administrative and telephone surveys of nationally representative samples of unemployment insurance (UI) recipients who began collecting benefits in 1998 were analyzed to identify changes in the UI claimant population over the past 10 years and determine whether the time has come to retool the nation's reemployment services. The…

  7. UIS2: A Unique Phosphatase Required for the Development of Plasmodium Liver Stages

    PubMed Central

    Zhang, Min; Mishra, Satish; Sakthivel, Ramanavelan; Fontoura, Beatriz M. A.; Nussenzweig, Victor

    2016-01-01

    Plasmodium salivary sporozoites are the infectious form of the malaria parasite and are dormant inside salivary glands of Anopheles mosquitoes. During dormancy, protein translation is inhibited by the kinase UIS1 that phosphorylates serine 59 in the eukaryotic initiation factor 2α (eIF2α). De-phosphorylation of eIF2α-P is required for the transformation of sporozoites into the liver stage. In mammalian cells, the de-phosphorylation of eIF2α-P is mediated by the protein phosphatase 1 (PP1). Using a series of genetically knockout parasites we showed that in malaria sporozoites, contrary to mammalian cells, the eIF2α-P phosphatase is a member of the PP2C/PPM phosphatase family termed UIS2. We found that eIF2α was highly phosphorylated in uis2 conditional knockout sporozoites. These mutant sporozoites maintained the crescent shape after delivery into mammalian host and lost their infectivity. Both uis1 and uis2 were highly transcribed in the salivary gland sporozoites but uis2 expression was inhibited by the Pumilio protein Puf2. The repression of uis2 expression was alleviated when sporozoites developed into liver stage. While most eukaryotic phosphatases interact transiently with their substrates, UIS2 stably bound to phosphorylated eIF2α, raising the possibility that high-throughput searches may identify chemicals that disrupt this interaction and prevent malaria infection. PMID:26735921

  8. American white pelican predation on Cui-ui in Pyramid Lake, Nevada

    USGS Publications Warehouse

    Scoppettone, Gayton G.; Rissler, Peter H.; Fabes, Mark C.; Withers, Donna

    2014-01-01

    Anthropogenic changes to the Pyramid Lake–Truckee River ecosystem in Nevada are suspected to have altered the predator–prey balance between American white pelican Pelecanus erythrorhynchos and Cui-ui Chasmistes cujus. We estimated the loss of the adult Cui-ui population to pelican predation over a 13-year period by netting and tagging Cui-uis as they aggregated at the mouth of the Truckee River prior to their spawning migration into the Truckee River. Cui-ui access to the Truckee River typically required traversing a shallow delta (a foraging advantage for these American white pelicans). Dams and greater frequency of low stream flows also contributed to American white pelican foraging success. We used tag recoveries from Pyramid Lake's nesting colony of American white pelicans along with an experiment to estimate the chance of tag recovery within the colony to calculate the number of tagged fish taken by American white pelicans. We also used numbered tags to test whether there was a size preference for Cui-uis taken. Our results showed that the primary source of adult Cui-ui mortality was from American white pelican predation in the Truckee River. Within a 13-year period American white pelicans had taken 90% of the tags deployed during the first 7 years of the interval. There was no preference for the size of Cui-uis taken. A better understanding of the effects of heavy cropping by American white pelicans on Cui-ui population dynamics is still needed.

  9. Data Mining of Acupoint Characteristics from the Classical Medical Text: DongUiBoGam of Korean Medicine

    PubMed Central

    Lee, Taehyung; Jung, Won-Mo; Lee, In-Seon; Lee, Ye-Seul; Lee, Hyejung; Park, Hi-Joon; Kim, Namil; Chae, Younbyoung

    2014-01-01

    Throughout the history of East Asian medicine, different kinds of acupuncture treatment experiences have been accumulated in classical medical texts. Reexamining knowledge from classical medical texts is expected to provide meaningful information that could be utilized in current medical practices. In this study, we used data mining methods to analyze the association between acupoints and patterns of disorder with the classical medical book DongUiBoGam of Korean medicine. Using the term frequency-inverse document frequency (tf-idf) method, we quantified the significance of acupoints to its targeting patterns and, conversely, the significance of patterns to acupoints. Through these processes, we extracted characteristics of each acupoint based on its treating patterns. We also drew practical information for selecting acupoints on certain patterns according to their association. Data analysis on DongUiBoGam's acupuncture treatment gave us an insight into the main idea of DongUiBoGam. We strongly believe that our approach can provide a novel understanding of unknown characteristics of acupoint and pattern identification from the classical medical text using data mining methods. PMID:25574179

  10. Cui-ui reproductive success from potential egg deposition to larval emigration

    USGS Publications Warehouse

    Scoppettone, G. Gary; Rissler, Peter H.

    2012-01-01

    From 1985 to 2006, we tracked cui-ui, Chasmistes cujus, survival from potential egg deposition of migrating spawners to emigrating larvae. Tahoe sucker larvae emigrated to Pyramid Lake the same time as cui-ui larvae, but cui-ui was the predominant catostomid larvae we captured. Survival of cui-ui larvae ranged from 0.46% to 21.17%, declining significantly with decreased flow and increased number of spawners (P < 0.01). Mean total length of emigrating larvae ranged from 11.5 to 12.6 mm and may have been affected by stream flow. Removal of impediments to upstream migrating cui-ui spawners, along with sufficient stream flows, may enhance early life-stage survival.

  11. Supporting our scientists with Google Earth-based UIs.

    SciTech Connect

    Scott, Janine

    2010-10-01

    Google Earth and Google Maps are incredibly useful for researchers looking for easily-digestible displays of data. This presentation will provide a step-by-step tutorial on how to begin using Google Earth to create tools that further the mission of the DOE national lab complex.

  12. Free Energy of Ligand Removal in the Metal–Organic Framework UiO-66

    PubMed Central

    2016-01-01

    We report an investigation of the “missing-linker phenomenon” in the Zr-based metal–organic framework UiO-66 using atomistic force field and quantum chemical methods. For a vacant benzene dicarboxylate ligand, the lowest energy charge-capping mechanism involves acetic acid or Cl–/H2O. The calculated defect free energy of formation is remarkably low, consistent with the high defect concentrations reported experimentally. A dynamic structural instability is identified for certain higher defect concentrations. In addition to the changes in material properties upon defect formation, we assess the formation of molecular aggregates, which provide an additional driving force for ligand loss. These results are expected to be of relevance to a wide range of metal–organic frameworks. PMID:27610208

  13. Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications.

    PubMed

    Jeremias, Felix; Lozan, Vasile; Henninger, Stefan K; Janiak, Christoph

    2013-12-07

    Sorption-based heat transformation and storage appliances are very promising for utilizing solar heat and waste heat in cooling or heating applications. The economic and ecological efficiency of sorption-based heat transformation depends on the availability of suitable hydrophilic and hydrothermally stable sorption materials. We investigated the feasibility of using the metal-organic frameworks UiO-66(Zr), UiO-67(Zr), H2N-UiO-66(Zr) and H2N-MIL-125(Ti) as sorption materials in heat transformations by means of volumetric water adsorption measurements, determination of the heat of adsorption and a 40-cycle ad/desorption stress test. The amino-modified compounds H2N-UiO-66 and H2N-MIL-125 feature high heat of adsorption (89.5 and 56.0 kJ mol(-1), respectively) and a very promising H2O adsorption isotherm due to their enhanced hydrophilicity. For H2N-MIL-125 the very steep rise of the H2O adsorption isotherm in the 0.1 < p/p0 < 0.2 region is especially beneficial for the intended heat pump application.

  14. Lunar base and Mars base design projects

    NASA Technical Reports Server (NTRS)

    Amos, J.; Campbell, J.; Hudson, C.; Kenny, E.; Markward, D.; Pham, C.; Wolf, C.

    1989-01-01

    The space design classes at the University of Texas at Austin undertook seven projects in support of the NASA/USRA advanced space design program during the 1988-89 year. A total of 51 students, including 5 graduate students, participated in the design efforts. Four projects were done within the Aerospace Engineering (ASE) design program and three within the Mechanical Engineering (ME) program. Both lunar base and Mars base design efforts were studied, and the specific projects were as follows: Lunar Crew Emergency Rescue Vehicle (ASE); Mars Logistics Lander Convertible to a Rocket Hopper (ME); A Robotically Constructed Production and Supply Base on Phobos (ASE); A Mars/Phobos Transportation System (ASE); Manned Base Design and Related Construction Issues for Mars/Phobos Mission (ME); and Health Care Needs for a Lunar Colony and Design of Permanent Medical Facility (ME).

  15. 75 FR 20387 - Contech Castings, LLC, Including Workers Whose Unemployment Insurance (UI) Wages Are Reported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Contech Castings, LLC, Including Workers Whose Unemployment Insurance... subject firm had their wages reported under a separate unemployment insurance (UI) tax account under...

  16. 78 FR 19735 - Announcement Regarding a Change in Eligibility for Unemployment Insurance (UI) Claimants in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... Employment and Training Administration. Announcement Regarding a Change in Eligibility for Unemployment..., South Carolina and Texas in the Emergency Unemployment Compensation 2008 (EUC08) Program, and the...: Notice. SUMMARY: Announcement regarding a change in eligibility for Unemployment Insurance (UI)...

  17. 76 FR 27366 - Blue Heron Paper Company, Including Workers Whose Unemployment Insurance (UI) Wages Are Paid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... Employment and Training Administration Blue Heron Paper Company, Including Workers Whose Unemployment... reported under a separated unemployment insurance (UI) tax account under the name Barrett Business Services... issued as follows: All workers of Blue Heron Paper Company, including workers whose...

  18. 78 FR 38074 - Announcement Regarding a Change in Eligibility for Unemployment Insurance (UI) Claimants in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... Employment and Training Administration Announcement Regarding a Change in Eligibility for Unemployment... Virgin Islands and Wisconsin in the Emergency Unemployment Compensation 2008 (EUC08) Program, and the...: Notice. SUMMARY: Announcement regarding a change in eligibility for Unemployment Insurance (UI)...

  19. 20 CFR 652.210 - What are the Act's requirements for administration of the work test and assistance to UI claimants?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... appropriate to facilitate their earliest return to work; (2) UI claimants requiring assistance in seeking work... administration of the work test and assistance to UI claimants? 652.210 Section 652.210 Employees' Benefits... requirements for administration of the work test and assistance to UI claimants? (a) State UI law or...

  20. Family of the Sun-and-Stars Time-Determining Instruments (Ilseong-jeongsi-ui) Invented During the Joseon Dynasty

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sam; Kim, Sang Hyuk; Mihn, Byeong-Hee

    2016-09-01

    We analyze the design and specifications of the Sun-and-Stars Time-Determining group of instruments (Ilseong-jeongsi-ui, 日星定時儀) made during the Joseon dynasty. According to the records of the Sejong Sillok (Veritable Records of King Sejong), Sun-and-Stars Time-Determining Instruments measure the solar time of day and the sidereal time of night through three rings and an alidade. One such instrument, the Simplified Time-Determining Instrument (So-jeongsi-ui, 小定時儀), is made without the essential component for alignment with the celestial north pole. Among this group of instruments, only two bronze Hundred-Interval-Ring Sundials (Baekgak-hwan-Ilgu, 百刻環日晷) currently exist. A comparison of the functions of these two relics with two Time-Determining Instruments suggests that the Hundred-Interval-Ring Sundial is a Simplified Sundial (So-ilyeong, 小日影), as recorded in the Sejong Sillok and the Seongjong Sillok (Veritable Records of King Seongjong). Furthermore, the Simplified Sundial is a model derived from the Simplified Time-Determining Instrument. During the King Sejong reign, the Sun-and-Stars Time-Determining Instruments were used in military camps of the kingdom’s frontiers, in royal ancestral rituals, and in royal astronomical observatories.

  1. Role-Based Design: Design Experiences

    ERIC Educational Resources Information Center

    Miller, Charles; Hokanson, Brad; Doering, Aaron; Brandt, Tom

    2010-01-01

    This is the fourth and final installment in a series of articles presenting a new outlook on the methods of instructional design. These articles examine the nature of the process of instructional design and are meant to stimulate discussion about the roles of designers in the fields of instructional design, the learning sciences, and interaction…

  2. Reusing Design Knowledge Based on Design Cases and Knowledge Map

    ERIC Educational Resources Information Center

    Yang, Cheng; Liu, Zheng; Wang, Haobai; Shen, Jiaoqi

    2013-01-01

    Design knowledge was reused for innovative design work to support designers with product design knowledge and help designers who lack rich experiences to improve their design capacity and efficiency. First, based on the ontological model of product design knowledge constructed by taxonomy, implicit and explicit knowledge was extracted from some…

  3. Upper incisor to Soft Tissue Plane (UI-STP): a new reference for diagnosis and planning in dentofacial deformities.

    PubMed

    Hernandez-Alfaro, Federico

    2010-09-01

    Planning in orthognathic surgery has been and still is an open issue. We have evolved from 2D classical cephalometric hard-tissue planning to 2D soft tissue planning, and finally to 3D and hard and soft tissue evaluation. This, to our knowledge, is the first description of a new Soft Tissue Plane (STP) and its relationship with the anterior position of the upper incisor (UI). Profile photographs of 110 "attractive individuals" with lips at rest or smiling and with upper incisor shown were used. The photographs used were of 65 professional models from two international agencies and 45 individuals considered most attractive in the internet forums, which included catwalk models and actors. In 86 cases (78.18 %), the incisor was located in front of the STP (A). In 15 cases (13.63%), it was on the plane (N); and in the remaining 9 cases (8.18%), it was behind (P). Despite the limitations of this study and based on our series, we can conclude that the upper incisor is located at or in front of the Soft Tissue Plane (STP) in 91.81% of the attractive facial profiles studied. On the other hand, the relative position of the upper incisor to the soft tissue plane (UI-STP) could be a useful diagnostic and planning tool in orthodontic and surgical management of dentofacial deformities.

  4. Improvements in bracket base design.

    PubMed

    Smith, D C; Maijer, R

    1983-04-01

    Acid etch bonding of orthodontic attachments to the labial and lingual surfaces of teeth is generally adequate for clinical service. Failures do occur, and these are related to technique problems in acid etching or resin manipulation or to bracket base design. The widely used foil mesh base can present problems in retention because of design defects or corrosion. Improvement in mechanical retention of resin to the attachment base would result in significant improvements in bonding and fewer clinical failures. One of our approaches to improved retention is to fuse metallic or ceramic particles onto the bracket base so as to achieve a particulate or porous layer into which resin can penetrate. The results of bond-strength tests showed that a 100 percent increase in bond strength could be obtained with sintered porous metal-coated brackets. Further development is proceeding.

  5. DISPLACEMENT BASED SEISMIC DESIGN CRITERIA

    SciTech Connect

    HOFMAYER,C.H.

    1999-03-29

    The USNRC has initiated a project to determine if any of the likely revisions to traditional earthquake engineering practice are relevant to seismic design of the specialized structures, systems and components of nuclear power plants and of such significance to suggest that a change in design practice might be warranted. As part of the initial phase of this study, a literature survey was conducted on the recent changes in seismic design codes/standards, on-going activities of code-writing organizations/communities, and published documents on displacement-based design methods. This paper provides a summary of recent changes in building codes and on-going activities for future codes. It also discusses some technical issues for further consideration.

  6. Watershed-based survey designs

    USGS Publications Warehouse

    Detenbeck, N.E.; Cincotta, D.; Denver, J.M.; Greenlee, S.K.; Olsen, A.R.; Pitchford, A.M.

    2005-01-01

    Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream–downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs.

  7. Watershed-based survey designs.

    PubMed

    Detenbeck, Naomi E; Cincotta, Dan; Denver, Judith M; Greenlee, Susan K; Olsen, Anthony R; Pitchford, Ann M

    2005-04-01

    Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream-downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs.

  8. Design-Based Implementation Research

    ERIC Educational Resources Information Center

    LeMahieu, Paul G.; Nordstrum, Lee E.; Potvin, Ashley Seidel

    2017-01-01

    Purpose: This paper is second of seven in this volume elaborating different approaches to quality improvement in education. It delineates a methodology called design-based implementation research (DBIR). The approach used in this paper is aimed at iteratively improving the quality of classroom teaching and learning practices in defined problem…

  9. WATERSHED-BASED SURVEY DESIGNS

    EPA Science Inventory

    Water-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification if impaired water bodies or watersheds to meet Sectio...

  10. 77 FR 59669 - Comment Request for Information Collection; Unemployment Insurance (UI) Title XII Advances and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... Employment and Training Administration Comment Request for Information Collection; Unemployment Insurance (UI..., Office of Unemployment Insurance, Employment and Training Administration, U.S. Department of Labor, 200...) provides for advances to states from the Federal Unemployment Account (FUA). The law further sets...

  11. 76 FR 9052 - Comment Request for Information Collection for the Unemployment Insurance (UI) Facilitation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... Request for Information Collection for the Unemployment Insurance (UI) Facilitation of Claimant... set annually for each state. The ALPs take into account the state's total unemployment rate and the... notably by the economic conditions in the state, as measured by the total unemployment rate, and...

  12. Attitudes toward Learning about and Working with Computers of Students at UiTM

    ERIC Educational Resources Information Center

    Hashim, Rugayah; Mustapha, Wan Narita

    2004-01-01

    The purpose of this study was to assess the attitudes toward learning about and working with computers of Universiti Teknologi MARA (UiTM), Shah Alam students. Attitudes were studied in an attempt to ascertain factors such as anxiety, confidence, liking and, usefulness at the university level. A total of 300 students at various stages of education…

  13. 76 FR 75561 - Information Collection Request for Unemployment Insurance (UI) Trust Fund Activities Reports...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... be provided in the desired format, reporting burden (time and financial resources) is minimized... information deemed necessary to assure state compliance with the provisions of the SSA. Under this authority... deposit and limited withdrawal standards: ETA 2112: UI Financial Transactions Summary, Unemployment...

  14. Effects of population increase on cui-ui growth and maturation

    USGS Publications Warehouse

    Scoppettone, G.G.; Rissler, P.H.

    2007-01-01

    Cui-ui Chasmistes cujus is endemic to Pyramid Lake, Nevada. The cui-ui population declined during much of the 20th century as a result of water diversion and the formation of a shallow and virtually impassable delta at the mouth of the Truckee River, its spawning habitat. The population increased more than 10-fold to more than 1 million adults after access to the river was restored, creating a period of relatively higher density. This change presented the opportunity to test intraspecific density effects on cui-ui age and length at maturity and on growth. We also compared the year-class structure of the adult population before and after improved access. At low density, cui-ui mean age at maturation was 9.2 years for males and 9.6 for females; at high density, it was significantly higher: 11.8 years for males and 12.0 for females. There was no significant change in mean fork length at maturity related to population increase. Growth patterns differed between high and low density, the low-density fish growing faster than high-density fish before their respective mean age of maturity; past their mean age at maturity, high-density fish grew significantly faster than low-density fish. Fish in both density periods reached similar lengths by about 19-20 years of age. Year-class structure for both density periods consisted of strong year-classes, which predominated the adult population for several years.

  15. 75 FR 51846 - BlueScope Buildings North America Including Workers Whose Unemployment Insurance (UI) Wages Are...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... Buildings North America Including Workers Whose Unemployment Insurance (UI) Wages Are Reported Through... wages reported through a separate unemployment insurance (UI) tax account under the name Buttler... as follows: All workers of BlueScope Buildings North America, including workers whose...

  16. Defect-Controlled Preparation of UiO-66 Metal-Organic Framework Thin Films with Molecular Sieving Capability.

    PubMed

    Zhang, Caiqin; Zhao, Yajing; Li, Yali; Zhang, Xuetong; Chi, Lifeng; Lu, Guang

    2016-01-01

    Metal-organic framework (MOF) UiO-66 thin films are solvothermally grown on conducting substrates. The as-synthesized MOF thin films are subsequently dried by a supercritical process or treated with polydimethylsiloxane (PDMS). The obtained UiO-66 thin films show excellent molecular sieving capability as confirmed by the electrochemical studies for redox-active species with different sizes.

  17. Boron-Based Drug Design.

    PubMed

    Ban, Hyun Seung; Nakamura, Hiroyuki

    2015-06-01

    The use of the element boron, which is not generally observed in a living body, possesses a high potential for the discovery of new biological activity in pharmaceutical drug design. In this account, we describe our recent developments in boron-based drug design, including boronic acid containing protein tyrosine kinase inhibitors, proteasome inhibitors, and tubulin polymerization inhibitors, and ortho-carborane-containing proteasome activators, hypoxia-inducible factor 1 inhibitors, and topoisomerase inhibitors. Furthermore, we applied a closo-dodecaborate as a water-soluble moiety as well as a boron-10 source for the design of boron carriers in boron neutron capture therapy, such as boronated porphyrins and boron lipids for a liposomal boron delivery system.

  18. Value-based Insurance Design.

    PubMed

    Sharan, Alok D; Schroeder, Gregory D; West, Michael E; Vaccaro, Alexander R

    2017-02-17

    The increasing awareness of the scarcity of health care resources is forcing the health care industry to improve quality while lowering the cost. One method by which employers and insurance companies are attempting to do this is with value-based insurance design. In these plans, patients pay a lower amount for certain services that are considered high value and a higher amount for services that are considered low value.

  19. Value-based Insurance Design.

    PubMed

    Sharan, Alok D; Schroeder, Gregory D; West, Michael E; Vaccaro, Alexander R

    2017-03-01

    The increasing awareness of the scarcity of health care resources is forcing the health care industry to improve quality while lowering the cost. One method by which employers and insurance companies are attempting to do this is with value-based insurance design. In these plans, patients pay a lower amount for certain services that are considered high value and a higher amount for services that are considered low value.

  20. Model-based software design

    NASA Technical Reports Server (NTRS)

    Iscoe, Neil; Liu, Zheng-Yang; Feng, Guohui; Yenne, Britt; Vansickle, Larry; Ballantyne, Michael

    1992-01-01

    Domain-specific knowledge is required to create specifications, generate code, and understand existing systems. Our approach to automating software design is based on instantiating an application domain model with industry-specific knowledge and then using that model to achieve the operational goals of specification elicitation and verification, reverse engineering, and code generation. Although many different specification models can be created from any particular domain model, each specification model is consistent and correct with respect to the domain model.

  1. Reproductive longevity and fecundity associated with nonannual spawning in cui-ui

    USGS Publications Warehouse

    Scoppettone, G.G.; Rissler, P.H.; Buettner, M.E.

    2000-01-01

    The cui-ui Chasmistes cujus, a long-lived (40 years or more) and highly fecund catostomid, is often prevented from spawning in drought years. We studied the effect of cui-ui age on egg viability and the effect of nonannual spawning on fecundity in relation to length, age, and growth rate. Egg hatching and survival of swim-up larvae were examined for the offspring of first-time spawners, intermediate-aged females, and old females. Fecundity was tested for three growth categories (fast, intermediate, and slow) in years that were sufficiently wet to allow fish to spawn in the Truckee River and after dry years when fish did not spawn because of river inaccessibility. Females in the fast-growth category were first-time spawners, those in the middle-growth category were young to middle aged, and those in the slow-growth category were middle aged to old. Females up to 44 years of age still had viable eggs and a reproductive life of at least 29 years. Fecundity was greater after no-spawn years (dry year) compared with a spawn year (wet year), especially for fish in the slow-growth category. This study provides insight into the reproductive adaptation of a long-lived western North American catostomid and suggests possible reasons for the wide variation in fecundity in other long-lived catostomids. Our data will be used to improve the accuracy of an existing cui-ui population viability model. The revised model will have greater sensitivity to cui-ui survival relative to their spawning frequency and, thus, contribute to better management of conditions needed for the long-term survival of endangered cui-ui.

  2. Visualizing K48 Ubiquitination during Presynaptic Formation By Ubiquitination-Induced Fluorescence Complementation (UiFC)

    PubMed Central

    Pinto, Maria J.; Pedro, Joana R.; Costa, Rui O.; Almeida, Ramiro D.

    2016-01-01

    In recent years, signaling through ubiquitin has been shown to be of great importance for normal brain development. Indeed, fluctuations in ubiquitin levels and spontaneous mutations in (de)ubiquitination enzymes greatly perturb synapse formation and neuronal transmission. In the brain, expression of lysine (K) 48-linked ubiquitin chains is higher at a developmental stage coincident with synaptogenesis. Nevertheless, no studies have so far delved into the involvement of this type of polyubiquitin chains in synapse formation. We have recently proposed a role for polyubiquitinated conjugates as triggering signals for presynaptic assembly. Herein, we aimed at characterizing the axonal distribution of K48 polyubiquitin and its dynamics throughout the course of presynaptic formation. To accomplish so, we used an ubiquitination-induced fluorescence complementation (UiFC) strategy for the visualization of K48 polyubiquitin in live hippocampal neurons. We first validated its use in neurons by analyzing changing levels of polyubiquitin. UiFC signal is diffusely distributed with distinct aggregates in somas, dendrites and axons, which perfectly colocalize with staining for a K48-specific antibody. Axonal UiFC aggregates are relatively stable and new aggregates are formed as an axon grows. Approximately 65% of UiFC aggregates colocalize with synaptic vesicle clusters and they preferentially appear in the axonal domains of axo-somatodendritic synapses when compared to isolated axons. We then evaluated axonal accumulation of K48 ubiquitinated signals in bead-induced synapses. We observed rapid accumulation of UiFC signal and endogenous K48 ubiquitin at the sites of newly formed presynapses. Lastly, we show by means of a microfluidic platform, for the isolation of axons, that presynaptic clustering on beads is dependent on E1-mediated ubiquitination at the axonal level. Altogether, these results indicate that enrichment of K48 polyubiquitin at the site of nascent presynaptic

  3. Assessment of the Plasmodium falciparum Preerythrocytic Antigen UIS3 as a Potential Candidate for a Malaria Vaccine

    PubMed Central

    Halbroth, Benedict R.; Salman, Ahmed M.; Ewer, Katie J.; Hodgson, Susanne H.; Janse, Chris J.; Khan, Shahid M.; Hill, Adrian V. S.; Spencer, Alexandra J.

    2016-01-01

    ABSTRACT Efforts are under way to improve the efficacy of subunit malaria vaccines through assessments of new adjuvants, vaccination platforms, and antigens. In this study, we further assessed the Plasmodium falciparum antigen upregulated in infective sporozoites 3 (PfUIS3) as a vaccine candidate. PfUIS3 was expressed in the viral vectors chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) and used to immunize mice in a prime-boost regimen. We previously demonstrated that this regimen could provide partial protection against challenge with chimeric P. berghei parasites expressing PfUIS3. We now show that ChAd63-MVA PfUIS3 can also provide partial cross-species protection against challenge with wild-type P. berghei parasites. We also show that PfUIS3-specific cellular memory responses could be recalled in human volunteers exposed to P. falciparum parasites in a controlled human malaria infection study. When ChAd63-MVA PfUIS3 was coadministered with the vaccine candidate P. falciparum thrombospondin-related adhesion protein (PfTRAP) expressed in the ChAd63-MVA system, there was no significant change in immunogenicity to either vaccine. However, when mice were challenged with double chimeric P. berghei-P. falciparum parasites expressing both PfUIS3 and PfTRAP, vaccine efficacy was improved to 100% sterile protection. This synergistic effect was evident only when the two vaccines were mixed and administered at the same site. We have therefore demonstrated that vaccination with PfUIS3 can induce a consistent delay in patent parasitemia across mouse strains and against chimeric parasites expressing PfUIS3 as well as wild-type P. berghei; when this vaccine is combined with another partially protective regimen (ChAd63-MVA PfTRAP), complete protection is induced. PMID:28031267

  4. Scheduling bus services in Universiti Teknologi MARA (UiTM) Shah Alam

    NASA Astrophysics Data System (ADS)

    Omar, Mawardi; Ismail, Wan Rosmanira; Oughalime, Ahmed

    2014-09-01

    This study deals with bus scheduling problem in a local public university. Given existing bus daily trips, set of buses used and set of policy, the aims of this study are to optimize the use of buses for in-campus trips and to cover the trip demands. This study is conducted at Universiti Teknologi Mara (UiTM) Shah Alam that involves six-zone trips and a single depot. The bus scheduling problem in UiTM is formulated using the integer programming model and the LINGO 12.0 software is used for solving this bus scheduling model. The results of this model showed that the number of buses can be reduced during off-peak hours. Furthermore, optimal trips can also be identified from the results.

  5. Reproduction by the endangered cui-ui in the lower Truckee River

    USGS Publications Warehouse

    Scoppettone, G.G.; Wedemeyer, G.A.; Coleman, M.; Burge, H.

    1983-01-01

    Adult spawning behavior and emigration of larvae of the endangered cui-ui Chasmistes cujus were studied in a natural side channel of the lower Truckee River. External radio-tags placed on eight apparently did not affect spawning behavior. Cui-uis spawned in clusters of two to seven fish; usually a single female was flanked by two males. Each spawning act lasted 3–6 seconds, and individual fish spawned numerous times. The most active tagged male and female spawned at least 294 times and 114 times, respectively. Individual females broadcast eggs over an area of up to 50 m2. Males spawned over a 4–5-day period, and females over 2.5–4 days. Most spawning occurred at night in water depths ranging from 9 to 43 cm, water velocities ranging from 23 to 87 cm/second, and temperatures of 12–17 C. The preferred spawning substrate was gravel. Peak emergence and out-migration of cui-ui larvae occurred 14 days after peak spawning.

  6. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66.

    PubMed

    Wang, Chenghong; Liu, Xinlei; Chen, J Paul; Li, Kang

    2015-11-12

    In this study, water stable zirconium metal-organic framework (UiO-66) has been synthesized and for the first time applied as an adsorbent to remove aquatic arsenic contamination. The as-synthesized UiO-66 adsorbent functions excellently across a broad pH range of 1 to 10, and achieves a remarkable arsenate uptake capacity of 303 mg/g at the optimal pH, i.e., pH = 2. To the best of our knowledge, this is the highest arsenate As(V) adsorption capacity ever reported, much higher than that of currently available adsorbents (5-280 mg/g, generally less than 100 mg/g). The superior arsenic uptake performance of UiO-66 adsorbent could be attributed to the highly porous crystalline structure containing zirconium oxide clusters, which provides a large contact area and plenty of active sites in unit space. Two binding sites within the adsorbent framework are proposed for arsenic species, i.e., hydroxyl group and benzenedicarboxylate ligand. At equilibrium, seven equivalent arsenic species can be captured by one Zr6 cluster through the formation of Zr-O-As coordination bonds.

  7. A Discussion of Knowledge Based Design

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A discussion of knowledge and Knowledge- Based design as related to the design of aircraft is presented. The paper discusses the perceived problem with existing design studies and introduces the concepts of design and knowledge for a Knowledge- Based design system. A review of several Knowledge-Based design activities is provided. A Virtual Reality, Knowledge-Based system is proposed and reviewed. The feasibility of Virtual Reality to improve the efficiency and effectiveness of aerodynamic and multidisciplinary design, evaluation, and analysis of aircraft through the coupling of virtual reality technology and a Knowledge-Based design system is also reviewed. The final section of the paper discusses future directions for design and the role of Knowledge-Based design.

  8. Results-Based Interaction Design

    ERIC Educational Resources Information Center

    Weiss, Meredith

    2008-01-01

    Interaction design is a user-centered approach to development in which users and their goals are the driving force behind a project's design. Interaction design principles are fundamental to the design and implementation of effective websites, but they are not sufficient. This article argues that, to reach its full potential, a website should also…

  9. MOFabric: Electrospun Nanofiber Mats from PVDF/UiO-66-NH2 for Chemical Protection and Decontamination.

    PubMed

    Lu, Annie Xi; McEntee, Monica; Browe, Matthew A; Hall, Morgan G; DeCoste, Jared B; Peterson, Gregory W

    2017-04-05

    Textiles capable of capture and detoxification of toxic chemicals, such as chemical-warfare agents (CWAs), are of high interest. Some metal-organic frameworks (MOFs) exhibit superior reactivity toward CWAs. However, it remains a challenge to integrate powder MOFs into engineered materials like textiles, while retaining functionalities like crystallinity, adsorptivity, and reactivity. Here, we present a simple method of electrospinning UiO-66-NH2, a zirconium MOF, with polyvinylidene fluoride (PVDF). The electrospun composite, which we refer to as "MOFabric", exhibits comparable crystal patterns, surface area, chlorine uptake, and simulant hydrolysis to powder UiO-66-NH2. The MOFabric is also capable of breaking down GD (O-pinacolyl methylphosphonofluoridae) faster than powder UiO-66-NH2. Half-life of GD monitored by solid-state NMR for MOFabric is 131 min versus 315 min on powder UiO-66-NH2.

  10. Designer: A Knowledge-Based Graphic Design Assistant.

    ERIC Educational Resources Information Center

    Weitzman, Louis

    This report describes Designer, an interactive tool for assisting with the design of two-dimensional graphic interfaces for instructional systems. The system, which consists of a color graphics interface to a mathematical simulation, provides enhancements to the Graphics Editor component of Steamer (a computer-based training system designed to aid…

  11. Team Based Engineering Design Thinking

    ERIC Educational Resources Information Center

    Mentzer, Nathan

    2014-01-01

    The objective of this research was to explore design thinking among teams of high school students. This objective was encompassed in the research question driving the inquiry: How do teams of high school students allocate time across stages of design? Design thinking on the professional level typically occurs in a team environment. Many…

  12. Team Based Engineering Design Thinking

    ERIC Educational Resources Information Center

    Mentzer, Nathan

    2012-01-01

    The objective of this research was to explore design thinking among teams of high school students. This objective is encompassed in the research question driving this inquiry: How do teams of high school students allocate time across stages of design? Design thinking on the professional level typically occurs in a team environment. Many…

  13. Research on optimization-based design

    NASA Technical Reports Server (NTRS)

    Balling, R. J.; Parkinson, A. R.; Free, J. C.

    1989-01-01

    Research on optimization-based design is discussed. Illustrative examples are given for cases involving continuous optimization with discrete variables and optimization with tolerances. Approximation of computationally expensive and noisy functions, electromechanical actuator/control system design using decomposition and application of knowledge-based systems and optimization for the design of a valve anti-cavitation device are among the topics covered.

  14. Reliability based design optimization: Formulations and methodologies

    NASA Astrophysics Data System (ADS)

    Agarwal, Harish

    Modern products ranging from simple components to complex systems should be designed to be optimal and reliable. The challenge of modern engineering is to ensure that manufacturing costs are reduced and design cycle times are minimized while achieving requirements for performance and reliability. If the market for the product is competitive, improved quality and reliability can generate very strong competitive advantages. Simulation based design plays an important role in designing almost any kind of automotive, aerospace, and consumer products under these competitive conditions. Single discipline simulations used for analysis are being coupled together to create complex coupled simulation tools. This investigation focuses on the development of efficient and robust methodologies for reliability based design optimization in a simulation based design environment. Original contributions of this research are the development of a novel efficient and robust unilevel methodology for reliability based design optimization, the development of an innovative decoupled reliability based design optimization methodology, the application of homotopy techniques in unilevel reliability based design optimization methodology, and the development of a new framework for reliability based design optimization under epistemic uncertainty. The unilevel methodology for reliability based design optimization is shown to be mathematically equivalent to the traditional nested formulation. Numerical test problems show that the unilevel methodology can reduce computational cost by at least 50% as compared to the nested approach. The decoupled reliability based design optimization methodology is an approximate technique to obtain consistent reliable designs at lesser computational expense. Test problems show that the methodology is computationally efficient compared to the nested approach. A framework for performing reliability based design optimization under epistemic uncertainty is also developed

  15. Observations from the Microgravity Smoldering Combustion (MSC) Ultrasound Imaging System (UIS)

    NASA Technical Reports Server (NTRS)

    Walther, D.C.; Fernandez-Pello, A. C.; Anthenien, R. A.; Urban, D. L.

    1999-01-01

    The Microgravity Smoldering Combustion (MSC) experiment is a study of the smolder characteristics of porous combustible materials in a microgravity environment. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal earth gravity. Experiments have been conducted aboard the NASA Space Shuttle in the GAS-CAN, an apparatus requiring completely remote operation. Future GAS-CAN experiments will utilize an ultrasound imaging system (UIS). Thermocouples are currently used to measure temperature and reaction front velocities, but a less intrusive method is desirable, as smolder is affected by heat transfer along the thermocouple. It is expected that the UIS will eventually replace the existing array of thermocouples as a non-intrusive technique without compromising data acquisition. Smoldering is defined as a non-flaming, self-sustaining, propagating, exothermic, surface reaction, deriving its principal heat from heterogeneous oxidation of the fuel. Smolder of cable insulation is of particular concern in the space program; to date there have been a few minor incidents of overheated and charred cables and electrical components reported on Space Shuttle flights. Recently, the establishment of the International Space Station and other space facilities has increased interest in the study of smoldering in microgravity because of the need to preempt the possibility, and/or to minimize the effect of a smolder initiated fire during the operation of these facilities. The ignition and propagation of smolder are examined using both thermocouples and the UIS. The UIS has been implemented into the MSC flight hardware. The system provides information about local permeability variations within a smoldering sample, which can, in turn, be interpreted to track the propagation of the smolder reaction. The method utilizes the observation that transmission of an ultrasonic signal through a porous material

  16. Separations of substituted benzenes and polycyclic aromatic hydrocarbons using normal- and reverse-phase high performance liquid chromatography with UiO-66 as the stationary phase.

    PubMed

    Zhao, Wei-Wei; Zhang, Chao-Yan; Yan, Zeng-Guang; Bai, Li-Ping; Wang, Xiayan; Huang, Hongliang; Zhou, You-Ya; Xie, Yabo; Li, Fa-Sheng; Li, Jian-Rong

    2014-11-28

    Metal-organic frameworks (MOFs) have great potential for applications in chromatography due to their highly tailorable porous structures and unique properties. In this work, the stable MOF UiO-66 was evaluated as both a normal-phase (NP-) and a reverse-phase (RP-) stationary phase in the high performance liquid chromatography (HPLC) to separate substituted benzenes (SBs) and polycyclic aromatic hydrocarbons (PAHs). It was found that the mobile phase composition has a significant effect on the HPLC separation. Baseline RP-HPLC separations of xylene isomers; naphthalene and anthracene; naphthalene and chrysene; and naphthalene, fluorene, and chrysene were achieved using MeOH/H2O ratios of 80:20, 75:25, 85:15, and 75:25, respectively, on the UiO-66 column. Similarly, baseline NP-HPLC separations of xylene isomers and ethylbenzene; ethylbenzene, styrene, o-xylene, and m-xylene; and several PAHs were also obtained on the UiO-66 column with different mobile phase compositions. The relative standard deviations (RSDs) of retention time, peak height, peak area, and half peak width for five replicate separations of the tested analytes were within the ranges 0.2-0.4%, 0.2-1.6%, 0.7-3.9%, 0.4-1.1%, respectively. We also evaluated other critical HPLC parameters, including injected sample mass, column temperature, and the thermodynamic characters of both the RP-HPLC and the NP-HPLC separation processes. It was confirmed that the separation of SBs on a UiO-66 column was an exothermic process, controlled by both enthalpy change (ΔH) and entropy change (ΔS). The reverse shape selectivity, size selectivity, stacking effect, and electrostatic force played vital roles in the separations of these analytes. To the best of our knowledge, this method is one of the very few examples of using MOFs as the stationary phase in both NP-HPLC and RP-HPLC. MOF-based stationary phases may thus be applied in the separations and analyses of SBs and PAHs in environmental samples.

  17. Multidisciplinary Expert-aided Analysis and Design (MEAD)

    NASA Technical Reports Server (NTRS)

    Hummel, Thomas C.; Taylor, James

    1989-01-01

    The MEAD Computer Program (MCP) is being developed under the Multidisciplinary Expert-Aided Analysis and Design (MEAD) Project as a CAD environment in which integrated flight, propulsion, and structural control systems can be designed and analyzed. The MCP has several embedded computer-aided control engineering (CACE) packages, a user interface (UI), a supervisor, a data-base manager (DBM), and an expert system (ES). The supervisor monitors and coordinates the operation of the CACE packages, the DBM; the ES, and the UI. The DBM tracks the control design process. Models created or installed by the MCP are tracked by date and version, and results are associated with the specific model version with which they were generated. The ES is used to relieve the control engineer from tedious and cumbersome tasks in the iterative design process. The UI provides the capability for a novice as well as an expert to utilize the MCP easily and effectively. The MCP version 2(MCP-2.0) is fully developed for flight control system design and analysis. Propulsion system modeling, analysis, and simulation is also supported; the same is true for structural models represented in state-space form. The ultimate goal is to cover the integration of flight, propulsion, and structural control engineering, including all discipline-specific functionality and interfaces. The current MCP-2.0 components and functionality are discussed.

  18. Towards structure-based protein drug design.

    PubMed

    Zhang, Changsheng; Lai, Luhua

    2011-10-01

    Structure-based drug design for chemical molecules has been widely used in drug discovery in the last 30 years. Many successful applications have been reported, especially in the field of virtual screening based on molecular docking. Recently, there has been much progress in fragment-based as well as de novo drug discovery. As many protein-protein interactions can be used as key targets for drug design, one of the solutions is to design protein drugs based directly on the protein complexes or the target structure. Compared with protein-ligand interactions, protein-protein interactions are more complicated and present more challenges for design. Over the last decade, both sampling efficiency and scoring accuracy of protein-protein docking have increased significantly. We have developed several strategies for structure-based protein drug design. A grafting strategy for key interaction residues has been developed and successfully applied in designing erythropoietin receptor-binding proteins. Similarly to small-molecule design, we also tested de novo protein-binder design and a virtual screen of protein binders using protein-protein docking calculations. In comparison with the development of structure-based small-molecule drug design, we believe that structure-based protein drug design has come of age.

  19. Base Camp Design Simulation Training

    DTIC Science & Technology

    2011-07-01

    It is a treasure-trove of engineering blueprints, bill of materials ( BOMs ), and plans. This 600- man base camp, Figure 6, inputted into VBS2TM...the technical proficiencies required in the construction of base camps. There are no blue prints or bill of materials included in the training. Yet...that “base camps need DOTMLPF (doctrine, organization, training, material , leadership and education, personnel, and facilities) solutions to address

  20. Design versus manufacturing data base management requirements

    NASA Technical Reports Server (NTRS)

    Mckenna, E. G.

    1984-01-01

    Data base management systems are valuable manufacturing and design tools as these disciplines are exceptionally information intensive, requiring precise organization and control of data processing and utilization. One such data base manager is the IPAD* system, which was originally developed to support the design process but was expanded to incorporate the additional needs of manufacturing. To set the stage, an overview of the design and manufacturing process is presented. The different functions of computers in these processes are then discussed. Finally, the design and manufacturing requirements for a data base manager are compared and contrasted.

  1. Thermodynamic Insight in the High-Pressure Behavior of UiO-66: Effect of Linker Defects and Linker Expansion

    PubMed Central

    2016-01-01

    In this Article, we present a molecular-level understanding of the experimentally observed loss of crystallinity in UiO-66-type metal–organic frameworks, including the pristine UiO-66 to -68 as well as defect-containing UiO-66 materials, under the influence of external pressure. This goal is achieved by constructing pressure-versus-volume profiles at finite temperatures using a thermodynamic approach relying on ab initio derived force fields. On the atomic level, the phenomenon is reflected in a sudden drop in the number of symmetry operators for the crystallographic unit cell because of the disordered displacement of the organic linkers with respect to the inorganic bricks. For the defect-containing samples, a reduced mechanical stability is observed, however, critically depending on the distribution of these defects throughout the material, hence demonstrating the importance of judiciously characterizing defects in these materials. PMID:27594765

  2. Population dynamics of the Cui-ui of Pyramid Lake, Nevada: a Potamodromous catostomid subject to failed reproduction

    USGS Publications Warehouse

    Scoppettone, Gayton G.; Rissler, Peter H.; Fabes, Mark C.; Shea, Sean P.

    2015-01-01

    Fishes of the Truckee River basin (California and Nevada) evolved in an aquatic system that has been episodically diminished by extended drought. For potamodromous species, such as the endangered Cui-ui endemic to Pyramid Lake, Nevada, prehistoric episodic severe drought presumably led to periods of failed reproduction due to restricted access to spawning habitat. The response of the Cui-ui population to more recent failed reproduction caused by anthropogenic activity was studied to learn how to manage this species through periods of spawning disruption. Adult Cui-ui survival averaged 91% and 89% for females and males, respectively, in drought years when spawning migrations were either precluded or few fish migrated because of no or low stream flow. In each of 2 years when stream access was precluded, the adult survival was nearly 100% suggesting that Cui-ui survival is extended in the absence of a spawning migration. Survival averaged 62% and 60% for females and males, respectively, in years of spawning migrations. Strong predominant year-classes developed in the year immediately following a period of failed reproduction, indicating the species’ capacity for population rebound. Year-class predominance persisted for 6–10 years and through years of low survival associated with migration years, and this predominance is probably due, in part, to a diverse age at maturity. Contemporary water diversions from the Truckee River provided the opportunity to study the response of the Cui-ui population to years of failed reproduction. A projected drier Truckee River basin associated with global climate change will test the Cui-ui’s adaptive capacity to endure periods of reproductive failure. This study is aimed at assisting Cui-ui managers in conserving the species in this highly regulated and changing system. The study also adds insight into the prehistoric population dynamics of a potamodromous species in the arid western United States subject to wide fluctuations in

  3. Towards Risk Based Design for NASA's Missions

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; Barrientos, Francesca; Meshkat, Leila

    2004-01-01

    This paper describes the concept of Risk Based Design in the context of NASA s low volume, high cost missions. The concept of accounting for risk in the design lifecycle has been discussed and proposed under several research topics, including reliability, risk analysis, optimization, uncertainty, decision-based design, and robust design. This work aims to identify and develop methods to enable and automate a means to characterize and optimize risk, and use risk as a tradeable resource to make robust and reliable decisions, in the context of the uncertain and ambiguous stage of early conceptual design. This paper first presents a survey of the related topics explored in the design research community as they relate to risk based design. Then, a summary of the topics from the NASA-led Risk Colloquium is presented, followed by current efforts within NASA to account for risk in early design. Finally, a list of "risk elements", identified for early-phase conceptual design at NASA, is presented. The purpose is to lay the foundation and develop a roadmap for future work and collaborations for research to eliminate and mitigate these risk elements in early phase design.

  4. Evidence for a chemical clock in oscillatory formation of UiO-66

    NASA Astrophysics Data System (ADS)

    Goesten, M. G.; de Lange, M. F.; Olivos-Suarez, A. I.; Bavykina, A. V.; Serra-Crespo, P.; Krywka, C.; Bickelhaupt, F. M.; Kapteijn, F.; Gascon, Jorge

    2016-06-01

    Chemical clocks are often used as exciting classroom experiments, where an induction time is followed by rapidly changing colours that expose oscillating concentration patterns. This type of reaction belongs to a class of nonlinear chemical kinetics also linked to chaos, wave propagation and Turing patterns. Despite its vastness in occurrence and applicability, the clock reaction is only well understood for liquid-state processes. Here we report a chemical clock reaction, in which a solidifying entity, metal-organic framework UiO-66, displays oscillations in crystal dimension and number, as shown by X-ray scattering. In rationalizing this result, we introduce a computational approach, the metal-organic molecular orbital methodology, to pinpoint interaction between the tectonic building blocks that construct the metal-organic framework material. In this way, we show that hydrochloric acid plays the role of autocatalyst, bridging separate processes of condensation and crystallization.

  5. Evidence for a chemical clock in oscillatory formation of UiO-66

    PubMed Central

    Goesten, M. G.; de Lange, M. F.; Olivos-Suarez, A. I.; Bavykina, A. V.; Serra-Crespo, P.; Krywka, C.; Bickelhaupt, F. M.; Kapteijn, F.; Gascon, Jorge

    2016-01-01

    Chemical clocks are often used as exciting classroom experiments, where an induction time is followed by rapidly changing colours that expose oscillating concentration patterns. This type of reaction belongs to a class of nonlinear chemical kinetics also linked to chaos, wave propagation and Turing patterns. Despite its vastness in occurrence and applicability, the clock reaction is only well understood for liquid-state processes. Here we report a chemical clock reaction, in which a solidifying entity, metal–organic framework UiO-66, displays oscillations in crystal dimension and number, as shown by X-ray scattering. In rationalizing this result, we introduce a computational approach, the metal–organic molecular orbital methodology, to pinpoint interaction between the tectonic building blocks that construct the metal–organic framework material. In this way, we show that hydrochloric acid plays the role of autocatalyst, bridging separate processes of condensation and crystallization. PMID:27282410

  6. Evidence for a chemical clock in oscillatory formation of UiO-66.

    PubMed

    Goesten, M G; de Lange, M F; Olivos-Suarez, A I; Bavykina, A V; Serra-Crespo, P; Krywka, C; Bickelhaupt, F M; Kapteijn, F; Gascon, Jorge

    2016-06-10

    Chemical clocks are often used as exciting classroom experiments, where an induction time is followed by rapidly changing colours that expose oscillating concentration patterns. This type of reaction belongs to a class of nonlinear chemical kinetics also linked to chaos, wave propagation and Turing patterns. Despite its vastness in occurrence and applicability, the clock reaction is only well understood for liquid-state processes. Here we report a chemical clock reaction, in which a solidifying entity, metal-organic framework UiO-66, displays oscillations in crystal dimension and number, as shown by X-ray scattering. In rationalizing this result, we introduce a computational approach, the metal-organic molecular orbital methodology, to pinpoint interaction between the tectonic building blocks that construct the metal-organic framework material. In this way, we show that hydrochloric acid plays the role of autocatalyst, bridging separate processes of condensation and crystallization.

  7. Can an individualized and comprehensive care strategy improve urinary incontinence (UI) among nursing home residents?

    PubMed

    Tanaka, Yukiko; Nagata, Kumiko; Tanaka, Tomoe; Kuwano, Koichi; Endo, Hidetoshi; Otani, Tetsuya; Nakazawa, Minato; Koyama, Hiroshi

    2009-01-01

    Urinary incontinence (UI) is one of the most common and distressing conditions among nursing home residents. Although scheduled care is usually provided for them, incontinence care should be individualized regarding going to the toilet, changing diapers, and taking food and water. We have developed an individualized and comprehensive care strategy to address the problem. We conducted an intervention study that involved training chiefs of staffs, who in turn trained other staffs, and encouraging residents. A total of 153 elderly subjects selected from 1290 residents in 17 nursing homes were eligible to receive our individualized and comprehensive care. The goals of the care strategy were (i) to complete meal intake; (ii) to take fluids up to 1500 ml/day; (iii) to urinate in a toilet; (iv) to spend over 6h out of bed; and (v) to reduce time spent in wet diapers. We explained the aims of our strategy to the chiefs of staff of each nursing home and instructed them to encourage residents to take an active part in our individualized and comprehensive care strategy for 12 weeks. For 3 days before and after that period, we assessed the changes in fluid volume intake, time spent in wet diapers, size of diaper pads, and urination habits. The result was that fluid volume intake significantly increased (p<0.001) while time spent in wet diapers decreased (p<0.001). The number of residents wearing diapers decreased as did the size of pads during the day (p=0.0017). The proportion of residents using diapers at night was reduced and those using toilets at night increased (p=0.007). This study suggests that such an individualized and comprehensive care strategy can offer a measurable improvement in UI care.

  8. A rule based computer aided design system

    NASA Technical Reports Server (NTRS)

    Premack, T.

    1986-01-01

    A Computer Aided Design (CAD) system is presented which supports the iterative process of design, the dimensional continuity between mating parts, and the hierarchical structure of the parts in their assembled configuration. Prolog, an interactive logic programming language, is used to represent and interpret the data base. The solid geometry representing the parts is defined in parameterized form using the swept volume method. The system is demonstrated with a design of a spring piston.

  9. Optimization-based controller design for rotorcraft

    NASA Technical Reports Server (NTRS)

    Tsing, N.-K.; Fan, M. K. H.; Barlow, J.; Tits, A. L.; Tischler, M. B.

    1993-01-01

    An optimization-based methodology for linear control system design is outlined by considering the design of a controller for a UH-60 rotorcraft in hover. A wide range of design specifications is taken into account: internal stability, decoupling between longitudinal and lateral motions, handling qualities, and rejection of windgusts. These specifications are investigated while taking into account physical limitations in the swashplate displacements and rates of displacement. The methodology crucially relies on user-machine interaction for tradeoff exploration.

  10. Design for validation, based on formal methods

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.

    1990-01-01

    Validation of ultra-reliable systems decomposes into two subproblems: (1) quantification of probability of system failure due to physical failure; (2) establishing that Design Errors are not present. Methods of design, testing, and analysis of ultra-reliable software are discussed. It is concluded that a design-for-validation based on formal methods is needed for the digital flight control systems problem, and also that formal methods will play a major role in the development of future high reliability digital systems.

  11. Advances in Design-Based Research

    ERIC Educational Resources Information Center

    Svihla, Vanessa

    2014-01-01

    Design-based research (DBR) is a core methodology of the Learning Sciences. Historically rooted as a movement away from the methods of experimental psychology, it is a means to develop "humble" theory that takes into account numerous contextual effects for understanding how and why a design supported learning. DBR involves iterative…

  12. Web-Based Learning Design Tool

    ERIC Educational Resources Information Center

    Bruno, F. B.; Silva, T. L. K.; Silva, R. P.; Teixeira, F. G.

    2012-01-01

    Purpose: The purpose of this paper is to propose a web-based tool that enables the development and provision of learning designs and its reuse and re-contextualization as generative learning objects, aimed at developing educational materials. Design/methodology/approach: The use of learning objects can facilitate the process of production and…

  13. XAS on Rh and Ir metal sites in post synthetically functionalized UiO-67 Zirconium MOFs

    NASA Astrophysics Data System (ADS)

    Braglia, L.; Borfecchia, E.; Lomachenko, K. A.; Øien, S.; Lillerud, K. P.; Lamberti, C.

    2016-05-01

    We synthesized UiO-67 metal-organic-frameworks (MOFs) functionalized with different transition metals (Rh, Ir). Using EXAFS we verified that the synthesis has been successful. Furthermore, we observed the change of local environment while varying of metal site. XAS spectroscopy is the most informative technique to characterize these kind of materials and to study the local environment around the metal site.

  14. Error-Based Design Space Windowing

    NASA Technical Reports Server (NTRS)

    Papila, Melih; Papila, Nilay U.; Shyy, Wei; Haftka, Raphael T.; Fitz-Coy, Norman

    2002-01-01

    Windowing of design space is considered in order to reduce the bias errors due to low-order polynomial response surfaces (RS). Standard design space windowing (DSW) uses a region of interest by setting a requirement on response level and checks it by a global RS predictions over the design space. This approach, however, is vulnerable since RS modeling errors may lead to the wrong region to zoom on. The approach is modified by introducing an eigenvalue error measure based on point-to-point mean squared error criterion. Two examples are presented to demonstrate the benefit of the error-based DSW.

  15. Assembly design system based on engineering connection

    NASA Astrophysics Data System (ADS)

    Yin, Wensheng

    2016-12-01

    An assembly design system is an important part of computer-aided design systems, which are important tools for realizing product concept design. The traditional assembly design system does not record the connection information of production on the engineering layer; consequently, the upstream design idea cannot be fully used in the downstream design. An assembly design model based on the relationship of engineering connection is presented. In this model, all nodes are divided into two categories: The component and the connection. Moreover, the product is constructed on the basis of the connection relationship of the components. The model is an And/Or graph and has the ability to record all assembly schemes. This model records only the connection information that has engineering application value in the product design. In addition, this model can significantly reduce the number of combinations, and is very favorable for the assembly sequence planning in the downstream. The system contains a connection knowledge system that can be mapped to the connection node, and the connection knowledge obtained in practice can be returned to the knowledge system. Finally, VC++ 6.0 is used to develop a prototype system called Connect-based Assembly Planning (CAP). The relationship between the CAP system and the commercial assembly design system is also established.

  16. A Study of the Yang-gyeong-gyu-il-ui (兩景揆日儀) in the Joseon Dynasty

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sam; Kim, Sang Hyuk; Mihn, Byeong-Hee

    2015-03-01

    The Yang-gyeong-gyu-il-ui (兩景揆日儀) is a kind of elevation sundial using three wooden plates. Sang-hyeok Lee (李尙爀, 1810~?) and Byeong-cheol Nam (南秉哲, 1817~1863) gave descriptions of this sundial and explained how to use it in their Gyu-il-go (揆日考) and Ui-gi-jip-seol (儀器輯說), respectively. According to Gyu-il-go (揆日考) there are two horizontal plates and two vertical plates that have lines of season and time. Subseasonal (節候) lines are engraved between seasonal (節氣) lines, subdividing the interval into three equal lines of Cho-hu (初候, early subseason), Jung-hu (中候, mid subseason) and Mal-hu (末候, late subseason); there are 13 seasonal lines for a year, thus resulting in 37 subseasonal lines; also, there are 12 double-hour (時辰) lines for a day engraved on these plates. The only remaining artifact of Yang-gyeong-gyu-il-ui was made in 1849 (the 15th year of Heon-jong) and is kept at the Korea University Museum. We have compared and analyzed Yanggyeong- gyu-il-ui and similar western sundials. Also, we have reviewed the scientific aspect of this artifact and built a replica. Yang-gyeong-gyu-il-ui is a new model enhanced from the miniaturization development in the early Joseon Dynasty and can be applied to the southern part of the tropic line through a structure change.

  17. Design and designability of protein-based assemblies.

    PubMed

    Zhang, Jian; Zheng, Fan; Grigoryan, Gevorg

    2014-08-01

    Design of protein-based assemblies is an exciting frontier in molecular engineering. It can be seen as an extension of the protein design problem, but with some added hurdles. In recent years, much of the focus in the field has been on patterning existing protein structural units (proteins, oligomers, or structural motifs) to design diverse assembly geometries, focusing on symmetry to encode both "infinite" lattices and finite-sized supramolecular particles. Despite impressive successes, several key challenges remain. Among these are the specificity problem the need to engineer preference for the intended assembly geometry over all alternatives, and the folding problem--understanding what thermodynamic or kinetic features of assembly subunits and inter-subunit interfaces lead to successfully folding superstructures and how to encode these in the amino-acid sequence. Here we focus on recent results in the context of these two problems, summarizing commonalities in successful approaches. We find that natural designability of assembly elements (i.e., their compatibility with diverse populations of natural amino-acid sequences) may be a unifying property of successful designs.

  18. Habitat quality and recruitment success of cui-ui in the Truckee River downstream of Marble Bluff Dam, Pyramid Lake, Nevada

    USGS Publications Warehouse

    Scoppettone, G. Gary; Rissler, Peter H.; Salgado, J. Antonio; Harry, Beverly

    2013-01-01

    We compared cui-ui (Chasmistes cujus) recruitment from two reaches of the Truckee River with histories of severe erosional downcutting caused by a decline in Pyramid Lake surface elevation. In 1975, Marble Bluff Dam (MBD) was constructed 5 kilometers upstream of the extant mouth of the Truckee River to stabilize the upstream reach of the river; the downstream reach of the river remained unstable and consequently unsuitable for cui-ui recruitment. By the early 2000s, there was a decrease in the Truckee River’s slope from MBD to Pyramid Lake after a series of wet years in the 1990s. This was followed by changes in river morphology and erosion abatement. These changes led to the question as to cui-ui recruitment potential in the Truckee River downstream of MBD. In 2012, more than 7,000 cui-ui spawners were passed upstream of MBD, although an indeterminate number of cui-ui spawned downstream of MBD. In this study, we compared cui-ui recruitment upstream and downstream of MBD during a Truckee River low-flow year (2012). Cui-ui larvae emigration to Pyramid Lake began earlier and ended later downstream of MBD. A greater number of cui-ui larvae was produced downstream of MBD than upstream. This also was true for native Tahoe sucker (Catostomus tahoensis) and Lahontan redside (Richardsonius egregius). The improved Truckee River stability downstream of MBD and concomitant cui-ui recruitment success is attributed to a rise in Pyramid Lake's surface elevation. A decline in lake elevation may lead to a shift in stream morphology and substrate composition to the detriment of cui-ui reproductive success as well as the reproductive success of other native fishes.

  19. Gaining system design knowledge by systematic design space exploration with graph based design languages

    NASA Astrophysics Data System (ADS)

    Schmidt, Jens; Rudolph, Stephan

    2014-10-01

    The conceptual design phase in the design of complex systems such as satellite propulsion systems heavily relies on an exploration of the feasible design space. This exploration requires both: topological changes in the potential system architecture and consistent parametrical changes in the dimensioning of the existing system components. Since advanced engineering design techniques nowadays advocate a model-based systems engineering (MBSE) approach, graph-based design languages which embed a superset of MBSE-features are consequently used in this work to systematically explore the feasible design space. Design languages allow the design knowledge to be represented, modeled and executed using model-based transformations and combine this among other features with constraint processing techniques. The execution of the design language shown for the satellite propulsion systems in this work yields topologically varied designs (i.e. the selection of a monergol, a diergol or a coldgas system) with consistent parameters. Based on an a posteriori performance analysis of the automatically generated system designs, novel system knowledge (most notably in form of so-called "topology change points") can be gained and extracted from the original point cloud of numerical results.

  20. Radiometer Design Analysis Based Upon Measurement Uncertainty

    NASA Technical Reports Server (NTRS)

    Racette, Paul E.; Lang, Roger H.

    2004-01-01

    This paper introduces a method for predicting the performance of a radiometer design based on calculating the measurement uncertainty. The variety in radiometer designs and the demand for improved radiometric measurements justify the need for a more general and comprehensive method to assess system performance. Radiometric resolution, or sensitivity, is a figure of merit that has been commonly used to characterize the performance of a radiometer. However when evaluating the performance of a calibration design for a radiometer, the use of radiometric resolution has limited application. These limitations are overcome by considering instead the measurement uncertainty. A method for calculating measurement uncertainty for a generic radiometer design including its calibration algorithm is presented. The result is a generalized technique by which system calibration architectures and design parameters can be studied to optimize instrument performance for given requirements and constraints. Example applications demonstrate the utility of using measurement uncertainty as a figure of merit.

  1. Biourbanism: Solar based urban and regional design

    SciTech Connect

    Williams, D.

    1999-07-01

    New neighborhoods for an additional one billion people will need to be constructed on the planet within the next 10 years. If the historic patterns of growth continue--the sprawl, the congestion, the draining of swamps, the loss of agricultural land--the requirement for all basic resources will outstrip the availability. While this is of great concern, it is the destruction of an acceptable quality of life--the sense of place--that will be the most difficult and expensive to change. An essential step to reverse the direction of this undesirable future is changing the design and planning of these communities to work with resident solar energies, regional biology, local renewable resources, and sustainable urban planning and design principles. Design can make a difference. This paper develops the view that the solar approach must include urban and regional design and presents solar-based renewable resources example of the design of regions.

  2. VIEWCACHE: An incremental pointer-base access method for distributed databases. Part 1: The universal index system design document. Part 2: The universal index system low-level design document. Part 3: User's guide. Part 4: Reference manual. Part 5: UIMS test suite

    NASA Technical Reports Server (NTRS)

    Kelley, Steve; Roussopoulos, Nick; Sellis, Timos

    1992-01-01

    The goal of the Universal Index System (UIS), is to provide an easy-to-use and reliable interface to many different kinds of database systems. The impetus for this system was to simplify database index management for users, thus encouraging the use of indexes. As the idea grew into an actual system design, the concept of increasing database performance by facilitating the use of time-saving techniques at the user level became a theme for the project. This Final Report describes the Design, the Implementation of UIS, and its Language Interfaces. It also includes the User's Guide and the Reference Manual.

  3. Effects-Based Design of Robust Organizations

    DTIC Science & Technology

    2004-06-01

    turn, are used to synthesize a robust organizational structure. Keywords: Organizational Design, Markov Deci- sion Processes, Reinforcement Learning , and...Markov Decision Processes (MDP), reinforcement learning , Monte Carlo con- trol method, and mixed integer optimization, as in aElectrical and Computer...based on MDP, Monte Carlo control method, reinforcement learning , and mixed integer optimization techniques. In section III, we formulate the dynamic

  4. DSN energy data base preliminary design

    NASA Technical Reports Server (NTRS)

    Cole, E. R.; Herrera, L. O.; Lascu, D. M.

    1979-01-01

    The design and implementation of a computerized data base created to support the DSN Energy Conservation Project with data relating to energy use at Goldstone Deep Space Communications Complex are described. The results of development work to date, are presented along with work currently in progress or in the planning stage.

  5. A XAFS study of the local environment and reactivity of Pt- sites in functionalized UiO-67 MOFs

    NASA Astrophysics Data System (ADS)

    Borfecchia, E.; Øien, S.; Svelle, S.; Mino, L.; Braglia, L.; Agostini, G.; Gallo, E.; Lomachenko, K. A.; Bordiga, S.; Guda, A. A.; Soldatov, M. A.; Soldatov, A. V.; Olsbye, U.; Lillerud, K. P.; Lamberti, C.

    2016-05-01

    We synthesized UiO-67 Metal Organic Frameworks (MOFs) functionalized with bpydcPt(II)Cl2 and bpydcPt(IV)Cl4 complexes (bpydc = bipyridine-dicarboxylate), as attractive candidates for the heterogenization of homogeneous catalytic reactions. Pt L3-edge XAFS experiments allowed us to thoroughly characterize these materials, in the local environment of the Pt centers. XAFS studies evidenced the rich reactivity of UiO-67-Pt(II) MOFs, including reduction to bpydcPt(0) under H2 flow in the 600-700 K range, room-temperature oxidation to bpydcPt(IV)Br4 through oxidative addition of liquid Br2 and ligand exchange between 2 Cl- and even bulky ligands such as toluene-3,4-dithiol. Preliminary XANES simulations with ADF code provide additional information on the oxidation state of Pt sites.

  6. Design Concepts for Muon-Based Accelerators

    SciTech Connect

    Ryne, R. D.; Berg, J. S.; Kirk, H. G.; Palmer, R. B.; Stratkis, D.; Alexahin, Y.; Bross, A.; Gollwitzer, K.; Mokhov, N. V.; Neuffer, D.; Palmer, M. A.; Yonehara, K.; Snopok, P.; Bogacz, A.; Roberts, T. J.; Delahaye, J. -P.

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  7. Reliability based fatigue design and maintenance procedures

    NASA Technical Reports Server (NTRS)

    Hanagud, S.

    1977-01-01

    A stochastic model has been developed to describe a probability for fatigue process by assuming a varying hazard rate. This stochastic model can be used to obtain the desired probability of a crack of certain length at a given location after a certain number of cycles or time. Quantitative estimation of the developed model was also discussed. Application of the model to develop a procedure for reliability-based cost-effective fail-safe structural design is presented. This design procedure includes the reliability improvement due to inspection and repair. Methods of obtaining optimum inspection and maintenance schemes are treated.

  8. Carbon dioxide adsorption in amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology.

    PubMed

    Ethiraj, Jayashree; Albanese, Elisa; Civalleri, Bartolomeo; Vitillo, Jenny G; Bonino, Francesca; Chavan, Sachin; Shearer, Greig C; Lillerud, Karl Petter; Bordiga, Silvia

    2014-12-01

    A series of mixed-ligand [1,4-benzenedicarboxylic acid (BDC)/2-amino-1,4-benzenedicarboxylic acid (ABDC)] UiO-66 metal-organic frameworks (MOFs) synthesized through two different methods (low (LT) and high temperature (HT)) have been investigated for their carbon dioxide adsorption properties from 0 to 1 bar to clarify the role of amino loading on carbon dioxide uptake. Volumetric CO2 isotherms show that the CO2 capacity (normalized to the Langmuir surface area) increases with a degree of functionalization of about 46%; for similar NH2 contents, the same values are found for both synthetic procedures. Microcalorimetric isotherms reveal that amino-functionalized materials have a larger differential heat of adsorption (q(diff) ) towards CO2 ; reaching 27(25) and 20(22) kJ mol(-1) on HT(LT)-UiO-66-NH2 and UiO-66, respectively, at the lowest equilibrium pressures used in this study. All experimental results are supported by values obtained through quantum mechanical calculations.

  9. MMI based Electro-Absorption Modulator Design

    NASA Astrophysics Data System (ADS)

    Sala, A.; Sikorski, Y.

    2007-05-01

    Electro-Absorption Modulators (EAM) are among the most important components of high-speed WDM optical communications devices and systems. During the last decade, multiple EAM designs were proposed and fabricated as stand alone devices, as part of Electro-Absorption Modulated Lasers (EML), and as part of multi component Planar Lightguide Circuits (PLC). Vast majority of all designed and fabricated EAMs employ a straight section of single mode waveguide. In this work, we present a new approach for EAM design which is based on the use of 1*1 Multimode Interference structure (MMI). We demonstrate improvements in the extinction ratio of the EAM based on a combination of electro-absorption and optical interference effects in the MMI structure. The increase in extinction ratio is not accompanied by an increase in insertion loss or chirp, nor does it lead to higher drive voltage or lower bandwidth. The MMI based EAM devices can be easily fabricated using current InP based fabrication technologies and, in-fact, allow for less stringent tolerance requirements than currently used for traditional EAM devices. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.P1.4

  10. Design Study: Rocket Based MHD Generator

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.

  11. Neurocomputing strategies in decomposition based structural design

    NASA Technical Reports Server (NTRS)

    Szewczyk, Z.; Hajela, P.

    1993-01-01

    The present paper explores the applicability of neurocomputing strategies in decomposition based structural optimization problems. It is shown that the modeling capability of a backpropagation neural network can be used to detect weak couplings in a system, and to effectively decompose it into smaller, more tractable, subsystems. When such partitioning of a design space is possible, parallel optimization can be performed in each subsystem, with a penalty term added to its objective function to account for constraint violations in all other subsystems. Dependencies among subsystems are represented in terms of global design variables, and a neural network is used to map the relations between these variables and all subsystem constraints. A vector quantization technique, referred to as a z-Network, can effectively be used for this purpose. The approach is illustrated with applications to minimum weight sizing of truss structures with multiple design constraints.

  12. Creating A Data Base For Design Of An Impeller

    NASA Technical Reports Server (NTRS)

    Prueger, George H.; Chen, Wei-Chung

    1993-01-01

    Report describes use of Taguchi method of parametric design to create data base facilitating optimization of design of impeller in centrifugal pump. Data base enables systematic design analysis covering all significant design parameters. Reduces time and cost of parametric optimization of design: for particular impeller considered, one can cover 4,374 designs by computational simulations of performance for only 18 cases.

  13. A decision-based perspective for the design of methods for systems design

    NASA Technical Reports Server (NTRS)

    Mistree, Farrokh; Muster, Douglas; Shupe, Jon A.; Allen, Janet K.

    1989-01-01

    Organization of material, a definition of decision based design, a hierarchy of decision based design, the decision support problem technique, a conceptual model design that can be manufactured and maintained, meta-design, computer-based design, action learning, and the characteristics of decisions are among the topics covered.

  14. Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66

    NASA Astrophysics Data System (ADS)

    Jakobsen, Søren; Gianolio, Diego; Wragg, David S.; Nilsen, Merete Hellner; Emerich, Hermann; Bordiga, Silvia; Lamberti, Carlo; Olsbye, Unni; Tilset, Mats; Lillerud, Karl Petter

    2012-09-01

    High-resolution synchrotron radiation x-ray powder diffraction (HR-XRPD) combined with Hf L3-edge extended x-ray absorption fine structure allowed us to determine the structure of a Hf-UiO-66 metal-organic framework (MOF) showing that it is isoreticular to Zr-UiO-66 MOF [Cavka , J. Am. Chem. Soc.JACSAT0002-786310.1021/ja8057953 130, 13850 (2008).]. Thermal gravimetric measurements (coupled with mass spectroscopy) and temperature-dependent synchrotron radiation XRPD proved the high thermal stability of the Hf-UiO-66 MOF. The Langmuir surface area (849 m2/g) combined with the high stability of the UiO-66 framework and with the high neutron absorption cross section of Hf suggest that among all microporous crystalline materials the Hf-UiO-66 MOF possesses the physical and chemical requirements for the interim storage of radioactive waste in a much safer way than is currently available. The first results proving the synthesis of a MOF material with UiO-66 topology realized by a B-containing linker are also reported, allowing a further improvement of the neutron shielding power of this class of materials.

  15. Design and Construction of Manned Lunar Base

    NASA Astrophysics Data System (ADS)

    Li, Zhijie

    2016-07-01

    Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under

  16. Synthesis, structures and reactivity of ruthenium nitrosyl complexes containing Kläui's oxygen tripodal ligand.

    PubMed

    Ip, Ho-Fai; Yi, Xiao-Yi; Wong, Wai-Yeung; Williams, Ian D; Leung, Wa-Hung

    2011-11-07

    Ruthenium nitrosyl complexes containing the Kläui's oxgyen tripodal ligand L(OEt)(-) ([CpCo{P(O)(OEt)(2)}(3)](-) where Cp = η(5)-C(5)H(5)) were synthesized and their photolysis studied. The treatment of [Ru(N^N)(NO)Cl(3)] with [AgL(OEt)] and Ag(OTf) afforded [L(OEt)Ru(N^N)(NO)][OTf](2) where N^N = 4,4'-di-tert-butyl-2,2'-bipyridyl (dtbpy) (2·[OTf](2)), 2,2'-bipyridyl (bpy) (3·[OTf](2)), N,N,N'N'-tetramethylethylenediamine (4·[OTf](2)). Anion metathesis of 3·[OTf](2) with HPF(6) and HBF(4) gave 3·[PF(6)](2) and 3·[BF(4)](2), respectively. Similarly, the PF(6)(-) salt 4·[PF(6)](2) was prepared by the reaction of 4·[OTf](2) with HPF(6). The irradiation of [L(OEt)Ru(NO)Cl(2)] (1) with UV light in CH(2)Cl(2)-MeCN and tetrahydrofuran (thf)-H(2)O afforded [L(OEt)RuCl(2)(MeCN)] (5) and the chloro-bridged dimer [L(OEt)RuCl](2)(μ-Cl)(2) (6), respectively. The photolysis of complex [2][OTf](2) in MeCN gave [L(OEt)Ru(dtbpy)(MeCN)][OTf](2) (7). Refluxing complex 5 with RNH(2) in thf gave [L(OEt)RuCl(2)(NH(2)R)] (R = tBu (8), p-tol (9), Ph (10)). The oxidation of complex 6 with PhICl(2) gave [L(OEt)RuCl(3)] (11), whereas the reduction of complex 6 with Zn and NH(4)PF(6) in MeCN yielded [L(OEt)Ru(MeCN)(3)][PF(6)] (12). The reaction of 3·[BF(4)](2) with benzylamine afforded the μ-dinitrogen complex [{L(OEt)Ru(bpy)}(2)(μ-N(2))][BF(4)](2) (13) that was oxidized by [Cp(2)Fe]PF(6) to a mixed valence Ru(II,III) species. The formal potentials of the RuL(OEt) complexes have been determined by cyclic voltammetry. The structures of complexes 5,6,10,11 and 13 have been established by X-ray crystallography.

  17. Reliability-Based Electronics Shielding Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; O'Neill, P. J.; Zang, T. A.; Pandolf, J. E.; Tripathi, R. K.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2007-01-01

    Shielding design on large human-rated systems allows minimization of radiation impact on electronic systems. Shielding design tools require adequate methods for evaluation of design layouts, guiding qualification testing, and adequate follow-up on final design evaluation.

  18. Comparing Linkage Designs Based on Land Facets to Linkage Designs Based on Focal Species

    PubMed Central

    Brost, Brian M.; Beier, Paul

    2012-01-01

    Least-cost modeling for focal species is the most widely used method for designing conservation corridors and linkages. However, these designs depend on today's land covers, which will be altered by climate change. We recently proposed an alternative approach based on land facets (recurring landscape units of relatively uniform topography and soils). The rationale is that corridors with high continuity of individual land facets will facilitate movement of species associated with each facet today and in the future. Conservation practitioners might like to know whether a linkage design based on land facets is likely to provide continuity of modeled breeding habitat for species needing connectivity today, and whether a linkage for focal species provides continuity and interspersion of land facets. To address these questions, we compared linkages designed for focal species and land facets in three landscapes in Arizona, USA. We used two variables to measure linkage utility, namely distances between patches of modeled breeding habitat for 5–16 focal species in each linkage, and resistance profiles for focal species and land facets between patches connected by the linkage. Compared to focal species designs, linkage designs based on land facets provided as much or more modeled habitat connectivity for 25 of 28 species-landscape combinations, failing only for the three species with the most narrowly distributed habitat. Compared to land facets designs, focal species linkages provided lower connectivity for about half the land facets in two landscapes. In areas where a focal species approach to linkage design is not possible, our results suggest that conservation practitioners may be able to implement a land facets approach with some confidence that the linkage design would serve most potential focal species. In areas where focal species designs are possible, we recommend using the land facet approach to complement, rather than replace, focal species approaches. PMID

  19. Visual Media Reasoning - Terrain-based Geolocation

    DTIC Science & Technology

    2015-06-01

    database. A prototype web -based geolocation demonstration site was instantiated. The developed technologies have found other uses of interest to the...GEOLOCATION WEB SERVICES AND DEMONSTRATION UI ........................................ 30 5 RESULTS AND DISCUSSION...Demonstration web user interface. ........................................................................................ 30 iii Figure 20: Web UI

  20. Protein Structure Network-based Drug Design.

    PubMed

    Liang, Zhongjie; Hu, Guang

    2016-01-01

    Although structure-based drug design (SBDD) has become an indispensable tool in drug discovery for a long time, it continues to pose major challenges to date. With the advancement of "omics" techniques, systems biology has enriched SBDD into a new era, called polypharmacology, in which multi-targets drug or drug combination is designed to fight complex diseases. As a preliminary tool in systems biology, protein structure networks (PSNs) treat a protein as a set of residues linked by edges corresponding to the intramolecular interactions existing in folded structures between the residues. The PSN offers a computationally efficient tool to study the structure and function of proteins, and thus may facilitate structurebased drug design. Herein, we provide an overview of recent advances in PSNs, from predicting functionally important residues, to charactering protein-protein interactions and allosteric communication paths. Furthermore, we discuss potential pharmacological applications of PSN concepts and tools, and highlight the application to two families of drug targets, GPCRs and Hsp90. Although the application of PSNs as a framework for computer-aided drug discovery has been limited to date, we put forward the potential utility value in the near future and propose the PSNs could also serve as a new tool for polypharmacology research.

  1. Advances in structure-based vaccine design

    PubMed Central

    Kulp, Daniel W; Schief, William R

    2014-01-01

    Despite the tremendous successes of current vaccines, infectious diseases still take a heavy toll on the global population, and that provides strong rationale for broadening our vaccine development repertoire. Structural vaccinology, in which protein structure information is utilized to design immunogens, has promise to provide new vaccines against traditionally difficult targets. Crystal structures of antigens containing one or more protection epitopes, especially when in complex with a protective antibody, are the launching point for immunogen design. Integrating structure and sequence information for families of broadly neutralizing antibodies (bNAbs) has recently enabled the creation of germline-targeting immunogens that bind and activate germline B-cells in order to initiate the elicitation of such antibodies. The contacts between antigen and neutralizing antibody define a structural epitope, and methods have been developed to transplant epitopes to scaffold proteins for structural stabilization, and to design minimized antigens that retain one or more key epitopes while eliminating other potentially distracting or unnecessary features. To develop vaccines that protect against antigenically variable pathogens, pioneering structure-based work demonstrated that multiple strain-specific epitopes could be engineered onto a single immunogen. We review these recent structural vaccinology efforts to engineer germline-targeting, epitope-specific, and/or broad coverage immunogens. PMID:23806515

  2. A User-Centered Framework for Deriving A Conceptual Design From User Experiences: Leveraging Personas and Patterns to Create Usable Designs

    NASA Astrophysics Data System (ADS)

    Javahery, Homa; Deichman, Alexander; Seffah, Ahmed; Taleb, Mohamed

    Patterns are a design tool to capture best practices, tackling problems that occur in different contexts. A user interface (UI) design pattern spans several levels of design abstraction ranging from high-level navigation to low-level idioms detailing a screen layout. One challenge is to combine a set of patterns to create a conceptual design that reflects user experiences. In this chapter, we detail a user-centered design (UCD) framework that exploits the novel idea of using personas and patterns together. Personas are used initially to collect and model user experiences. UI patterns are selected based on personas pecifications; these patterns are then used as building blocks for constructing conceptual designs. Through the use of a case study, we illustrate how personas and patterns can act as complementary techniques in narrowing the gap between two major steps in UCD: capturing users and their experiences, and building an early design based on that information. As a result of lessons learned from the study and by refining our framework, we define a more systematic process called UX-P (User Experiences to Pattern), with a supporting tool. The process introduces intermediate analytical steps and supports designers in creating usable designs.

  3. Design of nanostructured-based glucose biosensors

    NASA Astrophysics Data System (ADS)

    Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani

    2012-04-01

    This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.

  4. Designing biomimetic pores based on carbon nanotubes

    PubMed Central

    García-Fandiño, Rebeca; Sansom, Mark S. P.

    2012-01-01

    Biomimetic nanopores based on membrane-spanning single-walled carbon nanotubes have been designed to include selectivity filters based on combinations of anionic and cationic groups mimicking those present in bacterial porins and in voltage-gated sodium and calcium channels. The ion permeation and selectivity properties of these nanopores when embedded in a phospholipid bilayer have been explored by molecular dynamics simulations and free energy profile calculations. The interactions of the nanopores with sodium, potassium, calcium, and chloride ions have been explored as a function of the number of anionic and cationic groups within the selectivity filter. Unbiased molecular dynamics simulations show that the overall selectivity is largely determined by the net charge of the filter. Analysis of distribution functions reveals considerable structuring of the distribution of ions and water within the nanopores. The distributions of ions along the pore axis reveal local selectivity for cations around filter, even in those nanopores (C0) where the net filter charge is zero. Single ion free energy profiles also reveal clear evidence for cation selectivity, even in the C0 nanopores. Detailed analysis of the interactions of the C0 nanopore with Ca2+ ions reveals that local interactions with the anionic (carboxylate) groups of the selectivity filter lead to (partial) replacement of solvating water as the ion passes through the pore. These studies suggest that a computational biomimetic approach can be used to evaluate our understanding of the design principles of nanopores and channels. PMID:22509000

  5. A Task-Based Design Guide for Command and Control

    DTIC Science & Technology

    2012-06-01

    Decisions & Focal Tasks Cognitive Notional Paper Prototype Walkthrough Cognitive Walkthroughs & Usability Analyses UCD is an HFE best practice...reduce the current burden of user cognition and recall. This approach will enhance the usability of command and control systems, reduce the life cycle...COCOM). With usability issues becoming widespread in the C2 community, there is now an even greater need for UI standardization, which is advanced by

  6. Designing a Constraint Based Parser for Sanskrit

    NASA Astrophysics Data System (ADS)

    Kulkarni, Amba; Pokar, Sheetal; Shukl, Devanand

    Verbal understanding (śā bdabodha) of any utterance requires the knowledge of how words in that utterance are related to each other. Such knowledge is usually available in the form of cognition of grammatical relations. Generative grammars describe how a language codes these relations. Thus the knowledge of what information various grammatical relations convey is available from the generation point of view and not the analysis point of view. In order to develop a parser based on any grammar one should then know precisely the semantic content of the grammatical relations expressed in a language string, the clues for extracting these relations and finally whether these relations are expressed explicitly or implicitly. Based on the design principles that emerge from this knowledge, we model the parser as finding a directed Tree, given a graph with nodes representing the words and edges representing the possible relations between them. Further, we also use the Mīmā ṃsā constraint of ākā ṅkṣā (expectancy) to rule out non-solutions and sannidhi (proximity) to prioritize the solutions. We have implemented a parser based on these principles and its performance was found to be satisfactory giving us a confidence to extend its functionality to handle the complex sentences.

  7. Muscle fatigue based evaluation of bicycle design.

    PubMed

    Balasubramanian, V; Jagannath, M; Adalarasu, K

    2014-03-01

    Bicycling posture leads to considerable discomfort and a variety of chronic injuries. This necessitates a proper bicycle design to avoid injuries and thereby enhance rider comfort. The objective of this study was to investigate the muscle activity during cycling on three different bicycle designs, i.e., rigid frame (RF), suspension (SU) and sports (SP) using surface electromyography (sEMG). Twelve male volunteers participated in this study. sEMG signals were acquired bilaterally from extensor carpi radialis (ECR), trapezius medial (TM), latissimus dorsi medial (LDM) and erector spinae (ES), during 30 min of cycling on each bicycle and after cycling. Time domain (RMS) and frequency domain (MPF) parameters were extracted from acquired sEMG signals. From the sEMG study, it was found that the fatigue in right LDM and ES were significantly (p < 0.05) higher in SP bicycle. This was corroborated by a psychophysical assessment based on RBG pain scale. The study also showed that there was a significantly lesser fatigue with the SU bicycle than the RF and SP bicycles.

  8. Problem Based Learning in Constructed Textile Design

    ERIC Educational Resources Information Center

    Sayer, Kate; Wilson, Jacquie; Challis, Simon

    2006-01-01

    Staff observing undergraduate students enrolled on the BSc Hons Textile Design and Design Management programme in The School of Materials, The University of Manchester, identified difficulties with knowledge retention in the area of constructed textile design. Consequently an experimental pilot was carried out in seamless knitwear design using a…

  9. CFD based draft tube hydraulic design optimization

    NASA Astrophysics Data System (ADS)

    McNabb, J.; Devals, C.; Kyriacou, S. A.; Murry, N.; Mullins, B. F.

    2014-03-01

    The draft tube design of a hydraulic turbine, particularly in low to medium head applications, plays an important role in determining the efficiency and power characteristics of the overall machine, since an important proportion of the available energy, being in kinetic form leaving the runner, needs to be recovered by the draft tube into static head. For large units, these efficiency and power characteristics can equate to large sums of money when considering the anticipated selling price of the energy produced over the machine's life-cycle. This same draft tube design is also a key factor in determining the overall civil costs of the powerhouse, primarily in excavation and concreting, which can amount to similar orders of magnitude as the price of the energy produced. Therefore, there is a need to find the optimum compromise between these two conflicting requirements. In this paper, an elaborate approach is described for dealing with this optimization problem. First, the draft tube's detailed geometry is defined as a function of a comprehensive set of design parameters (about 20 of which a subset is allowed to vary during the optimization process) and are then used in a non-uniform rational B-spline based geometric modeller to fully define the wetted surfaces geometry. Since the performance of the draft tube is largely governed by 3D viscous effects, such as boundary layer separation from the walls and swirling flow characteristics, which in turn governs the portion of the available kinetic energy which will be converted into pressure, a full 3D meshing and Navier-Stokes analysis is performed for each design. What makes this even more challenging is the fact that the inlet velocity distribution to the draft tube is governed by the runner at each of the various operating conditions that are of interest for the exploitation of the powerhouse. In order to determine these inlet conditions, a combined steady-state runner and an initial draft tube analysis, using a

  10. Michelson interferometer based interleaver design using classic IIR filter decomposition.

    PubMed

    Cheng, Chi-Hao; Tang, Shasha

    2013-12-16

    An elegant method to design a Michelson interferometer based interleaver using a classic infinite impulse response (IIR) filter such as Butterworth, Chebyshev, and elliptic filters as a starting point are presented. The proposed design method allows engineers to design a Michelson interferometer based interleaver from specifications seamlessly. Simulation results are presented to demonstrate the validity of the proposed design method.

  11. Designing Tools for Reflection on Problem-Based Instruction and Problem-Based Instructional Design

    ERIC Educational Resources Information Center

    Keefer, Matthew W.; Hui, Diane; RuffusDoerr, Amy Marie

    2009-01-01

    The objective of this research project into teacher education was to document the collaborative development and refection on teachers' tools in a problem-based learning (PBL) program. These results were then used to design materials and formats for the transmission of this teaching knowledge to less-experienced PBL teachers. The tools were…

  12. Hybrid Polymer/UiO-66(Zr) and Polymer/NaY Fiber Sorbents for Mercaptan Removal from Natural Gas.

    PubMed

    Chen, Grace; Koros, William J; Jones, Christopher W

    2016-04-20

    Zeolite NaY and metal organic frameworks MIL-53(Al) and UiO-66(Zr) are spun with cellulose acetate (CA) polymer to create hybrid porous composite fibers for the selective adsorption of sulfur odorant compounds from pipeline natural gas. Odorant removal is desirable to limit corrosion associated with sulfur oxide production, thereby increasing lifetime in gas turbines used for electricity generation. In line with these goals, the performance of the hybrid fibers is evaluated on the basis of sulfur sorption capacity and selectivity, as well as fiber stability and regenerability, compared to their polymer-free sorbent counterparts. The capacities of the powder sorbents are also measured using various desorption temperatures to evaluate the potential for lower temperature, energy, and cost-efficient system operation. Both NaY/CA and UiO-66(Zr)/CA hybrid fibers are prepared with high sorbent loadings, and both have high capacities and selectivities for t-butyl mercaptan (TBM) odorant sorption from a model natural gas (NG), while being stable to multiple regeneration cycles. The different advantages and disadvantages of both types of fibers relative are discussed, with both offering the potential advantages of low pressure drop, rapid heat and mass transfer, and low energy requirements over traditional sulfur removal technologies such as hydrodesulfurization (HDS) or adsorption in a pellet packed beds.

  13. Complex Educational Design: A Course Design Model Based on Complexity

    ERIC Educational Resources Information Center

    Freire, Maximina Maria

    2013-01-01

    Purpose: This article aims at presenting a conceptual framework which, theoretically grounded on complexity, provides the basis to conceive of online language courses that intend to respond to the needs of students and society. Design/methodology/approach: This paper is introduced by reflections on distance education and on the paradigmatic view…

  14. Chip Design Process Optimization Based on Design Quality Assessment

    NASA Astrophysics Data System (ADS)

    Häusler, Stefan; Blaschke, Jana; Sebeke, Christian; Rosenstiel, Wolfgang; Hahn, Axel

    2010-06-01

    Nowadays, the managing of product development projects is increasingly challenging. Especially the IC design of ASICs with both analog and digital components (mixed-signal design) is becoming more and more complex, while the time-to-market window narrows at the same time. Still, high quality standards must be fulfilled. Projects and their status are becoming less transparent due to this complexity. This makes the planning and execution of projects rather difficult. Therefore, there is a need for efficient project control. A main challenge is the objective evaluation of the current development status. Are all requirements successfully verified? Are all intermediate goals achieved? Companies often develop special solutions that are not reusable in other projects. This makes the quality measurement process itself less efficient and produces too much overhead. The method proposed in this paper is a contribution to solve these issues. It is applied at a German design house for analog mixed-signal IC design. This paper presents the results of a case study and introduces an optimized project scheduling on the basis of quality assessment results.

  15. Design and Demonstration of Minimal Lunar Base

    NASA Astrophysics Data System (ADS)

    Boche-Sauvan, L.; Foing, B. H.; Exohab Team

    2009-04-01

    Introduction: We propose a conceptual analysis of a first minimal lunar base, in focussing on the system aspects and coordinating every different part as part an evolving architecture [1-3]. We justify the case for a scientific outpost allowing experiments, sample analysis in laboratory (relevant to the origin and evolution of the Earth, geophysical and geochemical studies of the Moon, life sciences, observation from the Moon). Research: Research activities will be conducted with this first settlement in: - science (of, from and on the Moon) - exploration (robotic mobility, rover, drilling), - technology (communication, command, organisation, automatism). Life sciences. The life sciences aspects are considered through a life support for a crew of 4 (habitat) and a laboratory activity with biological experiments performed on Earth or LEO, but then without any magnetosphere protection and therefore with direct cosmic rays and solar particle effects. Moreover, the ability of studying the lunar environment in the field will be a big asset before settling a permanent base [3-5]. Lunar environment. The lunar environment adds constraints to instruments specifications (vacuum, extreme temperature, regolith, seism, micrometeorites). SMART-1 and other missions data will bring geometrical, chemical and physical details about the environment (soil material characteristics, on surface conditions …). Test bench. To assess planetary technologies and operations preparing for Mars human exploration. Lunar outpost predesign modular concept: To allow a human presence on the moon and to carry out these experiments, we will give a pre-design of a human minimal lunar base. Through a modular concept, this base will be possibly evolved into a long duration or permanent base. We will analyse the possibilities of settling such a minimal base by means of the current and near term propulsion technology, as a full Ariane 5 ME carrying 1.7 T of gross payload to the surface of the Moon

  16. Comparative evaluation of ceramic bracket base designs.

    PubMed

    Bordeaux, J M; Moore, R N; Bagby, M D

    1994-06-01

    Since the initial introduction of ceramic brackets, base designs have been modified to reduce tooth damage during debonding. The purpose of this study was to compare shear and tensile bond strengths and fracture sites of four second-generation ceramic brackets: Allure IV (A) (GAC International, Inc., Central Islip, N.Y.), Ceramaflex (C) (TP Orthodontics, Inc., LaPorte, Ind.), Intrigue (I) (Lancer Orthodontics, Carlsbad, Calif.), Transcend 2000 (T) (Unitek Corp., Monrovia, Calif.), and a foil-mesh base stainless steel bracket, DynaBond II (D) (Unitek Corp., Monrovia, Calif.). Twenty brackets of each type were bonded to 100 mandibular bovine incisor teeth with Concise bonding adhesive. The samples were thermocycled for 24 hours and the brackets were debonded with an Instron universal testing machine (Instron Corp., Canton, Mass.). A modified Transcend debonding instrument was used for tensile debonding, whereas a chisel was used for shear debonding. An analysis of variance was performed with a 0.05 level of confidence. Mean shear strengths (kg/cm2) necessary to debond were 174.0 (A), 71.0 (C), 189.0 (I), 228.0 (T), and 160.0 (D). Mean tensile strengths (kg/cm2) were 27.0 (A), 26.7 (C), 51.3 (I), 56.5 (T), and 48.6 (D). Fracture sites examined with a light microscope showed no enamel damage with any of the ceramic brackets. Intrigue was the only bracket to fracture and had 30% bracket fracture in the tensile mode and 20% bracket fracture in the shear mode. The percentage of fractures at the adhesive-bracket base interface for shear and tensile modes, respectively, were 80, 100 (A); 100, 90 (C); 10, 60 (I); 60, 90 (T); and 90, 80 (D).(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Autonomous entropy-based intelligent experimental design

    NASA Astrophysics Data System (ADS)

    Malakar, Nabin Kumar

    2011-07-01

    The aim of this thesis is to explore the application of probability and information theory in experimental design, and to do so in a way that combines what we know about inference and inquiry in a comprehensive and consistent manner. Present day scientific frontiers involve data collection at an ever-increasing rate. This requires that we find a way to collect the most relevant data in an automated fashion. By following the logic of the scientific method, we couple an inference engine with an inquiry engine to automate the iterative process of scientific learning. The inference engine involves Bayesian machine learning techniques to estimate model parameters based upon both prior information and previously collected data, while the inquiry engine implements data-driven exploration. By choosing an experiment whose distribution of expected results has the maximum entropy, the inquiry engine selects the experiment that maximizes the expected information gain. The coupled inference and inquiry engines constitute an autonomous learning method for scientific exploration. We apply it to a robotic arm to demonstrate the efficacy of the method. Optimizing inquiry involves searching for an experiment that promises, on average, to be maximally informative. If the set of potential experiments is described by many parameters, the search involves a high-dimensional entropy space. In such cases, a brute force search method will be slow and computationally expensive. We develop an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment. This helps to reduce the number of computations necessary to find the optimal experiment. We also extended the method of maximizing entropy, and developed a method of maximizing joint entropy so that it could be used as a principle of collaboration between two robots. This is a major achievement of this thesis, as it allows the information-based collaboration between two robotic units towards a same

  18. Stratified Sampling Design Based on Data Mining

    PubMed Central

    Kim, Yeonkook J.; Oh, Yoonhwan; Park, Sunghoon; Cho, Sungzoon

    2013-01-01

    Objectives To explore classification rules based on data mining methodologies which are to be used in defining strata in stratified sampling of healthcare providers with improved sampling efficiency. Methods We performed k-means clustering to group providers with similar characteristics, then, constructed decision trees on cluster labels to generate stratification rules. We assessed the variance explained by the stratification proposed in this study and by conventional stratification to evaluate the performance of the sampling design. We constructed a study database from health insurance claims data and providers' profile data made available to this study by the Health Insurance Review and Assessment Service of South Korea, and population data from Statistics Korea. From our database, we used the data for single specialty clinics or hospitals in two specialties, general surgery and ophthalmology, for the year 2011 in this study. Results Data mining resulted in five strata in general surgery with two stratification variables, the number of inpatients per specialist and population density of provider location, and five strata in ophthalmology with two stratification variables, the number of inpatients per specialist and number of beds. The percentages of variance in annual changes in the productivity of specialists explained by the stratification in general surgery and ophthalmology were 22% and 8%, respectively, whereas conventional stratification by the type of provider location and number of beds explained 2% and 0.2% of variance, respectively. Conclusions This study demonstrated that data mining methods can be used in designing efficient stratified sampling with variables readily available to the insurer and government; it offers an alternative to the existing stratification method that is widely used in healthcare provider surveys in South Korea. PMID:24175117

  19. Designer: A Knowledge-Based Graphic Design Assistant.

    DTIC Science & Technology

    1986-07-01

    1983; Ching, 1979; Dondis , 1973; Hurlburt, 1977; Marcus, 1986; Reilly & Roach. 1984; Sherwood, 1981; Taylor, 1960; Wong, 1972). Unfortunately, the...informa- tion ( Dondis , 1973). These visual techniques represent a vocabulary in which to describe the design. These techniques in conjunction with the...Artificial Intelligence, 28, 197-224. Dondis , D. A. (1973). A primer of visual literacy. Cambridge, MA: MIT Press. Glenn, B. (1986). Descriptor: A model for

  20. NGDS USER CENTERED DESIGN MEETING THE NEEDS OF THE GEOTHERMAL COMMUNITY

    SciTech Connect

    Boyd, Suzanne; Zheng, Sam Xianjun; Patten, Kim; Blackman, Harold

    2013-12-23

    In order to ensure the widest and greatest utility of IT and software projects designed for geothermal reservoir engineering the full consideration of end users’ task and workflow needs must be evaluated. This paper describes the user-centered design (UCD) approach taken in the development of a user interface (UI) solution for the National Geothermal Data System (NGDS). This development process has been researched based, highly collaborative, and incorporates state-of-the-art practices to ensure a quality user experience. Work is continuing on the interface, including future usability tests to further refine the interfaces as the overall system is developed.

  1. NGDS User Centered Design Meeting the Needs of the Geothermal Community

    SciTech Connect

    Boyd, Suzanne; Zheng, Sam; Patten, Kim; Blackman, Harold

    2013-10-15

    In order to ensure the widest and greatest utility of IT and software projects designed for geothermal reservoir engineer- ing the full consideration of end users’ task and workflow needs must be evaluated. This paper describes the user-centered design (UCD) approach taken in the development of a user interface (UI) solution for the National Geothermal Data System (NGDS). This development process has been research based, highly collabora- tive, and incorporates state-of-the-art practices to ensure a quality user experience. Work is continuing on the interface, including future usability tests to further refine the interfaces as the overall system is developed.

  2. Gated Channels and Selectivity Tuning of CO2 over N2 Sorption by Post-Synthetic Modification of a UiO-66-Type Metal-Organic Framework.

    PubMed

    Kronast, Alexander; Eckstein, Sebastian; Altenbuchner, Peter T; Hindelang, Konrad; Vagin, Sergei I; Rieger, Bernhard

    2016-08-26

    The highly porous and stable metal-organic framework (MOF) UiO-66 was altered using post-synthetic modifications (PSMs). Prefunctionalization allowed the introduction of carbon double bonds into the framework through a four-step synthesis from 2-bromo-1,4-benzenedicarboxylic acid; the organic linker 2-allyl-1,4-benzenedicarboxylic acid was obtained. The corresponding functionalized MOF (UiO-66-allyl) served as a platform for further PSMs. From UiO-66-allyl, epoxy, dibromide, thioether, diamine, and amino alcohol functionalities were synthesized. The abilities of these compounds to adsorb CO2 and N2 were compared, which revealed the structure-selectivity correlations. All synthesized MOFs showed profound thermal stability together with an increased ability for selective CO2 uptake and molecular gate functionalities at low temperatures.

  3. Effects of Pelletization Pressure on the Physical and Chemical Properties of the Metal-Organic Frameworks Cu3(BTC)2 and UiO-66

    DTIC Science & Technology

    2013-02-26

    testing was conducted with CuBTC against ammonia , which probes the reactive sites, and UiO-66 against octane, which probes physical adsorption capacity...Even with the decrease in surface area, the CuBTC materials had consistent ammonia removal capacities, while the UiO-66 pressed materials showed a...21010, USA cGeorgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA 30332, USA a r t i c l e i n f o Article history

  4. Design and implementation of telephone dialer based on Arduino

    NASA Astrophysics Data System (ADS)

    Ma, Zilong; Lei, Ying

    2017-03-01

    Introduces a system design scheme of the telephone dialer based on Arduino, including the design principle, hardware and software design and the experimental results in this paper. The scheme is based on the dual tone multi frequency (DTMF) dialing mode, using the Arduino UNO as the main controller, the serial port send out the telephone number to be dialed, speaker synthesize the voice.

  5. Design of control network based on OMRON PLC

    NASA Astrophysics Data System (ADS)

    Wang, Xiaocheng; Song, Xiangli; Liu, Yuan; Tang, Yuling

    2003-09-01

    This paper briefly introduces the design of control network based on OMRON PLC; and describes in detail step and setting of design based on three kinds of network: Ethernet, controller link and CompoBus/D. The design has been applied to lab construction. The practice shows that it is valuable for teaching and scientific research.

  6. Applying Learning Design to Work-Based Learning

    ERIC Educational Resources Information Center

    Miao, Yongwu; Hoppe, Heinz Ulrich

    2011-01-01

    Learning design is currently slanted to reflect a course-based approach to learning. This article explores whether the concept of learning design could be applied to support the informal aspects of work-based learning (WBL). It also discusses the characteristics of WBL and presents a WBL-specific learning design that highlights the key features…

  7. Protein design based on parallel dimensional reduction.

    PubMed

    Moltó, Germán; Suárez, María; Tortosa, Pablo; Alonso, José M; Hernández, Vicente; Jaramillo, Alfonso

    2009-05-01

    The design of proteins with targeted properties is a computationally intensive task with large memory requirements. We have developed a novel approach that combines a dimensional reduction of the problem with a High Performance Computing platform to efficiently design large proteins. This tool overcomes the memory limits of the process, allowing the design of proteins whose requirements prevent them to be designed in traditional sequential platforms. We have applied our algorithm to the design of functional proteins, optimizing for both catalysis and stability. We have also studied the redesign of dimerization interfaces, taking simultaneously into account the stability of the subunits of the dimer. However, our methodology can be applied to any computational chemistry application requiring combinatorial optimization techniques.

  8. Cognitive Activity-based Design Methodology for Novice Visual Communication Designers

    ERIC Educational Resources Information Center

    Kim, Hyunjung; Lee, Hyunju

    2016-01-01

    The notion of design thinking is becoming more concrete nowadays, as design researchers and practitioners study the thinking processes involved in design and employ the concept of design thinking to foster better solutions to complex and ill-defined problems. The goal of the present research is to develop a cognitive activity-based design…

  9. Growth and longevity of the cui-ui and longevity of other catostomids and cyprinids in western North America

    USGS Publications Warehouse

    Scoppettone, G.G.; Coleman, M.E.

    1988-01-01

    Annulus formation on opercula of the cui-ui Chasmistes cujus in Pyramid Lake, Nevada, was validated over an 8-year interval. Many fish were old, as old as 41 years of age, As many as three annuli were hidden (covered by supporting bone) in older fish. Growth was rapid during the first 10 years, slow from 10 to 20 years, and extremely slow or nil after 20 years. Age and growth were strongly correlated for about the first 10 years of life, but less so when fish became sexually mature. Examination of opercula of 15 additional species of large catostomids and cyprinids of western North America revealed that they were older than had previously been thought.

  10. Ordering design tasks based on coupling strengths

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.; Bloebaum, Christina L.

    1994-01-01

    The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.

  11. Ordering Design Tasks Based on Coupling Strengths

    NASA Technical Reports Server (NTRS)

    Rogers, J. L.; Bloebaum, C. L.

    1994-01-01

    The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.

  12. Mechanical Design Support System Based on Thinking Process Development Diagram

    NASA Astrophysics Data System (ADS)

    Mase, Hisao; Kinukawa, Hiroshi; Morii, Hiroshi; Nakao, Masayuki; Hatamura, Yotaro

    This paper describes a system that directly supports a design process in a mechanical domain. This system is based on a thinking process development diagram that draws distinctions between requirement, tasks, solutions, and implementation, which enables designers to expand and deepen their thoughts of design. The system provides five main functions that designers require in each phase of the proposed design process: (1) thinking process description support which enables designers to describe their thoughts, (2) creativity support by term association with thesauri, (3) timely display of design knowledge including know-how obtained through earlier failures, general design theories, standard-parts data, and past designs, (4) design problem solving support using 46 kinds of thinking operations, and (5) proper technology transfer support which accumulates not only design conclusions but also the design process. Though this system is applied to mechanical engineering as the first target domain, it can be easily expanded to many other domains such as architecture and electricity.

  13. Starshade Design for Occulter Based Exoplanet Missions

    NASA Technical Reports Server (NTRS)

    Thomson, Mark W.; Lisman, P. Douglas; Helms, Richard; Walkemeyer, Phil; Kissil, Andrew; Polanco, Otto; Lee, Siu-Chun

    2010-01-01

    We present a lightweight starshade design that delivers the requisite profile figure accuracy with a compact stowed volume that permits launching both the occulter system (starshade and spacecraft) and a 1 to 2m-class telescope system on a single existing launch vehicle. Optimal figure stability is achieved with a very stiff and mass-efficient deployable structure design that has a novel configuration. The reference design is matched to a 1.1m telescope and consists of a 15m diameter inner disc and 24 flower-like petals with 7.5m length. The total tip-to-tip diameter of 30m provides an inner working angle of 75 mas. The design is scalable to accommodate larger telescopes and several options have been assessed. A proof of concept petal is now in production at JPL for deployment demonstrations and as a testbed for developing additional elements of the design. Future plans include developing breadboard and prototype hardware of increasing fidelity for use in demonstrating critical performance capabilities such as deployed optical edge profile figure tolerances and stability thereof.

  14. Starshade design for occulter based exoplanet missions

    NASA Astrophysics Data System (ADS)

    Thomson, Mark W.; Lisman, P. Douglas; Helms, Richard; Walkemeyer, Phil; Kissil, Andrew; Polanco, Otto; Lee, Siu-Chun

    2010-07-01

    We present a lightweight starshade design that delivers the requisite profile figure accuracy with a compact stowed volume that permits launching both the occulter system (starshade and spacecraft) and a 1 to 2m-class telescope system on a single existing launch vehicle. Optimal figure stability is achieved with a very stiff and mass-efficient deployable structure design that has a novel configuration. The reference design is matched to a 1.1m telescope and consists of a 15m diameter inner disc and 24 flower-like petals with 7.5m length. The total tip-to-tip diameter of 30m provides an inner working angle of 75 mas. The design is scalable to accommodate larger telescopes and several options have been assessed. A proof of concept petal is now in production at JPL for deployment demonstrations and as a testbed for developing additional elements of the design. Future plans include developing breadboard and prototype hardware of increasing fidelity for use in demonstrating critical performance capabilities such as deployed optical edge profile figure tolerances and stability thereof.

  15. A Web Based Collaborative Design Environment for Spacecraft

    NASA Technical Reports Server (NTRS)

    Dunphy, Julia

    1998-01-01

    In this era of shrinking federal budgets in the USA we need to dramatically improve our efficiency in the spacecraft engineering design process. We have come up with a method which captures much of the experts' expertise in a dataflow design graph: Seamlessly connectable set of local and remote design tools; Seamlessly connectable web based design tools; and Web browser interface to the developing spacecraft design. We have recently completed our first web browser interface and demonstrated its utility in the design of an aeroshell using design tools located at web sites at three NASA facilities. Multiple design engineers and managers are now able to interrogate the design engine simultaneously and find out what the design looks like at any point in the design cycle, what its parameters are, and how it reacts to adverse space environments.

  16. Ruthenium(II) Complex Incorporated UiO-67 Metal-Organic Framework Nanoparticles for Enhanced Two-Photon Fluorescence Imaging and Photodynamic Cancer Therapy.

    PubMed

    Chen, Rui; Zhang, Jinfeng; Chelora, Jipsa; Xiong, Yuan; Kershaw, Stephen V; Li, King Fai; Lo, Pik-Kwan; Cheah, Kok Wai; Rogach, Andrey L; Zapien, Juan Antonio; Lee, Chun-Sing

    2017-02-22

    Ruthenium(II) tris(bipyridyl) cationic complex (Ru(bpy)3(2+)) incorporated UiO-67 (Universitetet i Oslo) nanoscale metal-organic frameworks (NMOFs) with an average diameter of ∼92 nm were developed as theranostic nanoplatform for in vitro two-photon fluorescence imaging and photodynamic therapy. After incorporation into porous UiO-67 nanoparticles, the quantum yield, luminescence lifetime, and two-photon fluorescence intensity of Ru(bpy)3(2+) guest molecules were much improved owing to the steric confinement effect of MOF pores. Benefiting from these merits, the as-synthesized nanoparticles managed to be internalized by A549 cells while providing excellent red fluorescence in cytoplasm upon excitation with 880 nm irradiation. Photodynamic therapeutic application of the Ru(bpy)3(2+)-incorporated UiO-67 NMOFs was investigated in vitro. The Ru(bpy)3(2+)-incorporated UiO-67 NMOFs exhibited good biocompatibility without irradiation while having good cell-killing rates upon irradiation. In view of these facts, the developed Ru(bpy)3(2+)-incorporated NMOFs give a new potential pathway to achieve enhanced two-photon fluorescence imaging and photodynamic therapy.

  17. In situ energy-dispersive X-ray diffraction for the synthesis optimization and scale-up of the porous zirconium terephthalate UiO-66.

    PubMed

    Ragon, Florence; Horcajada, Patricia; Chevreau, Hubert; Hwang, Young Kyu; Lee, U-Hwang; Miller, Stuart R; Devic, Thomas; Chang, Jong-San; Serre, Christian

    2014-03-03

    The synthesis optimization and scale-up of the benchmarked microporous zirconium terephthalate UiO-66(Zr) were investigated by evaluating the impact of several parameters (zirconium precursors, acidic conditions, addition of water, and temperature) over the kinetics of crystallization by time-resolved in situ energy-dispersive X-ray diffraction. Both the addition of hydrochloric acid and water were found to speed up the reaction. The use of the less acidic ZrOCl2·8H2O as the precursor seemed to be a suitable alternative to ZrCl4·xH2O, avoiding possible reproducibility issues as a consequence of the high hygroscopic character of ZrCl4. ZrOCl2·8H2O allowed the formation of smaller good quality UiO-66(Zr) submicronic particles, paving the way for their use within the nanotechnology domain, in addition to higher reaction yields, which makes this synthesis route suitable for the preparation of UiO-66(Zr) at a larger scale. In a final step, UiO-66(Zr) was prepared using conventional reflux conditions at the 0.5 kg scale, leading to a rather high space-time yield of 490 kg m(-3) day(-1), while keeping physicochemical properties similar to those obtained from smaller scale solvothermally prepared batches.

  18. High gas storage capacities and stepwise adsorption in a UiO type metal-organic framework incorporating Lewis basic bipyridyl sites.

    PubMed

    Li, Liangjun; Tang, Sifu; Wang, Chao; Lv, Xiaoxia; Jiang, Min; Wu, Huaizhi; Zhao, Xuebo

    2014-03-04

    A UiO type MOF with Lewis basic bipyridyl sites was synthesized and structurally characterized. After being activated by Soxhlet-extraction, this MOF exhibits high storage capacities for H2, CH4 and CO2, and shows unusual stepwise adsorption for liquid CO2 and solvents, indicating a sequential filling mechanism on different adsorption sites.

  19. Lunar base CELSS design and analysis.

    PubMed

    Sirko, R J; Smith, G C; Hamlin, L A; Tazawa, R; Uchida, T; Suzuki, S

    1994-11-01

    This paper describes the conceptual development of a hybrid biological-physical/chemical (P/C) life support system model for a lunar outpost. It presents steps that lead to loop closure and determines mass flow characteristics for an inedible biomass enzyme reactor and an activated sludge bioreactor. Computer modeling techniques were used to determine that the cellulose reactor has the design capabilities to provide significant increases in the plant harvest index. Activated sludge was found to fit design demands for a small, continuous-flow, steady-state system. Systems analysis and component sizing for these two bioreactors and information regarding supporting bioregenerative and physical/chemical components are presented.

  20. DESIGN STREAM FLOWS BASED ON HARMONIC MEANS.

    EPA Science Inventory

    Design streamflows are frequently used in water quality studies to provide adequate protection against pollutant exposure periods of a given duration. By analyzing the effect that simple streamflow dilution has on x-day average exposure levels of a pollutant, it appears that the ...

  1. NUCLEAR SAFETY DESIGN BASES FOR LICENSE APPLICATION

    SciTech Connect

    R.J. Garrett

    2005-03-08

    The purpose of this report is to identify and document the nuclear safety design requirements that are specific to structures, systems, and components (SSCs) of the repository that are important to safety (ITS) during the preclosure period and to support the preclosure safety analysis and the license application for the high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. The scope of this report includes the assignment of nuclear safety design requirements to SSCs that are ITS and does not include the assignment of design requirements to SSCs or natural or engineered barriers that are important to waste isolation (ITWI). These requirements are used as input for the design of the SSCs that are ITS such that the preclosure performance objectives of 10 CFR 63.111 [DIRS 156605] are met. The natural or engineered barriers that are important to meeting the postclosure performance objectives of 10 CFR 63.113 [DIRS 156605] are identified as ITWI. Although a structure, system, or component (SSC) that is ITS may also be ITWI, this report is only concerned with providing the nuclear safety requirements for SSCs that are ITS to prevent or mitigate event sequences during the repository preclosure period.

  2. Nuclear Safety Design Base for License Application

    SciTech Connect

    R.J. Garrett

    2005-09-29

    The purpose of this report is to identify and document the nuclear safety design requirements that are specific to structures, systems, and components (SSCs) of the repository that are important to safety (ITS) during the preclosure period and to support the preclosure safety analysis and the license application for the high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. The scope of this report includes the assignment of nuclear safety design requirements to SSCs that are ITS and does not include the assignment of design requirements to SSCs or natural or engineered barriers that are important to waste isolation (ITWI). These requirements are used as input for the design of the SSCs that are ITS such that the preclosure performance objectives of 10 CFR 63.111(b) [DIRS 173273] are met. The natural or engineered barriers that are important to meeting the postclosure performance objectives of 10 CFR 63.113(b) and (c) [DIRS 173273] are identified as ITWI. Although a structure, system, or component (SSC) that is ITS may also be ITWI, this report is only concerned with providing the nuclear safety requirements for SSCs that are ITS to prevent or mitigate event sequences during the repository preclosure period.

  3. Using Evidence-Based Design to Improve Pharmacy Department Efficiency.

    PubMed

    Greenroyd, Fraser L; Hayward, Rebecca; Price, Andrew; Demian, Peter; Sharma, Shrikant

    2016-10-01

    Using a case study of a pharmacy department rebuild in the South West of England, this article examines the use of evidence-based design to improve the efficiency and staff well-being with a new design. This article compares three designs, the current design, an anecdotal design, and an evidence-based design, to identify how evidence-based design can improve efficiency and staff well-being by reducing walking time and distance. Data were collected from the existing building and used to measure the efficiency of the department in its current state. These data were then mapped onto an anecdotal design, produced by architects from interviews and workshops with the end users, and an evidence-based design, produced by highlighting functions with high adjacencies. This changed the view on the working processes within the department, shifting away from a focus on the existing robotic dispensing system. Using evidence-based design was found to decrease the walking time and distance for staff by 24%, as opposed to the anecdotal design, which increased these parameters by 9%, and is predicted to save the department 248 min across 2 days in staff time spent walking.

  4. Design considerations for lunar base photovoltaic power systems

    NASA Technical Reports Server (NTRS)

    Hickman, J. M.; Curtis, Henry B.; Landis, Geoffrey A.

    1990-01-01

    A survey was made of factors that may affect the design of photovoltaic arrays for a lunar base. These factors, which include the lunar environment and system design criteria, are examined. A photovoltaic power system design with a triangular array geometry is discussed and compared to a nuclear reactor power system and a power system utilizing both nuclear and solar power sources.

  5. Design considerations for lunar base photovoltaic power systems

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Curtis, Henry B.; Landis, Geoffrey A.

    1990-01-01

    A survey was made of factors that may affect the design of photovoltaic arrays for a lunar base. These factors, which include the lunar environment and system design criteria, are examined. A photovoltaic power system design with a triangular array geometry is discussed and compared to a nuclear reactor power systems and a power system utilizing both nuclear and solar power sources.

  6. Developing Spanish Online Readings Using Design-Based Research

    ERIC Educational Resources Information Center

    Pardo-Ballester, Cristina; Rodriguez, Julio Cesar

    2010-01-01

    This article reports on the use of design-based research (DBR) in the development of online reading materials for beginning and intermediate Spanish learners. The report focuses on four studies of two main aspects of the development, namely, interface design and learner perceptions. The discussion of interface design includes the analysis of…

  7. The challenge of integrating evidence-based design.

    PubMed

    Martin, Caren S

    2009-01-01

    This paper discusses the integration of evidence-based design (EBD) into the design process as an innovation, illuminates the significance and progress of the diffusion of this innovation, and identifies EBD advocates and the consequences of meeting the EBD challenge. A free tool for engaging in EBD is explored. Healthcare designers are leading the EBD charge, because their clients depend on it. But not all designers engage in EBD, because it may be beyond the resources of a firm or outside its culture. However, as with other meaningful design innovations, designers who do not practice EBD could fall by the wayside. EBD is a product of the diffusion of the innovation of evidence-based medicine. The academy (i.e., the collective of institutions of higher education), design organizations, design communities, and the media all contribute to the diffusion of EBD. However, the quantity, quality, and understandability of evidence continue to challenge its broad adoption. InformeDesign®, a free, Internet-based tool, presents information to designers in a concise, understandable way. Firms must invest in EBD incrementally as a value-added component of design to meet current and future challenges. It is important for designers to realize that engaging in EBD is not a rejection of creativity, but a means by which to elevate their design solutions.

  8. Center for Design-Based STEM Education

    DTIC Science & Technology

    2013-10-31

    ONR grant, NYSCI will conclude its Design Lab work. Among other things, we will (1) engage another 36 middle- and elementary - school teachers in our...education strategy that has been proven to effectively engage a broad constituency in STEM. STEM (Science, Technology, Engineering, and Math); Education...Number: N00014-11-1-0957 Project Manager : Peggy Monahan Exhibit Projects Creative Director (718)699-0005 ext. 605 Contact: Lee Livney Director

  9. Finite element based electric motor design optimization

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren

    1993-01-01

    The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.

  10. Flight Software Design Choices Based on Criticality

    NASA Technical Reports Server (NTRS)

    Lee, Earl

    1999-01-01

    This slide presentation reviews the rationale behind flight software design as a function of criticality. The requirements of human rated systems implies a high criticality for the flight support software. Human life is dependent on correct operation of the software. Flexibility should be permitted when the consequences of software failure are not life threatening. This is also relevant for selecting Commercial Off the Shelf (COTS) software.

  11. Evidence-based long term care design.

    PubMed

    Calkins, Margaret P

    2009-01-01

    Research on the impact of the built environment in long-term care settings continues to grow. This article focuses on work conducted and published since 2000, when an earlier review on research on dementia and design was published. The vast majority of research that addressed neurological conditions in residents in long-term care settings (assisted living and nursing homes) relates to Alzheimer's disease and related dementias.

  12. Sequential experimental design based generalised ANOVA

    SciTech Connect

    Chakraborty, Souvik Chowdhury, Rajib

    2016-07-15

    Over the last decade, surrogate modelling technique has gained wide popularity in the field of uncertainty quantification, optimization, model exploration and sensitivity analysis. This approach relies on experimental design to generate training points and regression/interpolation for generating the surrogate. In this work, it is argued that conventional experimental design may render a surrogate model inefficient. In order to address this issue, this paper presents a novel distribution adaptive sequential experimental design (DA-SED). The proposed DA-SED has been coupled with a variant of generalised analysis of variance (G-ANOVA), developed by representing the component function using the generalised polynomial chaos expansion. Moreover, generalised analytical expressions for calculating the first two statistical moments of the response, which are utilized in predicting the probability of failure, have also been developed. The proposed approach has been utilized in predicting probability of failure of three structural mechanics problems. It is observed that the proposed approach yields accurate and computationally efficient estimate of the failure probability.

  13. Sequential experimental design based generalised ANOVA

    NASA Astrophysics Data System (ADS)

    Chakraborty, Souvik; Chowdhury, Rajib

    2016-07-01

    Over the last decade, surrogate modelling technique has gained wide popularity in the field of uncertainty quantification, optimization, model exploration and sensitivity analysis. This approach relies on experimental design to generate training points and regression/interpolation for generating the surrogate. In this work, it is argued that conventional experimental design may render a surrogate model inefficient. In order to address this issue, this paper presents a novel distribution adaptive sequential experimental design (DA-SED). The proposed DA-SED has been coupled with a variant of generalised analysis of variance (G-ANOVA), developed by representing the component function using the generalised polynomial chaos expansion. Moreover, generalised analytical expressions for calculating the first two statistical moments of the response, which are utilized in predicting the probability of failure, have also been developed. The proposed approach has been utilized in predicting probability of failure of three structural mechanics problems. It is observed that the proposed approach yields accurate and computationally efficient estimate of the failure probability.

  14. Reflection: Research by Design: Design-Based Research and the Higher Degree Research Student

    ERIC Educational Resources Information Center

    Kennedy-Clark, Shannon

    2015-01-01

    The article "Research by design: Design-based research and the higher degree research student" (Kennedy-Clark, 2013) appeared in the "Journal of Learning Design" Volume 6, Issue 2 in 2013. Two years on, Shannon Kennedy-Clark reflects upon her original article. Upon being asked to revisit this article the author reflected upon…

  15. Preparing Instructional Designers for Game-Based Learning: Part III. Game Design as a Collaborative Process

    ERIC Educational Resources Information Center

    Hirumi, Atsusi; Appelman, Bob; Rieber, Lloyd; Van Eck, Richard

    2010-01-01

    In this three part series, four professors who teach graduate level courses on the design of instructional video games discuss their perspectives on preparing instructional designers to optimize game-based learning. Part I set the context for the series and one of four panelists discussed what he believes instructional designers should know about…

  16. Process-based design of dynamical biological systems

    PubMed Central

    Tanevski, Jovan; Todorovski, Ljupčo; Džeroski, Sašo

    2016-01-01

    The computational design of dynamical systems is an important emerging task in synthetic biology. Given desired properties of the behaviour of a dynamical system, the task of design is to build an in-silico model of a system whose simulated be- haviour meets these properties. We introduce a new, process-based, design methodology for addressing this task. The new methodology combines a flexible process-based formalism for specifying the space of candidate designs with multi-objective optimization approaches for selecting the most appropriate among these candidates. We demonstrate that the methodology is general enough to both formulate and solve tasks of designing deterministic and stochastic systems, successfully reproducing plausible designs reported in previous studies and proposing new designs that meet the design criteria, but have not been previously considered. PMID:27686219

  17. Process-based design of dynamical biological systems

    NASA Astrophysics Data System (ADS)

    Tanevski, Jovan; Todorovski, Ljupčo; Džeroski, Sašo

    2016-09-01

    The computational design of dynamical systems is an important emerging task in synthetic biology. Given desired properties of the behaviour of a dynamical system, the task of design is to build an in-silico model of a system whose simulated be- haviour meets these properties. We introduce a new, process-based, design methodology for addressing this task. The new methodology combines a flexible process-based formalism for specifying the space of candidate designs with multi-objective optimization approaches for selecting the most appropriate among these candidates. We demonstrate that the methodology is general enough to both formulate and solve tasks of designing deterministic and stochastic systems, successfully reproducing plausible designs reported in previous studies and proposing new designs that meet the design criteria, but have not been previously considered.

  18. Do Alternative Base Periods Increase Unemployment Insurance Receipt among Low-Educated Unemployed Workers? National Poverty Center Working Paper Series #12-19

    ERIC Educational Resources Information Center

    Gould-Werth, Alix; Shaefer, H. Luke

    2012-01-01

    Unemployment Insurance (UI) is the major social insurance program that protects against lost earnings resulting from involuntary unemployment. Existing literature finds that low-earning unemployed workers experience difficulty accessing UI benefits. The most prominent policy reform designed to increase rates of monetary eligibility, and thus UI…

  19. Case-based reasoning in design: An apologia

    NASA Technical Reports Server (NTRS)

    Pulaski, Kirt

    1990-01-01

    Three positions are presented and defended: the process of generating solutions in problem solving is viewable as a design task; case-based reasoning is a strong method of problem solving; and a synergism exists between case-based reasoning and design problem solving.

  20. Adapting Cognitive Walkthrough to Support Game Based Learning Design

    ERIC Educational Resources Information Center

    Farrell, David; Moffat, David C.

    2014-01-01

    For any given Game Based Learning (GBL) project to be successful, the player must learn something. Designers may base their work on pedagogical research, but actual game design is still largely driven by intuition. People are famously poor at unsupported methodical thinking and relying so much on instinct is an obvious weak point in GBL design…

  1. Issues in Text Design and Layout for Computer Based Communications.

    ERIC Educational Resources Information Center

    Andresen, Lee W.

    1991-01-01

    Discussion of computer-based communications (CBC) focuses on issues involved with screen design and layout for electronic text, based on experiences with electronic messaging, conferencing, and publishing within the Australian Open Learning Information Network (AOLIN). Recommendations for research on design and layout for printed text are also…

  2. Controller design approach based on linear programming.

    PubMed

    Tanaka, Ryo; Shibasaki, Hiroki; Ogawa, Hiromitsu; Murakami, Takahiro; Ishida, Yoshihisa

    2013-11-01

    This study explains and demonstrates the design method for a control system with a load disturbance observer. Observer gains are determined by linear programming (LP) in terms of the Routh-Hurwitz stability criterion and the final-value theorem. In addition, the control model has a feedback structure, and feedback gains are determined to be the linear quadratic regulator. The simulation results confirmed that compared with the conventional method, the output estimated by our proposed method converges to a reference input faster when a load disturbance is added to a control system. In addition, we also confirmed the effectiveness of the proposed method by performing an experiment with a DC motor.

  3. Models of an Integrated Design Data Base in Support of a Design Automation System.

    DTIC Science & Technology

    1982-12-01

    Glossary of Terms....................161 C. Questionnaire.......................163 D. Software Engineering Tools ad Tecniques 16 Vita...independence is to clearly differentiate between the logical and physical aspects of data base management . These differ- ences include data base design...applications so that the complexity of the design and verification tasks is reduced to a manageable level. Large amounts of data and a variety of design

  4. Case-Based Capture and Reuse of Aerospace Design Rationale

    NASA Technical Reports Server (NTRS)

    Leake, David B.

    2001-01-01

    The goal of this project was to apply artificial intelligence techniques to facilitate capture and reuse of aerospace design rationale. The project combined case-based reasoning (CBR) and concept maps (CMaps) to develop methods for capturing, organizing, and interactively accessing records of experiences encapsulating the methods and rationale underlying expert aerospace design, in order to bring the captured knowledge to bear to support future reasoning. The project's results contribute both principles and methods for effective design-aiding systems that aid capture and access of useful design knowledge. The project has been guided by the tenets that design-aiding systems must: (1) Leverage a designer's knowledge, rather than attempting to replace it; (2) Be able to reflect different designers' differing conceptualizations of the design task, and to clarify those conceptualizations to others; (3) Include capabilities to capture information both by interactive knowledge modeling and during normal use; and (4) Integrate into normal designer tasks as naturally and unobtrusive as possible.

  5. Model-Based Design of Biochemical Microreactors

    PubMed Central

    Elbinger, Tobias; Gahn, Markus; Neuss-Radu, Maria; Hante, Falk M.; Voll, Lars M.; Leugering, Günter; Knabner, Peter

    2016-01-01

    Mathematical modeling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation, and optimization of metabolic processes in biochemical microreactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first microreactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments of the reactor multienzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions. The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multienzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the microreactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P) was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns, which differ for different experimental arrangements. Furthermore, the total output of G6P

  6. Model-Based Design of Biochemical Microreactors.

    PubMed

    Elbinger, Tobias; Gahn, Markus; Neuss-Radu, Maria; Hante, Falk M; Voll, Lars M; Leugering, Günter; Knabner, Peter

    2016-01-01

    Mathematical modeling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation, and optimization of metabolic processes in biochemical microreactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first microreactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments of the reactor multienzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions. The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multienzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the microreactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P) was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns, which differ for different experimental arrangements. Furthermore, the total output of G6P

  7. Designing Personalization in Technology-Based Services

    ERIC Educational Resources Information Center

    Lee, Min Kyung

    2013-01-01

    Personalization technology has the potential to optimize service for each person's unique needs and characteristics. One way to optimize service is to allow people to customize the service themselves; another is to proactively tailor services based on information provided by people or inferred from their past behaviors. These approaches function…

  8. A bootstrap lunar base: Preliminary design review 2

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A bootstrap lunar base is the gateway to manned solar system exploration and requires new ideas and new designs on the cutting edge of technology. A preliminary design for a Bootstrap Lunar Base, the second provided by this contractor, is presented. An overview of the work completed is discussed as well as the technical, management, and cost strategies to complete the program requirements. The lunar base design stresses the transforming capabilities of its lander vehicles to aid in base construction. The design also emphasizes modularity and expandability in the base configuration to support the long-term goals of scientific research and profitable lunar resource exploitation. To successfully construct, develop, and inhabit a permanent lunar base, however, several technological advancements must first be realized. Some of these technological advancements are also discussed.

  9. Development of a Design-Based Learning Curriculum through Design-Based Research for a Technology-Enabled Science Classroom

    ERIC Educational Resources Information Center

    Kim, Paul; Suh, Esther; Song, Donggil

    2015-01-01

    This exploratory study provides a deeper look into the aspects of students' experience from design-based learning (DBL) activities for fifth grade students. Using design-based research (DBR), this study was conducted on a series of science learning activities leveraging mobile phones with relevant applications and sensors. We observed 3 different…

  10. Data base design for a worldwide multicrop information system

    NASA Technical Reports Server (NTRS)

    Driggers, W. G.; Downs, J. M.; Hickman, J. R.; Packard, R. L. (Principal Investigator)

    1979-01-01

    A description of the USDA Application Test System data base design approach and resources is presented. The data is described in detail by category, with emphasis on those characteristics which influenced the design most. It was concluded that the use of a generalized data base in support of crop assessment is a sound concept. The IDMS11 minicomputer base system is recommended for this purpose.

  11. XML-based product information processing method for product design

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen Yu

    2012-01-01

    Design knowledge of modern mechatronics product is based on information processing as the center of the knowledge-intensive engineering, thus product design innovation is essentially the knowledge and information processing innovation. Analysis of the role of mechatronics product design knowledge and information management features, a unified model of XML-based product information processing method is proposed. Information processing model of product design includes functional knowledge, structural knowledge and their relationships. For the expression of product function element, product structure element, product mapping relationship between function and structure based on the XML model are proposed. The information processing of a parallel friction roller is given as an example, which demonstrates that this method is obviously helpful for knowledge-based design system and product innovation.

  12. XML-based product information processing method for product design

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen Yu

    2011-12-01

    Design knowledge of modern mechatronics product is based on information processing as the center of the knowledge-intensive engineering, thus product design innovation is essentially the knowledge and information processing innovation. Analysis of the role of mechatronics product design knowledge and information management features, a unified model of XML-based product information processing method is proposed. Information processing model of product design includes functional knowledge, structural knowledge and their relationships. For the expression of product function element, product structure element, product mapping relationship between function and structure based on the XML model are proposed. The information processing of a parallel friction roller is given as an example, which demonstrates that this method is obviously helpful for knowledge-based design system and product innovation.

  13. Physiological Based Simulator Fidelity Design Guidance

    NASA Technical Reports Server (NTRS)

    Schnell, Thomas; Hamel, Nancy; Postnikov, Alex; Hoke, Jaclyn; McLean, Angus L. M. Thom, III

    2012-01-01

    The evolution of the role of flight simulation has reinforced assumptions in aviation that the degree of realism in a simulation system directly correlates to the training benefit, i.e., more fidelity is always better. The construct of fidelity has several dimensions, including physical fidelity, functional fidelity, and cognitive fidelity. Interaction of different fidelity dimensions has an impact on trainee immersion, presence, and transfer of training. This paper discusses research results of a recent study that investigated if physiological-based methods could be used to determine the required level of simulator fidelity. Pilots performed a relatively complex flight task consisting of mission task elements of various levels of difficulty in a fixed base flight simulator and a real fighter jet trainer aircraft. Flight runs were performed using one forward visual channel of 40 deg. field of view for the lowest level of fidelity, 120 deg. field of view for the middle level of fidelity, and unrestricted field of view and full dynamic acceleration in the real airplane. Neuro-cognitive and physiological measures were collected under these conditions using the Cognitive Avionics Tool Set (CATS) and nonlinear closed form models for workload prediction were generated based on these data for the various mission task elements. One finding of the work described herein is that simple heart rate is a relatively good predictor of cognitive workload, even for short tasks with dynamic changes in cognitive loading. Additionally, we found that models that used a wide range of physiological and neuro-cognitive measures can further boost the accuracy of the workload prediction.

  14. Early-Stage Software Design for Usability

    ERIC Educational Resources Information Center

    Golden, Elspeth

    2010-01-01

    In spite of the goodwill and best efforts of software engineers and usability professionals, systems continue to be built and released with glaring usability flaws that are costly and difficult to fix after the system has been built. Although user interface (UI) designers, be they usability or design experts, communicate usability requirements to…

  15. Designing a successful HMD-based experience

    NASA Technical Reports Server (NTRS)

    Pierce, J. S.; Pausch, R.; Sturgill, C. B.; Christiansen, K. D.; Kaiser, M. K. (Principal Investigator)

    1999-01-01

    For entertainment applications, a successful virtual experience based on a head-mounted display (HMD) needs to overcome some or all of the following problems: entering a virtual world is a jarring experience, people do not naturally turn their heads or talk to each other while wearing an HMD, putting on the equipment is hard, and people do not realize when the experience is over. In the Electric Garden at SIGGRAPH 97, we presented the Mad Hatter's Tea Party, a shared virtual environment experienced by more than 1,500 SIGGRAPH attendees. We addressed these HMD-related problems with a combination of back story, see-through HMDs, virtual characters, continuity of real and virtual objects, and the layout of the physical and virtual environments.

  16. Design considerations regarding ellipsoidal mirror based reflectometers.

    PubMed

    Benson, Michael R; Marciniak, Michael A

    2013-11-18

    Hemi-ellipsoidal mirrors are used in reflection-based measurements due to their ability to collect light scattered from one focal point at the other. In this paper, a radiometric model of this energy transfer is derived for arbitrary mirror and detector geometries. This model is used to examine the imaging characteristics of the mirror away from focus for both diffuse and specular light. The radiometric model is applied to several detector geometries for measuring the Directional Hemispherical Reflectance for both diffuse and specular samples. The angular absorption characteristics of the detector are then applied to the measurement to address measurement accuracy for diffuse and specular samples. Examining different detector configurations shows the effectiveness of flat detectors at angles ranging from normal to 50°, and that multifaceted detectors can function from normal incidence to grazing angles.

  17. Learning through Interaction: Improving Practice with Design-Based Research

    ERIC Educational Resources Information Center

    Voigt, Christian; Swatman, Paula M. C.

    2006-01-01

    This article presents the first stage of a design-based research project to introduce case-based learning using existing interactive technologies in a major Australian university. The paper initially outlines the relationship between case-based learning, student interaction and the study of interactions--and includes a review of research into…

  18. Conceptual design of distillation-based hybrid separation processes.

    PubMed

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  19. Experience-based design, co-design and experience-based co-design in palliative and end-of-life care.

    PubMed

    Borgstrom, Erica; Barclay, Stephen

    2017-02-16

    Experience-based design, co-design, and experience-based co-design can be used within healthcare to design services that improve the patient, carer and staff experience of the services. As palliative and end-of-life care centrally value person-centred care, we believe that service designers, commissioners and those tasked with making quality improvements will be interested in this growing field. This paper outlines these approaches-with a particular emphasis on experience-based co-design-and describes how they are and can be used within palliative and end-of-life care. Based on a rapid review and several case studies, this article highlights the key lessons learnt from previous projects using these approaches and discusses areas for improvement in current reporting of service design projects.

  20. Designing for Differences: Cultural Issues in the Design of WWW-based Course-support Sites.

    ERIC Educational Resources Information Center

    Collis, Betty

    1999-01-01

    Examines factors affecting the cultural appropriateness of Web-based course-support sites. Identifies a strategy for accommodating different values of these factors in Web-based course-support systems, based on a set of 10 design guidelines. Describes and evaluates the TeleTOP Method from the University of Twente (The Netherlands) to illustrate…

  1. Connecting defects and amorphization in UiO-66 and MIL-140 metal-organic frameworks: a combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Bennett, Thomas D.; Todorova, Tanya K.; Baxter, Emma F.; Reid, David G.; Gervais, Christel; Bueken, Bart; Van de Voorde, B.; De Vos, Dirk; Keen, David A.; Mellot-Draznieks, Caroline

    The mechanism and products of the structural collapse of the metal-organic frameworks (MOFs) UiO-66, MIL-140B and MIL-140C upon ball-milling are investigated through solid state 13C NMR and pair distribution function (PDF) studies, finding amorphization to proceed by the breaking of a fraction of metal-ligand bonding in each case. The amorphous products contain inorganic-organic bonding motifs reminiscent of the crystalline phases. Whilst the inorganic Zr6O4(OH)4 clusters of UiO-66 remain intact upon structural collapse, the ZrO backbone of the MIL-140 frameworks undergoes substantial distortion. Density functional theory calculations have been performed to investigate defective models of MIL-140B and show, through comparison of calculated and experimental 13C NMR spectra, that amorphization and defects in the materials are linked.

  2. A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2001-01-01

    An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.

  3. Optimal fractional order PID design via Tabu Search based algorithm.

    PubMed

    Ateş, Abdullah; Yeroglu, Celaleddin

    2016-01-01

    This paper presents an optimization method based on the Tabu Search Algorithm (TSA) to design a Fractional-Order Proportional-Integral-Derivative (FOPID) controller. All parameter computations of the FOPID employ random initial conditions, using the proposed optimization method. Illustrative examples demonstrate the performance of the proposed FOPID controller design method.

  4. Optimal Test Design with Rule-Based Item Generation

    ERIC Educational Resources Information Center

    Geerlings, Hanneke; van der Linden, Wim J.; Glas, Cees A. W.

    2013-01-01

    Optimal test-design methods are applied to rule-based item generation. Three different cases of automated test design are presented: (a) test assembly from a pool of pregenerated, calibrated items; (b) test generation on the fly from a pool of calibrated item families; and (c) test generation on the fly directly from calibrated features defining…

  5. A New Design Approach to Game-Based Learning

    ERIC Educational Resources Information Center

    Larsen, Lasse Juel

    2012-01-01

    This paper puts forward a new design perspective for game-based learning. The general idea is to abandon the long sought-after dream of designing a closed learning system, where students in both primary and secondary school could learn--without the interference of teachers--whatever subject they wanted while sitting in front of a computer. This…

  6. Design-Based Research for Professional Learning for "Cultural Mathematics"

    ERIC Educational Resources Information Center

    Kravia, Geori; Owens, Kay

    2014-01-01

    Design-based research is being used to develop and refine the principles used in professional learning workshops with teachers from three different Papua New Guinean ecologies: highlands, coastal, and inland in a coastal province. The appropriateness of the design of principles for Papua New Guinean Elementary Schools is tried over several phases…

  7. Challenges for Design of Computer-Based Learning Environments.

    ERIC Educational Resources Information Center

    Hakkinen, Paivi

    2002-01-01

    Presents a review of the basic foundations and recent challenges of the main instructional design traditions. Topics include learner characteristics; learner-controlled instruction; learning environments; the role of instructional interventions; computer-based instruction and other new technologies; and new theories of learning and design.…

  8. Group-Based Life Design Counseling in an Italian Context

    ERIC Educational Resources Information Center

    Di Fabio, Annamaria; Maree, Jacobus Gideon

    2012-01-01

    This study examined the effectiveness of group-based Life Design Counseling using the Career-Story Interview. Written exercises were used to implement the seven topics in the Career-Story Interview. The present study employed an experimental design that involved two groups of Italian entrepreneurs from the agricultural and trade sectors, namely an…

  9. Designing, Developing and Implementing WWW-Based Distance Learning.

    ERIC Educational Resources Information Center

    Riley, Peter C.

    The rapid advancement of communication technologies is resulting in a wide array of design and development choices for distance learning projects. The 58th Special Operations Wing at Kirtland Air Force Base, New Mexico, is developing a prototype distance learning project designed to serve geographically separated learner populations. Project staff…

  10. Preparing Instructional Designers for Game-Based Learning: Part 1

    ERIC Educational Resources Information Center

    Hirumi, Atsusi; Appelman, Bob; Rieber, Lloyd; Van Eck, Richard

    2010-01-01

    Like many rapidly growing industries, advances in video game technology are far outpacing research on its design and effectiveness. Relatively little is understood about how to apply what we know about teaching and learning to optimize game-based learning. For the most part, instructional designers know little about game development and video game…

  11. Design and Construction Documents Associated with N232, Sustainability Base

    NASA Technical Reports Server (NTRS)

    Zornetzer, Steven F.; Schuler, Raymond F.; Grymes, Rosalind A.

    2014-01-01

    This request comprehensively covers documents associated with the design and construction of Sustainability Base, N232. The intent of this project specifically envisioned broad dissemination of these materials to others undertaking the design and construction of high-performing energy- and resource-efficient buildings in comparable climate zones.

  12. Teaching Database Design with Constraint-Based Tutors

    ERIC Educational Resources Information Center

    Mitrovic, Antonija; Suraweera, Pramuditha

    2016-01-01

    Design tasks are difficult to teach, due to large, unstructured solution spaces, underspecified problems, non-existent problem solving algorithms and stopping criteria. In this paper, we comment on our approach to develop KERMIT, a constraint-based tutor that taught database design. In later work, we re-implemented KERMIT as EER-Tutor, and…

  13. A Multilevel Analysis of Problem-Based Learning Design Characteristics

    ERIC Educational Resources Information Center

    Scott, Kimberly S.

    2014-01-01

    The increasing use of experience-centered approaches like problem-based learning (PBL) by learning and development practitioners and management educators has raised interest in how to design, implement and evaluate PBL in that field. Of particular interest is how to evaluate the relative impact of design characteristics that exist at the…

  14. Modeling Web-Based Educational Systems: Process Design Teaching Model

    ERIC Educational Resources Information Center

    Rokou, Franca Pantano; Rokou, Elena; Rokos, Yannis

    2004-01-01

    Using modeling languages is essential to the construction of educational systems based on software engineering principles and methods. Furthermore, the instructional design is undoubtedly the cornerstone of the design and development of educational systems. Although several methodologies and languages have been proposed for the specification of…

  15. A Design and Control Environment for Internet-Based Telerobotics

    NASA Technical Reports Server (NTRS)

    Oboe, Roberto; Fiorini, Paolo

    1997-01-01

    This paper describes an environment for the design, simulation and control of Internet-based force-relflecting telerobotc systems. We define these systems as using a segment of the computer network to connect the master to the slave.

  16. Decision making in flood risk based storm sewer network design.

    PubMed

    Sun, S A; Djordjević, S; Khu, S T

    2011-01-01

    It is widely recognised that flood risk needs to be taken into account when designing a storm sewer network. Flood risk is generally a combination of flood consequences and flood probabilities. This paper aims to explore the decision making in flood risk based storm sewer network design. A multiobjective optimization is proposed to find the Pareto front of optimal designs in terms of low construction cost and low flood risk. The decision making process then follows this multi-objective optimization to select a best design from the Pareto front. The traditional way of designing a storm sewer system based on a predefined design storm is used as one of the decision making criteria. Additionally, three commonly used risk based criteria, i.e., the expected flood risk based criterion, the Hurwicz criterion and the stochastic dominance based criterion, are investigated and applied in this paper. Different decisions are made according to different criteria as a result of different concerns represented by the criteria. The proposed procedure is applied to a simple storm sewer network design to demonstrate its effectiveness and the different criteria are compared.

  17. Metal-organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples.

    PubMed

    Shang, Hai-Bo; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2014-08-29

    Effective solid-phase microextraction (SPME) of polar phenols from water samples is usually difficult due to the strong interaction between polar phenols and aqueous matrix. Here, we report the fabrication of a metal-organic framework UiO-66 coated stainless steel fiber via physical adhesion for the SPME of polar phenols (phenol, o-cresol, p-cresol, 2,6-dimethylphenol, 2,4-dichlorophenol and 2,6-dichlorophenol) in water samples before gas chromatographic separation with flame ionic detection. Headspace SPME of 10mL sample solution with the fabricated UiO-66 coated fiber gave the enhancement factors of 160 (phenol) - 3769 (2,4-dichlorophenol), and the linear ranges of 1-1000μgL(-1) (2,6-dimethylphenol, 2,4-dichlorophenol and 2,6-dichlorophenol), 1-500μgL(-1) (o-cresol and p-cresol) and 5-500μgL(-1) (phenol). The detection limits ranged from 0.11μgL(-1) (2,6-dimethylphenol) to 1.23μgL(-1) (phenol). The precision (relative standard deviations, RSDs) for six replicate determinations of the analytes at 100μgL(-1) using a single UiO-66 coated fiber ranged from 2.8% to 6.2%. The fiber-to-fiber reproducibility (RSDs) for three parallel UiO-66 coated fibers varied from 5.9% to 10%. The recoveries obtained by spiking 5μgL(-1) of the phenols in the water samples ranged from 80% to 115%.

  18. Design and Implementation of a Project-Based Active/Cooperative Engineering Design Course for Freshmen

    ERIC Educational Resources Information Center

    Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.

    2011-01-01

    A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long…

  19. Research by Design: Design-Based Research and the Higher Degree Research student

    ERIC Educational Resources Information Center

    Kennedy-Clark, Shannon

    2013-01-01

    Design-based research lends itself to educational research as the aim of this approach is to develop and refine the design of artefacts, tools and curriculum and to advance existing theory or develop new theories that can support and lead to a deepened understanding of learning. This paper provides an overview of the potential benefits of using a…

  20. Balancing Expression and Structure in Game Design: Developing Computational Participation Using Studio-Based Design Pedagogy

    ERIC Educational Resources Information Center

    DeVane, Ben; Steward, Cody; Tran, Kelly M.

    2016-01-01

    This article reports on a project that used a game-creation tool to introduce middle-school students ages 10 to 13 to problem-solving strategies similar to those in computer science through the lens of studio-based design arts. Drawing on historic paradigms in design pedagogy and contemporary educational approaches in the digital arts to teach…

  1. The research-design interaction: lessons learned from an evidence-based design studio.

    PubMed

    Haq, Saif; Pati, Debajyoti

    2010-01-01

    As evidence-based design (EBD) emerges as a model of design practice, considerable attention has been given to its research component. However, this overshadows another essential component of EBD-the change agent, namely the designer. EBD introduced a new skill set to the practitioner: the ability to interact with scientific evidence. Industry sources suggest adoption of the EBD approach across a large number of design firms. How comfortable are these designers in integrating research with design decision making? Optimizing the interaction between the primary change agent (the designer) and the evidence is crucial to producing the desired outcomes. Preliminary to examining this question, an architectural design studio was used as a surrogate environment to examine how designers interact with evidence. Twelve students enrolled in a healthcare EBD studio during the spring of 2009. A three-phase didactic structure was adopted: knowing a hospital, knowing the evidence, and designing with knowledge and evidence. Products of the studio and questionnaire responses from the students were used as the data for analysis. The data suggest that optimization of the research-design relationship warrants consideration in four domains: (1) a knowledge structure that is easy to comprehend; (2) phase-complemented representation of evidence; (3) access to context and precedence information; and (4) a designer-friendly vocabulary.

  2. Molecular Orbital Based Design Guidelines for Hypergolic Energetic Ionic Liquids

    DTIC Science & Technology

    2015-01-01

    Journal Article 3. DATES COVERED (From - To) October 2013- December 2013 4. TITLE AND SUBTITLE Molecular Orbital Based Design Guidelines for Hypergolic... orbitals (HOMO) of the anions for a series of ionic liquids and the lowest occupied molecular orbital (LUMO) of HNO3, and variation in the computed...code) 661-525-5657 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 DOI: 10.1002/prep.201400087 Molecular Orbital Based Design

  3. CSUMB: Military base conversion as an opportunity for sustainable design

    SciTech Connect

    McDonald, M.; Cooper, P.; Haggard, K.

    1995-11-01

    The conversion of military bases around the country creates an imperative to infuse social, economic, and environmental vitality back into the affected region. Fort Ord in Monterey County, a recent casualty of base closures, is being turned into an opportunity for adaptive reuse as it undergoes the transformation from an army base to a magnet campus of the California State University (CSU) system. The CSU Monterey Bay (CSUMB) campus visionaries included sustainability as a priority in the base conversion. To achieve this goal, the university hired a team of sustainable design consultants. This paper reports on the outcomes of the preliminary design and planning phases.

  4. Design of Composite Structures Using Knowledge-Based and Case Based Reasoning

    NASA Technical Reports Server (NTRS)

    Lambright, Jonathan Paul

    1996-01-01

    A method of using knowledge based and case based reasoning to assist designers during conceptual design tasks of composite structures was proposed. The cooperative use of heuristics, procedural knowledge, and previous similar design cases suggests a potential reduction in design cycle time and ultimately product lead time. The hypothesis of this work is that the design process of composite structures can be improved by using Case-Based Reasoning (CBR) and Knowledge-Based (KB) reasoning in the early design stages. The technique of using knowledge-based and case-based reasoning facilitates the gathering of disparate information into one location that is easily and readily available. The method suggests that the inclusion of downstream life-cycle issues into the conceptual design phase reduces potential of defective, and sub-optimal composite structures. Three industry experts were interviewed extensively. The experts provided design rules, previous design cases, and test problems. A Knowledge Based Reasoning system was developed using the CLIPS (C Language Interpretive Procedural System) environment and a Case Based Reasoning System was developed using the Design Memory Utility For Sharing Experiences (MUSE) xviii environment. A Design Characteristic State (DCS) was used to document the design specifications, constraints, and problem areas using attribute-value pair relationships. The DCS provided consistent design information between the knowledge base and case base. Results indicated that the use of knowledge based and case based reasoning provided a robust design environment for composite structures. The knowledge base provided design guidance from well defined rules and procedural knowledge. The case base provided suggestions on design and manufacturing techniques based on previous similar designs and warnings of potential problems and pitfalls. The case base complemented the knowledge base and extended the problem solving capability beyond the existence of

  5. Computer-based creativity enhanced conceptual design model for non-routine design of mechanical systems

    NASA Astrophysics Data System (ADS)

    Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.

    2014-11-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  6. Design and implementation of multispectral Image processing system based on VC++

    NASA Astrophysics Data System (ADS)

    Du, Li; Wang, Zhihui; Ge, Xiaoli

    2013-10-01

    Multi-wavelet, extended from single wavelet theory, is able to provide a more accurate image processing analysis method than wavelet. After studying the features of multi-wavelet transform, we realize the core algorithms of an image processing system with GHM multi-wavelet system, by which we can fuse two multi-spectra images by the matching degree-based fusion method. In the phase of image de-noising, we get rid of the noise in the fused image based on the integrated threshold de-noising method. In the stage of image compression, the de-noised image will be compressed and decompressed in adopting the method of Shannon, Fano, Huff-man, and SPIHT (Set Partitioning In Hierarchical Tree) respectively in three different proportional. At last, the results of various stages will be shown in the integrated processing system. This paper uses the MFC mode of VC+ + 6.0 to build a visualization interface (UI) model, to make the interface of our multi-wavelet image processing system concise which occupies less resource and easy to operate. That is, the system consists of three sub-systems, namely: image fusion, image de-noising and image compression. The realization of the sub-system's functions is independent of each other which enhance portability and stability of the whole system.

  7. Statistically Based Approach to Broadband Liner Design and Assessment

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    A broadband liner design optimization includes utilizing in-duct attenuation predictions with a statistical fan source model to obtain optimum impedance spectra over a number of flow conditions for one or more liner locations in a bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners having impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increasing weighting to specific frequencies and/or operating conditions. One or more broadband design approaches are utilized to produce a broadband liner that targets a full range of frequencies and operating conditions.

  8. Reliability based design including future tests and multiagent approaches

    NASA Astrophysics Data System (ADS)

    Villanueva, Diane

    The initial stages of reliability-based design optimization involve the formulation of objective functions and constraints, and building a model to estimate the reliability of the design with quantified uncertainties. However, even experienced hands often overlook important objective functions and constraints that affect the design. In addition, uncertainty reduction measures, such as tests and redesign, are often not considered in reliability calculations during the initial stages. This research considers two areas that concern the design of engineering systems: 1) the trade-off of the effect of a test and post-test redesign on reliability and cost and 2) the search for multiple candidate designs as insurance against unforeseen faults in some designs. In this research, a methodology was developed to estimate the effect of a single future test and post-test redesign on reliability and cost. The methodology uses assumed distributions of computational and experimental errors with re-design rules to simulate alternative future test and redesign outcomes to form a probabilistic estimate of the reliability and cost for a given design. Further, it was explored how modeling a future test and redesign provides a company an opportunity to balance development costs versus performance by simultaneously designing the design and the post-test redesign rules during the initial design stage. The second area of this research considers the use of dynamic local surrogates, or surrogate-based agents, to locate multiple candidate designs. Surrogate-based global optimization algorithms often require search in multiple candidate regions of design space, expending most of the computation needed to define multiple alternate designs. Thus, focusing on solely locating the best design may be wasteful. We extended adaptive sampling surrogate techniques to locate multiple optima by building local surrogates in sub-regions of the design space to identify optima. The efficiency of this method

  9. Optimization of Designs for Nanotube-based Scanning Probes

    NASA Technical Reports Server (NTRS)

    Harik, V. M.; Gates, T. S.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Optimization of designs for nanotube-based scanning probes, which may be used for high-resolution characterization of nanostructured materials, is examined. Continuum models to analyze the nanotube deformations are proposed to help guide selection of the optimum probe. The limitations on the use of these models that must be accounted for before applying to any design problem are presented. These limitations stem from the underlying assumptions and the expected range of nanotube loading, end conditions, and geometry. Once the limitations are accounted for, the key model parameters along with the appropriate classification of nanotube structures may serve as a basis for the design optimization of nanotube-based probe tips.

  10. Conceptional design of the laser ion source based hadrontherapy facility

    NASA Astrophysics Data System (ADS)

    Xie, Xiu-Cui; Song, Ming-Tao; Zhang, Xiao-Hu

    2014-04-01

    A laser ion source (LIS), which can provide a carbon beam with highly stripped state (C6+) and high intensity (several tens mA), would significantly change the overall design of the hadrontherapy facility. The proposed LIS based hadrontherapy facility has the advantages of short linac length, simple injection scheme, and small synchrotron size. With the experience from the DPIS and HITFiL projects that have been conducted in IMP, a conceptional design of the LIS based hadrontherapy facility will be presented, with special attention given to APF type IH DTL design and simulation.

  11. Evidence-centered design for simulation-based assessment.

    PubMed

    Mislevy, Robert J

    2013-10-01

    Simulations provide opportunities for people to learn and to develop skills for situations that are expensive, time-consuming, or dangerous. Careful design can support their learning by tailoring the features of situations to their levels of skill, allowing repeated attempts, and providing timely feedback. The same environments provide opportunities for assessing people's capabilities to act in these situations. This article describes an assessment design framework that can help projects develop effective simulation-based assessments. It reviews the rationale and terminology of the "evidence-centered" assessment design framework, discusses how it aligns with the principles of simulation design, and illustrates ideas with examples from engineering and medicine. Advice is offered for designing a new simulation-based assessment and for adapting an existing simulation system for assessment purposes.

  12. Graph-Based Design Languages: A Lingua Franca for Product Design Including Abstract Geometry.

    PubMed

    Schmidt, Jens; Rudolph, Stephan

    2016-01-01

    Product engineering involves designing and dimensioning a product, including geometric modeling and scientific simulation and analysis to fulfill predetermined requirements. Therefore, the engineering design effort requires a multidisciplinary analysis that is based on a multitude of different models, each of which require a different kind of representation of the same product geometry. The proposed approach uses a design language and a design compiler to translate an abstract source geometry in an abstract representation scheme into an arbitrary target format. With this approach, all models are generated automatically and are consistent with each other.

  13. Limit states and reliability-based pipeline design. Final report

    SciTech Connect

    Zimmerman, T.J.E.; Chen, Q.; Pandey, M.D.

    1997-06-01

    This report provides the results of a study to develop limit states design (LSD) procedures for pipelines. Limit states design, also known as load and resistance factor design (LRFD), provides a unified approach to dealing with all relevant failure modes combinations of concern. It explicitly accounts for the uncertainties that naturally occur in the determination of the loads which act on a pipeline and in the resistance of the pipe to failure. The load and resistance factors used are based on reliability considerations; however, the designer is not faced with carrying out probabilistic calculations. This work is done during development and periodic updating of the LSD document. This report provides background information concerning limits states and reliability-based design (Section 2), gives the limit states design procedures that were developed (Section 3) and provides results of the reliability analyses that were undertaken in order to partially calibrate the LSD method (Section 4). An appendix contains LSD design examples in order to demonstrate use of the method. Section 3, Limit States Design has been written in the format of a recommended practice. It has been structured so that, in future, it can easily be converted to a limit states design code format. Throughout the report, figures and tables are given at the end of each section, with the exception of Section 3, where to facilitate understanding of the LSD method, they have been included with the text.

  14. Design Method for EPS Control System Based on KANSEI Structure

    NASA Astrophysics Data System (ADS)

    Saitoh, Yumi; Itoh, Hideaki; Ozaki, Fuminori; Nakamura, Takenobu; Kawaji, Shigeyasu

    Recently, it has been identified that a KANSEI engineering plays an important role in functional design developing for realizing highly sophisticated products. However, in practical development methods, we design products and optimise the design trial and error, which indecates that we depend on the skill set of experts. In this paper, we focus on an automobile electric power steering (EPS) for which a functional design is required. First, the KANSEI structure is determined on the basis of the steering feeling of an experienced driver, and an EPS control design based on this KANSEI structure is proposed. Then, the EPS control parameters are adjusted in accordance with the KANSEI index. Finally, by assessing the experimental results obtained from the driver, the effectiveness of the proposed design method is verified.

  15. On the optimal risk based design of highway drainage structures

    NASA Astrophysics Data System (ADS)

    Tung, Y.-K.; Bao, Y.

    1990-12-01

    For a proposed highway bridge or culvert, the total cost to the public during its expected service life includes capital investment on the structures, regular operation and maintenance costs, and various flood related costs. The flood related damage costs include items such as replacement and repair costs of the highway bridge or culvert, flood plain property damage costs, users costs from traffic interruptions and detours, and others. As the design discharge increases, the required capital investment increases but the corresponding flood related damage costs decrease. Hydraulic design of a bridge or culvert using a riskbased approach is to choose among the alternatives the one associated with the least total expected cost. In this paper, the risk-based design procedure is applied to pipe culvert design. The effect of the hydrologic uncertainties such as sample size and type of flood distribution model on the optimal culvert design parameters including design return period and total expected cost are examined in this paper.

  16. A Hybrid Tool for User Interface Modeling and Prototyping

    NASA Astrophysics Data System (ADS)

    Trætteberg, Hallvard

    Although many methods have been proposed, model-based development methods have only to some extent been adopted for UI design. In particular, they are not easy to combine with user-centered design methods. In this paper, we present a hybrid UI modeling and GUI prototyping tool, which is designed to fit better with IS development and UI design traditions. The tool includes a diagram editor for domain and UI models and an execution engine that integrates UI behavior, live UI components and sample data. Thus, both model-based user interface design and prototyping-based iterative design are supported

  17. Designing Metacognitive Maps for Web-Based Learning

    ERIC Educational Resources Information Center

    Lee, Miyoung; Baylor, Amy L.

    2006-01-01

    This paper provides guidelines for designing metacognitive maps in web-based learning environments. A metacognitive map is a visual interface-based tool that supports metacognition throughout the entire learning process. Inspired by the four key metacognitive skills of planning, monitoring, evaluating, and revising, the metacognitive map is…

  18. Designing a Problem-Based Learning Intermediate Composition Course

    ERIC Educational Resources Information Center

    Kumar, Rita; Refaei, Brenda

    2013-01-01

    We used Problem-Based Learning (PBL) as a new pedagogy in an intermediate composition course. Our course design was based in constructivist pedagogical practices, which suggest that knowledge is co-created through social interactions. Although professors have much to offer students, students can also learn important lessons through interactions…

  19. Designing a Programming-Based Approach for Modelling Scientific Phenomena

    ERIC Educational Resources Information Center

    Simpson, Gordon; Hoyles, Celia; Noss, Richard

    2005-01-01

    We describe an iteratively designed sequence of activities involving the modelling of one-dimensional collisions between moving objects based on programming in ToonTalk. Students aged 13-14 years in two settings (London and Cyprus) investigated a number of collision situations, classified into six classes based on the relative velocities and…

  20. Structure-Based Design of Trna-Guanine Transglycosylase Inhibitors

    NASA Astrophysics Data System (ADS)

    Klebe, Gerhard

    Taking the development of inhibitors for the tRNA-modifying enzyme tRNA-guanine transglycosylase (TGT) as an example, the scope of a structure-based drug development project will be demonstrated, performed via several cycles of iterative design. The described example is based on studies, performed at ETH-Zurich and University of Marburg in joint collaboration. As these studies have been executed in an academic environment, different tools of structure-based design have been applied and several issues of more fundamental interest to the methodological background of the project could be addressed.

  1. Cradle Enhanced UI Development

    NASA Technical Reports Server (NTRS)

    Jentsch, Samuel

    2016-01-01

    This summer I have been working in the EDI (Exploration, Development, and Integration) office. The primary goal of my office is to facilitate the integration, cooperation, and communication between programs, projects and departments throughout the agency. The majority of my efforts has been focused on Cradle, a requirements management and systems engineering tool. This tool is utilized by teams throughout NASA to plan and track the development of a variety of ongoing projects.

  2. Developing the Common Data Base for Management Information Systems: VI. Designing a Data Base for Growth.

    ERIC Educational Resources Information Center

    Podell, Harold J.

    A subset of data base management techniques for the hardware/software functions necessary to support a management information system are discussed. Seven basic dimensions of data base design are: (1) data base life span, (2) logical record growth, (3) record content growth, (4) data set organization, (5) linkages, (6) design criteria and (7)…

  3. [Computational chemistry in structure-based drug design].

    PubMed

    Cao, Ran; Li, Wei; Sun, Han-Zi; Zhou, Yu; Huang, Niu

    2013-07-01

    Today, the understanding of the sequence and structure of biologically relevant targets is growing rapidly and researchers from many disciplines, physics and computational science in particular, are making significant contributions to modern biology and drug discovery. However, it remains challenging to rationally design small molecular ligands with desired biological characteristics based on the structural information of the drug targets, which demands more accurate calculation of ligand binding free-energy. With the rapid advances in computer power and extensive efforts in algorithm development, physics-based computational chemistry approaches have played more important roles in structure-based drug design. Here we reviewed the newly developed computational chemistry methods in structure-based drug design as well as the elegant applications, including binding-site druggability assessment, large scale virtual screening of chemical database, and lead compound optimization. Importantly, here we address the current bottlenecks and propose practical solutions.

  4. Front end design of smartphone-based mobile health

    NASA Astrophysics Data System (ADS)

    Zhang, Changfan; He, Lingsong; Gao, Zhiqiang; Ling, Cong; Du, Jianhao

    2015-02-01

    Mobile health has been a new trend all over the world with the rapid development of intelligent terminals and mobile internet. It can help patients monitor health in-house and is convenient for doctors to diagnose remotely. Smart-phone-based mobile health has big advantages in cost and data sharing. Front end design of it mainly focuses on two points: one is implementation of medical sensors aimed at measuring kinds of medical signal; another is acquisition of medical signal from sensors to smart phone. In this paper, the above two aspects were both discussed. First, medical sensor implementation was proposed to refer to mature measurement solutions with ECG (electrocardiograph) sensor design taken for example. And integrated chip using can simplify design. Then second, typical data acquisition architecture of smart phones, namely Bluetooth and MIC (microphone)-based architecture, were compared. Bluetooth architecture should be equipped with an acquisition card; MIC design uses sound card of smart phone instead. Smartphone-based virtual instrument app design corresponding to above acquisition architecture was discussed. In experiments, Bluetooth and MIC architecture were used to acquire blood pressure and ECG data respectively. The results showed that Bluetooth design can guarantee high accuracy during the acquisition and transmission process, and MIC design is competitive because of low cost and convenience.

  5. Sequential ensemble-based optimal design for parameter estimation

    NASA Astrophysics Data System (ADS)

    Man, Jun; Zhang, Jiangjiang; Li, Weixuan; Zeng, Lingzao; Wu, Laosheng

    2016-10-01

    The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees of freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.

  6. Research on performance-based seismic design criteria

    NASA Astrophysics Data System (ADS)

    Xie, Li-Li; Ma, Yu-Hong

    2002-03-01

    The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building’s function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the ‘Optimal Economic Decision Model’ and ‘Optimal Safe Decision Model’ are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.

  7. Advanced Information Technology in Simulation Based Life Cycle Design

    NASA Technical Reports Server (NTRS)

    Renaud, John E.

    2003-01-01

    In this research a Collaborative Optimization (CO) approach for multidisciplinary systems design is used to develop a decision based design framework for non-deterministic optimization. To date CO strategies have been developed for use in application to deterministic systems design problems. In this research the decision based design (DBD) framework proposed by Hazelrigg is modified for use in a collaborative optimization framework. The Hazelrigg framework as originally proposed provides a single level optimization strategy that combines engineering decisions with business decisions in a single level optimization. By transforming this framework for use in collaborative optimization one can decompose the business and engineering decision making processes. In the new multilevel framework of Decision Based Collaborative Optimization (DBCO) the business decisions are made at the system level. These business decisions result in a set of engineering performance targets that disciplinary engineering design teams seek to satisfy as part of subspace optimizations. The Decision Based Collaborative Optimization framework more accurately models the existing relationship between business and engineering in multidisciplinary systems design.

  8. A Design-Based Research Investigation of a Web-Based Learning Environment Designed to Support the Reading Process

    ERIC Educational Resources Information Center

    Kidwai, Khusro

    2009-01-01

    This research study had two purposes, (a) to design and develop a Web-based learning environment that supports the use of a set of reading strategies, and (b) to investigate the impact of this Web-based learning environment on readers' "memory" and "understanding" of an instructional unit on the human heart (Dwyer &…

  9. Novel parameter-based flexure bearing design method

    NASA Astrophysics Data System (ADS)

    Amoedo, Simon; Thebaud, Edouard; Gschwendtner, Michael; White, David

    2016-06-01

    A parameter study was carried out on the design variables of a flexure bearing to be used in a Stirling engine with a fixed axial displacement and a fixed outer diameter. A design method was developed in order to assist identification of the optimum bearing configuration. This was achieved through a parameter study of the bearing carried out with ANSYS®. The parameters varied were the number and the width of the arms, the thickness of the bearing, the eccentricity, the size of the starting and ending holes, and the turn angle of the spiral. Comparison was made between the different designs in terms of axial and radial stiffness, the natural frequency, and the maximum induced stresses. Moreover, the Finite Element Analysis (FEA) was compared to theoretical results for a given design. The results led to a graphical design method which assists the selection of flexure bearing geometrical parameters based on pre-determined geometric and material constraints.

  10. Design of integration-ready metasurface-based infrared absorbers

    SciTech Connect

    Ogando, Karim Pastoriza, Hernán

    2015-07-28

    We introduce an integration ready design of metamaterial infrared absorber, highly compatible with many kinds of fabrication processes. We present the results of an exhaustive experimental characterization, including an analysis of the effects of single meta-atom geometrical parameters and collective arrangement. We confront the results with the theoretical interpretations proposed in the literature. Based on the results, we develop a set of practical design rules for metamaterial absorbers in the infrared region.

  11. Design of Power Quality Monitor Based on Embedded Industrial Computer

    NASA Astrophysics Data System (ADS)

    Junfeng, Huang; Hao, Sun; Xiaolin, Wei

    A design about electric power quality monitor device based on embedded industrial computer was proposed. On this basis, we introduced the framework and arithmetic of the device. Because of the existence of the harmonic disturbance, a scheme of adding windows combined with interpolation arithmetic was used to promote the detection accuracy; In the meanwhile, by means of the programming tool of Delphi, a good interface was designed. Through the experiment, we justify the device shows the well reliability and practicability.

  12. The design of a microprocessor-based data logger

    USGS Publications Warehouse

    Leap, K.J.; Dedini, L.A.

    1982-01-01

    The design of a microprocessor-based data logger, which collects and digitizes analog voltage signals from a continuous-measuring instrumentation system and transmits serial data to a magnetic tape recorder, is discussed. The data logger was assembled from commercially-available components and can be user-programmed for greater flexibility. A description of the data logger hardware and software designs, general operating instructions, the microprocessor program listing, and electrical schematic diagrams are presented.

  13. Fatigue reliability based optimal design of planar compliant micropositioning stages

    NASA Astrophysics Data System (ADS)

    Wang, Qiliang; Zhang, Xianmin

    2015-10-01

    Conventional compliant micropositioning stages are usually developed based on static strength and deterministic methods, which may lead to either unsafe or excessive designs. This paper presents a fatigue reliability analysis and optimal design of a three-degree-of-freedom (3 DOF) flexure-based micropositioning stage. Kinematic, modal, static, and fatigue stress modelling of the stage were conducted using the finite element method. The maximum equivalent fatigue stress in the hinges was derived using sequential quadratic programming. The fatigue strength of the hinges was obtained by considering various influencing factors. On this basis, the fatigue reliability of the hinges was analysed using the stress-strength interference method. Fatigue-reliability-based optimal design of the stage was then conducted using the genetic algorithm and MATLAB. To make fatigue life testing easier, a 1 DOF stage was then optimized and manufactured. Experimental results demonstrate the validity of the approach.

  14. Target based drug design - a reality in virtual sphere.

    PubMed

    Verma, Saroj; Prabhakar, Yenamandra S

    2015-01-01

    The target based drug design approaches are a series of computational procedures, including visualization tools, to support the decision systems of drug design/discovery process. In the essence of biological targets shaping the potential lead/drug molecules, this review presents a comprehensive position of different components of target based drug design which include target identification, protein modeling, molecular dynamics simulations, binding/catalytic sites identification, docking, virtual screening, fragment based strategies, substructure treatment of targets in tackling drug resistance, in silico ADMET, structural vaccinology, etc along with the key issues involved therein and some well investigated case studies. The concepts and working of these procedures are critically discussed to arouse interest and to advance the drug research.

  15. Conceptual design for a lunar-base CELSS

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Cullingford, Hatice S.

    1990-01-01

    Future human exploration is key to the United States National Space Policy goal of maintaining a world leadership position in space. In the past, spacecraft life support systems have used open-loop technologies that were simple and sufficiently reliable to demonstrate the feasibility of spaceflight. A critical technology area needing development in support of both long duration missions and the establishment of lunar or planetary bases is regenerative life support. The information presented in this paper describes a conceptual design of a Lunar Base Controlled Ecological Life Support System (LCELSS) which supports a crew size ranging from 4 to 100. The system includes, or incorporates interfaces with, eight primary subsystems. An initial description of the Lunar-Base CELSS subsystems is provided within the framework of the conceptual design. The system design includes both plant (algae and higher plant) and animal species as potential food sources.

  16. A knowledge-based design framework for airplane conceptual and preliminary design

    NASA Astrophysics Data System (ADS)

    Anemaat, Wilhelmus A. J.

    The goal of work described herein is to develop the second generation of Advanced Aircraft Analysis (AAA) into an object-oriented structure which can be used in different environments. One such environment is the third generation of AAA with its own user interface, the other environment with the same AAA methods (i.e. the knowledge) is the AAA-AML program. AAA-AML automates the initial airplane design process using current AAA methods in combination with AMRaven methodologies for dependency tracking and knowledge management, using the TechnoSoft Adaptive Modeling Language (AML). This will lead to the following benefits: (1) Reduced design time: computer aided design methods can reduce design and development time and replace tedious hand calculations. (2) Better product through improved design: more alternative designs can be evaluated in the same time span, which can lead to improved quality. (3) Reduced design cost: due to less training and less calculation errors substantial savings in design time and related cost can be obtained. (4) Improved Efficiency: the design engineer can avoid technically correct but irrelevant calculations on incomplete or out of sync information, particularly if the process enables robust geometry earlier. Although numerous advancements in knowledge based design have been developed for detailed design, currently no such integrated knowledge based conceptual and preliminary airplane design system exists. The third generation AAA methods are tested over a ten year period on many different airplane designs. Using AAA methods will demonstrate significant time savings. The AAA-AML system will be exercised and tested using 27 existing airplanes ranging from single engine propeller, business jets, airliners, UAV's to fighters. Data for the varied sizing methods will be compared with AAA results, to validate these methods. One new design, a Light Sport Aircraft (LSA), will be developed as an exercise to use the tool for designing a new airplane

  17. Partial gravity habitat study: With application to lunar base design

    NASA Technical Reports Server (NTRS)

    Capps, Stephen; Lorandos, Jason; Akhidime, Eval; Bunch, Michael; Lund, Denise; Moore, Nathan; Murakawa, Kio; Bell, Larry; Trotti, Guillermo; Neubek, Deb

    1989-01-01

    Comprehensive design requirements associated with designing habitats for humans in a partial gravity environment were investigated and then applied to a lunar base design. Other potential sites for application include planetary surfaces such as Mars, variable gravity research facilities, or a rotating spacecraft. Design requirements for partial gravity environments include: (1) locomotion changes in less than normal Earth gravity; (2) facility design issues, such as interior configuration, module diameter and geometry; and (3) volumetric requirements based on the previous as well as psychological issues involved in prolonged isolation. For application to a Lunar Base, it was necessary to study the exterior architecture and configuration to insure optimum circulation patterns while providing dual egress. Radiation protection issues were addressed to provide a safe and healthy environment for the crew, and finally, the overall site was studied to locate all associated facilities in context with the habitat. Mission planning was not the purpose of this study; therefore, a Lockheed scenario was used as an outline for the Lunar Base application, which was then modified to meet the project needs.

  18. Preliminary Polar Sea Trials of Nereid-UI: A Remotely Operated Underwater Vehicle for Oceanographic Access Under Ice

    NASA Astrophysics Data System (ADS)

    Whitcomb, L. L.; Jakuba, M.; German, C. R.; Bowen, A.; Yoerger, D.; Kinsey, J. C.; Mayer, L.; McFarland, C.; Suman, S.; Bailey, J.; Judge, C.; Elliott, S.; Gomez-Ibanez, D.; Taylor, C. L.; Machado, C.; Howland, J. C.; Kaiser, C.; Heintz, M.; Pontbriand, C.; O'Hara, L.; McDonald, G.; Boetius, A.

    2014-12-01

    We report the development and deployment of a remotely-controlled underwater robotic vehicle capable of being teleoperated under ice under real-time human supervision. The Nereid Under-Ice (Nereid-UI or NUI) vehicle enables exploration and detailed examination of biological and physical environments including the ice-ocean interface in marginal ice zones, in the water column of ice-covered seas, at glacial ice-tongues, and ice-shelf margins, delivering realtime high definition video in addition to survey data from on board acoustic, optical, chemical, and biological sensors. The vehicle employs a novel lightweight fiber-optic tether that will enable it to be deployed from a ship to attain standoff distances of up to 20 km from an ice-edge boundary. We conducted NUI's first under-ice deployments during the July 2014 F/V Polarstern PS86 expedition at 86° N 6 W° in the Arctic Ocean - near the Aurora hydrothermal vent site on the Gakkel Ridge approximately 200 km NE of Greenland. We conducted 4 dives to evaluate and develop NUI's overall functioning and its individual engineered subsystems. On each dive, dead-reckoning (Ice-locked Doppler sonar and north-seeking gyrocompass) complemented by acoustic ranging provided navigation, supporting closed-loop control of heading, depth, and XY position relative to the ice. Science operations included multibeam transects of under-ice topography, precision vertical profiles for the bio-sensor suite and IR/radiance sensor suite, IR/radiance/multibeam transects at constant depth interlaced with vertical profiles and upward-looking digital still-camera surveys of the ice, including areas rich with algal material. The fiber-optic tether remained intact throughout most of all 4 dives. Consistent with the NUI concept of operations, in 3 of 4 dives the fiber-optic tether eventually failed, and the vehicle was then commanded acoustically in a series of short-duration maneuvers to return to Polarstern for recovery. These preliminary

  19. When product designers use perceptually based color tools

    NASA Astrophysics Data System (ADS)

    Bender, Walter R.

    1998-07-01

    Palette synthesis and analysis tools have been built based upon a model of color experience. This model adjusts formal compositional elements such as hue, value, chroma, and their contrasts, as well as size and proportion. Clothing and household product designers were given these tools to give guidance to their selection of seasonal palettes for use in production of the private-label merchandise of a large retail chain. The designers chose base palettes. Accents to these palettes were generated with and without the aid of the color tools. These palettes are compared by using perceptual metrics and interviews. The results are presented.

  20. When product designers use perceptually based color tools

    NASA Astrophysics Data System (ADS)

    Bender, Walter R.

    2001-01-01

    Palette synthesis and analysis tools have been built based upon a model of color experience. This model adjusts formal compositional elements such as hue, value, chroma, and their contrasts, as well as size and proportion. Clothing and household product designers were given these tools to guide their selection of seasonal palettes in the production of the private-label merchandise in a large retail chain. The designers chose base palettes. Accents to these palettes were generated with and without the aid of the color tools. These palettes are compared by using perceptual metrics and interviews. The results are presented.

  1. Lunar base launch and landing facilities conceptual design

    NASA Technical Reports Server (NTRS)

    Phillips, Paul G.; Simonds, Charles H.; Stump, William R.

    1992-01-01

    The purpose of this study was to perform a first look at the requirements for launch and landing facilities for early lunar bases and to prepared conceptual designs for some of these facilities. The emphasis of the study is on the facilities needed from the first manned landing until permanent occupancy, the Phase 2 lunar base. Factors including surface characteristics, navigation system, engine blast effects, and expected surface operations are used to develop landing pad designs, and definitions fo various other elements of the launch and landing facilities. Finally, the dependence of the use of these elements and the evolution of the facilities are established.

  2. CFD-Based Design Optimization for Single Element Rocket Injector

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajkumar; Tucker, Kevin; Papila, Nilay; Shyy, Wei

    2003-01-01

    To develop future Reusable Launch Vehicle concepts, we have conducted design optimization for a single element rocket injector, with overall goals of improving reliability and performance while reducing cost. Computational solutions based on the Navier-Stokes equations, finite rate chemistry, and the k-E turbulence closure are generated with design of experiment techniques, and the response surface method is employed as the optimization tool. The design considerations are guided by four design objectives motivated by the consideration in both performance and life, namely, the maximum temperature on the oxidizer post tip, the maximum temperature on the injector face, the adiabatic wall temperature, and the length of the combustion zone. Four design variables are selected, namely, H2 flow angle, H2 and O2 flow areas with fixed flow rates, and O2 post tip thickness. In addition to establishing optimum designs by varying emphasis on the individual objectives, better insight into the interplay between design variables and their impact on the design objectives is gained. The investigation indicates that improvement in performance or life comes at the cost of the other. Best compromise is obtained when improvements in both performance and life are given equal importance.

  3. Multi-mode reliability-based design of horizontal curves.

    PubMed

    Essa, Mohamed; Sayed, Tarek; Hussein, Mohamed

    2016-08-01

    Recently, reliability analysis has been advocated as an effective approach to account for uncertainty in the geometric design process and to evaluate the risk associated with a particular design. In this approach, a risk measure (e.g. probability of noncompliance) is calculated to represent the probability that a specific design would not meet standard requirements. The majority of previous applications of reliability analysis in geometric design focused on evaluating the probability of noncompliance for only one mode of noncompliance such as insufficient sight distance. However, in many design situations, more than one mode of noncompliance may be present (e.g. insufficient sight distance and vehicle skidding at horizontal curves). In these situations, utilizing a multi-mode reliability approach that considers more than one failure (noncompliance) mode is required. The main objective of this paper is to demonstrate the application of multi-mode (system) reliability analysis to the design of horizontal curves. The process is demonstrated by a case study of Sea-to-Sky Highway located between Vancouver and Whistler, in southern British Columbia, Canada. Two noncompliance modes were considered: insufficient sight distance and vehicle skidding. The results show the importance of accounting for several noncompliance modes in the reliability model. The system reliability concept could be used in future studies to calibrate the design of various design elements in order to achieve consistent safety levels based on all possible modes of noncompliance.

  4. A knowledge-based system design/information tool

    NASA Technical Reports Server (NTRS)

    Allen, James G.; Sikora, Scott E.

    1990-01-01

    The objective of this effort was to develop a Knowledge Capture System (KCS) for the Integrated Test Facility (ITF) at the Dryden Flight Research Facility (DFRF). The DFRF is a NASA Ames Research Center (ARC) facility. This system was used to capture the design and implementation information for NASA's high angle-of-attack research vehicle (HARV), a modified F/A-18A. In particular, the KCS was used to capture specific characteristics of the design of the HARV fly-by-wire (FBW) flight control system (FCS). The KCS utilizes artificial intelligence (AI) knowledge-based system (KBS) technology. The KCS enables the user to capture the following characteristics of automated systems: the system design; the hardware (H/W) design and implementation; the software (S/W) design and implementation; and the utilities (electrical and hydraulic) design and implementation. A generic version of the KCS was developed which can be used to capture the design information for any automated system. The deliverable items for this project consist of the prototype generic KCS and an application, which captures selected design characteristics of the HARV FCS.

  5. A Simulation-Based LED Design Project in Photonics Instruction Based on Industry-University Collaboration

    ERIC Educational Resources Information Center

    Chang, S. -H.; Chen, M. -L.; Kuo, Y. -K.; Shen, Y. -C.

    2011-01-01

    In response to the growing industrial demand for light-emitting diode (LED) design professionals, based on industry-university collaboration in Taiwan, this paper develops a novel instructional approach: a simulation-based learning course with peer assessment to develop students' professional skills in LED design as required by industry as well as…

  6. Introduction to Neutron Coincidence Counter Design Based on Boron-10

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2012-01-22

    The Department of Energy Office of Nonproliferation Policy (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is ultimately to design, build and demonstrate a boron-lined proportional tube based alternative system in the configuration of a coincidence counter. This report, providing background information for this project, is the deliverable under Task 1 of the project.

  7. Decomposition-Based Decision Making for Aerospace Vehicle Design

    NASA Technical Reports Server (NTRS)

    Borer, Nicholas K.; Mavris, DImitri N.

    2005-01-01

    reader to observe how this technique can be applied to aerospace systems design and compare the results of this so-called Decomposition-Based Decision Making to more traditional design approaches.

  8. Structure-based design of combinatorial mutagenesis libraries.

    PubMed

    Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris

    2015-05-01

    The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called "Structure-based Optimization of Combinatorial Mutagenesis" (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states.

  9. Design-based and model-based inference in surveys of freshwater mollusks

    USGS Publications Warehouse

    Dorazio, R.M.

    1999-01-01

    Well-known concepts in statistical inference and sampling theory are used to develop recommendations for planning and analyzing the results of quantitative surveys of freshwater mollusks. Two methods of inference commonly used in survey sampling (design-based and model-based) are described and illustrated using examples relevant in surveys of freshwater mollusks. The particular objectives of a survey and the type of information observed in each unit of sampling can be used to help select the sampling design and the method of inference. For example, the mean density of a sparsely distributed population of mollusks can be estimated with higher precision by using model-based inference or by using design-based inference with adaptive cluster sampling than by using design-based inference with conventional sampling. More experience with quantitative surveys of natural assemblages of freshwater mollusks is needed to determine the actual benefits of different sampling designs and inferential procedures.

  10. Design of a vehicle based system to prevent ozone loss

    NASA Technical Reports Server (NTRS)

    Talbot, Matthew D.; Eby, Steven C.; Ireland, Glen J.; Mcwithey, Michael C.; Schneider, Mark S.; Youngblood, Daniel L.; Johnson, Matt; Taylor, Chris

    1994-01-01

    This project is designed to be completed over a three year period. Overall project goals are: (1) to understand the processes that contribute to stratospheric ozone loss; (2) to determine the best scheme to prevent ozone loss; and (3) to design a vehicle based system to carry out the prevention scheme. The 1993/1994 design objectives included: (1) to review the results of the 1992/1993 design team, including a reevaluation of the key assumptions used; (2) to develop a matrix of baseline vehicle concepts as candidates for the delivery vehicle; and (3) to develop a selection criteria and perform quantitative trade studies to use in the selection of the specific vehicle concept.

  11. Design Optimization of Liquid Nitrogen Based IQF Tunnel

    NASA Astrophysics Data System (ADS)

    Datye, A. B.; Narayankhedkar, K. G.; Sharma, G. K.

    2006-04-01

    A design methodology for an Individual Quick Freezing (IQF) tunnel using liquid nitrogen is developed and the design based on this methodology is validated using the data of commercial tunnels. The design takes care of heat gains due to the conveyor belt which is exposed to atmosphere at the infeed and outfeed ends. The design also considers the heat gains through the insulation as well as due to circulating fans located within the tunnel. For minimum liquid nitrogen consumption, the ratio of the length of the belt, L (from infeed to out feed) to the width of the belt, W can be considered as a parameter. The comparison of predicted and reported liquid nitrogen (experimental data) consumption shows good agreement and is within 10 %.

  12. Model-Based Design of Tree WSNs for Decentralized Detection.

    PubMed

    Tantawy, Ashraf; Koutsoukos, Xenofon; Biswas, Gautam

    2015-08-20

    The classical decentralized detection problem of finding the optimal decision rules at the sensor and fusion center, as well as variants that introduce physical channel impairments have been studied extensively in the literature. The deployment of WSNs in decentralized detection applications brings new challenges to the field. Protocols for different communication layers have to be co-designed to optimize the detection performance. In this paper, we consider the communication network design problem for a tree WSN. We pursue a system-level approach where a complete model for the system is developed that captures the interactions between different layers, as well as different sensor quality measures. For network optimization, we propose a hierarchical optimization algorithm that lends itself to the tree structure, requiring only local network information. The proposed design approach shows superior performance over several contentionless and contention-based network design approaches.

  13. Prodrugs design based on inter- and intramolecular chemical processes.

    PubMed

    Karaman, Rafik

    2013-12-01

    This review provides the reader a concise overview of the majority of prodrug approaches with the emphasis on the modern approaches to prodrug design. The chemical approach catalyzed by metabolic enzymes which is considered as widely used among all other approaches to minimize the undesirable drug physicochemical properties is discussed. Part of this review will shed light on the use of molecular orbital methods such as DFT, semiempirical and ab initio for the design of novel prodrugs. This novel prodrug approach implies prodrug design based on enzyme models that were utilized for mimicking enzyme catalysis. The computational approach exploited for the prodrug design involves molecular orbital and molecular mechanics (DFT, ab initio, and MM2) calculations and correlations between experimental and calculated values of intramolecular processes that were experimentally studied to assign the factors determining the reaction rates in certain processes for better understanding on how enzymes might exert their extraordinary catalysis.

  14. Uniform design based SVM model selection for face recognition

    NASA Astrophysics Data System (ADS)

    Li, Weihong; Liu, Lijuan; Gong, Weiguo

    2010-02-01

    Support vector machine (SVM) has been proved to be a powerful tool for face recognition. The generalization capacity of SVM depends on the model with optimal hyperparameters. The computational cost of SVM model selection results in application difficulty in face recognition. In order to overcome the shortcoming, we utilize the advantage of uniform design--space filling designs and uniformly scattering theory to seek for optimal SVM hyperparameters. Then we propose a face recognition scheme based on SVM with optimal model which obtained by replacing the grid and gradient-based method with uniform design. The experimental results on Yale and PIE face databases show that the proposed method significantly improves the efficiency of SVM model selection.

  15. Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.

    2004-01-01

    An analysis-based approach .for developing shell-buckling design criteria for laminated-composite cylindrical shells that accurately accounts for the effects of initial geometric imperfections is presented. With this approach, measured initial geometric imperfection data from six graphite-epoxy shells are used to determine a manufacturing-process-specific imperfection signature for these shells. This imperfection signature is then used as input into nonlinear finite-element analyses. The imperfection signature represents a "first-approximation" mean imperfection shape that is suitable for developing preliminary-design data. Comparisons of test data and analytical results obtained by using several different imperfection shapes are presented for selected shells. Overall, the results indicate that the analysis-based approach presented for developing reliable preliminary-design criteria has the potential to provide improved, less conservative buckling-load estimates, and to reduce the weight and cost of developing buckling-resistant shell structures.

  16. Image processing and applications based on visualizing navigation service

    NASA Astrophysics Data System (ADS)

    Hwang, Chyi-Wen

    2015-07-01

    When facing the "overabundant" of semantic web information, in this paper, the researcher proposes the hierarchical classification and visualizing RIA (Rich Internet Application) navigation system: Concept Map (CM) + Semantic Structure (SS) + the Knowledge on Demand (KOD) service. The aim of the Multimedia processing and empirical applications testing, was to investigating the utility and usability of this visualizing navigation strategy in web communication design, into whether it enables the user to retrieve and construct their personal knowledge or not. Furthermore, based on the segment markets theory in the Marketing model, to propose a User Interface (UI) classification strategy and formulate a set of hypermedia design principles for further UI strategy and e-learning resources in semantic web communication. These research findings: (1) Irrespective of whether the simple declarative knowledge or the complex declarative knowledge model is used, the "CM + SS + KOD navigation system" has a better cognition effect than the "Non CM + SS + KOD navigation system". However, for the" No web design experience user", the navigation system does not have an obvious cognition effect. (2) The essential of classification in semantic web communication design: Different groups of user have a diversity of preference needs and different cognitive styles in the CM + SS + KOD navigation system.

  17. Zeroth order resonator (ZOR) based RFID antenna design

    NASA Astrophysics Data System (ADS)

    Masud, Muhammad Mubeen

    Meander-line and multi-layer antennas have been used extensively to design compact UHF radio frequency identification (RFID) tags; however the overall size reduction of meander-line antennas is limited by the amount of parasitic inductance that can be introduced by each meander-line segment, and multi-layer antennas can be too costly. In this study, a new compact antenna topology for passive UHF RFID tags based on zeroth order resonant (ZOR) design techniques is presented. The antenna consists of lossy coplanar conductors and either inter-connected inter-digital capacitor (IDC) or shunt inductor unit-cells with a ZOR frequency near the operating frequency of the antenna. Setting the ZOR frequency near the operating frequency is a key component in the design process because the unit-cells chosen for the design are inductive at the operating frequency. This makes the unit-cells very useful for antenna miniaturization. These new designs in this work have several benefits: the coplanar layout can be printed on a single layer, matching inductive loops that reduce antenna efficiency are not required and ZOR analysis can be used for the design. Finally, for validation, prototype antennas are designed, fabricated and tested.

  18. A Problem-Based Learning Design for Teaching Biochemistry.

    ERIC Educational Resources Information Center

    Dods, Richard F.

    1996-01-01

    Describes the design of a biochemistry course that uses problem-based learning. Provides opportunities for students to question, dispute, confirm, and disconfirm their understanding of basic concepts. Emphasizes self-correction through dialogue. Topics covered include amino acids, metabolic pathways and inherited disease, proteins, enzymes and…

  19. The Design Consideration for Game-Based Learning

    ERIC Educational Resources Information Center

    Liang, Chaoyun; Lee, Yuan-Zone; Chou, Wen-Shou

    2010-01-01

    The integration of game playing with online education has recently become one of the most discussed issues in the e-learning field for its potentially positive impact on the development of related industries and on the social lives of young people. In this article, the authors propose a set of design considerations to assist game-based learning…

  20. Design Considerations in Developing a Web-Based Mentor Network.

    ERIC Educational Resources Information Center

    Sumner, Todd

    This paper describes a Web-based mentor network designed to pair students in rural independent schools with undergraduates at selected liberal arts colleges. It is one of nine central program elements that constitute the Proteus(TM) system, a multimedia technologies architecture that supports distributed collaborations and work undertaken in the…

  1. Teaching Construction: A Design-Based Course Model

    ERIC Educational Resources Information Center

    Love, Tyler S.; Salgado, Carlos A.

    2016-01-01

    The focus on construction in T&E education has drastically changed. This article presents a series of topics and design-based labs that can be taught at various grade levels to integrate STEM concepts while also increasing students' overall awareness of construction and structural technologies.

  2. A Context Awareness System for Online Learning: Design Based Research

    ERIC Educational Resources Information Center

    Laffey, James; Amelung, Chris; Goggins, Sean

    2009-01-01

    A design based research strategy examining the impressions and behavior of members of courses taught entirely online is used for refining a context-aware activity notification system (CANS). The findings show that CANS must address substantial variety in courses and members while also fitting with multitasking between online and real world…

  3. Design Based Research Methodology for Teaching with Technology in English

    ERIC Educational Resources Information Center

    Jetnikoff, Anita

    2015-01-01

    Design based research (DBR) is an appropriate method for small scale educational research projects involving collaboration between teachers, students and researchers. It is particularly useful in collaborative projects where an intervention is implemented and evaluated in a grounded context. The intervention can be technological, or a new program…

  4. Single-Subject Experimental Design for Evidence-Based Practice

    ERIC Educational Resources Information Center

    Byiers, Breanne J.; Reichle, Joe; Symons, Frank J.

    2012-01-01

    Purpose: Single-subject experimental designs (SSEDs) represent an important tool in the development and implementation of evidence-based practice in communication sciences and disorders. The purpose of this article is to review the strategies and tactics of SSEDs and their application in speech-language pathology research. Method: The authors…

  5. Empowering Design-Based Implementation Research: The Need for Infrastructure

    ERIC Educational Resources Information Center

    Sabelli, Nora; Dede, Chris

    2013-01-01

    This chapter discusses frameworks and conceptual lenses that help orient design-based implementation research (DBIR) work to the types of infrastructure required for success, while contributing to theories about the processes of educational improvement. Such infrastructures can be conceived as a framework: a set of interconnected elements that…

  6. Designing a Knowledge Base for Automatic Book Classification.

    ERIC Educational Resources Information Center

    Kim, Jeong-Hyen; Lee, Kyung-Ho

    2002-01-01

    Reports on the design of a knowledge base for an automatic classification in the library science field by using the facet classification principles of colon classification. Discusses inputting titles or key words into the computer to create class numbers through automatic subject recognition and processing title key words. (Author/LRW)

  7. Designing a Virtual-Reality-Based, Gamelike Math Learning Environment

    ERIC Educational Resources Information Center

    Xu, Xinhao; Ke, Fengfeng

    2016-01-01

    This exploratory study examined the design issues related to a virtual-reality-based, gamelike learning environment (VRGLE) developed via OpenSimulator, an open-source virtual reality server. The researchers collected qualitative data to examine the VRGLE's usability, playability, and content integration for math learning. They found it important…

  8. Design Model for Learner-Centered, Computer-Based Simulations.

    ERIC Educational Resources Information Center

    Hawley, Chandra L.; Duffy, Thomas M.

    This paper presents a model for designing computer-based simulation environments within a constructivist framework for the K-12 school setting. The following primary criteria for the development of simulations are proposed: (1) the problem needs to be authentic; (2) the cognitive demand in learning should be authentic; (3) scaffolding supports a…

  9. Preliminary design document: Ground based testbed for avionics systems

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design and interface requirements for an avionics Ground Based Test bed (GBT) to support Heavy Lift Cargo Vehicles (HLCV) is presented. It also contains data on the vehicle subsystem configurations that are to be supported during their early, pre-PDR developmental phases. Several emerging technologies are also identified for support. A Preliminary Specification Tree is also presented.

  10. Using Design-Based Research in Gifted Education

    ERIC Educational Resources Information Center

    Jen, Enyi; Moon, Sidney; Samarapungavan, Ala

    2015-01-01

    Design-based research (DBR) is a new methodological framework that was developed in the context of the learning sciences; however, it has not been used very often in the field of gifted education. Compared with other methodologies, DBR is more process-oriented and context-sensitive. In this methodological brief, the authors introduce DBR and…

  11. Designing Digital Problem Based Learning Tasks that Motivate Students

    ERIC Educational Resources Information Center

    van Loon, Anne-Marieke; Ros, Anje; Martens, Rob

    2013-01-01

    This study examines whether teachers are able to apply the principles of autonomy support and structure support in designing digital problem based learning (PBL) tasks. We examine whether these tasks are more autonomy- and structure-supportive and whether primary and secondary school students experience greater autonomy, competence, and motivation…

  12. Proficiency-Based Curriculum Design: Principles Derived from Government Experience.

    ERIC Educational Resources Information Center

    Lowe, Pardee, Jr.

    1985-01-01

    Describes principles for designing a proficiency-based course to prepare students for the ACTFL/ETS Advanced Plus/Superior level according to Interagency Language Roundtable guidelines. Proposes ways to combine grammatical and "functional/notional" syllabuses with a proficiency approach. Examines the implications of these principles for…

  13. Internet MEMS design tools based on component technology

    NASA Astrophysics Data System (ADS)

    Brueck, Rainer; Schumer, Christian

    1999-03-01

    The micro electromechanical systems (MEMS) industry in Europe is characterized by small and medium sized enterprises specialized on products to solve problems in specific domains like medicine, automotive sensor technology, etc. In this field of business the technology driven design approach known from micro electronics is not appropriate. Instead each design problem aims at its own, specific technology to be used for the solution. The variety of technologies at hand, like Si-surface, Si-bulk, LIGA, laser, precision engineering requires a huge set of different design tools to be available. No single SME can afford to hold licenses for all these tools. This calls for a new and flexible way of designing, implementing and distributing design software. The Internet provides a flexible manner of offering software access along with methodologies of flexible licensing e.g. on a pay-per-use basis. New communication technologies like ADSL, TV cable of satellites as carriers promise to offer a bandwidth sufficient even for interactive tools with graphical interfaces in the near future. INTERLIDO is an experimental tool suite for process specification and layout verification for lithography based MEMS technologies to be accessed via the Internet. The first version provides a Java implementation even including a graphical editor for process specification. Currently, a new version is brought into operation that is based on JavaBeans component technology. JavaBeans offers the possibility to realize independent interactive design assistants, like a design rule checking assistants, a process consistency checking assistants, a technology definition assistants, a graphical editor assistants, etc. that may reside distributed over the Internet, communicating via Internet protocols. Each potential user thus is able to configure his own dedicated version of a design tool set dedicated to the requirements of the current problem to be solved.

  14. Knowledge-based optical coatings design and manufacturing

    NASA Astrophysics Data System (ADS)

    Guenther, Karl H.; Gonzalez, Avelino J.; Yoo, Hoi J.

    1990-12-01

    The theory of thin film optics is well developed for the spectral analysis of a given optical coating. The inverse synthesis - designing an optical coating for a certain spectral performance - is more complicated. Usually a multitude of theoretical designs is feasible because most design problems are over-determined with the number of layers possible with three variables each (n, k, t). The expertise of a good thin film designer comes in at this point with a mostly intuitive selection of certain designs based on previous experience and current manufacturing capabilities. Manufacturing a designed coating poses yet another subset of multiple solutions, as thin if in deposition technology has evolved over the years with a vast variety of different processes. The abundance of published literature may often be more confusing than helpful to the practicing thin film engineer, even if he has time and opportunity to read it. The choice of the right process is also severely limited by the given manufacturing hardware and cost considerations which may not easily allow for the adaption of a new manufacturing approach, even if it promises to be better technically (it ought to be also cheaper). On the user end of the thin film coating business, the typical optical designer or engineer who needs an optical coating may have limited or no knowledge at all about the theoretical and manufacturing criteria for the optimum selection of what he needs. This can be sensed frequently by overly tight tolerances and requirements for optical performance which sometimes stretch the limits of mother nature. We introduce here a know1edge-based system (KBS) intended to assist expert designers and manufacturers in their task of maximizing results and minimizing errors, trial runs, and unproductive time. It will help the experts to manipulate parameters which are largely determined through heuristic reasoning by employing artificial intelligence techniques. In a later state, the KBS will include a

  15. Design Research on Inquiry-Based Multivariable Calculus: Focusing on Students' Argumentation and Instructional Design

    ERIC Educational Resources Information Center

    Kwon, Oh Nam; Bae, Younggon; Oh, Kuk Hwan

    2015-01-01

    In this study, researchers design and implement an inquiry based multivariable calculus course in a university which aims at enhancing students' argumentation in rich mathematical discussions. This research aims to understand the characteristics of students' argumentation in activities involving proof constructions through mathematical…

  16. Web-Based Museum Trails on PDAs for University-Level Design Students: Design and Evaluation

    ERIC Educational Resources Information Center

    Reynolds, R.; Walker, K.; Speight, C.

    2010-01-01

    This paper describes the development and evaluation of web-based museum trails for university-level design students to access on handheld devices in the Victoria and Albert Museum (V&A) in London. The trails offered students a range of ways of exploring the museum environment and collections, some encouraging students to interpret objects and…

  17. Designing Collaborative E-Learning Environments Based upon Semantic Wiki: From Design Models to Application Scenarios

    ERIC Educational Resources Information Center

    Li, Yanyan; Dong, Mingkai; Huang, Ronghuai

    2011-01-01

    The knowledge society requires life-long learning and flexible learning environment that enables fast, just-in-time and relevant learning, aiding the development of communities of knowledge, linking learners and practitioners with experts. Based upon semantic wiki, a combination of wiki and Semantic Web technology, this paper designs and develops…

  18. Web Design Curriculum and Syllabus Based on Web Design Practice and Students' Prior Knowledge

    ERIC Educational Resources Information Center

    Krunic, Tanja; Ruzic-Dimitrijevic, Ljiljana; Petrovic, Branka; Farkas, Robert

    2006-01-01

    The Advanced Technical School from Novi Sad set up a completely new study group for web design in 2004. The main goals of the paper are to explain the steps that were taken in starting this group, and to present the educational program based on our own research through the organization of the group and course descriptions. Since there is a…

  19. Rule-based navigation control design for autonomous flight

    NASA Astrophysics Data System (ADS)

    Contreras, Hugo; Bassi, Danilo

    2008-04-01

    This article depicts a navigation control system design that is based on a set of rules in order to follow a desired trajectory. The full control of the aircraft considered here comprises: a low level stability control loop, based on classic PID controller and the higher level navigation whose main job is to exercise lateral control (course) and altitude control, trying to follow a desired trajectory. The rules and PID gains were adjusted systematically according to the result of flight simulation. In spite of its simplicity, the rule-based navigation control proved to be robust, even with big perturbation, like crossing winds.

  20. Human friendly architectural design for a small Martian base

    NASA Astrophysics Data System (ADS)

    Kozicki, J.; Kozicka, J.

    2011-12-01

    The manned mission to Mars is expected to last almost three years. A human factor must be taken seriously into account in such a long-term mission. A big comfortable habitat can help to overcome sociopsychological problems, that occur in ICEs (Isolated and Confined Environments). Authors have come forward to this issue and have developed a Martian base design as a human friendly habitat. The project is based on researches of extreme conditions on Mars, architecture in ICEs and contemporary building technologies. The base consists of five modules: a Central Module (CM), an Agriculture Dome (AD), a Residential Dome (RD), a Laboratory Dome (LD) and a Garage (G). Each element has its own functional purpose. The CM is a metal capsule similar to the Reference Mission module (RM, NASA, 1997). Domes are inflatable multilayer structures, which interiors are "open planned". Interiors can be arranged and divided into rooms by using modular partition walls designed by authors.

  1. Advanced LMI based analysis and design for Acrobot walking

    NASA Astrophysics Data System (ADS)

    Anderle, Milan; Čelikovský, Sergej; Henrion, Didier; Zikmund, Jiří

    2010-08-01

    This article aims to further improve previously developed design for Acrobot walking based on partial exact feedback linearisation of order 3. Namely, such an exact system transformation leads to an almost linear system where error dynamics along trajectory to be tracked is a 4-dimensional linear time-varying system having three time-varying entries only, the remaining entries being either zero or one. In such a way, exponentially stable tracking can be obtained by quadratically stabilising a linear system with polytopic uncertainty. The current improvement is based on applying linear matrix inequalities (LMI) methods to solve this problem numerically. This careful analysis significantly improves previously known approaches. Numerical simulations of Acrobot walking based on the above-mentioned LMI design are demonstrated as well.

  2. Reliability-based design optimization using efficient global reliability analysis.

    SciTech Connect

    Bichon, Barron J.; Mahadevan, Sankaran; Eldred, Michael Scott

    2010-05-01

    Finding the optimal (lightest, least expensive, etc.) design for an engineered component that meets or exceeds a specified level of reliability is a problem of obvious interest across a wide spectrum of engineering fields. Various methods for this reliability-based design optimization problem have been proposed. Unfortunately, this problem is rarely solved in practice because, regardless of the method used, solving the problem is too expensive or the final solution is too inaccurate to ensure that the reliability constraint is actually satisfied. This is especially true for engineering applications involving expensive, implicit, and possibly nonlinear performance functions (such as large finite element models). The Efficient Global Reliability Analysis method was recently introduced to improve both the accuracy and efficiency of reliability analysis for this type of performance function. This paper explores how this new reliability analysis method can be used in a design optimization context to create a method of sufficient accuracy and efficiency to enable the use of reliability-based design optimization as a practical design tool.

  3. Hot spot management through design based metrology: measurement and filtering

    NASA Astrophysics Data System (ADS)

    Lee, Taehyeong; Yang, Hyunjo; Kim, Jungchan; Jung, Areum; Yoo, Gyun; Yim, Donggyu; Park, Sungki; Ishikawa, Akio; Yamamoto, Masahiro; Vikram, Abhishek

    2009-12-01

    Recently several Design Based Metrologies (DBMs) are introduced and being in use for wafer verification. The major applications of DBM are OPC accuracy improvement, DFM feed-back through Process Window Qualification (PWQ) and advanced process control. In general, however, the amount of output data from DBM is normally so large that it is very hard to handle the data for valuable feed-back. In case of PWQ, more than thousands of hot spots are detected on a single chip at the edge of process window. So, it takes much time and labor to review and analyze all the hot spots detected at PWQ. Design-related systematic defects, however, will be found repeatedly and if they can be classified into groups, it would be possible to save a lot of time for the analysis. We have demonstrated an EDA tool which can handle the large amount of output data from DBM by classifying pattern defects into groups. It can classify millions of patterns into less than thousands of pattern groups. It has been evaluated on the analysis of PWQ of metal layer in NAND Flash memory device and random contact hole patterns in a DRAM device. Also, verification was tuned to specific needs of the designer as well as defect analysis engineers by use of EDA tool's 'Pattern Matching Function'. The verification result was well within the required specification of the designer as well as the analysis engineer. The procedures of Hot Spot Management through Design Based Metrology are presented in detail.

  4. Advanced microgrid design and analysis for forward operating bases

    NASA Astrophysics Data System (ADS)

    Reasoner, Jonathan

    This thesis takes a holistic approach in creating an improved electric power generation system for a forward operating base (FOB) in the future through the design of an isolated microgrid. After an extensive literature search, this thesis found a need for drastic improvement of the FOB power system. A thorough design process analyzed FOB demand, researched demand side management improvements, evaluated various generation sources and energy storage options, and performed a HOMERRTM discrete optimization to determine the best microgrid design. Further sensitivity analysis was performed to see how changing parameters would affect the outcome. Lastly, this research also looks at some of the challenges which are associated with incorporating a design which relies heavily on inverter-based generation sources, and gives possible solutions to help make a renewable energy powered microgrid a reality. While this thesis uses a FOB as the case study, the process and discussion can be adapted to aide in the design of an off-grid small-scale power grid which utilizes high-penetration levels of renewable energy.

  5. Structural Design Methodology Based on Concepts of Uncertainty

    NASA Technical Reports Server (NTRS)

    Lin, K. Y.; Du, Jiaji; Rusk, David

    2000-01-01

    In this report, an approach to damage-tolerant aircraft structural design is proposed based on the concept of an equivalent "Level of Safety" that incorporates past service experience in the design of new structures. The discrete "Level of Safety" for a single inspection event is defined as the compliment of the probability that a single flaw size larger than the critical flaw size for residual strength of the structure exists, and that the flaw will not be detected. The cumulative "Level of Safety" for the entire structure is the product of the discrete "Level of Safety" values for each flaw of each damage type present at each location in the structure. Based on the definition of "Level of Safety", a design procedure was identified and demonstrated on a composite sandwich panel for various damage types, with results showing the sensitivity of the structural sizing parameters to the relative safety of the design. The "Level of Safety" approach has broad potential application to damage-tolerant aircraft structural design with uncertainty.

  6. Restoration as a science-based design problem

    NASA Astrophysics Data System (ADS)

    Pasternack, G.; Wheaton, J.

    2003-04-01

    Existing approaches for performing environmental restoration either involve problem diagnosis and assessment with little implementation or ad hoc construction with little forethought. Environmental assessment is an important aspect of stewardship that leads to the diagnosis and prioritization of problems requiring restoration. It should come before and inform restoration. Projects that are built ad hoc have been widely reported to fail due to a lack of recognition of key natural processes. By contrast, other creative human endeavors make extensive use of the science of design. Among other concepts, it is inherent in the design process to generate many alternatives, as open-ended problems always have multiple correct solutions. For environmental restoration, such alternatives can be created by integrating widely accepted concepts from hydrology, civil engineering, aquatic biology, riparian ecology, and geomorphology. Then the specifics of each alternative should be analyzed for their relative performance using predictive computer models and other analytical tools. A river restoration approach that makes use of a comprehensive science-based design process has been developed to address the specific problem of fish spawning habitat enhancement. The approach was used in summer 2001 and 2002. In the latter case, science-based design was used at multiple spatial scales. At the reach scale, designs aimed to elevate the bed and increase slopes over constructed riffles. At the sub-reach scale, designs incorporated a complex assemblage of geomorphic units including broad riffles (to encourage divergent flow and gravel deposition at high discharge), small pools (whose widths were constricted by bars to encourage convergent flow and scour at high discharge) and boulder complexes. After thorough analysis and evaluation, the best performing project was selected by a multidisciplinary design team according to habitat and geomorphic goals and then built. A long-term monitoring

  7. SP-100 power system conceptual design for lunar base applications

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Bloomfield, Harvey S.; Hainley, Donald C.

    1989-01-01

    A conceptual design is presented for a nuclear power system utilizing an SP-100 reactor and multiple Stirling cycle engines for operation on the lunar surface. Based on the results of this study, it was concluded that this power plant could be a viable option for an evolutionary lunar base. The design concept consists of a 2500 kWt (kilowatt thermal) SP-100 reactor coupled to eight free-piston Stirling engines. Two of the engines are held in reserve to provide conversion system redundancy. The remaining engines operate at 91.7 percent of their rated capacity of 150 kWe. The design power level for this system is 825 kWe. Each engine has a pumped heat-rejection loop connected to a heat pipe radiator. Power system performance, sizing, layout configurations, shielding options, and transmission line characteristics are described. System components and integration options are compared for safety, high performance, low mass, and ease of assembly. The power plant was integrated with a proposed human lunar base concept to ensure mission compatibility. This study should be considered a preliminary investigation; further studies are planned to investigate the effect of different technologies on this baseline design.

  8. Reliability-based analysis and design optimization for durability

    NASA Astrophysics Data System (ADS)

    Choi, Kyung K.; Youn, Byeng D.; Tang, Jun; Hardee, Edward

    2005-05-01

    In the Army mechanical fatigue subject to external and inertia transient loads in the service life of mechanical systems often leads to a structural failure due to accumulated damage. Structural durability analysis that predicts the fatigue life of mechanical components subject to dynamic stresses and strains is a compute intensive multidisciplinary simulation process, since it requires the integration of several computer-aided engineering tools and considerable data communication and computation. Uncertainties in geometric dimensions due to manufacturing tolerances cause the indeterministic nature of the fatigue life of a mechanical component. Due to the fact that uncertainty propagation to structural fatigue under transient dynamic loading is not only numerically complicated but also extremely computationally expensive, it is a challenging task to develop a structural durability-based design optimization process and reliability analysis to ascertain whether the optimal design is reliable. The objective of this paper is the demonstration of an integrated CAD-based computer-aided engineering process to effectively carry out design optimization for structural durability, yielding a durable and cost-effectively manufacturable product. This paper shows preliminary results of reliability-based durability design optimization for the Army Stryker A-Arm.

  9. Game Theory and Risk-Based Levee System Design

    NASA Astrophysics Data System (ADS)

    Hui, R.; Lund, J. R.; Madani, K.

    2014-12-01

    Risk-based analysis has been developed for optimal levee design for economic efficiency. Along many rivers, two levees on opposite riverbanks act as a simple levee system. Being rational and self-interested, land owners on each river bank would tend to independently optimize their levees with risk-based analysis, resulting in a Pareto-inefficient levee system design from the social planner's perspective. Game theory is applied in this study to analyze decision making process in a simple levee system in which the land owners on each river bank develop their design strategies using risk-based economic optimization. For each land owner, the annual expected total cost includes expected annual damage cost and annualized construction cost. The non-cooperative Nash equilibrium is identified and compared to the social planner's optimal distribution of flood risk and damage cost throughout the system which results in the minimum total flood cost for the system. The social planner's optimal solution is not feasible without appropriate level of compensation for the transferred flood risk to guarantee and improve conditions for all parties. Therefore, cooperative game theory is then employed to develop an economically optimal design that can be implemented in practice. By examining the game in the reversible and irreversible decision making modes, the cost of decision making myopia is calculated to underline the significance of considering the externalities and evolution path of dynamic water resource problems for optimal decision making.

  10. Design and implementation of a project-based active/cooperative engineering design course for freshmen

    NASA Astrophysics Data System (ADS)

    Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.

    2011-08-01

    A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long learning, realistic constraints and awareness of current domestic and global challenges. Throughout successive design reports and in-class assignments, the students are required by the end of the semester to communicate, clearly and concisely, the details of their design both orally and in writing through a functional artefact/prototype, a design notebook, an A0 project poster and a final oral presentation. In addition to these direct assessment tools, several indirect measures are used to ensure triangulation. Assignments are based on customer expectations using a detailed checklist. This paper shows the direct and indirect assessment tools that indicated a high level of achievement of course learning outcomes and a high level of student satisfaction.

  11. Design optimization for a space based, reusable orbit transfer vehicle

    NASA Technical Reports Server (NTRS)

    Redd, L.

    1985-01-01

    Future NASA and DOD missions will benefit from high performance, reusable orbit transfer vehicles. With the advent of a space station, advanced engine technology, and various new vehicle concepts, reusable orbit transfer vehicles that provide significant economic benefits and mission capability improvements will be realized. Engine and vehicle design criteria previously have lacked definition with regard to issues such as space basing and servicing, man-rating and reliability, performance, mission flexibility, and life cycle cost for a reusable vehicle. The design study described here has resulted in the definition of a reusable orbit transfer vehicle concept and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine. These design criteria include number of engines per vehicle, nozzle design, etc. The major characteristics of the vehicle preliminary design include low lift to drag aerocapture capability, a main propulsion system failure criteria of fail operational/fail safe, and either two main engines with a high performance attitude control system for back-up or three main engines with which to meet this failure criteria. In addition, a maintenance approach has been established for the advanced vehicle concept.

  12. Meta-case based realization of design rationale management systems

    SciTech Connect

    Paul, G.

    1996-12-31

    System design is an iterative, creative, and cooperative process where informal ideas are transformed into a detailed definition of how a system can be implemented. Design rationale aims at capturing and preserving the why underlying the what, the argument behind the artifact in the design process. Recording deliberations of the design process therefore promises benefits for the overall system engineering life cycle. Providing adequate computer support for design rationale is an interesting issue and a real need for effective application. A design rationale management system (DRMS) supports the capturing, storing and retrieval of interaction rationale in a shared corporate knowledge base and allows organizational learning through long-term and inter-project reuse. The intent of meta-CASE systems is to capture the specification of a required CASE tool and then generate the tool for actual production from the specification. In this paper we identify the requirements for a DRMS and investigate the applicability of meta-CASE tools for the implementation of DRMS`s. Furthermore we describe the experiences gained in the development of two DRMS`s adopting the meta CASE tools MaestroII GED/TCI and Hardy.

  13. Robustness-Based Design Optimization Under Data Uncertainty

    NASA Technical Reports Server (NTRS)

    Zaman, Kais; McDonald, Mark; Mahadevan, Sankaran; Green, Lawrence

    2010-01-01

    This paper proposes formulations and algorithms for design optimization under both aleatory (i.e., natural or physical variability) and epistemic uncertainty (i.e., imprecise probabilistic information), from the perspective of system robustness. The proposed formulations deal with epistemic uncertainty arising from both sparse and interval data without any assumption about the probability distributions of the random variables. A decoupled approach is proposed in this paper to un-nest the robustness-based design from the analysis of non-design epistemic variables to achieve computational efficiency. The proposed methods are illustrated for the upper stage design problem of a two-stage-to-orbit (TSTO) vehicle, where the information on the random design inputs are only available as sparse point and/or interval data. As collecting more data reduces uncertainty but increases cost, the effect of sample size on the optimality and robustness of the solution is also studied. A method is developed to determine the optimal sample size for sparse point data that leads to the solutions of the design problem that are least sensitive to variations in the input random variables.

  14. Design of the storage location based on the ABC analyses

    NASA Astrophysics Data System (ADS)

    Jemelka, Milan; Chramcov, Bronislav; Kříž, Pavel

    2016-06-01

    The paper focuses on process efficiency and saving storage costs. Maintaining inventory through putaway strategy takes personnel time and costs money. The aim is to control inventory in the best way. The ABC classification based on Villefredo Pareto theory is used for a design of warehouse layout. New design of storage location reduces the distance of fork-lifters, total costs and it increases inventory process efficiency. The suggested solutions and evaluation of achieved results are described in detail. Proposed solutions were realized in real warehouse operation.

  15. INFORMATION DISPLAY: CONSIDERATIONS FOR DESIGNING COMPUTER-BASED DISPLAY SYSTEMS.

    SciTech Connect

    O'HARA,J.M.; PIRUS,D.; BELTRATCCHI,L.

    2004-09-19

    This paper discussed the presentation of information in computer-based control rooms. Issues associated with the typical displays currently in use are discussed. It is concluded that these displays should be augmented with new displays designed to better meet the information needs of plant personnel and to minimize the need for interface management tasks (the activities personnel have to do to access and organize the information they need). Several approaches to information design are discussed, specifically addressing: (1) monitoring, detection, and situation assessment; (2) routine task performance; and (3) teamwork, crew coordination, collaborative work.

  16. Structural design methodologies for ceramic-based material systems

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Chulya, Abhisak; Gyekenyesi, John P.

    1991-01-01

    One of the primary pacing items for realizing the full potential of ceramic-based structural components is the development of new design methods and protocols. The focus here is on low temperature, fast-fracture analysis of monolithic, whisker-toughened, laminated, and woven ceramic composites. A number of design models and criteria are highlighted. Public domain computer algorithms, which aid engineers in predicting the fast-fracture reliability of structural components, are mentioned. Emphasis is not placed on evaluating the models, but instead is focused on the issues relevant to the current state of the art.

  17. Disturbance Rejection Based Test Rocket Control System Design and Validation

    NASA Astrophysics Data System (ADS)

    Yang, H.; Zhang, S.; Li, T.; Zhang, Y.

    2015-09-01

    This paper presents a novel design and validation for the three-channel attitude controller of a STT test rocket based on the extended state observer approach. The uniform second order integral-chain state space model is firstly established for the control variable of the angle of attack, angle of sideslip and roll angle. Combined with the pole placement, the extended state observer is applied to the disturbance rejection design of the attitude controller. Through numerical and hardware-in-the-loop simulation with uncertainties considered, the effectiveness and robustness of the controller are illustrated and verified. Finally, the performance of the controller is validated by flight-test with satisfactory results.

  18. A design approach for systems based on magnetic pulse compression.

    PubMed

    Kumar, D Durga Praveen; Mitra, S; Senthil, K; Sharma, D K; Rajan, Rehim N; Sharma, Archana; Nagesh, K V; Chakravarthy, D P

    2008-04-01

    A design approach giving the optimum number of stages in a magnetic pulse compression circuit and gain per stage is given. The limitation on the maximum gain per stage is discussed. The total system volume minimization is done by considering the energy storage capacitor volume and magnetic core volume at each stage. At the end of this paper, the design of a magnetic pulse compression based linear induction accelerator of 200 kV, 5 kA, and 100 ns with a repetition rate of 100 Hz is discussed with its experimental results.

  19. Structure based design of 11β-HSD1 inhibitors.

    PubMed

    Singh, Suresh; Tice, Colin

    2010-11-01

    Controlling elevated tissue-specific levels of cortisol may provide a novel therapeutic approach for treating metabolic syndrome. This concept has spurred large scale medicinal chemistry efforts in the pharmaceutical industry for the design of 11β-HSD1 inhibitors. High resolution X-ray crystal structures of inhibitors in complex with the enzyme have facilitated the structure-based design of diverse classes of molecules. A summary of binding modes, trends in structure-activity relationships, and the pharmacodynamic data of inhibitors from each class is presented.

  20. Design Principles, Implementation And Evaluation For Inquiry-Based Astronomy:

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Michael

    2015-09-01

    This thesis is situated in the context of an Australian high school level astronomy intervention project which aimed to enable students to undertake real science with professional grade 2-metre class telescopes. The thesis explores the context and background within which the project was situated and the main blocking factors preventing successful implementation culminating in an outline of the education design used in, and the evaluation of, the project. This work has illustrated that with careful design and sufficient teacher training and support, inquiry-based astronomy can feasibly be undertaken in the high-school classroom.

  1. Small Area Array-Based LED Luminaire Design

    SciTech Connect

    Thomas Yuan

    2008-01-09

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency LED luminaire designs based on small area array-based gallium nitride diodes. Novel GaN-based LED array designs are described, specifically addressing the thermal, optical, electrical and mechanical requirements for the incorporation of such arrays into viable solid-state LED luminaires. This work resulted in the demonstration of an integrated luminaire prototype of 1000 lumens cool white light output with reflector shaped beams and efficacy of 89.4 lm/W at CCT of 6000oK and CRI of 73; and performance of 903 lumens warm white light output with reflector shaped beams and efficacy of 63.0 lm/W at CCT of 2800oK and CRI of 82. In addition, up to 1275 lumens cool white light output at 114.2 lm/W and 1156 lumens warm white light output at 76.5 lm/W were achieved if the reflector was not used. The success to integrate small area array-based LED designs and address thermal, optical, electrical and mechanical requirements was clearly achieved in these luminaire prototypes with outstanding performance and high efficiency.

  2. Design-based inference in time-location sampling.

    PubMed

    Leon, Lucie; Jauffret-Roustide, Marie; Le Strat, Yann

    2015-07-01

    Time-location sampling (TLS), also called time-space sampling or venue-based sampling is a sampling technique widely used in populations at high risk of infectious diseases. The principle is to reach individuals in places and at times where they gather. For example, men who have sex with men meet in gay venues at certain times of the day, and homeless people or drug users come together to take advantage of services provided to them (accommodation, care, meals). The statistical analysis of data coming from TLS surveys has been comprehensively discussed in the literature. Two issues of particular importance are the inclusion or not of sampling weights and how to deal with the frequency of venue attendance (FVA) of individuals during the course of the survey. The objective of this article is to present TLS in the context of sampling theory, to calculate sampling weights and to propose design-based inference taking into account the FVA. The properties of an estimator ignoring the FVA and of the design-based estimator are assessed and contrasted both through a simulation study and using real data from a recent cross-sectional survey conducted in France among drug users. We show that the estimators of prevalence or a total can be strongly biased if the FVA is ignored, while the design-based estimator taking FVA into account is unbiased even when declarative errors occur in the FVA.

  3. Advanced software development workstation. Knowledge base design: Design of knowledge base for flight planning application

    NASA Technical Reports Server (NTRS)

    Izygon, Michel E.

    1992-01-01

    The development process of the knowledge base for the generation of Test Libraries for Mission Operations Computer (MOC) Command Support focused on a series of information gathering interviews. These knowledge capture sessions are supporting the development of a prototype for evaluating the capabilities of INTUIT on such an application. the prototype includes functions related to POCC (Payload Operation Control Center) processing. It prompts the end-users for input through a series of panels and then generates the Meds associated with the initialization and the update of hazardous command tables for a POCC Processing TLIB.

  4. Rapid Risk-Based Evaluation of Competing Conceptual Designs

    SciTech Connect

    Bott, T.F.; Butner, J.M.

    1999-08-22

    In this paper, the authors have shown how a qualitative analysis can provide good input to a risk reduction design problem. Traditionally qualitative analyses such as the FMEA can be supplemented by qualitative fault trees and event trees to produce logic models of the accident sequences for the different design options. These models can be compared using rule-based manipulations of qualitative branch point probabilities. A qualitative evaluation of other considerations such as collateral safety effects, operational impacts and worker-safety impacts can provide a more complete picture of the trade-off between options. The authors believe that their risk-reduction analysis approach that combines logic models with qualitative and possibility metrics provides an excellent tool for incorporating safety concerns rapidly and effectively into a conceptual design evaluation.

  5. Continuous Coaxial Nozzle Design for LMD based on Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Arrizubieta, J. I.; Tabernero, I.; Ruiz, J. Exequiel; Lamikiz, A.; Martinez, S.; Ukar, E.

    The LMD technology is becoming one of the most important emerging manufacturing technologies in the modern industry, due to its benefits when building-up geometries, repairing damaged parts or the creation of coatings to improve material properties and behaviour. One of the most relevant parameters in LMD process is the efficiency of the trapped powder into the melt pool, since metallic material powders use to be very expensive. With the aim of improving the ratio between the trapped powder in the deposited area and the total injected powder, the work presents a new methodology for continuous coaxial nozzle design for the LMD process based on a complete CFD model. The numerical model can predict particle flow, speed, powder concentration, etc. and design can be optimized using this input data. The model has been validated and then, it has been used for the design of two different nozzles: one discrete and one continuous coaxial nozzle.

  6. Anthropometric data base for power plant design. Special report

    SciTech Connect

    Parris, H.L.

    1981-07-01

    The primary study objective is to develop anthropometric data based upon the men and women who operate and maintain nuclear power plants. Age, stature, and weight information were obtained by a questionnaire survey of current operator and maintenance personnel, and the data extracted from the questionnaires were analyzed to derive body-size information for a number of anthropometric variables of interest to designers. Body-size information was developed separately for both men and women. Results achieved for the male population can be utilized by designers with a high level of confidence for the design of general workplaces. While the number of women respondents in the sample proved to be too small to derive results to which a similarly high level of reliability could be attached, the data can nevertheless be used as reasonable indicators of the probable body-size variability to be found among female power plant employees.

  7. Reliability-Based Control Design for Uncertain Systems

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.

    2005-01-01

    This paper presents a robust control design methodology for systems with probabilistic parametric uncertainty. Control design is carried out by solving a reliability-based multi-objective optimization problem where the probability of violating design requirements is minimized. Simultaneously, failure domains are optimally enlarged to enable global improvements in the closed-loop performance. To enable an efficient numerical implementation, a hybrid approach for estimating reliability metrics is developed. This approach, which integrates deterministic sampling and asymptotic approximations, greatly reduces the numerical burden associated with complex probabilistic computations without compromising the accuracy of the results. Examples using output-feedback and full-state feedback with state estimation are used to demonstrate the ideas proposed.

  8. New methodology for shaft design based on life expectancy

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1986-01-01

    The design of power transmission shafting for reliability has not historically received a great deal of attention. However, weight sensitive aerospace and vehicle applications and those where the penalties of shaft failure are great, require greater confidence in shaft design than earlier methods provided. This report summarizes a fatigue strength-based, design method for sizing shafts under variable amplitude loading histories for limited or nonlimited service life. Moreover, applications factors such as press-fitted collars, shaft size, residual stresses from shot peening or plating, corrosive environments can be readily accommodated into the framework of the analysis. Examples are given which illustrate the use of the method, pointing out the large life penalties due to occasional cyclic overloads.

  9. A Web-Based Monitoring System for Multidisciplinary Design Projects

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; Salas, Andrea O.; Weston, Robert P.

    1998-01-01

    In today's competitive environment, both industry and government agencies are under pressure to reduce the time and cost of multidisciplinary design projects. New tools have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. One such tool, a framework for multidisciplinary computational environments, is defined as a hardware and software architecture that enables integration, execution, and communication among diverse disciplinary processes. An examination of current frameworks reveals weaknesses in various areas, such as sequencing, displaying, monitoring, and controlling the design process. The objective of this research is to explore how Web technology, integrated with an existing framework, can improve these areas of weakness. This paper describes a Web-based system that optimizes and controls the execution sequence of design processes; and monitors the project status and results. The three-stage evolution of the system with increasingly complex problems demonstrates the feasibility of this approach.

  10. Disturbance observer based control system design for inertially stabilized platform

    NASA Astrophysics Data System (ADS)

    Wu, Chunnan; Lin, Zhe

    2012-09-01

    Inertially stabilized platform (ISP) is indispensable for various imaging systems to segregate the base angular movement and achieve high LOS (Line-Of-Sight) stability. The disturbance rejection ratio and command following performance are of primary concern in designing ISP control systems. In this paper, the redundant gimbals ISP system is considered and it is shown to experience complex disturbance and parameter variation during operation. To meet advanced LOS stabilization requirement, a disturbance observer based (DOB) dual-loop controller design for ISP is proposed of which the DOB is the internal-loop. Using a nominal plant model and a low-pass filter, the disturbance signal is estimated and used as a cancellation input added to the current command of torque motor. If the DOB works well, the disturbance torque and mismatch between nominal plant and actual plant will be compensated and the internal-loop will behave as nominal model parameters. On the other hand, the external-loop will be designed for nominal model parameters to meet stabilization requirements. This paper will mainly focus on the DOB design method. Since the low-pass filter of DOB determines the sensitivity and complementary sensitivity function as will be shown in this paper, designing the filter is the most important consideration. In this paper, an optimal low-pass filter design method is proposed. The method is intuitive, simple to implement and allows on-line tuning. Simulation results show the performance enhancement of our control structure in the presence of disturbance and measurement noise.

  11. Planetary gear profile modification design based on load sharing modelling

    NASA Astrophysics Data System (ADS)

    Iglesias, Miguel; Fernández Del Rincón, Alfonso; De-Juan, Ana Magdalena; Garcia, Pablo; Diez, Alberto; Viadero, Fernando

    2015-07-01

    In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is focused on the understanding of some of the underlying phenomena involved in this mechanical system. Through the development of models capable of reproduce the system behavior, research in this area contributes to improve gear transmission insight, helping developing better maintenance practices and more efficient design processes. A planetary gear model used for the design of profile modifications ratio based on the levelling of the load sharing ratio is presented. The gear profile geometry definition, following a vectorial approach that mimics the real cutting process of gears, is thoroughly described. Teeth undercutting and hypotrochoid definition are implicitly considered, and a procedure for the incorporation of a rounding arc at the tooth tip in order to deal with corner contacts is described. A procedure for the modeling of profile deviations is presented, which can be used for the introduction of both manufacturing errors and designed profile modifications. An easy and flexible implementation of the profile deviation within the planetary model is accomplished based on the geometric overlapping. The contact force calculation and dynamic implementation used in the model are also introduced, and parameters from a real transmission for agricultural applications are presented for the application example. A set of reliefs is designed based on the levelling of the load sharing ratio for the example transmission, and finally some other important dynamic factors of the transmission are analyzed to assess the changes in the dynamic behavior with respect to the non-modified case. Thus, the main innovative aspect of the proposed planetary transmission model is the capacity of providing a simulated load sharing ratio which serves as design variable for the calculation of the tooth profile modifications.

  12. RELIABILITY BASED DESIGN OF FIXED FOUNDATION WIND TURBINES

    SciTech Connect

    Nichols, R.

    2013-10-14

    Recent analysis of offshore wind turbine foundations using both applicable API and IEC standards show that the total load demand from wind and waves is greatest in wave driven storms. Further, analysis of overturning moment loads (OTM) reveal that impact forces exerted by breaking waves are the largest contributor to OTM in big storms at wind speeds above the operating range of 25 m/s. Currently, no codes or standards for offshore wind power generators have been adopted by the Bureau of Ocean Energy Management Regulation and Enforcement (BOEMRE) for use on the Outer Continental Shelf (OCS). Current design methods based on allowable stress design (ASD) incorporate the uncertainty in the variation of loads transferred to the foundation and geotechnical capacity of the soil and rock to support the loads is incorporated into a factor of safety. Sources of uncertainty include spatial and temporal variation of engineering properties, reliability of property measurements applicability and sufficiency of sampling and testing methods, modeling errors, and variability of estimated load predictions. In ASD these sources of variability are generally given qualitative rather than quantitative consideration. The IEC 61400‐3 design standard for offshore wind turbines is based on ASD methods. Load and resistance factor design (LRFD) methods are being increasingly used in the design of structures. Uncertainties such as those listed above can be included quantitatively into the LRFD process. In LRFD load factors and resistance factors are statistically based. This type of analysis recognizes that there is always some probability of failure and enables the probability of failure to be quantified. This paper presents an integrated approach consisting of field observations and numerical simulation to establish the distribution of loads from breaking waves to support the LRFD of fixed offshore foundations.

  13. Post-synthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes

    NASA Astrophysics Data System (ADS)

    Smith, Stefan J. D.; Ladewig, Bradley P.; Hill, Anita J.; Lau, Cher Hon; Hill, Matthew R.

    2015-01-01

    Gas separation membranes are one of the lowest energy technologies available for the separation of carbon dioxide from flue gas. Key to handling the immense scale of this separation is maximised membrane permeability at sufficient selectivity for CO2 over N2. For the first time it is revealed that metals can be post-synthetically exchanged in MOFs to drastically enhance gas transport performance in membranes. Ti-exchanged UiO-66 MOFs have been found to triple the gas permeability without a loss in selectivity due to several effects that include increased affinity for CO2 and stronger interactions between the polymer matrix and the Ti-MOFs. As a result, it is also shown that MOFs optimized in previous works for batch-wise adsorption applications can be applied to membranes, which have lower demands on material quantities. These membranes exhibit exceptional CO2 permeability enhancement of as much as 153% when compared to the non-exchanged UiO-66 mixed-matrix controls, which places them well above the Robeson upper bound at just a 5 wt.% loading. The fact that maximum permeability enhancement occurs at such low loadings, significantly less than the optimum for other MMMs, is a major advantage in large-scale application due to the more attainable quantities of MOF needed.

  14. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    SciTech Connect

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  15. Comparison of Two Independent Lidar-Based Pitch Control Designs

    SciTech Connect

    Dunne, F.; Schlipf, D.; Pao, L. Y.; Wright, A. D.; Jonkman, B.; Kelley, N.; Simley, E.

    2012-01-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. One uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. The other uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  16. Design principles for clinical network-based proteomics.

    PubMed

    Goh, Wilson Wen Bin; Wong, Limsoon

    2016-07-01

    Integrating biological networks with proteomics is a tantalizing option for system-level analysis; for example it can help remove false-positives from proteomics data and improve coverage by detecting false-negatives, as well as resolving inconsistent inter-sample protein expression due to biological heterogeneity. Yet, designing a robust network-based analysis strategy on proteomics data is nontrivial. The issues include dealing with test set bias caused by, for example, inappropriate normalization procedure, devising appropriate benchmarking criteria and formulating statistically robust feature-selection techniques. Given the increasing importance of proteomics in contemporary clinical studies, more powerful network-based approaches are needed. We provide some design principles and considerations that can help achieve this, while taking into account the idiosyncrasies of proteomics data.

  17. Revisiting de novo drug design: receptor based pharmacophore screening.

    PubMed

    Amaravadhi, Harikishore; Baek, Kwanghee; Yoon, Ho Sup

    2014-01-01

    De novo drug design methods such as receptor or protein based pharmacophore modeling present a unique opportunity to generate novel ligands by employing the potential binding sites even when no explicit ligand information is known for a particular target. Recent developments in molecular modeling programs have enhanced the ability of early programs such as LUDI or Pocket that not only identify the key interactions or hot spots at the suspected binding site, but also and convert these hot spots into three-dimensional search queries and virtual screening of the property filtered synthetic libraries. Together with molecular docking studies and consensus scoring schemes they would enrich the lead identification processes. In this review, we discuss the ligand and receptor based de novo drug design approaches with selected examples.

  18. Design and Analyses of a MEMS Based Resonant Magnetometer.

    PubMed

    Ren, Dahai; Wu, Lingqi; Yan, Meizhi; Cui, Mingyang; You, Zheng; Hu, Muzhi

    2009-01-01

    A novel design of a MEMS torsional resonant magnetometer based on Lorentz force is presented and fabricated. The magnetometer consists of a silicon resonator, torsional beam, excitation coil, capacitance plates and glass substrate. Working in a resonant condition, the sensor's vibration amplitude is converted into the sensing capacitance change, which reflects the outside magnetic flux-density. Based on the simulation, the key structure parameters are optimized and the air damping effect is estimated. The test results of the prototype are in accordance with the simulation results of the designed model. The resolution of the magnetometer can reach 30 nT. The test results indicate its sensitivity of more than 400 mV/μT when operating in a 10 Pa vacuum environment.

  19. Design and development of magnetorheological fluid-based passive actuator.

    PubMed

    Shokrollahi, Elnaz; Price, Karl; Drake, James M; Goldenberg, Andrew A

    2015-08-01

    We present the design and experimental validation of a magnetorheological (MR) fluid-based passive actuator for tele-robotic bone biopsy procedures. With Finite Element Method Magnet (FEMM) software, the required uniform magnetic field circuit design was simulated. An 1100 turn 24 AWG copper wire coil wrapped around a magnetic core was used to create a magnetic field. The field strength was measured with a Hall effect sensor, and compared to the simulation. The maximum magnetic field flux produced by a constant current of 1.4 A was 0.2 T, similar to the simulation results. A series of quasi-static experiments were conducted to characterize the forces generated by the MR fluid-based actuator under various currents up to 12 N. An analytical model was developed to validate the measurements from the passive actuator.

  20. Control design based on a linear state function observer

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1992-01-01

    An approach to the design of low-order controllers for large scale systems is proposed. The method is derived from the theory of linear state function observers. First, the realization of a state feedback control law is interpreted as the observation of a linear function of the state vector. The linear state function to be reconstructed is the given control law. Then, based on the derivation for linear state function observers, the observer design is formulated as a parameter optimization problem. The optimization objective is to generate a matrix that is close to the given feedback gain matrix. Based on that matrix, the form of the observer and a new control law can be determined. A four-disk system and a lightly damped beam are presented as examples to demonstrate the applicability and efficacy of the proposed method.

  1. Perspectives for the structure-based design of acetylcholinesterase reactivators.

    PubMed

    Ochoa, Rodrigo; Rodriguez, Carlos A; Zuluaga, Andres F

    2016-07-01

    Rational design of active molecules through structure-based methods has been gaining adepts during the last decades due to the wider availability of protein structures, most of them conjugated with relevant ligands. Acetylcholinesterase (AChE) is a molecular target with a considerable amount of data related to its sequence and 3-dimensional structure. In addition, there are structural insights about the mechanism of action of the natural substrate and drugs used in Alzheimer's disease, organophosphorus compounds, among others. We looked for AChE structural data useful for in silico design of potential interacting molecules. In particular, we focused on information regarding the design of ligands aimed to reactivate AChE catalytic activity. The structures of 178 AChE were annotated and categorized on different subsets according to the nature of the ligand, source organisms and experimental details. We compared sequence homology among the active site from Torpedo californica, Mus musculus and Homo sapiens with the latter two species having the closest relationship (88.9% identity). In addition, the mechanism of organophosphorus binding and the design of effective reactivators are reviewed. A curated data collection obtained with information from several sources was included for researchers working on the field. Finally, a molecular dynamics simulation with human AChE indicated that the catalytic pocket volume stabilizes around 600 Å(3), providing additional clues for drug design.

  2. Design of a distributed CORBA based image processing server.

    PubMed

    Giess, C; Evers, H; Heid, V; Meinzer, H P

    2000-01-01

    This paper presents the design and implementation of a distributed image processing server based on CORBA. Existing image processing tools were encapsulated in a common way with this server. Data exchange and conversion is done automatically inside the server, hiding these tasks from the user. The different image processing tools are visible as one large collection of algorithms and due to the use of CORBA are accessible via intra-/internet.

  3. [Design of Electrocardiogram Signal Generator Based on Typical Electrocardiogram Database].

    PubMed

    Wang, Yuting; Wang, Xiaofei; Li, Dongshang; Liu, Guili

    2016-02-01

    Using LabVIEW programming and high-speed multifunction data acquisition card PCI-6251, we designed an electrocardiogram (ECG) signal generator based on Chinese typical ECG database. When the ECG signals are given off by the generator, the generator can also display the ECG information annotations at the same time, including waveform data and diagnostic results. It could be a useful assisting tool of ECG automatic diagnose instruments.

  4. Hydrological Monitoring System Design and Implementation Based on IOT

    NASA Astrophysics Data System (ADS)

    Han, Kun; Zhang, Dacheng; Bo, Jingyi; Zhang, Zhiguang

    In this article, an embedded system development platform based on GSM communication is proposed. Through its application in hydrology monitoring management, the author makes discussion about communication reliability and lightning protection, suggests detail solutions, and also analyzes design and realization of upper computer software. Finally, communication program is given. Hydrology monitoring system from wireless communication network is a typical practical application of embedded system, which has realized intelligence, modernization, high-efficiency and networking of hydrology monitoring management.

  5. Lyapunov-based control designs for flexible-link manipulators

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Huang, Jen-Kuang; Yang, Li-Farn

    1989-01-01

    A feedback controller for the stabilization of closed-loop systems is proposed which is based on the Liapunov stability criterion. A feedback control law is first generated for the linear portion of the system equation using linear control theory. A feedback control is then designed for the nonlinear portion of the system equation by making negative the time derivative of a positive definite Liapunov function.

  6. Design and Implementation of Telemedicine based on Java Media Framework

    NASA Astrophysics Data System (ADS)

    Xiong, Fengguang; Jia, Zhiyan

    According to analyze the importance and problem of telemedicine in this paper, a telemedicine system based on JMF is proposed to design and implement capturing, compression, storage, transmission, reception and play of a medical audio and video. The telemedicine system can solve existing problems that medical information is not shared, platform-dependent is high, software is incompatibilities and so on. Experimental data prove that the system has low hardware cost, and is easy to transmission and storage, and is portable and powerful.

  7. Design of embedded intelligent monitoring system based on face recognition

    NASA Astrophysics Data System (ADS)

    Liang, Weidong; Ding, Yan; Zhao, Liangjin; Li, Jia; Hu, Xuemei

    2017-01-01

    In this paper, a new embedded intelligent monitoring system based on face recognition is proposed. The system uses Pi Raspberry as the central processor. A sensors group has been designed with Zigbee module in order to assist the system to work better and the two alarm modes have been proposed using the Internet and 3G modem. The experimental results show that the system can work under various light intensities to recognize human face and send alarm information in real time.

  8. The design of PLC circuits based on power electronics topology

    NASA Astrophysics Data System (ADS)

    Sun, Qi; Ouyang, Mingsan

    2011-10-01

    The paper presents a new design method and power lines communication circuit consolidates their power and data in a single bus. This method is based on power electronic topology and can export new application circuit. Our-the bus's principle are briefly introduced. Buck-by considering the circuit transmission line, the characteristics of the steady-state circuit influence and dynamic switch characteristics are analyzed. The validity of this method is verified by the experiment results.

  9. Parallel CFD design on network-based computer

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1995-01-01

    Combining multiple engineering workstations into a network-based heterogeneous parallel computer allows application of aerodynamic optimization with advanced computational fluid dynamics codes, which can be computationally expensive on mainframe supercomputers. This paper introduces a nonlinear quasi-Newton optimizer designed for this network-based heterogeneous parallel computing environment utilizing a software called Parallel Virtual Machine. This paper will introduce the methodology behind coupling a Parabolized Navier-Stokes flow solver to the nonlinear optimizer. This parallel optimization package is applied to reduce the wave drag of a body of revolution and a wing/body configuration with results of 5% to 6% drag reduction.

  10. CFD-Based Design Optimization Tool Developed for Subsonic Inlet

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The traditional approach to the design of engine inlets for commercial transport aircraft is a tedious process that ends with a less-than-optimum design. With the advent of high-speed computers and the availability of more accurate and reliable computational fluid dynamics (CFD) solvers, numerical optimization processes can effectively be used to design an aerodynamic inlet lip that enhances engine performance. The designers' experience at Boeing Corporation showed that for a peak Mach number on the inlet surface beyond some upper limit, the performance of the engine degrades excessively. Thus, our objective was to optimize efficiency (minimize the peak Mach number) at maximum cruise without compromising performance at other operating conditions. Using a CFD code NPARC, the NASA Lewis Research Center, in collaboration with Boeing, developed an integrated procedure at Lewis to find the optimum shape of a subsonic inlet lip and a numerical optimization code, ADS. We used a GRAPE-based three-dimensional grid generator to help automate the optimization procedure. The inlet lip shape at the crown and the keel was described as a superellipse, and the superellipse exponents and radii ratios were considered as design variables. Three operating conditions: cruise, takeoff, and rolling takeoff, were considered in this study. Three-dimensional Euler computations were carried out to obtain the flow field. At the initial design, the peak Mach numbers for maximum cruise, takeoff, and rolling takeoff conditions were 0.88, 1.772, and 1.61, respectively. The acceptable upper limits on the takeoff and rolling takeoff Mach numbers were 1.55 and 1.45. Since the initial design provided by Boeing was found to be optimum with respect to the maximum cruise condition, the sum of the peak Mach numbers at takeoff and rolling takeoff were minimized in the current study while the maximum cruise Mach number was constrained to be close to that at the existing design. With this objective, the

  11. A microfluidic-based hydrodynamic trap: design and implementation.

    PubMed

    Tanyeri, Melikhan; Ranka, Mikhil; Sittipolkul, Natawan; Schroeder, Charles M

    2011-05-21

    We report an integrated microfluidic device for fine-scale manipulation and confinement of micro- and nanoscale particles in free-solution. Using this device, single particles are trapped in a stagnation point flow at the junction of two intersecting microchannels. The hydrodynamic trap is based on active flow control at a fluid stagnation point using an integrated on-chip valve in a monolithic PDMS-based microfluidic device. In this work, we characterize device design parameters enabling precise control of stagnation point position for efficient trap performance. The microfluidic-based hydrodynamic trap facilitates particle trapping using the sole action of fluid flow and provides a viable alternative to existing confinement and manipulation techniques based on electric, optical, magnetic or acoustic force fields. Overall, the hydrodynamic trap enables non-contact confinement of fluorescent and non-fluorescent particles for extended times and provides a new platform for fundamental studies in biology, biotechnology and materials science.

  12. Design and Development of Physics Module Based on Learning Style and Appropriate Technology by Employing Isman Instructional Design Model

    ERIC Educational Resources Information Center

    Alias, Norlidah; Siraj, Saedah

    2012-01-01

    The study was aimed at designing and developing a Physics module based on learning style and appropriate technology in secondary educational setting by employing Isman Instructional Design Model and to test the effectiveness of the module. The paper draws attention to the design principles which employs Isman Instructional Design Model. The…

  13. Structural topology design of container ship based on knowledge-based engineering and level set method

    NASA Astrophysics Data System (ADS)

    Cui, Jin-ju; Wang, De-yu; Shi, Qi-qi

    2015-06-01

    Knowledge-Based Engineering (KBE) is introduced into the ship structural design in this paper. From the implementation of KBE, the design solutions for both Rules Design Method (RDM) and Interpolation Design Method (IDM) are generated. The corresponding Finite Element (FE) models are generated. Topological design of the longitudinal structures is studied where the Gaussian Process (GP) is employed to build the surrogate model for FE analysis. Multi-objective optimization methods inspired by Pareto Front are used to reduce the design tank weight and outer surface area simultaneously. Additionally, an enhanced Level Set Method (LSM) which employs implicit algorithm is applied to the topological design of typical bracket plate which is used extensively in ship structures. Two different sets of boundary conditions are considered. The proposed methods show satisfactory efficiency and accuracy.

  14. Design-Based Research and Video Game Based Learning: Developing the Educational Video Game "Citizen Science"

    ERIC Educational Resources Information Center

    Gaydos, Matthew J.

    2013-01-01

    This paper presents a series of studies detailing the research and development of the educational science video game "Citizen Science." It documents the design process, beginning with the initial grant and ending with a case study of two teachers who used the game in their classrooms. Following a design-based research approach, this…

  15. Integrated Teaching of Structure-Based Drug Design and Biopharmaceutics: A Computer-Based Approach

    ERIC Educational Resources Information Center

    Sutch, Brian T.; Romero, Rebecca M.; Neamati, Nouri; Haworth, Ian S.

    2012-01-01

    Rational drug design requires expertise in structural biology, medicinal chemistry, physiology, and related fields. In teaching structure-based drug design, it is important to develop an understanding of the need for early recognition of molecules with "drug-like" properties as a key component. That is, it is not merely sufficient to teach…

  16. Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry

    ERIC Educational Resources Information Center

    Sun, Daner; Looi, Chee-Kit

    2013-01-01

    The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as…

  17. Design of time interval generator based on hybrid counting method

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Wang, Zhaoqi; Lu, Houbing; Chen, Lian; Jin, Ge

    2016-10-01

    Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some "off-the-shelf" TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.

  18. X-33 Base Region Thermal Protection System Design Study

    NASA Technical Reports Server (NTRS)

    Lycans, Randal W.

    1998-01-01

    The X-33 is an advanced technology demonstrator for validating critical technologies and systems required for an operational Single-Stage-to-Orbit (SSTO) Reusuable Launch Vehicle (RLV). Currently under development by a unique contractor/government team led by Lockheed- Martin Skunk Works (LMSW), and managed by Marshall Space Flight Center (MSFC), the X-33 will be the prototype of the first new launch system developed by the United States since the advent of the space shuttle. This paper documents a design trade study of the X-33 base region thermal protection system (TPS). Two candidate designs were evaluated for thermal performance and weight. The first candidate was a fully reusable metallic TPS using Inconel honeycomb panels insulated with high temperature fibrous insulation, while the second was an ablator/insulator sprayed on the metallic skin of the vehicle. The TPS configurations and insulation thickness requirements were determined for the predicted main engine plume heating environments and base region entry aerothermal environments. In addition to thermal analysis of the design concepts, sensitivity studies were performed to investigate the effect of variations in key parameters of the base TPS analysis.

  19. User-oriented design strategies for a Lunar base

    NASA Astrophysics Data System (ADS)

    Jukola, Paivi

    'Form follows function can be translated, among other, to communicate a desire to prioritize functional objectives for a particular design task. Thus it is less likely that a design program for a multi-functional habitat, for an all-purpose vehicle, or for a general community, will lead to most optimal, cost-effective and sustainable solutions. A power plant, a factory, a farm and a research center have over centuries had different logistical and functional requirements, despite of the local culture on various parts around the planet Earth. 'The same size fits all' concept is likely to lead to less user-friendly solutions. The paper proposes to rethink and to investigate alternative strategies to formulate objectives for a Lunar base. Diverse scientific experiments and potential future research programs for the Moon have a number of functional requirements that differ from each other. A crew of 4-6 may not be optimal for the most innovative research. The discussion is based on research of Human Factors and Design for visiting professor lectures for a Lunar base project with Howard University and NASA Marshall Space Center 2009-2010.

  20. A novel cellular automata based approach to storm sewer design

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Walters, G. A.; Khu, S. T.; Keedwell, E.

    2007-04-01

    Optimal storm sewer design aims at minimizing capital investment on infrastructure whilst ensuring good system performance under specified design criteria. An innovative sewer design approach based on cellular automata (CA) principles is introduced in this paper. Cellular automata have been applied as computational simulation devices in various scientific fields. However, some recent research has indicated that CA can also be a viable and efficient optimization engine. This engine is heuristic and largely relies on the key properties of CA: locality, homogeneity, and parallelism. In the proposed approach, the CA-based optimizer is combined with a sewer hydraulic simulator, the EPA Storm Water Management Model (SWMM). At each optimization step, according to a set of transition rules, the optimizer updates all decision variables simultaneously based on the hydraulic situation within each neighbourhood. Two sewer networks (one small artificial network and one large real network) have been tested in this study. The CA optimizer demonstrated its ability to obtain near-optimal solutions in a remarkably small number of computational steps in a comparison of its performance with that of a genetic algorithm.

  1. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer

    2005-05-01

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  2. Correlates of 1-year incidence of urinary incontinence in older Latino adults enrolled in a community-based physical activity trial.

    PubMed

    Morrisroe, Shelby N; Rodriguez, Larissa V; Wang, Pin-Chieh; Smith, Ariana L; Trejo, Laura; Sarkisian, Catherine A

    2014-04-01

    The prevalence of urinary incontinence (UI) among older urban Latinos is high. Insight into etiologies of and contributing factors to the development of this condition is needed. This longitudinal cohort study identified correlates of 1-year incidence of UI in older community-dwelling Latino adults participating in a senior center-based physical activity trial in Los Angeles, California. Three hundred twenty-eight Latinos aged 60 to 93 participating in Caminemos, a randomized trial to increase walking, were studied. Participants completed an in-person survey and physical performance measures at baseline and 1 year. UI was measured using the International Consultation on Incontinence item: "How often do you leak urine?" Potential correlates of 1-year incidence of UI included sociodemographic, behavioral, medical, physical, and psychosocial characteristics. The overall incidence of UI at 1 year was 17.4%. Incident UI was associated with age, baseline activity of daily living impairment, health-related quality of life (HRQoL), mean steps per day, and depressive symptoms. Multivariate logistic regression models revealed that improvement in physical performance score (odds ratio (OR) = 0.69, 95% confidence interval (CI) = 0.50-0.95) and high baseline physical (OR = 0.60, 95% CI = 0.40-0.89) and mental (OR = 0.62, 95% CI = 0.43-0.91) HRQoL were independently associated with lower rates of 1-year incident UI. An increase in depressive symptoms at 1 year (OR = 4.48, 95% CI = 1.02-19.68) was independently associated with a higher rate of incident UI. One-year UI incidence in this population of older urban Latino adults participating in a walking trial was high but was lower in those who improved their physical performance. Interventions aimed at improving physical performance may help prevent UI in older Latino adults.

  3. Architectural design proposal for a Martian base to continue NASA Mars Design Reference Mission

    NASA Astrophysics Data System (ADS)

    Kozicki, Janek

    The issue of extraterrestrial bases has recently been a very vivid one. There are orbital stations currently existing and humans will travel to Mars around 2030. They will need stations established there, which will provide them the proper living conditions. Firstly, it might be a small module brought from Earth (e.g. NASA Mars Design Reference Mission module (DRM)), in later stages equivalents of Earth houses may be built from local resources. The goal of this paper is to propose an architectural design for an intermediate stage — for a larger habitable unit transported from Earth. It is inspired by terrestrial portable architecture ideas. A pneumatic structure requires small volume during transportation. However, it provides large habitable space after deployment. It is designed for transport by DRM transportation module and its deployment is considerable easy and brief. An architectural solution analogous to a terrestrial house with a studio and a workshop was assumed. Its form was a result of technical and environmental limitations, and the need for an ergonomic interior. The spatial placement of following zones was carefully considered: residential, agricultural and science, as well as a garage with a workshop, transportation routes, and a control and communication center. The issues of Life Support System, energy, food, water and waste recycling were also discussed. This Martian base was designed to be crewed by a team of eight people to stay on Mars for at least 1.5 year. An Open Plan architectural solution was assumed in pneumatic modules, with a high level of modularity. Walls of standardized sizes with zip-fasteners allow free rearrangement of the interior to adapt to a new situation (e.g. damage of one of the pneumatic modules or a psychological ,,need of a change"). The architectural design focuses on ergonomic and psychological aspects of longer stay in hostile Martian environment. This solution provides Martian crew with a comfortable habitable

  4. Biotechnology-based odour control: design criteria and performance data.

    PubMed

    Quigley, C; Easter, C; Burrowes, P; Witherspoon, J

    2004-01-01

    As neighbouring areas continue to encroach upon wastewater treatment plants, there is an increasing need for odour control to mitigate potential negative offsite odorous impacts. One technology that is gaining widespread acceptance is biotechnology, which utilises the inherent ability of certain microorganisms to biodegrade offensive odorous compounds. Two main advantages of this form of treatment over other odour control technologies include the absence of hazardous chemicals and relatively low operation and maintenance requirements. The purpose of this paper is to provide information related to odour control design criteria used in sizing/selecting biotechnology-based odour control technologies, and to provide odour removal performance data obtained from several different biotechnology-based odour control systems. CH2M HILL has collected biotechnology-based odour control performance data over the last several years in order to track the continued performance of various biofilters and biotowers over time. Specifically, odour removal performance data have been collected from soil-, organic- and inorganic-media biofilters and inert inorganic media biotowers. Results indicate that biotechnology-based odour control is a viable and consistent technology capable of achieving high removal performance for odour and hydrogen sulphide. It is anticipated that the information presented in this paper will be of interest to anyone involved with odour control technology evaluation/selection or design review.

  5. Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr6-Based Metal-Organic Frameworks.

    PubMed

    Moon, Su-Young; Wagner, George W; Mondloch, Joseph E; Peterson, Gregory W; DeCoste, Jared B; Hupp, Joseph T; Farha, Omar K

    2015-11-16

    The nerve agent VX is among the most toxic chemicals known to mankind, and robust solutions are needed to rapidly and selectively deactivate it. Herein, we demonstrate that three Zr6-based metal-organic frameworks (MOFs), namely, UiO-67, UiO-67-NH2, and UiO-67-N(Me)2, are selective and highly active catalysts for the hydrolysis of VX. Utilizing UiO-67, UiO-67-NH2, and UiO-67-N(Me)2 in a pH 10 buffered solution of N-ethylmorpholine, selective hydrolysis of the P-S bond in VX was observed. In addition, UiO-67-N(Me)2 was found to catalyze VX hydrolysis with an initial half-life of 1.8 min. This half-life is nearly 3 orders of magnitude shorter than that of the only other MOF tested to date for hydrolysis of VX and rivals the activity of the best nonenzymatic materials. Hydrolysis utilizing Zr-based MOFs is also selective and facile in the absence of pH 10 buffer (just water) and for the destruction of the toxic byproduct EA-2192.

  6. Design and Simulation of an Electrothermal Actuator Based Rotational Drive

    NASA Astrophysics Data System (ADS)

    Beeson, Sterling; Dallas, Tim

    2008-10-01

    As a participant in the Micro and Nano Device Engineering (MANDE) Research Experience for Undergraduates program at Texas Tech University, I learned how MEMS devices operate and the limits of their operation. Using specialized AutoCAD-based design software and the ANSYS simulation program, I learned the MEMS fabrication process used at Sandia National Labs, the design limitations of this process, the abilities and drawbacks of micro devices, and finally, I redesigned a MEMS device called the Chevron Torsional Ratcheting Actuator (CTRA). Motion is achieved through electrothermal actuation. The chevron (bent-beam) actuators cause a ratcheting motion on top of a hub-less gear so that as voltage is applied the CTRA spins. The voltage applied needs to be pulsed and the frequency of the pulses determine the angular frequency of the device. The main objective was to design electromechanical structures capable of transforming the electrical signals into mechanical motion without overheating. The design was optimized using finite element analysis in ANSYS allowing multi-physics simulations of our model system.

  7. Best practices for team-based assistive technology design courses.

    PubMed

    Goldberg, Mary R; Pearlman, Jonathan L

    2013-09-01

    Team-based design courses focused on products for people with disabilities have become relatively common, in part because of training grants such as the NSF Research to Aid Persons with Disabilities course grants. An output from these courses is an annual description of courses and projects but has yet to be complied into a "best practices guide," though it could be helpful for instructors. To meet this need, we conducted a study to generate best practices for assistive technology product development courses and how to use these courses to teach students the fundamentals of innovation. A full list of recommendations is comprised in the manuscript and include identifying a client through a reliable clinical partner; allowing for transparency between the instructors, the client, and the team(s); establishing multi-disciplinary teams; using a process-oriented vs. solution-oriented product development model; using a project management software to facilitate and archive communication and outputs; facilitating client interaction through frequent communication; seeking to develop professional role confidence to inspire students' commitment to engineering and (where applicable) rehabilitation field; publishing student designs on repositories; incorporating both formal and informal education opportunities related to design; and encouraging students to submit their designs to local or national entrepreneurship competitions.

  8. A novel magnetorheological damper based parallel planar manipulator design

    NASA Astrophysics Data System (ADS)

    Hoyle, A.; Arzanpour, S.; Shen, Y.

    2010-05-01

    This paper presents a novel parallel planar robot design which is low cost and simple in structure. The design addresses some of the problems, such as concentration of excessive load on the links and joints, due to wrong commanding signals being given by the controller. In this application two of the conventional actuators are replaced by magnetorheological (MR) dampers, and only one actuator is used to generate motion. The design paradigm is based on the concept that a moving object 'intuitively' follows the path with minimum resistance to its motion. This implies that virtual adoptable constraints can be used effectively to define motion trajectories. In fact, motion generation and adaptive constraints are two elements essential to implementing this strategy. In this paper, MR dampers are used to provide adjustable constraints and to guide the platform that is moved by the linear motor. The model of the MR dampers is derived using the Bouc-Wen model. This model is then used for manipulator simulation and controller design. Two controllers are developed for this manipulator: (1) a closed loop on/off one and (2) a proportional-derivative controller. Also, three different trajectories are defined and used for both the simulations and experiments. The results indicate a good agreement between the simulations and experiments. The experimental results also demonstrate the capability of the manipulator for following sophisticated trajectories.

  9. Optical system designs based on bi-directional sensor devices

    NASA Astrophysics Data System (ADS)

    Grossmann, Constanze; Gawronski, Ute; Perske, Franziska; Notni, Gunther; Tünnermann, Andreas

    2012-10-01

    Small and compact optical system designs are needed in nearly all application scenarios of optical projection and imaging systems, e.g. automotive, metrology, medical or multimedia. Most active optical systems are based on separated imaging (e.g. camera unit) and image generating units (e.g. projection unit). This fact limits the geometrical miniaturization of the system. We present compact optical system designs using the new technology of bi-directional sensor devices. These devices combine light emitting and light detecting elements on one single chip. The application of such innovative opto-electronic devices - so-called bi-directional OLED microdisplays (BiMiDs) - offer a huge potential for miniaturization with a simultaneous increase of performance due to a new integration step. For these new bi-directional sensor devices new optical design concepts for simultaneous and sequential emission and detection are necessary. Because the simultaneous emission and detection can disturb the functionality of the optical system. New concepts has to be applied. A first concept is an exemplary 3-D metrology system applying fringe projection. A second concept is a pico-projection system with an integrated camera function. For both concepts the system configurations and the optical design are discussed. Due to the application of the bi-directional sensor device ultra-compact systems are presented.

  10. A WEB based approach in biomedical engineering design education.

    PubMed

    Enderle, J D; Browne, A F; Hallowell, M B

    1997-01-01

    As part of the accreditation process for university engineering programs, students are required to complete a minimum number of design credits in their course of study, typically at the senior level. Many call this the capstone course. Engineering design is a course or series of courses that bring together concepts and principles that students learn in their field of study--it involves the integration and extension of material learned in their major toward a specific project. Most often, the student is exposed to system-wide analysis, critique and evaluation for the first time. Design is an iterative, decision making process in which the student optimally applies previously learned material to meet a stated objective. At the University of Connecticut, students work in teams of 3-4 members and work on externally sponsored projects. To facilitate working with sponsors, a WEB based approach is used for reporting the progress on projects. Students are responsible for creating their own WEB sites that support both html and pdf formats. Students provide the following deliverables: weekly progress reports, project statement, specifications, project proposal, interim report, and final report. A senior design homepage also provides links to data books and other resources for use by students. We are also planning distance learning experiences between two campuses so students can work on projects that involve the use of video conferencing.

  11. The discourse of design-based science classroom activities

    NASA Astrophysics Data System (ADS)

    Azevedo, Flávio S.; Martalock, Peggy L.; Keser, Tugba

    2015-06-01

    This paper is an initial contribution to a general theory in which science classroom activity types and epistemological discourse practices are systematically linked. The idea is that activities and discourse are reflexively related, so that different types of science classroom activities (e.g., scientific argumentation, modeling, and design) recruit characteristically distinct forms of participants' (students and teacher) discourse. Such a general theory would eventually map out the full spectrum of discourse practices (and their patterns of manifestation) across various kinds of science classroom activities, and reveal new relationships between forms of both discourse and activities. Because this defines a complex and long-term project, here our aim is simply to delineate this larger theoretical program and to illustrate it with a detailed case study—namely, that of mapping out and characterizing the discourse practices of design- based science classroom activities. To do so, we draw on data from an activity that is prototypically design-based—i.e., one in which students iteratively design and refine an artifact (in this case, pictorial representations of moving objects)—and examine the structure and dynamics of the whole-class discourse practices that emerge around these representational forms. We then compare and contrast these discourse practices to those of an activity that is prototypical of scientific argumentation (taken from the literature)—i.e., one in which students argue between competing theories and explanations of a phenomenon—and begin to illustrate the kinds of insights our theoretical program might afford.

  12. Computer-based mechanical design of overhead lines

    NASA Astrophysics Data System (ADS)

    Rusinaru, D.; Bratu, C.; Dinu, R. C.; Manescu, L. G.

    2016-02-01

    Beside the performance, the safety level according to the actual standards is a compulsory condition for distribution grids’ operation. Some of the measures leading to improvement of the overhead lines reliability ask for installations’ modernization. The constraints imposed to the new lines components refer to the technical aspects as thermal stress or voltage drop, and look for economic efficiency, too. The mechanical sizing of the overhead lines is after all an optimization problem. More precisely, the task in designing of the overhead line profile is to size poles, cross-arms and stays and locate poles along a line route so that the total costs of the line's structure to be minimized and the technical and safety constraints to be fulfilled.The authors present in this paper an application for the Computer-Based Mechanical Design of the Overhead Lines and the features of the corresponding Visual Basic program, adjusted to the distribution lines. The constraints of the optimization problem are adjusted to the existing weather and loading conditions of Romania. The outputs of the software application for mechanical design of overhead lines are: the list of components chosen for the line: poles, cross-arms, stays; the list of conductor tension and forces for each pole, cross-arm and stay for different weather conditions; the line profile drawings.The main features of the mechanical overhead lines design software are interactivity, local optimization function and high-level user-interface

  13. Fault Tolerance Implementation within SRAM Based FPGA Designs based upon Single Event Upset Occurrence Rates

    NASA Technical Reports Server (NTRS)

    Berg, Melanie

    2006-01-01

    Emerging technology is enabling the design community to consistently expand the amount of functionality that can be implemented within Integrated Circuits (ICs). As the number of gates placed within an FPGA increases, the complexity of the design can grow exponentially. Consequently, the ability to create reliable circuits has become an incredibly difficult task. In order to ease the complexity of design completion, the commercial design community has developed a very rigid (but effective) design methodology based on synchronous circuit techniques. In order to create faster, smaller and lower power circuits, transistor geometries and core voltages have decreased. In environments that contain ionizing energy, such a combination will increase the probability of Single Event Upsets (SEUs) and will consequently affect the state space of a circuit. In order to combat the effects of radiation, the aerospace community has developed several "Hardened by Design" (fault tolerant) design schemes. This paper will address design mitigation schemes targeted for SRAM Based FPGA CMOS devices. Because some mitigation schemes may be over zealous (too much power, area, complexity, etc.. . .), the designer should be conscious that system requirements can ease the amount of mitigation necessary for acceptable operation. Therefore, various degrees of Fault Tolerance will be demonstrated along with an analysis of its effectiveness.

  14. Orthogonalizing EM: A design-based least squares algorithm.

    PubMed

    Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z G

    We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p. Supplementary materials for this article are available online.

  15. Orthogonalizing EM: A design-based least squares algorithm

    PubMed Central

    Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z. G.

    2016-01-01

    We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p. Supplementary materials for this article are available online. PMID:27499558

  16. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool; (2) a low fidelity simulator development tool; (3) a dynamic, interactive interface between the HCI and the simulator; and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  17. Design of a knowledge-based welding advisor

    SciTech Connect

    Kleban, S.D.

    1996-06-01

    Expert system implementation can take numerous forms ranging form traditional declarative rule-based systems with if-then syntax to imperative programming languages that capture expertise in procedural code. The artificial intelligence community generally thinks of expert systems as rules or rule-bases and an inference engine to process the knowledge. The welding advisor developed at Sandia National Laboratories and described in this paper deviates from this by codifying expertise using object representation and methods. Objects allow computer scientists to model the world as humans perceive it giving us a very natural way to encode expert knowledge. The design of the welding advisor, which generates and evaluates solutions, will be compared and contrasted to a traditional rule- based system.

  18. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool, (2) a low fidelity simulator development tool, (3) a dynamic, interactive interface between the HCI and the simulator, and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  19. SYSTEM DESIGN AND ANALYSIS FOR CONCEPTUAL DESIGN OF OXYGEN-BASED PC BOILER

    SciTech Connect

    Zhen Fan; Andrew Seltzer

    2003-11-01

    The objective of the system design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the PC boiler plant by maximizing system efficiency. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 Mw plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.1% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 44% of the air-fired reference case. Compared to other CO{sub 2} sequestration technologies, the O{sub 2}-fired PC is substantially better than both natural gas combined cycles and post CO{sub 2} removal PCs and is slightly better than integrated gasification combined cycles.

  20. Wireless, Web-Based Interactive Control of Optical Coherence Tomography with Mobile Devices

    PubMed Central

    Mehta, Rajvi; Nankivil, Derek; Zielinski, David J.; Waterman, Gar; Keller, Brenton; Limkakeng, Alexander T.; Kopper, Regis; Izatt, Joseph A.; Kuo, Anthony N.

    2017-01-01

    Purpose Optical coherence tomography (OCT) is widely used in ophthalmology clinics and has potential for more general medical settings and remote diagnostics. In anticipation of remote applications, we developed wireless interactive control of an OCT system using mobile devices. Methods A web-based user interface (WebUI) was developed to interact with a handheld OCT system. The WebUI consisted of key OCT displays and controls ported to a webpage using HTML and JavaScript. Client–server relationships were created between the WebUI and the OCT system computer. The WebUI was accessed on a cellular phone mounted to the handheld OCT probe to wirelessly control the OCT system. Twenty subjects were imaged using the WebUI to assess the system. System latency was measured using different connection types (wireless 802.11n only, wireless to remote virtual private network [VPN], and cellular). Results Using a cellular phone, the WebUI was successfully used to capture posterior eye OCT images in all subjects. Simultaneous interactivity by a remote user on a laptop was also demonstrated. On average, use of the WebUI added only 58, 95, and 170 ms to the system latency using wireless only, wireless to VPN, and cellular connections, respectively. Qualitatively, operator usage was not affected. Conclusions Using a WebUI, we demonstrated wireless and remote control of an OCT system with mobile devices. Translational Relevance The web and open source software tools used in this project make it possible for any mobile device to potentially control an OCT system through a WebUI. This platform can be a basis for remote, teleophthalmology applications using OCT. PMID:28138415

  1. Design Guidance for Computer-Based Procedures for Field Workers

    SciTech Connect

    Oxstrand, Johanna; Le Blanc, Katya; Bly, Aaron

    2016-09-01

    on other sources of additional information to ensure a functional and accurate understanding of the current plant status (Converse, 1995; Fink, Killian, Hanes, and Naser, 2009; Le Blanc, Oxstrand, and Waicosky, 2012). This report provides design guidance to be used when designing the human-system interaction and the design of the graphical user interface for a CBP system. The guidance is based on human factors research related to the design and usability of CBPs conducted by Idaho National Laboratory, 2012 - 2016.

  2. Context sensitivity and ambiguity in component-based systems design

    SciTech Connect

    Bespalko, S.J.; Sindt, A.

    1997-10-01

    Designers of components-based, real-time systems need to guarantee to correctness of soft-ware and its output. Complexity of a system, and thus the propensity for error, is best characterized by the number of states a component can encounter. In many cases, large numbers of states arise where the processing is highly dependent on context. In these cases, states are often missed, leading to errors. The following are proposals for compactly specifying system states which allow the factoring of complex components into a control module and a semantic processing module. Further, the need for methods that allow for the explicit representation of ambiguity and uncertainty in the design of components is discussed. Presented herein are examples of real-world problems which are highly context-sensitive or are inherently ambiguous.

  3. Optimization-based design of a heat flux concentrator

    PubMed Central

    Peralta, Ignacio; Fachinotti, Víctor D.; Ciarbonetti, Ángel A.

    2017-01-01

    To gain control over the diffusive heat flux in a given domain, one needs to engineer a thermal metamaterial with a specific distribution of the generally anisotropic thermal conductivity throughout the domain. Until now, the appropriate conductivity distribution was usually determined using transformation thermodynamics. By this way, only a few particular cases of heat flux control in simple domains having simple boundary conditions were studied. Thermal metamaterials based on optimization algorithm provides superior properties compared to those using the previous methods. As a more general approach, we propose to define the heat control problem as an optimization problem where we minimize the error in guiding the heat flux in a given way, taking as design variables the parameters that define the variable microstructure of the metamaterial. In the present study we numerically demonstrate the ability to manipulate heat flux by designing a device to concentrate the thermal energy to its center without disturbing the temperature profile outside it. PMID:28084451

  4. Design of Nanoparticle-Based Carriers for Targeted Drug Delivery

    PubMed Central

    Ren, Muqing; Duval, Kayla; Guo, Xing; Chen, Zi

    2016-01-01

    Nanoparticles have shown promise as both drug delivery vehicles and direct antitumor systems, but they must be properly designed in order to maximize efficacy. Computational modeling is often used both to design new nanoparticles and to better understand existing ones. Modeled processes include the release of drugs at the tumor site and the physical interaction between the nanoparticle and cancer cells. In this article, we provide an overview of three different targeted drug delivery methods (passive targeting, active targeting and physical targeting), compare methods of action, advantages, limitations, and the current stage of research. For the most commonly used nanoparticle carriers, fabrication methods are also reviewed. This is followed by a review of computational simulations and models on nanoparticle-based drug delivery. PMID:27398083

  5. Statistical design of quantitative mass spectrometry-based proteomic experiments.

    PubMed

    Oberg, Ann L; Vitek, Olga

    2009-05-01

    We review the fundamental principles of statistical experimental design, and their application to quantitative mass spectrometry-based proteomics. We focus on class comparison using Analysis of Variance (ANOVA), and discuss how randomization, replication and blocking help avoid systematic biases due to the experimental procedure, and help optimize our ability to detect true quantitative changes between groups. We also discuss the issues of pooling multiple biological specimens for a single mass analysis, and calculation of the number of replicates in a future study. When applicable, we emphasize the parallels between designing quantitative proteomic experiments and experiments with gene expression microarrays, and give examples from that area of research. We illustrate the discussion using theoretical considerations, and using real-data examples of profiling of disease.

  6. Optimization-based design of a heat flux concentrator.

    PubMed

    Peralta, Ignacio; Fachinotti, Víctor D; Ciarbonetti, Ángel A

    2017-01-13

    To gain control over the diffusive heat flux in a given domain, one needs to engineer a thermal metamaterial with a specific distribution of the generally anisotropic thermal conductivity throughout the domain. Until now, the appropriate conductivity distribution was usually determined using transformation thermodynamics. By this way, only a few particular cases of heat flux control in simple domains having simple boundary conditions were studied. Thermal metamaterials based on optimization algorithm provides superior properties compared to those using the previous methods. As a more general approach, we propose to define the heat control problem as an optimization problem where we minimize the error in guiding the heat flux in a given way, taking as design variables the parameters that define the variable microstructure of the metamaterial. In the present study we numerically demonstrate the ability to manipulate heat flux by designing a device to concentrate the thermal energy to its center without disturbing the temperature profile outside it.

  7. Optimization-based design of a heat flux concentrator

    NASA Astrophysics Data System (ADS)

    Peralta, Ignacio; Fachinotti, Víctor D.; Ciarbonetti, Ángel A.

    2017-01-01

    To gain control over the diffusive heat flux in a given domain, one needs to engineer a thermal metamaterial with a specific distribution of the generally anisotropic thermal conductivity throughout the domain. Until now, the appropriate conductivity distribution was usually determined using transformation thermodynamics. By this way, only a few particular cases of heat flux control in simple domains having simple boundary conditions were studied. Thermal metamaterials based on optimization algorithm provides superior properties compared to those using the previous methods. As a more general approach, we propose to define the heat control problem as an optimization problem where we minimize the error in guiding the heat flux in a given way, taking as design variables the parameters that define the variable microstructure of the metamaterial. In the present study we numerically demonstrate the ability to manipulate heat flux by designing a device to concentrate the thermal energy to its center without disturbing the temperature profile outside it.

  8. Control theory based airfoil design using the Euler equations

    NASA Technical Reports Server (NTRS)

    Jameson, Antony; Reuther, James

    1994-01-01

    This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using the potential flow equation with either a conformal mapping or a general coordinate system. The goal of our present work is to extend the development to treat the Euler equations in two-dimensions by procedures that can readily be generalized to treat complex shapes in three-dimensions. Therefore, we have developed methods which can address airfoil design through either an analytic mapping or an arbitrary grid perturbation method applied to a finite volume discretization of the Euler equations. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented for both the inverse problem and drag minimization problem.

  9. Value-Based Insurance Design: More Health at Any Price

    PubMed Central

    Fendrick, A Mark; Martin, Jenifer J; Weiss, Alison E

    2012-01-01

    When everyone is required to pay the same out-of-pocket amount for health care services regardless of clinical indication, there is evidence of underuse of high-value services and overuse of interventions of no or marginal clinical benefit. Unlike most current health plan designs, value-based insurance design (V-BID) acknowledges heterogeneity of clinical interventions and patient characteristics. It encourages the use of services with strong evidence of clinical benefit and likewise discourages the use of low-value services. Implementing this concept into the national policy debate required a strategy that included conceptual framework development, program implementation, rigorous evaluation, media outreach, and an advocacy plan. Upon completion of this strategy involving several colleagues from multiple disciplines, Congress included language specifically authorizing V-BID in the Patient Protection and Affordable Care Act. A wide-ranging approach, planned as early as possible, can lead to the successful translation of health services research to policy. PMID:22150718

  10. Qsys NOC-based MPSOC design for LAMOST Spectrographs

    NASA Astrophysics Data System (ADS)

    Han, Zhongyi; Wang, Jianing; Zeng, Yizhong

    2012-09-01

    At present, FPGA-based SOPC was used to design the China's LAMOST telescope spectrograph control system. But with the increase of the controlled objects and requirement of telescope’s accuracy, the problems like system performance, I/O source shortage, real-time multi-task processing, Fmax, Logic Element (LE) Usage have to be solved immediately. The combination of multi-processor (NIOS II) method and NOC technology can meet this requirement effectively. This article mainly introduced how to realize the NOC-based MPSOC in the Altera’s Cyclone III FPGA experimental board by Qsys tool. According to the function of task, the system was divided into several subsystems which also include two NIOS II CPU subsystems (implement the control strategies and remote update tasks separately). These different subsystems are interconnected by NOC hierarchical interconnection idea. The results illustrate that this solution can improve system performance, double the Fmax, decrease LE usage, and save the maintenance cost compared with the previous SOPC-based approach. The motor control system designed by this approach also can be applied to other astronomy equipments and industrial control fields.

  11. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors

    PubMed Central

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-01-01

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process. PMID:27438863

  12. Frequency-based design of Adaptive Optics systems

    NASA Astrophysics Data System (ADS)

    Agapito, Guido; Battistelli, Giorgio; Mari, Daniele; Selvi, Daniela; Tesi, Alberto; Tesi, Pietro

    2013-12-01

    The problem of reducing the effects of wavefront distortion and structural vibrations inground-based telescopes is addressed within a modal-control framework. The proposed approach aimsat optimizing the parameters of a given modal stabilizing controller with respect to a performance criterionwhich reflects the residual phase variance and is defined on a sampled frequency domain. Thisframework makes it possible to account for turbulence and vibration profiles of arbitrary complexity(even empirical power spectral densities from data), while the controller order can be kept at a desiredvalue. Moreover it is possible to take into account additional requirements, as robustness in the presenceof disturbances whose intensity and frequency profile vary with time. The proposed design procedureresults in solving a minmax problem and can be converted into a linear programming problem withquadratic constraints, for which there exist several standard optimization techniques. The optimizationstarts from a given stabilizing controller which can be either a non-model-based controller (in this caseno identification effort is required), or a model-based controller synthesized by means of turbulence andvibration models of limited complexity. In this sense the approach can be viewed not only as alternative,but also as cooperative with other control design approaches. The results obtained by means of anEnd-to-End simulator are shown to emphasize the power of the proposed method.

  13. Nanotechnology-based intelligent drug design for cancer metastasis treatment.

    PubMed

    Gao, Yu; Xie, Jingjing; Chen, Haijun; Gu, Songen; Zhao, Rongli; Shao, Jingwei; Jia, Lee

    2014-01-01

    Traditional chemotherapy used today at clinics is mainly inherited from the thinking and designs made four decades ago when the Cancer War was declared. The potency of those chemotherapy drugs on in-vitro cancer cells is clearly demonstrated at even nanomolar levels. However, due to their non-specific effects in the body on normal tissues, these drugs cause toxicity, deteriorate patient's life quality, weaken the host immunosurveillance system, and result in an irreversible damage to human's own recovery power. Owing to their unique physical and biological properties, nanotechnology-based chemotherapies seem to have an ability to specifically and safely reach tumor foci with enhanced efficacy and low toxicity. Herein, we comprehensively examine the current nanotechnology-based pharmaceutical platforms and strategies for intelligent design of new nanomedicines based on targeted drug delivery system (TDDS) for cancer metastasis treatment, analyze the pros and cons of nanomedicines versus traditional chemotherapy, and evaluate the importance that nanomaterials can bring in to significantly improve cancer metastasis treatment.

  14. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    PubMed

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-07-18

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.

  15. Design of energy-based terrain following flight control system

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Aijun; Xie, Yanwu; Tan, Jian

    2006-11-01

    Historically, aircraft longitudinal control has been realized by means of two loops: flight path (the control variable is elevator displacement) and speed control (the control variable is propulsive thrust or engine power). Both the elevator and throttle control cause coupled altitude and speed response, which exerts negative effects on longitudinal flight performance of aircraft, especially for Terrain Following(TF) flight. Energy-based method can resolve coupled problem between flight speed and path by controlling total energy rate and energy distribution rate between elevator and throttle. In this paper, energy-based control method is applied to design a TF flight control system for controlling flight altitude directly. An error control method of airspeed and altitude is adopted to eliminate the stable error of the total energy control system when decoupling control. Pitch loop and pitch rate feedback loop are designed for the system to damp the oscillatory response produced by TF system. The TF flight control system structure diagram and an aircraft point-mass energy motion model including basic control loops are given and used to simulate decoupling performance of the TF fight control system. Simulation results show that the energy-based TF flight control system can decouple flight velocity and flight path angle, exactly follow planned flight path, and greatly reduce altitude error, which is between +10m and -8m.

  16. Shield Design for a Space Based Vapor Core Reactor

    SciTech Connect

    Knight, Travis; Anghaie, Samim

    2002-07-01

    Innovative shielding strategies were sought to reduce the mass of the required shielding for a space based vapor core reactor system with magnetohydrodynamic energy conversion. Gamma-rays directly resultant from fission were found to play no role in the dose rate, while secondary gamma-rays from fission neutron interactions were the dominant contributor to the dose rate. Hydrogen containing materials such as polyethylene were utilized to provide shielding of both radiation from the reactor complex and also solar and galactic cosmic radiation. This shield design was found to contribute 0.125 kg/kWe to the baseline vapor core reactor system specific mass. (authors)

  17. Considerations of Protein Subpockets in Fragment-Based Drug Design.

    PubMed

    Bartolowits, Matthew; Davisson, V Jo

    2016-01-01

    While the fragment-based drug design approach continues to gain importance, gaps in the tools and methods available in the identification and accurate utilization of protein subpockets have limited the scope. The importance of these features of small molecule-protein recognition is highlighted with several examples. A generalized solution for the identification of subpockets and corresponding chemical fragments remains elusive, but there are numerous advancements in methods that can be used in combination to address subpockets. Finally, additional examples of approaches that consider the relative importance of small-molecule co-dependence of protein conformations are highlighted to emphasize an increased significance of subpockets, especially at protein interfaces.

  18. Lessons in risk- versus resilience-based design and management.

    PubMed

    Park, Jeryang; Seager, Thomas P; Rao, P Suresh C

    2011-07-01

    The implications of recent catastrophic disasters, including the Fukushima Daiichi nuclear power plant accident, reach well beyond the immediate, direct environmental and human health risks. In a complex coupled system, disruptions from natural disasters and man-made accidents can quickly propagate through a complex chain of networks to cause unpredictable failures in other economic or social networks and other parts of the world. Recent disasters have revealed the inadequacy of a classical risk management approach. This study calls for a new resilience-based design and management paradigm that draws upon the ecological analogues of diversity and adaptation in response to low-probability and high-consequence disruptions.

  19. Laser based metal and plastics joining for lightweight design

    NASA Astrophysics Data System (ADS)

    Kahmann, Max; Quentin, Ulf; Kirchhoff, Marc; Brockmann, Rüdiger; Löffler, Klaus

    2015-03-01

    One of the most important issues in automotive industry is lightweight design, especially since the CO2 emission of new cars has to be reduced by 2020. Plastic and fiber reinforced plastics (e.g. CFRP and GFRP) receive besides new manufacturing methods and the employment of high-strength steels or non-ferrous metals increasing interest. Especially the combination of different materials such as metals and plastics to single components exhausts the entire potential on weight reduction. This article presents an approach based on short laser pulses to join such dissimilar materials in industrial applications.

  20. Genetic-evolution-based optimization methods for engineering design

    NASA Technical Reports Server (NTRS)

    Rao, S. S.; Pan, T. S.; Dhingra, A. K.; Venkayya, V. B.; Kumar, V.

    1990-01-01

    This paper presents the applicability of a biological model, based on genetic evolution, for engineering design optimization. Algorithms embodying the ideas of reproduction, crossover, and mutation are developed and applied to solve different types of structural optimization problems. Both continuous and discrete variable optimization problems are solved. A two-bay truss for maximum fundamental frequency is considered to demonstrate the continuous variable case. The selection of locations of actuators in an actively controlled structure, for minimum energy dissipation, is considered to illustrate the discrete variable case.

  1. Optimal Constellation Design for Satellite Based Augmentation System

    NASA Astrophysics Data System (ADS)

    Kawano, Isao

    Global Positioning System (GPS) is widely utilized in daily life, for instance car navigation. Wide Area Augmentation System (WAAS) and Local Area Augmentation System (LAAS) are proposed so as to provide GPS better navigation accuracy and integrity capability. Satellite Based Augmentation System (SBAS) is a kind of WAAS and Multi-functional Transportation Satellite (MTSAT) has been developed in Japan. To improve navigation accuracy most efficiently, augmentation satellites should be so placed that minimize Geometric Dilution of Precision (GDOP) of constellation. In this paper the result of optimal constellation design for SBAS is shown.

  2. Waveform design for detection of weapons based on signature exploitation

    NASA Astrophysics Data System (ADS)

    Ahmad, Fauzia; Amin, Moeness G.; Dogaru, Traian

    2010-04-01

    We present waveform design based on signature exploitation techniques for improved detection of weapons in urban sensing applications. A single-antenna monostatic radar system is considered. Under the assumption of exact knowledge of the target orientation and, hence, known impulse response, matched illumination approach is used for optimal target detection. For the case of unknown target orientation, we analyze the target signatures as random processes and perform signal-to-noise-ratio based waveform optimization. Numerical electromagnetic modeling is used to provide the impulse responses of an AK-47 assault rifle for various target aspect angles relative to the radar. Simulation results depict an improvement in the signal-to-noise-ratio at the output of the matched filter receiver for both matched illumination and stochastic waveforms as compared to a chirp waveform of the same duration and energy.

  3. Controller design based on μ analysis and PSO algorithm.

    PubMed

    Lari, Ali; Khosravi, Alireza; Rajabi, Farshad

    2014-03-01

    In this paper an evolutionary algorithm is employed to address the controller design problem based on μ analysis. Conventional solutions to μ synthesis problem such as D-K iteration method often lead to high order, impractical controllers. In the proposed approach, a constrained optimization problem based on μ analysis is defined and then an evolutionary approach is employed to solve the optimization problem. The goal is to achieve a more practical controller with lower order. A benchmark system named two-tank system is considered to evaluate performance of the proposed approach. Simulation results show that the proposed controller performs more effective than high order H(∞) controller and has close responses to the high order D-K iteration controller as the common solution to μ synthesis problem.

  4. Conceptual design of an optic based engine control system

    NASA Technical Reports Server (NTRS)

    Davies, W. J.; Baumbick, R. J.; Vizzini, R. W.

    1987-01-01

    Use of optics in the aircraft engine control systems would provide immunity to electromagnetic effects (such as lightning, radar, and nuclear pulses) for flight and propulsion control systems located throughout the aircraft and in need of communication and would result in weight reduction. This paper discusses a conceptual design of an optic engine control system that is being developed by the Fiber Optic Control System Integration (FOCSI) program. The features inherent in each of the optic-based components of the optic system, which includes the on-engine full authority digital electonic control, optic sensors, optic-based actuators, and an optic data bus for communication with the aircraft flight control system are described in detail. The diagrams of the FOCSI control system and its components are included.

  5. High-Pressure Design of Advanced BN-Based Materials.

    PubMed

    Kurakevych, Oleksandr O; Solozhenko, Vladimir L

    2016-10-20

    The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN) with hardness comparable to diamond, and superhard boron subnitride B13N₂. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc.) are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure-temperature conditions are considered.

  6. Tendon Based Full Size Biped Humanoid Robot Walking Platform Design

    NASA Astrophysics Data System (ADS)

    Kuo, Chung-Hsien; Chiou, Kuo-Wei

    Actuators and gear trains of most biped humanoid robots are divergently allocated on the links of two legs. Disadvantages of such a mechanical design are complicated wiring of power cord and sensing/ control signal bundles and imprecise kinetics models of mixed link-and-actuator structures. Based on these drawbacks, this paper proposes a tendon-driven mechanism to develop a lower body structure of a full-size biped humanoid robot. The actuators are compacted as an actuator module, and they are placed at a distal site. A 12 degree-of-freedom mechanical structure is proposed with 100 cm in height and 45 kg in weight. The gait planning module is simulated and evaluated using the Matlab software. At the same time, an ARM7 based controller is developed to automatically generate walking patterns as well as to control the motors. Finally, a tendon-driven biped humanoid robot prototype is realized for practical waling control in the future.

  7. Electromagnetic design of superconducting dipoles based on sector coils

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Todesco, Ezio

    2007-11-01

    We study the coil layouts of superconducting dipoles for particle accelerators based on the sector geometry. We show that a simple model based on a sector coil with a wedge allows us to derive an equation giving the short sample field as a function of the aperture, coil width, cable properties, and superconducting material. The equation agrees well with the actual results of several dipole coils that have been built in the past 30 years. The improvements due to the grading technique and the iron yoke are also studied. The proposed equation can be used as a benchmark to judge the efficiency of the coil design, and to carry out a global optimization of an accelerator layout.

  8. Novel design of bi-directional triplexer based on PLC

    NASA Astrophysics Data System (ADS)

    Xu, Chenglin; Shen, Linping; Zhou, Dong; Huang, Wei-Ping; Hong, Jin

    2005-09-01

    As the development of the technology, fiber-to-the-home (FTTH) becomes a feasible solution to meet the increasing demand on bandwidth. Due to the massive number of end users, cheap and reliable components become the bottleneck to deploy the new technology. Triplexer is one of the key components in the FTTH and is used by every end user. Currently, the available triplexers are either based on bulk optics or fiber optics with large size and high price due to manual labor involved. Planar lightwave circuit (PLC) is a possible technology for massive production and cost reduction. However, it is very challenging to design such bi-directional triplexer on PLC. The first challenge is that three channels, at λ=1310nm, 1490nm, and 1555nm, are separated unevenly over a very large wavelength range; Secondly, the bandwidths of the three channels, Δλ=100nm, 20nm, and 10nm, are very different. In the paper, we proposed a novel design by combining both coarse WDM and dense WDM. In the design, a multi-mode interference (MMI) device is used for coarse WDM to separate the 1310nm from the other two channels. The dense WDM for the remaining two channels is performed by an array waveguide gratings (AWG). The MMI and AWG are built on the same wafer with monolithic integration. Initial simulation results show it is a very promising device.

  9. Rethinking Physics for Biologists: A design-based research approach

    NASA Astrophysics Data System (ADS)

    Sawtelle, Vashti

    2015-03-01

    Biology majors at the University of Maryland are required to take courses in biology, chemistry, and physics - but they often see these courses as disconnected. Over the past three years the NEXUS/Physics course has been working to develop an interdisciplinary learning environment that bridges the disciplinary domains of biology and physics. Across the three years we have gone from teaching in a small class with one instructor to teaching in a large lecture hall with multiple instructors. We have used a design-based research approach to support critical reflection of the course at multiple-time scales. In this presentation I will detail our process of collecting systematic data, listening to and valuing students' reasoning, and bridging diverse perspectives led. I will demonstrate how this process led to improved curricular design, refined assessment objectives, and new design heuristics. This work is supported by NSF-TUES DUE 11-22818, the HHMI NEXUS grant, and a NSF Graduate Research Fellowship (DGE 0750616).

  10. Design, modeling and simulation of MEMS-based silicon Microneedles

    NASA Astrophysics Data System (ADS)

    Amin, F.; Ahmed, S.

    2013-06-01

    The advancement in semiconductor process engineering and nano-scale fabrication technology has made it convenient to transport specific biological fluid into or out of human skin with minimum discomfort. Fluid transdermal delivery systems such as Microneedle arrays are one such emerging and exciting Micro-Electro Mechanical System (MEMS) application which could lead to a total painless fluid delivery into skin with controllability and desirable yield. In this study, we aimed to revisit the problem with modeling, design and simulations carried out for MEMS based silicon hollow out of plane microneedle arrays for biomedical applications particularly for transdermal drug delivery. An approximate 200 μm length of microneedle with 40 μm diameter of lumen has been successfully shown formed by isotropic and anisotropic etching techniques using MEMS Pro design tool. These microneedles are arranged in size of 2 × 4 matrix array with center to center spacing of 750 μm. Furthermore, comparisons for fluid flow characteristics through these microneedle channels have been modeled with and without the contribution of the gravitational forces using mathematical models derived from Bernoulli Equation. Physical Process simulations have also been performed on TCAD SILVACO to optimize the design of these microneedles aligned with the standard Si-Fabrication lines.

  11. Design of HIV Protease Inhibitors Based on Inorganic Polyhedral Metallacarboranes

    SciTech Connect

    Rezacova, Pavlina; Pokorna, Jana; Brynda, Ji; Kozisek, Milan; Cigler, Petr; Lesik, Martin; Fanfrlik, Jindrich; Rezac, Jan; Saskova, Klara Grantz; Sieglova, Irena; Plesek, Jaromir; Sicha, Vaclav; Gruner, Bohumir; Oberwinkler, Heike; Sedlacek, Juraj; Krausslich, Hans-Georg; Hobza, Pavel; Kral, Vladimir; Konvalinka, Jan

    2010-04-19

    HIV protease (HIV PR) is a primary target for anti-HIV drug design. We have previously identified and characterized substituted metallacarboranes as a new class of HIV protease inhibitors. In a structure-guided drug design effort, we connected the two cobalt bis(dicarbollide) clusters with a linker to substituted ammonium group and obtained a set of compounds based on a lead formula [H{sub 2}N-(8-(C{sub 2}H{sub 4}O){sub 2}-1,2-C{sub 2}B{sub 9}H{sub 10})(1',2'-C{sub 2}B{sub 9}H{sub 11})-3,3'-Co){sub 2}]Na. We explored inhibition properties of these compounds with various substitutions, determined the HIV PR:inhibitor crystal structure, and computationally explored the conformational space of the linker. Our results prove the capacity of linker-substituted dual-cage cobalt bis(dicarbollides) as lead compounds for design of more potent inhibitors of HIV PR.

  12. Durability-based design criteria for an automotive structural composite

    SciTech Connect

    Corum, J.M.; Battiste, R.L.; Brinkman, C.R.; Ren, W.; Ruggles, M.B.; Yahr, G.T.

    1998-11-01

    Before composite structures can be widely used in automotive applications, their long-term durability must be assured. The Durability of Lightweight Composite Structures Project at Oak Ridge National Laboratory was established by the US Department of Energy to help provide that assurance. The project is closely coordinated with the Automotive Composites Consortium. The experimentally-based, durability-driven design criteria described in this paper are the result of the initial project thrust. The criteria address a single reference composite, which is an SRIM (Structural Reaction Injection Molded) polyurethane, reinforced with continuous strand, swirl-mat E-glass fibers. The durability issues addressed include the effects of cyclic and sustained loadings, temperature, automotive fluid environments, and low-energy impacts (e.g., tool drops and roadway kickups) on strength, stiffness, and deformation. The criteria provide design analysis guidance, a multiaxial strength criterion, time-independent and time-dependent allowable stresses, rules for cyclic loading, and damage tolerance design guidance. Environmental degradation factors and the degrading effects of prior loadings are included. Efforts are currently underway to validate the criteria by application to a second random-glass-fiber composite. Carbon-fiber composites are also being addressed.

  13. [Sub-field imaging spectrometer design based on Offner structure].

    PubMed

    Wu, Cong-Jun; Yan, Chang-Xiang; Liu, Wei; Dai, Hu

    2013-08-01

    To satisfy imaging spectrometers's miniaturization, lightweight and large field requirements in space application, the current optical design of imaging spectrometer with Offner structure was analyzed, and an simple method to design imaging spectrometer with concave grating based on current ways was given. Using the method offered, the sub-field imaging spectrometer with 400 km altitude, 0.4-1.0 microm wavelength range, 5 F-number of 720 mm focal length and 4.3 degrees total field was designed. Optical fiber was used to transfer the image in telescope's focal plane to three slits arranged in the same plane so as to achieve subfield. The CCD detector with 1 024 x 1 024 and 18 microm x 18 microm was used to receive the image of the three slits after dispersing. Using ZEMAX software optimization and tolerance analysis, the system can satisfy 5 nm spectrum resolution and 5 m field resolution, and the MTF is over 0.62 with 28 lp x mm(-1). The field of the system is almost 3 times that of similar instruments used in space probe.

  14. Design and Construction of a Modular Lunar Base

    NASA Astrophysics Data System (ADS)

    Grandl, Dipl. Ing Werner

    DESIGN and CONSTRUCTION of a MODULAR LUNAR BASE Purpose: The Lunar Base Design Study is a concept for the return of humans from 2020 to the end of the century. Structure: The proposed lunar station is built of 6 cylindrical modules, each one 17 m long and 6 m in diameter. Each module is made of aluminium sheets and trapezoidal aluminium sheeting and has a weight (on earth) of approx.10.2 tonnes, including the interior equipment and furnishing. The outer wall of the cylinders is built as a double-shell system, stiffened by radial bulkheads. 8 astronauts or scientists can live and work in the station, using the modules as follows: -1 Central Living Module -2 Living Quater Modules, with private rooms for each person -1 Laboratory Module for scientific research and engineering -1 Airlock Module, containing outdoor equipment, space suits, etc. -1 Energy Plant Module, carrying solar panels a small nuclear reactor and antennas for communication. Shielding: To protect the astronauts micrometeorites and radiation, the caves between the two shells of the outer wall are filled with a 0.6 m thick layer or regolith in situ by a small teleoperated digger vehicle. Using lunar material for shielding the payload for launching can be minimized. Launch and Transport: For launching a modified ARIANE 5 launcher or similar US, Russian, Chinese or Indian rockets can be used. For the flight from Earth Orbit to Lunar Orbit a "Space-Tug", which is deployed in Earth Orbit, can be used. To land the modules on the lunar surface a "Teleoperated Rocket Crane" has been developed by the author. This vehicle will be assembled in lunar orbit and is built as a structural framework, carrying rocket engines, fuel tanks and teleoperated crawlers to move the modules on the lunar surface. To establish this basic stage of the Lunar Base 11 launches are necessary: -1 Lunar Orbiter, a small manned spaceship (3 astronauts) -1 Manned Lander and docking module for the orbiter -1 Teleoperated Rocket Crane -6

  15. Gradient-based optimum aerodynamic design using adjoint methods

    NASA Astrophysics Data System (ADS)

    Xie, Lei

    2002-09-01

    Continuous adjoint methods and optimal control theory are applied to a pressure-matching inverse design problem of quasi 1-D nozzle flows. Pontryagin's Minimum Principle is used to derive the adjoint system and the reduced gradient of the cost functional. The properties of adjoint variables at the sonic throat and the shock location are studied, revealing a log-arithmic singularity at the sonic throat and continuity at the shock location. A numerical method, based on the Steger-Warming flux-vector-splitting scheme, is proposed to solve the adjoint equations. This scheme can finely resolve the singularity at the sonic throat. A non-uniform grid, with points clustered near the throat region, can resolve it even better. The analytical solutions to the adjoint equations are also constructed via Green's function approach for the purpose of comparing the numerical results. The pressure-matching inverse design is then conducted for a nozzle parameterized by a single geometric parameter. In the second part, the adjoint methods are applied to the problem of minimizing drag coefficient, at fixed lift coefficient, for 2-D transonic airfoil flows. Reduced gradients of several functionals are derived through application of a Lagrange Multiplier Theorem. The adjoint system is carefully studied including the adjoint characteristic boundary conditions at the far-field boundary. A super-reduced design formulation is also explored by treating the angle of attack as an additional state; super-reduced gradients can be constructed either by solving adjoint equations with non-local boundary conditions or by a direct Lagrange multiplier method. In this way, the constrained optimization reduces to an unconstrained design problem. Numerical methods based on Jameson's finite volume scheme are employed to solve the adjoint equations. The same grid system generated from an efficient hyperbolic grid generator are adopted in both the Euler flow solver and the adjoint solver. Several

  16. Design of a vehicle based system to prevent ozone loss

    NASA Technical Reports Server (NTRS)

    Lynn, Sean R.; Bunker, Deborah; Hesbach, Thomas D., Jr.; Howerton, Everett B.; Hreinsson, G.; Mistr, E. Kirk; Palmer, Matthew E.; Rogers, Claiborne; Tischler, Dayna S.; Wrona, Daniel J.

    1993-01-01

    Reduced quantities of ozone in the atmosphere allow greater levels of ultraviolet light (UV) radiation to reach the earth's surface. This is known to cause skin cancer and mutations. Chlorine liberated from Chlorofluorocarbons (CFC's) and natural sources initiate the destruction of stratospheric ozone through a free radical chain reaction. The project goals are to understand the processes which contribute to stratospheric ozone loss, examine ways to prevent ozone loss, and design a vehicle-based system to carry out the prevention scheme. The 1992/1993 design objectives were to accomplish the first two goals and define the requirements for an implementation vehicle to be designed in detail starting next year. Many different ozone intervention schemes have been proposed though few have been researched and none have been tested. A scheme proposed by R.J. Cicerone, Scott Elliot and R.P.Turco late in 1991 was selected because of its research support and economic feasibility. This scheme uses hydrocarbon injected into the Antarctic ozone hole to form stable compounds with free chlorine, thus reducing ozone depletion. Because most polar ozone depletion takes place during a 3-4 week period each year, the hydrocarbon must be injected during this time window. A study of the hydrocarbon injection requirements determined that 100 aircraft traveling Mach 2.4 at a maximum altitude of 66,000 ft. would provide the most economic approach to preventing ozone loss. Each aircraft would require an 8,000 nm. range and be able to carry 35,000 lbs. of propane. The propane would be stored in a three-tank high pressure system. Missions would be based from airport regions located in South America and Australia. To best provide the requirements of mission analysis, an aircraft with L/D(sub cruise) = 10.5, SFC = 0.65 (the faculty advisor suggested that this number is too low) and a 250,000 lb TOGW was selected as a baseline. Modularity and multi-role functionality were selected to be key

  17. Clinical trial designs for testing biomarker-based personalized therapies

    PubMed Central

    Lai, Tze Leung; Lavori, Philip W; Shih, Mei-Chiung I; Sikic, Branimir I

    2014-01-01

    Background Advances in molecular therapeutics in the past decade have opened up new possibilities for treating cancer patients with personalized therapies, using biomarkers to determine which treatments are most likely to benefit them, but there are difficulties and unresolved issues in the development and validation of biomarker-based personalized therapies. We develop a new clinical trial design to address some of these issues. The goal is to capture the strengths of the frequentist and Bayesian approaches to address this problem in the recent literature and to circumvent their limitations. Methods We use generalized likelihood ratio tests of the intersection null and enriched strategy null hypotheses to derive a novel clinical trial design for the problem of advancing promising biomarker-guided strategies toward eventual validation. We also investigate the usefulness of adaptive randomization (AR) and futility stopping proposed in the recent literature. Results Simulation studies demonstrate the advantages of testing both the narrowly focused enriched strategy null hypothesis related to validating a proposed strategy and the intersection null hypothesis that can accommodate to a potentially successful strategy. AR and early termination of ineffective treatments offer increased probability of receiving the preferred treatment and better response rates for patients in the trial, at the expense of more complicated inference under small-to-moderate total sample sizes and some reduction in power. Limitations The binary response used in the development phase may not be a reliable indicator of treatment benefit on long-term clinical outcomes. In the proposed design, the biomarker-guided strategy (BGS) is not compared to ‘standard of care’, such as physician’s choice that may be informed by patient characteristics. Therefore, a positive result does not imply superiority of the BGS to ‘standard of care’. The proposed design and tests are valid asymptotically

  18. Hull Form Optimization for Early Stage Ship Design

    DTIC Science & Technology

    2010-01-01

    research, unsteady Reynolds-Averaged Navier- Stokes ( URANS ) CFD code developed at University of Iowa (UI) over the past ten years for support of student...be used within a ship design environment. Validation work has been performed for URANS and potential flow analysis codes that are planned for use in

  19. Orbits design for LEO space based solar power satellite system

    NASA Astrophysics Data System (ADS)

    Addanki, Neelima Krishna Murthy

    2011-12-01

    Space Based Solar Power satellites use solar arrays to generate clean, green, and renewable electricity in space and transmit it to earth via microwave, radiowave or laser beams to corresponding receivers (ground stations). These traditionally are large structures orbiting around earth at the geo-synchronous altitude. This thesis introduces a new architecture for a Space Based Solar Power satellite constellation. The proposed concept reduces the high cost involved in the construction of the space satellite and in the multiple launches to the geo-synchronous altitude. The proposed concept is a constellation of Low Earth Orbit satellites that are smaller in size than the conventional system. 7For this application a Repeated Sun-Synchronous Track Circular Orbit is considered (RSSTO). In these orbits, the spacecraft re-visits the same locations on earth periodically every given desired number of days with the line of nodes of the spacecraft's orbit fixed relative to the Sun. A wide range of solutions are studied, and, in this thesis, a two-orbit constellation design is chosen and simulated. The number of satellites is chosen based on the electric power demands in a given set of global cities. The orbits of the satellites are designed such that their ground tracks visit a maximum number of ground stations during the revisit period. In the simulation, the locations of the ground stations are chosen close to big cities, in USA and worldwide, so that the space power constellation beams down power directly to locations of high electric power demands. The j2 perturbations are included in the mathematical model used in orbit design. The Coverage time of each spacecraft over a ground site and the gap time between two consecutive spacecrafts visiting a ground site are simulated in order to evaluate the coverage continuity of the proposed solar power constellation. It has been observed from simulations that there always periods in which s spacecraft does not communicate with any

  20. Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer; Zhen Fan

    2005-09-01

    sequestration. FW has developed a conceptual design of an O{sub 2} fired boiler to determine overall plant performance and economics. Five subtasks were conducted: (1) a literature review, (2) a system design and analysis, (3) a low NOx burner design and analysis, (4) a furnace and heat recovery area design analysis, and (5) an economic analysis. The objective of the literature search is to locate any data/information relevant to the Oxygen-Based PC Boiler conceptual design. The objective of the system design and analysis task is to optimize the PC boiler plant by maximizing system efficiency within practical considerations. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 MW plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.6% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 65% of the air-fired reference case. The objective of the low NOx burner design and analysis task is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent CFD computer program. Four burner designs were developed: (1) with no OFG and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall

  1. Efficient reliability-based design of mooring systems

    SciTech Connect

    Larsen, K.

    1996-12-31

    Uncertainties both in the environmentally induced load effects and in the strength of mooring line components make a rational design of mooring systems a complex task. The methods of structural reliability, taking these uncertainties into account, have been applied in an efficient probabilistic analysis procedure for the tension overload limit state for mooring lines. This paper outlines the philosophy and methodology for this procedure, followed by numerical examples of a turret moored ship. Both base case annual failure probabilities and results from a number of sensitivity analyses are presented. It is demonstrated that the reliability-based design procedure can be effectively utilized to quantify the safety against failure due to tension overload of moorings. The results of the case studies indicate that the largest uncertainties are associated with the distribution parameters of the chain link and steel wire rope segment tension capacity, and the modelling of the environment. The modelling of spreading angles between waves, wind and current vs. colinearity, and double-peaked vs. single-peaked wave spectrum models are key parameters in the reliability assessment.

  2. Design of transient light signal simulator based on FPGA

    NASA Astrophysics Data System (ADS)

    Kang, Jing; Chen, Rong-li; Wang, Hong

    2014-11-01

    A design scheme of transient light signal simulator based on Field Programmable gate Array (FPGA) was proposed in this paper. Based on the characteristics of transient light signals and measured feature points of optical intensity signals, a fitted curve was created in MATLAB. And then the wave data was stored in a programmed memory chip AT29C1024 by using SUPERPRO programmer. The control logic was realized inside one EP3C16 FPGA chip. Data readout, data stream cache and a constant current buck regulator for powering high-brightness LEDs were all controlled by FPGA. A 12-Bit multiplying CMOS digital-to-analog converter (DAC) DAC7545 and an amplifier OPA277 were used to convert digital signals to voltage signals. A voltage-controlled current source constituted by a NPN transistor and an operational amplifier controlled LED array diming to achieve simulation of transient light signal. LM3405A, 1A Constant Current Buck Regulator for Powering LEDs, was used to simulate strong background signal in space. Experimental results showed that the scheme as a transient light signal simulator can satisfy the requests of the design stably.

  3. Computer Based Porosity Design by Multi Phase Topology Optimization

    NASA Astrophysics Data System (ADS)

    Burblies, Andreas; Busse, Matthias

    2008-02-01

    A numerical simulation technique called Multi Phase Topology Optimization (MPTO) based on finite element method has been developed and refined by Fraunhofer IFAM during the last five years. MPTO is able to determine the optimum distribution of two or more different materials in components under thermal and mechanical loads. The objective of optimization is to minimize the component's elastic energy. Conventional topology optimization methods which simulate adaptive bone mineralization have got the disadvantage that there is a continuous change of mass by growth processes. MPTO keeps all initial material concentrations and uses methods adapted from molecular dynamics to find energy minimum. Applying MPTO to mechanically loaded components with a high number of different material densities, the optimization results show graded and sometimes anisotropic porosity distributions which are very similar to natural bone structures. Now it is possible to design the macro- and microstructure of a mechanical component in one step. Computer based porosity design structures can be manufactured by new Rapid Prototyping technologies. Fraunhofer IFAM has applied successfully 3D-Printing and Selective Laser Sintering methods in order to produce very stiff light weight components with graded porosities calculated by MPTO.

  4. Entropy-Based Search Algorithm for Experimental Design

    NASA Astrophysics Data System (ADS)

    Malakar, N. K.; Knuth, K. H.

    2011-03-01

    The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. This algorithm is inspired by Skilling's nested sampling algorithm used in inference and borrows the concept of a rising threshold while a set of experiment samples are maintained. We demonstrate that this algorithm not only selects highly relevant experiments, but also is more efficient than brute force search. Such entropic search techniques promise to greatly benefit autonomous experimental design.

  5. Design of OFDM radar pulses using genetic algorithm based techniques

    NASA Astrophysics Data System (ADS)

    Lellouch, Gabriel; Mishra, Amit Kumar; Inggs, Michael

    2016-08-01

    The merit of evolutionary algorithms (EA) to solve convex optimization problems is widely acknowledged. In this paper, a genetic algorithm (GA) optimization based waveform design framework is used to improve the features of radar pulses relying on the orthogonal frequency division multiplexing (OFDM) structure. Our optimization techniques focus on finding optimal phase code sequences for the OFDM signal. Several optimality criteria are used since we consider two different radar processing solutions which call either for single or multiple-objective optimizations. When minimization of the so-called peak-to-mean envelope power ratio (PMEPR) single-objective is tackled, we compare our findings with existing methods and emphasize on the merit of our approach. In the scope of the two-objective optimization, we first address PMEPR and peak-to-sidelobe level ratio (PSLR) and show that our approach based on the non-dominated sorting genetic algorithm-II (NSGA-II) provides design solutions with noticeable improvements as opposed to random sets of phase codes. We then look at another case of interest where the objective functions are two measures of the sidelobe level, namely PSLR and the integrated-sidelobe level ratio (ISLR) and propose to modify the NSGA-II to include a constrain on the PMEPR instead. In the last part, we illustrate via a case study how our encoding solution makes it possible to minimize the single objective PMEPR while enabling a target detection enhancement strategy, when the SNR metric would be chosen for the detection framework.

  6. Fuzzy logic-based flight control system design

    NASA Astrophysics Data System (ADS)

    Nho, Kyungmoon

    The application of fuzzy logic to aircraft motion control is studied in this dissertation. The self-tuning fuzzy techniques are developed by changing input scaling factors to obtain a robust fuzzy controller over a wide range of operating conditions and nonlinearities for a nonlinear aircraft model. It is demonstrated that the properly adjusted input scaling factors can meet the required performance and robustness in a fuzzy controller. For a simple demonstration of the easy design and control capability of a fuzzy controller, a proportional-derivative (PD) fuzzy control system is compared to the conventional controller for a simple dynamical system. This thesis also describes the design principles and stability analysis of fuzzy control systems by considering the key features of a fuzzy control system including the fuzzification, rule-base and defuzzification. The wing-rock motion of slender delta wings, a linear aircraft model and the six degree of freedom nonlinear aircraft dynamics are considered to illustrate several self-tuning methods employing change in input scaling factors. Finally, this dissertation is concluded with numerical simulation of glide-slope capture in windshear demonstrating the robustness of the fuzzy logic based flight control system.

  7. Do Performance-Based Codes Support Universal Design in Architecture?

    PubMed

    Grangaard, Sidse; Frandsen, Anne Kathrine

    2016-01-01

    The research project 'An analysis of the accessibility requirements' studies how Danish architectural firms experience the accessibility requirements of the Danish Building Regulations and it examines their opinions on how future regulative models can support innovative and inclusive design - Universal Design (UD). The empirical material consists of input from six workshops to which all 700 Danish Architectural firms were invited, as well as eight group interviews. The analysis shows that the current prescriptive requirements are criticized for being too homogenous and possibilities for differentiation and zoning are required. Therefore, a majority of professionals are interested in a performance-based model because they think that such a model will support 'accessibility zoning', achieving flexibility because of different levels of accessibility in a building due to its performance. The common understanding of accessibility and UD is directly related to buildings like hospitals and care centers. When the objective is both innovative and inclusive architecture, the request of a performance-based model should be followed up by a knowledge enhancement effort in the building sector. Bloom's taxonomy of educational objectives is suggested as a tool for such a boost. The research project has been financed by the Danish Transport and Construction Agency.

  8. Design of Functional Materials based on Liquid Crystalline Droplets

    PubMed Central

    Miller, Daniel S.; Wang, Xiaoguang; Abbott, Nicholas L.

    2014-01-01

    This brief perspective focuses on recent advances in the design of functional soft materials that are based on confinement of low molecular weight liquid crystals (LCs) within micrometer-sized droplets. While the ordering of LCs within micrometer-sized domains has been explored extensively in polymer-dispersed LC materials, recent studies performed with LC domains with precisely defined size and interfacial chemistry have unmasked observations of confinement-induced ordering of LCs that do not follow previously reported theoretical predictions. These new findings, which are enabled in part by advances in the preparation of LCs encapsulated in polymeric shells, are opening up new opportunities for the design of soft responsive materials based on surface-induced ordering transitions. These materials are also providing new insights into the self-assembly of biomolecular and colloidal species at defects formed by LCs confined to micrometer-sized domains. The studies presented in this perspective serve additionally to highlight gaps in knowledge regarding the ordering of LCs in confined systems. PMID:24882944

  9. Design, fabrication and characterization of LTCC-based electromagnetic microgenerators

    NASA Astrophysics Data System (ADS)

    Gierczak, M.; Markowski, P.; Dziedzic, A.

    2016-02-01

    Design, manufacturing process and properties of electromagnetic microgenerators fabricated in LTCC (Low Temperature Co-fired Ceramics) technology are presented in this paper. Electromagnetic microgenerators consist of planar coils spatially arranged on several layers of LTCC and of a multipole permanent magnet. Two different patterns of coils with 2-, 8-,10- and 12-layers and outer diameter of 50 mm were designed and fabricated. Silver-based pastes ESL 903-A or DuPont 6145 were used. In order to estimate the inductance of a single spatial coil the Greenhouse (self-inductance) and Hoer (mutual inductance) calculation methods were used. To verify the calculation results a single-layer coil was fabricated for each pattern and its inductance was measured using the precision RLC Meter. Fabricated LTCC microgenerators with embedded coils allow to generate voltage higher than ten volts and the electrical output power of approximately 600 mW at the rotor rotation speed of 12 thousands rpm. The self-made system was used for characterization of LTCC-based electromagnetic microgenerators.

  10. Silicon-photonics-based wideband radar beamforming: basic design

    NASA Astrophysics Data System (ADS)

    Fathpour, Sasan

    2010-01-01

    Proposed is silicon-photonics-based phased array antenna beamforming for high-resolution long-range radars with wide instantaneous radio frequency (rf) bandwidth. Specifically, the proposed silicon-photonics beamformer platform offers the potential for cost-effective monolithic chip-scale integration of photonic delay lines, 2×2 optical switches, variable optical attenuators, and optical amplifiers that form the base unit of a rf transmit/receive array signal processor. In effect, the proposed silicon-photonics devices empower the design of a powerful proposed photonic beamformer with one time-delay unit per antenna element. Device-level designs studies are shown that promise meeting the high-resolution radar mission-critical requirements via time delays of up to 2.5 ns, switching times of less than 100 ns, optical isolations as good as 50 dB, and optical gains of up to 6 dB. Longer delays are achieved off chip using optical fibers.

  11. Simulation-Based Design of a Rotatory SMA Drive

    NASA Astrophysics Data System (ADS)

    Dilthey, Sascha; Meier, Horst

    2009-08-01

    The design and optimization of a rotatory drive powered by shape memory alloy (SMA) actuators is described in this paper. SMA actuators used in technical applications are parameterized by the use of trial-and-error methods, because there is a lack of computer-aided design tools for this active material. A numerical modeling approach was developed to design and optimize the geometry and the load and heating conditions of SMA actuators in a technical system to achieve a good dynamic and a high reliability. The shape memory effect used in most technical systems is the extrinsic two way effect (2WE). This effect can be simulated with the numerical model which was implemented in MATLAB/SIMULINK. The focus of the model is on the activation behavior of the SMA actuator, which defines its rate of heating and cooling. Different load conditions and various actuator geometries and shapes, e.g. wire or spring actuator, are simulated by the calculation of the energetic balance of the whole system. The numerical model can be used to simulate time variant heating currents in order to obtain an optimal system performance. The model was used to design a rotatory SMA-drive system, which is based on the moving concept of a wave drive gear set. In contrast to the conventional system, which is driven by an electric motor, the SMA drive consists of a strain wave gear and SMA wire actuators that are applied circularly to generate a rotatory movement. Special characteristics of this drive system are a high torque density and a high positioning accuracy.

  12. Antibody humanization by structure-based computational protein design.

    PubMed

    Choi, Yoonjoo; Hua, Casey; Sentman, Charles L; Ackerman, Margaret E; Bailey-Kellogg, Chris

    2015-01-01

    Antibodies derived from non-human sources must be modified for therapeutic use so as to mitigate undesirable immune responses. While complementarity-determining region (CDR) grafting-based humanization techniques have been successfully applied in many cases, it remains challenging to maintain the desired stability and antigen binding affinity upon grafting. We developed an alternative humanization approach called CoDAH ("Computationally-Driven Antibody Humanization") in which computational protein design methods directly select sets of amino acids to incorporate from human germline sequences to increase humanness while maintaining structural stability. Retrospective studies show that CoDAH is able to identify variants deemed beneficial according to both humanness and structural stability criteria, even for targets lacking crystal structures. Prospective application to TZ47, a murine anti-human B7H6 antibody, demonstrates the approach. Four diverse humanized variants were designed, and all possible unique VH/VL combinations were produced as full-length IgG1 antibodies. Soluble and cell surface expressed antigen binding assays showed that 75% (6 of 8) of the computationally designed VH/VL variants were successfully expressed and competed with the murine TZ47 for binding to B7H6 antigen. Furthermore, 4 of the 6 bound with an estimated KD within an order of magnitude of the original TZ47 antibody. In contrast, a traditional CDR-grafted variant could not be expressed. These results suggest that the computational protein design approach described here can be used to efficiently generate functional humanized antibodies and provide humanized templates for further affinity maturation.

  13. Design Considerations of Help Options in Computer-Based L2 Listening Materials Informed by Participatory Design

    ERIC Educational Resources Information Center

    Cárdenas-Claros, Mónica Stella

    2015-01-01

    This paper reports on the findings of two qualitative exploratory studies that sought to investigate design features of help options in computer-based L2 listening materials. Informed by principles of participatory design, language learners, software designers, language teachers, and a computer programmer worked collaboratively in a series of…

  14. Vaccines based on structure-based design provide protection against infectious diseases.

    PubMed

    Thomas, Sunil; Luxon, Bruce A

    2013-11-01

    Vaccines elicit immune responses, provide protection against microorganisms and are considered as one of the most successful medical interventions against infectious diseases. Vaccines can be produced using attenuated virus or bacteria, recombinant proteins, bacterial polysaccharides, carbohydrates or plasmid DNA. Conventional vaccines rely on the induction of immune responses against antigenic proteins to be effective. The genetic diversity of microorganisms, coupled with the high degree of sequence variability in antigenic proteins, presents a challenge to developing broadly effective conventional vaccines. The observation that whole protein antigens are not necessarily essential for inducing immunity has led to the emergence of a new branch of vaccine design termed 'structural vaccinology'. Structure-based vaccines are designed on the rationale that protective epitopes should be sufficient to induce immune responses and provide protection against pathogens. Recent studies demonstrated that designing structure-based vaccine candidates with multiple epitopes induce a higher immune response. As yet there are no commercial vaccines available based on structure-based design and most of the structure-based vaccine candidates are in the preclinical stages of development. This review focuses on recent advances in structure-based vaccine candidates and their application in providing protection against infectious diseases.

  15. Designing the Cloud-based DOE Systems Biology Knowledgebase

    SciTech Connect

    Lansing, Carina S.; Liu, Yan; Yin, Jian; Corrigan, Abigail L.; Guillen, Zoe C.; Kleese van Dam, Kerstin; Gorton, Ian

    2011-09-01

    Systems Biology research, even more than many other scientific domains, is becoming increasingly data-intensive. Not only have advances in experimental and computational technologies lead to an exponential increase in scientific data volumes and their complexity, but increasingly such databases themselves are providing the basis for new scientific discoveries. To engage effectively with these community resources, integrated analyses, synthesis and simulation software is needed, regularly supported by scientific workflows. In order to provide a more collaborative, community driven research environment for this heterogeneous setting, the Department of Energy (DOE) has decided to develop a federated, cloud based cyber infrastructure - the Systems Biology Knowledgebase (Kbase). Pacific Northwest National Laboratory (PNNL) with its long tradition in data intensive science lead two of the five initial pilot projects, these two focusing on defining and testing the basic federated cloud-based system architecture and develop a prototype implementation. Hereby the community wide accessibility of biological data and the capability to integrate and analyze this data within its changing research context were seen as key technical functionalities the Kbase needed to enable. In this paper we describe the results of our investigations into the design of a cloud based federated infrastructure for: (1) Semantics driven data discovery, access and integration; (2) Data annotation, publication and sharing; (3) Workflow enabled data analysis; and (4) Project based collaborative working. We describe our approach, exemplary use cases and our prototype implementation that demonstrates the feasibility of this approach.

  16. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials.

    PubMed

    Yao, Huifeng; Ye, Long; Zhang, Hao; Li, Sunsun; Zhang, Shaoqing; Hou, Jianhui

    2016-06-22

    Advances in the design and application of highly efficient conjugated polymers and small molecules over the past years have enabled the rapid progress in the development of organic photovoltaic (OPV) technology as a promising alternative to conventional solar cells. Among the numerous OPV materials, benzodithiophene (BDT)-based polymers and small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking 10% efficiency barrier in the single junction OPV devices. Remarkably, the OPV device featured by BDT-based polymer has recently demonstrated an impressive PCE of 11.21%, indicating the great potential of this class of materials in commercial photovoltaic applications. In this review, we offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship. We believe more exciting BDT-based photovoltaic materials and devices will be developed in the near future.

  17. User Preferences for Web-Based Module Design Layout and Design Impact on Information Recall Considering Age

    ERIC Educational Resources Information Center

    Pomales-García, Cristina; Rivera-Nivar, Mericia

    2015-01-01

    Research in design of Web-based modules should incorporate aging as an important factor given the diversity of the current workforce. This work aims to understand how Web-Based Learning modules can be designed to accommodate young (25-35 years) as well as older (55-65 years) users by: (1) identifying how information sources (instructor video,…

  18. Towards Characterising Design-Based Learning in Engineering Education: A Review of the Literature

    ERIC Educational Resources Information Center

    Gomez Puente, S. M.; Van Eijck, M.; Jochems, W.

    2011-01-01

    Design-based learning is a teaching approach akin to problem-based learning but one to which the design of artefacts, systems and solutions in project-based settings is central. Although design-based learning has been employed in the practice of higher engineering education, it has hardly been theorised at this educational level. The aim of this…

  19. Design and performance of radioisotope space power systems based on OSC multitube AMTEC converter designs

    SciTech Connect

    Schock, A.; Noravian, H.; Or, C.

    1997-12-31

    This paper extends the analytical procedure described in another paper in these proceedings to analyze a variety of compact and light-weight OSC-designed radioisotope-heated generators. Those generators employed General Purpose Heat Source (GPHS) modules and a converter containing sixteen AMTEC cells of OSC`s revised five-tube design with enhanced cell wall reflectivity described in a companion paper in these proceedings. OSC found that the performance of the generator is primarily a function of the thermal insulation between the outside of the generator`s 16 cells and the inside of its wall. After examining a variety of insulation options, it was found that the generator`s performance is optimized by employing a hybrid insulation system, in which the space between the cells is filled with fibrous Min-K insulation, and the generator walls are lined with tapered (i.e., graded-length) multifoil insulation. The OSC design results in a very compact generator, with eight AMTEC cells on each end of the heat source stack. The choice of the five-tube cells makes it possible to expand the BASE tube diameter without increasing the cell diameter. This is important because the eight cells mate well with the stacked GPHS modules. The OSC generator design includes a compliant heat source support and preload arrangement, to hold the heat source modules together during launch, and to maintain thermal contact conductance at the generator`s interfaces despite creep relaxation of its housing. The BOM and EOM (up to 15 years) performances of the revised generators were analyzed for two and three GPHS modules, both for fresh fuel and for aged fuel left over from a spare RTG (Radioisotope Thermoelectric Generator) fueled in 1982. The resulting power outputs were compared with JPL`s latest EOM power demand goals for the Pluto Express and Europa Orbiter missions, and with the generic goals of DOE`s Advanced Radioisotope Power System (ARPS) study. The OSC AMTEC designs yielded system

  20. Shared Knowledge among Graphic Designers, Instructional Designers and Subject Matter Experts in Designing Multimedia-Based Instructional Media

    ERIC Educational Resources Information Center

    Razak, Rafiza Abdul

    2013-01-01

    The research identified and explored the shared knowledge among the instructional multimedia design and development experts comprising of subject matter expert, graphic designer and instructional designer. The knowledge shared by the team was categorized into three groups of multimedia design principles encompasses of basic principles, authoring…

  1. Availability analysis and design of storage extension based on CWDM

    NASA Astrophysics Data System (ADS)

    Qin, Leihua; Yu, Yan

    2007-11-01

    As Fibre Channel becomes the key storage protocol of SAN (Storage Area Network), enterprises are increasingly deploying FC SANs in their data central. Meanwhile, organizations increasingly face an enormous influx of data that must be stored, protected, backed up and replicated for mitigating the risk of losing data. One of the best ways to achieve this goal is to deploy SAN extension based on CWDM(Coarse Wavelength Division Multiplexing). Availability is one of the key performance metrics for business continuity and disaster recovery and has to be well understood by IT departments when deploying SAN extension based on CWDM, for it determines accessibility to remotely located data sites. In this paper, several architecture of storage extension over CWDM is analyzed and the availability of this different storage extension architecture are calculated. Further more, two kinds of high availability storage extension architecture with 1:1 or 1:N protection is designed, and the availability of protection schema storage extension based on CWDM is calculated too.

  2. On the design of chaos-based secure communication systems

    NASA Astrophysics Data System (ADS)

    Zaher, Ashraf A.; Abu-Rezq, Abdulnasser

    2011-09-01

    This paper discusses the topic of using chaotic models for constructing secure communication systems. It investigates three different case studies that use encryption/decryption functions with varying degrees of complexity and performance. The first case study explores synchronization of identical chaotic systems, which is considered the most crucial step when developing chaos-based secure communication systems. It proposes a fast mechanism for synchronizing the transmitter and the receiver that is based on the drive-response approach. The superiority and causality of this mechanism is demonstrated via contrasting its performance and practical implementation against that of the traditional method of Pecora and Carroll. The second case study explores the use of an improved cryptography method for improving the scrambling of the transmitted signals. The improvement is based on using both the transmitter states and parameters for performing the encryption. The security analysis of this method is analyzed, highlighting its advantages and limitation, via simulating intruder attacks to the communication channel. Finally, the third case study augments a parameter update law to the previous two designs such that the encryption method is more robust. It uses a decoupling technique for which the synchronization process is completely isolated from the parameter identification algorithm. The Lorenz system was used to exemplify all the suggested techniques, and the transmission of both analog and digital signals was explored, while investigating various techniques to optimize the performance of the proposed systems.

  3. [Design of hyperspectral imaging system based on LCTF].

    PubMed

    Zhang, Dong-ying; Hong, Jin; Tang, Wei-ping; Yang, Wei-feng; Luo, Jun; Qiao, Yan-li; Zhang, Xie

    2008-10-01

    A new compact lightweight imaging system for hyperspectral imaging is described. The system can be thought of as the substitute for traditional mechanical filter-wheel sensor. The system is based on different techniques. It uses an electronic controlled LCTF(liquid crystal tunable filter) which provided rapid and vibrationless selection of any wavelength in the visible to IR range. The imaging system consisted of an optic lens, a CRI VariSpec LCTF and a Dalsa 1M30 camera. First the outline of this system setup is presented, then the optics designed is introduced, next the working principle of LCTF is described in details. A field experiment with the imaging system loaded on an airship was carried out and collected hyperspectral solid image. The images obtained had higher spectral and spatial resolution. Some parts of the 540-600 nm components of the 16-band image cube were also shown. Finally, the data acquired were rough processed to get reflection spectrum(from 420 to 720 nm) of three targets. It is concluded that the experiment has proved that the imaging system is effective in obtaining hyperspectral data. The image captured by the system can be applied to spectral estimation, spectra based classification and spectral based analysis.

  4. Lunar base thermal management/power system analysis and design

    NASA Technical Reports Server (NTRS)

    Mcghee, Jerry R.

    1992-01-01

    A compilation of several lunar surface thermal management and power system studies completed under contract and IR&D is presented. The work includes analysis and preliminary design of all major components of an integrated thermal management system, including loads determination, active internal acquisition and transport equipment, external transport systems (active and passive), passive insulation, solar shielding, and a range of lunar surface radiator concepts. Several computer codes were utilized in support of this study, including RADSIM to calculate radiation exchange factors and view factors, RADIATOR (developed in-house) for heat rejection system sizing and performance analysis over a lunar day, SURPWER for power system sizing, and CRYSTORE for cryogenic system performance predictions. Although much of the work was performed in support of lunar rover studies, any or all of the results can be applied to a range of surface applications. Output data include thermal loads summaries, subsystem performance data, mass, and volume estimates (where applicable), integrated and worst-case lunar day radiator size/mass and effective sink temperatures for several concepts (shielded and unshielded), and external transport system performance estimates for both single and two-phase (heat pumped) transport loops. Several advanced radiator concepts are presented, along with brief assessments of possible system benefits and potential drawbacks. System point designs are presented for several cases, executed in support of the contract and IR&D studies, although the parametric nature of the analysis is stressed to illustrate applicability of the analysis procedure to a wide variety of lunar surface systems. The reference configuration(s) derived from the various studies will be presented along with supporting criteria. A preliminary design will also be presented for the reference basing scenario, including qualitative data regarding TPS concerns and issues.

  5. Microseismic network design assessment based on 3D ray tracing

    NASA Astrophysics Data System (ADS)

    Näsholm, Sven Peter; Wuestefeld, Andreas; Lubrano-Lavadera, Paul; Lang, Dominik; Kaschwich, Tina; Oye, Volker

    2016-04-01

    There is increasing demand on the versatility of microseismic monitoring networks. In early projects, being able to locate any triggers was considered a success. These early successes led to a better understanding of how to extract value from microseismic results. Today operators, regulators, and service providers work closely together in order to find the optimum network design to meet various requirements. In the current study we demonstrate an integrated and streamlined network capability assessment approach. It is intended for use during the microseismic network design process prior to installation. The assessments are derived from 3D ray tracing between a grid of event points and the sensors. Three aspects are discussed: 1) Magnitude of completeness or detection limit; 2) Event location accuracy; and 3) Ground-motion hazard. The network capability parameters 1) and 2) are estimated at all hypothetic event locations and are presented in the form of maps given a seismic sensor coordinate scenario. In addition, the ray tracing traveltimes permit to estimate the point-spread-functions (PSFs) at the event grid points. PSFs are useful in assessing the resolution and focusing capability of the network for stacking-based event location and imaging methods. We estimate the performance for a hypothetical network case with 11 sensors. We consider the well-documented region around the San Andreas Fault Observatory at Depth (SAFOD) located north of Parkfield, California. The ray tracing is done through a detailed velocity model which covers a 26.2 by 21.2 km wide area around the SAFOD drill site with a resolution of 200 m both for the P-and S-wave velocities. Systematic network capability assessment for different sensor site scenarios prior to installation facilitates finding a final design which meets the survey objectives.

  6. Design of EPON far-end equipment based on FTTH

    NASA Astrophysics Data System (ADS)

    Feng, Xiancheng; Yun, Xiang

    2008-12-01

    Now, most favors fiber access is mainly the EPON fiber access system. Inheriting from the low cost of Ethernet, usability and bandwidth of optical network, EPON technology is one of the best technologies in fiber access and is adopted by the carriers all over the world widely. According to the scheme analysis to FTTH fan-end equipment, hardware design of ONU is proposed in this paper. The FTTH far-end equipment software design deference modulation design concept, it divides the software designment into 5 function modules: the module of low-layer driver, the module of system management, the module of master/slave communication, and the module of main/Standby switch and the module of command line. The software flow of the host computer is also analyzed. Finally, test is made for Ethernet service performance of FTTH far-end equipment, E1 service performance and the optical path protection switching, and so on. The results of test indicates that all the items are accordance with technical request of far-end ONU equipment and possess good quality and fully reach the requirement of telecommunication level equipment. The far-end equipment of FTTH divides into several parts based on the function: the control module, the exchange module, the UNI interface module, the ONU module, the EPON interface module, the network management debugging module, the voice processing module, the circuit simulation module, the CATV module. In the downstream direction, under the protect condition, we design 2 optical modules. The system can set one group optical module working and another group optical module closure when it is initialized. When the optical fiber line is cut off, the LOS warning comes out. It will cause MUX to replace another group optical module, simultaneously will reset module 3701/3711 and will make it again test the distance, and will give the plug board MPC850 report through the GPIO port. During normal mode, the downstream optical signal is transformed into the

  7. Task-based lens design with application to digital mammography.

    PubMed

    Chen, Liying; Barrett, Harrison H

    2005-01-01

    Recent advances in model observers that predict human perceptual performance now make it possible to optimize medical imaging systems for human task performance. We illustrate the procedure by considering the design of a lens for use in an optically coupled digital mammography system. The channelized Hotelling observer is used to model human performance, and the channels chosen are differences of Gaussians. The task performed by the model observer is detection of a lesion at a random but known location in a clustered lumpy background mimicking breast tissue. The entire system is simulated with a Monte Carlo application according to physics principles, and the main system component under study is the imaging lens that couples a fluorescent screen to a CCD detector. The signal-to-noise ratio (SNR) of the channelized Hotelling observer is used to quantify this detectability of the simulated lesion (signal) on the simulated mammographic background. Plots of channelized Hotelling SNR versus signal location for various lens apertures, various working distances, and various focusing places are presented. These plots thus illustrate the trade-off between coupling efficiency and blur in a task-based manner. In this way, the channelized Hotelling SNR is used as a merit function for lens design.

  8. Stereo vision based hand-held laser scanning system design

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Wang, Jinming

    2011-11-01

    Although 3D scanning system is used more and more broadly in many fields, such computer animate, computer aided design, digital museums, and so on, a convenient scanning device is expansive for most people to afford. In another hand, imaging devices are becoming cheaper, a stereo vision system with two video cameras cost little. In this paper, a hand held laser scanning system is design based on stereo vision principle. The two video cameras are fixed tighter, and are all calibrated in advance. The scanned object attached with some coded markers is in front of the stereo system, and can be changed its position and direction freely upon the need of scanning. When scanning, the operator swept a line laser source, and projected it on the object. At the same time, the stereo vision system captured the projected lines, and reconstructed their 3D shapes. The code markers are used to translate the coordinate system between scanned points under different view. Two methods are used to get more accurate results. One is to use NURBS curves to interpolate the sections of the laser lines to obtain accurate central points, and a thin plate spline is used to approximate the central points, and so, an exact laser central line is got, which guards an accurate correspondence between tow cameras. Another way is to incorporate the constraint of laser swept plane on the reconstructed 3D curves by a PCA (Principle Component Analysis) algorithm, and more accurate results are obtained. Some examples are given to verify the system.

  9. A design for a ground-based data management system

    NASA Technical Reports Server (NTRS)

    Lambird, Barbara A.; Lavine, David

    1988-01-01

    An initial design for a ground-based data management system which includes intelligent data abstraction and cataloging is described. The large quantity of data on some current and future NASA missions leads to significant problems in providing scientists with quick access to relevant data. Human screening of data for potential relevance to a particular study is time-consuming and costly. Intelligent databases can provide automatic screening when given relevent scientific parameters and constraints. The data management system would provide, at a minimum, information of availability of the range of data, the type available, specific time periods covered together with data quality information, and related sources of data. The system would inform the user about the primary types of screening, analysis, and methods of presentation available to the user. The system would then aid the user with performing the desired tasks, in such a way that the user need only specify the scientific parameters and objectives, and not worry about specific details for running a particular program. The design contains modules for data abstraction, catalog plan abstraction, a user-friendly interface, and expert systems for data handling, data evaluation, and application analysis. The emphasis is on developing general facilities for data representation, description, analysis, and presentation that will be easily used by scientists directly, thus bypassing the knowledge acquisition bottleneck. Expert system technology is used for many different aspects of the data management system, including the direct user interface, the interface to the data analysis routines, and the analysis of instrument status.

  10. Design of extensible meteorological data acquisition system based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Liu, Yin-hua; Zhang, Hui-jun; Li, Xiao-hui

    2015-02-01

    In order to compensate the tropospheric refraction error generated in the process of satellite navigation and positioning. Temperature, humidity and air pressure had to be used in concerned models to calculate the value of this error. While FPGA XC6SLX16 was used as the core processor, the integrated silicon pressure sensor MPX4115A and digital temperature-humidity sensor SHT75 are used as the basic meteorological parameter detection devices. The core processer was used to control the real-time sampling of ADC AD7608 and to acquire the serial output data of SHT75. The data was stored in the BRAM of XC6SLX16 and used to generate standard meteorological parameters in NEMA format. The whole design was based on Altium hardware platform and ISE software platform. The system was described in the VHDL language and schematic diagram to realize the correct detection of temperature, humidity, air pressure. The 8-channel synchronous sampling characteristics of AD7608 and programmable external resources of FPGA laid the foundation for the increasing of analog or digital meteorological element signal. The designed meteorological data acquisition system featured low cost, high performance, multiple expansions.

  11. Design and research of spectropolarimetric system based on Sagnac interferometer

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Hu, Bingliang; Zhang, Zhoufeng; Gao, Xiaohui; Wei, Ruyi; Wu, Qijing

    2015-11-01

    Spectral imaging technology has made great achievements in applications of earth observation and space target detection, with the further development of research, the requirement that People tend to get more material properties about target is also improving rapidly, so getting more characters of the target is continuous pursuit goal for the instruments of optical remote sensing. Polarization is one of the four main physical properties of light including intensity, frequency and phase . It has very important significance for remote sensing observations such as improving the accuracy of target recognition. This paper proposes on a spectropolarimeter system based on Sagnac interferometer, and introduces the main aspects related to System components, working principle, optical design, adaptive spectrum extraction algorithm, state of polarization extraction methods. Also get the data of polarization spectral imaging by using the instruments designed by the principle .By processing these data I have got the combined polarization image and target spectral curves, achieved a good result. It is a new attempt to obtain polarization spectral image by integrated measuring system. Then thoroughly solve the traditional shortcoming of spectropolarimeter, such as asynchronous detecting, poor stability and vibration, poor energy efficiency. It can be applied to many kinds of fields. Simultaneously the paper puts forward some relevant new points in the future research for this kind of principle.

  12. A disturbance based control/structure design algorithm

    NASA Technical Reports Server (NTRS)

    Mclaren, Mark D.; Slater, Gary L.

    1989-01-01

    Some authors take a classical approach to the simultaneous structure/control optimization by attempting to simultaneously minimize the weighted sum of the total mass and a quadratic form, subject to all of the structural and control constraints. Here, the optimization will be based on the dynamic response of a structure to an external unknown stochastic disturbance environment. Such a response to excitation approach is common to both the structural and control design phases, and hence represents a more natural control/structure optimization strategy than relying on artificial and vague control penalties. The design objective is to find the structure and controller of minimum mass such that all the prescribed constraints are satisfied. Two alternative solution algorithms are presented which have been applied to this problem. Each algorithm handles the optimization strategy and the imposition of the nonlinear constraints in a different manner. Two controller methodologies, and their effect on the solution algorithm, will be considered. These are full state feedback and direct output feedback, although the problem formulation is not restricted solely to these forms of controller. In fact, although full state feedback is a popular choice among researchers in this field (for reasons that will become apparent), its practical application is severely limited. The controller/structure interaction is inserted by the imposition of appropriate closed-loop constraints, such as closed-loop output response and control effort constraints. Numerical results will be obtained for a representative flexible structure model to illustrate the effectiveness of the solution algorithms.

  13. Task-based lens design with application to digital mammography

    PubMed Central

    Chen, Liying; Barrett, Harrison H.

    2006-01-01

    Recent advances in model observers that predict human perceptual performance now make it possible to optimize medical imaging systems for human task performance. We illustrate the procedure by considering the design of a lens for use in an optically coupled digital mammography system. The channelized Hotelling observer is used to model human performance, and the channels chosen are differences of Gaussians. The task performed by the model observer is detection of a lesion at a random but known location in a clustered lumpy background mimicking breast tissue. The entire system is simulated with a Monte Carlo application according to physics principles, and the main system component under study is the imaging lens that couples a fluorescent screen to a CCD detector. The signal-to-noise ratio (SNR) of the channelized Hotelling observer is used to quantify this detectability of the simulated lesion (signal) on the simulated mammographic background. Plots of channelized Hotelling SNR versus signal location for various lens apertures, various working distances, and various focusing places are presented. These plots thus illustrate the trade-off between coupling efficiency and blur in a task-based manner. In this way, the channelized Hotelling SNR is used as a merit function for lens design. PMID:15669625

  14. Task-based lens design with application to digital mammography

    NASA Astrophysics Data System (ADS)

    Chen, Liying; Barrett, Harrison H.

    2005-01-01

    Recent advances in model observers that predict human perceptual performance now make it possible to optimize medical imaging systems for human task performance. We illustrate the procedure by considering the design of a lens for use in an optically coupled digital mammography system. The channelized Hotelling observer is used to model human performance, and the channels chosen are differences of Gaussians. The task performed by the model observer is detection of a lesion at a random but known location in a clustered lumpy background mimicking breast tissue. The entire system is simulated with a Monte Carlo application according to physics principles, and the main system component under study is the imaging lens that couples a fluorescent screen to a CCD detector. The signal-to-noise ratio (SNR) of the channelized Hotelling observer is used to quantify this detectability of the simulated lesion (signal) on the simulated mammographic background. Plots of channelized Hotelling SNR versus signal location for various lens apertures, various working distances, and various focusing places are presented. These plots thus illustrate the trade-off between coupling efficiency and blur in a task-based manner. In this way, the channelized Hotelling SNR is used as a merit function for lens design.

  15. User Interaction Design for a Home-Based Telecare System

    NASA Astrophysics Data System (ADS)

    Raptis, Spyros; Tsiakoulis, Pirros; Chalamandaris, Aimilios; Karabetsos, Sotiris

    This paper presents the design of the user-interaction component of a home-based telecare system for congestive heart failure patients. It provides a short overview of the overall system and offers details on the different interaction types supported by the system. Interacting with the user occurs either as part of a scheduled procedure or as a consequence of identifying or predicting a potentially hazardous deterioration of the patients' health state. The overall logic of the interaction is structured around event-scenario associations, where a scenario consists of concrete actions to be performed, some of which may involve the patient. A key objective in this type of interaction that it is very simple, intuitive and short, involving common everyday objects and familiar media such as speech.

  16. Family-based designs for genome-wide association studies.

    PubMed

    Ott, Jurg; Kamatani, Yoichiro; Lathrop, Mark

    2011-06-01

    Association mapping has successfully identified common SNPs associated with many diseases. However, the inability of this class of variation to account for most of the supposed heritability has led to a renewed interest in methods - primarily linkage analysis - to detect rare variants. Family designs allow for control of population stratification, investigations of questions such as parent-of-origin effects and other applications that are imperfectly or not readily addressed in case-control association studies. This article guides readers through the interface between linkage and association analysis, reviews the new methodologies and provides useful guidelines for applications. Just as effective SNP-genotyping tools helped to realize the potential of association studies, next-generation sequencing tools will benefit genetic studies by improving the power of family-based approaches.

  17. Maxillary fixed prosthesis design based on the preoperative physical examination.

    PubMed

    Block, Michael S

    2015-05-01

    The purpose of this article is to illustrate the use of physical examination findings that can be used to determine the design characteristics of a full arch restoration in the maxilla. These anatomic findings include 1) the resting and 2) smile line exposures of the central incisor; 3) the vertical position of the edentulous ridge when smiling; 4) the anteroposterior relation of the teeth to the edentulous ridge; 5) the presence of bone posterior to the premolar region; 6) the anterior height of the alveolar bone in relation to the floor of the nose; and 7) the planned inclination of the maxillary teeth. Based on these physical findings, the final prosthetic plan can be established before surgery. Determination of the final restorative plan determines the surgical procedures to be performed.

  18. Structure-based drug design identifies novel LPA3 antagonists

    PubMed Central

    Fells, James I.; Tsukahara, Ryoko; Liu, Jianxiong; Tigyi, Gabor; Parrill, Abby L.

    2009-01-01

    Compound 5 ([5-(3-nitrophenoxy)-1,3-dioxo-1,3-dihydro-2-isoindol-2-yl]acetic acid) was identified as a weak selective LPA3 antagonist (IC50=4504 nM) in a virtual screening effort to optimize a dual LPA2&3 antagonist. Structure-based drug design techniques were used to prioritize similarity search matches of compound 5. This strategy rapidly identified 10 novel antagonists. The two most efficacious compounds identified inhibit activation of the LPA3 receptor by 200 nM LPA with IC50 values of 752 nM and 2992 nM. These compounds additionally define changes to our previously reported pharmacophore that will improve its ability to identify more potent and selective LPA3 receptor antagonists. The results of the combined computational and experimental screening are reported. PMID:19800804

  19. Structure-based drug design identifies novel LPA3 antagonists.

    PubMed

    Fells, James I; Tsukahara, Ryoko; Liu, Jianxiong; Tigyi, Gabor; Parrill, Abby L

    2009-11-01

    Compound 5 ([5-(3-nitrophenoxy)-1,3-dioxo-1,3-dihydro-2-isoindol-2-yl]acetic acid) was identified as a weak selective LPA(3) antagonist (IC(50)=4504 nM) in a virtual screening effort to optimize a dual LPA(2 and 3) antagonist. Structure-based drug design techniques were used to prioritize similarity search matches of compound 5. This strategy rapidly identified 10 novel antagonists. The two most efficacious compounds identified inhibit activation of the LPA(3) receptor by 200 nM LPA with IC(50) values of 752 nM and 2992 nM. These compounds additionally define changes to our previously reported pharmacophore that will improve its ability to identify more potent and selective LPA(3) receptor antagonists. The results of the combined computational and experimental screening are reported.

  20. PID controller design for trailer suspension based on linear model

    NASA Astrophysics Data System (ADS)

    Kushairi, S.; Omar, A. R.; Schmidt, R.; Isa, A. A. Mat; Hudha, K.; Azizan, M. A.

    2015-05-01

    A quarter of an active trailer suspension system having the characteristics of a double wishbone type was modeled as a complex multi-body dynamic system in MSC.ADAMS. Due to the complexity of the model, a linearized version is considered in this paper. A model reduction technique is applied to the linear model, resulting in a reduced-order model. Based on this simplified model, a Proportional-Integral-Derivative (PID) controller was designed in MATLAB/Simulink environment; primarily to reduce excessive roll motions and thus improving the ride comfort. Simulation results show that the output signal closely imitates the input signal in multiple cases - demonstrating the effectiveness of the controller.

  1. Design of RF source based on Direct Digital Synthesizer

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Qiu, YueHong

    2013-01-01

    A new Radio Frequency (RF) source based on Direct Digital Synthesizer (DDS) is presented in this paper, to improve the performance of the Sound-light tunable filter. A DDS chip called AD9959 is used to produce RF signal. The AD9959 consists of four DDS cores that provide independent frequency, phase, and amplitude control on each channel, and FPGA is used to control AD9959, to ensure a high accurate signal source with multiple signal mode and four channels output is designed. This paper introduces the implementation of system including software and hardware. The test results show that the RF source has 0-200MHz bandwidth and resolution, stability and a series of functions fully realize the scheduled target.

  2. Click chemistry in peptide-based drug design.

    PubMed

    Li, Huiyuan; Aneja, Rachna; Chaiken, Irwin

    2013-08-16

    Click chemistry is an efficient and chemoselective synthetic method for coupling molecular fragments under mild reaction conditions. Since the advent in 2001 of methods to improve stereochemical conservation, the click chemistry approach has been broadly used to construct diverse chemotypes in both chemical and biological fields. In this review, we discuss the application of click chemistry in peptide-based drug design. We highlight how triazoles formed by click reactions have been used for mimicking peptide and disulfide bonds, building secondary structural components of peptides, linking functional groups together, and bioconjugation. The progress made in this field opens the way for synthetic approaches to convert peptides with promising functional leads into structure-minimized and more stable forms.

  3. Click Chemistry in Peptide-Based Drug Design

    PubMed Central

    Li, Huiyuan; Aneja, Rachna; Chaiken, Irwin

    2014-01-01

    Click chemistry is an efficient and chemoselective synthetic method for coupling molecular fragments under mild reaction conditions. Since the advent in 2001 of methods to improve stereochemical conservation, the click chemistry approach has been broadly used to construct diverse chemotypes in both chemical and biological fields. In this review, we discuss the application of click chemistry in peptide-based drug design. We highlight how triazoles formed by click reactions have been used for mimicking peptide and disulfide bonds, building secondary structural components of peptides, linking functional groups together, and bioconjugation. The progress made in this field opens the way for synthetic approaches to convert peptides with promising functional leads into structure-minimized and more stable forms. PMID:23959192

  4. The Design of a Clostridium difficile Carbohydrate-Based Vaccine.

    PubMed

    Monteiro, Mario A

    2016-01-01

    Clostridium difficile vaccines composed of surface polysaccharides (PSs) have the potential to simultaneously control infection and colonization levels in humans. Hot water-phenol treatment of C. difficile biomass can extricate water-soluble PS-I and PS-II; and water- and phenol-soluble PS-III. C. difficile vaccines based on PS-II have attracted the most attention due its facile purification and ubiquitous expression by C. difficile ribotypes. Anti PS-II antibodies recognize both C. difficile vegetative cell and sporulating preparations and confer protection against C. difficile infection in a mouse model. The design of such an efficacious C. difficile PS-II conjugate vaccine is described here.

  5. Estimation of Characteristic Period for Energy Based Seismic Design

    SciTech Connect

    Hancloglu, Baykal; Polat, Zekeriya; Kircil, Murat Serdar

    2008-07-08

    Estimation of input energy using approximate methods has been always a considerable research topic of energy based seismic design. Therefore several approaches have been proposed by many researchers to estimate the energy input to SDOF systems in the last decades. The characteristic period is the key parameter of most of these approaches and it is defined as the period at which the peak value of the input energy occurs. In this study an equation is proposed for estimating the characteristic period considering an extensive earthquake ground motion database which includes a total of 268 far-field records, two horizontal components from 134 recording stations located on both soft and firm soil sites. For this purpose statistical regression analyses are performed to develop an equation in terms of a number of structural parameters, and it is found that the developed equation yields satisfactory results comparing the characteristic periods calculated from time history analyses of SDOF systems.

  6. Design and performance of nitride-based ultraviolet (UV) LEDs

    SciTech Connect

    CRAWFORD,MARY H.; HAN,JUNG

    2000-04-24

    The authors overview several of the challenges in achieving high efficiency nitride-based UV (< 400 nm) LEDs. The issue of optical efficiency is presented through temperature-dependent photoluminescence studies of various UV active regions. These studies demonstrate enhanced optical efficiencies for active regions with In-containing alloys (InGaN, AlInGaN). The authors compare the performance of two distinct UV LED structures. GaN/AlGaN quantum well LEDs with {lambda} < 360 nm emission have demonstrated output powers > 0.1 mW, but present designs suffer from internal absorption effects. InGaN/AlInGaN quantum well LEDs with 370 nm < {lambda} < 390 nm emission and > 1 mW output power are also presented.

  7. Web-based software tool for constraint-based design specification of synthetic biological systems.

    PubMed

    Oberortner, Ernst; Densmore, Douglas

    2015-06-19

    miniEugene provides computational support for solving combinatorial design problems, enabling users to specify and enumerate designs for novel biological systems based on sets of biological constraints. This technical note presents a brief tutorial for biologists and software engineers in the field of synthetic biology on how to use miniEugene. After reading this technical note, users should know which biological constraints are available in miniEugene, understand the syntax and semantics of these constraints, and be able to follow a step-by-step guide to specify the design of a classical synthetic biological system-the genetic toggle switch.1 We also provide links and references to more information on the miniEugene web application and the integration of the miniEugene software library into sophisticated Computer-Aided Design (CAD) tools for synthetic biology ( www.eugenecad.org ).

  8. Virtual Screening and Molecular Design Based on Hierarchical Qsar Technology

    NASA Astrophysics Data System (ADS)

    Kuz'min, Victor E.; Artemenko, A. G.; Muratov, Eugene N.; Polischuk, P. G.; Ognichenko, L. N.; Liahovsky, A. V.; Hromov, A. I.; Varlamova, E. V.

    This chapter is devoted to the hierarchical QSAR technology (HiT QSAR) based on simplex representation of molecular structure (SiRMS) and its application to different QSAR/QSPR tasks. The essence of this technology is a sequential solution (with the use of the information obtained on the previous steps) of the QSAR paradigm by a series of enhanced models based on molecular structure description (in a specific order from 1D to 4D). Actually, it's a system of permanently improved solutions. Different approaches for domain applicability estimation are implemented in HiT QSAR. In the SiRMS approach every molecule is represented as a system of different simplexes (tetratomic fragments with fixed composition, structure, chirality, and symmetry). The level of simplex descriptors detailed increases consecutively from the 1D to 4D representation of the molecular structure. The advantages of the approach presented are an ability to solve QSAR/QSPR tasks for mixtures of compounds, the absence of the "molecular alignment" problem, consideration of different physical-chemical properties of atoms (e.g., charge, lipophilicity), and the high adequacy and good interpretability of obtained models and clear ways for molecular design. The efficiency of HiT QSAR was demonstrated by its comparison with the most popular modern QSAR approaches on two representative examination sets. The examples of successful application of the HiT QSAR for various QSAR/QSPR investigations on the different levels (1D-4D) of the molecular structure description are also highlighted. The reliability of developed QSAR models as the predictive virtual screening tools and their ability to serve as the basis of directed drug design was validated by subsequent synthetic, biological, etc. experiments. The HiT QSAR is realized as the suite of computer programs termed the "HiT QSAR" software that so includes powerful statistical capabilities and a number of useful utilities.

  9. Knowledge-based approach to multiple-transaction processing and distributed data-base design

    SciTech Connect

    Park, J.T.

    1987-01-01

    The collective processing of multiple transactions in a data-base system has recently received renewed attention due to its capability of improving the overall performance of a data-base system and its applicability to the design of knowledge-based expert systems and extensible data-base systems. This dissertation consists of two parts. The first part presents a new knowledge-based approach to the problems of processing multiple concurrent queries and distributing replicated data objects for further improvement of the overall system performance. The second part deals with distributed database design, i.e., designing horizontal fragments using a semantic knowledge, and allocating data in a distributed environment. The semantic knowledge on data such as functional dependencies and semantic-data-integrity constraints are newly exploited for the identification of subset relationships between intermediate results of query executions involving joins, such that the (intermediate) results of queries can be utilized for the efficient processing of other queries. The expertise on the collective processing of multiple transactions is embodied into the rules of a rule-based expert system, MTP (Multiple Transaction Processor). In the second part, MTP is applied for the determination of horizontal fragments exploiting the semantic knowledge. Heuristics for allocating data in local area networks are developed.

  10. Distributed design tools: Mapping targeted design tools onto a Web-based distributed architecture for high-performance computing

    SciTech Connect

    Holmes, V.P.; Linebarger, J.M.; Miller, D.J.; Poore, C.A.

    1999-11-30

    Design Tools use a Web-based Java interface to guide a product designer through the design-to-analysis cycle for a specific, well-constrained design problem. When these Design Tools are mapped onto a Web-based distributed architecture for high-performance computing, the result is a family of Distributed Design Tools (DDTs). The software components that enable this mapping consist of a Task Sequencer, a generic Script Execution Service, and the storage of both data and metadata in an active, object-oriented database called the Product Database Operator (PDO). The benefits of DDTs include improved security, reliability, scalability (in both problem size and computing hardware), robustness, and reusability. In addition, access to the PDO unlocks its wide range of services for distributed components, such as lookup and launch capability, persistent shared memory for communication between cooperating services, state management, event notification, and archival of design-to-analysis session data.

  11. Designing Effective Online Instruction: A Handbook for Web-Based Courses

    ERIC Educational Resources Information Center

    Koontz, Franklin R.; Li, Hongqin; Compora, Daniel P.

    2006-01-01

    The designing of online courses requires a radical change in the way the instruction is designed and presented to the student. To date, however, there are no research-based models, using a systems approach, that are available to design Web-based instruction. This book introduces the ASSIST-ME Model, an instructional design model for Web-based…

  12. Optical design of LED-based automotive headlamps

    NASA Astrophysics Data System (ADS)

    Zhu, Xiangbing; Zhu, Qian; Wu, Han; Chen, Chun

    2013-02-01

    In order to solve the problem of high cost and low optical efficiency of current LED-based headlamps, we introduced a new optical design approach for LED-based automotive headlamps. In this configuration, 48 pieces of LEDs are used to build a LED array and the measuring screen is divided into multiple blocks to allow each LED to illuminate a block. A kind of secondary optical lens for a single LED is used so that the lights radiated from a single LED can form a rectangular beam region, whose optical efficiency is above 85% in theory. Lighting up different LEDs can illuminate different blocks, so as to realize low-beam and high-beam lighting. Ray tracing simulation results fulfill the low-beam and high-beam optical demands of the regulation. Since low-power LEDs need no additional reflectors, cost lower and obtain higher efficiency than high-power LEDs, this configuration achieves high reliability installation and can partially realize the functions of Adaptive Front-Lighting System (AFS).

  13. Peptide-based proteasome inhibitors in anticancer drug design.

    PubMed

    Micale, Nicola; Scarbaci, Kety; Troiano, Valeria; Ettari, Roberta; Grasso, Silvana; Zappalà, Maria

    2014-09-01

    The identification of the key role of the eukaryotic 26S proteasome in regulated intracellular proteolysis and its importance as a target in many pathological conditions wherein the proteasomal activity is defective (e.g., malignancies, autoimmune diseases, neurodegenerative diseases, etc.) prompted several research groups to the development of specific inhibitors of this multicatalytic complex with the aim of obtaining valid drug candidates. In regard to the anticancer therapy, the peptide boronate bortezomib (Velcade®) represents the first molecule approved by FDA for the treatment of multiple myeloma in 2003 and mantle cell lymphoma in 2006. Since then, a plethora of molecules targeting the proteasome have been identified as potential anticancer agents and a few of them reached clinical trials or are already in the market (i.e., carfilzomib; Kyprolis®). In most cases, the design of new proteasome inhibitors (PIs) takes into account a proven peptide or pseudopeptide motif as a base structure and places other chemical entities throughout the peptide skeleton in such a way to create an efficacious network of interactions within the catalytic sites. The purpose of this review is to provide an in-depth look at the current state of the research in the field of peptide-based PIs, specifically those ones that might find an application as anticancer agents.

  14. Modular Design of Self-Assembling Peptide-Based Nanotubes.

    PubMed

    Burgess, Natasha C; Sharp, Thomas H; Thomas, Franziska; Wood, Christopher W; Thomson, Andrew R; Zaccai, Nathan R; Brady, R Leo; Serpell, Louise C; Woolfson, Derek N

    2015-08-26

    An ability to design peptide-based nanotubes (PNTs) rationally with defined and mutable internal channels would advance understanding of peptide self-assembly, and present new biomaterials for nanotechnology and medicine. PNTs have been made from Fmoc dipeptides, cyclic peptides, and lock-washer helical bundles. Here we show that blunt-ended α-helical barrels, that is, preassembled bundles of α-helices with central channels, can be used as building blocks for PNTs. This approach is general and systematic, and uses a set of de novo helical bundles as standards. One of these bundles, a hexameric α-helical barrel, assembles into highly ordered PNTs, for which we have determined a structure by combining cryo-transmission electron microscopy, X-ray fiber diffraction, and model building. The structure reveals that the overall symmetry of the peptide module plays a critical role in ripening and ordering of the supramolecular assembly. PNTs based on pentameric, hexameric, and heptameric α-helical barrels sequester hydrophobic dye within their lumens.

  15. Conceptual design of a lunar base thermal control system

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Debarro, Marc J.; Farmer, Jeffery T.

    1992-01-01

    Space station and alternate thermal control technologies were evaluated for lunar base applications. The space station technologies consisted of single-phase, pumped water loops for sensible and latent heat removal from the cabin internal environment and two-phase ammonia loops for the transportation and rejection of these heat loads to the external environment. Alternate technologies were identified for those areas where space station technologies proved to be incompatible with the lunar environment. Areas were also identified where lunar resources could enhance the thermal control system. The internal acquisition subsystem essentially remained the same, while modifications were needed for the transport and rejection subsystems because of the extreme temperature variations on the lunar surface. The alternate technologies examined to accommodate the high daytime temperatures incorporated lunar surface insulating blankets, heat pump system, shading, and lunar soil. Other heat management techniques, such as louvers, were examined to prevent the radiators from freezing. The impact of the geographic location of the lunar base and the orientation of the radiators was also examined. A baseline design was generated that included weight, power, and volume estimates.

  16. Mutually unbiased bases as minimal Clifford covariant 2-designs

    NASA Astrophysics Data System (ADS)

    Zhu, Huangjun

    2015-06-01

    Mutually unbiased bases (MUBs) are interesting for various reasons. The most attractive example of (a complete set of) MUBs is the one constructed by Ivanović as well as Wootters and Fields, which is referred to as the canonical MUB. Nevertheless, little is known about anything that is unique to this MUB. We show that the canonical MUB in any prime power dimension is uniquely determined by an extremal orbit of the (restricted) Clifford group except in dimension 3, in which case the orbit defines a special symmetric informationally complete measurement (SIC), known as the Hesse SIC. Here the extremal orbit is the orbit with the smallest number of pure states. Quite surprisingly, this characterization does not rely on any concept that is related to bases or unbiasedness. As a corollary, the canonical MUB is the unique minimal 2-design covariant with respect to the Clifford group except in dimension 3. In addition, these MUBs provide an infinite family of highly symmetric frames and positive-operator-valued measures (POVMs), which are of independent interest.

  17. Three decades of structure- and property-based molecular design.

    PubMed

    Müller, Klaus

    2014-01-01

    Roche has pioneered structure- and property-based molecular design to drug discovery. While this is an ongoing development, the past three decades feature key events that have revolutionized the way drug discovery is conducted in Big Pharma industry. It has been a great privilege to have been involved in this transformation process, to have been able to collaborate with, direct, guide, or simply encourage outstanding experts in various disciplines to build and further develop what has become a major pillar of modern small-molecule drug discovery. This article is an account of major events that took place since the early decision of Roche to implement computer-assisted molecular modeling 32 years ago and is devoted to the key players involved. It highlights the internal build-up of structural biology, with protein X-ray structure determination at its core, and the early setup of bioinformatics. It describes the strategic shift to large compound libraries and high-throughput screening with the development of novel compound storage and ultra-high-throughput screening facilities, as well as the strategic return to focused screening of small motif-based compound libraries. These developments were accompanied by the rise of miniaturized parallel compound property analytics which resulted in a major paradigm shift in medicinal chemistry from linear to multi-dimensional lead optimization. The rapid growth of huge collections of property data stimulated the development of various novel data mining concepts with 'matched molecular pair' analysis and novel variants thereof playing crucial roles. As compound properties got more prominent in molecular design, exploration of specific structural motifs for property modulation became a research activity complementary to target-oriented medicinal chemistry. The exploration of oxetane is given as an example. For the sake of brevity, this account cannot detail all further developments that have taken place in each individual area of

  18. Integrating structure-based and ligand-based approaches for computational drug design.

    PubMed

    Wilson, Gregory L; Lill, Markus A

    2011-04-01

    Methods utilized in computer-aided drug design can be classified into two major categories: structure based and ligand based, using information on the structure of the protein or on the biological and physicochemical properties of bound ligands, respectively. In recent years there has been a trend towards integrating these two methods in order to enhance the reliability and efficiency of computer-aided drug-design approaches by combining information from both the ligand and the protein. This trend resulted in a variety of methods that include: pseudoreceptor methods, pharmacophore methods, fingerprint methods and approaches integrating docking with similarity-based methods. In this article, we will describe the concepts behind each method and selected applications.

  19. Managing the Complexity of Design Problems through Studio-Based Learning

    ERIC Educational Resources Information Center

    Cennamo, Katherine; Brandt, Carol; Scott, Brigitte; Douglas, Sarah; McGrath, Margarita; Reimer, Yolanda; Vernon, Mitzi

    2011-01-01

    The ill-structured nature of design problems makes them particularly challenging for problem-based learning. Studio-based learning (SBL), however, has much in common with problem-based learning and indeed has a long history of use in teaching students to solve design problems. The purpose of this ethnographic study of an industrial design class,…

  20. A CMOS high speed imaging system design based on FPGA

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Wang, Huawei; Cao, Jianzhong; Qiao, Mingrui

    2015-10-01

    CMOS sensors have more advantages than traditional CCD sensors. The imaging system based on CMOS has become a hot spot in research and development. In order to achieve the real-time data acquisition and high-speed transmission, we design a high-speed CMOS imaging system on account of FPGA. The core control chip of this system is XC6SL75T and we take advantages of CameraLink interface and AM41V4 CMOS image sensors to transmit and acquire image data. AM41V4 is a 4 Megapixel High speed 500 frames per second CMOS image sensor with global shutter and 4/3" optical format. The sensor uses column parallel A/D converters to digitize the images. The CameraLink interface adopts DS90CR287 and it can convert 28 bits of LVCMOS/LVTTL data into four LVDS data stream. The reflected light of objects is photographed by the CMOS detectors. CMOS sensors convert the light to electronic signals and then send them to FPGA. FPGA processes data it received and transmits them to upper computer which has acquisition cards through CameraLink interface configured as full models. Then PC will store, visualize and process images later. The structure and principle of the system are both explained in this paper and this paper introduces the hardware and software design of the system. FPGA introduces the driven clock of CMOS. The data in CMOS is converted to LVDS signals and then transmitted to the data acquisition cards. After simulation, the paper presents a row transfer timing sequence of CMOS. The system realized real-time image acquisition and external controls.