Chan, Leo Li-Ying; Smith, Tim; Kumph, Kendra A; Kuksin, Dmitry; Kessel, Sarah; Déry, Olivier; Cribbes, Scott; Lai, Ning; Qiu, Jean
2016-10-01
To ensure cell-based assays are performed properly, both cell concentration and viability have to be determined so that the data can be normalized to generate meaningful and comparable results. Cell-based assays performed in immuno-oncology, toxicology, or bioprocessing research often require measuring of multiple samples and conditions, thus the current automated cell counter that uses single disposable counting slides is not practical for high-throughput screening assays. In the recent years, a plate-based image cytometry system has been developed for high-throughput biomolecular screening assays. In this work, we demonstrate a high-throughput AO/PI-based cell concentration and viability method using the Celigo image cytometer. First, we validate the method by comparing directly to Cellometer automated cell counter. Next, cell concentration dynamic range, viability dynamic range, and consistency are determined. The high-throughput AO/PI method described here allows for 96-well to 384-well plate samples to be analyzed in less than 7 min, which greatly reduces the time required for the single sample-based automated cell counter. In addition, this method can improve the efficiency for high-throughput screening assays, where multiple cell counts and viability measurements are needed prior to performing assays such as flow cytometry, ELISA, or simply plating cells for cell culture.
Chan, Leo Li-Ying; Kuksin, Dmitry; Laverty, Daniel J; Saldi, Stephanie; Qiu, Jean
2015-05-01
The ability to accurately determine cell viability is essential to performing a well-controlled biological experiment. Typical experiments range from standard cell culturing to advanced cell-based assays that may require cell viability measurement for downstream experiments. The traditional cell viability measurement method has been the trypan blue (TB) exclusion assay. However, since the introduction of fluorescence-based dyes for cell viability measurement using flow or image-based cytometry systems, there have been numerous publications comparing the two detection methods. Although previous studies have shown discrepancies between TB exclusion and fluorescence-based viability measurements, image-based morphological analysis was not performed in order to examine the viability discrepancies. In this work, we compared TB exclusion and fluorescence-based viability detection methods using image cytometry to observe morphological changes due to the effect of TB on dead cells. Imaging results showed that as the viability of a naturally-dying Jurkat cell sample decreased below 70 %, many TB-stained cells began to exhibit non-uniform morphological characteristics. Dead cells with these characteristics may be difficult to count under light microscopy, thus generating an artificially higher viability measurement compared to fluorescence-based method. These morphological observations can potentially explain the differences in viability measurement between the two methods.
Davis, Grace L.; Ray, Nashone A.; Lahiri, Ramanuj; Gillis, Thomas P.; Krahenbuhl, James L.; Williams, Diana L.; Adams, Linda B.
2013-01-01
Background The inability of Mycobacterium leprae to grow on axenic media has necessitated specialized techniques in order to determine viability of this organism. The purpose of this study was to develop a simple and sensitive molecular assay for determining M. leprae viability directly from infected tissues. Methodology/Principle Findings Two M. leprae-specific quantitative reverse transcription PCR (qRT-PCR) assays based on the expression levels of esxA, encoding the ESAT-6 protein, and hsp18, encoding the heat shock 18 kDa protein, were developed and tested using infected footpad (FP) tissues of both immunocompetent and immunocompromised (athymic nu/nu) mice. In addition, the ability of these assays to detect the effects of anti-leprosy drug treatment on M. leprae viability was determined using rifampin and rifapentine, each at 10 mg/kg for 1, 5, or 20 daily doses, in the athymic nu/nu FP model. Molecular enumeration (RLEP PCR) and viability determinations (qRT-PCR) were performed via Taqman methodology on DNA and RNA, respectively, purified from ethanol-fixed FP tissue and compared with conventional enumeration (microscopic counting of acid fast bacilli) and viability assays (radiorespirometry, viability staining) which utilized bacilli freshly harvested from the contralateral FP. Both molecular and conventional assays demonstrated growth and high viability of M. leprae in nu/nu FPs over a 4 month infection period. In contrast, viability was markedly decreased by 8 weeks in immunocompetent mice. Rifapentine significantly reduced bacterial viability after 5 treatments, whereas rifampin required up to 20 treatments for the same efficacy. Neither drug was effective after a single treatment. In addition, host gene expression was monitored with the same RNA preparations. Conclusions hsp18 and esxA qRT-PCR are sensitive molecular indicators, reliably detecting viability of M. leprae in tissues without the need for bacterial isolation or immediate processing, making these assays applicable for in vivo drug screening and promising for clinical and field applications. PMID:24179562
Davis, Grace L; Ray, Nashone A; Lahiri, Ramanuj; Gillis, Thomas P; Krahenbuhl, James L; Williams, Diana L; Adams, Linda B
2013-01-01
The inability of Mycobacterium leprae to grow on axenic media has necessitated specialized techniques in order to determine viability of this organism. The purpose of this study was to develop a simple and sensitive molecular assay for determining M. leprae viability directly from infected tissues. Two M. leprae-specific quantitative reverse transcription PCR (qRT-PCR) assays based on the expression levels of esxA, encoding the ESAT-6 protein, and hsp18, encoding the heat shock 18 kDa protein, were developed and tested using infected footpad (FP) tissues of both immunocompetent and immunocompromised (athymic nu/nu) mice. In addition, the ability of these assays to detect the effects of anti-leprosy drug treatment on M. leprae viability was determined using rifampin and rifapentine, each at 10 mg/kg for 1, 5, or 20 daily doses, in the athymic nu/nu FP model. Molecular enumeration (RLEP PCR) and viability determinations (qRT-PCR) were performed via Taqman methodology on DNA and RNA, respectively, purified from ethanol-fixed FP tissue and compared with conventional enumeration (microscopic counting of acid fast bacilli) and viability assays (radiorespirometry, viability staining) which utilized bacilli freshly harvested from the contralateral FP. Both molecular and conventional assays demonstrated growth and high viability of M. leprae in nu/nu FPs over a 4 month infection period. In contrast, viability was markedly decreased by 8 weeks in immunocompetent mice. Rifapentine significantly reduced bacterial viability after 5 treatments, whereas rifampin required up to 20 treatments for the same efficacy. Neither drug was effective after a single treatment. In addition, host gene expression was monitored with the same RNA preparations. hsp18 and esxA qRT-PCR are sensitive molecular indicators, reliably detecting viability of M. leprae in tissues without the need for bacterial isolation or immediate processing, making these assays applicable for in vivo drug screening and promising for clinical and field applications.
Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays.
Fischer, Janine; Prosenc, Marc H; Wolff, Martin; Hort, Norbert; Willumeit, Regine; Feyerabend, Frank
2010-05-01
Magnesium (Mg) alloys are promising materials for the development of biodegradable implants. However, the current in vitro test procedures for cytotoxicity, cell viability and proliferation are not always suitable for this class of materials. In this paper we show that tetrazolium-salt-based assays, which are widely used in practice, are influenced by the corrosion products of Mg-based alloys. Corroded Mg converts tetrazolium salts to formazan, leading to a higher background and falsifying the results of cell viability. Tetrazolium-based assays are therefore not a useful tool for testing the cytotoxicity of Mg in static in vitro assays. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Gorokhova, Elena; Mattsson, Lisa; Sundström, Annica M
2012-06-01
Two fluorescent dyes, TO-PRO-1 iodide and 5-CFDA-AM, were evaluated for LIVE/DEAD assessment of unicellular marine algae Brachiomonas submarina and Tetraselmis suecica. Epifluorescence microscopy was used to estimate cell viability in predetermined mixtures of viable and non-viable algal cells and validated using microplate growth assay as reference measurements. On average, 5-CFDA-AM underestimated live cell abundance by ~25% compared with viability estimated by the growth assay, whereas TO-PRO-1 iodide provided accurate viability estimates. Furthermore, viability estimates based on staining with TO-PRO-1 iodide were not affected by a storage period of up to one month in -80°C, making the assay a good candidate for routine assessment of phytoplankton populations in field and laboratory studies. Copyright © 2012 Elsevier B.V. All rights reserved.
Islet Assessment for Transplantation
Papas, Klearchos K.; Suszynski, Thomas M.; Colton, Clark. K.
2010-01-01
Purpose of review There is a critical need for meaningful viability and potency assays that characterize islet preparations for release prior to clinical islet cell transplantation (ICT). Development, testing, and validation of such assays have been the subject of intense investigation for the past decade. These efforts are reviewed, highlighting the most recent results while focusing on the most promising assays. Recent Findings Assays based on membrane integrity do not reflect true viability when applied to either intact islets or dispersed islet cells. Assays requiring disaggregation of intact islets into individual cells for assessment introduce additional problems of cell damage and loss. Assays evaluating mitochondrial function, specifically mitochondrial membrane potential, bioenergetic status, and cellular oxygen consumption rate (OCR), especially when conducted with intact islets, appear most promising in evaluating their quality prior to ICT. Prospective, quantitative assays based on measurements of OCR with intact islets have been developed, validated and their results correlated with transplant outcomes in the diabetic nude mouse bioassay. Conclusion More sensitive and reliable islet viability and potency tests have been recently developed and tested. Those evaluating mitochondrial function are most promising, correlate with transplant outcomes in mice, and are currently being evaluated in the clinical setting. PMID:19812494
A rapid, sensitive, and cost-efficient assay to estimate viability of potato cyst nematodes.
van den Elsen, Sven; Ave, Maaike; Schoenmakers, Niels; Landeweert, Renske; Bakker, Jaap; Helder, Johannes
2012-02-01
Potato cyst nematodes (PCNs) are quarantine organisms, and they belong to the economically most relevant pathogens of potato worldwide. Methodologies to assess the viability of their cysts, which can contain 200 to 500 eggs protected by the hardened cuticle of a dead female, are either time and labor intensive or lack robustness. We present a robust and cost-efficient viability assay based on loss of membrane integrity upon death. This assay uses trehalose, a disaccharide present at a high concentration in the perivitelline fluid of PCN eggs, as a viability marker. Although this assay can detect a single viable egg, the limit of detection for regular field samples was higher, ≈10 viable eggs, due to background signals produced by other soil components. On the basis of 30 nonviable PCN samples from The Netherlands, a threshold level was defined (ΔA(trehalose) = 0.0094) below which the presence of >10 viable eggs is highly unlikely (true for ≈99.7% of the observations). This assay can easily be combined with a subsequent DNA-based species determination. The presence of trehalose is a general phenomenon among cyst nematodes; therefore, this method can probably be used for (for example) soybean, sugar beet, and cereal cyst nematodes as well.
Pooley, Hannah B.; de Silva, Kumudika; Purdie, Auriol C.; Begg, Douglas J.; Whittington, Richard J.
2016-01-01
ABSTRACT Determining the viability of bacteria is a key outcome of in vitro cellular infection assays. Currently, this is done by culture, which is problematic for fastidious slow-growing bacteria such as Mycobacterium avium subsp. paratuberculosis, where it can take up to 4 months to confirm growth. This study aimed to identify an assay that can rapidly quantify the number of viable M. avium subsp. paratuberculosis cells in a cellular sample. Three commercially available bacterial viability assays along with a modified liquid culture method coupled with high-throughput quantitative PCR growth detection were assessed. Criteria for assessment included the ability of each assay to differentiate live and dead M. avium subsp. paratuberculosis organisms and their accuracy at low bacterial concentrations. Using the culture-based method, M. avium subsp. paratuberculosis growth was reliably detected and quantified within 2 weeks. There was a strong linear association between the 2-week growth rate and the initial inoculum concentration. The number of viable M. avium subsp. paratuberculosis cells in an unknown sample was quantified based on the growth rate, by using growth standards. In contrast, none of the commercially available viability assays were suitable for use with samples from in vitro cellular infection assays. IMPORTANCE Rapid quantification of the viability of Mycobacterium avium subsp. paratuberculosis in samples from in vitro cellular infection assays is important, as it allows these assays to be carried out on a large scale. In vitro cellular infection assays can function as a preliminary screening tool, for vaccine development or antimicrobial screening, and also to extend findings derived from experimental animal trials. Currently, by using culture, it takes up to 4 months to obtain quantifiable results regarding M. avium subsp. paratuberculosis viability after an in vitro infection assay; however, with the quantitative PCR and liquid culture method developed, reliable results can be obtained at 2 weeks. This method will be important for vaccine and antimicrobial screening work, as it will allow a greater number of candidates to be screened in the same amount of time, which will increase the likelihood that a favorable candidate will be found to be subjected to further testing. PMID:27371585
Human neuron-astrocyte 3D co-culture-based assay for evaluation of neuroprotective compounds.
Terrasso, Ana Paula; Silva, Ana Carina; Filipe, Augusto; Pedroso, Pedro; Ferreira, Ana Lúcia; Alves, Paula Marques; Brito, Catarina
Central nervous system drug development has registered high attrition rates, mainly due to the lack of efficacy of drug candidates, highlighting the low reliability of the models used in early-stage drug development and the need for new in vitro human cell-based models and assays to accurately identify and validate drug candidates. 3D human cell models can include different tissue cell types and represent the spatiotemporal context of the original tissue (co-cultures), allowing the establishment of biologically-relevant cell-cell and cell-extracellular matrix interactions. Nevertheless, exploitation of these 3D models for neuroprotection assessment has been limited due to the lack of data to validate such 3D co-culture approaches. In this work we combined a 3D human neuron-astrocyte co-culture with a cell viability endpoint for the implementation of a novel in vitro neuroprotection assay, over an oxidative insult. Neuroprotection assay robustness and specificity, and the applicability of Presto Blue, MTT and CytoTox-Glo viability assays to the 3D co-culture were evaluated. Presto Blue was the adequate endpoint as it is non-destructive and is a simpler and reliable assay. Semi-automation of the cell viability endpoint was performed, indicating that the assay setup is amenable to be transferred to automated screening platforms. Finally, the neuroprotection assay setup was applied to a series of 36 test compounds and several candidates with higher neuroprotective effect than the positive control, Idebenone, were identified. The robustness and simplicity of the implemented neuroprotection assay with the cell viability endpoint enables the use of more complex and reliable 3D in vitro cell models to identify and validate drug candidates. Copyright © 2016 Elsevier Inc. All rights reserved.
Microelectrode Array-evaluation of Neurotoxic Effects of Magnesium as an Implantable Biomaterial
Huang, Ting; Wang, Zhonghai; Wei, Lina; Kindy, Mark; Zheng, Yufeng; Xi, Tingfei; Gao, Bruce Z.
2016-01-01
Magnesium (Mg)-based biomaterials have shown great potential in clinical applications. However, the cytotoxic effects of excessive Mg2+ and the corrosion products from Mg-based biomaterials, particularly their effects on neurons, have been little studied. Although viability tests are most commonly used, a functional evaluation is critically needed. Here, both methyl thiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) assays were used to test the effect of Mg2+ and Mg-extract solution on neuronal viability. Microelectrode arrays (MEAs), which provide long-term, real-time recording of extracellular electrophysiological signals of in vitro neuronal networks, were used to test for toxic effects. The minimum effective concentrations (ECmin) of Mg2+ from the MTT and LDH assays were 3 mmol/L and 100 mmol/L, respectively, while the ECmin obtained from the MEA assay was 0.1 mmol/L. MEA data revealed significant loss of neuronal network activity when the culture was exposed to 25% Mg-extract solution, a concentration that did not affect neuronal viability. For evaluating the biocompatibility of Mg-based biomaterials with neurons, MEA electrophysiological testing is a more precise method than basic cell-viability testing. PMID:27110081
Microelectrode Array-evaluation of Neurotoxic Effects of Magnesium as an Implantable Biomaterial.
Huang, Ting; Wang, Zhonghai; Wei, Lina; Kindy, Mark; Zheng, Yufeng; Xi, Tingfei; Gao, Bruce Z
2016-01-01
Magnesium (Mg)-based biomaterials have shown great potential in clinical applications. However, the cytotoxic effects of excessive Mg 2+ and the corrosion products from Mg-based biomaterials, particularly their effects on neurons, have been little studied. Although viability tests are most commonly used, a functional evaluation is critically needed. Here, both methyl thiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) assays were used to test the effect of Mg 2+ and Mg-extract solution on neuronal viability. Microelectrode arrays (MEAs), which provide long-term, real-time recording of extracellular electrophysiological signals of in vitro neuronal networks, were used to test for toxic effects. The minimum effective concentrations (EC min ) of Mg 2+ from the MTT and LDH assays were 3 mmol/L and 100 mmol/L, respectively, while the EC min obtained from the MEA assay was 0.1 mmol/L. MEA data revealed significant loss of neuronal network activity when the culture was exposed to 25% Mg-extract solution, a concentration that did not affect neuronal viability. For evaluating the biocompatibility of Mg-based biomaterials with neurons, MEA electrophysiological testing is a more precise method than basic cell-viability testing.
Efficacy of Two Peroxygen-Based Disinfectants for Inactivation of Cryptosporidium parvum Oocysts
Quilez, Joaquin; Sanchez-Acedo, Caridad; Avendaño, Catalina; del Cacho, Emilio; Lopez-Bernad, Fernando
2005-01-01
Two commercial peroxygen-based disinfectants containing hydrogen peroxide plus either peracetic acid (Ox-Virin) or silver nitrate (Ox-Agua) were tested for their ability to inactivate Cryptosporidium parvum oocysts. Oocysts were obtained from naturally infected goat kids and exposed to concentrations of 2, 5, and 10% Ox-Virin or 1, 3, and 5% Ox-Agua for 30, 60, and 120 min. In vitro excystation, vital dyes (4′,6′-diamidino-2-phenylindole and propidium iodide), and infectivity in neonatal BALB/c mice were used to assess the viability and infectivity of control and disinfectant-treated oocysts. Both disinfectants had a deleterious effect on the survival of C. parvum oocysts, since disinfection significantly reduced and in some cases eliminated their viability and infectivity. When in vitro assays were compared with an infectivity assay as indicators of oocyst inactivation, the excystation assay showed 98.6% inactivation after treatment with 10% Ox-Virin for 60 min, while the vital-dye assay showed 95.2% inactivation and the infectivity assay revealed 100% inactivation. Treatment with 3% Ox-Agua for 30 min completely eliminated oocyst infectivity for mice, although we were able to observe only 74.7% inactivation as measured by excystation assays and 24.3% with vital dyes (which proved to be the least reliable method for predicting C. parvum oocyst viability). These findings indicate the potential efficacy of both disinfectants for C. parvum oocysts in agricultural settings where soil, housing, or tools might be contaminated and support the argument that in comparison to the animal infectivity assay, vital-dye and excystation methods overestimate the viability of oocysts following chemical disinfection. PMID:15870337
In vitro radiolabel uptake viability assay for Onchocerca microfilariae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callahan, H.L.; Wakeman, J.M.; Crouch, R.K.
1989-02-01
A radiolabel uptake viability assay for Onchocerca cervicalis using (/sup 3/H)2-deoxy-D-glucose in Hanks' balanced salt solution, pH 7.5, at 30 C is described and compared to the traditional visual motility assay. A correlation of r = 0.92 between the assays was found, with the radiolabel uptake method apparently a more sensitive indicator of microfilarial viability.
Shoshan, Maria C; Havelka, Associate Professor Principal Investigator Aleksandra Mandic; Neumann, Frank; Linder, Stig
2006-11-01
Cell-based screening allows identification of biologically active compounds, for example, potential anticancer drugs. In this review, various screening assays are discussed in terms of what they measure and how this affects interpretation and relevance. High-throughput (HT) assays of viability based on the reduction of exogenous substrates do not always reflect viability or cell number levels. Membrane integrity assays can be used for HT quantification of cell death, but are non-specific as to the death mode. Several HT assays monitor end point apoptosis. Screening libraries at a single concentration (micromolar) can prevent detection of potent apoptosis inducers, as high concentrations may induce mainly necrosis. Using monolayer cultures limits the significance of cell-based screening as the properties of monolayer cells differ from tumours in vivo. Spheroid cultures are more physiological, but are impractical for screening by conventional methods. The authors have developed an assay quantifying accumulation of a caspase-cleaved protein specific for epithelial cells. It provides an integrated measure of apoptosis in two- and three-dimensional cultures and can be used as a blood biomarker assay for tumour apoptosis in vivo.
One criterion on which chlorine treatment of water may be based is the concentration (C) in mg/l multiplied by the time (t) in min of exposure or Ct values. We compared different Ct values on waterborne pathogenic bacteria by cultural assay for viability and 2 assays that mea...
Multiplexing a high-throughput liability assay to leverage efficiencies.
Herbst, John; Anthony, Monique; Stewart, Jeremy; Connors, David; Chen, Taosheng; Banks, Martyn; Petrillo, Edward W; Agler, Michele
2009-06-01
In order to identify potential cytochrome P-450 3A4 (drug-metabolizing enzyme) inducers at an early stage of the drug discovery process, a cell-based transactivation high-throughput luciferase reporter assay for the human pregnane X receptor (PXR) in HepG2 cells has been implemented and multiplexed with a viability end point for data interpretation, as part of a Lead Profiling portfolio of assays. As a routine part of Lead Profiling operations, assays are periodically evaluated for utility as well as for potential improvements in technology or process. We used a recent evaluation of our PXR-transactivation assay as a model for the application of Lean Thinking-based process analysis to lab-bench assay optimization and automation. This resulted in the development of a 384-well multiplexed homogeneous assay simultaneously detecting PXR transactivation and HepG2 cell cytotoxicity. In order to multiplex fluorescent and luminescent read-outs, modifications to each assay were necessary, which included optimization of multiple assay parameters such as cell density, plate type, and reagent concentrations. Subsequently, a set of compounds including known cytotoxic compounds and PXR inducers were used to validate the multiplexed assay. Results from the multiplexed assay correlate well with those from the singleplexed assay formats measuring PXR transactivation and viability separately. Implementation of the multiplexed assay for routine compound profiling provides improved data quality, sample conservation, cost savings, and resource efficiencies.
Jia, Kuntong; Yuan, Yongming; Liu, Wei; Liu, Lan; Qin, Qiwei; Yi, Meisheng
2018-02-01
Singapore grouper iridovirus (SGIV) is one of the major causative agents of fish diseases and has caused significant economic losses in the aquaculture industry. There is currently no commercial vaccine or effective antiviral treatment against SGIV infection. Annually, an increasing number of small molecule compounds from various sources have been produced, and many are proved to be potential inhibitors against viruses. Here, a high-throughput in vitro cell viability-based screening assay was developed to identify antiviral compounds against SGIV using the luminescent-based CellTiter-Glo reagent in cultured grouper spleen cells by quantificational measurement of the cytopathic effects induced by SGIV infection. This assay was utilized to screen for potential SGIV inhibitors from five customized compounds which had been reported to be capable of inhibiting other viruses and 30 compounds isolated from various marine organisms, and three of them [ribavirin, harringtonine, and 2-hydroxytetradecanoic acid (2-HOM)] were identified to be effective on inhibiting SGIV infection, which was further confirmed with droplet digital PCR (ddPCR). In addition, the ddPCR results revealed that ribavirin and 2-HOM inhibited SGIV replication and entry in a dose-dependent manner, and harringtonine could reduce SGIV replication rather than entry at the working concentration without significant toxicity. These findings provided an easy and reliable cell viability-based screening assay to identify compounds with anti-SGIV effect and a way of studying the anti-SGIV mechanism of compounds.
Validation of in vitro assays in three-dimensional human dermal constructs.
Idrees, Ayesha; Chiono, Valeria; Ciardelli, Gianluca; Shah, Siegfried; Viebahn, Richard; Zhang, Xiang; Salber, Jochen
2018-05-01
Three-dimensional cell culture systems are urgently needed for cytocompatibility testing of biomaterials. This work aimed at the development of three-dimensional in vitro dermal skin models and their optimization for cytocompatibility evaluation. Initially "murine in vitro dermal construct" based on L929 cells was generated, leading to the development of "human in vitro dermal construct" consisting of normal human dermal fibroblasts in rat tail tendon collagen type I. To assess the viability of the cells, different assays CellTiter-Blue ® , RealTime-Glo ™ MT, and CellTiter-Glo ® (Promega) were evaluated to optimize the best-suited assay to the respective cell type and three-dimensional system. Z-stack imaging (Live/Dead and Phalloidin/DAPI-Promokine) was performed to visualize normal human dermal fibroblasts inside matrix revealing filopodia-like morphology and a uniform distribution of normal human dermal fibroblasts in matrix. CellTiter-Glo was found to be the optimal cell viability assay among those analyzed. CellTiter-Blue reagent affected the cell morphology of normal human dermal fibroblasts (unlike L929), suggesting an interference with cell biological activity, resulting in less reliable viability data. On the other hand, RealTime-Glo provided a linear signal only with a very low cell density, which made this assay unsuitable for this system. CellTiter-Glo adapted to three-dimensional dermal construct by optimizing the "shaking time" to enhance the reagent penetration and maximum adenosine triphosphate release, indicating 2.4 times higher viability value by shaking for 60 min than for 5 min. In addition, viability results showed that cells were viable inside the matrix. This model would be further advanced with more layers of skin to make a full thickness model.
Lucantoni, Leonardo; Silvestrini, Francesco; Signore, Michele; Siciliano, Giulia; Eldering, Maarten; Dechering, Koen J.; Avery, Vicky M.; Alano, Pietro
2015-01-01
Plasmodium falciparum gametocytes, specifically the mature stages, are the only malaria parasite stage in humans transmissible to the mosquito vector. Anti-malarial drugs capable of killing these forms are considered essential for the eradication of malaria and tools allowing the screening of large compound libraries with high predictive power are needed to identify new candidates. As gametocytes are not a replicative stage it is difficult to apply the same drug screening methods used for asexual stages. Here we propose an assay, based on high content imaging, combining “classic” gametocyte viability readout based on gametocyte counts with a functional viability readout, based on gametocyte activation and the discrimination of the typical gamete spherical morphology. This simple and rapid assay has been miniaturized to a 384-well format using acridine orange staining of wild type P. falciparum 3D7A sexual forms, and was validated by screening reference antimalarial drugs and the MMV Malaria Box. The assay demonstrated excellent robustness and ability to identify quality hits with high likelihood of confirmation of transmission reducing activity in subsequent mosquito membrane feeding assays. PMID:26553647
Haire, Timothy C.; Bell, Cody; Cutshaw, Kirstin; Swiger, Brendan; Winkelmann, Kurt; Palmer, Andrew G.
2018-01-01
Chlamydomonas reinhardtii (Cr), a unicellular alga, is routinely utilized to study photosynthetic biochemistry, ciliary motility, and cellular reproduction. Its minimal culture requirements, unicellular morphology, and ease of transformation have made it a popular model system. Despite its relatively slow doubling time, compared with many bacteria, it is an ideal eukaryotic system for microplate-based studies utilizing either, or both, absorbance as well as fluorescence assays. Such microplate assays are powerful tools for researchers in the areas of toxicology, pharmacology, chemical genetics, biotechnology, and more. However, while microplate-based assays are valuable tools for screening biological systems, these methodologies can significantly alter the conditions in which the organisms are cultured and their subsequent physiology or morphology. Herein we describe a novel method for the microplate culture and in vivo phenotypic analysis of growth, viability, and photosynthetic pigments of C. reinhardtii. We evaluated the utility of our assay by screening silver nanoparticles for their effects on growth and viability. These methods are amenable to a wide assortment of studies and present a significant advancement in the methodologies available for research involving this model organism. PMID:29623083
Haire, Timothy C; Bell, Cody; Cutshaw, Kirstin; Swiger, Brendan; Winkelmann, Kurt; Palmer, Andrew G
2018-01-01
Chlamydomonas reinhardtii (Cr), a unicellular alga, is routinely utilized to study photosynthetic biochemistry, ciliary motility, and cellular reproduction. Its minimal culture requirements, unicellular morphology, and ease of transformation have made it a popular model system. Despite its relatively slow doubling time, compared with many bacteria, it is an ideal eukaryotic system for microplate-based studies utilizing either, or both, absorbance as well as fluorescence assays. Such microplate assays are powerful tools for researchers in the areas of toxicology, pharmacology, chemical genetics, biotechnology, and more. However, while microplate-based assays are valuable tools for screening biological systems, these methodologies can significantly alter the conditions in which the organisms are cultured and their subsequent physiology or morphology. Herein we describe a novel method for the microplate culture and in vivo phenotypic analysis of growth, viability, and photosynthetic pigments of C. reinhardtii . We evaluated the utility of our assay by screening silver nanoparticles for their effects on growth and viability. These methods are amenable to a wide assortment of studies and present a significant advancement in the methodologies available for research involving this model organism.
Aleshin, Vasily A; Artiukhov, Artem V; Oppermann, Henry; Kazantsev, Alexey V; Lukashev, Nikolay V; Bunik, Victoria I
2015-08-21
Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay.
Aleshin, Vasily A.; Artiukhov, Artem V.; Oppermann, Henry; Kazantsev, Alexey V.; Lukashev, Nikolay V.; Bunik, Victoria I.
2015-01-01
Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay. PMID:26308058
Johnson, M. Brittany; Criss, Alison K.
2013-01-01
Central to the field of bacterial pathogenesis is the ability to define if and how microbes survive after exposure to eukaryotic cells. Current protocols to address these questions include colony count assays, gentamicin protection assays, and electron microscopy. Colony count and gentamicin protection assays only assess the viability of the entire bacterial population and are unable to determine individual bacterial viability. Electron microscopy can be used to determine the viability of individual bacteria and provide information regarding their localization in host cells. However, bacteria often display a range of electron densities, making assessment of viability difficult. This article outlines protocols for the use of fluorescent dyes that reveal the viability of individual bacteria inside and associated with host cells. These assays were developed originally to assess survival of Neisseria gonorrhoeae in primary human neutrophils, but should be applicable to any bacterium-host cell interaction. These protocols combine membrane-permeable fluorescent dyes (SYTO9 and 4',6-diamidino-2-phenylindole [DAPI]), which stain all bacteria, with membrane-impermeable fluorescent dyes (propidium iodide and SYTOX Green), which are only accessible to nonviable bacteria. Prior to eukaryotic cell permeabilization, an antibody or fluorescent reagent is added to identify extracellular bacteria. Thus these assays discriminate the viability of bacteria adherent to and inside eukaryotic cells. A protocol is also provided for using the viability dyes in combination with fluorescent antibodies to eukaryotic cell markers, in order to determine the subcellular localization of individual bacteria. The bacterial viability dyes discussed in this article are a sensitive complement and/or alternative to traditional microbiology techniques to evaluate the viability of individual bacteria and provide information regarding where bacteria survive in host cells. PMID:24056524
Cell viability monitoring using Fano resonance in gold nanoslit array
NASA Astrophysics Data System (ADS)
Wu, Shu-Han; Hsieh, Shu-Yi; Lee, Kuang-Li; Weng, Ruei-Hung; Chiou, Arthur; Wei, Pei-Kuen
2013-09-01
Cell viability is a crucial issue in biological research. We present label-free monitoring of adhesion cells viability by gold nanoslits-based Fano resonance biosensors. Plastic multiple wells with gold nanoslits substrate were made using a thermal nanoimprint method. Adhesion cells in the wells were treated with doxorubicin for inducing cell death and compared with conventional colorimetric assay. The nanoslits method shows better respones of viability tests under low concentration and short interaction time due to its high surface sensitivies. The vinculin labelling indicates that the measured signals are in good agreement with the adhesion abilities of cells.
Lambricht, Laure; De Berdt, Pauline; Vanacker, Julie; Leprince, Julian; Diogenes, Anibal; Goldansaz, Hadi; Bouzin, Caroline; Préat, Véronique; Dupont-Gillain, Christine; des Rieux, Anne
2014-12-01
The goal of the present work was to evaluate in vitro and in vivo the influence of various types and compositions of natural hydrogels on the viability and metabolic activity of SCAPs. Two alginate, three hyaluronic-based (Corgel™) hydrogel formulations and Matrigel were characterized for their mechanical, surface and microstructure properties using rheology, X-ray photoelectron spectroscopy and scanning electron microscopy, respectively. A characterized SCAP cell line (RP89 cells) was encapsulated in the different experimental hydrogel formulations. Cells were cultured in vitro, or implanted in cyclosporine treated mice. In vitro cell viability was evaluated using a Live/Dead assay and in vitro cellular metabolic activity was evaluated with a MTS assay. In vivo cell apoptosis was evaluated by a TUNEL test and RP89 cells were identified by human mitochondria immunostaining. Hydrogel composition influenced their mechanical and surface properties, and their microstructure. In vitro cell viability was above 80% after 2 days but decreased significantly after 7 days (60-40%). Viability at day 7 was the highest in Matrigel (70%) and then in Corgel 1.5 (60%). Metabolic activity increased over time in all the hydrogels, excepted in alginate SLM. SCAPs survived after 1 week in vivo with low apoptosis (<1%). The highest number of RP89 cells was found in Corgel 5.5 (140cells/mm(2)). Collectively, these data demonstrate that SCAP viability was directly modulated by hydrogel composition and suggest that a commercially available hyaluronic acid-based formulation might be a suitable delivery vehicle for SCAP-based dental pulp regeneration strategies. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Ganapathy-Kanniappan, Shanmugasundaram; Geschwind, Jean-Francois H; Kunjithapatham, Rani; Buijs, Manon; Syed, Labiq H; Rao, Pramod P; Ota, Shinichi; Vali, Mustafa
2010-04-01
3-Bromopyruvate (3BrPA) is a pyruvate analog known for its alkylating property. Recently, several reports have documented the antiglycolytic and anticancer effects of 3BrPA and its potential for therapeutic applications. 3BrPA-mediated cytotoxicity has been evaluated in vitro by various methods including tetrazolium salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide)-based assays such as MTT, MTS, and so on. However, growing body of evidences has shown that tetrazolium reagent may interfere with the test compounds. In this study, we investigated whether the tetrazolium reagent interferes with the assessment of 3BrPA cytotoxicity. The results of the tetrazolium-based MTS assay were compared with 3 distinct cell viability detection methods, that is, Trypan Blue staining, ATP depletion, and Annexin V staining in 2 different cell lines, Vx-2 and HepG2. The MTS assay data showed false positive results by indicating increased cell viability at 1 mM and 2 mM 3BrPA whereas the other cell viability assays demonstrated that both Vx-2 and HepG2 cells are not viable at the same treatment conditions. In order to validate the direct interaction of 3BrPA with MTS reagent, we tested cell-free media incubated with different concentrations of 3BrPA. The results of cell-free media showed an increase in absorbance in a dose-dependent manner confirming the interaction of MTS with 3BrPA. Thus, our data clearly demonstrate that 3BrPA interferes with the accuracy of MTS-based cytotoxicity evaluation. Hence, we suggest that employing multiple methods of biochemical as well as morphological cytotoxicity assays is critical to evaluate 3BrPA-mediated cell death.
Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay
The Embryonic Stem Cell Test (EST) is an assay which evaluates xenobiotic-induced effects using three endpoints: mouse embryonic stem cell (mESC) differentiation, mESC viability, and 3T3-cell viability. Our research goal was to develop an improved high-throughput assay by establi...
Khan, Arshad; Sarkar, Dhiman
2008-04-01
This study aimed at developing a whole cell based high throughput screening protocol to identify inhibitors against both active and dormant tubercle bacilli. A respiratory type of nitrate reductase (NarGHJI), which was induced during dormancy, could reflect the viability of dormant bacilli of Mycobacterium bovis BCG in microplate adopted model of in vitro dormancy. Correlation between reduction in viability and nitrate reductase activity was seen clearly when dormant stage inhibitor metronidazole and itaconic anhydride were applied in this in vitro microplate model. Active replicating stage could also be monitored in the same assay by measuring the A(620) of the culture. MIC values of 0.08, 0.075, 0.3 and 3.0 microg/ml, determined through monitoring A(620) in this assay for rifampin, isoniazid, streptomycin and ethambutol respectively, were well in agreement with previously reported by BACTEC and Bio-Siv assays. S/N ratio and Z' factor for the assay were 8.5 and 0.81 respectively which indicated the robustness of the protocol. Altogether the assay provides an easy, inexpensive, rapid, robust and high content screening tool to search novel antitubercular molecules against both active and dormant bacilli.
Combined Effects of Nonylphenol and Bisphenol A on the Human Prostate Epithelial Cell Line RWPE-1
Gan, Weidong; Zhou, Ming; Xiang, Zou; Han, Xiaodong; Li, Dongmei
2015-01-01
The xenoestrogens nonylphenol (NP) and bisphenol A (BPA) are regarded as endocrine disrupting chemicals (EDCs) which have widespread occurrence in our daily life. In the present study, the purpose was to analyze the combined effects of NP and BPA on the human prostate epithelial cell line RWPE-1 using two mathematical models based on the Loewe additivity (LA) theory and the Bliss independence (BI) theory. RWPE-1 cells were treated with NP (0.01–100 µM) and BPA (1–5000 µM) in either a single or a combined format. A cell viability assay and lactate dehydrogenase (LDH) leakage rate assay were employed as endpoints. As predicted by the two models and based on the cell viability assay, significant synergism between NP and BPA were observed. However, based on the LDH assay, the trends were reversed. Given that environmental contaminants are frequently encountered simultaneously, these data indicated that there were potential interactions between NP and BPA, and the combined effects of the chemical mixture might be stronger than the additive values of individual chemicals combined, which should be taken into consideration for the risk assessment of EDCs. PMID:25874684
Stockert, Juan C; Horobin, Richard W; Colombo, Lucas L; Blázquez-Castro, Alfonso
2018-04-01
For many years various tetrazolium salts and their formazan products have been employed in histochemistry and for assessing cell viability. For the latter application, the most widely used are 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), and 5-cyano-2,3-di-(p-tolyl)-tetrazolium chloride (CTC) for viability assays of eukaryotic cells and bacteria, respectively. In these cases, the nicotinamide-adenine-dinucleotide (NAD(P)H) coenzyme and dehydrogenases from metabolically active cells reduce tetrazolium salts to strongly colored and lipophilic formazan products, which are then quantified by absorbance (MTT) or fluorescence (CTC). More recently, certain sulfonated tetrazolium, which give rise to water-soluble formazans, have also proved useful for cytotoxicity assays. We describe several aspects of the application of tetrazolium salts and formazans in biomedical cell biology research, mainly regarding formazan-based colorimetric assays, cellular reduction of MTT, and localization and fluorescence of the MTT formazan in lipidic cell structures. In addition, some pharmacological and labeling perspectives of these compounds are also described. Copyright © 2018 Elsevier GmbH. All rights reserved.
Fluorescein diacetate for determination of cell viability in 3D fibroblast-collagen-GAG constructs.
Powell, Heather M; Armour, Alexis D; Boyce, Steven T
2011-01-01
Quantification of cell viability and distribution within engineered tissues currently relies on representative histology, phenotypic assays, and destructive assays of viability. To evaluate uniformity of cell density throughout 3D collagen scaffolds prior to in vivo use, a nondestructive, field assessment of cell viability is advantageous. Here, we describe a field measure of cell viability in lyophilized collagen-glycosaminoglycan (C-GAG) scaffolds in vitro using fluorescein diacetate (FdA). Fibroblast-C-GAG constructs are stained 1 day after cellular inoculation using 0.04 mg/ml FdA followed by exposure to 366 nm UV light. Construct fluorescence quantified using Metamorph image analysis is correlated with inoculation density, MTT values, and histology of corresponding biopsies. Construct fluorescence correlates significantly with inoculation density (p < 0.001) and MTT values (p < 0.001) of biopsies collected immediately after FdA staining. No toxicity is detected in the constructs, as measured by MTT assay before and after the FdA assay at different time points; normal in vitro histology is demonstrated for the FdA-exposed constructs. In conclusion, measurement of intracellular fluorescence with FdA allows for the early, comprehensive measurement of cellular distributions and viability in engineered tissue.
Tsukatani, Tadayuki; Suenaga, Hikaru; Higuchi, Tomoko; Shiga, Masanobu; Noguchi, Katsuya; Matsumoto, Kiyoshi
2011-01-01
Bacteria are fundamentally divided into two groups: Gram-positive and Gram-negative. Although the Gram stain and other techniques can be used to differentiate these groups, some issues exist with traditional approaches. In this study, we developed a method for differentiating Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt} (WST-8) via 2-methyl-1,4-napthoquinone with a selection medium. We optimized the composition of the selection medium to allow the growth of Gram-negative bacteria while inhibiting the growth of Gram-positive bacteria. When the colorimetric viability assay was carried out in a selection medium containing 0.5µg/ml crystal violet, 5.0 µg/ml daptomycin, and 5.0µg/ml vancomycin, the reduction in WST-8 by Gram-positive bacteria was inhibited. On the other hand, Gram-negative bacteria produced WST-8-formazan in the selection medium. The proposed method was also applied to determine the Gram staining characteristics of bacteria isolated from various foodstuffs. There was good agreement between the results obtained using the present method and those obtained using a conventional staining method. These results suggest that the WST-8 colorimetric assay with selection medium is a useful technique for accurately differentiating Gram-positive and -negative bacteria.
Tan, Kah Hin; Ki, Kitti Chan Wing; Watanabe, Satoru; Vasudevan, Subhash G; Krishnan, Manoj
2014-01-01
Large-scale screening of antiviral compounds that target dengue virus life cycle requires a robust cell-based assay that is rapid, easy to conduct, and sensitive enough to be able to assess viral infectivity and cell viability so that antiviral efficacy can be measured. In this chapter we describe a method that uses high-content imaging to evaluate the in vitro antiviral efficacy in a modification to the cell-based flavivirus immunodetection (CFI) assay that was described previously in Wang et al. (Antimicrob Agents Chemother 53(5):1823-1831, 2009).
The NCCT high throughput transcriptomics (HTTr) screening program uses whole transcriptome profiling assay in human-derived cells to collect concentration-response data for large numbers (100s-1000s) of environmental chemicals. To contextualize HTTr data, chemical effects on cell...
Droplet microfluidic technology for single-cell high-throughput screening.
Brouzes, Eric; Medkova, Martina; Savenelli, Neal; Marran, Dave; Twardowski, Mariusz; Hutchison, J Brian; Rothberg, Jonathan M; Link, Darren R; Perrimon, Norbert; Samuels, Michael L
2009-08-25
We present a droplet-based microfluidic technology that enables high-throughput screening of single mammalian cells. This integrated platform allows for the encapsulation of single cells and reagents in independent aqueous microdroplets (1 pL to 10 nL volumes) dispersed in an immiscible carrier oil and enables the digital manipulation of these reactors at a very high-throughput. Here, we validate a full droplet screening workflow by conducting a droplet-based cytotoxicity screen. To perform this screen, we first developed a droplet viability assay that permits the quantitative scoring of cell viability and growth within intact droplets. Next, we demonstrated the high viability of encapsulated human monocytic U937 cells over a period of 4 days. Finally, we developed an optically-coded droplet library enabling the identification of the droplets composition during the assay read-out. Using the integrated droplet technology, we screened a drug library for its cytotoxic effect against U937 cells. Taken together our droplet microfluidic platform is modular, robust, uses no moving parts, and has a wide range of potential applications including high-throughput single-cell analyses, combinatorial screening, and facilitating small sample analyses.
Shieh, Hester F; Graham, Christopher D; Brazzo, Joseph A; Zurakowski, David; Fauza, Dario O
2017-06-01
We sought to examine amniotic fluid mesenchymal stem cell (afMSC) viability within two FDA-approved collagen-based scaffolds, as a prerequisite to clinical translation of afMSC-based engineered diaphragmatic repair. Human afMSCs were seeded in a human-derived collagen hydrogel and in a bovine-derived collagen sheet at 3 matching densities. Cell viability was analyzed at 1, 3, and 5days using an ATP-based 3D bioluminescence assay. Statistical comparisons were by ANOVA (P<0.05). There was a highly significant 3-way interaction between scaffold type, seeding density, and time in 3D culture as determinants of cell viability, clearly favoring the human hydrogel (P<0.001). In both scaffolds, cell viability was highest at the highest seeding density of 150,000 cells/mL. Time in 3D culture impacted cell viability at the optimal seeding density in the human hydrogel, with the highest levels on days 1 (P<0.001) and 5 (P=0.05) with no significant effect in the bovine sheet (P=0.39-0.96). Among clinically-approved cell delivery vehicles, mesenchymal stem cell viability is significantly enhanced in a collagen hydrogel when compared with a collagen sheet. Cell viability can be further optimized by seeding density and time in 3D culture. These data further support the regulatory viability of clinical trials of engineered diaphragmatic repair. N/A (animal and laboratory study). Copyright © 2017 Elsevier Inc. All rights reserved.
Simple fluorescence-based high throughput cell viability assay for filamentous fungi.
Chadha, S; Kale, S P
2015-09-01
Filamentous fungi are important model organisms to understand the eukaryotic process and have been frequently exploited in research and industry. These fungi are also causative agents of serious diseases in plants and humans. Disease management strategies include in vitro susceptibility testing of the fungal pathogens to environmental conditions and antifungal agents. Conventional methods used for antifungal susceptibilities are cumbersome, time-consuming and are not suitable for a large-scale analysis. Here, we report a rapid, high throughput microplate-based fluorescence method for investigating the toxicity of antifungal and stress (osmotic, salt and oxidative) agents on Magnaporthe oryzae and compared it with agar dilution method. This bioassay is optimized for the resazurin reduction to fluorescent resorufin by the fungal hyphae. Resazurin bioassay showed inhibitory rates and IC50 values comparable to the agar dilution method and to previously reported IC50 or MICs for M. oryzae and other fungi. The present method can screen range of test agents from different chemical classes with different modes of action for antifungal activities in a simple, sensitive, time and cost effective manner. A simple fluorescence-based high throughput method is developed to test the effects of stress and antifungal agents on viability of filamentous fungus Magnaporthe oryzae. This resazurin fluorescence assay can detect inhibitory effects comparable to those obtained using the growth inhibition assay with added advantages of simplicity, time and cost effectiveness. This high throughput viability assay has a great potential in large-scale screening of the chemical libraries of antifungal agents, for evaluating the effects of environmental conditions and hyphal kinetic studies in mutant and natural populations of filamentous fungi. © 2015 The Society for Applied Microbiology.
Skogman, Malena Elise; Vuorela, Pia Maarit; Fallarero, Adyary
2012-09-01
Despite that three types of assays (measuring biofilm viability, biomass, or matrix) are described to assess anti-biofilm activity, they are rarely used together. As infections can easily reappear if the matrix is not affected after antibiotic treatments, our goal was to explore the simultaneous effects of antibiotics on the viability, biomass and matrix of Staphylococcus aureus biofilms (ATCC 25923). Viability and biomass were quantified using resazurin and crystal violet staining sequentially in the same plate, while matrix staining was conducted with a wheat germ agglutinin-Alexa Fluor 488 fluorescent conjugate. Establishment of the detection limits and linearity ranges allowed concluding that all three methods were able to estimate biofilm formation in a similar fashion. In a susceptibility study with 18-h biofilms, two model compounds (penicillin G and ciprofloxacin) caused a reduction on the viability and biomass accompanied by an increase or not changed levels of the matrix, respectively. This response pattern was also proven for S. aureus Newman, S. epidermidis and E. coli biofilms. A classification of antibiotics based on five categories according to their effects on viability and matrix has been proposed earlier. Our data suggests a sixth group, represented by penicillin, causing decrease in bacterial viability but showing stimulatory effects on the matrix. Further, if effects on the matrix are not taken into account, the long-term chemotherapeutic effect of antibiotics can be jeopardized in spite of the positive effects on biofilms viability and biomass. Thus, measuring all these three endpoints simultaneously provide a more complete and accurate picture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burch, S.W.; Goven, A.J.; Fitzpatrick, L.C.
An in vitro assay has been developed for rapid (48 h) evaluation of cytotoxic effects of exposure (24 h) of earthworm coelomocytes. The assay, inhibition of phagocytosis (24 h) of stained yeast cells and cell viability, links a traditional soil bioassay organism (Lumbricus terrestris) with a laboratory protocol for use in evaluating physical/chemical fractions resulting from terrestrial TIE manipulations. The assay was developed using copper sulfate as a reference toxicant. Copper exposures as low as 2--4 pg/ml. resulted in 20--60% inhibition of phagocytosis without significant decrease in cell viability. Exposures above 10 pg/ml resulted in reduced cell viability and inhibitionmore » of phagocytosis. The assay was successfully applied to terrestrial TIE fractions derived from extractions of soil from a PCP contaminated wood treatment site.« less
Blattes, Gabriela Bess Ferraz; Mestieri, Leticia Boldrin; Böttcher, Daiana Elisabeth; Fossati, Anna Cristina Medeiros; Montagner, Francisco; Grecca, Fabiana Soares
2017-01-01
This study aimed to analyze in vitro cytotoxicity to cultured 3T3 fibroblasts and in vivo inflammatory reaction in rats by calcium hypochlorite (Ca(OCl) 2 ) solutions compared with sodium hypochlorite (NaOCl) solutions. Cultured 3T3 fibroblasts were exposed to different concentrations of (Ca(OCl) 2 ) and NaOCl solutions, and a scratch assay was performed. The viability rate was analyzed with trypan blue assay. Both solutions of 1% and 2.5% concentrations were injected into the subcutaneous tissue of 18 male Wistar rats aged 18 weeks. The inflammatory tissue reaction was evaluated at 2h, 24h, and 14days after the injections. The samples were qualitatively analyzed using a light microscope. Statistical analysis was performed with ANOVA and Tukey post hoc tests for in vitro assays and Kruskal-Wallis and Dunn post hoc tests for in vivo assays (α=0.05). In the scratch assay, Ca(OCl) 2 showed no significant difference compared with the control group (culture medium) at 24h (p<0.05). Solutions of 0.0075% and 0.005% NaOCl and Ca(OCl) 2 concentrations presented similar results compared with those in the positive control group (hydrogen peroxide) (p>0.05) in the trypan blue assay. In the in vivo assay, 1% Ca(OCl) 2 group showed a significant decrease in neutrophils at 2h and 24h (p=0.041) and 2h and 14days (p=0.017). There was no statistically significant difference for lymphocyte/plasmocyte and macrophage counts among the different concentration groups. Ca(OCl) 2 showed favorable results of viability and induced a low-level inflammatory response. Ca(OCl) 2 presented acceptable cytotoxicity and biocompatibility as an irrigant solution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hossain, Zakir; Sugawara, Tatsuya; Hirata, Takashi
2013-03-01
Biofunctional marine compounds have recently received substantial attention for their nutraceutical characteristics. In this study, we investigated the apoptosis-inducing effects of sphingoid bases prepared from sea cucumber using human hepatoma HepG2 cells. Apoptotic effects were determined by cell viability assay, DNA fragmentation assay, caspase-3 and caspase-8 activities. The expression levels of apoptosis-inducing death receptor-5 (DR5) and p-AKT were assayed by western blot analysis, and mRNA expression of bax, GADD45 and PPARγ was assayed by quantitative RT-PCR analysis. Sphingoid bases from sea cucumber markedly reduced the cell viability of HepG2 cells. DNA fragmentation indicative of apoptosis was observed in a dose-dependent manner. The expression levels of the apoptosis inducer protein Bax were increased by the sphingoid bases from sea cucumber. GADD45, which plays an important role in apoptosis-inducing pathways, was markedly upregulated by sphingoid bases from sea cucumber. Upregulation of PPARγ mRNA was also observed during apoptosis induced by the sphingoid bases. The expression levels of DR5 and p-AKT proteins were increased and decreased, respectively, as a result of the effects of sphingoid bases from sea cucumber. The results indicate that sphingoid bases from sea cucumber induce apoptosis in HepG2 cells through upregulation of DR5, Bax, GADD45 and PPARγ and downregulation of p-AKT. Our results show for the first time the functional properties of marine sphingoid bases as inducers of apoptosis in HepG2 cells.
Marin-Kuan, Maricel; Fussell, Karma C; Riederer, Nicolas; Latado, Helia; Serrant, Patrick; Mollergues, Julie; Coulet, Myriam; Schilter, Benoit
2017-12-01
In vitro effect-based reporter assays are applied as biodetection tools designed to address nuclear receptor mediated-modulation. While such assays detect receptor modulating potential, cell viability needs to be addressed, preferably in the same well. Some assays circumvent this by co-transfecting a second constitutively-expressed marker gene or by multiplexing a cytotoxicity assay. Some assays, such as the CALUX®, lack this feature. The cytotoxic effects of unknown substances can confound in vitro assays, making the interpretation of results difficult and uncertain, particularly when assessing antagonistic activity. It's necessary to determine whether the cause of the reporter signal decrease is an antagonistic effect or a non-specific cytotoxic effect. To remedy this, we assessed the suitability of multiplexing a cell viability assay within the CALUX® transcriptional activation test for anti-androgenicity. Tests of both well-characterized anti-androgens and cytotoxic compounds demonstrated the suitability of this approach for discerning between the molecular mechanisms of action without altering the nuclear receptor assay; though some compounds were both cytotoxic and anti-androgenic. The optimized multiplexed assay was then applied to an uncharacterized set of polycyclic aromatic compounds. These results better characterized the mode of action and the classification of effects. Overall, the multiplexed protocol added value to CALUX test performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Islam, Md Koushikul; Baudin, Maria; Eriksson, Jonas; Öberg, Christopher; Habjan, Matthias; Weber, Friedemann; Överby, Anna K; Ahlm, Clas; Evander, Magnus
2016-04-01
Rift Valley fever virus (RVFV) is an emerging virus that causes serious illness in humans and livestock. There are no approved vaccines or treatments for humans. The purpose of the study was to identify inhibitory compounds of RVFV infection without any preconceived idea of the mechanism of action. A whole-cell-based high-throughput drug screening assay was developed to screen 28,437 small chemical compounds targeting RVFV infection. To accomplish both speed and robustness, a replication-competent NSs-deleted RVFV expressing a fluorescent reporter gene was developed. Inhibition of fluorescence intensity was quantified by spectrophotometry and related to virus infection in human lung epithelial cells (A549). Cell toxicity was assessed by the Resazurin cell viability assay. After primary screening, 641 compounds were identified that inhibited RVFV infection by ≥80%, with ≥50% cell viability at 50 µM concentration. These compounds were subjected to a second screening regarding dose-response profiles, and 63 compounds with ≥60% inhibition of RVFV infection at 3.12 µM compound concentration and ≥50% cell viability at 25 µM were considered hits. Of these, six compounds with high inhibitory activity were identified. In conclusion, the high-throughput assay could efficiently and safely identify several promising compounds that inhibited RVFV infection. © 2016 Society for Laboratory Automation and Screening.
Hydrogel tissue construct-based high-content compound screening.
Lam, Vy; Wakatsuki, Tetsuro
2011-01-01
Current pharmaceutical compound screening systems rely on cell-based assays to identify therapeutic candidates and potential toxicities. However, cells grown on 2D substrata or in suspension do not exhibit the mechanical or physiological properties of cells in vivo. To address this limitation, the authors developed an in vitro, high-throughput, 3D hydrogel tissue construct (HTC)-based assay system to quantify cell and tissue mechanical properties and multiple parameters of physiology. HTC mechanics was quantified using an automated device, and physiological status was assessed using spectroscopy-based indicators that were read on microplate readers. To demonstrate the application of this system, the authors screened 4 test compounds--rotenone (ROT), cytochalasin D (CD), 2,4-dinitrophenol (DNP), and Rho kinase inhibitor (H-1152)--for their ability to modulate HTC contractility without affecting actin integrity, mitochondrial membrane potential (MMP), or viability. All 4 compounds dose-dependently reduced HTC contractility. However, ROT was toxic, DNP dissipated MMP, and CD reduced both intracellular F-actin and viability. H-1152 was found to be the best candidate compound since it reduced HTC contractility with minimal side effects. The authors propose that their HTC-based assay system can be used to screen for compounds that modulate HTC contractility and assess the underlying physiological mechanism(s) of compound activity and toxicity.
Tsukatani, Tadayuki; Suenaga, Hikaru; Ishiyama, Munetaka; Ezoe, Takatoshi; Matsumoto, Kiyoshi
2011-07-15
A method for the determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8)} via 2-methyl-1,4-napthoquinone (NQ) was developed. Measurement conditions were optimized for the microbiological determination of water-soluble vitamins, such as vitamin B(6), biotin, folic acid, niacin, and pantothenic acid, using microorganisms that have a water-soluble vitamin requirement. A linear relationship between absorbance and water-soluble vitamin concentration was obtained. The proposed method was applied to determine the concentration of vitamin B(6) in various foodstuffs. There was good agreement between vitamin B(6) concentrations determined after 24h using the WST-8 colorimetric method and those obtained after 48h using a conventional method. The results suggest that the WST-8 colorimetric assay is a useful method for the rapid determination of water-soluble vitamins in a 96-well microtiter plate. Copyright © 2011 Elsevier Ltd. All rights reserved.
AbstractTITLE: A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYSABSTRACT BODY: Microelectrode array (MEA) recordings are increasingly being used as an in vitro method to detect and characte...
Measurement of cell viability in in vitro cultures.
Castro-Concha, Lizbeth A; Escobedo, Rosa María; Miranda-Ham, María de Lourdes
2006-01-01
An overview of the methods for assessing cell viability in in vitro cultures is presented. The protocols of four of the most commonly used assays are described in detail, so the readers may be able to determine which assay is suitable for their own projects using plant cell cultures.
de Oliveira, Edson R A; Lima, Bruna M M P; de Moura, Wlamir C; Nogueira, Ana Cristina M de A
2013-12-31
Type I interferons (IFNs) exert an array of important biological functions on the innate immune response and has become a useful tool in the treatment of various diseases. An increasing demand in the usage of recombinant IFNs, mainly due to the treatment of chronic hepatitis C infection, augmented the need of quality control for this biopharmaceutical. A traditional bioassay for IFN potency assessment is the cytopathic effect reduction antiviral assay where a given cell line is preserved by IFN from a lytic virus activity using the cell viability as a frequent measure of end point. However, type I IFNs induce other biological effects such as cell-cycle arrest and apoptosis that can influence directly on viability of many cell lines. Here, we standardized a cytopathic effect reduction antiviral assay using Hep-2C cell/mengovirus combination and studied a possible impact of cell viability variations caused by IFN-alpha 2b on responses generated on the antiviral assay. Using the four-parameter logistic model, we observed less correlation and less linearity on antiviral assay when responses from IFN-alpha 2b 1000 IU/ml were considered in the analysis. Cell viability tests with MTT revealed a clear cell growth inhibition of Hep-2C cells under stimulation with IFN-alpha 2b. Flow cytometric cell-cycle analysis and apoptosis assessment showed an increase of S+G2 phase and higher levels of apoptotic cells after treatment with IFN-alpha 2b 1000 IU/ml under our standardized antiviral assay procedure. Considering our studied dose range, we also observed strong STAT1 activation on Hep-2C cells after stimulation with the higher doses of IFN-alpha 2b. Our findings showed that the reduction of cell viability driven by IFN-alpha can cause a negative impact on antiviral assays. We assume that the cell death induction and the cell growth inhibition effect of IFNs should also be considered while employing antiviral assay protocols in a quality control routine and emphasizes the importance of new approaches for IFN potency determination. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
de Paula, Leonardo B.; Primo, Fernando L.; Pinto, Marcelo R.; Morais, Paulo C.; Tedesco, Antonio C.
2015-04-01
The present study reports on the preparation and the cell viability assay of two nanoemulsions loaded with magnetic nanoparticle and chloroaluminum phthalocyanine. The preparations contain equal amount of chloroaluminum phthalocyanine (0.05 mg/mL) but different contents of magnetic nanoparticle (0.15×1013 or 1.50×1013 particle/mL). The human bone marrow mesenchymal stem cell line was used as the model to assess the cell viability and this type of cell can be used as a model to mimic cancer stem cells. The cell viability assays were performed in isolated as well as under combined magnetic hyperthermia and photodynamic therapy treatments. We found from the cell viability assay that under the hyperthermia treatment (1 MHz and 40 Oe magnetic field amplitude) the cell viability reduction was about 10%, regardless the magnetic nanoparticle content within the magnetic nanoparticle/chloroaluminum phthalocyanine formulation. However, cell viability reduction of about 50% and 60% were found while applying the photodynamic therapy treatment using the magnetic nanoparticle/chloroaluminum phthalocyanine formulation containing 0.15×1013 or 1.50×1013 magnetic particle/mL, respectively. Finally, an average reduction in cell viability of about 66% was found while combining the hyperthermia and photodynamic therapy treatments.
Li, Guoxiao; Zhang, Rongbiao; Yang, Ning; Yin, Changsheng; Wei, Mingji; Zhang, Yecheng; Sun, Jian
2018-06-01
To overcome the drawbacks such as low automation and high cost, an approach for cell viability online detection is proposed, based on the extracted lensfree cell diffraction fingerprint characteristics. The cell fingerprints are acquired by a constructed large field-of-view (FOV) diffraction imaging platform without any lenses. The approach realizes distinguishing live and dead cells online and calculating cell viability index based on the number of live cells. With theoretical analysis and simulation, diffraction fingerprints of cells with different morphology are simulated and two characteristics are discovered to be able to reflect cell viability status effectively. Two parameters, fringe intensity contrast (FIC) and fringe dispersion (FD), are defined to quantify these two characteristics. They are verified to be reliable to identify live cells. In a cytotoxicity assay of different methyl mercury concentration on BRL cells, the proposed approach is used to detect cell viability. MTT method is also employed and the results of correlational analysis and Bland-Altman analysis prove the validity of the proposed approach. By comparison, it can be revealed that the proposed approach has some advantages over other present techniques. Therefore it may be widely used as a cell viability measurement method in drug screening, nutritional investigation and cell toxicology studies. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jung, Yookyung; Klein, Oliver J.; Wang, Hequn; Evans, Conor L.
2016-06-01
Three-dimensional in vitro tumor models are highly useful tools for studying tumor growth and treatment response of malignancies such as ovarian cancer. Existing viability and treatment assessment assays, however, face shortcomings when applied to these large, complex, and heterogeneous culture systems. Optical coherence tomography (OCT) is a noninvasive, label-free, optical imaging technique that can visualize live cells and tissues over time with subcellular resolution and millimeters of optical penetration depth. Here, we show that OCT is capable of carrying out high-content, longitudinal assays of 3D culture treatment response. We demonstrate the usage and capability of OCT for the dynamic monitoring of individual and combination therapeutic regimens in vitro, including both chemotherapy drugs and photodynamic therapy (PDT) for ovarian cancer. OCT was validated against the standard LIVE/DEAD Viability/Cytotoxicity Assay in small tumor spheroid cultures, showing excellent correlation with existing standards. Importantly, OCT was shown to be capable of evaluating 3D spheroid treatment response even when traditional viability assays failed. OCT 3D viability imaging revealed synergy between PDT and the standard-of-care chemotherapeutic carboplatin that evolved over time. We believe the efficacy and accuracy of OCT in vitro drug screening will greatly contribute to the field of cancer treatment and therapy evaluation.
Precision-cut tissue chips as an in vitro toxicology system
Catania, J. M.; Pershing, A. M.; Gandolfi, A. J.
2007-01-01
Precision-cut tissue slices mimic specific organ toxicity because normal cellular heterogeneity and organ architecture are retained. To optimize the use of the smaller tissues of the mouse and to establish easy assays for tissue viability, a tissue chip based system was used to generate large numbers of samples from a single organ. Iodoacetamide (IAM), was used as a model toxicant, and assays for intracellular potassium (normalized to DNA content) were used to establish viability and toxicant susceptibility. Thereafter, assays that were more rapid and specific were pursued. Lysates from tissues incubated in 6-carboxyfluorescein fluoresced proportionately to concentrations of IAM, indicating disruption of cellular membranes. Similarly, FURA-2, a probe applied to lysates to measure calcium levels, fluoresced proportionately to IAM dosage. Monobromobimane, a fluorescent sulfhydryl probe, displayed a decrease in fluorescent intensity at higher IAM challenge; a finding confirmed with an absorbance assay with Ellman’s reagent. Importantly, the number of samples per organ/mouse was increased at least 3-fold and a significant time reduction per analysis was realized. PMID:17376647
NASA Astrophysics Data System (ADS)
Nieschke, Kathleen; Mittag, Anja; Golab, Karolina; Bocsi, Jozsef; Pierzchalski, Arkadiusz; Kamysz, Wojciech; Tarnok, Attila
2014-03-01
Toxicity test of new chemicals belongs to the first steps in the drug screening, using different cultured cell lines. However, primary human cells represent the human organism better than cultured tumor derived cell lines. We developed a very gentle toxicity assay for isolation and incubation of human peripheral blood leukocytes (PBL) and tested it using different bioactive oligopeptides (OP). Effects of different PBL isolation methods (red blood cell lysis; Histopaque isolation among others), different incubation tubes (e.g. FACS tubes), anticoagulants and blood sources on PBL viability were tested using propidium iodide-exclusion as viability measure (incubation time: 60 min, 36°C) and flow cytometry. Toxicity concentration and time-depended effects (10-60 min, 36 °C, 0-100 μg /ml of OP) on human PBL were analyzed. Erythrocyte lysis by hypotonic shock (dH2O) was the fastest PBL isolation method with highest viability (>85%) compared to NH4Cl-Lysis (49%). Density gradient centrifugation led to neutrophil granulocyte cell loss. Heparin anticoagulation resulted in higher viability than EDTA. Conical 1.5 mL and 2 mL micro-reaction tubes (both polypropylene (PP)) had the highest viability (99% and 97%) compared to other tubes, i.e. three types of 5.0 mL round-bottom tubes PP (opaque-60%), PP (blue-62%), Polystyrene (PS-64%). Viability of PBL did not differ between venous and capillary blood. A gentle reproducible preparation and analytical toxicity-assay for human PBL was developed and evaluated. Using our assay toxicity, time-course, dose-dependence and aggregate formation by OP could be clearly differentiated and quantified. This novel assay enables for rapid and cost effective multiparametric toxicological screening and pharmacological testing on primary human PBL and can be adapted to high-throughput-screening.°z
Sykes, Melissa L.; Avery, Vicky M.
2015-01-01
We have developed a high content 384-well, image-based assay to estimate the effect of compound treatment on Trypanosoma cruzi amastigotes in 3T3 fibroblasts. In the same well, the effect of compound activity on host cells can also be determined, as an initial indicator of cytotoxicity. This assay has been used to identify active compounds from an in-house library of compounds with either known biological activity or that are FDA approved, and separately, from the Medicines for Malaria Venture Malaria Box collection. Active compounds were screened against T. cruzi trypomastigotes, utilising an assay developed with the viability dye resazurin. Twelve compounds with reconfirmed solid sample activity, with IC50 values of less than 10 μM and selectivity indices to T. cruzi amastigotes over 3T3 host cells of between >22 and 319 times were identified from these libraries. As 3T3 cells are contact inhibited, with limited proliferation in the assay, selective compounds of interest were profiled in a separate assay to estimate the viability of compound treated, replicating HEK293 cells. Selective compounds that were not previously reported in the literature were further profiled by extending the incubation time against amastigote infected 3T3 cells to determine if there were residual amastigotes post-treatment, important for the consideration of the exposure time required for further biological characterisation. The assay development process and the suitability of identified compounds as hit molecules for Chagas disease research are discussed. PMID:27120069
Sykes, Melissa L; Avery, Vicky M
2015-12-01
We have developed a high content 384-well, image-based assay to estimate the effect of compound treatment on Trypanosoma cruzi amastigotes in 3T3 fibroblasts. In the same well, the effect of compound activity on host cells can also be determined, as an initial indicator of cytotoxicity. This assay has been used to identify active compounds from an in-house library of compounds with either known biological activity or that are FDA approved, and separately, from the Medicines for Malaria Venture Malaria Box collection. Active compounds were screened against T. cruzi trypomastigotes, utilising an assay developed with the viability dye resazurin. Twelve compounds with reconfirmed solid sample activity, with IC50 values of less than 10 μM and selectivity indices to T. cruzi amastigotes over 3T3 host cells of between >22 and 319 times were identified from these libraries. As 3T3 cells are contact inhibited, with limited proliferation in the assay, selective compounds of interest were profiled in a separate assay to estimate the viability of compound treated, replicating HEK293 cells. Selective compounds that were not previously reported in the literature were further profiled by extending the incubation time against amastigote infected 3T3 cells to determine if there were residual amastigotes post-treatment, important for the consideration of the exposure time required for further biological characterisation. The assay development process and the suitability of identified compounds as hit molecules for Chagas disease research are discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Chiaraviglio, Lucius
2014-01-01
Abstract Interpretation of high throughput screening (HTS) data in cell-based assays may be confounded by cytotoxic properties of screening compounds. Therefore, assessing cell toxicity in real time during the HTS process itself would be highly advantageous. Here, we investigate the potential of putatively impermeant, fluorescent, DNA-binding dyes to give cell toxicity readout during HTS. Amongst 19 DNA-binding dyes examined, three classes were identified that were (1) permeant, (2) cytotoxic, or (3) neither permeant nor cytotoxic during 3-day incubation with a macrophage cell line. In the last class, four dyes (SYTOX Green, CellTox Green, GelGreen, and EvaGreen) gave highly robust cytotoxicity data in 384-well screening plates. As proof of principle, successful combination with a luminescence-based assay in HTS format was demonstrated. Here, both intracellular growth of Legionella pneumophila (luminescence) and host cell viability (SYTOX Green exclusion) were assayed in the same screening well. Incorporation of membrane-impermeant, DNA-binding, fluorescent dyes in HTS assays should prove useful by allowing evaluation of cytotoxicity in real time, eliminating reagent addition steps and effort associated with endpoint cell viability analysis, and reducing the need for follow-up cytotoxicity screening. PMID:24831788
Oliveira, R.J.; Mantovani, M.S.; da Silva, A.F.; Pesarini, J.R.; Mauro, M.O.; Ribeiro, L.R.
2014-01-01
The compounds 6-dimethylaminopurine and cycloheximide promote the successful production of cloned mammals and have been used in the development of embryos produced by somatic cell nuclear transfer. This study investigated the effects of 6-dimethylaminopurine and cycloheximide in vitro, using the thiazolyl blue tetrazolium bromide colorimetric assay to assess cytotoxicity, the trypan blue exclusion assay to assess cell viability, the comet assay to assess genotoxicity, and the micronucleus test with cytokinesis block to test mutagenicity. In addition, the comet assay and the micronucleus test were also performed on peripheral blood cells of 54 male Swiss mice, 35 g each, to assess the effects of the compounds in vivo. The results indicated that both 6-dimethylaminopurine and cycloheximide, at the concentrations and doses tested, were cytotoxic in vitro and genotoxic and mutagenic in vitro and in vivo, altered the nuclear division index in vitro, but did not diminish cell viability in vitro. Considering that alterations in DNA play important roles in mutagenesis, carcinogenesis, and morphofunctional teratogenesis and reduce embryonic viability, this study indicated that 6-dimethylaminopurine and cycloheximide utilized in the process of mammalian cloning may be responsible for the low embryo viability commonly seen in nuclear transfer after implantation in utero. PMID:24714812
Oliveira, R J; Mantovani, M S; Silva, A F da; Pesarini, J R; Mauro, M O; Ribeiro, L R
2014-04-01
The compounds 6-dimethylaminopurine and cycloheximide promote the successful production of cloned mammals and have been used in the development of embryos produced by somatic cell nuclear transfer. This study investigated the effects of 6-dimethylaminopurine and cycloheximide in vitro, using the thiazolyl blue tetrazolium bromide colorimetric assay to assess cytotoxicity, the trypan blue exclusion assay to assess cell viability, the comet assay to assess genotoxicity, and the micronucleus test with cytokinesis block to test mutagenicity. In addition, the comet assay and the micronucleus test were also performed on peripheral blood cells of 54 male Swiss mice, 35 g each, to assess the effects of the compounds in vivo. The results indicated that both 6-dimethylaminopurine and cycloheximide, at the concentrations and doses tested, were cytotoxic in vitro and genotoxic and mutagenic in vitro and in vivo, altered the nuclear division index in vitro, but did not diminish cell viability in vitro. Considering that alterations in DNA play important roles in mutagenesis, carcinogenesis, and morphofunctional teratogenesis and reduce embryonic viability, this study indicated that 6-dimethylaminopurine and cycloheximide utilized in the process of mammalian cloning may be responsible for the low embryo viability commonly seen in nuclear transfer after implantation in utero.
Involvement of TRPV1 and AQP2 in hypertonic stress by xylitol in odontoblast cells.
Tokuda, M; Fujisawa, M; Miyashita, K; Kawakami, Y; Morimoto-Yamashita, Y; Torii, M
2015-02-01
To examine the responses of mouse odontoblast-lineage cell line (OLC) cultures to xylitol-induced hypertonic stress. OLCs were treated with xylitol, sucrose, sorbitol, mannitol, arabinose and lyxose. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay. The expression of transient receptor potential vanilloids (TRPV) 1, 3 and 4 was detected using a reverse transcriptase-polymerase chain reaction (RT-PCR) assay. The expression of aquaporin (AQP) 2 was detected using immunofluorescence and Western blotting analysis. The expression of interleukin-6 (IL-6) under xylitol-induced hypertonic stress was assessed using an enzyme-linked immunosorbent assay (ELISA). Small interfering ribonucleic acid (siRNA) for AQP-2 was used to inhibition assay. Xylitol-induced hypertonic stress did not decrease OLC viability, unlike the other sugars tested. OLCs expressed TRPV1, 3 and 4 as well as AQP2. Xylitol inhibited lipopolysaccharide (LPS)-induced IL-6 expression after 3 h of hypertonic stress. TRPV1 mRNA expression was upregulated by xylitol. Costimulation with HgCl2 (AQP inhibitor) and Ruthenium red (TRPV1 inhibitor) decreased cell viability with xylitol stimulation. OLCs treated with siRNA against TRPV1 exhibited decreased cell viability with xylitol stimulation. OLCs have high-cell viability under xylitol-induced hypertonic stress, which may be associated with TRPV1 and AQP2 expressions.
A comparison of assays measuring the viability of Legionella ...
Background: The relatively high prevalence of Legionella pneumophila in premise plumbing systems has been widely reported. Published reports indicate Legionella has a comparatively high resistance to chlorine and moreover has the ability to grow in phagocytic amoeba which could provide additional protection in chlorinated drinking water distribution systems. Copper-Silver (Cu-Ag) ionization treatment systems are commercially available for use in large building water systems to help control the risks from Legionella bacteria. The objectives of this study were to develop and optimize Legionella viability assays and use them to investigate the viability of Legionella bacteria after exposure to water treated with coppper and silver ions. Methods: Log phase L. pneumophila cells were used in all experiments and were generated by incubation at 35C for 48 hours in buffered yeast extract broth. Viability assays used included plating on buffered charcoal yeast extract agar to determine the number of culturable cells and treating cells with propidium monoazide (PMA) or ethidium monoazide (EMA) followed by quantitative PCR targeting mip gene of L. pneumophila. The qPCR viability assays were optimized using L. pneumophila inactivated by heat treatment at 65C for 60 min. The effectiveness of Cu-Ag ionization treatment was studied by inoculating L. pneumonia at 105 CFU/mL in water collected directly from a building water system that employed this technology and incubat
Fluorescein Diacetate Microplate Assay in Cell Viability Detection.
Chen, Xi; Yang, Xiu-Ying; Fang, Lian-Hua; DU, Guan-Hua
2016-12-20
Objective To investigate the application of the fluorescein diacetate (FDA) microplate assay in cell viability detection. Methods Cells were seeded in a 96-well culture plate until detection. After incubated with FDA,the plate was detected by fluorescence microplate analyzer. The effects of FDA incubation duration,concentration,and other factors on the assay's accuracy and stability were assessed. We also compared the results of FDA with methyl thiazolyl(MTT) in terms of cell numbers and H 2 O 2 injury. Results Within 0-30 minutes,the fluorescence-cell number coefficient of FDA assay increased with duration and reached 0.99 in 27-30 minutes. The optimum concentration of final FDA in this study was 10-30 μg/ml. On cell viability detection,the result of FDA method was equivalent to MTT method. As to H 2 O 2 injury assay,the sensitivity of FDA method was superior to MTT on the higher concentration H 2 O 2 treatment due to a relative shorter duration for detection. Conclusion As a stable and reliable method,FDA is feasible for cell variability detection under varied conditions.
Fernandes, Joao Paulo Dos Santos; Mello-Moura, Anna Carolina Volpi; Marques, Marcia Martins; Nicoletti, Maria Aparecida
2012-12-01
This in vitro study evaluated the cytotoxic effects of the Curcuma zedoaria (Christm.) Roscoe (popular name: zedoary) fluid extract, as used in preparations for oral hygiene, mostly for anti-septic purposes. The cell viability and cell growth were assessed by Trypan blue dye exclusion assay using the LMF cell line derived from oral mucosa. Cell viability (short-term assay) was measured 0, 6, 12 and 24 h after contact with the fluid extract. Cell growth (long-term assay) was analyzed in 1, 3, 5 and 7 days. The experimental groups were those testing the fluid extract obtained from the zedoary rhizome and the extractor liquid (ethanol 70° GL) in the concentrations of 0.01-0.0001% v/v. Fresh DMEM were used in the control cultures. Short-term assay-all studied cultures maintained stable cell viability; Long-term assay-there was progressive cell growth in all studied cultures. According to the results, the zedoary fluid extract presents low cytotoxicity and probably can be used in the oral hygiene products.
Nanoparticle-assay marker interaction: effects on nanotoxicity assessment
NASA Astrophysics Data System (ADS)
Zhao, Xinxin; Xiong, Sijing; Huang, Liwen Charlotte; Ng, Kee Woei; Loo, Say Chye Joachim
2015-01-01
Protein-based cytotoxicity assays such as lactate dehydrogenase (LDH) and tumor necrosis factor-alpha (TNF-α) are commonly used in cytotoxic evaluation of nanoparticles (NPs) despite numerous reports on possible interactions with protein markers in these assays that can confound the results obtained. In this study, conventional cytotoxicity assays where assay markers may (LDH and TNF- α) or may not (PicoGreen and WST-8) come into contact with NPs were used to evaluate the cytotoxicity of NPs. The findings revealed selective interactions between negatively charged protein assay markers (LDH and TNF- α) and positively charged ZnO NPs under abiotic conditions. The adsorption and interaction with these protein assay markers were strongly influenced by surface charge, concentration, and specific surface area of the NPs, thereby resulting in less than accurate cytotoxic measurements, as observed from actual cell viability measurements. An improved protocol for LDH assay was, therefore, proposed and validated by eliminating any effects associated with protein-particle interactions. In view of this, additional measures and precautions should be taken when evaluating cytotoxicity of NPs with standard protein-based assays, particularly when they are of opposite charges.
Bhatia, Sujata K; Yetter, Ann B
2008-08-01
Medical devices and implanted biomaterials are often assessed for biological reactivity using visual scores of cell-material interactions. In such testing, biomaterials are assigned cytotoxicity ratings based on visual evidence of morphological cellular changes, including cell lysis, rounding, spreading, and proliferation. For example, ISO 10993 cytotoxicity testing of medical devices allows the use of a visual grading scale. The present study compared visual in vitro cytotoxicity ratings to quantitative in vitro cytotoxicity measurements for biomaterials to determine the level of correlation between visual scoring and a quantitative cell viability assay. Biomaterials representing a spectrum of biological reactivity levels were evaluated, including organo-tin polyvinylchloride (PVC; a known cytotoxic material), ultra-high molecular weight polyethylene (a known non-cytotoxic material), and implantable tissue adhesives. Each material was incubated in direct contact with mouse 3T3 fibroblast cell cultures for 24 h. Visual scores were assigned to the materials using a 5-point rating scale; the scorer was blinded to the material identities. Quantitative measurements of cell viability were performed using a 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay; again, the assay operator was blinded to material identities. The investigation revealed a high degree of correlation between visual cytotoxicity ratings and quantitative cell viability measurements; a Pearson's correlation gave a correlation coefficient of 0.90 between the visual cytotoxicity score and the percent viable cells. An equation relating the visual cytotoxicity score and the percent viable cells was derived. The results of this study are significant for the design and interpretation of in vitro cytotoxicity studies of novel biomaterials.
Mestieri, Leticia Boldrin; Gomes-Cornélio, Ana Lívia; Rodrigues, Elisandra Márcia; Salles, Loise Pedrosa; Bosso-Martelo, Roberta; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mário
2015-10-01
Mineral Trioxide Aggregate (MTA) is a calcium silicate-based material. New sealers have been developed based on calcium silicate as MTA Fillapex and MTA Plus. The aim of this study was to evaluate biocompatibility and bioactivity of these two calcium silicate-based sealers in culture of human dental pulp cells (hDPCs). The cells were isolated from third molars extracted from a 16-year-old patient. Pulp tissue was sectioned into fragments with approximately 1 mm3 and kept in supplemented medium to obtain hDPCs adherent cultures. Cell characterization assays were performed to prove the osteogenic potential. The evaluated materials were: MTA Plus (MTAP); MTA Fillapex (MTAF) and FillCanal (FC). Biocompatibility was evaluated with MTT and Neutral Red (NR) assays, after hDPCs exposure for 24 h to different dilutions of each sealer extract (1:2, 1:3 and 1:4). Unexposed cells were the positive control (CT). Bioactivity was assessed by alkaline phosphatase (ALP) enzymatic assay in cells exposed for one and three days to sealer extracts (1:4 dilution). All data were analyzed by ANOVA and Tukey post-test (p≤0.05%). MTT and NR results showed suitable cell viability rates for MTAP at all dilutions (90-135%). Cells exposed to MTAF and FC (1:2 and 1:4 dilutions) showed significant low viability rate when compared to CT in MTT. The NR results demonstrated cell viability for all materials tested. In MTAP group, the cells ALP activity was similar to CT in one and three days of exposure to the material. MTAF and FC groups demonstrated a decrease in ALP activity when compared to CT at both periods of cell exposure. The hDPCs were suitable for the evaluation of new endodontic materialsin vitro. MTAP may be considered a promising material for endodontic treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leon E.; Haas, Derek A.; Gavron, Victor A.
2009-09-25
Under funding from the Department of Energy Office of Nuclear Energy’s Materials, Protection, Accounting, and Control for Transmutation (MPACT) program (formerly the Advanced Fuel Cycle Initiative Safeguards Campaign), Pacific Northwest National Laboratory (PNNL) and Los Alamos National Laboratory (LANL) are collaborating to study the viability of lead slowing-down spectroscopy (LSDS) for spent-fuel assay. Based on the results of previous simulation studies conducted by PNNL and LANL to estimate potential LSDS performance, a more comprehensive study of LSDS viability has been defined. That study includes benchmarking measurements, development and testing of key enabling instrumentation, and continued study of time-spectra analysis methods.more » This report satisfies the requirements for a PNNL/LANL deliverable that describes the objectives, plans and contributing organizations for a comprehensive three-year study of LSDS for spent-fuel assay. This deliverable was generated largely during the LSDS workshop held on August 25-26, 2009 at Rensselaer Polytechnic Institute (RPI). The workshop itself was a prominent milestone in the FY09 MPACT project and is also described within this report.« less
Feng, Jie; Yee, Rebecca; Zhang, Shuo; Tian, Lili; Shi, Wanliang; Zhang, Wen-Hong; Zhang, Ying
2018-01-01
Antibiotic-resistant bacteria have caused huge concerns and demand innovative approaches for their prompt detection. Current antimicrobial susceptibility tests (AST) rely on the growth of the organisms which takes 1-2 days for fast-growing organisms and several weeks for slow growing organisms. Here, we show for the first time the utility of the SYBR Green I/propidium iodide (PI) viability assay for rapidly identifying antibiotic resistance in less than 30 min for major, antibiotic-resistant, fast-growing bacteria, such as Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae , and Acinetobacter baumannii for bactericidal and bacteriostatic agents and in 16 h for extremely rapid detection of drug resistance for isoniazid and pyrazinamide in slow-growing Mycobacterium tuberculosis . The SYBR Green I/PI assay generated rapid and robust results in concordance with traditional AST methods. This novel growth-independent methodology changes the concept of the current growth-based AST and may revolutionize current drug susceptibility testing for all cells of prokaryotic and eukaryotic origin and, subject to further clinical validation, may play a major role in saving lives and improving patient outcomes.
Classification of sensitizing and irritative potential in a combined in-vitro assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanner, Reinhard, E-mail: reinhard.wanner@charite.d; Sonnenburg, Anna; Quatchadze, Maria
2010-06-01
We have developed a coculture system which in parallel indicates the sensitizing and irritative potential of xenobiotics. The assay is named loose-fit coculture-based sensitization assay (LCSA) and may be performed within 5 days. The system is composed of human monocytes that differentiate to a kind of dendritic cells by 2-day culturing in the presence of allogenic keratinocytes. The culture medium is enriched by a cocktail of recombinant cytokines. On day 3, concentration series of probes are added. On day 5, cells are harvested and analyzed for expression range of CD86 as a marker of sensitizing potential and for uptake ofmore » the viability stain 7-AAD as a marker of irritative potential. Estimation of the concentration required to cause a half-maximal increase in CD86 expression allowed quantification of sensitizing potential, and estimation of the concentration required to reduce viability to 50% allowed quantification of irritative potential. Examination of substances with known potential resulted in categorization of test scores. To evaluate our data, we have compared results with those of the validated animal-based sensitization test, the murine local lymph node assay (LLNA, OECD TG 429). To a large extent, results from LCSA and from LLNA achieved analogous grouping of allergens into categories like weak-moderate-strong. However, the new assay showed an improved capacity to distinguish sensitizers from non-sensitizers and irritants. In conclusion, the LCSA contains potential to fulfil the requirements of the EU's programme for the safety of chemicals 'Registration, Evaluation, Authorisation and Restriction of chemical substances' (REACH, 2006) to replace animal models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Becky M.; Kaiser, Brooke LD; Sydor, Michael A.
ABSTRACT Aims To develop and optimize an assay to determine viability status of Bacillus anthracis Sterne and Yersinia pestis pgm- strains in the presence of white powders by coupling propidium monoazide (PMA) treatment with real-time PCR (qPCR) analysis. Methods and Results PMA selectively enters nonviable cells and binds DNA, thereby increasing qPCR assay cycle threshold (CT) values compared to untreated samples. Dye concentration, cell number and fitness, incubation time, inactivation methods, and assay buffer were optimized for B. anthracis Sterne and Y. pestis pgm-. Differences in CT values in nonviable cells compared to untreated samples were consistently > 9 formore » both B. anthracis Sterne vegetative cells and Y. pestis pgm- in the presence and absence of three different white powders. Our method eliminates the need for a DNA extraction step prior to detection by qPCR. Conclusions The developed assay enables simultaneous identification and viability assessment for B. anthracis Sterne and Y. pestis pgm- under laboratory conditions, even in the presence of white powders. Eliminating the DNA extraction step that is typically used reduces total assay time and labor requirements for sample analysis. Significance and Impact of the Study The method developed for simultaneous detection and viability assessment for B. anthracis and Y. pestis can be employed in forming decisions about the severity of a biothreat event or the safety of food. Keywords Bacillus anthracis, Yersinia pestis, Propidium Monoazide, qPCR, White Powders, Rapid Viability Detection« less
Shock Wave-Stimulated Periosteum for Cartilage Repair
2013-12-01
were added to the Gtn-HPA prior to the gelation 6 process, at a cell density of 1×105 cells/ml. In the control groups, cells received no treatment...Mesenchymal Stem Cell Viability Viability test was performed 24 hours post- gelation using the Live/Dead assay. Viability/cytotoxicity kit was used (Molecular
Assessment of bacterial endospore viability with fluorescent dyes.
Laflamme, C; Lavigne, S; Ho, J; Duchaine, C
2004-01-01
To validate three fluorescence viability assays designed primarily for vegetative cells on pure Bacillus endospores. Purified fresh and gamma-irradiated Bacillus endospores (Bacillus cereus, B. coagulans and two strains of B. subtilis) were used. The viability assays were: 5-cyano-2,3-diotolyl tetrazolium chloride (CTC) to test respiratory activity and early germination, DiBAC4(3) and Live/Dead BacLight to measure membrane energization and permeabilization, respectively. Gamma irradiation treatment completely eliminated spore culturability and was used as negative control. The untreated spores showed respiratory activity after 1 h of incubation and this was characteristic of almost 100% of spores after 24 h. The membrane potential assessment gave no answer about spore viability. A lower proportion of untreated spores had permeabilized membrane compared with gamma-irradiated spores using Live/Dead BacLight (P < 0.02). It is possible to use CTC and Live/Dead BacLight to rapidly test endospore viability and evaluate the proportion of spores in a preparation that could not be recovered with plate count. This study shows that fluorescence tests could be applied to assess viability in potentially pathogenic Bacillus spore preparations within 1 h.
Single, Andrew; Beetham, Henry; Telford, Bryony J; Guilford, Parry; Chen, Augustine
2015-12-01
Cell viability assays fulfill a central role in drug discovery studies. It is therefore important to understand the advantages and disadvantages of the wide variety of available assay methodologies. In this study, we compared the performance of three endpoint assays (resazurin reduction, CellTiter-Glo, and nuclei enumeration) and two real-time systems (IncuCyte and xCELLigence). Of the endpoint approaches, both the resazurin reduction and CellTiter-Glo assays showed higher cell viabilities when compared directly to stained nuclei counts. The IncuCyte and xCELLigence real-time systems were comparable, and both were particularly effective at tracking the effects of drug treatment on cell proliferation at sub-confluent growth. However, the real-time systems failed to evaluate contrasting cell densities between drug-treated and control-treated cells at full growth confluency. Here, we showed that using real-time systems in combination with endpoint assays alleviates the disadvantages posed by each approach alone, providing a more effective means to evaluate drug toxicity in monolayer cell cultures. Such approaches were shown to be effective in elucidating the toxicity of synthetic lethal drugs in an isogenic pair of MCF10A breast cell lines. © 2015 Society for Laboratory Automation and Screening.
Filipak Neto, Francisco; Cardoso da Silva, Ludiana; Liebel, Samuel; Voigt, Carmen Lúcia; Oliveira Ribeiro, Ciro Alberto de
2018-01-01
The nanotechnology has revolutionized the global market with silver nanoparticles (AgNP) occupying a prominent position due to their remarkable anti-bacterial properties. However, there is no data about the adverse and toxic effects of associations of AgNP and ubiquitous compounds, such as polycyclic aromatic hydrocarbons (PAH). In the current study, we investigated the responses of HepG2 cells to realistic concentrations of AgNP (0.09, 0.9, and 9 ng ml -1 ) and mixture of PAH (30 and 300 ng ml -1 ), separately and in association. Cell viability and cytotoxicity (neutral red retention and MTT production assays) and proliferation (crystal violet [CV] assay), xenobiotic efflux transporter activity (rhodamine B accumulation assay), ROS levels (dichlorodihydrofluorescein diacetate assay), and lipid peroxidation (pyrenylphosphine-1-diphenyl assay) were analyzed. There was no decreases of cell viability after exposure to AgNP, PAH and most of AgNP + PAH associations, but increases of cell viability/number (CV assay) occurred. Efflux transporter activity was not affected, with exception of one AgNP + PAH associations, ROS levels increased, but lipid peroxidation decreased. Some toxicological interactions occurred, particularly for the highest concentrations of AgNP and PAH, but there is no evidence that these interactions increased the toxicity of AgNP and PAH.
Effects of long-term cryopreservation on peripheral blood progenitor cells.
Vosganian, Gregory S; Waalen, Jill; Kim, Kevin; Jhatakia, Sejal; Schram, Ethan; Lee, Tracey; Riddell, Dan; Mason, James R
2012-11-01
The long-term stability of cryopreserved peripheral blood progenitor cells is an important issue for patients experiencing disease relapse. However, there is no consensus on how to evaluate the long-term effects of cryopreservation. We describe the effect of cryopreservation on viability and progenitor colony activity from 87 individual samples processed at the Scripps Green Hospital Stem Cell Processing Center (La Jolla, CA, USA). We randomly selected 87 peripheral blood hematopoietic stem cell (PBHSC) samples from 60 patients and evaluated the effect of cryopreservation on sample viability and red and white cell colony activity after < 24 h and 7, 10 and 15 years of cryopreservation. Viability was assayed via trypan blue dye exclusion and activity was measured following 14 days of culture. An age at collection older than 50 years may result in suboptimal activity and viability following long-term cryopreservation, while gender and disease status had no effect. Cryopreservation did not significantly affect white or red cell activity following 10 years of cryopreservation. However, for samples stored longer than 10 years, viability and activity significantly decreased. We noted a positive association between higher pre-cryopreservation %CD34 count and colony activity. Cryopreservation of peripheral blood progenitor cells for up to 10 years results in no loss of clonogenic capacity, as determined by culture activity, although longer durations of storage may affect activity. Until validated methods are developed, cryopreserved grafts should be evaluated based on pre-freeze CD34(+) cell counts as assayed by flow cytometry, and post-thaw sample evaluation should be reserved for patients identified as poor mobilizers.
Assaying Cellular Viability Using the Neutral Red Uptake Assay.
Ates, Gamze; Vanhaecke, Tamara; Rogiers, Vera; Rodrigues, Robim M
2017-01-01
The neutral red uptake assay is a cell viability assay that allows in vitro quantification of xenobiotic-induced cytotoxicity. The assay relies on the ability of living cells to incorporate and bind neutral red, a weak cationic dye, in lysosomes. As such, cytotoxicity is expressed as a concentration-dependent reduction of the uptake of neutral red after exposure to the xenobiotic under investigation. The neutral red uptake assay is mainly used for hazard assessment in in vitro toxicology applications. This method has also been introduced in regulatory recommendations as part of 3T3-NRU-phototoxicity-assay, which was regulatory accepted in all EU member states in 2000 and in the OECD member states in 2004 as a test guideline (TG 432). The present protocol describes the neutral red uptake assay using the human hepatoma cell line HepG2, which is often employed as an alternative in vitro model for human hepatocytes. As an example, the cytotoxicity of acetaminophen and acetyl salicylic acid is assessed.
International Space Station environmental microbiome - microbial inventories of ISS filter debris.
Venkateswaran, Kasthuri; Vaishampayan, Parag; Cisneros, Jessica; Pierson, Duane L; Rogers, Scott O; Perry, Jay
2014-01-01
Despite an expanding array of molecular approaches for detecting microorganisms in a given sample, rapid and robust means of assessing the differential viability of the microbial cells, as a function of phylogenetic lineage, remain elusive. A propidium monoazide (PMA) treatment coupled with downstream quantitative polymerase chain reaction (qPCR) and pyrosequencing analyses was carried out to better understand the frequency, diversity, and distribution of viable microorganisms associated with debris collected from the crew quarters of the International Space Station (ISS). The cultured bacterial counts were more in the ISS samples than cultured fungal population. The rapid molecular analyses targeted to estimate viable population exhibited 5-fold increase in bacterial (qPCR-PMA assay) and 25-fold increase in microbial (adenosine triphosphate assay) burden than the cultured bacterial population. The ribosomal nucleic acid-based identification of cultivated strains revealed the presence of only four to eight bacterial species in the ISS samples, however, the viable bacterial diversity detected by the PMA-pyrosequencing method was far more diverse (12 to 23 bacterial taxa) with the majority consisting of members of actinobacterial genera (Propionibacterium, Corynebacterium) and Staphylococcus. Sample fractions not treated with PMA (inclusive of both live and dead cells) yielded a great abundance of highly diverse bacterial (94 to 118 taxa) and fungal lineages (41 taxa). Even though deep sequencing capability of the molecular analysis widened the understanding about the microbial diversity, the cultivation assay also proved to be essential since some of the spore-forming microorganisms were detected only by the culture-based method. Presented here are the findings of the first comprehensive effort to assess the viability of microbial cells associated with ISS surfaces, and correlate differential viability with phylogenetic affiliation.
Kamocki, K.; Nör, J. E.; Bottino, M. C.
2014-01-01
Aim To evaluate both the drug release profile and the effects on human dental pulp stem cells’ (hDPSC) proliferation and viability of novel bi-mix antibiotic-containing scaffolds intended for use as a drug-delivery system for root canal disinfection prior to regenerative endodontics. Methodology Polydioxanone (PDS)-based fibrous scaffolds containing both metronidazole (MET) and ciprofloxacin (CIP) at selected ratios were synthesized via electrospinning. Fibre diameter was evaluated based on scanning electron microscopy (SEM) images. Pure PDS scaffolds and a saturated CIP/MET solution (i.e. 50 mg of each antibiotic in 1 mL) (hereafter referred to as DAP) served as both negative (non-toxic) and positive (toxic) controls, respectively. High performance liquid chromatography (HPLC) was done to investigate the amount of drug(s) released from the scaffolds. WST-1® proliferation assay was used to evaluate the effect of the scaffolds on cell proliferation. LIVE/DEAD® assay was used to qualitatively assess cell viability. Data obtained from drug release and proliferation assays were statistically analysed at the 5% significance level. Results A burst release of CIP and MET was noted within the first 24 h, followed by a sustained maintenance of the drug(s) concentration for 14 days. A concentration-dependent trend was noticed upon hDPSCs’ exposure to all CIP-containing scaffolds, where increasing the CIP concentration resulted in reduced cell proliferation (P<0.05) and viability. In groups exposed to pure MET or pure PDS scaffolds, no changes in proliferation were observed. Conclusions Synthesized antibiotic-containing scaffolds had significantly lower effects on hDPSCs proliferation when compared to the saturated CIP/MET solution (DAP). PMID:25425048
Sanz, Laura M; Crespo, Benigno; De-Cózar, Cristina; Ding, Xavier C; Llergo, Jose L; Burrows, Jeremy N; García-Bustos, Jose F; Gamo, Francisco-Javier
2012-01-01
Chemotherapy is still the cornerstone for malaria control. Developing drugs against Plasmodium parasites and monitoring their efficacy requires methods to accurately determine the parasite killing rate in response to treatment. Commonly used techniques essentially measure metabolic activity as a proxy for parasite viability. However, these approaches are susceptible to artefacts, as viability and metabolism are two parameters that are coupled during the parasite life cycle but can be differentially affected in response to drug actions. Moreover, traditional techniques do not allow to measure the speed-of-action of compounds on parasite viability, which is an essential efficacy determinant. We present here a comprehensive methodology to measure in vitro the direct effect of antimalarial compounds over the parasite viability, which is based on limiting serial dilution of treated parasites and re-growth monitoring. This methodology allows to precisely determine the killing rate of antimalarial compounds, which can be quantified by the parasite reduction ratio and parasite clearance time, which are key mode-of-action parameters. Importantly, we demonstrate that this technique readily permits to determine compound killing activities that might be otherwise missed by traditional, metabolism-based techniques. The analysis of a large set of antimalarial drugs reveals that this viability-based assay allows to discriminate compounds based on their antimalarial mode-of-action. This approach has been adapted to perform medium throughput screening, facilitating the identification of fast-acting antimalarial compounds, which are crucially needed for the control and possibly the eradication of malaria.
Sanz, Laura M.; Crespo, Benigno; De-Cózar, Cristina; Ding, Xavier C.; Llergo, Jose L.; Burrows, Jeremy N.; García-Bustos, Jose F.; Gamo, Francisco-Javier
2012-01-01
Chemotherapy is still the cornerstone for malaria control. Developing drugs against Plasmodium parasites and monitoring their efficacy requires methods to accurately determine the parasite killing rate in response to treatment. Commonly used techniques essentially measure metabolic activity as a proxy for parasite viability. However, these approaches are susceptible to artefacts, as viability and metabolism are two parameters that are coupled during the parasite life cycle but can be differentially affected in response to drug actions. Moreover, traditional techniques do not allow to measure the speed-of-action of compounds on parasite viability, which is an essential efficacy determinant. We present here a comprehensive methodology to measure in vitro the direct effect of antimalarial compounds over the parasite viability, which is based on limiting serial dilution of treated parasites and re-growth monitoring. This methodology allows to precisely determine the killing rate of antimalarial compounds, which can be quantified by the parasite reduction ratio and parasite clearance time, which are key mode-of-action parameters. Importantly, we demonstrate that this technique readily permits to determine compound killing activities that might be otherwise missed by traditional, metabolism-based techniques. The analysis of a large set of antimalarial drugs reveals that this viability-based assay allows to discriminate compounds based on their antimalarial mode-of-action. This approach has been adapted to perform medium throughput screening, facilitating the identification of fast-acting antimalarial compounds, which are crucially needed for the control and possibly the eradication of malaria. PMID:22383983
Wajid, Nadia; Naseem, Rashida; Anwar, Sanam Saiqa; Awan, Sana Javaid; Ali, Muhammad; Javed, Sara; Ali, Fatima
2015-09-01
Stomal cells derived from Wharton's jelly of human umbilical cord (WJMSCs) are considered as the potential therapeutic agents for regeneration and are getting famous for stem cell banking. Our study aims to evaluate the effects of gestational diabetes on proliferation capacity and viability of WJMSCs. Mesenchymal stromal cells were isolated from Wharton's jelly of human umbilical cords from normal and gestational diabetic (DWJMSCs) mothers. Growth patterns of both types of cells were analyzed through MTT assay and population doubling time. Cell survival, cell death and glucose utilization were estimated through trypan blue exclusion assay, LDH assay and glucose detection assay respectively. Angiogenic ability was evaluated by immunocytochemistry and ELISA for VEGF A. Anti-cancerous potential was analyzed on HeLa cells. DWJMSCs exhibited low proliferative rate, increased population doubling time, reduced cell viability and increased cell death. Interestingly, DWJMSCs were found to have a reduced glucose utilization and anti-cancerous ability while enhanced angiogenic ability. Gestational diabetes induces adverse effects on growth, angiogenic and anti-cancerous potential of WJMSCs.
A novel dual luciferase assay for the simultaneous monitoring of HIV infection and cell viability.
Mitsuki, Yu-Ya; Yamamoto, Takuya; Mizukoshi, Fuminori; Momota, Masatoshi; Terahara, Kazutaka; Yoshimura, Kazuhisa; Harada, Shigeyoshi; Tsunetsugu-Yokota, Yasuko
2016-05-01
Human immunodeficiency virus type 1 (HIV-1) reporter cell lines are critical tools for drug development. However, one disadvantage of HIV-1 reporter cell lines is that reductions in reporter gene activity need to be normalized to cytotoxicity, i.e., live cell numbers. Here, we developed a dual luciferase assay based on a R. reniformis luciferase (hRLuc)-expressing R5-type HIV-1 (NLAD8-hRLuc) and a CEM cell line expressing CCR5 and firefly luciferase (R5CEM-FiLuc). The NLAD8-hRLuc reporter virus was replication competent in peripheral blood mononuclear cells. The level of hRLuc was correlated with p24 antigen levels (p<0.001, R=0.862). The target cell line, R5CEM-FiLuc, stably expressed the firefly luciferase (FiLuc) reporter gene and allowed the simultaneous monitoring of compound cytotoxicity. The dual reporter assay combining a NLAD8-hRLuc virus with R5CEM-FiLuc cells permitted the accurate determination of drug susceptibility for entry, reverse transcriptase, integrase, and protease inhibitors at different multiplicities of infection. This dual reporter assay provides a rapid and direct method for the simultaneous monitoring of HIV infection and cell viability. Copyright © 2016 Elsevier B.V. All rights reserved.
Automation of 3D cell culture using chemically defined hydrogels.
Rimann, Markus; Angres, Brigitte; Patocchi-Tenzer, Isabel; Braum, Susanne; Graf-Hausner, Ursula
2014-04-01
Drug development relies on high-throughput screening involving cell-based assays. Most of the assays are still based on cells grown in monolayer rather than in three-dimensional (3D) formats, although cells behave more in vivo-like in 3D. To exemplify the adoption of 3D techniques in drug development, this project investigated the automation of a hydrogel-based 3D cell culture system using a liquid-handling robot. The hydrogel technology used offers high flexibility of gel design due to a modular composition of a polymer network and bioactive components. The cell inert degradation of the gel at the end of the culture period guaranteed the harmless isolation of live cells for further downstream processing. Human colon carcinoma cells HCT-116 were encapsulated and grown in these dextran-based hydrogels, thereby forming 3D multicellular spheroids. Viability and DNA content of the cells were shown to be similar in automated and manually produced hydrogels. Furthermore, cell treatment with toxic Taxol concentrations (100 nM) had the same effect on HCT-116 cell viability in manually and automated hydrogel preparations. Finally, a fully automated dose-response curve with the reference compound Taxol showed the potential of this hydrogel-based 3D cell culture system in advanced drug development.
Morphology based scoring of chromosomal instability and its correlation with cell viability.
Yadav, Shubhlata; Bhatia, Alka
2017-09-01
The aim of this study was to devise the quantitative scoring system for Chromosomal instability (CIN) based on morphological indicators like MPM, NB, NPB, CS, La and MN in cancer cell line and to correlate it with cell viability and death. Human hepatocellular carcinoma (HepG2) cells were treated with drugs like Diethylstilbestrol 0-100μM, Griseofulvin 0-40μg/ml, Vincristine sulphate 0-25μg/ml, Mitomycin C 0-600ng/ml, Bleomycin 0-10μg/ml, Doxorubicin 0-30μg/ml for 24h. Following this, the CIN was assessed by counting the morphological indicators like Micronuclei (MN), Nuclear Buds (NB), Nucleoplasmic bridges, Laggards, Multipolar mitosis and chromatin strings/1000 cells in Giemsa stained smears by light microscopy and by determining the percentage of aneuploid cells by flow cytometry. The cell viability was assessed by MTT assay and percentage of apoptotic cells was determined by flow cytometry. The MN and NB were most frequently seen indicators and main determinants of morphological CIN. However, the morphological CIN score did not show any correlation with cell viability and apoptosis. Aneuploidy however was found to correlate positively with cell viability and NB score in our study (P-value <0.05). The study for the 1st time attempted to develop a scoring system for CIN based on morphological parameters. However, a no correlation was observed between the later and cell viability or apoptosis. More robust techniques to quantify CIN may perhaps be more helpful in exploring the true link between CIN and cell viability in future. Copyright © 2017 Elsevier GmbH. All rights reserved.
Immunoassay for viable Cryptosporidium parvum oocysts in turbid environmental water samples.
Call, J L; Arrowood, M; Xie, L T; Hancock, K; Tsang, V C
2001-02-01
Cryptosporidium parvum oocysts in drinking water have been implicated in outbreaks of diarrheal disease. Current methods for monitoring environmental exposures to C. parvum only account for total number of oocysts without regard for the viability of the parasite. Measurement of oocyst viability, as indicated by an oocyst's ability to excyst, is useful because over time oocysts lose the ability to excyst and become noninfective. Thus, correlating the number of viable oocysts in drinking water with incidence and risk for disease should be more reliable than using the total number of oocysts. We have developed a quantitative assay capable of detecting low numbers of excystable, sporozoite-releasing C. parvum oocysts in turbid water samples. Monoclonal (CP7) and polyclonal antibodies have been developed against a sporozoite antigen released only during excystation or when the oocyst is mechanically disrupted. CP7 is specific for C. parvum and does not react with C. baileyi, C. muris, C. serpentis, Giardia spp., Eimeria spp., or E. nieschulzi. In this assay, oocysts in the test sample are first excysted and then centrifuged. The soluble sporozoite antigen is captured by CP7 attached to a magnetic bead. The captured antigen is then detected by ruthenium-labeled polyclonal antibodies via electrochemiluminescence. The CP7 viability assay can detect as few as 50 viable oocysts in a 1-ml assay sample with a turbidity as high as 200 Nephelometric turbidity units. This sensitive, turbidity-tolerant assay for oocyst viability may permit a better assessment of the disease risk associated with the presence of environmental oocysts.
Braga, Julia Mourão; Oliveira, Ricardo Reis; de Castro Martins, Renata; Vieira, Leda Quercia; Sobrinho, Antonio Paulino Ribeiro
2015-10-01
To assess the influence of co-culture with mineral trioxide aggregate (MTA) and MTA Fillapex (FLPX) on the viability, adherence, and phagocytosis activity of peritoneal macrophages from two mouse strains. Cellular viability, adherence, and phagocytosis of Saccharomyces boulardii were assayed in the presence of capillaries containing MTA and MTA Fillapex. The data were analyzed using parametric (Student's t) and non-parametric (Mann-Whitney) tests. FLPX was severely cytotoxic and decreased cell viability, adherence, and phagocytic activity of both macrophage subtypes. Cells that were treated with MTA Fillapex remained viable (>80%) for only 4 h after stimulation. Macrophages from C57BL/6 mice presented higher adherence and higher phagocytic activity compared with macrophages from BALB/c mice. Comparison of MTA and FLPX effects upon macrophages indicates that FLPX may impair macrophage activity and viability, while MTA seems to increase phagocytic activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Morato de Souza, Letícia; Guilherme Roque Rinco, Ugo; Aparecida Tavares Aguiar, Daniela; Aparecido de Almeida Junior, Luciano; Cosme-Silva, Leopoldo; Marchini Oliveira, Thais; Teixeira Marques, Nádia Carolina; Thiemy Sakai, Vivien
2018-02-01
This study aimed to evaluate the effect of different doses of low-level laser irradiation on the viability and proliferation of stem cells from exfoliated deciduous teeth (SHED) cultured under nutritional deficit (cellular stress) or regular nutritional conditions. SHED underwent irradiation by a red laser between 1.2 and 6.2 J cm-2. Prior to the irradiation, all groups received culture medium (MEMα, Eagle’s minimum essential medium alpha modification) supplemented with 1% of fetal bovine serum (FBS) for 1 h. After the irradiation, cells received MEMα supplemented with 10% of FBS (regular nutrition) or 1% of FBS (nutritional deficit). Cell viability and proliferation were respectively determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and crystal violet assays 6 and 24 h after irradiation (P < 0.05). At 24 h, SHED under nutritional deficit showed lower viability and proliferation after 1.2 J cm-2 irradiation. All of the irradiated groups revealed significantly higher viability and proliferation in SHED maintained under nutritional deficit than in regular nutritional conditions, except in the 3.7 and 6.2 J cm-2 groups by MTT assay. In the crystal violet assay, SHED irradiated with 1.2 J cm-2 showed no difference between the different nutritional conditions. Decrease of FBS concentration in the culture medium seems to enhance the sensitivity of SHED to the effects of photobiomodulation therapy. Nutritional stress conditions improved cell viability and proliferation of SHED after laser irradiation, except for 1.2 J cm-2.
Kaluzhny, Yulia; Kandárová, Helena; Hayden, Patrick; Kubilus, Joseph; d'Argembeau-Thornton, Laurence; Klausner, Mitchell
2011-09-01
The recently implemented 7th Amendment to the EU Cosmetics Directive and the EU REACH legislation have heightened the need for in vitro ocular test methods. To address this need, the EpiOcular(TM) eye irritation test (EpiOcular-EIT), which utilises the normal (non-transformed) human cell-based EpiOcular tissue model, has been developed. The EpiOcular-EIT prediction model is based on an initial training set of 39 liquid and 21 solid test substances and uses a single exposure period and a single cut-off in tissue viability, as determined by the MTT assay. A chemical is classified as an irritant (GHS Category 1 or 2), if the tissue viability is ≤ 60%, and as a non-irritant (GHS unclassified), if the viability is > 60%. EpiOcular-EIT results for the training set, along with results for an additional 52 substances, which included a range of alcohols, hydrocarbons, amines, esters, and ketones, discriminated between ocular irritants and non-irritants with 98.1% sensitivity, 72.9% specificity, and 84.8% accuracy. To ensure the long-term commercial viability of the assay, EpiOcular tissues produced by using three alternative cell culture inserts were evaluated in the EpiOcular-EIT with 94 chemicals. The assay results obtained with the initial insert and the three alternative inserts were very similar, as judged by correlation coefficients (r²) that ranged from 0.82 to 0.96. The EpiOcular-EIT was pre-validated in 2007/2008, and is currently involved in a formal, multi-laboratory validation study sponsored by the European Cosmetics Association (COLIPA) under the auspices of the European Centre for the Validation of Alternative Methods (ECVAM). The EpiOcular-EIT, together with EpiOcular's long history of reproducibility and proven utility for ultra-mildness testing, make EpiOcular a useful model for addressing current legislation related to animal use in the testing of potential ocular irritants. 2011 FRAME.
Rebelo, Thalia M; Vania, Leila; Ferreira, Eloise; Weiss, Stefan F T
2018-07-01
The 37 kDa/67 kDa laminin receptor (LRP/LR) is over-expressed in tumor cells and has been implicated in several tumourigenic processes such as metastasis and telomerase activation, however, more importantly the focus of the present study is on the maintenance of cellular viability and the evasion of apoptosis. The aim of the study was to investigate the role of LRP/LR on the cellular viability of early (A375) and late stage (A375SM) malignant melanoma cells. Flow cytometry and western blot analysis revealed that A375SM cells contain more cell-surface and total LRP/LR levels in comparison to the A375 cells, respectively. In order to determine the effect of LRP/LR on cell viability and apoptosis, LRP was down-regulated via siRNA technology. MTT assays revealed that LRP knock-down led to significant reductions in the viability of A375 and A375SM cells. Confocal microscopy indicated nuclear morphological changes suggestive of apoptotic induction in both cell lines and Annexin-V FITC/PI assays confirmed this observation. Additionally, caspase-3 activity assays revealed that apoptosis was induced in both cell lines after siRNA-mediated down-regulation of LRP. Caspase-8 and -9 activity assays suggested that post LRP knock-down; A375 cells undergo apoptosis solely via the extrinsic pathway, while A375SM cells undergo apoptosis via the intrinsic pathway. siRNAs mediated LRP knock-down might represent a powerful alternative therapeutic strategy for the treatment of malignant melanoma through the induction of apoptosis. Copyright © 2018. Published by Elsevier Inc.
Monteiro, S; Santos, R
2018-04-01
To assess the potential of a viability dye and an enzymatic reverse transcription quantitative PCR (RT-qPCR) pretreatment to discriminate between infectious and noninfectious enteric viruses. Enterovirus (EntV), norovirus (NoV) GII.4 and hepatitis A virus (HAV) were inactivated at 95°C for 10 min, and four methods were used to compare the efficiency of inactivation: (i) cell culture plaque assay for HAV and EntV, (ii) RT-qPCR alone, (iii) RT-qPCR assay preceded by RNase treatment, and (iv) pretreatment with a viability dye (reagent D (RD)) followed by RT-qPCR. In addition, heat-inactivated NoV was treated with RD coupled with surfactants to increase the efficiency of the viability dye. No treatment was able to completely discriminate infectious from noninfectious viruses. RD-RT-qPCR reduced more efficiently the detection of noninfectious viruses with little to no removal observed with RNase. RD-RT-qPCR method was the closest to cell culture assay. The combination of surfactants and RD did not show relevant improvements on the removal of inactivated viruses signal compared with viability RT-qPCR, with the exception of Triton X-100. The use of surfactant/RD-RT-qPCR, although not being able to completely remove the signal from noninfectious viral particles, yielded a better estimation of viral infectivity. Surfactant/RD-RT-qPCR may be an advantageous tool for a better detection of infectious viruses with potential significant impact in the risk assessment of the presence of enteric viruses. © 2017 The Society for Applied Microbiology.
Januskauskas, A; Johannisson, A; Rodriguez-Martinez, H
2003-09-01
This study investigated the use of annexin-V/PI assay to assess sub lethal changes in bull spermatozoa post-thawing, and to further relate these changes to results obtained by fluorometric assessment of sperm viability and sperm chromatin structure assay (SCSA), as well as field fertility (as 56-day non-return rates, 56-day NRR) after AI. Frozen-thawed semen samples were obtained from 18 Swedish Red and White bulls (one to three semen batches/bull) and fertility data was based on 6900 inseminations. The annexin-V/PI assay revealed that post-thaw semen samples contained on average 41.8+/-7.5% annexin-V-positive cells. Most of the annexin-V-positive cells were dying cells, i.e. also PI-positive. The incidence of annexin-V-positive cells was negatively related (r=-0.59, P<0.01) to the percentage of viable cells, as detected by fluorometry. The incidence of annexin-V-positive spermatozoa significantly correlated to the SCSA variable xalphat (r=0.53, P<0.05). The incidence of annexin-V-negative, dead cells was the only annexin-V/PI assay variable that correlated significantly with fertility both at batch (r=-0.40, P<0.05), and bull (r=-0.56, P<0.05) levels. Among sperm viability variables, subjectively assessed sperm motility (r=0.52-0.59, P<0.01), CASA-assessed sperm motility (r=0.43-0.61, P<0.05), and the incidence of live spermatozoa, expressed as total numbers (r=0.39-0.54, P<0.05), or percentage values (r=0.68-0.68, P<0.01), correlated significantly with field fertility both at batch, and bull levels. Among the SCSA variables, only the COMP alphat correlated significantly (r=0.33-0.51, P<0.05) with fertility results. The results indicate a certain proportion of bull spermatozoa express PS on their surface after thawing, e.g. they have altered membrane function, and that the incidence of such cells is inversely correlated to sperm viability, and positively correlated to abnormal sperm chromatin condensation since they eventually undergo necrosis.
Testing a dual-fluorescence assay to monitor the viability of filamentous cyanobacteria.
Johnson, Tylor J; Hildreth, Michael B; Gu, Liping; Zhou, Ruanbao; Gibbons, William R
2015-06-01
Filamentous cyanobacteria are currently being engineered to produce long-chain organic compounds, including 3rd generation biofuels. Because of their filamentous morphology, standard methods to quantify viability (e.g., plate counts) are not possible. This study investigated a dual-fluorescence assay based upon the LIVE/DEAD® BacLight™ Bacterial Viability Kit to quantify the percent viability of filamentous cyanobacteria using a microplate reader in a high throughput 96-well plate format. The manufacturer's protocol calls for an optical density normalization step to equalize the numbers of viable and non-viable cells used to generate calibration curves. Unfortunately, the isopropanol treatment used to generate non-viable cells released a blue pigment that altered absorbance readings of the non-viable cell solution, resulting in an inaccurate calibration curve. Thus we omitted this optical density normalization step, and carefully divided cell cultures into two equal fractions before the isopropanol treatment. While the resulting calibration curves had relatively high correlation coefficients, their use in various experiments resulted in viability estimates ranging from below 0% to far above 100%. We traced this to the apparent inaccuracy of the propidium iodide (PI) dye that was to stain only non-viable cells. Through further analysis via microplate reader, as well as confocal and wide-field epi-fluorescence microscopy, we observed non-specific binding of PI in viable filamentous cyanobacteria. While PI will not work for filamentous cyanobacteria, it is possible that other fluorochrome dyes could be used to selectively stain non-viable cells. This will be essential in future studies for screening mutants and optimizing photobioreactor system performance for filamentous cyanobacteria. Copyright © 2015 Elsevier B.V. All rights reserved.
A microplate assay for measuring cell death in C2C12 cells.
Lima, Tanes; Silveira, Leonardo
2018-03-22
The main goal of this study was to develop a straightforward and rapid microplate assay for measuring propidium iodide (PI) in C2C12 cells. The PI method proves to be an efficient quantitative assay for analyzing cell viability through PI fluorescence analysis. Importantly, the protocol takes less than 30 minutes, and the results are reproducible. C2C12 cells were exposed to an increasing concentration of palmitate for a period of 24 hours to induce cell death, and the PI fluorescence increased in a concentration-dependent manner. Evaluation of mitochondrial function and reactive oxygen species production validated the deleterious effects of palmitate treatment. Also, the microplate PI assay demonstrated high sensitivity as indicated by the detection of modest fluctuations in cell viability in response to catalase overexpression in palmitate-treated cells. The microplate PI assay, therefore, offers an accurate method to be used for in vitro studies.
ToxCast Profiling in a Human Stem Cell Assay for ...
Standard practice for assessing disruptions in embryogenesis involves testing pregnant animals of two species, typically rats and rabbits, exposed during major organogenesis and evaluated just prior to term. Under this design the major manifestations of developmental toxicity are observed as one or more apical endpoints including intrauterine death, fetal growth retardation, structural malformations and variations. Alternative approaches to traditional developmental toxicity testing have been proposed in the form of in vitro data (e.g., embryonic stem cells, zebrafish embryos, HTS assays) and in silico models (e.g., computational toxicology). To increase the diversity of assays used to assess developmental toxicity in EPA’s ToxCast program, we tested the chemicals in Stemina’s metabolomics-based platform that utilizes the commecrially available H9 human embryonic stem cell line. The devTOXqP dataset for ToxCast of high-quality based on replicate samples and model performance (82% balanced accuracy, 0.71 sensitivity and 1.00 specificity). To date, 136 ToxCast chemicals (12.8% of 1065 tested) were positive in this platform; 48 triggered the biomarker signal without any change in hESC viability and 88 triggered activity concurrent with effects on cell viability. Work is in progress to complete the STM dataset entry into the TCPL, compare data with results from zFish and mESC platforms, profile bioactivity (ToxCastDB), endpoints (ToxRefDB), chemotypes (DSSTox)
A flow cytometric method for assessing viability of intraerythrocytic hemoparasites.
Wyatt, C R; Goff, W; Davis, W C
1991-06-24
We have developed a rapid, reliable method of evaluating growth and viability of intraerythrocytic protozoan hemoparasites. The assay involves the selective uptake and metabolic conversion of hydroethidine to ethidium by live parasites present in intact erythrocytes. The red fluorescence imparted by ethidium intercalated into the DNA of the parasite permits the use of flow cytometry to distinguish infected erythrocytes with viable parasites from uninfected erythrocytes and erythrocytes containing dead parasites. Comparison of the fluorochromasia technique of enumerating the number and viability of hemoparasites in cultured erythrocytes with enumeration in Giemsa-stained films and uptake of [3H]hypoxanthine demonstrated the fluorochromasia technique yields comparable results. Studies with the hemoparasite, Babesia bovis, have shown the fluorochromasia technique can also be used to monitor the effect of parasiticidal drugs on parasites in vitro. The cumulative studies with the fluorochromasia assay suggest the assay will also prove useful in investigations focused on analysis of the immune response to hemoparasites and growth in vitro.
Anticancer and anti-inflammatory activities of some dietary cucurbits.
Sharma, Dhara; Rawat, Indu; Goel, H C
2015-04-01
In this study, we investigated few dietary cucurbits for anticancer activity by monitoring cytotoxic (MTT and LDH assays), apoptotic (caspase-3 and annexin-V assays), and also their anti-inflammatory effects by IL-8 cytokine assay. Aqua-alcoholic (50:50) whole extracts of cucurbits [Lagenaria siceraria (Ls), Luffa cylindrica (Lc) and Cucurbita pepo (Cp)] were evaluated in colon cancer cells (HT-29 and HCT-15) and were compared with isolated biomolecule, cucurbitacin-B (Cbit-B). MTT and LDH assays revealed that the cucurbit extracts and Cbit-B, in a concentration dependent manner, decreased the viability of HT-29 and HCT-15 cells substantially. The viability of lymphocytes was, however, only marginally decreased, yielding a potential advantage over the tumor cells. Caspase-3 assay revealed maximum apoptosis with Ls while annexin V assay demonstrated maximum efficacy of Lc in this context. These cucurbits have also shown decreased secretion of IL-8, thereby revealing their anti-inflammatory capability. The results have demonstrated the therapeutic potential of dietary cucurbits in inhibiting cancer and inflammatory cytokine.
[Detection of viable metabolically active yeast cells using a colorimetric assay].
Růzicka, F; Holá, V
2008-02-01
The increasing concern of yeasts able to form biofilm brings about the need for susceptibility testing of both planktonic and biofilm cells. Detection of viability or metabolic activity of yeast cells after exposure to antimicrobials plays a key role in the assessment of susceptibility testing results. Colorimetric assays based on the color change of the medium in the presence of metabolically active cells proved suitable for this purpose. In this study, the usability of a colorimetric assay with the resazurin redox indicator for monitoring the effect of yeast inoculum density on the reduction rate was tested. As correlation between the color change rate and inoculum density was observed, approximate quantification of viable cells was possible. The assay would be of relevance to antifungal susceptibility testing in both planktonic and biofilm yeasts.
Hinzmann, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Jagiełło, Joanna; Koziński, Rafał; Wierzbicki, Mateusz; Grodzik, Marta; Lipińska, Ludwika; Sawosz, Ewa; Chwalibog, Andrè
2014-01-01
The carbon-based nanomaterial family consists of nanoparticles containing allotropes of carbon, which may have a number of interactions with biological systems. The objective of this study was to evaluate the toxicity of nanoparticles comprised of pristine graphene, reduced graphene oxide, graphene oxide, graphite, and ultradispersed detonation diamond in a U87 cell line. The scope of the work consisted of structural analysis of the nanoparticles using transmission electron microscopy, evaluation of cell morphology, and assessment of cell viability by Trypan blue assay and level of DNA fragmentation of U87 cells after 24 hours of incubation with 50 μg/mL carbon nanoparticles. DNA fragmentation was studied using single-cell gel electrophoresis. Incubation with nanoparticles containing the allotropes of carbon did not alter the morphology of the U87 cancer cells. However, incubation with pristine graphene and reduced graphene oxide led to a significant decrease in cell viability, whereas incubation with graphene oxide, graphite, and ultradispersed detonation diamond led to a smaller decrease in cell viability. The results of a comet assay demonstrated that pristine graphene, reduced graphene oxide, graphite, and ultradispersed detonation diamond caused DNA damage and were therefore genotoxic in U87 cells, whereas graphene oxide was not. PMID:24876774
Hassan, Rabeay Y A; Mekawy, Moataz M; Ramnani, Pankaj; Mulchandani, Ashok
2017-05-15
Microbial infections are rapidly increasing; however most of the existing microbiological and molecular detection methods are time consuming and/or cannot differentiate between the viable and dead cells which may overestimate the risk of infections. Therefore, a bioelectrochemical sensing platform with a high potential to the microbial-electrode interactions was designed based on decorated graphene oxide (GO) sheet with alumina (Al 2 O 3 ) nanocrystals. GO-Al 2 O 3 nanocomposite was synthesized using self-assembly of GO and Al 2 O 3 and characterized using the scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), Raman-spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Enhancement of electrocatalytic activity of the composite-modified electrode was demonstrated. Thus, using the GO-Al 2 O 3 nanocomposite modified electrode, the cell viability was determined by monitoring the bioelectrochemical response of the living microbial cells (bacteria and yeast) upon stimulation with carbon source. The bioelectrochemical assay was optimized to obtain high sensitivity and the method was applied to monitor cell viability and screen susceptibility of metabolically active cells (E. coli, B. subtilis, Enterococcus, P. aeruginosa and Salmonella typhi) to antibiotics such as ampicillin and kanamycin. Therefore, the developed assay is suitable for cell proliferation and cytotoxicity testing. Copyright © 2017 Elsevier B.V. All rights reserved.
Accurate prediction of acute fish toxicity of fragrance chemicals with the RTgill-W1 cell assay.
Natsch, Andreas; Laue, Heike; Haupt, Tina; von Niederhäusern, Valentin; Sanders, Gordon
2018-03-01
Testing for acute fish toxicity is an integral part of the environmental safety assessment of chemicals. A true replacement of primary fish tissue was recently proposed using cell viability in a fish gill cell line (RTgill-W1) as a means of predicting acute toxicity, showing good predictivity on 35 chemicals. To promote regulatory acceptance, the predictivity and applicability domain of novel tests need to be carefully evaluated on chemicals with existing high-quality in vivo data. We applied the RTgill-W1 cell assay to 38 fragrance chemicals with a wide range of both physicochemical properties and median lethal concentration (LC50) values and representing a diverse range of chemistries. A strong correlation (R 2 = 0.90-0.94) between the logarithmic in vivo LC50 values, based on fish mortality, and the logarithmic in vitro median effect concentration (EC50) values based on cell viability was observed. A leave-one-out analysis illustrates a median under-/overprediction from in vitro EC50 values to in vivo LC50 values by a factor of 1.5. This assay offers a simple, accurate, and reliable alternative to in vivo acute fish toxicity testing for chemicals, presumably acting mainly by a narcotic mode of action. Furthermore, the present study provides validation of the predictivity of the RTgill-W1 assay on a completely independent set of chemicals that had not been previously tested and indicates that fragrance chemicals are clearly within the applicability domain. Environ Toxicol Chem 2018;37:931-941. © 2017 SETAC. © 2017 SETAC.
Properties of kojic acid and curcumin: Assay on cell B16-F1
NASA Astrophysics Data System (ADS)
Sugiharto, Ariff, Arbakariya; Ahmad, Syahida; Hamid, Muhajir
2016-03-01
Ultra violet (UV) exposure and oxidative stress are casually linked to skin disorders. They can increase melanin synthesis, proliferation of melanocytes, and hyperpigmentation. It is possible that antioxidants or inhibitors may have a beneficial effect on skin health to reduce hyperpigmentation. In the last few years, a huge number of natural herbal extracts have been tested to reduce hyperpigmentation. The objective of this study was to determine and to compare of kojic acid and curcumin properties to viability cell B16-F1. In this study, our data showed that the viability of cell B16-F1 was 63.91% for kojic acid and 64.12% for curcumin at concentration 100 µg/ml. Further investigation assay of antioxidant activities, indicated that IC50 for kojic acid is 63.8 µg/ml and curcumin is 16.05 µg/ml. Based on the data, kojic acid and curcumin have potential antioxidant properties to reduce hyperpigmentation with low toxicity effect in cell B16-F1.
Abel, Sean D A; Baird, Sarah K
2018-02-15
Honey is a complex biological substance, consisting mainly of sugars, phenolic compounds and enzymes. Using five quick and accessible assays for measuring honey's cytotoxicity in vitro, we found honey is cytotoxic towards prostate cancer cells PC3 and DU145. However, the level of cell death varied with assay. The MTT assay was confounded by the reduction of the MTT reagent by honey's reducing sugars and phenolic compounds, and the lactate dehydrogenase assay was invalidated by honey oxidising the enzyme cofactor NADH. The sulforhodamine B assay gave valid results, but measures only protein content, providing no information about cell death in the remaining cells. The trypan blue assay and a microscope-based propidium iodide/Hoechst staining assay assess only late stage membrane permeability. However, the propidium iodide/Hoechst assay gives morphological information about cell death mechanism. A combination of the sulforhodamine B and propidium iodide/Hoechst assays would provide the most accurate quantification of honey cytotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures
Acosta-Torres, Laura Susana; Mendieta, Irasema; Nuñez-Anita, Rosa Elvira; Cajero-Juárez, Marcos; Castaño, Víctor M
2012-01-01
Background Inhibition of Candida albicans on denture resins could play a significant role in preventing the development of denture stomatitis. The safety of a new dental material with antifungal properties was analyzed in this work. Methods Poly(methyl methacrylate) [PMMA] discs and PMMA-silver nanoparticle discs were formulated, with the commercial acrylic resin, Nature-CrylTM, used as a control. Silver nanoparticles were synthesized and characterized by ultraviolet-visible spectroscopy, dispersive Raman spectroscopy, and transmission electron microscopy. The antifungal effect was assessed using a luminescent microbial cell viability assay. Biocompatibility tests were carried out using NIH-3T3 mouse embryonic fibroblasts and a Jurkat human lymphocyte cell line. Cells were cultured for 24 or 72 hours in the presence or absence of the polymer formulations and analyzed using three different tests, ie, cellular viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation by enzyme-linked immunosorbent assay BrdU, and genomic DNA damage (Comet assay). Finally, the samples were evaluated mechanically, and the polymer-bearing silver nanoparticles were analyzed microscopically to evaluate dispersion of the nanoparticles. Results The results show that PMMA-silver nanoparticle discs significantly reduce adherence of C. albicans and do not affect metabolism or proliferation. They also appear not to cause genotoxic damage to cells. Conclusion The present work has developed a new biocompatible antifungal PMMA denture base material. PMID:22969297
Ducar, Constance; Smith, Donna; Pinzon, Cris; Stirewalt, Michael; Cooper, Cristine; McElrath, M. Juliana; Hural, John
2014-01-01
The HIV Vaccine Trials Network (HVTN) is a global network of 28 clinical trial sites dedicated to identifying an effective HIV vaccine. Cryopreservation of high-quality peripheral blood mononuclear cells (PBMC) is critical for the assessment of vaccine-induced cellular immune functions. The HVTN PBMC Quality Management Program is designed to ensure viable PBMC are processed, stored and shipped for clinical trial assays from all HVTN clinical trial sites. The program has evolved by developing and incorporating best practices for laboratory and specimen quality and implementing automated, web-based tools. These tools allow the site-affiliated processing laboratories and the central Laboratory Operations Unit to rapidly collect, analyze and report PBMC quality data. The HVTN PBMC Quality Management Program includes five key components: 1) Laboratory Assessment, 2) PBMC Training and Certification, 3) Internal Quality Control, 4) External Quality Control (EQC), and 5) Assay Specimen Quality Control. Fresh PBMC processing data is uploaded from each clinical site processing laboratory to a central HVTN Statistical and Data Management Center database for access and analysis on a web portal. Samples are thawed at a central laboratory for assay or specimen quality control and sample quality data is uploaded directly to the database by the central laboratory. Four year cumulative data covering 23,477 blood draws reveals an average fresh PBMC yield of 1.45×106 ±0.48 cells per milliliter of useable whole blood. 95% of samples were within the acceptable range for fresh cell yield of 0.8–3.2×106 cells/ml of usable blood. Prior to full implementation of the HVTN PBMC Quality Management Program, the 2007 EQC evaluations from 10 international sites showed a mean day 2 thawed viability of 83.1% and recovery of 67.5%. Since then, four year cumulative data covering 3338 specimens used in immunologic assays shows that 99.88% had acceptable viabilities (>66%) for use in cellular assays (mean, 91.46% ±4.5%), and 96.2% had acceptable recoveries (50%–130%) with a mean of recovery of 85.8% ±19.12% of the originally cryopreserved cells. EQC testing revealed that since August 2009, failed recoveries dropped from 4.1% to 1.6% and failed viabilities dropped from 1.0% to 0.3%. The HVTN PBMC quality program provides for laboratory assessment, training and tools for identifying problems, implementing corrective action and monitoring for improvements. These data support the benefits of implementing a comprehensive, web-based PBMC quality program for large clinical trials networks. PMID:24709391
Davis, W C; Wyatt, C R; Hamilton, M J; Goff, W L
1992-01-01
Fluorescence flow cytometry was employed to assess the potential of a vital dye, hydroethidine, for use in the detection and monitoring of the viability of hemoparasites in infected erythrocytes, using Babesia bovis as a model parasite. The studies demonstrated that hydroethidine is taken up by B. bovis and metabolically converted to the DNA binding fluorochrome, ethidium. Following uptake of the dye, erythrocytes containing viable parasites were readily distinguished and quantitated. Timed studies with the parasiticidal drug, Ganaseg, showed that it is possible to use the fluorochrome assay to monitor the effects of the drug on the rate of replication and viability of B. bovis in culture. The assay provides a rapid method for evaluation of the in vitro effect of drugs on hemoparasites and for analysis of the effect of various components of the immune response, such as lymphokines, monocyte products, antibodies, and effector cells (T, NK, LAK, ADCC) on the growth and viability of intraerythrocytic parasites.
Slompo, Camila; Peres-Buzalaf, Camila; Gasque, Kellen Cristina da Silva; Damante, Carla Andreotti; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; de Oliveira, Rodrigo Cardoso
2015-01-01
The aim of this study was to verify whether the use of zirconium oxide as a radiopacifier of an experimental calcium silicate-based cement (WPCZO) leads to cytotoxicity. Fibroblasts were treated with different concentrations (10 mg/mL, 1 mg/mL, and 0.1 mg/mL) of the cements diluted in Dulbecco's modified Eagle's medium (DMEM) for periods of 12, 24, and 48 h. Groups tested were white Portland cement (WPC), white Portland cement with zirconium oxide (WPCZO), and white mineral trioxide aggregate Angelus (MTA). Control group cells were not treated. The cytotoxicity was evaluated through mitochondrial-activity (MTT) and cell-density (crystal violet) assays. All cements showed low cytotoxicity. In general, at the concentration of 10 mg/mL there was an increase in viability of those groups treated with WPC and WPCZO when compared to the control group (p<0.05). A similar profile for the absorbance values was noted among the groups: 10 mg/mL presented an increase in viability compared to the control group. On the other hand, smaller concentrations presented a similar or lower viability compared to the control group, in general. A new dental material composed of calcium silicate-based cement with 20% zirconium oxide as the radiopacifier showed low cytotoxicity as a promising material to be exploited for root-end filling.
Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy.
Gurunathan, Sangiliyandi; Han, Jae Woong; Park, Jung Hyun; Kim, Eunsu; Choi, Yun-Jung; Kwon, Deug-Nam; Kim, Jin-Hoi
2015-01-01
Graphene and graphene-based nanocomposites are used in various research areas including sensing, energy storage, and catalysis. The mechanical, thermal, electrical, and biological properties render graphene-based nanocomposites of metallic nanoparticles useful for several biomedical applications. Epithelial ovarian carcinoma is the fifth most deadly cancer in women; most tumors initially respond to chemotherapy, but eventually acquire chemoresistance. Consequently, the development of novel molecules for cancer therapy is essential. This study was designed to develop a simple, non-toxic, environmentally friendly method for the synthesis of reduced graphene oxide-silver (rGO-Ag) nanoparticle nanocomposites using Tilia amurensis plant extracts as reducing and stabilizing agents. The anticancer properties of rGO-Ag were evaluated in ovarian cancer cells. The synthesized rGO-Ag nanocomposite was characterized using various analytical techniques. The anticancer properties of the rGO-Ag nanocomposite were evaluated using a series of assays such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, cellular levels of malonaldehyde and glutathione, caspase-3 activity, and DNA fragmentation in ovarian cancer cells (A2780). AgNPs with an average size of 20 nm were uniformly dispersed on graphene sheets. The data obtained from the biochemical assays indicate that the rGO-Ag nanocomposite significantly inhibited cell viability in A2780 ovarian cancer cells and increased lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3 activity, and DNA fragmentation compared with other tested nanomaterials such as graphene oxide, rGO, and AgNPs. T. amurensis plant extract-mediated rGO-Ag nanocomposites could facilitate the large-scale production of graphene-based nanocomposites; rGO-Ag showed a significant inhibiting effect on cell viability compared to graphene oxide, rGO, and silver nanoparticles. The nanocomposites could be effective non-toxic therapeutic agents for the treatment of both cancer and cancer stem cells.
Wang, Yongkun; Liang, Tingting; Wang, Yao; Huang, Yan; Li, Ye
2017-01-01
Osteosarcoma is a malignant tumor of the skeletal system. Long non-coding RNAs (lncRNAs) have been shown to play significant role in osteosarcoma. The present study evaluated the effects and mechanism of lncRNA AK093407 in osteosarcoma. The study included human osteosarcoma cell line, U-2OS. Cell proliferation, viability, and apoptosis were measured using Ki-67 proliferation assay, MTT assay, and Annexin V/PI staining assay, respectively. Relative mRNA and protein expressions were measured using qRT-PCR and western blot, respectively. Interaction between AK093407 and STAT3 was identified using mass spectrometry and RNA pull-down assay. Results revealed that AK093407 was highly expressed in osteosarcoma cells and tissues. Then we demonstrated that overexpression of AK093407 promoted cell proliferation and viability and inhibited apoptosis, whereas suppression of AK093407 showed opposite effects. In addition, AK093407 regulated the expression of genes and proteins (Bcl-2, TGF-β, NF-κB, and PCNA) involved in the cell proliferation, viability, and apoptosis. Furthermore, we showed that AK093407 interacted with STAT3, and promoted its phosphorylation. Lastly, we showed that STAT3 activation was essential for the effects of AK093407 on cell proliferation and apoptosis as the overexpression of AK093407 in the presence of STAT3 inhibitor did not promote cell proliferation and inhibit cell apoptosis. AK093407 is highly expressed in osteosarcoma cells and tissues, and promotes cell proliferation and viability and inhibits apoptosis of osteosarcoma cell line U-2OS via STAT3 activation. PMID:28469961
Optimized in vitro procedure for assessing the cytocompatibility of magnesium-based biomaterials.
Jung, Ole; Smeets, Ralf; Porchetta, Dario; Kopp, Alexander; Ptock, Christoph; Müller, Ute; Heiland, Max; Schwade, Max; Behr, Björn; Kröger, Nadja; Kluwe, Lan; Hanken, Henning; Hartjen, Philip
2015-09-01
Magnesium (Mg) is a promising biomaterial for degradable implant applications that has been extensively studied in vitro and in vivo in recent years. In this study, we developed a procedure that allows an optimized and uniform in vitro assessment of the cytocompatibility of Mg-based materials while respecting the standard protocol DIN EN ISO 10993-5:2009. The mouse fibroblast line L-929 was chosen as the preferred assay cell line and MEM supplemented with 10% FCS, penicillin/streptomycin and 4mM l-glutamine as the favored assay medium. The procedure consists of (1) an indirect assessment of effects of soluble Mg corrosion products in material extracts and (2) a direct assessment of the surface compatibility in terms of cell attachment and cytotoxicity originating from active corrosion processes. The indirect assessment allows the quantification of cell-proliferation (BrdU-assay), viability (XTT-assay) as well as cytotoxicity (LDH-assay) of the mouse fibroblasts incubated with material extracts. Direct assessment visualizes cells attached to the test materials by means of live-dead staining. The colorimetric assays and the visual evaluation complement each other and the combination of both provides an optimized and simple procedure for assessing the cytocompatibility of Mg-based biomaterials in vitro. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Harati, K; Behr, B; Daigeler, A; Hirsch, T; Jacobsen, F; Renner, M; Harati, A; Wallner, C; Lehnhardt, M; Becerikli, M
2017-01-01
The cytostatic effects of the polyphenol curcumin and Viscum album extract (VAE) were assessed in soft-tissue sarcoma (STS) cells. Eight human STS cell lines were used: fibrosarcoma (HT1080), liposarcoma (SW872, T778, MLS-402), synovial sarcoma (SW982, SYO1, 1273), and malignant fibrous histiocytoma (U2197). Primary human fibroblasts served as control cells. Cell proliferation, viability, and cell index (CI) were analyzed by BrdU assay, MTT assay, and real-time cell analysis (RTCA). As indicated by BrdU and MTT, curcumin significantly decreased the cell proliferation of five cell lines (HT1080, SW872, SYO1, 1273, and U2197) and the viability of two cell lines (SW872 and SW982). VAE led to significant decreases of proliferation in eight cell lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, 1293, and U2197) and reduced viability in seven STS lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, and 1273). As indicated by RTCA for 160 h, curcumin decreased the CI of all synovial sarcoma cell lines as well as T778 and HT1080. VAE diminished the CI in most of the synovial sarcoma (SW982, SYO1) and liposarcoma (SW872, T778) cell lines as well as HT1080. Primary fibroblasts were not affected adversely by the two compounds in RTCA. Curcumin and VAE can inhibit the proliferation and viability of STS cells.
In vitro effects of preserved and unpreserved anti-allergic drugs on human corneal epithelial cells.
Guzman-Aranguez, Ana; Calvo, Patricia; Ropero, Inés; Pintor, Jesús
2014-11-01
Treatment with topical eye drops for long-standing ocular diseases like allergy can induce detrimental side effects. The purpose of this study was to investigate in vitro cytotoxicity of commercially preserved and unpreserved anti-allergic eye drops on the viability and barrier function of monolayer and stratified human corneal-limbal epithelial cells. Cells were treated with unpreserved ketotifen solution, benzalkonium chloride (BAC)-containing anti-allergic drugs (ketotifen, olopatadine, levocabastine) as well as BAC alone. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine cell viability. Effects of compounds on barrier function were analyzed measuring transepithelial electrical resistance (TEER) to determine paracellular permeability and rose bengal assays to evaluate transcellular barrier formation. The BAC-preserved anti-allergic formulations and BAC alone significantly reduced cell viability, monolayer cultures being more sensitive to damage by these solutions. Unpreserved ketotifen induced the least diminution in cell viability. The extent of decrease of cell viability was clearly dependent of BAC presence, but it was also affected by the different types of drugs when the concentration of BAC was low and the short time of exposure. Treatment with BAC-containing anti-allergic drugs and BAC alone resulted in increased paracellular permeability and loss of transcellular barrier function as indicated by TEER measurement and rose bengal assays. The presence of the preservative BAC in anti-allergic eye drop formulations contributes importantly to the cytotoxic effects induced by these compounds. Stratified cell cultures seem to be a more relevant model for toxicity evaluation induced on the ocular surface epithelia than monolayer cultures.
Fluoro-luminometric real-time measurement of bacterial viability and killing.
Lehtinen, Janne; Virta, Marko; Lilius, Esa Matti
2003-10-01
The viability and killing of Escherichia coli was measured on a real-time basis using a fluoro-luminometric device, which allows successive measurements of fluorescence and bioluminescence without user intervention. Bacteria were made fluorescent and bioluminescent by expression of gfp and insect luciferase (lucFF) genes. The green fluorescent protein (GFP) is a highly fluorescent, extremely stable protein, which accumulates in cells during growth, and therefore the measured fluorescence signal was proportional to the total number of cells. The luciferase reaction is dependent of ATP produced by living cells, so that the bioluminescence level was a direct measure of the viable cells. In contrast to the bacterial luciferase, the insect luciferase uses a water-soluble and nonvolatile substrate, which makes automated multi-well microplate assay possible. For the validation of the assay, the proportion of living and dead cell populations was experimentally modified by incubating E. coli cells in the presence of various ethanol concentrations. Bacterial viability and killing measured by a fluoro-luminometric assay correlated fairly well with the reference methods: conventional plate counting, optical density measurement and various flow cytometric analyses. The real-time assay described here allows following the changes in bacterial cultures and assessing the bactericidal and other effects of various chemical, immunological and physical agents simultaneously in large numbers of samples.
Cytotoxicity of four denture adhesives on human gingival fibroblast cells.
Lee, Yoon; Ahn, Jin-Soo; Yi, Young-Ah; Chung, Shin-Hye; Yoo, Yeon-Jee; Ju, Sung-Won; Hwang, Ji-Yun; Seo, Deog-Gyu
2015-02-01
The purpose of this study was to compare the cytotoxicity of four denture adhesives on human gingival fibroblast cells. Immortalized human gingival fibroblasts were cultured with one of four different denture adhesives, Polident, Protefix, Staydent or Denfix-A, which was placed in insert dishes (10% w/v concentration) for 48 h. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and flow cytometric apoptosis assay were used to evaluate cell viability and apoptosis rates. The fibroblasts were also examined under a scanning electron microscope. The MTT assay showed that all denture adhesives resulted in a significantly lower cell viability compared to the control cells propagated in normal culture medium (p < 0.05), with Staydent demonstrating the lowest cell viability. According to the flow cytometric apoptosis assay, Staydent and Protefix showed significantly higher apoptosis rates than the control group (p < 0.05), whereas Polident and Denfix-A did not demonstrate any significant differences (p > 0.05). Staydent showed the highest apoptosis rate. Scanning electron microscopy showed that the cells of the Staydent group underwent cytoplasmic membrane shrinkage, with cell free areas containing residual fragments of the membrane of dead cells. The four denture adhesives evaluated in this study imparted cytotoxic effects on human gingival fibroblast cells. Staydent showed the highest toxicity.
Aptamer-based viability impedimetric sensor for bacteria.
Labib, Mahmoud; Zamay, Anna S; Kolovskaya, Olga S; Reshetneva, Irina T; Zamay, Galina S; Kibbee, Richard J; Sattar, Syed A; Zamay, Tatiana N; Berezovski, Maxim V
2012-11-06
The development of an aptamer-based viability impedimetric sensor for bacteria (AptaVISens-B) is presented. Highly specific DNA aptamers to live Salmonella typhimurium were selected via the cell-systematic evolution of ligands by exponential enrichment (SELEX) technique. Twelve rounds of selection were performed; each comprises a positive selection step against viable S. typhimurium and a negative selection step against heat killed S. typhimurium and a mixture of related pathogens, including Salmonella enteritidis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Citrobacter freundii to ensure the species specificity of the selected aptamers. The DNA sequence showing the highest binding affinity to the bacteria was further integrated into an impedimetric sensor via self-assembly onto a gold nanoparticle-modified screen-printed carbon electrode (GNP-SPCE). Remarkably, this aptasensor is highly selective and can successfully detect S. typhimurium down to 600 CFU mL(-1) (equivalent to 18 live cells in 30 μL of assay volume) and distinguish it from other Salmonella species, including S. enteritidis and S. choleraesuis. This report is envisaged to open a new venue for the aptamer-based viability sensing of a variety of microorganisms, particularly viable but nonculturable (VBNC) bacteria, using a rapid, economic, and label-free electrochemical platform.
Effects of ozone exposure on human epithelial adenocarcinoma and normal fibroblasts cells.
Poma, Anna; Colafarina, Sabrina; Aruffo, Eleonora; Zarivi, Osvaldo; Bonfigli, Antonella; Di Bucchianico, Sebastiano; Di Carlo, Piero
2017-01-01
Previous studies show variable ozone cytotoxicity and genotoxicity in cell cultures, laboratory animals and humans directly exposed to tropospheric ozone. The aim of this study was therefore to investigate and compare the cyto and genotoxic effects of ozone using adenocarcinoma human alveolar basal epithelial cells A549 and normal human fibroblasts Hs27. A cell culture chamber with controlled atmosphere (a simulation reactor) was built to inject a flow of 120 ppb of ozone, which is two times the threshold value for the protection of human health, fixed by the EU legislation. Cell proliferation was evaluated by a luminescent cell viability assay while we assessed the genotoxic potential of ozone by the induction of micronuclei as well as evaluating DNA strand breaks by the induction of micronuclei evaluated by means of the cytokinesis-block micronucleus (CBMN) assay as well as evaluating DNA strand breaks by Alkaline Comet Assay (CA) or Comet Assay. A549 cells viability decreases significantly at 24 hours treatment with 120 ppb of O3 while at 48 hours and 72 hours O3 treated cells viability doesn't differ in respect to the control. However a significative decrease of A549 viability is shown at 72 hours vs. 48 hours in both treated and not-treated cells. The viability trend in the Hs27 cells did not show any significant changes in treated samples compared to the control in all conditions. The two genotoxicity biomarkers, the micronucleus and the comet tests, showed in both the cell types exposed to ozone, a significant increase in the number of micronuclei and in the tail DNA % in respect to the control even if at different times/cell type. Moreover, we found that O3 provokes genotoxic effects more evident in A549 cancer cells than in normal fibroblasts Hs27 ones. We applied a cell growth simulation model referred to ozone treated or not cell lines to confirm that the ozone exposure causes a slackening in the cells replication.
Stockwell, M P; Clulow, J; Mahony, M J
2010-01-25
The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently described pathogen that has been implicated as a causal agent in the global decline in amphibians. Research into its biology and epidemiology has frequently involved in vitro experimentation. However, this research is currently limited by the inability to differentiate between viable and inviable zoospores. Stains are frequently used to determine cell viability, and this study tested a 2-colour fluorescence assay for the detection and quantification of viable B. dendrobatidis zoospores. The results show that the nucleic acid stains SYBR 14 and propidium iodide are effective in distinguishing live from dead zoospores, and a protocol has been optimized for their use. This viability assay provides an efficient and reliable tool that will have applications in B. dendrobatidis challenge and amphibian exposure experiments.
Mobile phone radiation alters proliferation of hepatocarcinoma cells.
Ozgur, Elcin; Guler, Goknur; Kismali, Gorkem; Seyhan, Nesrin
2014-11-01
This study investigated the effects of intermittent exposure (15 min on, 15 min off for 1, 2, 3, or 4 h, at a specific absorption rate of 2 W/kg) to enhanced data rates for global system for mobile communication evolution-modulated radiofrequency radiation (RFR) at 900- and 1,800-MHz frequencies on the viability of the Hepatocarcinoma cells (Hep G2). Hep G2 cell proliferation was measured by a colorimetric assay based on the cleavage of the tetrazolium salt WST-1 by mitochondrial dehydrogenases in viable cells. Cell injury was evaluated by analyzing the levels of lactate dehydrogenase (LDH) and glucose released from lysed cells into the culture medium. Morphological observation of the nuclei was carried out by 4',6-diamidino-2-phenylindole (DAPI) staining using fluorescence microscopy. In addition, TUNEL assay was performed to confirm apoptotic cell death. It was observed that cell viability, correlated with the LDH and glucose levels, changed according to the frequency and duration of RFR exposure. Four-hour exposure produced more pronounced effects than the other exposure durations. 1,800-MHz RFR had a larger impact on cell viability and Hep G2 injury than the RFR at 900 MHz. Morphological observations also supported the biochemical results indicating that most of the cells showed irregular nuclei pattern determined by using the DAPI staining, as well as TUNEL assay which shows DNA damage especially in the cells after 4 h of exposure to 1,800-MHz RFR. Our results indicate that the applications of 900- and 1,800-MHz (2 W/kg) RFR cause to decrease in the proliferation of the Hep G2 cells after 4 h of exposure. Further studies will be conducted on other frequency bands of RFR and longer duration of exposure.
Taiwo, Bamigboye J; Fatokun, Amos A; Olubiyi, Olujide O; Bamigboye-Taiwo, Olukemi T; van Heerden, Fanie R; Wright, Colin W
2017-04-15
Cancer is now the second-leading cause of mortality and morbidity, behind only heart disease, necessitating urgent development of (chemo)therapeutic interventions to stem the growing burden of cancer cases and cancer death. Plants represent a credible source of promising drug leads in this regard, with a long history of proven use in the indigenous treatment of cancer. This study therefore investigated Anacardium occidentale, one of the plants in a Nigerian Traditional Medicine formulation commonly used to manage cancerous diseases, for cytotoxic activity. Bioassay-guided fractionation, spectroscopy, Alamar blue fluorescence-based viability assay in cultured HeLa cells and microscopy were used. Four compounds, zoapatanolide A (1), agathisflavone (2), 1,2-bis(2,6-dimethoxy-4-methoxycarbonylphenyl)ethane (anacardicin, 3) and methyl gallate (4), were isolated, with the most potent being zoapatanolide A with an IC 50 value of 36.2±9.8µM in the viability assay. To gain an insight into the likely molecular basis of their observed cytotoxic effects, Autodock Vina binding free energies of each of the isolated compounds with seven molecular targets implicated in cancer development (MAPK8, MAPK10, MAP3K12, MAPK3, MAPK1, MAPK7 and VEGF), were calculated. Pearson correlation coefficients were obtained with experimentally-determined IC 50 in the Alamar blue viability assay. While these compounds were not as potent as a standard anticancer compound, doxorubicin, the results provide reasonable evidence that the plant species contains compounds with cytotoxic activity. This study provides some evidence of why this plant is used ethnobotanically in anticancer herbal formulations and justifies investigating Nigerian medicinal plants highlighted in recent ethnobotanical surveys. Copyright © 2017 Elsevier Ltd. All rights reserved.
A real-time RT-PCR method to detect viable Giardia lamblia cysts in environmental waters.
Baque, Robert H; Gilliam, Amy O; Robles, Liza D; Jakubowski, Walter; Slifko, Theresa R
2011-05-01
Currently, USEPA Method 1623 is the standard assay used for simultaneous detection of Giardia cysts and Cryptosporidium oocysts in various water matrices. However, the method is unable to distinguish between species, genotype, or to assess viability. Therefore, the objective of the present study was to address the shortcomings of USEPA Method 1623 by developing a novel molecular-based method that can assess viability of Giardia cysts in environmental waters and identify genotypes that pose a human health threat (assemblage groups A and B). Primers and TaqMan(®) probes were designed to target the beta-giardin gene in order to discriminate among species and assemblages. Viability was determined by detection of de-novo mRNA synthesis after heat induction. The beta-giardin primer/probe sets were able to detect and differentiate between Giardia lamblia assemblages A and B, and did not detect Giardia muris (mouse species) or G. lamblia assemblages C, D, E and F (non-human), with the exception of Probe A which did detect G. lamblia assemblage F DNA. Additionally, DNA or cDNA of other waterborne organisms were not detected, suggesting that the method is specific to Giardia assemblages. Assay applicability was demonstrated by detection of viable G. lamblia cysts in spiked (assemblage B) and unspiked (assemblage A and B) reclaimed water samples. Copyright © 2011 Elsevier Ltd. All rights reserved.
Niu, Li-na; Watson, Devon; Thames, Kyle; Primus, Carolyn M; Bergeron, Brian E; Jiao, Kai; Bortoluzzi, Eduardo A; Cutler, Christopher W; Chen, Ji-hua; Pashley, David H; Tay, Franklin R
2015-11-30
Discoloration-resistant calcium aluminosilicate cement has been formulated to overcome the timely problem of tooth discoloration reported in the clinical application of bismuth oxide-containing hydraulic cements. The present study examined the effects of this experimental cement (Quick-Set2) on the viability and proliferation of human dental pulp stem cells (hDPSCs) by comparing the cellular responses with commercially available calcium silicate cement (white mineral trioxide aggregate; WMTA) after different aging periods. Cell viability and proliferation were examined using assays that examined plasma membrane integrity, leakage of cytosolic enzyme, caspase-3 activity for early apoptosis, oxidative stress, mitochondrial metabolic activity and intracellular DNA content. Results of the six assays indicated that both Quick-Set2 and WMTA were initially cytotoxic to hDPSCs after setting for 24 h, with Quick-Set2 being comparatively less cytotoxic than WMTA at this stage. After two aging cycles, the cytotoxicity profiles of the two hydraulic cements were not significantly different and were much less cytotoxic than the positive control (zinc oxide-eugenol cement). Based on these results, it is envisaged that any potential beneficial effect of the discoloration-resistant calcium aluminosilicate cement on osteogenesis by differentiated hDPSCs is more likely to be revealed after outward diffusion and removal of its cytotoxic components.
Niu, X; Deng, L; Zhou, Y; Wang, W; Yao, S; Zeng, K
2016-07-01
To optimize a protective medium for freeze-dried Pichia membranifaciens and to evaluate biocontrol efficacies of agents against blue and green mould and anthracnose in citrus fruit. Based on the screening assays of saccharides and antioxidants, response surface methodology was used to optimize sucrose, sodium glutamate and skim milk to improve viability of freeze-dried Pi. membranifaciens. Biocontrol assays were conducted between fresh and freeze-dried Pi. membranifaciens against Penicillium italicum, Penicillium digitatum and Colletotrichum gloeosporioides in citrus fruit. Solving the regression equation indicated that the optimal protective medium was 6·06% (w/v) sucrose combined with 3·40% (w/v) sodium glutamate and 5·43% (w/v) skim milk. Pi. membranifaciens freeze-dried in the optimal protective medium showed 76·80% viability, and retained biocontrol efficacy against Pe. italicum, Pe. digitatum and Co. gloeosporioides in citrus fruit. The optimal protective medium showed more effective protective properties than each of the three protectants used alone. The viability of freeze-dried Pi. membranifaciens finally reached 76·80%. Meanwhile, the biocontrol efficacies showed no significant difference between fresh and freeze-dried yeast against Pe. italicum, Pe. digitatum and Co. gloeosporioides in citrus fruit. The results showed the potential value of Pi. membranifaciens CICC 32259 for commercialization. © 2016 The Society for Applied Microbiology.
Niu, Li-na; Watson, Devon; Thames, Kyle; Primus, Carolyn M.; Bergeron, Brian E.; Jiao, Kai; Bortoluzzi, Eduardo A.; Cutler, Christopher W.; Chen, Ji-hua; Pashley, David H.; Tay, Franklin R.
2015-01-01
Discoloration-resistant calcium aluminosilicate cement has been formulated to overcome the timely problem of tooth discoloration reported in the clinical application of bismuth oxide-containing hydraulic cements. The present study examined the effects of this experimental cement (Quick-Set2) on the viability and proliferation of human dental pulp stem cells (hDPSCs) by comparing the cellular responses with commercially available calcium silicate cement (white mineral trioxide aggregate; WMTA) after different aging periods. Cell viability and proliferation were examined using assays that examined plasma membrane integrity, leakage of cytosolic enzyme, caspase-3 activity for early apoptosis, oxidative stress, mitochondrial metabolic activity and intracellular DNA content. Results of the six assays indicated that both Quick-Set2 and WMTA were initially cytotoxic to hDPSCs after setting for 24 h, with Quick-Set2 being comparatively less cytotoxic than WMTA at this stage. After two aging cycles, the cytotoxicity profiles of the two hydraulic cements were not significantly different and were much less cytotoxic than the positive control (zinc oxide–eugenol cement). Based on these results, it is envisaged that any potential beneficial effect of the discoloration-resistant calcium aluminosilicate cement on osteogenesis by differentiated hDPSCs is more likely to be revealed after outward diffusion and removal of its cytotoxic components. PMID:26617338
Cheng, Shaowen; Wang, Wei; Lin, Zhongqin; Zhou, Ping; Zhang, Xiaolei; Zhang, Wei; Chen, Qingyu; Kou, Dongquan; Ying, Xiaozhou; Shen, Yue; Cheng, Xiaojie; Yu, Ziming; Peng, Lei; Lu, Chuanzhu
2013-09-01
Bone marrow stromal cells (BMSCs) have been extensively used for tissue engineering. However, the effect of Ca(2+) on the viability and osteogenic differentiation of BMSCs has yet to be evaluated. To determine the dose-dependent effect of Ca(2+) on viability and osteogenesis of BMSCs in vitro, BMSCs were cultured in calcium-free DMEM medium supplemented with various concentrations of Ca(2+) (0, 1, 2, 3, 4, and 5 mM) from calcium citrate. Cell viability was analyzed by MTT assay and osteogenic differentiation was evaluated by alkaline phosphatase (ALP) assay, Von Kossa staining, and real-time PCR. Ca(2+) stimulated BMSCs viability in a dose-dependent manner. At slightly higher concentrations (4 and 5 mM) in the culture, Ca(2+) significantly inhibited the activity of ALP on days 7 and 14 (P < 0.01 or P < 0.05), significantly suppressed collagen synthesis (P < 0.01 or P < 0.05), and significantly elevated calcium deposition (P < 0.01) and mRNA levels of osteocalcin (P < 0.01 or P < 0.05) and osteopontin (P < 0.01 or P < 0.05). Therefore, elevated concentrations of extracellular calcium may promote cell viability and late-stage osteogenic differentiation, but may suppress early-stage osteogenic differentiation in BMSCs.
Kang, Seungbum; Choi, Hyunsu; Rho, Chang Rae
2016-12-01
This study compared the effects of 3 antivascular endothelial growth factor (VEGF) agents (bevacizumab, ranibizumab, and aflibercept) on corneal epithelial cell viability and wound healing using human corneal epithelial cells (HCECs). To determine the cytotoxic effects of anti-VEGF agents on HCECs, HCEC viability was determined at various concentrations of these agents. An in vitro migration assay was used to investigate the migration of HCECs treated with 3 anti-VEGF agents. The protein level of extracellular signal-regulated kinase was used to evaluate the effect of anti-VEGF treatment on cell proliferation. The protein levels of p38 mitogen-activated protein kinase (MAPK) were analyzed by Western blotting to investigate cell migration. After 24 or 48 h of exposure, aflibercept treatment showed no apparent effect on cell viability; however, bevacizumab and ranibizumab treatment decreased cell viability at high concentrations (1 and 2 mg/mL). A migration assay showed that HCEC migration was different among the 3 anti-VEGF treatment groups. Bevacizumab significantly delayed HCEC migration. Western blotting showed that bevacizumab treatment decreased the expression levels of phosphorylated p38 MAPK. Bevacizumab, the most widely used and investigated anti-VEGF agent, decreased epithelial cell migration and viability. Anti-VEGF agents other than bevacizumab might therefore be better for treating corneal neovascularization complicated with epithelial defects.
Tahara, Haruna; Matsuda, Shun; Yamamoto, Yusuke; Yoshizawa, Hiroe; Fujita, Masaharu; Katsuoka, Yasuhiro; Kasahara, Toshihiko
2017-11-01
Various cytotoxicity assays measuring indicators such as enzyme activity, dye uptake, or cellular ATP content are often performed using 96-well microplates. However, recent reports show that cytotoxicity assays such as the ATP assay and MTS assay underestimate cytotoxicity when compounds such as anti-cancer drugs or mutagens induce cell hypertrophy whilst increasing intracellular ATP content. Therefore, we attempted to evaluate the reliability of a high-content image analysis (HCIA) assay to count cell number in a 96-well microplate automatically without using a cell-number indicator. We compared cytotoxicity results of 25 compounds obtained from ATP, WST-8, Alamar blue, and HCIA assays with those directly measured using an automatic cell counter, and repeating individual experiments thrice. The number of compounds showing low correlation in cell viability measured using cytotoxicity assays compared to automatic cell counting (r 2 <0.8, at least 2 of 3 experiments) were follows: ATP assay; 7; WST-8 assay, 2; Alamar blue assay, 3; HCIA cytotoxicity assay, 0. Compounds for which correlation was poor in 3 assays, except the HCIA assay, induced an increase in nuclear and cell size. However, correlation between cell viability measured by automatic cell counter and the HCIA assay was strong regardless of nuclear and cell size. Additionally, correlation coefficients between IC 50 values obtained from automatic cell counter and from cytotoxicity assays were as follows: ATP assay, 0.80; WST-8 assay, 0.84; Alamar blue assay, 0.84; and HCIA assay, 0.98. From the above, we showed that the HCIA cytotoxicity assay produces similar data to the automatic cell counter and is highly accurate in measuring cytotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.
Analysis of the Effects of Cell Stress and Cytotoxicity on In ...
Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, concentration-dependent responses of 1063 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a diverse battery of 821 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to better distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress / cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least two viability/cytotoxicity assays within the concentration range tested (typically up to 100 M) activated a median of 12% of assay endpoints while those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (e.g., receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering of specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a g
The Embryonic Stem Cell Test (EST) has been used to evaluate the effects of xenobiotics using three endpoints, stem cell differentiation, stem cell viability and 3T3-cell viability. Our research goal is to establish amodel system that would evaluate chemical effects using a singl...
Swain, S; Harnik, T; Mejia-Chang, M; Hayden, K; Bakx, W; Creque, J; Garbelotto, M
2006-10-01
To determine the effects of heat and composting treatments on the viability of the plant pathogen Phytophthora ramorum grown on both artificial and various natural substrates. Phytophthora ramorum was grown on V8 agar, inoculated on bay laurel leaves (Umbellularia californica) and on woody tissues of coast live oak (Quercus agrifolia). Effects on growth, viability and survival were measured as a result of treatment in ovens and compost piles. Direct plating onto PARP medium and pear-baiting techniques were used to determine post-treatment viability. No P. ramorum was recovered at the end of the composting process, regardless of the isolation technique used. By using a PCR assay designed to detect the DNA of P. ramorum, we were able to conclude the pathogen was absent from mature compost and not merely suppressed or dormant. Some heat and composting treatments eliminate P. ramorum to lower than detectable levels on all substrates tested. Composting is an effective treatment option for sanitization of P. ramorum-infected plant material. Assaying for pathogen viability in compost requires a direct test capable of differentiating between pathogen suppression and pathogen elimination.
Anwar, Iwan Budiwan; Santoso, Asep; Saputra, Eko; Ismail, Rifky; Jamari, J; Van der Heide, Emile
2017-06-01
Purpose: Human bone marrow-derived mesenchymal cell (hBMC) reactions to 316L stainless steel (316L-SS) have never been evaluated. The objective of this study was to assess cell viability and interleukin-6 expression of hBMC cultures upon treatment with a 316L-SS implant. Methods: A cytotoxicity analysis was conducted with a 3-(4,5-dimethylthiazol 2-yl)-2,5-diphenyltetrazolium (MTT) assay after a period of 24, 48 and 72 hours of incubation. Expression of interleukin-6 was measured using enzyme-linked immunosorbent assay (ELISA). Results: Cell viability measurement was performed via IC50 formula. All treatment group showed a > 50 % cell viability with a range of 56,5 - 96,9 % at 24 hours, 51,8-77,3% at 48 hours and 70,1- 120 % at 72 hours. Interleukin-6 expression was downregulated subsequent to treatment with 316L-SS compared to the control group. Conclusion: We found that 316L-SS did not exhibit toxicity towards hBMC culture.
Anwar, Iwan Budiwan; Santoso, Asep; Saputra, Eko; Ismail, Rifky; Jamari, J.; Van der Heide, Emile
2017-01-01
Purpose: Human bone marrow-derived mesenchymal cell (hBMC) reactions to 316L stainless steel (316L-SS) have never been evaluated. The objective of this study was to assess cell viability and interleukin-6 expression of hBMC cultures upon treatment with a 316L-SS implant. Methods: A cytotoxicity analysis was conducted with a 3-(4,5-dimethylthiazol 2-yl)-2,5-diphenyltetrazolium (MTT) assay after a period of 24, 48 and 72 hours of incubation. Expression of interleukin-6 was measured using enzyme-linked immunosorbent assay (ELISA). Results: Cell viability measurement was performed via IC50 formula. All treatment group showed a > 50 % cell viability with a range of 56,5 - 96,9 % at 24 hours, 51,8-77,3% at 48 hours and 70,1- 120 % at 72 hours. Interleukin-6 expression was downregulated subsequent to treatment with 316L-SS compared to the control group. Conclusion: We found that 316L-SS did not exhibit toxicity towards hBMC culture. PMID:28761837
Madi, Niveen; Dany, Mohammed; Abdoun, Salah; Usta, Julnar
2016-01-01
Moringa oleifera (MO) is an important dietary component for many populations in West Africa and the Indian subcontinent. In addition to its highly nutritious value, almost all parts of this plant have been widely used in folk medicine in curing infectious, cardiovascular, gastrointestinal, hepatic, and other diseases. Evidence-based research supported its versatile medicinal properties; however, more rigorous research is required to establish it in cancer therapy. As such, in this study we aim to investigate the in vitro anticancerous effect of Moringa oleifera's aqueous leaf extract. Moringa extract was prepared by soaking pulverized leaves in hot water mimicking the people's mode of the leaf drink preparation. Several assays were used to study the effect of different percentage concentrations of the extract on viability of A549 cells; levels of adenosine triphosphate (ATP), reactive oxygen species (ROS), and glutathione (GSH) generated; as well as percentage of lactate dehydrogenase (LDH) released at different time points. In addition to mitochondrial membrane potential, apoptotic events were assessed using western blotting for apoptotic markers and immunoflourescent flourescent labeled inhibitor of caspases (FLICA) assay. MO extract treatment resulted in a significant decrease in mitochondrial membrane potential (1 hour) and ATP levels (3 hours), followed by an increase in (6 hours) ROS, caspase activation, proapoptotic proteins expression (p53, SMAC/Diablo, AIF), and PARP-1 cleavage. This eventually resulted in decreased GSH levels and a decrease in viability. The cytotoxic effect was prevented upon pretreatment with antioxidant N-acetyl-cysteine. MO decreased as well the viability of HepG2, CaCo2, Jurkat, and HEK293 cells. Our findings identify a plant extract with an anticancerous effect on cancer cell lines. MO extract exerts its cytotoxic effect in A549 cancer cells by affecting mitochondrial viability and inducing apoptosis in an ROS-dependent manner.
Oktem, Ozgur; Bildik, Gamze; Senbabaoglu, Filiz; Lack, Nathan A; Akin, Nazli; Yakar, Feridun; Urman, Defne; Guzel, Yilmaz; Balaban, Basak; Iwase, Akira; Urman, Bulent
2016-04-01
A recently developed technology (xCelligence) integrating micro-electronics and cell biology allows real-time, uninterrupted and quantitative analysis of cell proliferation, viability and cytotoxicity by measuring the electrical impedance of the cell population in the wells without using any labeling agent. In this study we investigated if this system is a suitable model to analyze the effects of mitogenic (FSH) and cytotoxic (chemotherapy) agents with different toxicity profiles on human granulosa cells in comparison to conventional methods of assessing cell viability, DNA damage, apoptosis and steroidogenesis. The system generated the real-time growth curves of the cells, and determined their doubling times, mean cell indices and generated dose-response curves after exposure to cytotoxic and mitogenic stimuli. It accurately predicted the gonadotoxicity of the drugs and distinguished less toxic agents (5-FU and paclitaxel) from more toxic ones (cisplatin and cyclophosphamide). This platform can be a useful tool for specific end-point assays in reproductive toxicology. Copyright © 2015 Elsevier Inc. All rights reserved.
Timm, David M.; Chen, Jianbo; Sing, David; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Raphael, Robert M.; Dehghani, Mehdi; Rosenblatt, Kevin P.; Killian, T. C.; Tseng, Hubert; Souza, Glauco R.
2013-01-01
There is a growing demand for in vitro assays for toxicity screening in three-dimensional (3D) environments. In this study, 3D cell culture using magnetic levitation was used to create an assay in which cells were patterned into 3D rings that close over time. The rate of closure was determined from time-lapse images taken with a mobile device and related to drug concentration. Rings of human embryonic kidney cells (HEK293) and tracheal smooth muscle cells (SMCs) were tested with ibuprofen and sodium dodecyl sulfate (SDS). Ring closure correlated with the viability and migration of cells in two dimensions (2D). Images taken using a mobile device were similar in analysis to images taken with a microscope. Ring closure may serve as a promising label-free and quantitative assay for high-throughput in vivo toxicity in 3D cultures. PMID:24141454
Houghten, Richard A; Dooley, Colette T; Appel, Jon R
2006-05-26
The use of combinatorial libraries for the identification of novel opiate and related ligands in opioid receptor assays is reviewed. Case studies involving opioid assays used to demonstrate the viability of combinatorial libraries are described. The identification of new opioid peptides composed of L-amino acids, D-amino acids, or L-, D-, and unnatural amino acids is reviewed. New opioid compounds have also been identified from peptidomimetic libraries, such as peptoids and alkylated dipeptides, and those identified from acyclic (eg, polyamine, urea) and heterocyclic (eg, bicyclic guanidine) libraries are reviewed.
Qu, Rongfeng; Sun, Yan; Li, Yarong; Hu, Chunmei; Shi, Guang; Tang, Yan; Guo, Dongrui
2017-01-01
Incidence of nasopharyngeal carcinoma (NPC) has remained high worldwide, posing a serious health problem. MicroRNAs (miRNAs) are a family of about 20-23 nucleotides small non-coding molecules, which play a significant role in NPC. In this study, we explored the molecular mechanisms of miR-130a-3p in inhibiting viability, proliferation, migration and invasion of NPC cells by suppressing CXCL12 . The relative expression of miR-130a-3p and CXCL12 mRNA expression in tissues and cells was measured by qRT-PCR. NPC cell line CNE-2Z was transfected with miR-130a-3p mimics, CXCL12 siRNA, cDNA- CXCL12 and negative control. Western Blot was performed to detect CXCL12 expression. The MTT assay was performed to study cell viability. The colony formation assay was done to test cell growth. Flow cytometry was conducted to analyze cell cycle and apoptosis. The Transwell assay was used to investigate cell migration and invasion. The results found that the up-regulation of miR-130a-3p or down-regulation of CXCL12 could inhibit viability, proliferation, migration and invasion of CNE-2Z cells. Luciferase-reporting system assay was performed to investigate miR-130a-3p could bind to the 3'UTR region of CXCL12 and the overexpression of miR-130a-3p could suppress CXCL12 expression. Collectively, our finding suggested demonstrated that miR-130a-3p could prohibit the progression of NPC by suppressing CXCL12 , which might serve as potential therapeutic targets for NPC.
de Francisco, Lizziane; Pinto, Diana; Rosseto, Hélen; Toledo, Lucas; Santos, Rafaela; Tobaldini-Valério, Flávia; Svidzinski, Terezinha; Bruschi, Marcos; Sarmento, Bruno; Oliveira, M Beatriz P P; Rodrigues, Francisca
2018-03-01
Propolis is a natural adhesive resinous compound produced by honeybees to protect hives from bacteria and fungi, being extremely expensive for food industry. During propolis production, a resinous by-product is formed. This resinous waste is currently undervalued and underexploited. Accordingly, in this study the proximate physical and chemical quality, as well as the antioxidant activity, radical scavenging activity and cell viability of this by-product were evaluated and compared with propolis in order to boost new applications in food and pharmaceutical industries. The results revealed that the by-product meets the physical and chemical quality standards expected and showed that the propolis waste contains similar amounts of total phenolic content (TPC) and total flavonoid content (TFC) to propolis. Also, a good scavenging activity against reactive oxygen and nitrogen species (ROS and RNS, respectively) determined by the assays of superoxide anion radical (O 2 - ), hydrogen peroxide (H 2 O 2 ), hypochlorous acid (HOCl), nitric oxide (NO) and peroxyl radical (ROO) were determined. Linear positive correlations were established between the TPC of both samples and the antioxidant activity evaluated by three different methods (DPPH, ABTS and FRAP assays). The extracts were also screened for cell viability assays in two different intestinal cell lines (HT29-MTX and Caco-2), showing a viability concentration-dependent. Similarly, the Artemia salina assay, used to assess toxicity, demonstrated the concentration influence on results. Finally, the antifungal activity against ATCC species of Candida was demonstrated. These results suggest that propolis by-product can be used as a new rich source of bioactive compounds for different areas, such as food or pharmaceutical. Copyright © 2017 Elsevier Ltd. All rights reserved.
Farshori, Nida Nayyar; Al-Sheddi, Ebtesam Saad; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed
2014-01-01
The Pharmacological potential, such as antioxidant, anti-inflammatory, and antibacterial activities of Portulaca oleracea (PO) and Petroselinum sativum (PS) extracts are well known. However, the preventive properties against hepatocellular carcinoma cells have not been explored so far. Therefore, the present investigation was designed to study the anticancer activity of seed extracts of PO and PS on the human hepatocellular carcinoma cells (HepG2). The HepG2 cells were exposed with 5-500 μg/ml of PO and PS for 24 h. After the exposure, cell viability by 3-(4,5-dimethylthiazol-2yl)-2,5-biphenyl tetrazolium bromide (MTT) assay, neutral red uptake (NRU) assay, and cellular morphology by phase contrast inverted microscope were studied. The results showed that PO and PS extracts significantly reduced the cell viability of HepG2 in a concentration dependent manner. The cell viability was recorded to be 67%, 31%, 21%, and 17% at 50, 100, 250, and 500 μg/ml of PO, respectively by MTT assay and 91%, 62%, 27%, and 18% at 50, 100, 250, and 500 μg/ml of PO, respectively by NRU assay. PS exposed HepG2 cells with 100 μg/ml and higher concentrations were also found to be cytotoxic. The decrease in the cell viability at 100, 250, and 500 μg/ml of PS was recorded as 70%, 33%, and 15% by MTT assay and 63%, 29%, and 17%, respectively by NRU assay. Results also showed that PO and PS exposed cells reduced the normal morphology and adhesion capacity of HepG2 cells. HepG2 cells exposed with 50 μg/ml and higher concentrations of PO and PS lost their typical morphology, become smaller in size, and appeared in rounded bodies. Our results demonstrated preliminary screening of anticancer activity of Portulaca oleracea and Petroselinum sativum extracts against HepG2 cells, which can be further used for the development of a potential therapeutic anticancer agent.
In Vitro Effects of Preserved and Unpreserved Anti-Allergic Drugs on Human Corneal Epithelial Cells
Calvo, Patricia; Ropero, Inés; Pintor, Jesús
2014-01-01
Abstract Purpose: Treatment with topical eye drops for long-standing ocular diseases like allergy can induce detrimental side effects. The purpose of this study was to investigate in vitro cytotoxicity of commercially preserved and unpreserved anti-allergic eye drops on the viability and barrier function of monolayer and stratified human corneal-limbal epithelial cells. Methods: Cells were treated with unpreserved ketotifen solution, benzalkonium chloride (BAC)-containing anti-allergic drugs (ketotifen, olopatadine, levocabastine) as well as BAC alone. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine cell viability. Effects of compounds on barrier function were analyzed measuring transepithelial electrical resistance (TEER) to determine paracellular permeability and rose bengal assays to evaluate transcellular barrier formation. Results: The BAC-preserved anti-allergic formulations and BAC alone significantly reduced cell viability, monolayer cultures being more sensitive to damage by these solutions. Unpreserved ketotifen induced the least diminution in cell viability. The extent of decrease of cell viability was clearly dependent of BAC presence, but it was also affected by the different types of drugs when the concentration of BAC was low and the short time of exposure. Treatment with BAC-containing anti-allergic drugs and BAC alone resulted in increased paracellular permeability and loss of transcellular barrier function as indicated by TEER measurement and rose bengal assays. Conclusions: The presence of the preservative BAC in anti-allergic eye drop formulations contributes importantly to the cytotoxic effects induced by these compounds. Stratified cell cultures seem to be a more relevant model for toxicity evaluation induced on the ocular surface epithelia than monolayer cultures. PMID:25100331
Barlow, A D; Xie, J; Moore, C E; Campbell, S C; Shaw, J A M; Nicholson, M L; Herbert, T P
2012-05-01
Rapamycin (sirolimus) is one of the primary immunosuppressants for islet transplantation. Yet there is evidence that the long-term treatment of islet-transplant patients with rapamycin may be responsible for subsequent loss of islet graft function and viability. Therefore, the primary objective of this study was to elucidate the molecular mechanism of rapamycin toxicity in beta cells. Experiments were performed on isolated rat and human islets of Langerhans and MIN6 cells. The effects of rapamycin and the roles of mammalian target of rapamycin complex 2 (mTORC2)/protein kinase B (PKB) on beta cell signalling, function and viability were investigated using cell viability assays, insulin ELISA assays, kinase assays, western blotting, pharmacological inhibitors, small interfering (si)RNA and through the overproduction of a constitutively active mutant of PKB. Rapamycin treatment of MIN6 cells and islets of Langerhans resulted in a loss of cell function and viability. Although rapamycin acutely inhibited mTOR complex 1 (mTORC1), the toxic effects of rapamycin were more closely correlated to the dissociation and inactivation of mTORC2 and the inhibition of PKB. Indeed, the overproduction of constitutively active PKB protected islets from rapamycin toxicity whereas the inhibition of PKB led to a loss of cell viability. Moreover, the selective inactivation of mTORC2 using siRNA directed towards rapamycin-insensitive companion of target of rapamycin (RICTOR), mimicked the toxic effects of chronic rapamycin treatment. This report provides evidence that rapamycin toxicity is mediated by the inactivation of mTORC2 and the inhibition of PKB and thus reveals the molecular basis of rapamycin toxicity and the essential role of mTORC2 in maintaining beta cell function and survival.
van der Mei, Henny C; Atema-Smit, Jelly; Jager, Debbie; Langworthy, Don E; Collias, Dimitris I; Mitchell, Michael D; Busscher, Henk J
2008-07-01
In rural areas around the world, people often rely on water filtration plants using activated carbon particles for safe water supply. Depending on the carbon surface, adhering microorganisms die or grow to form a biofilm. Assays to assess the efficacy of activated carbons in bacterial removal do not allow direct observation of bacterial adhesion and the determination of viability. Here we propose to use a parallel plate flow chamber with carbon particles attached to the bottom plate to study bacterial adhesion to individual carbon particles and determine the viability of adhering bacteria. Observation and enumeration is done after live/dead staining in a confocal laser scanning microscope. Escherichiae coli adhered in higher numbers than Raoultella terrigena, except to a coconut-based carbon, which showed low bacterial adhesion compared to other wood-based carbon types. After adhesion, 83-96% of the bacteria adhering to an acidic carbon were dead, while on a basic carbon 54-56% were dead. A positively charged, basic carbon yielded 76-78% bacteria dead, while on a negatively charged coconut-based carbon only 32-37% were killed upon adhesion. The possibility to determine both adhesion as well as the viability of adhering bacteria upon adhesion to carbon particles is most relevant, because if bacteria adhere but remain viable, this still puts the water treatment system at risk, as live bacteria can grow and form a biofilm that can then be shedded to cause contamination. (c) 2008 Wiley Periodicals, Inc.
Interferometric optical online dosimetry for selective retina treatment (SRT)
NASA Astrophysics Data System (ADS)
Stoehr, Hardo; Ptaszynski, Lars; Fritz, Andreas; Brinkmann, Ralf
2007-07-01
Selective retina treatment (SRT) is a new laser based method to treat retinal diseases associated with disorders of the retinal pigment epithelium (RPE). Applying microsecond laser pulses tissue damage spatially confined to the retinal pigment epithelium (RPE) is achieved. The RPE cell damage is caused by transient microbubbles emerging at the strongly absorbing melanin granules inside the RPE cells. Due to the spatial confinement to the RPE the photoreceptors can be spared and vision can be maintained in the treated retinal areas. A drawback for effective clinical SRT is that the laser induced lesions are ophthalmoscopically invisible. Therefore, a real-time feedback system for dosimetry is necessary in order to avoid undertreatment or unwanted collateral damage to the adjacent tissue. We develop a dosimetry system which uses optical interferometry for the detection of the transient microbubbles. The system is based on an optical fiber interferometer operated with a laser diode at 830nm. We present current results obtained with a laser slit lamp using porcine RPE explants in vitro and complete porcine eye globes ex vivo. The RPE cell damage is determined by Calcein fluorescence viability assays. With a threshold criterium for RPE cell death derived from the measured interferometric signal transients good agreement with the results of the viability assays is achieved.
Füller, J; Müller-Goymann, C C
2018-05-01
Hyperforin (HYP), one of the main bioactive compounds in extracts of Hypericum perforatum, is a potential drug candidate for the treatment of skin diseases. Since extracts have proven to support wound healing, in the present study effects of HYP on human dermal fibroblasts (HDF) were evaluated in 2D and 3D in vitro dermal constructs. Viability and cytotoxicity assays as well as a live-dead cell staining were performed to test at which concentration HYP reduces viability and/or shows cytotoxicity. Furthermore a differentiation between cytotoxic, anti-proliferative and anti-migratory effects was done. For the latter purpose a 2D migration assay was performed. HDF-induced contraction of a 3D artificial dermal (AD) construct was determined at given HYP concentration. Induction of apoptosis was examined by determination of caspase 3/7 activities. HYP reduced viability of HDF down to 70% at concentrations of 5-10µM. This decrease was not due to cytotoxicity but to a reduction in proliferation as shown from both the proliferation assay and the cytotoxicity assay as well as from live-dead cell staining. The 2D migration assay showed that HYP reduced migration activity of HDF cells at a concentration of 10µM. At this concentration HYP also reduced the HDF-induced contraction of collagen gels as 3D AD constructs. Apoptotic effects of HYP were excluded performing a caspase 3/7 activity detecting assay. The results show for the first time that HYP may be rather a potential candidate for treatment of hypertrophic scars than promoting effects which are understood as important in wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of a high-throughput colorimetric Zika virus infection assay.
Müller, Janis A; Harms, Mirja; Schubert, Axel; Mayer, Benjamin; Jansen, Stephanie; Herbeuval, Jean-Philippe; Michel, Detlef; Mertens, Thomas; Vapalahti, Olli; Schmidt-Chanasit, Jonas; Münch, Jan
2017-04-01
Zika virus (ZIKV) is an emerging pathogen that causes congenital infections which may result in birth defects, such as microcephaly. Currently, no approved treatment or vaccination is available. ZIKV can be readily detected in cell culture where virally infected cells are normally stained by specific antibodies. As ZIKV regularly causes a cytopathic effect, we were wondering whether this viral property can be used to quantitatively determine viral infectivity. We here describe the use of an 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide-(MTT)-based cell viability assay that allows to determine ZIKV-induced cell death. We show that this colorimetric assay quantifies ZIKV infection over a broad range of viral dilutions in both monkey and human cells. It allows to determine inhibitory activities of antivirals that block ZIKV or to define the neutralizing antibody titers of ZIKV antisera. This MTT-based ZIKV detection assay can be evaluated by naked eye or computational tools, has a broad linear range, does not require large equipment or costly reagents, and thus represents a promising alternative to antibody-based assays, in particular in resource-poor settings. We propose to use this simple, fast, and cheap method for quantification of ZIKV neutralizing antibodies and testing of antiviral compounds.
Ducar, Constance; Smith, Donna; Pinzon, Cris; Stirewalt, Michael; Cooper, Cristine; McElrath, M Juliana; Hural, John
2014-07-01
The HIV Vaccine Trials Network (HVTN) is a global network of 28 clinical trial sites dedicated to identifying an effective HIV vaccine. Cryopreservation of high-quality peripheral blood mononuclear cells (PBMC) is critical for the assessment of vaccine-induced cellular immune functions. The HVTN PBMC Quality Management Program is designed to ensure that viable PBMC are processed, stored and shipped for clinical trial assays from all HVTN clinical trial sites. The program has evolved by developing and incorporating best practices for laboratory and specimen quality and implementing automated, web-based tools. These tools allow the site-affiliated processing laboratories and the central Laboratory Operations Unit to rapidly collect, analyze and report PBMC quality data. The HVTN PBMC Quality Management Program includes five key components: 1) Laboratory Assessment, 2) PBMC Training and Certification, 3) Internal Quality Control, 4) External Quality Control (EQC), and 5) Assay Specimen Quality Control. Fresh PBMC processing data is uploaded from each clinical site processing laboratory to a central HVTN Statistical and Data Management Center database for access and analysis on a web portal. Samples are thawed at a central laboratory for assay or specimen quality control and sample quality data is uploaded directly to the database by the central laboratory. Four year cumulative data covering 23,477 blood draws reveals an average fresh PBMC yield of 1.45×10(6)±0.48 cells per milliliter of useable whole blood. 95% of samples were within the acceptable range for fresh cell yield of 0.8-3.2×10(6) cells/ml of usable blood. Prior to full implementation of the HVTN PBMC Quality Management Program, the 2007 EQC evaluations from 10 international sites showed a mean day 2 thawed viability of 83.1% and a recovery of 67.5%. Since then, four year cumulative data covering 3338 specimens used in immunologic assays shows that 99.88% had acceptable viabilities (>66%) for use in cellular assays (mean, 91.46% ±4.5%), and 96.2% had acceptable recoveries (50%-130%) with a mean of recovery of 85.8% ±19.12% of the originally cryopreserved cells. EQC testing revealed that since August 2009, failed recoveries dropped from 4.1% to 1.6% and failed viabilities dropped from 1.0% to 0.3%. The HVTN PBMC quality program provides for laboratory assessment, training and tools for identifying problems, implementing corrective action and monitoring for improvements. These data support the benefits of implementing a comprehensive, web-based PBMC quality program for large clinical trials networks. Copyright © 2014 Elsevier B.V. All rights reserved.
Cell-based dose responses from open-well microchambers.
Hamon, Morgan; Jambovane, Sachin; Bradley, Lauren; Khademhosseini, Ali; Hong, Jong Wook
2013-05-21
Cell-based assays play a critical role in discovery of new drugs and facilitating research in cancer, immunology, and stem cells. Conventionally, they are performed in Petri dishes, tubes, or well plates, using milliliters of reagents and thousands of cells to obtain one data point. Here, we are introducing a new platform to realize cell-based assay capable of increased throughput and greater sensitivity with a limited number of cells. We integrated an array of open-well microchambers into a gradient generation system. Consequently, cell-based dose responses were examined with a single device. We measured IC50 values of three cytotoxic chemicals, Triton X-100, H2O2, and cadmium chloride, as model compounds. The present system is highly suitable for the discovery of new drugs and studying the effect of chemicals on cell viability or mortality with limited samples and cells.
Methacrylated gelatin/hyaluronan-based hydrogels for soft tissue engineering
Kessler, Lukas; Gehrke, Sandra; Winnefeld, Marc; Huber, Birgit; Hoch, Eva; Walter, Torsten; Wyrwa, Ralf; Schnabelrauch, Matthias; Schmidt, Malte; Kückelhaus, Maximilian; Lehnhardt, Marcus; Hirsch, Tobias; Jacobsen, Frank
2017-01-01
In vitro–generated soft tissue could provide alternate therapies for soft tissue defects. The aim of this study was to evaluate methacrylated gelatin/hyaluronan as scaffolds for soft tissue engineering and their interaction with human adipose–derived stem cells (hASCs). ASCs were incorporated into methacrylated gelatin/hyaluronan hydrogels. The gels were photocrosslinked with a lithium phenyl-2,4,6-trimethylbenzoylphosphinate photoinitiator and analyzed for cell viability and adipogenic differentiation of ASCs over a period of 30 days. Additionally, an angiogenesis assay was performed to assess their angiogenic potential. After 24 h, ASCs showed increased viability on composite hydrogels. These results were consistent over 21 days of culture. By induction of adipogenic differentiation, the mature adipocytes were observed after 7 days of culture, their number significantly increased until day 28 as well as expression of fatty acid binding protein 4 and adiponectin. Our scaffolds are promising as building blocks for adipose tissue engineering and allowed long viability, proliferation, and differentiation of ASCs. PMID:29318000
Garrido, Angela Delfina Bittencourt; de Cara, Sueli Patricia Harumi Miyagi; Marques, Marcia Martins; Sponchiado, Emílio Carlos; Garcia, Lucas da Fonseca Roberti; de Sousa-Neto, Manoel Damião
2015-01-01
Background: The constant development of new root canal sealers has allowed the solution of a large number of clinical cases in endodontics, however, cytotoxicity of such sealers must be tested before their validation as filling materials. The aim of this study was to evaluate the cytotoxic effect of a new Copaiba oil-based root canal sealer (Biosealer [BS]) on osteoblast-like Osteo-1 cells. Materials and Methods: The experimental groups were formed according to the culture medium conditioned with the tested sealers, as follows: Control group (CG) (culture medium without conditioning); Sealer 26 (S26) - culture medium + S26; Endofill (EF) - culture medium + EF; AH Plus (AHP) - culture medium + AHP; and BS - culture medium + BS (Copaiba oil-based sealer). The conditioned culture medium was placed in contact with 2 × 104 cells cultivated on 60 mm diameter Petri dishes for 24 h. Then, hemocytometer count was performed to evaluate cellular viability, using Trypan Blue assay. The normal distribution of data was tested by the Kolmogorov-Smirnov test and the values obtained for cellular viability were statistically analyzed (1-way ANOVA, Tukey's test - P < 0.05), with a significance level of 5%. Results: S26, EF and AHP presented decreased cellular viability considerably, with statistical significance compared with CG (P < 0.05). BS maintained cellular viability similar to CG (P > 0.05). Conclusion: The Copaiba oil-based root canal sealer presented promising results in terms of cytotoxicity which indicated its usefulness as a root canal sealer. PMID:25878676
In vitro Cell Viability by CellProfiler® Software as Equivalent to MTT Assay.
Gasparini, Luciana S; Macedo, Nayana D; Pimentel, Elisângela F; Fronza, Marcio; Junior, Valdemar L; Borges, Warley S; Cole, Eduardo R; Andrade, Tadeu U; Endringer, Denise C; Lenz, Dominik
2017-07-01
This study evaluated in vitro cell viability by the colorimetric MTT stands for 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay compared to image analysis by CellProfiler ® software. Hepatoma (Hepa-1c1c7) and fibroblast (L929) cells were exposed to isolated substances, camptothecin, lycorine, tazettine, albomaculine, 3-epimacronine, trispheridine, galanthine and Padina gymnospora , Sargassum sp. methanolic extract, and Habranthus itaobinus Ravenna ethyl acetate in different concentrations. After MTT assay, cells were stained with Panotic dye kit. Cell images were obtained with an inverted microscope equipped with a digital camera. The images were analyzed by CellProfiler ® . No cytotoxicity at the highest concentration analyzed for 3-epimacronine, albomaculine, galanthine, trispheridine, P. gymnospora extract and Sargassum sp. extract where detected. Tazettine offered cytotoxicity only against the Hepa1c1c7 cell line. Lycorine, camptothecin, and H. itaobinus extract exhibited cytotoxic effects in both cell lines. The viability methods tested were correlated demonstrated by Bland-Atman test with normal distribution with mean difference between the two methods close to zero, bias value 3.0263. The error was within the limits of the confidence intervals and these values had a narrow difference. The correlation between the two methods was demonstrated by the linear regression plotted as R 2 . CellProfiler ® image analysis presented similar results to the MTT assay in the identification of viable cells, and image analysis may assist part of biological analysis procedures. The presented methodology is inexpensive and reproducible. In vitro cell viability assessment with MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay may be replaced by image analysis by CellProfiler ® . The viability methods tested were correlated demonstrated by Bland-Atman test with normal distribution with mean difference between the two methods close to zero, bias value 3.0263. The correlation between the two methods was demonstrated by the linear regression plotted as R2. Abbreviations: HPLC: High pressure liquid chromatography MTT: (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide).
Araújo, Leandro Borges; Cosme-Silva, Leopoldo; Fernandes, Ana Paula; Oliveira, Thais Marchini de; Cavalcanti, Bruno das Neves; Gomes Filho, João Eduardo; Sakai, Vivien Thiemy
2018-02-01
The aim of the study was to evaluate the effects of the capping materials mineral trioxide aggregate (MTA), calcium hydroxide (CH) and BiodentineTM (BD) on stem cells from human exfoliated deciduous teeth (SHED) in vitro. SHED were cultured for 1 - 7 days in medium conditioned by incubation with MTA, BD or CH (1 mg/mL), and tested for viability (MTT assay) and proliferation (SRB assay). Also, the migration of serum-starved SHED towards conditioned media was assayed in companion plates, with 8 μm-pore-sized membranes, for 24 h. Gene expression of dentin matrix protein-1 (DMP-1) was evaluated by reverse-transcription polymerase chain reaction. Regular culture medium with 10% FBS (without conditioning) and culture medium supplemented with 20% FBS were used as controls. MTA, CH and BD conditioned media maintained cell viability and allowed continuous SHED proliferation, with CH conditioned medium causing the highest positive effect on proliferation at the end of the treatment period (compared with BD and MTA) (p<0.05). In contrast, we observed increased SHED migration towards BD and MTA conditioned media (compared with CH) (p<0.05). A greater amount of DMP-1 gene was expressed in MTA group compared with the other groups from day 7 up to day 21. Our results show that the three capping materials are biocompatible, maintain viability and stimulate proliferation, migration and differentiation in a key dental stem cell population.
Nucleic acid stains as indicators of Giardia muris viability following cyst inactivation.
Taghi-Kilani, R; Gyürék, L L; Millard, P J; Finch, G R; Belosevic, M
1996-06-01
A reliable viability assay for Giardia is required for the development of disinfection process design criteria and pathogen monitoring by water treatment utilities. Surveys of single-staining nucleic acid dyes (stain dead parasites only), and double-staining vital dye kits from Molecular Probes (stain live and dead parasites) were conducted to assess the viability of untreated, heat-killed, and chemically inactivated Giardia muris cysts. Nucleic acid staining results were compared to those of in vitro excystation and animal infectivity. Nucleic acid stain, designated as SYTO-9, was considered the best among the single-staining dyes for its ability to stain dead cysts brightly and its relatively slow decay rate of visible light emission following DNA binding. SYTO-9 staining was correlated to animal infectivity. A Live/Dead BacLight was found to be the better of 2 double-staining viability kits tested. Logarithmic survival ratios based on SYTO-9 and Live/Dead BacLight were compared to excystation and infectivity results for G. muris cysts exposed to ozone or free chlorine. The results indicate that SYTO-9 and Live/Dead BacLight staining is stable following treatment of cysts with chemical disinfectants.
Figueroa, Daniela; Asaduzzaman, Mohammad; Young, Fiona
2018-04-07
The detection of reactive oxygen species (ROS) using 2',7'-dichlorofluorescin diacetate (DCFDA) is commonly performed by a single measurement of fluorescence but this fails to capture a profile of ROS generation over time. This study aimed to develop a real-time monitoring method to increase the utility of the assay, to incorporate cytotoxicity screening and to describe the combined effects of DCFDA and the ROS generator, Ter-butyl hydrogen peroxide (TBHP). Breast cancer MCF-7 cells were loaded with DCFDA (0-50 μM) for 45 min, and then exposed to TBHP (0-50 μM). Fluorescence was recorded according to three different schedules: every hour for 6 h, or once after 6 h or 24 h. Viability was assessed in a crystal violet assay and cell morphology was examined by microscopy. TBHP caused a time and dose-dependent increase in ROS and the magnitude of the fluorescent signal was affected by the loading concentration of DCFDA. Reading the fluorescence every hour for 6 h did not diminish the emission signal. The most sensitive and reliable combination for this ROS assay was 10 μM DCFDA with 25 μM TBHP; since higher concentrations of DCFDA compromised cell viability. In conclusion we adapted a single point ROS assay to enable production of a profile of ROS generation over an extended 6 h period, and related this to cell viability and morphology. Published by Elsevier Inc.
Townson, Simon; Tagboto, Senyo; McGarry, Helen F; Egerton, Gillian L; Taylor, Mark J
2006-01-01
Background The filarial parasites of major importance in humans contain the symbiotic bacterium Wolbachia and recent studies have shown that targeting of these bacteria with antibiotics results in a reduction in worm viability, development, embryogenesis, and survival. Doxycycline has been effective in human trials, but there is a need to develop drugs that can be given for shorter periods and to pregnant women and children. The World Health Organisation-approved assay to screen for anti-filarial activity in vitro uses male Onchocerca gutturosa, with effects being determined by worm motility and viability as measured by reduction of MTT to MTT formazan. Here we have used this system to screen antibiotics for anti-filarial activity. In addition we have determined the contribution of Wolbachia depletion to the MTT reduction assay. Methods Adult male O. gutturosa were cultured on a monkey kidney cell (LLCMK 2) feeder layer in 24-well plates with antibiotics and antibiotic combinations (6 to 10 worms per group). The macrofilaricide CGP 6140 (Amocarzine) was used as a positive control. Worm viability was assessed by two methods, (i) motility levels and (ii) MTT/formazan colorimetry. Worm motility was scored on a scale of 0 (immotile) to 10 (maximum) every 5 days up to 40 days. On day 40 worm viability was evaluated by MTT/formazan colorimetry, and results were expressed as a mean percentage reduction compared with untreated control values at day 40. To determine the contribution of Wolbachia to the MTT assay, the MTT formazan formation of an insect cell-line (C6/36) with or without insect Wolbachia infection and treated or untreated with tetracycline was compared. Results Antibiotics with known anti-Wolbachia activity were efficacious in this system. Rifampicin (5 × 10-5M) was the most effective anti-mycobacterial agent; clofazimine (1.25 × 10-5M and 3.13 × 10-6M) produced a gradual reduction in motility and by 40 days had reduced worm viability. The other anti-mycobacterial drugs tested had limited or no activity. Doxycycline (5 × 10-5M) was filaricidal, but minocycline was more effective and at a lower concentration (5 × 10-5M and 1.25 × 10-5M). Inactive compounds included erythromycin, oxytetracycline, trimethoprim and sulphamethoxazole. The MTT assay on the insect cell-line showed that Wolbachia made a significant contribution to the metabolic activity within the cells, which could be reduced when they were exposed to tetracycline. Conclusion The O. gutturosa adult male screen for anti-filarial drug activity is also valid for the screening of antibiotics for anti-Wolbachia activity. In agreement with previous findings, rifampicin and doxycycline were effective; however, the most active antibiotic was minocycline. Wolbachia contributed to the formation of MTT formazan in the MTT assay of viability and is therefore not exclusively a measure of worm viability and indicates that Wolbachia contributes directly to the metabolic activity of the nematode. PMID:16563157
Evaluation of soyscreen in an oil-based formulation for UV protection of Beauveria bassiana conidia.
Behle, Robert W; Compton, David L; Laszlo, Joseph A; Shapiro-Ilan, David I
2009-10-01
Soyscreen oil was studied as a formulation ingredient to protect Beauveria bassiana (Balsamo) Vuillemin conidia from UV degradation. Feruloylated soy glycerides, referred to as Soyscreen oil, are biobased UV-absorbing molecules made by combining molecules of soybean oil with ferulic acid. Conidia stored in Soyscreen oil for 28 wk at 25, 30, and 35 degrees C retained viability as well as conidia stored in sunflower oil, demonstrating that Soyscreen did not adversely affect viability with prolonged storage. For samples applied to glass and exposed to simulated sunlight (xenon light), conidia in sunflower oil with or without sunscreens (Soyscreen or oxyl methoxycinnimate) had similar conidia viability after exposure. These oil formulations retained conidia viability better than conidia applied as an aqueous treatment. However, the 10% Soyscreen oil formulation applied to field grown cabbage (Brassica oleracea L.) and bean (Phaseolus vulgaris L.) plants, did not improve residual insecticidal activity compared with aqueous applications of unformulated conidia or two commercial formulations when assayed against Trichoplusia ni (Hübner) larvae. Our results suggest that the oil applications lose UV protection because the oil was absorbed by the leaf. This conclusion was supported in subsequent laboratory exposures of conidia in oil-based formulations with UV screens applied to cabbage leaves or balsa wood, which lost protection as measured by decreased viability of conidia when exposed to simulated sunlight. As a result, additional formulation techniques such as encapsulation to prevent separation of the protective oil from the conidia may be required to extend protection when oil formulations are applied in the field.
Lindsey, Changhong Y; Brown, J Edward; Torabazar, Nahid R; Smith, Leonard A
2013-01-01
A recombinant ricin toxin A-chain 1-33/44-198 vaccine (RVEc), developed at the United States Army Medical Research Institute of Infectious Diseases as a vaccine candidate, is under investigation in a phase 1 clinical study. To effectively evaluate the immunogenicity of this ricin vaccine and to eliminate the use of radioactive material, an EL4 cell-based colorimetric toxin neutralization activity (TNA) assay using a CellTiter 96 AQueous One Solution Cell Proliferation Assay Reagent has been developed, optimized, and applied in the vaccine efficacy studies. The TNA assay measures the protective neutralizing anti-ricin antibodies in animal sera by determining the cell viability after ricin exposure in the assay system and comparing it to a purified mouse polyclonal antiricin IgG standard curve. The standard curve of the anti-ricin TNA assay closely fits a four-parameter logistic regression model. The unknown test sample concentration was expressed as microg/mL, but not the 50% effective concentration (EC50), which was determined by most TNA assays. The neutralizing endpoint titers, not the 50% effective dilution (ED50), of human specimens were measured with the TNA assay in support of the clinical study of the RVEc vaccine. The optimal amount of ricin toxin, EL4 cells, and concentration of standards used in the assay system was established to minimize false-negative and false-positive results of serum specimens from the nonclinical and clinical studies of RVEc. The testing conditions were adjusted to optimize assay performance. The colorimetric TNA assay replaced a radioactive TNA assay previously used in the ricin vaccine studies.
Ulusoy, Ayça Tuba; Kalyoncuoglu, Elif; Kaya, Senay; Cehreli, Zafer Cavit
2016-08-01
The purpose of this study was to evaluate the effectiveness of goat milk as a storage media for maintenance of periodontal ligament (PDL) cell viability of avulsed teeth and compare it with commonly used and/or investigated storage media. PDL cells were obtained from the root surface of healthy premolars and were cultured in Eagle's maintenance medium (EMM). Cell cultures were treated with the following storage media: tap water (negative control); EMM (positive control); Hank's balanced salt solution; ultra high temperature (UHT) long-shelf-life lactose-free cow milk; UHT long-shelf-life whole cow milk; UHT long-shelf-life skimmed cow milk; UHT long-shelf-life soy milk; UHT long-shelf-life goat milk, UHT long-shelf-life follow on milk with probiotic, 20% propolis, and egg white. Culture plates were incubated with experimental media at 20°C for 1, 3, 6, 12, and 24 h. PDL cell viability was assessed by tetrazolium salt-based colorimetric (MTT) assay at each test period. One-way anova was used to evaluate the effects of storage solutions at each time point, followed by post hoc Duncan's multiple comparison test (P = 0.05). A dendrogram was constructed to show the arrangement of hierarchical clustering. Goat milk displayed the highest capacity to maintain cell viability at all test intervals (P < 0.001). Between 3 and 24 h, milk with the probiotic showed the lowest time-dependent PDL cell viability among all test media (P < 0.001). Compared with all milks, HBSS performed significantly less effectively in maintaining PDL cell viability during the entire test period (P < 0.001). Based on PDL viability, goat milk can be recommended as a suitable storage medium for avulsed teeth. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Effects of ozone exposure on human epithelial adenocarcinoma and normal fibroblasts cells
Colafarina, Sabrina; Aruffo, Eleonora; Zarivi, Osvaldo; Bonfigli, Antonella; Di Bucchianico, Sebastiano; Di Carlo, Piero
2017-01-01
Previous studies show variable ozone cytotoxicity and genotoxicity in cell cultures, laboratory animals and humans directly exposed to tropospheric ozone. The aim of this study was therefore to investigate and compare the cyto and genotoxic effects of ozone using adenocarcinoma human alveolar basal epithelial cells A549 and normal human fibroblasts Hs27. A cell culture chamber with controlled atmosphere (a simulation reactor) was built to inject a flow of 120 ppb of ozone, which is two times the threshold value for the protection of human health, fixed by the EU legislation. Cell proliferation was evaluated by a luminescent cell viability assay while we assessed the genotoxic potential of ozone by the induction of micronuclei as well as evaluating DNA strand breaks by the induction of micronuclei evaluated by means of the cytokinesis-block micronucleus (CBMN) assay as well as evaluating DNA strand breaks by Alkaline Comet Assay (CA) or Comet Assay. A549 cells viability decreases significantly at 24 hours treatment with 120 ppb of O3 while at 48 hours and 72 hours O3 treated cells viability doesn’t differ in respect to the control. However a significative decrease of A549 viability is shown at 72 hours vs. 48 hours in both treated and not-treated cells. The viability trend in the Hs27 cells did not show any significant changes in treated samples compared to the control in all conditions. The two genotoxicity biomarkers, the micronucleus and the comet tests, showed in both the cell types exposed to ozone, a significant increase in the number of micronuclei and in the tail DNA % in respect to the control even if at different times/cell type. Moreover, we found that O3 provokes genotoxic effects more evident in A549 cancer cells than in normal fibroblasts Hs27 ones. We applied a cell growth simulation model referred to ozone treated or not cell lines to confirm that the ozone exposure causes a slackening in the cells replication. PMID:28886142
Ma, Melissa; Crump, Doug; Farmahin, Reza; Kennedy, Sean W
2015-02-01
A market for alternative brominated flame retardants (BFRs) has emerged recently due to the phase out of persistent and inherently toxic BFRs. Several of these replacement compounds have been detected in environmental matrices, including wild birds. A chicken embryonic hepatocyte (CEH) assay was utilized to assess the effects of the BFR, tetrabromobisphenol-A (TBBPA), and its replacement alternative, tetrabromobisphenol A bis(2,3-dibromopropyl ether [TBBPA-DBPE]) on cell viability and messenger ribonucleic acid (mRNA) expression. Bisphenol A (BPA) and 1 of its replacement alternatives, bisphenol S (BPS), were also screened for effects. Both TBBPA and BPA decreased CEH viability with calculated median lethal concentration (LC50) values of 40.6 μM and 61.7 μM, respectively. However, the replacement alternatives, TBBPA-DBPE and BPS, did not affect cell viability (up to 300 μM). Effects on mRNA expression were determined using an Avian ToxChip polymerse chain reaction (PCR) array and a real-time (RT)-PCR assay for the estrogen-responsive genes, apolipoproteinII (ApoII) and vitellogenin (Vtg). A luciferase reporter gene assay was used to assess dioxin-like effects. Tetrabromobisphenol-A altered mRNA levels of 4 genes from multiple toxicity pathways and increased luciferase activity in the luciferase reporter gene assay, whereas its alternative, TBBPA-DBPE, only altered 1 gene on the array, Cyp1a4, and increased luciferase activity. At 300 μM, a concentration that decreased cell viability for TBBPA and BPA, the BPA replacement, BPS, altered the greatest number of transcripts, including both ApoII and Vtg. Bisphenol A exposure did not alter any genes on the array but did up-regulate Vtg at 10 μM. Characterization of the potential toxicological and molecular-level effects of these compounds will ideally be useful to chemical regulators tasked with assessing the risk of new and existing chemicals. © 2014 SETAC.
Lechpammer, S; Asea, A; Mallick, R; Zhong, R; Sherman, M Y; Calderwood, S K
2002-01-01
It is now possible to search for new drugs using high-throughput screening of chemical libraries accumulated over the past few years. To detect potential new hyperthermia sensitizers, we are screening for chemical inhibitors of thermotolerance. For the screening of a large chemical library, a rapid and simple assay based on the XTT-tetrazolium salt with the addition of intermediate electron acceptor, phenazine methosulphate (PMS) as a promoter, was developed. It was found that the sensitivity of the XTT/PMS assay is sufficient for assessing thermal cell killing and thermotolerance, although it was highly dependent on cell number and type. When the formazan assay system was challenged with the bioflavonoid drug quercetin (up to 25mm) and validated against the clonogenic cell survival assay, significant decreases in thermotolerant cell viability were observed, directly reflecting inhibition of thermotolerance. Although short-term assays can, in some instances, underestimate overall cell killing, the dose dependency of inhibition of thermotolerance by quercetin recorded in this study by clonogenic and XTT/PMS assays was similar. Application of the XTT/PMS assay in chemical library screening was highly effective in differentiating potential thermotolerance inhibitors from both chemicals with lack of efficacy and from toxic compounds. Taken together, these results show that the XTT/PMS assay, when carried out under careful conditions, is well suited for primary high-flux screen of many thousands of compounds, thus opening up new areas for discovery of hyperthermia sensitizers.
Tabatabaei, Fahimeh Sadat
2016-01-01
ABSTRACT Objectives The dentin matrix servers as a reservoir of growth factors, sequestered during dentinogenesis. The aim of this study was to assess the viability and proliferation of dental pulp stem cells in the presence of dentin matrix-derived non-collagenous proteins and two growth factors; platelet-derived growth factor BB and transforming growth factor beta 1. Material and Methods The dental pulp cells were isolated and cultured. The dentin proteins were extracted and purified. The MTT assay was performed for assessment of cell viability and proliferation in the presence of different concentrations of dentin proteins and growth factors during 24 - 72 h post-treatment. Results The cells treated with 250 ng/mL dentin proteins had the best viability and proliferation ability in comparison with other concentrations (P < 0.05). The MTT assay demonstrated that cells cultured with 5 ng/mL platelet-derived growth factor BB had the highest viability at each time point as compared to other groups (P < 0.05). However, in presence of platelet-derived growth factor BB alone and in combination with transforming growth factor beta 1 and dentin proteins (10 ng/mL), significant higher viability was seen at all time points (P < 0.05). The least viability and proliferation at each growth factor concentration was seen in cells treated with combination of transforming growth factor beta 1 and dentin proteins at 72 h (P < 0.05). Conclusions The results indicated that the triple combination of growth factors and matrix-derived non-collagenous proteins (especially at 10 ng/mL concentration) has mitogenic effect on dental pulp stem cells. PMID:27099698
Feasibility study of a biocompatible pneumatic dispensing system using mouse 3T3-J2 fibroblasts
NASA Astrophysics Data System (ADS)
Lee, Sangmin; Kim, Hojin; Kim, Joonwon
2017-12-01
This paper presents results for dispensing living cells using a pneumatic dispensing system to verify the feasibility of using this system to fabricate biomaterials. Living cells (i.e., mouse 3T3-J2 fibroblast) were dispensed with different dispensing pressures in order to evaluate the effect of dispensing process on cell viability and proliferation. Based on the results of a live-dead assay, more than 80% of cell viability has been confirmed which was reasonably similar to that in the control group. Furthermore, measurement of cell metabolic activity after dispensing confirmed that the dispensed cell proliferated at a rate comparable to that of the control group. These results demonstrate that the pneumatic dispensing system is a promising tool for fabrication of biomaterials.
Accurate and reproducible measurements of RhoA activation in small samples of primary cells.
Nini, Lylia; Dagnino, Lina
2010-03-01
Rho GTPase activation is essential in a wide variety of cellular processes. Measurement of Rho GTPase activation is difficult with limited material, such as tissues or primary cells that exhibit stringent culture requirements for growth and survival. We defined parameters to accurately and reproducibly measure RhoA activation (i.e., RhoA-GTP) in cultured primary keratinocytes in response to serum and growth factor stimulation using enzyme-linked immunosorbent assay (ELISA)-based G-LISA assays. We also established conditions that minimize RhoA-GTP in unstimulated cells without affecting viability, allowing accurate measurements of RhoA activation on stimulation or induction of exogenous GTPase expression. Copyright 2009 Elsevier Inc. All rights reserved.
Lin, Shiqi; Yang, Ling; Chen, Gu; Li, Bing; Chen, Dingqiang; Li, Lin; Xu, Zhenbo
2017-10-01
Biofilm is a ubiquitous growth pattern of bacterial species survival but is notorious for its threat on public health and food contamination. Extensive studies of the biofilm structure, formation, quantification, quorum sensing system and underlying control strategies have been reported during the past decades. Insightful elucidation of the pathogenic features and characteristic of bacterial biofilm can facilitate in devising appropriate control strategies for biofilm eradication. Therefore, this review mainly summarized the pathogenic features of biofilms from food borne microorganisms, including the biomass (which could be quantified using crystal violet and fluorogenic dye Syto9 assays), viability (which could be determined by tetrazolium salts, fluorescein diacetate, resazurin staining and alamar blue assays) and matrix (which are commonly detected by dimethyl methylene blue and wheat germ agglutinin assays). In addition, three features were further compared with its particular benefits in specific application. Copyright © 2017 Elsevier Ltd. All rights reserved.
Teo, Wei Zhe; Chng, Elaine Lay Khim; Sofer, Zdeněk; Pumera, Martin
2014-07-28
Studies involving transition-metal dichalcogenides (TMDs) have been around for many decades and in recent years, many were focused on using TMDs to synthesize inorganic analogues of carbon nanotubes, fullerene, as well as graphene and its derivatives with the ultimate aim of employing these materials into consumer products. In view of this rising trend, we investigated the cytotoxicity of three common exfoliated TMDs (exTMDs), namely MoS2 , WS2 , and WSe2 , and compared their toxicological effects with graphene oxides and halogenated graphenes to find out whether these inorganic analogues of graphenes and derivatives would show improved biocompatibility. Based on the cell viability assessments using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and water-soluble tetrazolium salt (WST-8) assays on human lung carcinoma epithelial cells (A549) following a 24 h exposure to varying concentrations of the three exTMDs, it was concluded that MoS2 and WS2 nanosheets induced very low cytotoxicity to A549 cells, even at high concentrations. On the other hand, WSe2 exhibited dose-dependent toxicological effects on A549 cells, reducing cell viability to 31.8 % at the maximum concentration of 400 μg mL(-1) ; the higher cytotoxicity displayed by WSe2 might be linked to the identity of the chalcogen. In comparison with graphene oxides and halogenated graphenes, MoS2 and WS2 were much less hazardous, whereas WSe2 showed similar degree of cytotoxicity. Future in-depth studies should be built upon this first work on the in vitro cytotoxicity of MoS2 and WS2 to ensure that they do not pose acute toxicity. Lastly, nanomaterial-induced interference control experiments revealed that exTMDs were capable of reacting with MTT assay viability markers in the absence of cells, but not with WST-8 assay. This suggests that the MTT assay is not suitable for measuring the cytotoxicity of exTMDs because inflated results will be obtained, giving false impressions that the materials are less toxic. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shaik, Jameel
Several approaches such as self-assembled monolayers and layer-by-layer assembled multilayer films are being used as tools to study the interactions of cells with biomaterials in vitro. In this study, the layer-by-layer assembly approach was used to create monolayer, bilayer, trilayer, five, ten and twenty-bilayer beds of eleven different biomaterials. The various biomaterials used were poly(styrene-sulfonate), fibronectin, poly-L-lysine, poly-D-lysine, laminin, bovine serum albumin, chondroitin sulfate, poly(ethyleneimine), polyethylene glycol amine, collagen and poly(dimethyldiallyl-ammonium chloride) with unmodified tissue-culture polystyrene as standard control. Three different cell lines---primary bovine articular chondrocytes, and two secondary cell lines, human chondrosarcoma cells and canine chondrocytes were used in these studies. Chondrocyte morphology and attachment, viability, proliferation, and functionality were determined using bright field microscopy, the Live/Dead viability assay, MTT assay, and immunocytochemistry, respectively. Atomic force microscopy of the nanofilms indicated an increase in surface roughness with increasing number of layers. The most important observations from the studies on primary bovine articular chondrocytes were that these cells exhibited increasing viability and cell metabolic activity with increasing number of bilayers. The increase in viability was more pronounced than the increase in cell metabolic activity. Also, bovine chondrocytes on bilayers of poly(dimethyldiallyl-ammonium chloride, poly-L-lysine, poly(styrene-sulfonate), and bovine serum albumin were substantially bigger in size and well-attached when compared to the cells grown on monolayer and trilayers. Lactate dehydrogenase assay performed on chondrosarcoma cells grown on 5- and 10-bilayer multilayer beds indicated that the 10-bilayer beds had reduced cytotoxicity compared to the 5-bilayer beds. MTT assay performed on canine chondrocytes grown on 5-, 10-, and 20-bilayer nanofilm beds revealed increasing cell metabolic activity for BSA with increasing bilayers. Micropatterned multilayer beds having poly-L-lysine, poly-D-lysine, laminin poly(dimethyldiallyl-ammonium chloride) and poly(ethyleneimine) as the terminating layers were fabricated using the Layer-by-layer Lift-off (LbL-LO) method that combines photolithography and LbL self-assembly. Most importantly, micropatterned co-culture platforms consisting of anti-CD 44 rat monoclonal and anti-rat osteopontin (MPIIIB101) antibodies were constructed using the LbL-LO method for the first time. These co-culture platforms have several applications especially for studies of stem and progenitor cells. Co-culture platforms exhibiting spatiotempora-based differentiation can be built with LbL-LO for the differentiation of stem cells into the desired cell lineage.
Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy
Gurunathan, Sangiliyandi; Han, Jae Woong; Park, Jung Hyun; Kim, Eunsu; Choi, Yun-Jung; Kwon, Deug-Nam; Kim, Jin-Hoi
2015-01-01
Background Graphene and graphene-based nanocomposites are used in various research areas including sensing, energy storage, and catalysis. The mechanical, thermal, electrical, and biological properties render graphene-based nanocomposites of metallic nanoparticles useful for several biomedical applications. Epithelial ovarian carcinoma is the fifth most deadly cancer in women; most tumors initially respond to chemotherapy, but eventually acquire chemoresistance. Consequently, the development of novel molecules for cancer therapy is essential. This study was designed to develop a simple, non-toxic, environmentally friendly method for the synthesis of reduced graphene oxide–silver (rGO–Ag) nanoparticle nanocomposites using Tilia amurensis plant extracts as reducing and stabilizing agents. The anticancer properties of rGO–Ag were evaluated in ovarian cancer cells. Methods The synthesized rGO–Ag nanocomposite was characterized using various analytical techniques. The anticancer properties of the rGO–Ag nanocomposite were evaluated using a series of assays such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, cellular levels of malonaldehyde and glutathione, caspase-3 activity, and DNA fragmentation in ovarian cancer cells (A2780). Results AgNPs with an average size of 20 nm were uniformly dispersed on graphene sheets. The data obtained from the biochemical assays indicate that the rGO–Ag nanocomposite significantly inhibited cell viability in A2780 ovarian cancer cells and increased lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3 activity, and DNA fragmentation compared with other tested nanomaterials such as graphene oxide, rGO, and AgNPs. Conclusion T. amurensis plant extract-mediated rGO–Ag nanocomposites could facilitate the large-scale production of graphene-based nanocomposites; rGO–Ag showed a significant inhibiting effect on cell viability compared to graphene oxide, rGO, and silver nanoparticles. The nanocomposites could be effective non-toxic therapeutic agents for the treatment of both cancer and cancer stem cells. PMID:26491296
Hydrogen peroxide-induced apoptosis of human lens epithelial cells is inhibited by parthenolide
Shentu, Xing-Chao; Ping, Xi-Yuan; Cheng, Ya-Lan; Zhang, Xin; Tang, Ye-Lei; Tang, Xia-Jing
2018-01-01
AIM To explore the effect of parthenolide on hydrogen peroxide (H2O2)-induced apoptosis in human lens epithelial (HLE) cells. METHODS The morphology and number of apoptotic HLE cells were assessed using light microscopy and flow cytometry. Cell viability was tested by MTS assay. In addition, the expression of related proteins was measured by Western blot assay. RESULTS Apoptosis of HLE cells was induced by 200 µmol/L H2O2, and the viability of these cells was similar to the half maximal inhibitory concentration (IC50), as examined by MTS assay. In addition, cells were treated with either different concentrations (6.25, 12.5, 25 and 50 µmol/L) of parthenolide along with 200 µmol/L H2O2 or only 50 µmol/L parthenolide or 200 µmol/L H2O2 for 24h. Following treatment with higher concentrations of parthenolide (50 µmol/L), fewer HLE cells underwent H2O2-induced apoptosis, and cell viability was increased. Further, Western blot assay showed that the parthenolide treatment reduced the expression of caspase-3 and caspase-9, which are considered core apoptotic proteins, and decreased the levels of phosphorylated nuclear factor-κB (NF-κB), ERK1/2 [a member of the mitogen-activated protein kinase (MAPK) family], and Akt proteins in HLE cells. CONCLUSION Parthenolide may suppress H2O2-induced apoptosis in HLE cells by interfering with NF-κB, MAPKs, and Akt signaling. PMID:29375984
Ouyang, Liliang; Yao, Rui; Zhao, Yu; Sun, Wei
2016-09-16
3D cell printing is an emerging technology for fabricating complex cell-laden constructs with precise and pre-designed geometry, structure and composition to overcome the limitations of 2D cell culture and conventional tissue engineering scaffold technology. This technology enables spatial manipulation of cells and biomaterials, also referred to as 'bioink', and thus allows study of cellular interactions in a 3D microenvironment and/or in the formation of functional tissues and organs. Recently, many efforts have been made to develop new bioinks and to apply more cell sources for better biocompatibility and biofunctionality. However, the influences of printing parameters on the shape fidelity of 3D constructs as well as on cell viability after the cell printing process have been poorly characterized. Furthermore, parameter optimization based on a specific cell type might not be suitable for other types of cells, especially cells with high sensibility. In this study, we systematically studied the influence of bioink properties and printing parameters on bioink printability and embryonic stem cell (ESC) viability in the process of extrusion-based cell printing, also known as bioplotting. A novel method was established to determine suitable conditions for bioplotting ESCs to achieve both good printability and high cell viability. The rheological properties of gelatin/alginate bioinks were evaluated to determine the gelation properties under different bioink compositions, printing temperatures and holding times. The bioink printability was characterized by a newly developed semi-quantitative method. The results demonstrated that bioinks with longer gelation times would result in poorer printability. The live/dead assay showed that ESC viability increased with higher printing temperatures and lower gelatin concentrations. Furthermore, an exponential relationship was obtained between ESC viability and induced shear stress. By defining the proper printability and acceptable viability ranges, a combined parameters region was obtained. This study provides guidance for parameter optimization and the fine-tuning of 3D cell printing processes regarding both bioink printability and cell viability after bioplotting, especially for easily damaged cells, like ESCs.
Chhana, Ashika; Callon, Karen E; Pool, Bregina; Naot, Dorit; Watson, Maureen; Gamble, Greg D; McQueen, Fiona M; Cornish, Jillian; Dalbeth, Nicola
2011-09-01
Bone erosion is a common manifestation of chronic tophaceous gout. To investigate the effects of monosodium urate monohydrate (MSU) crystals on osteoblast viability and function. The MTT assay and flow cytometry were used to assess osteoblast cell viability in the MC3T3-E1 and ST2 osteoblast-like cell lines, and primary rat and primary human osteoblasts cultured with MSU crystals. Quantitative real-time PCR and von Kossa stained mineralised bone formation assays were used to assess the effects of MSU crystals on osteoblast differentiation using MC3T3-E1 cells. The numbers of osteoblasts and bone lining cells were quantified in bone samples from patients with gout. MSU crystals rapidly reduced viability in all cell types in a dose-dependent manner. The inhibitory effect on cell viability was independent of crystal phagocytosis and was not influenced by differing crystal length or addition of serum. Long-term culture of MC3T3-E1 cells with MSU crystals showed a reduction in mineralisation and decreased mRNA expression of genes related to osteoblast differentiation such as Runx2, Sp7 (osterix), Ibsp (bone sialoprotein), and Bglap (osteocalcin). Fewer osteoblast and lining cells were present on bone directly adjacent to gouty tophus than bone unaffected by tophus in patients with gout. MSU crystals have profound inhibitory effects on osteoblast viability and differentiation. These data suggest that bone erosion in gout occurs at the tophus-bone interface through alteration of physiological bone turnover, with both excessive osteoclast formation, and reduced osteoblast differentiation from mesenchymal stem cells.
Oliveira, R J; Mantovani, M S; Pesarini, J R; Mauro, M O; da Silva, A F; Souza, T R; Ribeiro, L R
2015-02-02
The compounds 6-dimethylaminopurine (6-DMAP) and cyclohexamide (CHX) are currently used to stimulate the development of embryos produced by nuclear transfer in the production of cloned mammals with a great deal success. This study investigated the effects of 6-DMAP and CHX in vivo using biological assays to evaluate reproductive performance in females, teratogenesis, and mutagenesis. The results of this study demonstrated that the activating agents of oocyte cytoplasm, 6-DMAP and CHX, altered the reproductive performance of the experimental animals, as well as increased the rate malformations. In addition to these adverse effects, the administration of these compounds in pregnant females resulted in genotoxic and mutagenic toxicity, as determined by comet and micronucleus assays carried out in peripheral blood samples, respectively. Based on these findings and that alterations in DNA are important, morpho-functional teratogenesis and diminished embryonic viability, suggesting that 6-DMAP and CHX, which are utilized during the cloning of mammals, are responsible for the fact that embryos produced by nuclear transfer show low viability after implantation in utero or after birth because of congenital malformations and/or alterations in their DNA.
Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis
NASA Astrophysics Data System (ADS)
Zhang, Heng; Wu, Shengnan
2011-03-01
The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.
Araújo, Leandro Borges; Cosme-Silva, Leopoldo; Fernandes, Ana Paula; de Oliveira, Thais Marchini; Cavalcanti, Bruno das Neves; Gomes, João Eduardo; Sakai, Vivien Thiemy
2018-01-01
Abstract Objective The aim of the study was to evaluate the effects of the capping materials mineral trioxide aggregate (MTA), calcium hydroxide (CH) and BiodentineTM (BD) on stem cells from human exfoliated deciduous teeth (SHED) in vitro. Material and Methods SHED were cultured for 1 – 7 days in medium conditioned by incubation with MTA, BD or CH (1 mg/mL), and tested for viability (MTT assay) and proliferation (SRB assay). Also, the migration of serum-starved SHED towards conditioned media was assayed in companion plates, with 8 μm-pore-sized membranes, for 24 h. Gene expression of dentin matrix protein-1 (DMP-1) was evaluated by reverse-transcription polymerase chain reaction. Regular culture medium with 10% FBS (without conditioning) and culture medium supplemented with 20% FBS were used as controls. Results MTA, CH and BD conditioned media maintained cell viability and allowed continuous SHED proliferation, with CH conditioned medium causing the highest positive effect on proliferation at the end of the treatment period (compared with BD and MTA) (p<0.05). In contrast, we observed increased SHED migration towards BD and MTA conditioned media (compared with CH) (p<0.05). A greater amount of DMP-1 gene was expressed in MTA group compared with the other groups from day 7 up to day 21. Conclusion Our results show that the three capping materials are biocompatible, maintain viability and stimulate proliferation, migration and differentiation in a key dental stem cell population. PMID:29412365
Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth.
Fernandes, Ana Paula; Junqueira, Marina de Azevedo; Marques, Nádia Carolina Teixeira; Machado, Maria Aparecida Andrade Moreira; Santos, Carlos Ferreira; Oliveira, Thais Marchini; Sakai, Vivien Thiemy
2016-01-01
This study aimed to evaluate the influence of different laser therapy energy densities on SHED viability and proliferation. SHED were irradiated according to the groups: I (1.2 J/cm2 - 0.5 mW - 10 s), II (2.5 J/cm2 - 10 mW - 10 s), III (3.7 J/cm2 - 15 mW - 10 s), IV (5.0 J/cm2 - 20 mW - 10 s), V (6.2 J/cm2 - 25 mW - 10 s), and VI (not irradiated - control group). Cell viability was assessed 6 and 24 h after irradiation measuring the mitochondrial activity and using the Crystal Violet assay. Cell proliferation was assessed after 24, 48, and 72 h of irradiation by SRB assay. MTT assay demonstrated differences from 6 to 24 hours after irradiation. After 24 h, groups I and IV showed higher absorbance values than those of control group. Crystal Violet assay showed statistically differences in the absorbance rate from 6 to 24 h after irradiation for groups III and VI. At 24 h after irradiation, Group III absorbance rate was greater than that of groups I, II, and IV. Group VI absorbance rate was greater than that of groups I and IV. SRB assay showed that the group I had higher rates than those of groups II, III, V, and VI, at 24 h after irradiation. After 48 h, group I exhibited the greatest cell proliferation rate followed by groups III, V, and VI. After 72 h, group III exhibited the lowest cell proliferation rate than those of groups II, IV, and V. The Low-Level Laser Therapy energy densities used in this study did not cause loss of cell viability and stimulated SHED proliferation within the parameters described in this study.
Koko, Kiavash R; Chang, Shaohua; Hagaman, Ashleigh L; Fromer, Marc W; Nolan, Ryan S; Gaughan, John P; Zhang, Ping; Carpenter, Jeffrey P; Brown, Spencer A; Matthews, Martha; Bird, Dorothy
2017-06-01
Paclitaxel improves the oncologic response of breast cancer resections; however, it may negatively affect the wound-healing potential of human adipose-derived stem cells (hASCs) for fat grafting and reconstructive surgery. Histone deacetylase inhibitors (HDACis) modify the epigenetic regulation of gene expression and stabilize microtubules similarly to paclitaxel, thus, creating a synergistic mechanism of cell cycle arrest. We aim to combine these drugs to enhance cytotoxicity towards breast cancer cells, while preserving the wound-healing function of hASCs for downstream reconstructive applications. Triple negative breast cancer cells (MBA-MB-231) and hASCs (institutional review board-approved clinical isolates) were treated with a standard therapeutic dose of paclitaxel (1.0 μM) or with low-dose paclitaxel (0.1 μM) combined with the HDACi suberoylanilide hydroxamic acid or trichostatin A. Cell viability, gene expression, apoptosis, and wound-healing/migration were measured via methylthiazol tetrazolium assay, quantitative real-time polymerase chain reaction, annexin V assay, and fibroblast scratch assay, respectively. Combined HDACi and low-dose paclitaxel therapy maintained cytotoxicity towards breast cancer cells and preserved adipose-derived stem cell viability. Histone deacetylase inhibitor demonstrated selective anti-inflammatory effects on adipose-derived stem cell gene expression and decreased expression of the proapoptotic gene FAS. Furthermore, HDACi therapy did not increase relative apoptosis within hASCs. A scratch assay demonstrated enhanced wound healing among injured fibroblasts indirectly co-cultured with HDACi-treated hASCs. Combining HDACi with low-dose paclitaxel improved cytotoxicity towards breast cancer cells and preserved hASC viability. Furthermore, enhanced wound healing was observed by improved migration in a fibroblast scratch assay. These results suggest that the addition of HDACi to taxane chemotherapy regimens may improve oncologic results and wound-healing outcomes after reconstructive surgery.
Paini, Alicia; Sala Benito, Jose Vicente; Bessems, Jos; Worth, Andrew P
2017-12-01
Physiologically based kinetic (PBK) models and the virtual cell based assay can be linked to form so called physiologically based dynamic (PBD) models. This study illustrates the development and application of a PBK model for prediction of estragole-induced DNA adduct formation and hepatotoxicity in humans. To address the hepatotoxicity, HepaRG cells were used as a surrogate for liver cells, with cell viability being used as the in vitro toxicological endpoint. Information on DNA adduct formation was taken from the literature. Since estragole induced cell damage is not directly caused by the parent compound, but by a reactive metabolite, information on the metabolic pathway was incorporated into the model. In addition, a user-friendly tool was developed by implementing the PBK/D model into a KNIME workflow. This workflow can be used to perform in vitro to in vivo extrapolation and forward as backward dosimetry in support of chemical risk assessment. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Diosmin reduces cell viability of A431 skin cancer cells through apoptotic induction.
Buddhan, Rajamanickam; Manoharan, Shanmugam
2017-01-01
Aim of the present study was to evaluate the in vitro cytotoxic potential of the diosmin in A431 skin cancer cells. The cytotoxic (anti-cell proliferative) potential of diosmin in A431 cells was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (cell viability), dual staining (apoptotic induction), dichloro-dihydro-fluorescein diacetate assay (reactive oxygen species [ROS] generation), DNA fragmentation study, Western blotting analysis (apoptotic markers expression) and flow cytometry (cell cycle arrest). Diosmin reduced the cell viability of A431 cells in a dose-dependent fashion and the inhibitory concentration 50% value was attained at 45 μg/ml using MTT assay. Diosmin at a concentration of 45 μg/ml generated excessive ROS in A431 cells, as compared to untreated cells. Diosmin treated A431 cells also revealed multiple DNA fragments than the untreated cells. Diosmin upregulated the expression of p53, caspases 3 and 9 and downregulated the expression of Bcl-2, matrix metalloproteinases-2 and 9 in A431 cells. The cytotoxic or anti-cell proliferative potential of diosmin is due to its ROS-mediated apoptotic induction potential, as well as due to its role in the inhibition of invasion in the A431 cells.
Screening test for rapid food safety evaluation by menadione-catalysed chemiluminescent assay.
Yamashoji, Shiro; Yoshikawa, Naoko; Kirihara, Masayuki; Tsuneyoshi, Toshihiro
2013-06-15
The chemiluminescent assay of menadione-catalysed H2O2 production by living mammalian cells was proposed to be useful for rapid food safety evaluation. The tested foods were extracted with water, ethanol and dimethylsulfoxide, and each extract was incubated with NIH3T3, Neuro-2a and HepG2 cells for 4h. Menadione-catalysed H2O2 production by living mammalian cells exposed to each extract was determined by the chemiluminescent assay requiring only 10 min, and the viability of the cells was estimated as percentage based on H2O2 production by intact cells. In this study the cytotoxicity of food was rated in order of inhibitory effect on H2O2 production by intact cells. The well known natural toxins such as Fusarium mycotoxin, tomato toxin tomatine, potato toxin solanine and marine toxins terodotoxin and brevetoxin could be detected by the above chemiluminescent assay. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kessel, Sarah; Cribbes, Scott; Bonasu, Surekha; Rice, William; Qiu, Jean; Chan, Leo Li-Ying
2017-09-01
The development of three-dimensional (3D) multicellular tumor spheroid models for cancer drug discovery research has increased in the recent years. The use of 3D tumor spheroid models may be more representative of the complex in vivo tumor microenvironments in comparison to two-dimensional (2D) assays. Currently, viability of 3D multicellular tumor spheroids has been commonly measured on standard plate-readers using metabolic reagents such as CellTiter-Glo® for end point analysis. Alternatively, high content image cytometers have been used to measure drug effects on spheroid size and viability. Previously, we have demonstrated a novel end point drug screening method for 3D multicellular tumor spheroids using the Celigo Image Cytometer. To better characterize the cancer drug effects, it is important to also measure the kinetic cytotoxic and apoptotic effects on 3D multicellular tumor spheroids. In this work, we demonstrate the use of PI and caspase 3/7 stains to measure viability and apoptosis for 3D multicellular tumor spheroids in real-time. The method was first validated by staining different types of tumor spheroids with PI and caspase 3/7 and monitoring the fluorescent intensities for 16 and 21 days. Next, PI-stained and nonstained control tumor spheroids were digested into single cell suspension to directly measure viability in a 2D assay to determine the potential toxicity of PI. Finally, extensive data analysis was performed on correlating the time-dependent PI and caspase 3/7 fluorescent intensities to the spheroid size and necrotic core formation to determine an optimal starting time point for cancer drug testing. The ability to measure real-time viability and apoptosis is highly important for developing a proper 3D model for screening tumor spheroids, which can allow researchers to determine time-dependent drug effects that usually are not captured by end point assays. This would improve the current tumor spheroid analysis method to potentially better identify more qualified cancer drug candidates for drug discovery research. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Shehata, Mohamed; Durner, Jürgen; Eldenez, Ayce; Van Landuyt, Kirsten; Styllou, Panorea; Rothmund, Lena; Hickel, Reinhard; Scherthan, Harry; Geurtsen, Werner; Kaina, Bernd; Carell, Thomas; Reichl, Franz X
2013-09-01
The public interest steadily increases in the biological adverse effects caused by components released from resin-based dental restorations. In this study, the cytotoxicity and the genotoxicity were investigated of following released components from dental resin restorations in human gingival fibroblasts (HGF): tetraethyleneglycol dimethacrylate (TEEGDMA), neopentylglycol dimethacrylate (Neopen), diphenyliodoniumchloride (DPIC), triphenyl-stibane (TPSB) and triphenylphosphane (TPP). XTT based cell viability assay was used for cytotoxicity screening of substances. γ-H2AX assay was used for genotoxicity screening. In the γ-H2AX assay, HGFs were exposed to the substances for 6h. Induced foci represent double DNA strand breaks (DSBs), which can induce ATM-dependent phosphorylation of the histone H2AX. Cell death effects (apoptosis and necrosis), induced by the substances were visually tested by the same investigator using the fluorescent microscope. All tested substances induced a dose-dependent loss of viability in HGFs. Following toxicity ranking among the substances at EC50-concentration were found in the XTT assay (mM, mean±SEM; n=5): DPIC>Neopen>TPSB>TPP>TEEGDMA. DSB-foci per HGF-cell were obtained, when HGFs were exposed to the EC50-concentration of each substance in the following order (mean±SEM; n=3): DPIC>Neopen>TPSB>TPP>TEEGDMA. Multi-foci cells (cells that contain more than 40 foci each) in 80 HGF-cells at EC50-concentration of each substance were found as follow (mean±SEM; n=3): DPIC>Neopen>TPP>TPSB>TEEGDMA. Cell apoptosis contained in each substance at EC50-concentration in the following order (mean±SEM; n=3): DPIC>Neopen>TPSB>TPP >TEEGDMA. Cell necrosis contained in each substance at EC50-concentration in the following order (mean±SEM; n=3): DPIC>Neopen>TPSB>TPP>TEEGDMA. Leached components from dental resin restorations can induce DNA DSBs and cell death effects in HGFs. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
DeForge, L E; Billeci, K L; Kramer, S M
2000-11-01
Given the increasing incidence of methicillin resistant Staphylococcus aureus (MRSA) and the recent emergence of MRSA with a reduced susceptibility to vancomycin, alternative approaches to the treatment of infection are of increasing relevance. The purpose of these studies was to evaluate the effect of IFN-gamma on the ability of white blood cells to kill S. aureus and to develop a simpler, higher throughput bacterial killing assay. Using a methicillin sensitive clinical isolate of S. aureus, a clinical isolate of MRSA, and a commercially available strain of MRSA, studies were conducted using a killing assay in which the bacteria were added directly into whole blood. The viability of the bacteria in samples harvested at various time points was then evaluated both by the classic CFU assay and by a new assay using alamarBlue. In the latter method, serially diluted samples and a standard curve containing known concentrations of bacteria were placed on 96-well plates, and alamarBlue was added. Fluorescence readings were taken, and the viability of the bacteria in the samples was calculated using the standard curve. The results of these studies demonstrated that the CFU and alamarBlue methods yielded equivalent detection of bacteria diluted in buffer. For samples incubated in whole blood, however, the alamarBlue method tended to yield lower viabilities than the CFU method due to the emergence of a slower growing subpopulation of S. aureus upon incubation in the blood matrix. A significant increase in bacterial killing was observed upon pretreatment of whole blood for 24 h with 5 or 25 ng/ml IFN-gamma. This increase in killing was detected equivalently by the CFU and alamarBlue methods. In summary, these studies describe a method that allows for the higher throughput analysis of the effects of immunomodulators on bacterial killing.
Avila-Alejo, Jorge O; González-Palomo, Ana K; Plascencia-Villa, Germán; José-Yacamán, Miguel; Navarro-Contreras, Hugo R; Pérez-Maldonado, Iván N
2017-12-01
The aim of this study was to evaluate the cytotoxic effects of anisotropic (non spherical morphologies) gold nanoparticles coated with the amino acid Lysine (Lys) on peripheral blood mononuclear cells (PBMC) "in vitro". Gold (Au) nanoparticles tested in this study were synthesized by a seed-mediated growth using Lys as a structure and shape directing agent. Cytotoxic effects were evaluated by cell viability (resazurin assay), reactive oxygen species (ROS) induction (2',7'-dichlorofluorescein diacetate assay), DNA damage (comet assay) and apoptosis/necrosis (AnnexinV/propidium iodide assay) after PBMC were exposed to increasing concentrations (10, 25, 50, 100, and 250μM) of AuNPs coated with Lys (AuNPs-Lys) at different exposure times (3, 6, 12, and 24h). The results demonstrated that AuNPs-Lys exhibited low cytotoxicity towards PBMC, (high cell viability), with low levels of ROS, DNA damage and apoptosis/necrosis detected after treatment. These data suggest that AuNPs-Lys, might be viable for biomedical application subject to further investigations. Copyright © 2017 Elsevier B.V. All rights reserved.
Schuerer, Nadine; Stein, Elisabeth; Inic-Kanada, Aleksandra; Pucher, Marion; Hohenadl, Christine; Bintner, Nora; Ghasemian, Ehsan; Montanaro, Jacqueline; Barisani-Asenbauer, Talin
2017-06-01
To investigate toxicity associated with buffers commonly used in topical ocular drug formulations using a human corneal-limbal epithelial (HCLE) and a human conjunctival epithelial (HCjE) cell model. HCLE and HCjE cells were incubated for 10, 30, or 60 minutes with 4 different buffers based on borate, citrate, phosphate, and Tris-HCl at 10, 50, and 100 mM concentrations. To detect possible delayed effects on cell viability, after 60 minutes of buffer incubation, cells were further incubated for 24 hours with a cell medium. Cell viability was determined using a colorimetric XTT-based assay. The morphology of cells was also investigated. HCjE cells showed more sensitivity to buffer incubation than HCLE cells. The 100 mM phosphate buffer displayed significant delayed effects on cell viability of HCLE 16.8 ± 4.8% and HCjE 39.2 ± 6.1% cells after 60 minutes of exposure (P < 0.05). HCjE cell viability was reduced after 60 minutes incubations with 50 and 100 mM citrate buffer to 42.8 ± 6.5% and 39.3 ± 7.9%, respectively, and even lower percentages at the delayed time point (both P < 0.05). HCLE cell morphology was distinctly altered by 100 mM phosphate and Tris buffers after 30 minutes, whereas HCjE cells already showed marked changes after 10 minutes of exposure to 100 mM citrate and phosphate buffers. We observed a time-dependent decrease of viability in both HCLE and HCjE cells exposed to higher buffer concentrations. Therefore, we propose further in vivo studies to translate these finding to humans to discern the real effects of the buffer concentration in eye drops on the ocular surface.
Schuerer, Nadine; Stein, Elisabeth; Inic-Kanada, Aleksandra; Pucher, Marion; Hohenadl, Christine; Bintner, Nora; Ghasemian, Ehsan; Montanaro, Jacqueline
2017-01-01
Purpose: To investigate toxicity associated with buffers commonly used in topical ocular drug formulations using a human corneal–limbal epithelial (HCLE) and a human conjunctival epithelial (HCjE) cell model. Methods: HCLE and HCjE cells were incubated for 10, 30, or 60 minutes with 4 different buffers based on borate, citrate, phosphate, and Tris-HCl at 10, 50, and 100 mM concentrations. To detect possible delayed effects on cell viability, after 60 minutes of buffer incubation, cells were further incubated for 24 hours with a cell medium. Cell viability was determined using a colorimetric XTT–based assay. The morphology of cells was also investigated. Results: HCjE cells showed more sensitivity to buffer incubation than HCLE cells. The 100 mM phosphate buffer displayed significant delayed effects on cell viability of HCLE 16.8 ± 4.8% and HCjE 39.2 ± 6.1% cells after 60 minutes of exposure (P < 0.05). HCjE cell viability was reduced after 60 minutes incubations with 50 and 100 mM citrate buffer to 42.8 ± 6.5% and 39.3 ± 7.9%, respectively, and even lower percentages at the delayed time point (both P < 0.05). HCLE cell morphology was distinctly altered by 100 mM phosphate and Tris buffers after 30 minutes, whereas HCjE cells already showed marked changes after 10 minutes of exposure to 100 mM citrate and phosphate buffers. Conclusions: We observed a time-dependent decrease of viability in both HCLE and HCjE cells exposed to higher buffer concentrations. Therefore, we propose further in vivo studies to translate these finding to humans to discern the real effects of the buffer concentration in eye drops on the ocular surface. PMID:28399036
Viability and infectivity of fresh and cryopreserved Nosema ceranae spores.
McGowan, Janine; De la Mora, Alvaro; Goodwin, Paul H; Habash, Marc; Hamiduzzaman, Mollah Md; Kelly, Paul G; Guzman-Novoa, Ernesto
2016-12-01
The microsporidium fungus Nosema ceranae is an intracellular parasite that infects the midgut of the honey bee, Apis mellifera. A major limitation of research on N. ceranae is that the fungus is non-culturable and thus studying it depends on the seasonal availability of Nosema spores. Also, spore viability and infectivity can vary considerably, and thus there is a need for reliable methods for determining those traits. This study examined different conditions for N. ceranae spore cryopreservation at -70°C, assessing spore viability and infectivity. Viability was determined by a staining procedure counting total spores numbers with bright field microscopy and un-viable spore numbers with the fluorescent dye, propidium iodide. Spore infectivity was determined with a dilution inoculation assay. Infectivity was dependent on the inoculum dose for the proportion of bees with detectable Nosema infections based on the number of spores per bee at 18days after inoculation; 4000 spores per bee or higher were needed to get approx. 100% of the inoculated bees infected. The median infective dose (ID 50 ) was 149 spores per bee, and the minimum dose capable of causing a detectable infection was 1.28 spores. The proportion of N. ceranae infected bees correlated significantly with the number of spores per bee (r=0.98, P<0.0001). N. ceranae spores cryopreserved in water or 10% glycerol did not differ in viability compared to fresh spores, but lost infectivity when inoculated into bees. This study shows that while cryopreservation of N. ceranae spores can preserve viability, the spores can have reduced infectivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Current Thoughts on Fat Grafting: Using the Evidence to Determine Fact or Fiction.
Sinno, Sammy; Wilson, Stelios; Brownstone, Nicholas; Levine, Steven M
2016-03-01
Autologous fat grafting is an increasingly popular procedure used for facial rejuvenation and body contouring. The purpose of this article is to perform an evidence-based review to determine fact from fiction for the hot topics in autologous fat grafting. A comprehensive literature search was performed. The following key words were then searched: "fat grafting," "autologous fat grafting," "autologous fat transfer," "lipotransfer," "liposculping," and "lipofilling." The authors then assessed each modality individually for the level of evidence that exists and whether the majority of evidence supports or refutes it. A review of the literature demonstrated that there is no standard test for determining fat viability or volume augmentation after grafting. Furthermore, there is no difference in cell viability seen between syringe aspiration and liposuction pump aspiration harvest techniques (Level II). The decision to wash or centrifuge the fat plays very little role in fat graft survival (Level III). There is no difference between cell viability as a function of harvest location (Level IV). Nearly all studies show no significant effect of local anesthesia on adipocyte cells (Level IV). There are excellent data that support the fact that low-shear devices maintain fat structural integrity (Level IV). There is quality evidence that supports longevity of fat grafted to the breast (Level III). Two studies support large-volume fat grafting longevity but fail to prove their results using objective measures or with sufficiently large sample sizes (Level IV). External preexpansion devices improve total graft survival rate (Level IV). There is quality evidence to support that fat should be injected soon after harvesting, as properties of fat begin to change after processing (Level IV). Microneedling (preconditioning) before fat grafting has been demonstrated to improve fat survival (Level III). Currently, the highest levels of evidence derive from human studies of clinical trials and animal studies using human fat. The evidence presented here helps to address the need for accurate and quantitative viability assays. These assays would facilitate a systematic evaluation of each procedural step during fat graft harvest, processing, and grafting to improve the overall viability and predictability of fat grafts.
Alépée, N; Barroso, J; De Smedt, A; De Wever, B; Hibatallah, J; Klaric, M; Mewes, K R; Millet, M; Pfannenbecker, U; Tailhardat, M; Templier, M; McNamee, P
2015-06-01
A number of in vitro test methods using Reconstructed human Tissues (RhT) are regulatory accepted for evaluation of skin corrosion/irritation. In such methods, test chemical corrosion/irritation potential is determined by measuring tissue viability using the photometric MTT-reduction assay. A known limitation of this assay is possible interference of strongly coloured test chemicals with measurement of formazan by absorbance (OD). To address this, Cosmetics Europe evaluated use of HPLC/UPLC-spectrophotometry as an alternative formazan measurement system. Using the approach recommended by the FDA guidance for validation of bio-analytical methods, three independent laboratories established and qualified their HPLC/UPLC-spectrophotometry systems to reproducibly measure formazan from tissue extracts. Up to 26 chemicals were then tested in RhT test systems for eye/skin irritation and skin corrosion. Results support that: (1) HPLC/UPLC-spectrophotometry formazan measurement is highly reproducible; (2) formazan measurement by HPLC/UPLC-spectrophotometry and OD gave almost identical tissue viabilities for test chemicals not exhibiting colour interference nor direct MTT reduction; (3) independent of the test system used, HPLC/UPLC-spectrophotometry can measure formazan for strongly coloured test chemicals when this is not possible by absorbance only. It is therefore recommended that HPLC/UPLC-spectrophotometry to measure formazan be included in the procedures of in vitro RhT-based test methods, irrespective of the test system used and the toxicity endpoint evaluated to extend the applicability of these test methods to strongly coloured chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Peng; Xu, Weimin; Liu, Haixia; Bu, Qingao; Sun, Diwen
2017-01-01
Thyroid cancer is a common endocrine gland malignancy which exhibited rapid increased incidence worldwide in recent decades. This study was aimed to investigate the role of long noncoding RNA H19 in thyroid cancer. Long noncoding RNA H19 was overexpressed or knockdown in thyroid cancer cells SW579 and TPC-1, and the expression of long noncoding RNA H19 was detected by real-time polymerase chain reaction. The cell viability, migration, and invasion were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay, Transwell assay, and wound healing assay, respectively. Furthermore, cell apoptosis was analyzed by flow cytometry, and expressions of some factors that were related to phosphatidyl inositide 3-kinases/protein kinase B and nuclear factor κB signal pathway were measured by Western blotting. This study revealed that cell viability and migration/invasion of SW579 and TPC-1 were significantly decreased by long noncoding RNA H19 overexpression compared with the control group (P < .05), whereas cell apoptosis was statistically increased (P < .001). Meanwhile, cell viability and migration/invasion were significantly increased after long noncoding RNA H19 knockdown (P < .05). Furthermore, long noncoding RNA H19 negatively regulated the expression of insulin receptor substrate 1 and thus effect on cell proliferation and apoptosis. Insulin receptor substrate 1 regulated the activation of phosphatidyl inositide 3-kinases/AKT and nuclear factor κB signal pathways. In conclusion, long noncoding RNA H19 could suppress cell viability, migration, and invasion via downregulation of insulin receptor substrate 1 in SW579 and TPC-1 cells. These results suggested the important role of long noncoding RNA H19 in thyroid cancer, and long noncoding RNA H19 might be a potential target of thyroid cancer treatment. PMID:29332545
Chan, Tak-Mao; Leung, Jack Kok-Hung; Sun, Yuling; Lai, Kar-Neng; Tsang, Ryan Chi-Wai; Yung, Susan
2003-06-01
Peritoneal dialysis fluid (PDF) containing amino acids has been introduced recently aiming to improve the nutritional status of PD patients. Dextrose-based PDFs have been implicated in progressive functional and structural deterioration of the peritoneal membrane. Limited data are currently available regarding the effect of amino acid-based PDF on the function and ultrastructure of human peritoneal mesothelial cells (HPMCs), which play a critical role in peritoneal membrane pathophysiology. We investigated the effects of two commercially available PDFs, which utilized dextrose (1.5% Dianeal) or amino acids (1.1% Nutrineal) as the osmotic agent, obtained from patients after a 4 h dwell, on HPMC proliferation (MTT assay and cell counting) and viability [lactate dehydrogenase (LDH)release], interleukin-6 (IL-6) secretion (commercial enzyme-linked immunosorbent assay) and ultrastructure (scanning and transmission electron microscopy). Exposure of HPMCs to 1.5% Dianeal reduced cell proliferation, total cellular protein synthesis, IL-6 secretion and cell attachment, but prolonged the cell doubling time on recovery, and increased LDH release (P<0.001, P<0.001, P<0.0001, P<0.0001, P<0.001 and P<0.001, respectively). The 1.1% Nutrineal reduced HPMC proliferation (P<0.001) and increased IL-6 secretion (P<0.0001), but did not affect cell attachment, LDH release, protein synthesis or cell doubling time. Ultrastructural studies of HPMCs exposed to Dianeal showed cell flattening, increased cell surface area, reduced microvilli, and intracellular organelles compatible with dysfunctional mitochondria. In contrast, the ultrastructural morphology of HPMCs was relatively preserved after incubation with Nutrineal. Our results showed that HPMC ultrastructure, viability and protein synthesis were better preserved with amino acid-based PDF, compared with conventional dextrose-based PDF. The significance of IL-6 induction by Nutrineal remains to be elucidated.
Harlow, Philippa H; Perry, Simon J; Widdison, Stephanie; Daniels, Shannon; Bondo, Eddie; Lamberth, Clemens; Currie, Richard A; Flemming, Anthony J
2016-03-18
To determine whether a C. elegans bioassay could predict mammalian developmental activity, we selected diverse compounds known and known not to elicit such activity and measured their effect on C. elegans egg viability. 89% of compounds that reduced C. elegans egg viability also had mammalian developmental activity. Conversely only 25% of compounds found not to reduce egg viability in C. elegans were also inactive in mammals. We conclude that the C. elegans egg viability assay is an accurate positive predictor, but an inaccurate negative predictor, of mammalian developmental activity. We then evaluated C. elegans as a tool to identify mechanisms affecting toxicological outcomes among related compounds. The difference in developmental activity of structurally related fungicides in C. elegans correlated with their rate of metabolism. Knockdown of the cytochrome P450s cyp-35A3 and cyp-35A4 increased the toxicity to C. elegans of the least developmentally active compounds to the level of the most developmentally active. This indicated that these P450s were involved in the greater rate of metabolism of the less toxic of these compounds. We conclude that C. elegans based approaches can predict mammalian developmental activity and can yield plausible hypotheses for factors affecting the biological potency of compounds in mammals.
NASA Astrophysics Data System (ADS)
Saveriades, George
This PhD dissertation focuses on the study of the effects of magnetic exposure on biological systems using amperometry techniques and viability assays. In our prior work based on the cyclotron resonance model, chromaffin cells in physiological saline and Ca2+-free media were exposed for 5 minutes to a 2.7 muT magnetic field, with frequency sweeps going from 30-60 Hz (targeting several ions involved in exocytosis) and 44-48 Hz (targeting specifically Ca2+ ions), with noticeable effects on exocytosis. The present study extended the work on chromaffin cells by covering frequency sweeps for different ions, manipulating the time of exposure and the strength of the magnetic field. Furthermore, amperometry was conducted on acute coronal brain slices, to demonstrate that the recorded effects could be measured on neuronal tissue. The viability of chromaffin cells and primary neuronal cultures exposed to magnetic fields was also addressed. The results demonstrate that cellular exocytosis is sensitive to the frequency of the magnetic field it is exposed to, the strength of the magnetic field and the duration of exposure. No significant effects were established with regards to the viability of the cells exposed to magnetic fields.
An antagonist of the retinoid X receptor reduces the viability of Trichuris muris in vitro.
Hurst, Rebecca J M; Hopwood, Thomas; Gallagher, Amanda L; Partridge, Frederick A; Burgis, Timothy; Sattelle, David B; Else, Kathryn J
2014-09-27
Trichuriasis is a parasitic disease caused by the human whipworm, Trichuris trichiura. It affects millions worldwide, particularly in the tropics. This nematode parasite burrows into the colonic epithelium resulting in inflammation and morbidity, especially in children. Current treatment relies mainly on general anthelmintics such as mebendazole but resistance to these drugs is increasingly problematic. Therefore, new treatments are urgently required. The prospect of using the retinoid X receptor (RXR) antagonist HX531 as a novel anthelmintic was investigated by carrying out multiple viability assays with the mouse whipworm Trichuris muris. HX531 reduced both the motility and viability of T. muris at its L3, L4 and adult stages. Further, bioinformatic analyses show that the T. muris genome possesses an RXR-like receptor, a possible target for HX531. The study suggested that Trichuris-specific RXR antagonists may be a source of much-needed novel anthelmintic candidates for the treatment of trichuriasis. The identification of an RXR-like sequence in the T. muris genome also paves the way for further research based on this new anthelmintic lead compound.
Liu, Yunbao; Nair, Muraleedharan G
2010-07-23
Antioxidants scavenge free radicals, singlet oxygen, and electrons in cellular redox reactions. The yellow MTT [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] is reduced to a purple formazan by mitochondrial enzymes. NADPH is the basis of established in vitro cell viability assays. An antioxidant assay has been developed utilizing the redox reaction between MTT and selected natural product extracts and purified compounds. This simple, fast, and inexpensive MTT antioxidant assay is comparable with the lipid peroxidation inhibitory assay and can be mechanized to achieve high throughput.
Yamagishi, Reiko; Aihara, Makoto
2014-01-01
Astaxanthin is a type of carotenoid known to have strong antioxidant effects. The purpose of this study was to investigate whether astaxanthin confers a neuroprotective effect against glutamate stress, oxidative stress, and hypoxia-induced apoptotic or necrotic cell death in primary cultures of rat retinal ganglion cells (RGCs). Purified rat RGCs were exposed to three kinds of stressors induced by 25 μM glutamate for 72 h, B27 medium without an antioxidant for 4 h, and a reduced oxygen level of 5% for 12 h. Each assay was repeated 12 times, with or without 1 nM, 10 nM, and 100 nM astaxanthin. The number of live RGCs was then counted using a cell viability assay. RGC viability in each condition was evaluated and compared with controls. In addition, we measured apoptosis and DNA damage. We found that under glutamate stress, RGC viability was reduced to 58%. Cultures with 1 nM, 10 nM, and 100 nM astaxanthin showed an increase in RGC viability of 63%, 74%, and 84%, respectively. Under oxidative stress, RGC viability was reduced to 40%, and astaxanthin administration resulted in increased viability of 43%, 50%, and 67%, respectively. Under hypoxia, RGC viability was reduced to 66%, and astaxanthin administration resulted in a significant increase in viability to 67%, 77%, and 93%, respectively. These results indicate that 100 nM astaxanthin leads to a statistically significant increase in RGC viability under the three kinds of stressors tested, compared to controls (Dunnett's test, p<0.05). The apoptotic activity of RGCs under glutamate stress increased to 32%, but was reduced to 15% with 100 nM astaxanthin administration. Glutamate stress led to a 58% increase in DNA damage, which was reduced to 43% when cultured with 100 nM astaxanthin. Thus, 100 nM astaxanthin showed a statistically significant reduction in apoptosis and DNA damage in RGCs (Wilcoxon rank-sum test, p<0.05). Our results suggest that astaxanthin has a neuroprotective effect against RGC death induced by glutamate stress, oxidative stress, and hypoxia, which induce apoptotic and necrotic cell death.
A phenotypic screening approach to identify anticancer compounds derived from marine fungi.
Ellinger, Bernhard; Silber, Johanna; Prashar, Anjali; Landskron, Johannes; Weber, Jonas; Rehermann, Sarah; Müller, Franz-Josef; Smith, Stephen; Wrigley, Stephen; Taskén, Kjetil; Gribbon, Philip; Labes, Antje; Imhoff, Johannes F
2014-04-01
This study covers the isolation, testing, and identification of natural products with anticancer properties. Secondary metabolites were isolated from fungal strains originating from a variety of marine habitats. Strain culture protocols were optimized with respect to growth media composition and fermentation conditions. From these producers, isolated compounds were screened for their effect on the viability and proliferation of a subset of the NCI60 panel of cancer cell lines. Active compounds of interest were identified and selected for detailed assessments and structural elucidation using nuclear magnetic resonance. This revealed the majority of fungal-derived compounds represented known anticancer chemotypes, confirming the integrity of the process and the ability to identify suitable compounds. Examination of effects of selected compounds on cancer-associated cell signaling pathways used phospho flow cytometry in combination with 3D fluorescent cell barcoding. In parallel, the study addressed the logistical aspects of maintaining multiple cancer cell lines in culture simultaneously. A potential solution involving microbead-based cell culture was investigated (BioLevitator, Hamilton). Selected cell lines were cultured in microbead and 2D methods and cell viability tests showed comparable compound inhibition in both methods (R2=0.95). In a further technology assessment, an image-based assay system was investigated for its utility as a possible complement to ATP-based detection for quantifying cell growth and viability in a label-free manner.
Promising Ta-Ti-Zr-Si metallic glass coating without cytotoxic elements for bio-implant applications
NASA Astrophysics Data System (ADS)
Lai, J. J.; Lin, Y. S.; Chang, C. H.; Wei, T. Y.; Huang, J. C.; Liao, Z. X.; Lin, C. H.; Chen, C. H.
2018-01-01
Tantalum (Ta) is considered as one of the most promising metal due to its high corrosion resistance, excellent biocompatibility and cell adhesion/in-growth capabilities. Although there are some researches exploring the biomedical aspects of Ta and Ta based alloys, systematic characterizations of newly developed Ta-based metallic glasses in bio-implant applications is still lacking. This study employs sputtering approach to produced thin-film Ti-based metallic glasses due to the high melting temperature of Ta (3020 °C). Two fully amorphous Ta-based metallic glasses composed of Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 are produced and experimentally characterized in terms of their mechanical properties, bio-corrosion properties, surface hydrophilic characteristics, and in-vitro cell viability and cells attachment tests. Compare to conventional pure Ti and Ta metals, the developed Ta-based metallic glasses exhibit higher hardness and lower modulus which are better match to the mechanical properties of bone. MTS assay results show that Ta-based metallic glasses show comparable cell viability and cell attachment rate compared to that of pure Ti and Ta surface in a 72 h in-vitro test.
A sensitive branched DNA HIV-1 signal amplification viral load assay with single day turnaround.
Baumeister, Mark A; Zhang, Nan; Beas, Hilda; Brooks, Jesse R; Canchola, Jesse A; Cosenza, Carlo; Kleshik, Felix; Rampersad, Vinod; Surtihadi, Johan; Battersby, Thomas R
2012-01-01
Branched DNA (bDNA) is a signal amplification technology used in clinical and research laboratories to quantitatively detect nucleic acids. An overnight incubation is a significant drawback of highly sensitive bDNA assays. The VERSANT® HIV-1 RNA 3.0 Assay (bDNA) ("Versant Assay") currently used in clinical laboratories was modified to allow shorter target incubation, enabling the viral load assay to be run in a single day. To dramatically reduce the target incubation from 16-18 h to 2.5 h, composition of only the "Lysis Diluent" solution was modified. Nucleic acid probes in the assay were unchanged. Performance of the modified assay (assay in development; not commercially available) was evaluated and compared to the Versant Assay. Dilution series replicates (>950 results) were used to demonstrate that analytical sensitivity, linearity, accuracy, and precision for the shorter modified assay are comparable to the Versant Assay. HIV RNA-positive clinical specimens (n = 135) showed no significant difference in quantification between the modified assay and the Versant Assay. Equivalent relative quantification of samples of eight genotypes was demonstrated for the two assays. Elevated levels of several potentially interfering endogenous substances had no effect on quantification or specificity of the modified assay. The modified assay with drastically improved turnaround time demonstrates the viability of signal-amplifying technology, such as bDNA, as an alternative to the PCR-based assays dominating viral load monitoring in clinical laboratories. Highly sensitive bDNA assays with a single day turnaround may be ideal for laboratories with especially stringent cost, contamination, or reliability requirements.
Microplate freeze-dried cyanobacterial bioassay for fresh-waters environmental monitoring.
Martín-Betancor, Keila; Durand, Marie-José; Thouand, Gérald; Leganés, Francisco; Fernández-Piñas, Francisca; Rodea-Palomares, Ismael
2017-12-01
Microorganisms have been very useful in environmental monitoring due to their constant sensing of the surrounding environment, their easy maintenance and low cost. Some freeze-dried toxicity kits based on naturally bioluminescent bacteria are commercially available and commonly used to assess the toxicity of environmental samples such as Microtox (Aliivibrio fischeri) or ToxScreen (Photobacterium leiognathi), however, due to the marine origin of these bacteria, they could not be the most appropriate for fresh-waters monitoring. Cyanobacteria are one of the most representative microorganisms of aquatic environments, and are well suited for detecting contaminants in aqueous samples. This study presents the development and application of the first freeze-dried cyanobacterial bioassay for fresh-water contaminants detection. The effects of different cell growth phases, cryoprotectant solutions, freezing protocols, rehydration solutions and incubation conditions methods were evaluated and the best combination of these parameters for freeze-drying was selected. The study includes detailed characterization of sensitivity towards reference pollutants, as well as, comparison with the standard assays. Moreover, long-term viability and sensitivity were evaluated after 3 years of storage. Freeze-dried cyanobacteria showed, in general, higher sensitivity than the standard assays and viability of the cells remained after 3 years of storage. Finally, the validation of the bioassay using a wastewater sample was also evaluated. Freeze-drying of cyanobacteria in 96-well plates presents a simple, fast and multi-assay method for environmental monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Lumin; Wang, Baogui; Yu, Ping; Wen, Xuefang; Gong, Deming; Zeng, Zheling
2016-06-01
Medium chain fatty acids (MCFA) can be more easily absorbed and supply energy more rapidly than long chain fatty acids (LCFA). However, little is known about the inflammatory response by the treatment of MCFA in human liver cells. Thus this study used human liver cells (LO2) to evaluate the effects of MCFA on apoptosis and inflammatory response. Tetrazolim-based colorimetric assay and lactate dehydrogenase assay were used to measure the viability of LO2 cells, isolated spleens and liver cells from BALB/C mice. Inverted fluorescence microscopy and flow cytometry were used to assess the cell apoptosis. Activity of superoxide dismutase and malondialdehyde level were measured to determine the oxidative damage. mRNA or protein levels of classical pro-inflammatory cytokines were analyzed by quantitative real-time polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay and western blotting. The results showed that the liver cells treated with the fatty acids at 200 μM for 24 h exhibited good viability. Fatty acids induced inflammatory cytokines at transcriptional and translational levels to a lesser extent than lipopolysaccharide. LCFA (oleic acid) up-regulated tumor necrosis fator-α, monocyte chemoattractant-1 and interleukin-1β while down-regulated IL-6 and IL-8 secretion to a higher extent than MCFA in mRNA and protein levels. These findings suggested that MCFA may induce apoptosis to a less extent and exert more gentle inflammation than LCFA in human liver cells. © 2016 Institute of Food Technologists®
Nyffeler, Johanna; Karreman, Christiaan; Leisner, Heidrun; Kim, Yong Jun; Lee, Gabsang; Waldmann, Tanja; Leist, Marcel
2017-01-01
Migration of neural crest cells (NCCs) is one of the pivotal processes of human fetal development. Malformations arise if NCC migration and differentiation are impaired genetically or by toxicants. In the currently available test systems for migration inhibition of NCC (MINC), the manual generation of a cell-free space results in extreme operator dependencies, and limits throughput. Here a new test format was established. The assay avoids scratching by plating cells around a commercially available circular stopper. Removal of the stopper barrier after cell attachment initiates migration. This microwell-based circular migration zone NCC function assay (cMINC) was further optimized for toxicological testing of human pluripotent stem cell (hPSC)-derived NCCs. The challenge of obtaining data on viability and migration by automated image processing was addressed by developing a freeware. Data on cell proliferation were obtained by labelling replicating cells, and by careful assessment of cell viability for each experimental sample. The role of cell proliferation as an experimental confounder was tested experimentally by performing the cMINC in the presence of the proliferation-inhibiting drug cytosine arabinoside (AraC), and by a careful evaluation of mitotic events over time. Data from these studies led to an adaptation of the test protocol, so that toxicant exposure was limited to 24 h. Under these conditions, a prediction model was developed that allows classification of toxicants as either inactive, leading to unspecific cytotoxicity, or specifically inhibiting NC migration at non-cytotoxic concentrations.
Nitrotriazole- and imidazole-based amides and sulfonamides as antitubercular agents.
Papadopoulou, Maria V; Bloomer, William D; Rosenzweig, Howard S; Arena, Alexander; Arrieta, Francisco; Rebolledo, Joseph C J; Smith, Diane K
2014-11-01
Twenty-three 3-nitrotriazole-based and 2-nitroimidazole-based amides and sulfonamides were screened for antitubercular (anti-TB) activity in aerobic Mycobacterium tuberculosis H37Rv by using the BacTiter-Glo (BTG) microbial cell viability assay. In general, 3-nitrotriazole-based sulfonamides demonstrated anti-TB activity, whereas 3-nitrotriazole-based amides and 2-nitroimidazole-based amides and sulfonamides were inactive. Three 3-nitrotriazole-based sulfonamides (compounds 4, 2, and 7) demonstrated 50% inhibitory concentration (IC50), IC90, and MIC values of 0.38, 0.43, and 1.56 μM (compound 4), 0.57, 0.98, and 3.13 μM (compound 2), and 0.79, 0.87, and 3.13 μM (compound 7), respectively. For 3-nitrotriazole-based sulfonamides, anti-TB activity increased with lipophilicity, whereas the one-electron reduction potential (E1/2) did not play a role. 2-Nitroimidazole-based analogs, which were inactive in the BTG assay, were significantly more active in the low-oxygen assay and more active than the 3-nitrotriazoles. All active nitrotriazoles in the BTG assay were similarly active or more potent (lower MIC values) against resistant strains, with the exception of compounds 2, 3, 4, and 8, which demonstrated greater MIC values against isoniazid-resistant strains. Five 3-nitrotriazole-based sulfonamides demonstrated activity in infected murine J774 macrophages, causing log reductions similar to those seen with rifampin. However, some compounds caused toxicity in uninfected macrophages. In conclusion, the classes of 3-nitrotriazole-based amides and sulfonamides merit further investigation as potential antitubercular agents. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Nitrotriazole- and Imidazole-Based Amides and Sulfonamides as Antitubercular Agents
Bloomer, William D.; Rosenzweig, Howard S.; Arena, Alexander; Arrieta, Francisco; Rebolledo, Joseph C. J.; Smith, Diane K.
2014-01-01
Twenty-three 3-nitrotriazole-based and 2-nitroimidazole-based amides and sulfonamides were screened for antitubercular (anti-TB) activity in aerobic Mycobacterium tuberculosis H37Rv by using the BacTiter-Glo (BTG) microbial cell viability assay. In general, 3-nitrotriazole-based sulfonamides demonstrated anti-TB activity, whereas 3-nitrotriazole-based amides and 2-nitroimidazole-based amides and sulfonamides were inactive. Three 3-nitrotriazole-based sulfonamides (compounds 4, 2, and 7) demonstrated 50% inhibitory concentration (IC50), IC90, and MIC values of 0.38, 0.43, and 1.56 μM (compound 4), 0.57, 0.98, and 3.13 μM (compound 2), and 0.79, 0.87, and 3.13 μM (compound 7), respectively. For 3-nitrotriazole-based sulfonamides, anti-TB activity increased with lipophilicity, whereas the one-electron reduction potential (E1/2) did not play a role. 2-Nitroimidazole-based analogs, which were inactive in the BTG assay, were significantly more active in the low-oxygen assay and more active than the 3-nitrotriazoles. All active nitrotriazoles in the BTG assay were similarly active or more potent (lower MIC values) against resistant strains, with the exception of compounds 2, 3, 4, and 8, which demonstrated greater MIC values against isoniazid-resistant strains. Five 3-nitrotriazole-based sulfonamides demonstrated activity in infected murine J774 macrophages, causing log reductions similar to those seen with rifampin. However, some compounds caused toxicity in uninfected macrophages. In conclusion, the classes of 3-nitrotriazole-based amides and sulfonamides merit further investigation as potential antitubercular agents. PMID:25182645
Effects of cold atmospheric plasma on mucosal tissue culture
NASA Astrophysics Data System (ADS)
Welz, Christian; Becker, Sven; Li, Yang-Fang; Shimizu, Tetsuji; Jeon, Jin; Schwenk-Zieger, Sabina; Thomas, Hubertus M.; Isbary, Georg; Morfill, Gregor E.; Harréus, Ulrich; Zimmermann, Julia L.
2013-01-01
Thermal plasmas have been commonly used in medical applications such as plasma ablation and blood coagulation. Newer developments show that plasmas can be generated with ion temperatures close to room temperature: these non-thermal or so-called cold atmospheric plasmas (CAPs) therefore open up a wide range of further biomedical applications. Based on the understanding of the bactericidal, virucidal and fungicidal properties of CAPs, information about the effects of CAP on mucosal cells and tissue is still lacking. Therefore this study focuses on the interaction of CAP with healthy head and neck mucosal cells on a molecular level. To analyse this interaction in detail, fresh tissue samples from healthy nasal and pharyngeal mucosa were harvested during surgery, assembled to a three-dimensional tissue culture model (mini organ cultures) and treated with CAP for different treatment times. Effects on the viability, necrosis induction and mutagenic activity were evaluated with the trypan blue exclusion test, Annexin-V/PI staining and alkaline microgel electrophoresis (comet assay). Trypan blue exclusion test revealed that the CAP treatment significantly decreases the cell viability for all tested treatment times (5, 10, 30, 60 and 120 s p < 0.05), but only a treatment time of 120 s showed a cytotoxic effect as the viability dropped below 90%. Annexin-V/PI staining revealed a significant increase in necrosis in CAP treated pharyngeal tissue cultures for treatment times of 60 and 120 s (p < 0.05). For nasal tissue this effect was already detected for a 30 s treatment (p < 0.05). Comet assay analysis showed no mutagenic effects after exposure to CAP.
[Monitoring early toxicity of heavy metals including Hg using a HSE-SEAP reporter gene].
Yu, Zhan-Jiang; Yang, Qin; Yang, Xiao-Da; Wang, Kui
2006-08-01
To develop a cellular assay based on heat shock signal pathway and secreted alkaline phosphatase (SEAP) reporter gene for investigating/predicting the early toxicity of heavy metals on HeLa cells in Chinese traditional medicine (TCM). The pHSE-SEAP plasmid was transfected into HeLa cells to build a HSE-SEAP-HeLa cell model. For validation of the model, the transfected cells were treated by either heating at 42 degrees C for 1 h or incubated with 5 mol x L(-1) CdCl2 for 4 h. Then the cells were covered in complete DMEM culture medium for 48 h and the activity of SEAP (reflecting the cellular level of heat shock protein) in cultural supernatants was measured; meanwhile, cell viability was determined by MTT assays. In addition, the cells were treated by four mercury compounds, HgCl2, merthilate sodium, HgS and cinnabar at the sub-lethal concentrations (determined by MTT assays). Then the heat shock response was detected likewise. Significant level of secreted alkaline phosphatase (SEAP) was found in pHSE-SEAP transfected HeLa cells treated either by heating (42 degrees C) or incubating with CdCl2. The heat shock protein was induced by CdCl2 before decrease of cell viability was observed. All four mercury compounds induced heat shock response in both time and concentration-dependant manner. However, there were big differences among the mercury compounds, suggesting potential differences for early-stage toxicity in vivo. The pHSE-SEAP transfected HeLa cells respond effectively to heat shock and metal stresses, and therefore provide a practical and repeatable assay for investigating/predicting the early toxicity of heavy metals and mineral-containing drugs in TCM.
Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions
Katori, Ryosuke; Hayashi, Ryuhei; Kobayashi, Yuki; Kobayashi, Eiji; Nishida, Kohji
2016-01-01
Clinical trials have been performed using autologous tissue-engineered epithelial cell sheets for corneal regenerative medicine. To improve stem cell-based therapy for convenient clinical practice, new techniques are required for preserving reconstructed tissues and their stem/progenitor cells until they are ready for use. In the present study, we screened potential preservative agents and developed a novel medium for preserving the cell sheets and their stem/progenitor cells; the effects were evaluated with a luciferase-based viability assay. Nrf2 activators, specifically ebselen, could maintain high ATP levels during preservation. Ebselen also showed a strong influence on maintenance of the viability, morphology, and stem cell function of the cell sheets preserved under hypothermia by protecting them from reactive oxygen species-induced damage. Furthermore, ebselen drastically improved the preservation performance of human cornea tissues and their stem cells. Therefore, ebselen shows good potential as a useful preservation agent in regenerative medicine as well as in cornea transplantation. PMID:27966584
Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions.
Katori, Ryosuke; Hayashi, Ryuhei; Kobayashi, Yuki; Kobayashi, Eiji; Nishida, Kohji
2016-12-14
Clinical trials have been performed using autologous tissue-engineered epithelial cell sheets for corneal regenerative medicine. To improve stem cell-based therapy for convenient clinical practice, new techniques are required for preserving reconstructed tissues and their stem/progenitor cells until they are ready for use. In the present study, we screened potential preservative agents and developed a novel medium for preserving the cell sheets and their stem/progenitor cells; the effects were evaluated with a luciferase-based viability assay. Nrf2 activators, specifically ebselen, could maintain high ATP levels during preservation. Ebselen also showed a strong influence on maintenance of the viability, morphology, and stem cell function of the cell sheets preserved under hypothermia by protecting them from reactive oxygen species-induced damage. Furthermore, ebselen drastically improved the preservation performance of human cornea tissues and their stem cells. Therefore, ebselen shows good potential as a useful preservation agent in regenerative medicine as well as in cornea transplantation.
Ramli, Munirah; Hussein, Mohd Zobir; Yusoff, Khatijah
2013-01-01
A new organic-inorganic nanohybrid based on zinc-layered hydroxide intercalated with an anti-inflammatory agent was synthesized through direct reaction of salicylic acid at various concentrations with commercially available zinc oxide. The basal spacing of the pure phase nanohybrid was 15.73 Å, with the salicylate anions arranged in a monolayer form and an angle of 57 degrees between the zinc-layered hydroxide interlayers. Fourier transform infrared study further confirmed intercalation of salicylate into the interlayers of zinc-layered hydroxide. The loading of salicylate in the nanohybrid was estimated to be around 29.66%, and the nanohybrid exhibited the properties of a mesoporous-type material, with greatly enhanced thermal stability of the salicylate compared with its free counterpart. In vitro cytotoxicity assay revealed that free salicylic acid, pure zinc oxide, and the nanohybrid have a mild effect on viability of African green monkey kidney (Vero-3) cells. PMID:23345976
Cytotoxic Effect Associated with Overexpression of QNR Proteins in Escherichia coli.
Machuca, Jesús; Diaz de Alba, Paula; Recacha, Esther; Pascual, Álvaro; Rodriguez-Martinez, José Manuel
2017-10-01
The objective was to evaluate the cytotoxic effect associated with overexpression of multiple Qnr-like plasmid-mediated quinolone resistance (PMQR) mechanisms in Escherichia coli. Coding regions of different PMQR genes (qnrA1, qnrB1, qnrC, qnrD1, qnrS1, and qepA2) and efsqnr were cloned into pET29a(+) vector and overexpressed in E. coli BL21. E. coli BL21 with and without an empty pET29a(+) vector were used as controls. The cytotoxic effect associated with PMQR mechanism overexpression was determined by transmission electron microscopy and viability assays. Overexpressed qnr genes produced loss of bacterial viability in the range of 77-97% compared with the controls, comparable with loss of viability associated with EfsQnr overexpression (97%). No loss of viability was observed in E. coli overexpressing QepA2. In transmission electron microscopy assays, signs of cytotoxicity were observed in E. coli cells overexpressing EfsQnr and Qnr proteins (30-45% of the bacterial population showed morphological changes). Morphological changes were observed in less than 5% of bacterial populations from the control strains and E. coli overexpressing QepA2. Overexpression of qnr genes produces a cytotoxic cellular and structural effect in E. coli, the magnitude of which varies depending on the family of Qnr proteins.
A microfluidic platform for 3-dimensional cell culture and cell-based assays.
Kim, Minseok S; Yeon, Ju Hun; Park, Je-Kyun
2007-02-01
This paper reports a novel microfluidic platform introducing peptide hydrogel to make biocompatible microenvironment as well as realizing in situ cell-based assays. Collagen composite, OPLA and Puramatrix scaffolds are compared to select good environment for human hepatocellular carcinoma cells (HepG2) by albumin measurement. The selected biocompatible self-assembling peptide hydrogel, Puramatrix, is hydrodynamically focused in the middle of main channel of a microfluidic device, and at the same time the cells are 3-dimensionally immobilized and encapsulated without any additional surface treatment. HepG2 cells have been 3-dimensionally cultured in a poly(dimethylsiloxane) (PDMS) microfluidic device for 4 days. The cells cultured in micro peptide scaffold are compared with those cultured by conventional petri dish in morphology and the rate of albumin secretion. By injection of different reagents into either side of the peptide scaffold, the microfluidic device also forms a linear concentration gradient profile across the peptide scaffold due to molecular diffusion. Based on this characteristic, toxicity tests are performed by Triton X-100. As the higher toxicant concentration gradient forms, the wider dead zone of cells in the peptide scaffold represents. This microfluidic platform facilitates in vivo-like 3-dimensional microenvironment, and have a potential for the applications of reliable cell-based screening and assays including cytotoxicity test, real-time cell viability monitoring, and continuous dose-response assay.
A Sensitive Branched DNA HIV-1 Signal Amplification Viral Load Assay with Single Day Turnaround
Baumeister, Mark A.; Zhang, Nan; Beas, Hilda; Brooks, Jesse R.; Canchola, Jesse A.; Cosenza, Carlo; Kleshik, Felix; Rampersad, Vinod; Surtihadi, Johan; Battersby, Thomas R.
2012-01-01
Branched DNA (bDNA) is a signal amplification technology used in clinical and research laboratories to quantitatively detect nucleic acids. An overnight incubation is a significant drawback of highly sensitive bDNA assays. The VERSANT® HIV-1 RNA 3.0 Assay (bDNA) (“Versant Assay”) currently used in clinical laboratories was modified to allow shorter target incubation, enabling the viral load assay to be run in a single day. To dramatically reduce the target incubation from 16–18 h to 2.5 h, composition of only the “Lysis Diluent” solution was modified. Nucleic acid probes in the assay were unchanged. Performance of the modified assay (assay in development; not commercially available) was evaluated and compared to the Versant Assay. Dilution series replicates (>950 results) were used to demonstrate that analytical sensitivity, linearity, accuracy, and precision for the shorter modified assay are comparable to the Versant Assay. HIV RNA-positive clinical specimens (n = 135) showed no significant difference in quantification between the modified assay and the Versant Assay. Equivalent relative quantification of samples of eight genotypes was demonstrated for the two assays. Elevated levels of several potentially interfering endogenous substances had no effect on quantification or specificity of the modified assay. The modified assay with drastically improved turnaround time demonstrates the viability of signal-amplifying technology, such as bDNA, as an alternative to the PCR-based assays dominating viral load monitoring in clinical laboratories. Highly sensitive bDNA assays with a single day turnaround may be ideal for laboratories with especially stringent cost, contamination, or reliability requirements. PMID:22479381
Li, Mengying; Feng, Cheng; Gu, Xiuge; He, Qin; Wei, Fulan
2017-04-17
Cryopreservation has been extensively applied to the long-term storage of a diverse range of biological materials. However, no comprehensive study is currently available on the cryopreservation of periodontal ligament stem cell (PDLSC) sheets which have been suggested as excellent transplant materials for periodontal tissue regeneration. The aim of this study is to investigate the effect of cryopreservation on the structural integrity and functional viability of PDLSC sheets. PDLSC sheets prepared from extracted human molars were divided into two groups: the cryopreservation group (cPDLSC sheets) and the freshly prepared control group (fPDLSC sheets). The cPDLSC sheets were cryopreserved in a solution consisting of 90% fetal bovine serum and 10% dimethyl sulfoxide for 3 months. Cell viability and cell proliferation rates of PDLSCs in both groups were evaluated by cell viability assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, respectively. The multilineage differentiation potentials of the cells were assessed by von Kossa staining and Oil Red O staining. The chromosomal stability was examined by karyotype analysis. Moreover, the cell sheets in each group were transplanted subcutaneously into the dorsal site of nude mice, after which Sirius Red staining was performed to analyze the efficiency of tissue regeneration. The PDLSCs derived from both groups of cell sheets showed no significant difference in their viability, proliferative capacities, and multilineage differentiation potentials, as well as chromosomal stability. Furthermore, transplantation experiments based on a mouse model demonstrated that the cPDLSC sheets were equally effective in generating viable osteoid tissues in vivo as their freshly prepared counterparts. In both cases, the regenerated tissues showed similar network patterns of bone-like matrix. Our results offer convincing evidence that cryopreservation does not alter the biological properties of PDLSC sheets and could enhance their clinical utility in tissue regeneration.
The Effects of Oxygen Level and Glucose Concentration on the Metabolism of Porcine TMJ Disc Cells
Cisewski, Sarah E.; Zhang, Lixia; Kuo, Jonathan; Wright, Gregory J.; Wu, Yongren; Kern, Michael J.; Yao, Hai
2015-01-01
Objective To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. Design TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 hours with 0, 1.5, 5, or 25mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-3H]proline and [35S]sulfate into the cells, respectively. Results TMJ disc cell viability significantly decreased (P<0.0001) without glucose. With glucose present, decreased oxygen levels significantly increased viability (P<0.0001), while a decrease in glucose concentration significantly decreased viability (P<0.0001). With glucose present, decreasing oxygen levels significantly reduced ATP production (P<0.0001) and matrix synthesis (P<0.0001). A decreased glucose concentration significantly decreased collagen synthesis (P<0.0001). The interaction between glucose and oxygen was significant in regards to cell viability (P<0.0001), ATP production (P=0.00015), and collagen (P=0.0002) and proteoglycan synthesis (P<0.0001). Conclusions Although both glucose and oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. PMID:26033165
The effects of oxygen level and glucose concentration on the metabolism of porcine TMJ disc cells.
Cisewski, S E; Zhang, L; Kuo, J; Wright, G J; Wu, Y; Kern, M J; Yao, H
2015-10-01
To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 h with 0, 1.5, 5, or 25 mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-(3)H] proline and [(35)S] sulfate into the cells, respectively. TMJ disc cell viability significantly decreased (P < 0.0001) without glucose. With glucose present, decreased oxygen levels significantly increased viability (P < 0.0001), while a decrease in glucose concentration significantly decreased viability (P < 0.0001). With glucose present, decreasing oxygen levels significantly reduced ATP production (P < 0.0001) and matrix synthesis (P < 0.0001). A decreased glucose concentration significantly decreased collagen synthesis (P < 0.0001). The interaction between glucose and oxygen was significant in regards to cell viability (P < 0.0001), ATP production (P = 0.00015), and collagen (P = 0.0002) and proteoglycan synthesis (P < 0.0001). Although both glucose and oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Non-destructive monitoring of viability in an ex vivo organ culture model of osteochondral tissue.
Elson, K M; Fox, N; Tipper, J L; Kirkham, J; Hall, R M; Fisher, J; Ingham, E
2015-06-30
Organ culture is an increasingly important tool in research, with advantages over monolayer cell culture due to the inherent natural environment of tissues. Successful organ cultures must retain cell viability. The aim of this study was to produce viable and non-viable osteochondral organ cultures, to assess the accumulation of soluble markers in the conditioned medium for predicting tissue viability. Porcine femoral osteochondral plugs were cultured for 20 days, with the addition of Triton X-100 on day 6 (to induce necrosis), camptothecin (to induce apoptosis) or no toxic additives. Tissue viability was assessed by the tissue destructive XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide tetrazolium salt) assay method and LIVE/DEAD® staining of the cartilage at days 0, 6 and 20. Tissue structure was assessed by histological evaluation using haematoxylin & eosin and safranin O. Conditioned medium was assessed every 3-4 days for glucose depletion, and levels of lactate dehydrogenase (LDH), alkaline phosphatase (AP), glycosaminoglycans (GAGs), and matrix metalloproteinase (MMP)-2 and MMP-9. Necrotic cultures immediately showed a reduction in glucose consumption, and an immediate increase in LDH, GAG, MMP-2 and MMP-9 levels. Apoptotic cultures showed a delayed reduction in glucose consumption and delayed increase in LDH, a small rise in MMP-2 and MMP-9, but no significant effect on GAGs released into the conditioned medium. The data showed that tissue viability could be monitored by assessing the conditioned medium for the aforementioned markers, negating the need for tissue destructive assays. Physiologically relevant whole- or part-joint organ culture models, necessary for research and pre-clinical assessment of therapies, could be monitored this way, reducing the need to sacrifice tissues to determine viability, and hence reducing the sample numbers necessary.
Wang, Juan; Wei, Yun; Zhao, Shasha; Zhou, Ying; He, Wei; Zhang, Yang; Deng, Wensheng
2017-01-01
Mammalian cells are very important experimental materials and widely used in biological and medical research fields. It is often required that mammalian cells are transported from one laboratory to another to meet with various researches. Conventional methods for cell shipment are laborious and costive despite of maintaining high viability. In this study we aimed to develop a simple and low-cost method for cell shipment by investigating the viabilities of different cell lines treated at different temperatures. We show that the viability of mammalian cells incubated at 1°C or 5°C significantly reduced when compared with that at 16°C or 22°C. Colony formation assays revealed that preservation of mammalian cells at 1°C or 5°C led to a poorer recovery than that at 16°C or 22°C. The data from proliferation and apoptotic assays confirmed that M2 cells could continue to proliferate at 16°C or 22°C, but massive death was caused by apoptosis at 1°C or 5°C. The morphology of mammalian cells treated under hypothermia showed little difference from that of the untreated cells. Quantitative RT-PCR and alkaline phosphatase staining confirmed that hypothermic treatment did not change the identity of mouse embryonic stem cells. A case study showed that mammalian cells directly suspended in culture medium were able to be shipped for long distance and maintained a high level of viability and recovery. Our findings not only broaden the understanding to the effect of hypothermia on the viability of mammalian cells, but also provide an alternative approach for cell shipment.
Chan, C W; Hussain, I; Waugh, D G; Lawrence, J; Man, H C
2014-09-01
The objectives of this study were to investigate the effect of laser-induced surface features on the morphology, attachment and viability of mesenchymal stem cells (MSCs) at different periods of time, and to evaluate the biocompatibility of different zones: laser-melted zone (MZ), heat-affected zone (HAZ) and base metal (BM) in laser-treated NiTi alloy. The surface morphology and composition were studied by scanning electron microscope (SEM) and X-ray photoemission spectroscopy (XPS), respectively. The cell morphology was examined by SEM while the cell counting and viability measurements were done by hemocytometer and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. The results indicated that the laser-induced surface features, such as surface roughening, presence of anisotropic dendritic pattern and complete surface Ni oxidation were beneficial to improve the biocompatibility of NiTi as evidenced by the highest cell attachment (4 days of culture) and viability (7 days of culture) found in the MZ. The biocompatibility of the MZ was the best, followed by the BM with the HAZ being the worst. The defective and porous oxide layer as well as the coarse grained structure might attribute to the inferior cell attachment (4 days of culture) and viability (7 days of culture) on the HAZ compared with the BM which has similar surface morphology. Copyright © 2014 Elsevier B.V. All rights reserved.
Germann, Anja; Oh, Young-Joo; Schmidt, Tomm; Schön, Uwe; Zimmermann, Heiko; von Briesen, Hagen
2013-10-01
The ability to analyze cryopreserved peripheral blood mononuclear cell (PBMC) from biobanks for antigen-specific immunity is necessary to evaluate response to immune-based therapies. To ensure comparable assay results, collaborative research in multicenter trials needs reliable and reproducible cryopreservation that maintains cell viability and functionality. A standardized cryopreservation procedure is comprised of not only sample collection, preparation and freezing but also low temperature storage in liquid nitrogen without any temperature fluctuations, to avoid cell damage. Therefore, we have developed a storage approach to minimize suboptimal storage conditions in order to maximize cell viability, recovery and T-cell functionality. We compared the influence of repeated temperature fluctuations on cell health from sample storage, sample sorting and removal in comparison to sample storage without temperature rises. We found that cyclical temperature shifts during low temperature storage reduce cell viability, recovery and immune response against specific-antigens. We showed that samples handled under a protective hood system, to avoid or minimize such repeated temperature rises, have comparable cell viability and cell recovery rates to samples stored without any temperature fluctuations. Also T-cell functionality could be considerably increased with the use of the protective hood system compared to sample handling without such a protection system. This data suggests that the impact of temperature fluctuation on cell integrity should be carefully considered in future clinical vaccine trials and consideration should be given to optimal sample storage conditions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Cytotoxicity and genotoxicity of natural resin-based experimental endodontic sealers.
Silva, Gleyce O; Cavalcanti, Bruno N; Oliveira, Tatiana R; Bin, Claudia V; Camargo, Samira E A; Camargo, Carlos H R
2016-05-01
The development of endodontic sealers based on natural resins seems to be promising, given their improved biological properties. This study evaluated the cytotoxic and genotoxic effects of two experimental root canal sealers, based on extracts from Copaifera multijuga and Ricinus communis (castor oil polymer), comparing them to synthetic resin-based sealers: a single methacrylate-based, a multi-methacrylate-based, and an epoxy resin-based sealers. Sealers were prepared, set, and exposed to cell culture medium for 24 h at 37 °C with CO2. V79 cells were exposed to serial dilutions of the extracts of each sealer for 24 h. Cell viability was measured by the MTT assay and genotoxicity was assessed by the formation of micronuclei. The single methacrylate-based sealer had the most cytotoxic effects, with significant reduction in cell viability in all dilutions of the extract. The castor oil polymer-based sealer was, on the other hand, the most biocompatible sealer, with no cytotoxic effects at any concentration. All tested sealers were not genotoxic, excepting the single methacrylate-based sealer. The tested natural resin-based sealers presented low cytotoxic and no genotoxic effects on cell cultures. These results may suggest a good alternative to develop new endodontic sealers, in order to achieve better biological response and healing, when compared to commercially available sealers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Xiao; Gang, Yi; Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi Province
2015-02-06
Highlights: • A shRNA vector based transcription factor decoy, VB-ODN, was designed. • VB-ODN for NF-κB inhibited cell viability in HEK293 cells. • VB-ODN inhibited expression of downstream genes of target transcription factors. • VB-ODN may enhance nuclear entry ratio for its feasibility of virus production. - Abstract: In this study, we designed a short hairpin RNA vector-based oligodeoxynucleotide (VB-ODN) carrying transcription factor (TF) consensus sequence which could function as a decoy to block TF activity. Specifically, VB-ODN for Nuclear factor-κB (NF-κB) could inhibit cell viability and decrease downstream gene expression in HEK293 cells without affecting expression of NF-κB itself.more » The specific binding between VB-ODN produced double-stranded RNA and NF-κB was evidenced by electrophoretic mobility shift assay. Moreover, similar VB-ODNs designed for three other TFs also inhibit their downstream gene expression but not that of themselves. Our study provides a new design of decoy for blocking TF activity.« less
Liu, Ji Ping; Liu, Dan; Gu, Jun Fei; Zhu, Mao Mao; Cui, Li
2015-08-01
Shikonin is an active naphthoquinone pigment isolated from the root of Lithospermum erythrorhizon. This study was designed to explore the inhibition of Shikonin on cell viability, adhesion, migration and invasion ability of gastric cancer (GC) and its possible mechanism. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed for cell viability and adhesion ability of MGC-803 cells. Cell scratch repair experiments were conducted for the determination of migration ability while transwell assay for cell invasion ability. Western blot analysis and real-time polymerase chain reaction assay were used for the detection of protein and mRNA expressions. Fifty per cent inhibitory concentration of Shikonin on MGC-803 cells was 1.854 μm. Shikonin (1 μm) inhibited significantly the adhesion, invasion and migratory ability of MGC-803 cells. Interestingly, Shikonin in the presence or absence of anti-Toll-like receptor 2 (TLR2) antibody (2 μg) and nuclear factor-kappa B (NF-κB) inhibitor MG-132 (10 μm) could decrease these ability of MGC-803 cells markedly, as well as the expression levels of matrix metalloproteinases (MMP)-2, MMP-7, TLR2 and p65 NF-κB. In addition, the co-incubation of Shikonin and anti-TLR2/MG-132 has a significant stronger activity than anti-TLR2 or MG-132 alone. The results indicated that Shikonin could suppress the cell viability, adhesion, invasion and migratory ability of MGC-803 cells through TLR2- or NF-κB-mediated pathway. Our findings provide novel information for the treatment of Shikonin on GC. © 2015 Royal Pharmaceutical Society.
Ortiz, Antonio José; Fernández, Esther; Vicente, Ascensión; Calvo, José L; Ortiz, Clara
2011-09-01
The aims of this study were to determine the amounts of metallic ions that stainless steel, nickel-free, and titanium alloys release to a culture medium, and to evaluate the cellular viability and DNA damage of cultivated human fibroblasts with those mediums. The metals were extracted from 10 samples (each consisting of 4 buccal tubes and 20 brackets) of the 3 orthodontic alloys that were submerged for 30 days in minimum essential medium. Next, the determination of metals was performed by using inductively coupled plasma mass spectrometry, cellular viability was assessed by using the tetrazolium reduction assay (MTT assay) (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide), and DNA damage was determined with the Comet assay. The metals measured in all the samples were Ti(47), Cr(52), Mn(55), Co(59), Ni(60), Mo(92), Fe(56), Cu(63), Zn(66), As(75), Se(78), Cd(111), and Pb(208). The cellular viability of the cultured fibroblasts incubated for 7 days with minimum essential medium, with the stainless steel alloy submerged, was close to 0%. Moreover, high concentrations of titanium, chromium, manganese, cobalt, nickel, molybdenum, iron, copper, and zinc were detected. The nickel-free alloy released lower amounts of ions to the medium. The greatest damage in the cellular DNA, measured as the olive moment, was also produced by the stainless steel alloy followed by the nickel-free alloy. Conversely, the titanium alloy had an increased cellular viability and did not damage the cellular DNA, as compared with the control values. The titanium brackets and tubes are the most biocompatible of the 3 alloys studied. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
A porphyrin-based metal-organic framework as a pH-responsive drug carrier
NASA Astrophysics Data System (ADS)
Lin, Wenxin; Hu, Quan; Jiang, Ke; Yang, Yanyu; Yang, Yu; Cui, Yuanjing; Qian, Guodong
2016-05-01
A low cytotoxic porphyrin-based metal-organic framework (MOF) PCN-221, which exhibited high PC12 cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay, was selected as an oral drug carrier. Methotrexate (MTX) was chosen as the model drug molecule which was absorbed into inner pores and channels of MOFs by diffusion. PCN-221 showed high drug loading and sustained release behavior under physiological environment without "burst effect". The controlled pH-responsive release of drugs by PCN-221 revealed its promising application in oral drug delivery.
MESTIERI, Leticia Boldrin; TANOMARU-FILHO, Mário; GOMES-CORNÉLIO, Ana Livia; SALLES, Loise Pedrosa; BERNARDI, Maria Inês Basso; GUERREIRO-TANOMARU, Juliane Maria
2014-01-01
Objective Mineral Trioxide Aggregate (MTA) is composed of Portland Cement (PC) and bismuth oxide (BO). Replacing BO for niobium oxide (NbO) microparticles (Nbµ) or nanoparticles (Nbη) may improve radiopacity and bioactivity. The aim of this study was to evaluate the radiopacity and cytotoxicity of the materials: 1) PC; 2) White MTA; 3) PC+30% Nbµ; 4) PC+30% Nbη. Material and Methods For the radiopacity test, specimens of the different materials were radiographed along an aluminum step-wedge. For cell culture assays, Saos-2 osteoblastic-cells (ATCC HTB-85) were used. Cell viability was evaluated through MTT assay, and bioactivity was assessed by alkaline phosphatase activity assay. Results The results demonstrated higher radiopacity for MTA, followed by Nbµ and Nbη, which had similar values. Cell culture analysis showed that PC and PC+NbO associations promoted greater cell viability than MTA. Conclusions It was concluded that the combination of PC+NbO is a potential alternative for composition of MTA. PMID:25591023
Mestieri, Leticia Boldrin; Tanomaru-Filho, Mário; Gomes-Cornélio, Ana Livia; Salles, Loise Pedrosa; Bernardi, Maria Inês Basso; Guerreiro-Tanomaru, Juliane Maria
2014-01-01
Mineral Trioxide Aggregate (MTA) is composed of Portland Cement (PC) and bismuth oxide (BO). Replacing BO for niobium oxide (NbO) microparticles (Nbµ) or nanoparticles (Nbη) may improve radiopacity and bioactivity. The aim of this study was to evaluate the radiopacity and cytotoxicity of the materials: (1) PC; (2) White MTA; (3) PC+30% Nbµ; (4) PC+30% Nbη. For the radiopacity test, specimens of the different materials were radiographed along an aluminum step-wedge. For cell culture assays, Saos-2 osteoblastic-cells (ATCC HTB-85) were used. Cell viability was evaluated through MTT assay, and bioactivity was assessed by alkaline phosphatase activity assay. The results demonstrated higher radiopacity for MTA, followed by Nbµ and Nbη, which had similar values. Cell culture analysis showed that PC and PC+NbO associations promoted greater cell viability than MTA. It was concluded that the combination of PC+NbO is a potential alternative for composition of MTA.
Ge, Liangpeng; Zhang, Xiaochun; Cao, Chuan; Gu, Zhaobin; Liu, Zuohua; Liu, Lubin; Lin, Baozhong
2012-06-01
Neutral electrolyzed water (NEW) is considered to be a high-level biodegradable disinfectant with sporicidal, bactericidal, and virucidal activity. It has also been reported to accelerate wound healing; thus, it is particularly attractive for the elimination or minimization of the microbial population of skin grafts to be used as wound dressings. Pigskins were sterilized with different concentrations of NEW and with different methods. The feasibility of pigskin sterilization by NEW was evaluated through microbiological analyses, viability assays, histologic assessments, contact cytotoxicity assays, and extract cytotoxicity assays. NEW has strong bactericidal effects on pigskin microorganisms, does not change skin graft histologic properties, and has no cytotoxicity; however, skin viability was significantly reduced after NEW treatment. Although NEW treatment is a very safe and effective method for nonviable pigskin dressing sterilization, to obtain a complete sterilization of pigskin grafts, available chlorine concentration of NEW as well as sterilization time and methods should be optimized. Copyright © 2012 by Lippincott Williams & Wilkins.
Therapeutic potential of Pirfenidone for treating equine corneal scarring
Fink, Michael K.; Giuliano, Elizabeth A.; Tandon, Ashish; Mohan, Rajiv R.
2014-01-01
Objective To evaluate the safety and efficacy of Pirfenidone (PFD) in the treatment of equine corneal fibrosis using an in vitro model. Methods Healthy donor equine corneas were collected and used to generate primary equine corneal fibroblasts (ECFs) by growing cultures in minimal essential medium supplemented with 10% fetal bovine serum. Equine corneal myofibroblasts (ECMs), used as a model of equine corneal fibrosis, were produced by growing ECF cultures in serum-free medium containing transforming growth factor β1 (1ng/ml). Trypan blue viability assays and changes in ECF morphology were utilized to determine the optimal PFD dose for this in vitro model. Trypan blue viability, phase contrast microscopy, and TUNEL assays were used to evaluate the cytotoxicity of PFD. Scratch and MTT assays were used to evaluate the effect of PFD on cellular migration and proliferation. Real-time PCR, immunoblot analysis, and immunocytochemistry were employed to determine the efficacy of PFD to inhibit ECM formation in vitro. Results Topical PFD application at 200 μg/ml successfully decreased αSMA expression when compared to the TGFβ1 only treatment group (P < 0.01). PFD application ≤ 200 μg/ml did not affect ECF phenotype or cellular viability and did not result in significant cytotoxicity. Conclusions Pirfenidone safely and effectively inhibits TGFβ1-induced equine corneal fibrosis in vitro. In vivo studies are warranted. PMID:25041235
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goven, A.J.; Fitzpatrick, L.C.; Eyambe, G.S.
Acute toxicity in earthworms (Lumbricus terrestris) was assayed immediately after 5-d filter paper exposure to the polychlorinated biphenyl (PCB) Aroclor 1254, using coelomocyte viability, total extruded cell counts (ECC), differential cell counts (DCC), and formation of erythrocyte (ER) and secretory rosettes (SR) with, and phagocytosis of, antigenic rabbit red blood cells (RRBC). Chronic toxicity was assayed using rates by which earthworms replaced viable immunoactive coelomocytes, removed noninvasively immediately after exposure, over an 18-week depuration period. All cytological parameters, except ECC, were acutely affected immediately after exposure, when tissue concentrations were ([anti X] [plus minus] SE) 91.2 [plus minus] 8.19 [mu]gmore » PCB per gram dry mass. Replacement of viable immunoactive coelomocytes occurred within six weeks in unexposed control earthworms. Exposed earthworms showed significant alteration in viability, ECC, DCC, ER, and SR formation, and phagocytosis at 6 and 12 weeks when PCB tissue concentrations were 41 [plus minus] 0.31 and 30.2 [plus minus] 0.88 [mu]g/g dry mass, respectively. Replacement of extruded coelomocytes with normal DCC of viable immunocompetent cells was not observed until week 18, when PCB had decreased to 15.7 [plus minus] 0.83 [mu]g/g dry mass. Low inherent natural variability in coelomocyte viability, ECC, DCC, rosette formation, and phagocytosis, and their sensitivity to sublethal PCB body burdens, indicated that earthworm coelomocytes have potential as nonmammalian biomarkers for assaying acute and chronic sublethal toxicity of xenobiotics.« less
Use of whole genome expression analysis in the toxicity screening of nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fröhlich, Eleonore, E-mail: eleonore.froehlich@medunigraz.at; Meindl, Claudia; Wagner, Karin
2014-10-15
The use of nanoparticles (NPs) offers exciting new options in technical and medical applications provided they do not cause adverse cellular effects. Cellular effects of NPs depend on particle parameters and exposure conditions. In this study, whole genome expression arrays were employed to identify the influence of particle size, cytotoxicity, protein coating, and surface functionalization of polystyrene particles as model particles and for short carbon nanotubes (CNTs) as particles with potential interest in medical treatment. Another aim of the study was to find out whether screening by microarray would identify other or additional targets than commonly used cell-based assays formore » NP action. Whole genome expression analysis and assays for cell viability, interleukin secretion, oxidative stress, and apoptosis were employed. Similar to conventional assays, microarray data identified inflammation, oxidative stress, and apoptosis as affected by NP treatment. Application of lower particle doses and presence of protein decreased the total number of regulated genes but did not markedly influence the top regulated genes. Cellular effects of CNTs were small; only carboxyl-functionalized single-walled CNTs caused appreciable regulation of genes. It can be concluded that regulated functions correlated well with results in cell-based assays. Presence of protein mitigated cytotoxicity but did not cause a different pattern of regulated processes. - Highlights: • Regulated functions were screened using whole genome expression assays. • Polystyrene particles regulated more genes than short carbon nanotubes. • Protein coating of polystyrene particles did not change regulation pattern. • Functions regulated by microarray were confirmed by cell-based assay.« less
Protective role of edaravone against cisplatin-induced ototoxicity in an auditory cell line.
Im, Gi Jung; Chang, Jiwon; Lee, Sehee; Choi, June; Jung, Hak Hyun; Lee, Hyung Min; Ryu, Sung Hoon; Park, Su Kyoung; Kim, Jin Hwan; Kim, Hyung-Jong
2015-12-01
Edaravone is a neuroprotective agent with a potent free radical scavenging and antioxidant actions. In the present study we investigated the influence of edaravone on cisplatin ototoxicity in auditory cells. Cell viability was determined using a 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide cell proliferation assay. Oxidative stress and apoptosis were assessed by reactive oxygen species (ROS) measurement, Hoechst 33258 staining, caspase-3 activity assay, and immunoblotting of PARP. Pretreatment with 100 μM of edaravone prior to application of 15 μM of cisplatin increased cell viability after 48 h of incubation in HEI-OC1 cells (from 51.9% to 64. 6% viability) and also, attenuated the cisplatin-induced increase in reactive oxygen species (ROS) (from 2.3 fold to 1.9 fold). Edaravone also decreased the activation of caspase-3 and reduced levels of cleaved poly-ADP-ribose polymerase (PARP). We propose that edaravone protects against cisplatin-induced ototoxicity by preventing apoptosis, and limiting ROS production in HEI-OC1 cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Gajski, Goran; Garaj-Vrhovac, Vera
2011-09-01
The aim of this study was to evaluate cytogenotoxic effects of bee venom to human lymphocytes and take a look into the mechanisms behind them. Bee venom was tested in concentrations ranging from 0.1μg/ml to 20μg/ml over different lengths of time. Cell viability, type of the cell death, and morphological alterations were evaluated using phase-contrast and fluorescent microscopy in addition to DNA diffusion assay, whereas cytogenotoxic effects were assessed with the micronucleus test. DNA damage and its relation to oxidative stress were evaluated combining the standard alkaline and the Fpg-modified comet assay. Our results showed lower cell viability, morphological cell alterations, cytogenotoxicity, and dominantly necrotic type of cell death in human lymphocytes after treatment with bee venom. All the effects were time- and dose-dependent. These results provide an insight into the effects of bee venom on the cell structure that could be relevant for therapeutic purposes. Copyright © 2011 Elsevier B.V. All rights reserved.
Kim, GG; Donnenberg, VS; Donnenberg, AD; Gooding, W; Whiteside, TL
2007-01-01
Natural killer (NK) cell- or T cell-mediated cytotoxicity traditionally is measured in 4-16h 51Cr-release assays (CRA). A new four-color flow cytometry-based cytotoxicity assay (FCC) was developed to simultaneously measure NK cell cytotoxicity and NK cell phenotype (CD3−CD16+CD56+). Target cells, K562 or Daudi, were labeled with Cell Tracker Orange (CTO) prior to the addition of effector cells. Following co-incubation, 7 amino-actinomycin D (7-AAD) was added to measure death of target cells. The phenotype of effectors, viability of targets, the formation of tumor-effector cell conjugates and absolute numbers of all cells were measured based on light scatter (FSC/SSC), double discrimination of the fluorescence peak integral and height, and fluorescence intensity. Kinetic studies (0.5 and 1 to 4h) at different effector to target (E:T) cell ratios (50, 25, 12, and 6) confirmed that the 3h incubation was optimal. The FCC assay is more sensitive than the CRA, has a coefficient of variation (CV) 8–13% and reliably measures NK cell- or lymphokine-activated killer (LAK) cell-mediated killing of target cells in normal controls and subjects with cancer. The FCC assay can be used to study a range of phenotypic attributes, in addition to lytic activity of various subsets of effector cells, without radioactive tracers and thus, it is relatively inexpensive. The FCC assay has a potential for providing information about molecular interactions underlying target cell lysis and thus becoming a major tool for studies of disease pathogenesis as well as development of novel immune therapies. PMID:17617419
Kim, G G; Donnenberg, V S; Donnenberg, A D; Gooding, W; Whiteside, T L
2007-08-31
Natural killer (NK) cell-or T cell-mediated cytotoxicity traditionally is measured in 4-16 h (51)Cr-release assays (CRA). A new four-color flow cytometry-based cytotoxicity assay (FCC) was developed to simultaneously measure NK cell cytotoxicity and NK cell phenotype (CD3(-)CD16(+)CD56(+)). Target cells, K562 or Daudi, were labeled with Cell Tracker Orange (CTO) prior to the addition of effector cells. Following co-incubation, 7 amino-actinomycin D (7-AAD) was added to measure death of target cells. The phenotype of effectors, viability of targets, the formation of tumor-effector cell conjugates and absolute numbers of all cells were measured based on light scatter (FSC/SSC), double discrimination of the fluorescence peak integral and height, and fluorescence intensity. Kinetic studies (0.5 and 1 to 4 h) at different effector to target (E:T) cell ratios (50, 25, 12, and 6) confirmed that the 3 h incubation was optimal. The FCC assay is more sensitive than the CRA, has a coefficient of variation (CV) 8-13% and reliably measures NK cell-or lymphokine-activated killer (LAK) cell-mediated killing of target cells in normal controls and subjects with cancer. The FCC assay can be used to study a range of phenotypic attributes, in addition to lytic activity of various subsets of effector cells, without radioactive tracers and thus, it is relatively inexpensive. The FCC assay has a potential for providing information about molecular interactions underlying target cell lysis and thus becoming a major tool for studies of disease pathogenesis as well as development of novel immune therapies.
Toxicity of graphene nanoflakes evaluated by cell-based electrochemical impedance biosensing.
Yoon, Ok Ja; Kim, Insu; Sohn, Il Yung; Kieu, Truong Thuy; Lee, Nae-Eung
2014-07-01
Graphene nanoflake toxicity was analyzed using cell-based electrochemical impedance biosensing with interdigitated indium tin oxide (ITO) electrodes installed in a custom-built mini-incubator positioned on an inverted optical microscope. Sensing with electrochemical measurements from interdigitated ITO electrodes was highly linear (R(2) = 0.93 and 0.96 for anodic peak current (Ipa) and cathodic peak current (Ipc), respectively). Size-dependent analysis of Graphene nanoflake toxicity was carried out in a mini-incubator system with cultured HeLa cells treated with Graphene nanoflakes having an average size of 80 or 30 nm for one day. Biological assays of cell proliferation and viability complemented electrochemical impedance measurements. The increased toxicity of smaller Graphene nanoflakes (30 nm) as measured by electrochemical impedance sensing and optical monitoring of treated cells was consistent with the biological assay results. Cell-based electrochemical impedance biosensing can be used to assess the toxicity of nanomaterials with different biomedical and environmental applications. © 2013 Wiley Periodicals, Inc.
Zn(II)-dipicolylamine-based metallo-lipids as novel non-viral gene vectors.
Su, Rong-Chuan; Liu, Qiang; Yi, Wen-Jing; Zhao, Zhi-Gang
2017-08-01
In this study, a series of Zn(II)-dipicolylamine (Zn-DPA) based cationic lipids bearing different hydrophobic tails (long chains, α-tocopherol, cholesterol or diosgenin) were synthesized. Structure-activity relationship (SAR) of these lipids was studied in detail by investigating the effects of several structural aspects including the type of hydrophobic tails, the chain length and saturation degree. In addition, several assays were used to study their interactions with plasmid DNA, and results reveal that these lipids could condense DNA into nanosized particles with appropriate size and zeta-potentials. MTT-based cell viability assays showed that lipoplexes 5 had low cytotoxicity. The in vitro gene transfection studies showed the hydrophobic tails clearly affected the TE, and hexadecanol-containing lipid 5b gives the best TE, which was 2.2 times higher than bPEI 25k in the presence of 10% serum. The results not only demonstrate that these lipids might be promising non-viral gene vectors, but also afford us clues for further optimization of lipidic gene delivery materials.
NASA Astrophysics Data System (ADS)
Wu, Xiaoju; Tian, Xiumei; Chen, Tongming; Zeng, Ao; Yang, Guowei
2018-07-01
The fabrication of inorganic fullerene-like nanoparticles (IFNPs) is an attractive idea due to their unique structures and various potential applications. To date, IFNPs have been made from numerous compounds with layered two-dimensional structures, based on various synthetic methods. Here we have demonstrated for the first time that inorganic fullerene-like molybdenum selenide nanoparticles (MoSe2 IFNPs) can be synthesized by laser ablating a molybdenum selenide target in 30 vol % ethanol/water mixture at ambient temperature and pressure. The formation mechanism was proposed to elucidate the production of MoSe2 IFNPs in the process of laser ablation in liquids (LAL). The appropriate solvent facilitates the condensation of the plasma plume created by LAL to planar MoSe2. Then, laser-induced high temperature and high pressure lead to the formation of a vacancy in the planar MoSe2, causing the generation of nucleation and growth of the MoSe2 IFNPs. In addition, a CCK-8 (cell counting kit-8) assay and a cell viability assay were performed to examine the cytotoxic behavior and the effect on cell viability of MoSe2 IFNPs. The results show that MoSe2 IFNPs are reasonably nontoxic and biocompatible with the given cells, showing they have significant potential in biomedical applications.
Wu, Xiaoju; Tian, Xiumei; Chen, Tongming; Zeng, Ao; Yang, Guowei
2018-07-20
The fabrication of inorganic fullerene-like nanoparticles (IFNPs) is an attractive idea due to their unique structures and various potential applications. To date, IFNPs have been made from numerous compounds with layered two-dimensional structures, based on various synthetic methods. Here we have demonstrated for the first time that inorganic fullerene-like molybdenum selenide nanoparticles (MoSe 2 IFNPs) can be synthesized by laser ablating a molybdenum selenide target in 30 vol % ethanol/water mixture at ambient temperature and pressure. The formation mechanism was proposed to elucidate the production of MoSe 2 IFNPs in the process of laser ablation in liquids (LAL). The appropriate solvent facilitates the condensation of the plasma plume created by LAL to planar MoSe 2 . Then, laser-induced high temperature and high pressure lead to the formation of a vacancy in the planar MoSe 2 , causing the generation of nucleation and growth of the MoSe 2 IFNPs. In addition, a CCK-8 (cell counting kit-8) assay and a cell viability assay were performed to examine the cytotoxic behavior and the effect on cell viability of MoSe 2 IFNPs. The results show that MoSe 2 IFNPs are reasonably nontoxic and biocompatible with the given cells, showing they have significant potential in biomedical applications.
Queiroz, T B; Santos, G F; Ventura, S C; Hiruma-Lima, C A; Gaivão, I O M; Maistro, E L
2017-09-27
Geraniol is an acyclic monoterpene alcohol present in the essential oil of many aromatic plants and is one of the most frequently used molecules by the flavor and fragrance industries. The literature also reports its therapeutic potential, highlighting itself especially as a likely molecule for the development of drugs against cancer. In view of these considerations, this study was designed to evaluate the cytotoxic and genotoxic potential of geraniol, in an in vitro protocol, using two types of human cells: one without the ability to metabolize (peripheral blood mononuclear cells - PBMC), and the other with this capability (human hepatoma cell line - HepG2) through the comet assay and the micronucleus test. Four concentrations (10, 25, 50, and 100 µg/mL) were selected for the genotoxic assessment for PBMC and three (1.25, 2.5, and 5 µg/mL) for HepG2 cells based on cytotoxicity tests (MTT assay). Results showed that geraniol did not present genotoxic or clastogenic/aneugenic effects on both cell types under the conditions studied. However, caution is advised in the use of this substance by humans, since a significant reduction in viability of HepG2 and a marked decrease in cell viability on normal PBMC were verified.
Huang, Yan-Feng; Zhu, Da-Jian; Chen, Xiao-Wu; Chen, Qi-Kang; Luo, Zhen-Tao; Liu, Chang-Chun; Wang, Guo-Xin; Zhang, Wei-Jie; Liao, Nv-Zhu
2017-06-20
Although initially effective against metastatic colorectal cancer (CRC), irinotecan-based chemotherapy leads to resistance and adverse toxicity. Curcumin is well known for its anti-cancer effects in many cancers, including CRC. Here, we describe reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress as important mechanisms by which curcumin enhances irinotecan's effects on CRC cells. CRC cell lines were treated with curcumin and/or irinotecan for 24 h, and then evaluated using cell proliferation assays, cell apoptosis assays, cell cycle analysis, intracellular Ca2+ measurements, ROS measurements and immunoblotting for key ER stress-related proteins. We found that cell viability was inhibited and apoptosis was increased, accompanied by ROS generation and ER stress activation in CRC cells treated with curcumin alone or in combination with irinotecan. Blocking ROS production attenuated the expression of two markers of ER stress: binding of immunoglobulin protein (BIP) and CCAAT/enhancer-binding protein homologous protein (CHOP). Blocking CHOP expression using RNA interference also inhibited ROS generation. These results demonstrated that curcumin could enhance the effects of irinotecan on CRC cells by inhibiting cell viability and inducing cell cycle arrest and apoptosis, and that these effects may be mediated, in part, by ROS generation and activation of the ER stress pathway.
Comparison of submerged and unsubmerged printing of ovarian cancer cells.
Davidoff, Sherry N; Au, David; Smith, Samuel; Brooks, Amanda E; Brooks, Benjamin D
2015-01-01
A high-throughput cell based assay would greatly aid in the development and screening of ovarian cancer drug candidates. Previously, a three-dimensional microfluidic printer that is not only capable of controlling the location of cell deposition, but also of maintaining a liquid, nutrient rich environment to preserve cellular phenotype has been developed (Wasatch Microfluidics). In this study, we investigated the impact (i.e., viability, density, and phenotype) of depositing cells on a surface submerged in cell culture media. It was determined that submersion of the microfluidic print head in cell media did not alter the cell density, viability, or phenotype.. This article describes an in depth study detailing the impact of one of the fundamental components of a 3D microfluidic cell printer designed to mimic the in vivo cell environment. Development of such a tool holds promise as a high-throughput drug-screening platform for new cancer therapeutics.
Impact of ZnO and Ag Nanoparticles on Bacterial Growth and Viability
NASA Astrophysics Data System (ADS)
Olson, M. S.; Digiovanni, K. A.
2007-12-01
Hundreds of consumer products containing nanomaterials are currently available in the U.S., including computers, clothing, cosmetics, sports equipment, medical devices and product packaging. Metallic nanoparticles can be embedded in or coated on product surfaces to provide antimicrobial, deodorizing, and stain- resistant properties. Although these products have the potential to provide significant benefit to the user, the impact of these products on the environment remains largely unknown. The purpose of this project is to study the effect of metallic nanoparticles released to the environment on bacterial growth and viability. Inhibition of bacterial growth was tested by adding doses of suspended ZnO and Ag nanoparticles into luria broth prior to inoculation of Escherichia coli cells. ZnO particles (approximately 40 nm) were obtained commercially and Ag particles (12-14 nm) were fabricated by reduction of silver nitrate with sodium borohydride. Toxicity assays were performed to test the viability of E. coli cells exposed to both ZnO and Ag nanoparticles using the LIVE/DEAD BacLight bacterial viability kit (Invitrogen). Live cells stain green whereas cells with compromised membranes that are considered dead or dying stain red. Cells were first grown, stained, and exposed to varying doses of metallic nanoparticles, and then bacterial viability was measured hourly using fluorescence microscopy. Results indicate that both ZnO and Ag nanoparticles inhibit the growth of E. coli in liquid media. Preliminary results from toxicity assays confirm the toxic effect of ZnO and Ag nanoparticles on active cell cultures. Calculated death rates resulting from analyses of toxicity studies will be presented.
Amigo-Benavent, M; Wang, S; Mateos, R; Sarriá, B; Bravo, L
2017-08-01
This work aimed at studying the effects of green coffee bean (GCBE) and yerba mate (YME) extracts, their main phenolic components (5-caffeoylquinic acid, 5-CQA; 3,5-dicaffeoylquinic acid, 3,5-DCQA) and metabolites (ferulic acid, FA; caffeic acid, CA; dihydrocaffeic acid, DHCA; and dihydroferulic acid, DHFA) along with caffeine (CAF) on the viability and proliferation of different human cell lines. Extracts (10-1000 μg/mL) and standards (10-1000 μM) were assayed in colon (Caco-2), lung (A549), oesophageal (OE-33), urinary bladder (T24) human carcinoma cells, and a non-cancer cell line (CCD-18Co). YME significantly reduced viability of cancer cells at all assayed concentrations, the higher doses also reducing cell proliferation. GCBE effects on cell viability were more effective at 100 and 1000 μg/mL, showing modest effects on cell proliferation. The highest doses of 5-CQA and 3,5-DCQA reduced cell viability and proliferation in all cell lines, whereas FA, DHCA and DHFA had lower and variable effects. Caffeine had no effect. Dietary-attainable concentrations (0.1, 1 and 10 μg/mL) of YME were tested for cytotoxicity and reactive oxygen species generation, showing no cytotoxic effect. Low concentrations of all tested compounds were non-cytotoxic to CCD-18Co cells. YME and to a lower degree GCBE, their phenolic components and metabolites may decrease cancer cell viability and proliferation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Viability Study for an Unattended UF 6 Cylinder Verification Station: Phase I Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leon E.; Miller, Karen A.; Garner, James R.
In recent years, the International Atomic Energy Agency (IAEA) has pursued innovative techniques and an integrated suite of safeguards measures to address the verification challenges posed by the front end of the nuclear fuel cycle. Among the unattended instruments currently being explored by the IAEA is an Unattended Cylinder Verification Station (UCVS) that could provide automated, independent verification of the declared relative enrichment, 235U mass, total uranium mass and identification for all declared UF 6 cylinders in a facility (e.g., uranium enrichment plants and fuel fabrication plants). Under the auspices of the United States and European Commission Support Programs tomore » the IAEA, a project was undertaken to assess the technical and practical viability of the UCVS concept. The US Support Program team consisted of Pacific Northwest National Laboratory (PNNL, lead), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL) and Savanah River National Laboratory (SRNL). At the core of the viability study is a long-term field trial of a prototype UCVS system at a Westinghouse fuel fabrication facility. A key outcome of the study is a quantitative performance evaluation of two nondestructive assay (NDA) methods being considered for inclusion in a UCVS: Hybrid Enrichment Verification Array (HEVA), and Passive Neutron Enrichment Meter (PNEM). This report provides context for the UCVS concept and the field trial: potential UCVS implementation concepts at an enrichment facility; an overview of UCVS prototype design; field trial objectives and activities. Field trial results and interpretation are presented, with a focus on the performance of PNEM and HEVA for the assay of over 200 “typical” Type 30B cylinders, and the viability of an “NDA Fingerprint” concept as a high-fidelity means to periodically verify that the contents of a given cylinder are consistent with previous scans. A modeling study, combined with field-measured instrument uncertainties, provides an assessment of the partial-defect sensitivity of HEVA and PNEM for both one-time assay and (repeated) NDA Fingerprint verification scenarios. The findings presented in this report represent a significant step forward in the community’s understanding of the strengths and limitations of the PNEM and HEVA NDA methods, and the viability of the UCVS concept in front-end fuel cycle facilities. This experience will inform Phase II of the UCVS viability study, should the IAEA pursue it.« less
Grenade, Charlotte; Moniotte, Nicolas; Rompen, Eric; Vanheusden, Alain; Mainjot, Amélie; De Pauw-Gillet, Marie-Claire
2016-12-01
In vitro studies about biomaterials biological properties are essential screening tests. Yet cell cultures encounter difficulties related to cell retention on material surface or to the observation of both faces of permeable materials. The objective of the present study was to develop a reliable in vitro method to study cell behavior on rigid and flexible/permeable biomaterials elaborating two specific insert-based systems (IBS-R and IBS-F respectively). IBS-R was designed as a specific cylindrical polytetrafluoroethylene (PTFE) system to evaluate attachment, proliferation and morphology of human gingival fibroblasts (HGFs) on grade V titanium and lithium disilicate glass-ceramic discs characteristics of dental prostheses. The number of cells, their covering on discs and their morphology were determined from MTS assays and microscopic fluorescent images after 24, 48 and 72 h. IBS-F was developed as a two components system to study HGFs behavior on guided bone regeneration polyester membranes. The viability and the membrane barrier effect were evaluated by metabolic MTS assays and by scanning electron microscopy. IBS-R and IBS-F were shown to promote (1) easy and rapid handling; (2) cell retention on biomaterial surface; (3) accurate evaluation of the cellular proliferation, spreading and viability; (4) use of non-toxic material. Moreover IBS-F allowed the study of the cell migration through degradable membranes, with an access to both faces of the biomaterial and to the bottom of culture wells for medium changing.
An Evaluation of LH-Stimulated Testosterone Production by ...
An Evaluation of LH-Stimulated Testosterone Production by Highly Purified Rat Leydig Cells: A Complementary Screen for Steroidogenesis in the Testis. 1Botteri, N., 2Suarez, J., 2Laws, S., 2Klinefelter, G.1Oak Ridge Institute for Science and Education, Oak Ridge, TN, 2 U.S. Environmental Protection Agency, ORD, NHEERL, TAD, RTP, NCThe H295R steroidogenesis assay uses an adrenocarcinoma cell line which fails to elicit LH mediated responses. This limits the assay’s ability to detect chemicals which disrupt LH-mediated Leydig cell responses in the testis. This study evaluated whether LH-stimulated T production by purified rat Leydig cells would be altered after exposure to chemicals that failed to decrease T production in the ToxCast H295R screen. Ten chemicals negative for T inhibition in the H295R screen, were selected based on alterations in upstream substrates (deoxycorticosterone, hydroxyprogesterone) expected to result in a decrease in T. Based on earlier work, simvastatin served as our positive control. Each chemical was tested over 6 concentrations ranging from 0.1 µM to 100 µM. Leydig cells were cultured overnight under maximal LH stimulation. A minimum of 3 replicate experiments were conducted for each format (24 and 96 well) and chemical tested; cell viability was assessed using a live/dead cytotoxicity kit. T data were excluded if viability was less than 80% of control. Initial evaluation using a 24-well Leydig cell assay confir
Mather, Stuart T; Wright, Edward; Scott, Simon D; Temperton, Nigel J
2014-12-15
Pseudotype viruses (PVs) are chimeric, replication-deficient virions that mimic wild-type virus entry mechanisms and can be safely employed in neutralisation assays, bypassing the need for high biosafety requirements and performing comparably to established serological assays. However, PV supernatant necessitates -80°C long-term storage and cold-chain maintenance during transport, which limits the scope of dissemination and application throughout resource-limited laboratories. We therefore investigated the effects of lyophilisation on influenza, rabies and Marburg PV stability, with a view to developing a pseudotype virus neutralisation assay (PVNA) based kit suitable for affordable global distribution. Infectivity of each PV was calculated after lyophilisation and immediate reconstitution, as well as subsequent to incubation of freeze-dried pellets at varying temperatures, humidities and timepoints. Integrity of glycoprotein structure following treatment was also assessed by employing lyophilised PVs in downstream PVNAs. In the presence of 0.5M sucrose-PBS cryoprotectant, each freeze-dried pseudotype was stably stored for 4 weeks at up to 37°C and could be neutralised to the same potency as unlyophilised PVs when employed in PVNAs. These results confirm the viability of a freeze-dried PVNA-based kit, which could significantly facilitate low-cost serology for a wide portfolio of emerging infectious viruses. Copyright © 2014 Elsevier B.V. All rights reserved.
Rodríguez-Ruiz, Amaia; Dondero, Francesco; Viarengo, Aldo; Marigómez, Ionan
2016-06-01
A suite of organisms from different taxonomical and ecological positions is needed to assess environmentally relevant soil toxicity. A new bioassay based on Dictyostelium is presented that is aimed at integrating slime molds into such a testing framework. Toxicity tests on elutriates and the solid phase developmental cycle assay were successfully applied to a soil spiked with a mixture of Zn, Cd, and diesel fuel freshly prepared (recently contaminated) and after 2 yr of aging. The elutriates of both soils provoked toxic effects, but toxicity was markedly lower in the aged soil. In the D. discoideum developmental cycle assay, both soils affected amoeba viability and aggregation, with fewer multicellular units, smaller fruiting bodies and, overall, inhibition of fruiting body formation. This assay is quick and requires small amounts of test soil, which might facilitate its incorporation into a multispecies multiple-endpoint toxicity bioassay battery suitable for environmental risk assessment in soils. Environ Toxicol Chem 2016;35:1413-1421. © 2015 SETAC. © 2015 SETAC.
Pearson, Brooke; Mills, Alexander; Tucker, Madeline; Gao, Siyue; McLandsborough, Lynne; He, Lili
2018-06-01
Bacterial foodborne illness continues to be a pressing issue in our food supply. Rapid detection methods are needed for perishable foods due to their short shelf lives and significant contribution to foodborne illness. Previously, a sensitive and reliable surface-enhanced Raman spectroscopy (SERS) sandwich assay based on 3-mercaptophenylboronic acid (3-MBPA) as a capturer and indicator molecule was developed for rapid bacteria detection. In this study, we explored the advantages and constraints of this assay over the conventional aerobic plate count (APC) method and further developed methods for detection in real environmental and food matrices. The SERS sandwich assay was able to detect environmental bacteria in pond water and on spinach leaves at higher levels than the APC method. In addition, the SERS assay appeared to have higher sensitivity to quantify bacteria in the stationary phase. On the other hand, the APC method was more sensitive to cell viability. Finally, a method to detect bacteria in a challenging high-sugar juice matrix was developed to enhance bacteria capture. This study advanced the SERS technique for real applications in environment and food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bagnaninchi, Pierre O.; Holmes, Christina; Drummond, Nicola; Daoud, Jamal; Tabrizian, Maryam
2011-08-01
Cell viability assays are essential tools for cell biology. They assess healthy cells in a sample and enable the quantification of cellular responses to reagents of interest. Noninvasive and label-free assays are desirable in two-dimensional (2D) and three-dimensional (3D) cell culture to facilitate time-course viability studies. Cellular micromotion, emanating from cell to substrate distance variations, has been demonstrated as a marker of cell viability with electric cell-substrate impedance sensing (ECIS). In this study we investigated if optical coherence phase microscopy (OCPM) was able to report phase fluctuations of adult stem cells in 2D and 3D that could be associated with cellular micromotion. An OCPM has been developed around a Thorlabs engine (λo = 930 nm) and integrated in an inverted microscope with a custom scanning head. Human adipose derived stem cells (ADSCs, Invitrogen) were cultured in Mesenpro RS medium and seeded either on ECIS arrays, 2D cell culture dishes, or in 3D highly porous microplotted polymeric scaffolds. ADSC micromotion was confirmed by ECIS analysis. Live and fixed ADSCs were then investigated in 2D and 3D with OCPM. Significant differences were found in phase fluctuations between the different conditions. This study indicated that OCPM could potentially assess cell vitality in 2D and in 3D microstructures.
Velasquez-Vottelerd, P.; Anton, Y.; Salazar-Lugo, R.
2015-01-01
The freshwater fish Ancistrus brevifilis, which is found in Venezuelan rivers, is considered a potential sentinel fish in ecotoxicological studies. The cadmium (Cd) effect on the mitochondrial viability (MV) and acid soluble thiols levels (AST) in A. brevifilis tissues (liver, kidney, heart, and gill) was evaluated. Forty-two fish with similar sizes and weights were randomly selected, of which 7 fish (with their respective replicate) were exposed for 7 and 30 days to a Cd sublethal concentration (0.1 mg.l-1). We determined the MV through a Janus Green B colorimetric assay and we obtained the concentration of AST by Ellman’s method. Mitochondrial viability decreased in fish exposed to Cd for 30 days with the liver being the most affected tissue. We also detected a significant decrease in AST levels was in fishes exposed to Cd for 7 days in liver and kidney tissues; these results suggests that AST levels are elevated in some tissues may act as cytoprotective and adaptive alternative mechanism related to the ROS detoxification, maintenance redox status and mitochondrial viability. Organ-specifics variations were observed in both assays. We conclude that the Cd exposure effect on AST levels and MV, vary across fish tissues and is related to the exposure duration, the molecule dynamics in different tissues, the organism and environmental conditions. PMID:26623384
Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole
2018-01-01
Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Charão, Mariele F; Baierle, Marília; Gauer, Bruna; Goethel, Gabriela; Fracasso, Rafael; Paese, Karina; Brucker, Natália; Moro, Angela M; Bubols, Guilherme B; Dias, Bruna B; Matte, Ursula S; Guterres, Silvia S; Pohlmann, Adriana R; Garcia, Solange C
2015-06-01
Many acute poisonings lack effective and specific antidotes. Due to both intentional and accidental exposures, paraquat (PQ) causes thousands of deaths annually, especially by pulmonary fibrosis. Melatonin (Mel), when incorporated into lipid-core nanocapsules (Mel-LNC), has enhanced antioxidant properties. The effects of such a formulation have not yet been studied with respect to mitigation of PQ- induced cytotoxicity and DNA damage. Here, we have tested whether Mel-LNC can ameliorate PQ-induced toxicity in the A549 alveolar epithelial cell line. Physicochemical characterization of the formulations was performed. Cellular uptake was measured using nanocapsules marked with rhodamine B. Cell viability was determined by the MTT assay and DNA damage was assessed by the comet assay. The enzyme-modified comet assay with endonuclease III (Endo III) and formamidopyrimidine glycosylase (FPG) were used to investigate oxidative DNA damage. Incubation with culture medium for 24h did not alter the granulometric profile of Mel-LNC formulations. Following treatment (3 and 24h), red fluorescence was detected around the cell nucleus, indicating internalization of the formulation. Melatonin solution (Mel), Mel-LNC, and LNC did not have significant effects on cell viability or DNA damage. Pre-treatment with Mel-LNC enhanced cell viability and showed a remarkable reduction in % DNA in tail compared to the PQ group; this was not observed in cells pre-treated with Mel. PQ induces oxidative DNA damage detected with the enzyme-modified comet assay. Mel-LNC reduced this damage more effectively than did Mel. In summary, Mel-LNC is better than Mel at protecting A549 cells from the cytotoxic and genotoxic effects of PQ. Copyright © 2015 Elsevier B.V. All rights reserved.
Hodgkinson, Natasha; Kruger, Cherie Ann; Mokwena, Mpho; Abrahamse, Heidi
2017-12-01
Cervical cancer is the most common gynecological malignancy worldwide, and the leading cause of cancer related deaths among females. Conventional treatment for early cervical cancer is radical hysterectomy. In locally advanced cancer the treatment of choice is concurrent chemo radiation. Although such treatment methods show promise, they do have adverse side effects. To minimize these effects, as well as prevent cancer re-occurrence, new treatment methods are being investigated. Photodynamic therapy (PDT) involves the selective uptake of a photosensitizer (PS) by cancer cells, illumination with light of an appropriate wavelength that triggers a photochemical reaction leading to the generation of reactive oxygen and subsequent tumor regression. The effect of PDT on a cervical cancer cell line (HeLa) was assessed by exposing cultured cells to a sulphonated zinc phthalocyanine PS (ZnPcS mix ) and irradiating the cells using a 673nm diode laser. The effects were measured using the Trypan blue viability assay, adenosine triphosphate assay (ATP) luminescence assay for proliferation, Lactate Dehydrogenase (LDH) membrane integrity cytotoxicity assay, and fluorescent microscopy to assess PS cellular localization and nuclear damage. Fluorescent microscopy revealed localization of the PS in the cytoplasm and perinuclear region of HeLa cells. PDT treated cellular responses showed dose dependent structural changes, with decreased cell viability and proliferation, as well as considerable membrane damage. Hoechst stained cells also revealed DNA damage in PDT treated cells. The final findings from this study suggest that ZnPcS mix is a promising PS for the PDT treatment of cervical cancer in vitro, where a significant 85% cellular cytotoxicity with only 25% cellular viability was noted in cells which received 1μM ZnPcS mix when an 8J/cm 2 fluence was applied. Copyright © 2017 Elsevier B.V. All rights reserved.
MiR-217 promoted the proliferation and invasion of glioblastoma by repressing YWHAG.
Wang, Hongbin; Zhi, Hua; Ma, Dongzhou; Li, Tao
2017-04-01
To study the effects of miR-217 on glioblastoma cell proliferation, migration and invasion and its regulation on YWHAG. QRT-PCR was used to detect the expression of related mRNAs and miRNA in both glioblastoma tissues and cells. Western blot was used to determine the protein expression of related genes. The transfection was performed using lipo2000. MTT assay, colony formation assay, wound healing assay, Transwell assay as well as flow cytometry were employed to determine the viability, proliferation, migration, invasion and mitosis of UG87 MG cell line. Besides, the dual luciferase reporter gene assay was used to determine the direct targeting relationship between miR-217 and YWHAG. Xenograft models were also constructed and the effect of miR-217 on tumor growth was studied in vivo. MiR-217 was up-regulated, whereas YWHAG was down-regulated in glioblastoma tissues and cells. The down-regulation of miR-217 or the up-regulation of YWHAG suppressed the viability, proliferation, migration, invasion and mitosis of U87 MG cells in vitro. In addition, MiR-217 directly targeted 3'UTR of YWHAG and suppressed the expression of YWHAG. Up-regulation of miR-217 could efficiently attenuate the inhibitory effects of YWHAG overexpression on the proliferation and metastasis of U87 MG cells. YWHAG was able to accelerate the phosphorylation of MDM4 and lead to the degradation of P53, which provides a potential mechanism for the tumor-promoting role of miR-217 in glioblastoma cells. By constructing xenograft models, it was also confirmed that miR-217 could promote tumor growth in vivo. MiR-217 could promote the viability, proliferation, migration, invasion and mitosis of glioblastoma cells both in vitro and in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evaluation of Anti-HIV-1 Mutagenic Nucleoside Analogues*
Vivet-Boudou, Valérie; Isel, Catherine; El Safadi, Yazan; Smyth, Redmond P.; Laumond, Géraldine; Moog, Christiane; Paillart, Jean-Christophe; Marquet, Roland
2015-01-01
Because of their high mutation rates, RNA viruses and retroviruses replicate close to the threshold of viability. Their existence as quasi-species has pioneered the concept of “lethal mutagenesis” that prompted us to synthesize pyrimidine nucleoside analogues with antiviral activity in cell culture consistent with an accumulation of deleterious mutations in the HIV-1 genome. However, testing all potentially mutagenic compounds in cell-based assays is tedious and costly. Here, we describe two simple in vitro biophysical/biochemical assays that allow prediction of the mutagenic potential of deoxyribonucleoside analogues. The first assay compares the thermal stabilities of matched and mismatched base pairs in DNA duplexes containing or not the nucleoside analogues as follows. A promising candidate should display a small destabilization of the matched base pair compared with the natural nucleoside and the smallest gap possible between the stabilities of the matched and mismatched base pairs. From this assay, we predicted that two of our compounds, 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine, should be mutagenic. The second in vitro reverse transcription assay assesses DNA synthesis opposite nucleoside analogues inserted into a template strand and subsequent extension of the newly synthesized base pairs. Once again, only 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine are predicted to be efficient mutagens. The predictive potential of our fast and easy first line screens was confirmed by detailed analysis of the mutation spectrum induced by the compounds in cell culture because only compounds 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine were found to increase the mutation frequency by 3.1- and 3.4-fold, respectively. PMID:25398876
Evaluation of anti-HIV-1 mutagenic nucleoside analogues.
Vivet-Boudou, Valérie; Isel, Catherine; El Safadi, Yazan; Smyth, Redmond P; Laumond, Géraldine; Moog, Christiane; Paillart, Jean-Christophe; Marquet, Roland
2015-01-02
Because of their high mutation rates, RNA viruses and retroviruses replicate close to the threshold of viability. Their existence as quasi-species has pioneered the concept of "lethal mutagenesis" that prompted us to synthesize pyrimidine nucleoside analogues with antiviral activity in cell culture consistent with an accumulation of deleterious mutations in the HIV-1 genome. However, testing all potentially mutagenic compounds in cell-based assays is tedious and costly. Here, we describe two simple in vitro biophysical/biochemical assays that allow prediction of the mutagenic potential of deoxyribonucleoside analogues. The first assay compares the thermal stabilities of matched and mismatched base pairs in DNA duplexes containing or not the nucleoside analogues as follows. A promising candidate should display a small destabilization of the matched base pair compared with the natural nucleoside and the smallest gap possible between the stabilities of the matched and mismatched base pairs. From this assay, we predicted that two of our compounds, 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine, should be mutagenic. The second in vitro reverse transcription assay assesses DNA synthesis opposite nucleoside analogues inserted into a template strand and subsequent extension of the newly synthesized base pairs. Once again, only 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine are predicted to be efficient mutagens. The predictive potential of our fast and easy first line screens was confirmed by detailed analysis of the mutation spectrum induced by the compounds in cell culture because only compounds 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine were found to increase the mutation frequency by 3.1- and 3.4-fold, respectively. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Chang, Chia-Chuan; Yuan, Wei; Roan, Hsiao-Yuh; Chang, Jia-Ling; Huang, Hsiu-Chen; Lee, Yu-Ching; Tsay, Huey Jen; Liu, Hui-Kang
2016-11-03
In this study, we aimed to develop a Stigmata Maydis (corn silk) fraction with dual bio-activities against oxidative stress and protein glycation to protect β-cells from diabetes-induced failure. Corn silk fractions were prepared by partition and chemically characterised by thin-layer chromatography. Free radical scavenging assay, glycation assay, and cell-based viability test (neutral red) were employed to decide the best fraction. Cell death analysis was executed by annexin V/ Propidium iodide staining. Cell proliferation was measured by WST-1. Finally, β-cell function was evaluated by β-cell marker gene expression (RT-PCR) and acute insulin secretion test. Four corn silk fractions were prepared from an ethanolic crude extract of corn silk. In vitro assays indicate ethyl acetate fraction (YMS-EA) was the most potent fraction. YMS-EA also attenuated the hydrogen peroxide- or methylglyoxal-induced induction of reactive oxygen species, reduction of cell viability, and inhibition of cell proliferation. However, YMS-EA was unable to prevent hydrogen peroxide-induced apoptosis or advanced glycation end-products-induced toxicity. Under hyperglycemic conditions, YMS-EA effectively reduced ROS levels, improved mRNA expression of insulin, glucokinase, and PDX-1, and enhanced glucose-stimulated insulin secretion. The similarity of bioactivities among apigenin, luteolin, and YMS-EA indicated that dual activities of YMS-EA might be derived from those compounds. We concluded that YMS-EA fraction could be developed as a preventive food agent against the glucotoxicity to β-cells in Type 2 diabetes.
Himuro, Sayaka; Ueno, Sugi; Noguchi, Naoto; Uchikawa, Takuya; Kanno, Toshihiro; Yasutake, Akira
2017-08-01
The genus Chlorella contains unicellular green algae that have been used as food supplements. The purpose of this work was to evaluate the safety of the Chlorella sorokiniana strain CK-22 using powdered preparation (CK-22P) both by in vitro and in vivo assays. These included an experiment for cytotoxicity using Chinese hamster lung fibroblasts (V79 cells) and a 13-week repeated-dose oral toxicity trial using Wistar rats. The cytotoxicity was evaluated by MTT assay of a hot water extract (Hw-Ex) and 80% ethanol extract (Et-Ex) of CK-22P, and no effect on cell viability was observed. The 50% viability inhibitory effect (IC50) value for Hw-Ex and Et-Ex were estimated as greater than 73 and 17 μg/ml, respectively. In the subchronic toxicity test, pelleted rodent diet containing 0%, 2.5%, 5% or 10% CK-22P was given to Wistar rats (ten animals/sex/groups) for 13 weeks. During the experimental period, no CK-22P treatment-induced differences in general condition, body weight gain, food and water consumption, ophthalmology, urinalysis, hematology, clinical chemistry, gross pathology, organ weights, histopathology, or animal death were observed. The no-observed-adverse-effect levels (NOAEL) were estimated to be 5.94 g/kg body-weight/day for males and 6.41 g/kg body-weight/day for females. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lowin, Torsten; Bleck, Janna; Schneider, Matthias; Pongratz, Georg
2018-05-24
Studies in rheumatoid arthritis synovial fibroblasts (RASF) demonstrated the expression of several transient receptor potential channels (TRP) such as TRPV1, TRPV2, TRPV4, TRPA1 and TRPM8. Upon ligation, these receptors increase intracellular calcium but they have also been linked to modulation of inflammation in several cell types. TNF was shown to increase the expression of TRPA1, the receptor for mustard oil and environmental poisons in SF, but the functional consequences have not been investigated yet. TRPA1 was detected by immunocytochemistry, western blot and cell-based ELISA. Calcium measurements were conducted in a multimode reader. Cell viability was assessed by quantification of lactate dehydrogenase (LDH) in culture supernatants and "RealTime-Glo" luminescent assays. IL-6 and IL-8 production by SF was quantified by ELISA. Proliferation was determined by cell titer blue incorporation. After 72 h, mimicking proinflammatory conditions by the innate cytokine TNF up-regulated TRPA1 protein levels in RASF which was accompanied by increased sensitivity to TRPA1 agonists AITC and polygodial. Under unstimulated conditions, polygodial elicited calcium flux only in the highest concentrations used (50 µM and 25 µM). TNF preincubation substantially lowered the activation threshold for polygodial (from 25 µM to 1 µM). In the absence of TNF pre-stimulation, only polygodial in high concentrations was able to reduce viability of synovial fibroblasts as determined by a real-time viability assay. However, following TNF preincubation, stimulation of TRPA1 led to a fast (<30 min) viability loss by necrosis of synovial fibroblasts. TRPA1 activation was also associated with decreased proliferation of RASFs, an effect that was also substantially enhanced by TNF preincubation. On the functional level, IL-6 and IL-8 production was attenuated by the TRPA1 antagonist A967079 but also polygodial, although the latter mediated this effect by reducing cell viability. Simulating inflamed conditions by preincubation of synovial fibroblasts with TNF up-regulates and sensitizes TRPA1. Subsequent activation of TRPA1 increases calcium flux and substantially reduces cell viability by inducing necrosis. Since TRPA1 agonists in the lower concentration range only show effects in TNF-stimulated RASF, this cation channel might be an attractive therapeutic target in chronic inflammation to selectively reduce the activity of proinflammatory SF in the joint. Copyright © 2018 Elsevier Inc. All rights reserved.
Wilson, C E; Dhert, W J A; Van Blitterswijk, C A; Verbout, A J; De Bruijn, J D
2002-12-01
Bone tissue engineering using patient derived cells seeded onto porous scaffolds has gained much attention in recent years. Evaluating the viability of these 3D constructs is an essential step in optimizing the process. The alamarBlue (aB) assay was evaluated for its potential to follow in vitro cell proliferation on architecturally standardized hydroxyapatite scaffolds. The impact of the aB assayed and seeding density on subsequent in vivo bone formation was investigated. Twelve scaffolds were seeded with various densities from 250 to 2.5x10(6) cells/scaffold and assay by aB at 5 time points during the 7-day culture period. Twelve additional scaffolds were seeded with 2.5x10(5) cells/scaffold. Two control and 2 aB treated scaffolds were subcutaneously implanted into each of 6 nude mice for 6 weeks. Four observers ranked bone formation using a pair wise comparison of histological sections form each mouse. The aB assay successfully followed cell proliferation, however, the diffusion kinetics of the 3D constructs must be considered. The influence of in vitro aB treatment on subsequent in vivo bone formation cannot be ruled out but was not shown to be significant in the current study. The aB assay appears to be quite promising for evaluating a maximum or end-point viability of 3D tissue engineered constructs. Finally, higher seeding densities resulted in more observed bone formation.
Ma, Huan; Mismar, Wael; Wang, Yuli; Small, Donald W.; Ras, Mat; Allbritton, Nancy L.; Sims, Christopher E.; Venugopalan, Vasan
2012-01-01
We use time-resolved interferometry, fluorescence assays and computational fluid dynamics (CFD) simulations to examine the viability of confluent adherent cell monolayers to selection via laser microbeam release of photoresist polymer micropallets. We demonstrate the importance of laser microbeam pulse energy and focal volume position relative to the glass–pallet interface in governing the threshold energies for pallet release as well as the pallet release dynamics. Measurements using time-resolved interferometry show that increases in laser pulse energy result in increasing pallet release velocities that can approach 10 m s−1 through aqueous media. CFD simulations reveal that the pallet motion results in cellular exposure to transient hydrodynamic shear stress amplitudes that can exceed 100 kPa on microsecond timescales, and which produces reduced cell viability. Moreover, CFD simulation results show that the maximum shear stress on the pallet surface varies spatially, with the largest shear stresses occurring on the pallet periphery. Cell viability of confluent cell monolayers on the pallet surface confirms that the use of larger pulse energies results in increased rates of necrosis for those cells situated away from the pallet centre, while cells situated at the pallet centre remain viable. Nevertheless, experiments that examine the viability of these cell monolayers following pallet release show that proper choices for laser microbeam pulse energy and focal volume position lead to the routine achievement of cell viability in excess of 90 per cent. These laser microbeam parameters result in maximum pallet release velocities below 6 m s−1 and cellular exposure of transient hydrodynamic shear stresses below 20 kPa. Collectively, these results provide a mechanistic understanding that relates pallet release dynamics and associated transient shear stresses with subsequent cellular viability. This provides a quantitative, mechanistic basis for determining optimal operating conditions for laser microbeam-based pallet release systems for the isolation and selection of adherent cells. PMID:22158840
Ma, Huan; Mismar, Wael; Wang, Yuli; Small, Donald W; Ras, Mat; Allbritton, Nancy L; Sims, Christopher E; Venugopalan, Vasan
2012-06-07
We use time-resolved interferometry, fluorescence assays and computational fluid dynamics (CFD) simulations to examine the viability of confluent adherent cell monolayers to selection via laser microbeam release of photoresist polymer micropallets. We demonstrate the importance of laser microbeam pulse energy and focal volume position relative to the glass-pallet interface in governing the threshold energies for pallet release as well as the pallet release dynamics. Measurements using time-resolved interferometry show that increases in laser pulse energy result in increasing pallet release velocities that can approach 10 m s(-1) through aqueous media. CFD simulations reveal that the pallet motion results in cellular exposure to transient hydrodynamic shear stress amplitudes that can exceed 100 kPa on microsecond timescales, and which produces reduced cell viability. Moreover, CFD simulation results show that the maximum shear stress on the pallet surface varies spatially, with the largest shear stresses occurring on the pallet periphery. Cell viability of confluent cell monolayers on the pallet surface confirms that the use of larger pulse energies results in increased rates of necrosis for those cells situated away from the pallet centre, while cells situated at the pallet centre remain viable. Nevertheless, experiments that examine the viability of these cell monolayers following pallet release show that proper choices for laser microbeam pulse energy and focal volume position lead to the routine achievement of cell viability in excess of 90 per cent. These laser microbeam parameters result in maximum pallet release velocities below 6 m s(-1) and cellular exposure of transient hydrodynamic shear stresses below 20 kPa. Collectively, these results provide a mechanistic understanding that relates pallet release dynamics and associated transient shear stresses with subsequent cellular viability. This provides a quantitative, mechanistic basis for determining optimal operating conditions for laser microbeam-based pallet release systems for the isolation and selection of adherent cells.
Riel, Jonathan M.; Yamauchi, Yasuhiro; Huang, Thomas T.F.; Grove, John; Ward, Monika A.
2011-01-01
Previous attempts to maintain human spermatozoa without freezing were based on short-term storage in component-rich medium and led to fast decline in motility and increased incidence of chromosome breaks. Here we report a new method in which sperm are maintained without freezing in an electrolyte-free medium (EFM) composed of glucose and bovine serum albumin. Human sperm were stored in EFM or human tubal fluid medium (HTFM) or were cryopreserved, and their motility, viability, and DNA integrity were examined at different intervals. Cryopreservation led to significant decline in sperm motility and viability and induced DNA fragmentation. Sperm stored in EFM maintained motility and viability for up to 4 and 7 wk, respectively, much longer than sperm stored in HTFM (<2 and <4 wk, respectively). DNA integrity, assessed with comet assay, was also maintained significantly better in EFM than in HTFM. One-week storage in EFM yielded motility and viability similar to that of cryopreserved sperm, but DNA integrity was significantly higher, resembling that of fresh sperm. After several weeks of storage in EFM, sperm were able to activate oocytes, undergo chromatin remodeling, and form normal zygotic chromosomes after intracytoplasmic sperm injection. This study demonstrated that human spermatozoa can be stored in EFM without freezing for several weeks while maintaining motility, viability, and chromatin integrity and that 1-wk storage in EFM offers better protection of sperm DNA integrity than cryopreservation. Sperm storage in EFM may become a viable option for the physicians working in assisted reproduction technology clinics, which would avoid cryodamage. PMID:21593474
Lovelock, Paul K; Wong, Ee Ming; Sprung, Carl N; Marsh, Anna; Hobson, Karen; French, Juliet D; Southey, Melissa; Sculley, Tom; Pandeya, Nirmala; Brown, Melissa A; Chenevix-Trench, Georgia; Spurdle, Amanda B; McKay, Michael J
2007-09-01
Assays to determine the pathogenicity of unclassified sequence variants in disease-associated genes include the analysis of lymphoblastoid cell lines (LCLs). We assessed the ability of several assays of LCLs to distinguish carriers of germline BRCA1 and BRCA2 gene mutations from mutation-negative controls to determine their utility for use in a diagnostic setting. Post-ionising radiation cell viability and micronucleus formation, and telomere length were assayed in LCLs carrying BRCA1 or BRCA2 mutations, and in unaffected mutation-negative controls. Post-irradiation cell viability and micronucleus induction assays of LCLs from individuals carrying pathogenic BRCA1 mutations, unclassified BRCA1 sequence variants or wildtype BRCA1 sequence showed significant phenotypic heterogeneity within each group. Responses were not consistent with predicted functional consequences of known pathogenic or normal sequences. Telomere length was also highly heterogeneous within groups of LCLs carrying pathogenic BRCA1 or BRCA2 mutations, and normal BRCA1 sequences, and was not predictive of mutation status. Given the significant degree of phenotypic heterogeneity of LCLs after gamma-irradiation, and the lack of association with BRCA1 or BRCA2 mutation status, we conclude that the assays evaluated in this study should not be used as a means of differentiating pathogenic and non-pathogenic sequence variants for clinical application. We suggest that a range of normal controls must be included in any functional assays of LCLs to ensure that any observed differences between samples reflect the genotype under investigation rather than generic inter-individual variation.
Kauschke, E; Rumpel, E; Fanghänel, J; Bayerlein, T; Gedrange, T; Proff, P
2006-02-01
Different clinical applications, including dentistry, are making increasing demands on bone grafting material. In the present study we have analysed the viability, proliferation and growth characteristics of fibroblasts cultured in vitro together with two different bone grafting materials, NanoBone and Straumann Bone Ceramic, over a period of 24 and 28 days respectively. Viability was measured at least every 72 hours by using the alamarBlue assay, a test that measures quantitatively cell proliferation and viability but does not require cell fixation or extraction. After one week of culture fibroblast viability was as high as in controls for both grafting materials and remained high (> 90%) for the duration of the experiment. Cell growth was evaluated microscopically. Scanning electron microscopy revealed a dense fibroblast growth at the surface of both bone grafting materials after three weeks of in vitro culture. Generally, our in vitro analyses contribute to further insights into cell - scaffold interactions.
Stapelfeldt, Karsten; Ehrke, Eric; Steinmeier, Johann; Rastedt, Wiebke; Dringen, Ralf
2017-12-01
Cellular reduction of tetrazolium salts to their respective formazans is frequently used to determine the metabolic activity of cultured cells as an indicator of cell viability. For membrane-impermeable tetrazolium salts such as WST1 the application of a membrane-permeable electron cycler is usually required to mediate the transfer of intracellular electrons for extracellular WST1 reduction. Here we demonstrate that in addition to the commonly used electron cycler M-PMS, menadione can also serve as an efficient electron cycler for extracellular WST1 reduction in cultured neural cells. The increase in formazan absorbance in glial cell cultures for the WST1 reduction by menadione involves enzymatic menadione reduction and was twice that recorded for the cytosolic enzyme-independent WST1 reduction in the presence of M-PMS. The optimized WST1 reduction assay allowed within 30 min of incubation a highly reliable detection of compromised cell metabolism caused by 3-bromopyruvate and impaired membrane integrity caused by Triton X-100, with a sensitivity as good as that of spectrophotometric assays which determine cellular MTT reduction or lactate dehydrogenase release. The short incubation period of 30 min and the observed good sensitivity make this optimized menadione-mediated WST1 reduction assay a quick and reliable alternative to other viability and toxicity assays. Copyright © 2017 Elsevier Inc. All rights reserved.
Extraction and quantification of adenosine triphosphate in mammalian tissues and cells.
Chida, Junji; Kido, Hiroshi
2014-01-01
Adenosine 5'-triphosphate (ATP) is the "energy currency" of organisms and plays central roles in bioenergetics, whereby its level is used to evaluate cell viability, proliferation, death, and energy transmission. In this chapter, we describe an improved and efficient method for extraction of ATP from tissues and cells using phenol-based reagents. The chaotropic extraction reagents reported so far co-precipitate ATP with insoluble proteins during extraction and with salts during neutralization. In comparison, the phenol-based reagents extract ATP well without the risks of co-precipitation. The extracted ATP can be quantified by the luciferase assay or high-performance liquid chromatography.
Poly(ethylene glycol) hydrogel microstructures encapsulating living cells
NASA Technical Reports Server (NTRS)
Koh, Won-Gun; Revzin, Alexander; Pishko, Michael V.
2002-01-01
We present an easy and effective method for the encapsulation of cells inside PEG-based hydrogel microstructures fabricated using photolithography. High-density arrays of three-dimensional microstructures were created on substrates using this method. Mammalian cells were encapsulated in cylindrical hydrogel microstructures of 600 and 50 micrometers in diameter or in cubic hydrogel structures in microfluidic channels. Reducing lateral dimension of the individual hydrogel microstructure to 50 micrometers allowed us to isolate 1-3 cells per microstructure. Viability assays demonstrated that cells remained viable inside these hydrogels after encapsulation for up to 7 days.
2008-03-01
the cupric form is most prevalent (Linder and Hazegh-Azam, 1996:797S). Cupric compounds are blue-green in color and highly soluble in water...reduced clearance of particles due to macrophage damage after exposure to various doses of titanium dioxide ( TiO2 )(5, 50, and 250 mg/m3) (Warheit, et al...viability. The assay measures cell viability when the tetrazolium compound is bioreduced by viable cells to a colored formazan product (see Figure 3
Boyd, Vinc; Cholewa, Olivia Maria; Papas, Klearchos K
2008-03-01
BACKGROUND: A review of current literature shows that the combined use of the cell permeable esterase-substrate fluorescein diacetate (FDA) and the cell impermeant nucleic acid stain propidium iodide (PI) to be one of the most common fluorescence-based methods to assess the viability of isolated islets of Langerhans, and it is currently used for islet product release prior to transplantation in humans. However, results from this assay do not correlate with islet viability and function or islet transplantation success in animals or humans (Eckhard et al. 2004; Ricordi et al. 2001). This may be in part attributed to considerable differences as well as discrepancies in the use of these reagents on islets. We critically surveyed the literature and evaluated the impact of a number of variables associated with the use of FDA/PI to determine their reliability in assessing islet cell viability. In addition, we evaluated other fluorescent stains, such as SYTO(R)13, SYTO(R)24 and SYBR(R)14 as possible alternatives to FDA. RESULTS: We found that the stability of stains in storage and stock solutions, the number of islets stained, concentration of stains, staining incubation time, the buffer/media used, and the method of examining islets were significant in the final scoring of viability. For archival file photos, the exposure time and camera/software settings can also impact interpretation of viability. Although our results show that FDA does detect intracellular esterase activity and staining with PI does assess cell membrane integrity, the results obtained from using these stains did not correlate directly with expected islet function and viability per transplantation into diabetic athymic nude mice (Papas et al. 2007). In addition, the use of two nucleic acid stains, such as SYTO(R)13 and PI, for live/dead scoring exhibited staining anomalies which limit their accuracy in assessing islet viability. CONCLUSIONS: From a review of the literature and from our observations on the impact of reagent handling and various staining and imaging parameters used to visually evaluate islets, consistent interpretation of islet cell membrane integrity and viability is dependent upon a number of factors. We discuss the utility and limitations of these reagents in evaluating islet cell membrane integrity and viability.
Boyd, Vinc; Cholewa, Olivia Maria; Papas, Klearchos K.
2010-01-01
Background A review of current literature shows that the combined use of the cell permeable esterase-substrate fluorescein diacetate (FDA) and the cell impermeant nucleic acid stain propidium iodide (PI) to be one of the most common fluorescence-based methods to assess the viability of isolated islets of Langerhans, and it is currently used for islet product release prior to transplantation in humans. However, results from this assay do not correlate with islet viability and function or islet transplantation success in animals or humans (Eckhard et al. 2004; Ricordi et al. 2001). This may be in part attributed to considerable differences as well as discrepancies in the use of these reagents on islets. We critically surveyed the literature and evaluated the impact of a number of variables associated with the use of FDA/PI to determine their reliability in assessing islet cell viability. In addition, we evaluated other fluorescent stains, such as SYTO®13, SYTO®24 and SYBR®14 as possible alternatives to FDA. Results We found that the stability of stains in storage and stock solutions, the number of islets stained, concentration of stains, staining incubation time, the buffer/media used, and the method of examining islets were significant in the final scoring of viability. For archival file photos, the exposure time and camera/software settings can also impact interpretation of viability. Although our results show that FDA does detect intracellular esterase activity and staining with PI does assess cell membrane integrity, the results obtained from using these stains did not correlate directly with expected islet function and viability per transplantation into diabetic athymic nude mice (Papas et al. 2007). In addition, the use of two nucleic acid stains, such as SYTO®13 and PI, for live/dead scoring exhibited staining anomalies which limit their accuracy in assessing islet viability. Conclusions From a review of the literature and from our observations on the impact of reagent handling and various staining and imaging parameters used to visually evaluate islets, consistent interpretation of islet cell membrane integrity and viability is dependent upon a number of factors. We discuss the utility and limitations of these reagents in evaluating islet cell membrane integrity and viability. PMID:20814586
In vitro DNA damage by Casiopeina II-gly in human blood cells.
Rodríguez-Mercado, Juan José; Florín-Ramírez, Diana; Álvarez-Barrera, Lucila; Altamirano-Lozano, Mario Agustín
2017-04-01
A variety of metal ions have biological functions, and many researchers have not actively investigated copper compounds, based on the assumption that endogenous metals might be less toxic. In the present study, we used a dual fluorochrome method and a single cell gel electrophoresis (SCGE) assay at pH > 13 to evaluate the cell viability and DNA damage induced by a copper-based antineoplastic drug, Casiopeina II-gly®, at concentrations of 1.04, 2.08, 4.17, 8.35 or 16 μg/mL in human peripheral-blood leukocytes in vitro. We observed that Casiopeina II-gly® reduced cell viability at high concentrations (8.35 and 16 μg/mL) and induced DNA damage characterized by single-strand breaks and alkali labile sites at several concentrations from 2.08 to 16 μg/mL. This chemical clearly affected DNA migration in a concentration- and time-dependent manner and induced genotoxic effects in few minutes (>20 min), at which point the genotoxicity was followed by cytotoxicity.
Fabrication and Characterization of Magnesium Ferrite-Based PCL/Aloe Vera Nanofibers
Thompson, Zanshe; Rahman, Shekh; Yarmolenko, Sergey; Sankar, Jagannathan; Kumar, Dhananjay
2017-01-01
Composite nanofibers of biopolymers and inorganic materials have been widely explored as tissue engineering scaffolds because of their superior structural, mechanical and biological properties. In this study, magnesium ferrite (Mg-ferrite) based composite nanofibers were synthesized using an electrospinning technique. Mg-ferrite nanoparticles were first synthesized using the reverse micelle method, and then blended in a mixture of polycaprolactone (PCL), a synthetic polymer, and Aloe vera, a natural polymer, to create magnetic nanofibers by electrospinning. The morphology, structural and magnetic properties, and cellular compatibility of the magnetic nanofibers were analyzed. Mg-ferrite/PCL/Aloe vera nanofibers showed good uniformity in fiber morphology, retained their structural integrity, and displayed magnetic strength. Experimental results, using cell viability assay and scanning electron microscopy imaging showed that magnetic nanofibers supported 3T3 cell viability. We believe that the new composite nanofibrous membranes developed in this study have the ability to mimic the physical structure and function of tissue extracellular matrix, as well as provide the magnetic and soluble metal ion attributes in the scaffolds with enhanced cell attachment, and thus improve tissue regeneration. PMID:28800071
Importance of Donor Chondrocyte Viability for Osteochondral Allografts.
Cook, James L; Stannard, James P; Stoker, Aaron M; Bozynski, Chantelle C; Kuroki, Keiichi; Cook, Cristi R; Pfeiffer, Ferris M
2016-05-01
Osteochondral allograft (OCA) transplantation provides a biological treatment option for functional restoration of large articular cartilage defects in multiple joints. While successful outcomes after OCA transplantation have been linked to viable donor chondrocytes, the importance of donor cell viability has not been comprehensively validated. To use a canine model to determine the importance of donor chondrocyte viability at the time of implantation with respect to functional success of femoral condylar OCAs based on radiographic, gross, cell viability, histologic, biochemical, and biomechanical outcome measures. Controlled laboratory study. After approval was obtained from the institutional animal care and use committee, adult female dogs (N = 16) were implanted with 8-mm cylindrical OCAs from male dogs in the lateral and medial femoral condyles of 1 knee. OCAs were preserved for 28 or 60 days after procurement, and chondrocyte viability was quantified before implantation. Two different storage media, temperatures, and time points were used to obtain a spectrum of percentage chondrocyte viability at the time of implantation. A successful outcome was defined as an OCA that was associated with graft integration, maintenance of hyaline cartilage, lack of associated cartilage disorder, and lack of fibrillation, fissuring, or fibrous tissue infiltration of the allograft based on subjective radiographic, gross, and histologic assessments at 6 months after implantation. Chondrocyte viability ranged from 23% to 99% at the time of implantation. All successful grafts had >70% chondrocyte viability at the time of implantation, and no graft with chondrocyte viability <70% was associated with a successful outcome. Live-dead stained sections and histologic findings with respect to cell morphological features suggested that successful grafts were consistently composed of viable chondrocytes in lacunae, while grafts that were not successful were composed of nonviable chondrocytes with infiltration of fibroblasts from the surrounding recipient tissues. In situ polymerase chain reaction (fluorescence in situ hybridization [FISH]) assays were performed in an attempt to distinguish donor (male) cells from recipient (female) cells. Unfortunately, this technique was exceptionally difficult to perform on intact articular cartilage sections, and consistent, repeatable data could not be obtained from this testing. However, the data did support histologic and live-dead data, which strongly suggested that successful grafts retained viable donor (male) chondrocytes and unsuccessful grafts degraded and were replaced by fibrous tissue populated with recipient (female) fibroblasts. Viable chondrocytes in OCAs at the time of transplantation are primarily responsible for maintenance of donor articular cartilage health in the long term. Optimizing chondrocyte viability in all aspects of OCA transplantation-including procurement, processing, storage, transportation, and surgical implantation-needs to be a primary focus for OCA clinical use. © 2016 The Author(s).
Exploring Inflammatory Disease Drug Effects on Neutrophil Function
Wu, Xiaojie; Kim, Donghyuk; Young, Ashlyn T.; Haynes, Christy L.
2014-01-01
Neutrophils are critical inflammatory cells; thus, it is important to characterize the effects of drugs on neutrophil function in the context of inflammatory diseases. Herein, chemically guided neutrophil migration, known as chemotaxis, is studied in the context of drug treatment at the single cell level using a microfluidic platform, complemented by cell viability assays and calcium imaging. Three representative drugs known to inhibit surface receptor expression, signaling enzyme activity, and the elevation of intracellular Ca2+ levels, each playing a significant role in neutrophil chemotactic pathways, are used to examine the in vitro drug effects on cellular behaviors. The microfluidic device establishes a stable concentration gradient of chemokines across a cell culture chamber so that neutrophil migration can be monitored under various drug-exposure conditions. Different time- and concentration-dependent regulatory effects were observed by comparing the motility, polarization, and effectiveness of neutrophil chemotaxis in response to the three drugs. Viability assays revealed distinct drug capabilities in reducing neutrophil viability while calcium imaging clarified the role of Ca2+ in the neutrophil chemotactic pathway. This study provides mechanistic insight into the drug effects on neutrophil function, facilitating comparison of current and potential pharmaceutical approaches. PMID:24946254
Sakamoto, Asuka; Nakamura, Masatsugu
2012-01-01
This study evaluated the effects of flavin adenine dinucleotide (FAD) on ultraviolet B (UV-B)-induced damage in cultured human corneal epithelial (HCE-T) cells. The cultured HCE-T cells were treated with 0.003125-0.05% FAD before exposure to 80 mJ/cm2 UV-B. Cell viability was measured 24 h after UV-B irradiation using the MTS assay. Reactive oxygen species (ROS) were detected 30 min after UV-B irradiation using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester. Apoptosis was evaluated 4 h after UV-B irradiation in the caspase-3/7 activity assay. UV-B irradiation reduced cell viability and stimulated ROS production and caspase-3/7 activity in HCE-T cells. Pretreatment of UV-B irradiated HCE-T cells with FAD significantly attenuated cell viability reduction and inhibited the stimulation of both ROS production and caspase-3/7 activity due to UV-B exposure compared with those with vehicle (0% FAD). These results clarified that FAD inhibits ROS-mediated apoptosis by UV-B irradiation in HCE-T cells and suggest that FAD may be effective as a radical scavenger in UV-B-induced corneal damage.
Thermosensitive nanospheres with a gold layer revealed as low-cytotoxic drug vehicles.
Qin, Jian; Jo, Yun Suk; Ihm, Jong Eun; Kim, Do Kyung; Muhammed, Mamoun
2005-09-27
In this paper, the positive effect of a gold layer on cell viability is demonstrated by examining the results given by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfop henyl)-2H-tetrazolium (MTS) assay and two-color cell fluorescence viability (TCCV) assay. These cytotoxicity tests were performed with human cervical adenocarcinoma cells (HeLa cell line) and transformed African green monkey kidney fibroblast cells (Cos-7 cell line). To fabricate the nanostructures as drug vehicles, first, poly(l,l-lactide-co-ethylene glycol) (PLLA-PEG) and poly(N-isopropylacrylamide-co-D,D-lactide) (PNIPAAm-PDLA) were synthesized, and then two kinds of thermosensitive nanospheres comprising "shell-in-shell" structures without a gold layer (PLLA-PEG@PNIPAAm-PDLA) and with a gold layer (Au@PLLA-PEG@PNIPAAm-PDLA) were constructed by a modified double-emulsion method (MDEM). Both of them displayed a unique thermosensitive character exhibiting the lower critical solubility temperature (LCST) at 36.7 degrees C which was confirmed by UV-vis spectroscopy and differential scanning calorimetry (DSC). The release profiles of entrapped bovine serum albumin (BSA) were monitored at 22 and 37 degrees C, respectively, to reveal the thermal dependence on the release rate. In cell viability tests, both PLLA-PEG@PNIPAAm-PDLA and Au@PLLA-PEG@PNIPAAm-PDLA showed excellent cell viability, and furthermore, Au@PLLA-PEG@PNIPAAm-PDLA, particularly at high doses, exhibited more enhanced cell viability than PLLA-PEG@PNIPAAm-PDLA. This effect is mainly attributed to the gold layer which binds the protein molecules first and consequently facilitates transmembrane uptake of essential nutrients in the cell media, resulting in favorable cell proliferation.
Micro-RNA-181a suppresses progestin-promoted breast cancer cell growth.
Gu, Muqing; Wang, Lijuan; Yang, Chun; Li, Xue; Jia, Chanwei; Croteau, Stephane; Ruan, Xiangyan; Hardy, Pierre
2018-08-01
Recent investigations have indicated that hormone therapy may increase the risk of breast cancer (BC), and the addition of synthetic progestins may play a critical role in this. Several studies have pointed out the important role of progesterone receptor membrane component 1 (PGRMC1) in the development of BC, especially with hormone therapy using progestins. Although the deregulation of microRNA-181a (miR-181a) is often associated with human BC, the effect of miR-181a on PGRMC1 expression during hormone therapy has not been investigated. Cell viability assay and apoptosis assay were performed to investigate the pro-BC effect of progestin (norethisterone, NET) and anti-BC effect of miR-181a on MCF-7 cells. Quantitative RT-PCR and Western blot analysis were used to evaluate gene expressions in the NET-treated MCF-7 cells. NET dose-dependently increased BC cell viability and this effect was accompanied by increased expression of PGRMC1. Overexpression of miR-181a strongly reduced the cell viability of MCF-7 cells, mainly through increased apoptosis, which was evidenced by substantially increased gene expression of pro-apoptosis factors such as BAX and CASPASE 9 in miR-181a overexpressed cells. Importantly, miR-181a abrogated NET-stimulated cell viability and PGRMC1 expression. We provide evidence that miR-181a promotes MCF-7 cell apoptosis. Moreover, miR-181a suppressed NET-provoked cell viability and PGRMC1 expression in MCF-7 cells. These data may suggest a therapeutic strategy of using miR-181a to reduce BC risk in progestin hormone replacement therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Study of wettability and cell viability of H implanted stainless steel
NASA Astrophysics Data System (ADS)
Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur
2018-03-01
In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.
2011-05-01
inhibitor staurospor- ine and increased hyperosmolar stress ( sorbitol ). MTS assays assess cell viability over a relatively short term and thus are not...doses of etoposide, MS-275, oxamflatin, doxorubicin, MG132, UV, temozolomide, 5-FU, staurosporine or sorbitol as indicated followed by MTT assay to...Meeting, PA), 5-Fluorouracil (5-FU), Doxorubicin Hydro- chloride, Etoposide, Oxamflatin, Temozolomide, Sorbitol , MS- 275, and Staurosporine (Sigma, St
Nascimento, Ana Karina Lima; Melo-Silveira, Raniere Fagundes; Dantas-Santos, Nednaldo; Fernandes, Júlia Morais; Zucolotto, Silvana Maria; Rocha, Hugo Alexandre Oliveira; Scortecci, Katia Castanho
2013-01-01
Plukenetia volubilis Linneo, or Sacha inca, is an oleaginous plant from the Euphorbiaceae family. The aim of this work was to perform a chemical and biological analysis of different leaf extracts from P. volubilis such as aqueous extract (AEL), methanol (MEL), ethanol (EEL), chloroform (CEL), and hexane (HEL). Thin layer chromatography analysis revealed the presence of phenolic compounds, steroids, and/or terpenoídes. Furthermore, the antioxidant activities were analyzed by in vitro assays and their effects on cell lineages by in vivo assays. The Total Antioxidant Capacity (TCA) was expressed as equivalent ascorbic acid (EEA/g) and it was observed that the extracts showed values ranging from 59.31 to 97.76 EAA/g. Furthermore, the DPPH assay values ranged from 62.8% to 88.3%. The cell viability assay showed that the extracts were able to reduce viability from cancer cells such as HeLa and A549 cells. The extracts MEL and HEL (250 µg/mL) were able to reduce the proliferation of HeLa cells up to 54.3% and 48.5%, respectively. The flow cytometer results showed that these extracts induce cell death via the apoptosis pathway. On the other hand, the extracts HEL and AEL were able to induce cell proliferation of normal fibroblast 3T3 cells. PMID:24159355
Dielectrophoretic Field-Flow Fractionation System for Detection of Aquatic Toxicants
Pui-ock, Sittisak; Ruchirawat, Mathuros; Gascoyne, Peter
2009-01-01
Dielectrophoretic field-flow fractionation (dFFF) was applied as a contact-free way to sense changes in the plasma membrane capacitances and conductivities of cultured human HL-60 cells in response to toxicant exposure. A micropatterned electrode imposed electric forces on cells in suspension in a parabolic flow profile as they moved through a thin chamber. Relative changes in the dFFF peak elution time, reflecting changes in cell membrane area and ion permeability, were measured as indices of response during the first 150 min of exposure to eight toxicants having different single or mixed modes of action (acrylonitrile, actinomycin D, carbon tetrachloride, endosulfan, N-nitroso-N-methylurea (NMU), paraquat dichloride, puromycin, and styrene oxide). The dFFF method was compared with the cell viability assay for all toxicants and with the mitochondrial potentiometric dye assay or DNA alkaline comet assay according to the mode of action of the specific agents. Except for low doses of nucleic acid-targeting agents (actinomycin D and NMU), the dFFF method detected all toxicants more sensitively than other assays, in some cases up to 105 times more sensitively than the viability approach. The results suggest the dFFF method merits additional study for possible applicability in toxicology. PMID:18788754
Bersabé, D; García-Dorado, A
2013-02-01
The consequences of inbreeding on fitness can be crucial in evolutionary and conservation grounds and depend upon the efficiency of purging against deleterious recessive alleles. Recently, analytical expressions have been derived to predict the evolution of mean fitness, taking into account both inbreeding and purging, which depend on an 'effective purging coefficient (d(e) )'. Here, we explore the validity of that predictive approach and assay the strength of purging by estimating d(e) for egg-to-pupae viability (EPV) after a drastic reduction in population size in a recently captured base population of Drosophila melanogaster. For this purpose, we first obtained estimates of the inbreeding depression rate (δ) for EPV in the base population, and we found that about 40% was due to segregating recessive lethals. Then, two sets of lines were founded from this base population and were maintained with different effective size throughout the rest of the experiment (N = 6; N = 12), their mean EPV being assayed at different generations. Due to purging, the reductions in mean EPV experienced by these lines were considerably smaller than the corresponding neutral predictions. For the 60% of δ attributable to nonlethal deleterious alleles, our results suggest an effective purging coefficient d(e) > 0.02. Similarly, we obtain that d(e) > 0.09 is required to roughly account for purging against the pooled inbreeding depression from lethal and nonlethal deleterious alleles. This implies that purging should be efficient for population sizes of the order of a few tens and larger, but might be inefficient against nonlethal deleterious alleles in smaller populations. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent
NASA Astrophysics Data System (ADS)
Jaworski, Sławomir; Wierzbicki, Mateusz; Sawosz, Ewa; Jung, Anna; Gielerak, Grzegorz; Biernat, Joanna; Jaremek, Henryk; Łojkowski, Witold; Woźniak, Bartosz; Wojnarowicz, Jacek; Stobiński, Leszek; Małolepszy, Artur; Mazurkiewicz-Pawlicka, Marta; Łojkowski, Maciej; Kurantowicz, Natalia; Chwalibog, André
2018-04-01
One of the most promising methods against drug-resistant bacteria can be surface-modified materials with biocidal nanoparticles and nanocomposites. Herein, we present a nanocomposite with silver nanoparticles (Ag-NPs) on the surface of graphene oxide (GO) as a novel multifunctional antibacterial and antifungal material. Ultrasonic technologies have been used as an effective method of coating polyurethane foils. Toxicity on gram-negative bacteria ( Escherichia coli), gram-positive bacteria ( Staphylococcus aureus and Staphylococcus epidermidis), and pathogenic yeast ( Candida albicans) was evaluated by analysis of cell morphology, assessment of cell viability using the PrestoBlue assay, analysis of cell membrane integrity using the lactate dehydrogenase assay, and reactive oxygen species production. Compared to Ag-NPs and GO, which have been widely used as antibacterial agents, our nanocomposite shows much higher antimicrobial efficiency toward bacteria and yeast cells.
Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent.
Jaworski, Sławomir; Wierzbicki, Mateusz; Sawosz, Ewa; Jung, Anna; Gielerak, Grzegorz; Biernat, Joanna; Jaremek, Henryk; Łojkowski, Witold; Woźniak, Bartosz; Wojnarowicz, Jacek; Stobiński, Leszek; Małolepszy, Artur; Mazurkiewicz-Pawlicka, Marta; Łojkowski, Maciej; Kurantowicz, Natalia; Chwalibog, André
2018-04-23
One of the most promising methods against drug-resistant bacteria can be surface-modified materials with biocidal nanoparticles and nanocomposites. Herein, we present a nanocomposite with silver nanoparticles (Ag-NPs) on the surface of graphene oxide (GO) as a novel multifunctional antibacterial and antifungal material. Ultrasonic technologies have been used as an effective method of coating polyurethane foils. Toxicity on gram-negative bacteria (Escherichia coli), gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis), and pathogenic yeast (Candida albicans) was evaluated by analysis of cell morphology, assessment of cell viability using the PrestoBlue assay, analysis of cell membrane integrity using the lactate dehydrogenase assay, and reactive oxygen species production. Compared to Ag-NPs and GO, which have been widely used as antibacterial agents, our nanocomposite shows much higher antimicrobial efficiency toward bacteria and yeast cells.
Effects of demethoxycurcumin on the viability and apoptosis of skin cancer cells.
Wu, Yaoqun; Zhang, Pei; Yang, Hongyun; Ge, Yong; Xin, Yong
2017-07-01
The present study investigated the effects and mechanisms of demethoxycurcumin (DMC) on a human skin squamous cell carcinoma cell line, A431, and a human keratinocyte cell line, HaCaT. A431 and HaCaT cells were cultured in vitro. The effects of DMC treatment on cell viability were analyzed using the Cell Counting kit‑8 (CCK‑8) assay; cell cycle distribution was analyzed by flow cytometry; apoptosis was assessed by flow cytometry and Hoechst 33258 staining; and the protein expression levels of cytochrome c, B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (BAX), caspase‑9 and caspase‑3 were evaluated by western blotting. CCK‑8 assay results demonstrated that DMC treatment significantly inhibited viability of A431 and HaCaT cells in a dose‑dependent manner. Flow cytometric analysis confirmed that DMC treatment induced apoptosis in a dose‑dependent manner, and significantly increased the proportion of cells in G2/M phase. Western blot analysis indicated that the protein expression levels of Bcl‑2 were decreased, whereas the expression levels of BAX, caspase‑9, caspase‑3 and cytochrome c were increased following DMC treatment compared with in untreated cells. In conclusion, DMC treatment significantly inhibited viability of A431 and HaCaT cells, and induced cell cycle arrest in G2/M phase. The present study indicated that DMC may induce apoptosis of skin cancer cells through a caspase‑dependent pathway.
Human periodontal ligament cell viability in milk and milk substitutes.
Pearson, Robert M; Liewehr, Frederick R; West, Leslie A; Patton, William R; McPherson, James C; Runner, Royce R
2003-03-01
The purpose of this study was to determine the efficacy of several milk substitutes compared to whole milk in maintaining the viability of human periodontal ligament (PDL) cells on avulsed teeth. PDL cells were obtained from freshly extracted, healthy third molars and cultured in Eagle's minimal essential media (EMEM). The cells were plated onto 24-well culture plates and allowed to attach for 24 h. EMEM was replaced with refrigerated whole milk (positive control), reconstituted powdered milk, evaporated milk, or one of two baby formulas (Similac or Enfamil). Tap water served as the negative control. Tissue culture plates were incubated with the experimental media at 37 degrees C for 1, 2, 4, or 8 h. Cell viability was determined by a cell proliferation assay (CellTiter 96 AQ Assay), with absorbance read at 450 nM. A two-way ANOVA (p < 0.001) indicated that at 1 h there was no difference in the effect on PDL cell viability between any of the materials and whole milk. At 2 h, Enfamil and Similac performed significantly better than whole milk, whereas evaporated milk performed worse. At 4 h, Enfamil performed better than whole milk, whereas all other milk substitutes performed worse. At 8 h, all substitutes performed worse than whole milk. These results suggest that Enfamil, which is supplied in powder form that does not require special storage and has a shelf life of 18 months, is a more effective storage medium for avulsed teeth than pasteurized milk for at least 4 h.
Liu, Yuzhi; Li, Wenyu; Guo, Mengyao; Li, Chengye; Qiu, Changwei
2016-01-01
We herein examined the effects of different doses, forms, and compatibilities of selenium on a canine mammary gland tumor cell line, CTM1211, and explored the related mechanisms. Three selenium compounds, sodium selenite (SSE), methylseleninic acid (MSA), and methylselenocysteine (MSC), were selected for these experiments, and cyclophosphamide (CTX) served as a positive control. In the cell viability assay, the cell viability of each group at 48/72 h decreased significantly compared with the control group (p < 0.05), and the cell viability of the CTX + MSA group was lower than that of CTX and MSA groups (p < 0.05). Moreover, the inhibitory effect of selenium on cell proliferation was time-dependent but not concentration-dependent. In the cell apoptosis assay, the apoptosis values of each group increased significantly compared with the control group, and the apoptosis values of the CTX + MSA group increased the most significantly (p < 0.01). The protein and mRNA expression levels of vascular endothelial growth factor-alpha (VEGF-alpha), angiopoietin-2 (Ang-2), and hypoxia inducible factor-1 alpha (HIF-1 alpha) were downregulated in each group, while that of phosphatase and tensin homolog (PTEN) were upregulated (p < 0.05). In conclusion, these three selenium compounds, especially MSA, could significantly inhibit the viability and growth of the CTM1211 cell line, which is partly due to the induction of apoptosis and regulation of tumor angiogenesis.
NASA Astrophysics Data System (ADS)
Damayanti, E.; Istiqomah, L.; Saragih, J. E.; Purwoko, T.; Sardjono
2017-12-01
Our previous studies have selected lactic acid bacteria (LAB) with antifungal activities from traditional fermented foods made from cassava (G7) and silage feed palm leaf (PDS5 and PDS3). In this study we evaluated their ability to bind aflatoxin B1 (AFB1) and probiotic characteristic. The probiotic characteristic assays of LAB consisted of resistance to acidic conditions (pH 3), gastric juice and bile salts 0.3%. We also carried out an in vitro evaluation of LAB aflatoxin binding ability in viable and non-viable cell for 24 and 48 hours of incubation. The measurement of aflatoxin content was performed by ELISA method using AgraQuant Total Aflatoxin Assay kit. The results showed that all isolates were potential as probiotics and the G7 isolate had the highest viability among other isolates in pH 3 (92.61 %) and the bile salts assay (97.71 %). The percentage of aflatoxin reduction between viable and non-viable cell from each LAB isolate were different. The highest aflatoxin reduction in viable cell assay was performed by G7 isolate (69.11 %) whereas in non-viable cell assay was performed by PDS3 isolate (73.75 %) during incubation time 48 hours. In this study, G7 isolate performed the best probiotic characteristics with the highest viability in acid pH assay, bile salt 0.3% assay and percentage of aflatoxin B1 reduction in viable cell condition. Molecular identification using 16S rRNA sequence analysis showed that G7 isolate had homology with Lactobacillus plantarum (99.9%). It was concluded that Lactobacillus plantarum G7 was potential as probiotic with aflatoxin binding activities.
Rampersad, Sephra N.
2012-01-01
Accurate prediction of the adverse effects of test compounds on living systems, detection of toxic thresholds, and expansion of experimental data sets to include multiple toxicity end-point analysis are required for any robust screening regime. Alamar Blue is an important redox indicator that is used to evaluate metabolic function and cellular health. The Alamar Blue bioassay has been utilized over the past 50 years to assess cell viability and cytotoxicity in a range of biological and environmental systems and in a number of cell types including bacteria, yeast, fungi, protozoa and cultured mammalian and piscine cells. It offers several advantages over other metabolic indicators and other cytotoxicity assays. However, as with any bioassay, suitability must be determined for each application and cell model. This review seeks to highlight many of the important considerations involved in assay use and design in addition to the potential pitfalls. PMID:23112716
Alarifi, Saud; Ali, Daoud; Alkahtani, Saad; Verma, Ankit; Ahamed, Maqusood; Ahmed, Mukhtar; Alhadlaq, Hisham A
2013-01-01
The widespread use of zinc oxide (ZnO) nanoparticles worldwide exposes humans to their adverse effects, so it is important to understand their biological effects and any associated risks. This study was designed to investigate the cytotoxicity, oxidative stress, and apoptosis caused by ZnO nanoparticles in human skin melanoma (A375) cells. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] and lactate dehydrogenase-based cell viability assays showed a significant decrease in cell viability after exposure to ZnO nanoparticles, and phase contrast images revealed that cells treated with these nanoparticles had a lower density and a rounded morphology. ZnO nanoparticles were also found to induce oxidative stress, evidenced by generation of reactive oxygen species and depletion of the antioxidant, glutathione. Induction of apoptosis was confirmed by chromosomal condensation assay and caspase-3 activation. Further, more DNA damage was observed in cells exposed to the highest concentration of ZnO nanoparticles. These results demonstrate that ZnO nanoparticles have genotoxic potential in A375 cells, which may be mediated via oxidative stress. Our short-term exposure study showing induction of a genotoxic and apoptotic response to ZnO nanoparticles needs further investigation to determine whether there may be consequences of long-term exposure to ZnO nanoparticles. PMID:23493450
Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury.
Mei, Chen; He, Sha-Sha; Yin, Peng; Xu, Lei; Shi, Ya-Ran; Yu, Xiao-Hong; Lyu, An; Liu, Feng-Hua; Jiang, Lin-Shu
2016-06-01
Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock.
Yang, Wan-Wan; Ponce, Adrian
2011-01-01
A microscopy-based endospore viability assay (micro-EVA) capable of enumerating germinable Clostridium endospores (GCEs) in less than 30 min has been validated and employed to determine GCE concentrations in Greenland ices and Atacama Desert soils. Inoculation onto agarose doped with Tb3+ and d-alanine triggers Clostridium spore germination and the concomitant release of ∼108 molecules of dipicolinic acid (DPA) per endospore, which, under pulsed UV excitation, enables enumeration of resultant green Tb3+-DPA luminescent spots as GCEs with time-gated luminescence microscopy. The intensity time courses of the luminescent spots were characteristic of stage I Clostridium spore germination dynamics. Micro-EVA was validated against traditional CFU cultivation from 0 to 1,000 total endospores/ml (i.e., phase-bright bodies/ml), yielding 56.4% ± 1.5% GCEs and 43.0% ± 1.0% CFU. We also show that d-alanine serves as a Clostridium-specific germinant (three species tested) that inhibits Bacillus germination of spores (five species tested) in that endospore concentration regime. Finally, GCE concentrations in Greenland ice cores and Atacama Desert soils were determined with micro-EVA, yielding 1 to 2 GCEs/ml of Greenland ice (versus <1 CFU/ml after 6 months of incubation) and 66 to 157 GCEs/g of Atacama Desert soil (versus 40 CFU/g soil). PMID:21296951
Townsend, Michelle; Peck, Connor; Meng, Wei; Heaton, Matthew; Robison, Richard; O'Neill, Kim
2017-04-01
Glyphosate is a highly used active compound in agriculturally based pesticides. The literature regarding the toxicity of glyphosate to human cells has been highly inconsistent. We studied the resulting DNA damage and cytotoxicity of various glyphosate concentrations on human cells to evaluate DNA damaging potential. Utilizing human Raji cells, DNA damage was quantified using the comet assay, while cytotoxicity was further analyzed using MTT viability assays. Several glyphosate concentrations were assessed, ranging from 15 mM to 0.1 μM. We found that glyphosate treatment is lethal to Raji cells at concentrations above 10 mM, yet has no cytotoxic effects at concentrations at or below 100 μM. Treatment concentrations of 1 mM and 5 mM induce statistically significant DNA damage to Raji cells following 30-60 min of treatment, however, cells show a slow recovery from initial damage and cell viability is unaffected after 2 h. At these same concentrations, cells treated with additional compound did not recover and maintained high levels of DNA damage. While the cytotoxicity of glyphosate appears to be minimal for physiologically relevant concentrations, the compound has a definitive cytotoxic nature in human cells at high concentrations. Our data also suggests a mammalian metabolic pathway for the degradation of glyphosate may be present. Copyright © 2017 Elsevier Inc. All rights reserved.
Ji, Yuejia; Zhu, Mengxiang; Gong, Yu; Tang, Haoyu; Li, Juan; Cao, Yi
2017-01-01
Thermoresponsive polymers have gained extensive attention as biomedical materials especially for targeted drug delivery systems. We have recently developed water-soluble polypeptide-based thermoresponsive polymers that exhibit lower critical solution temperature (LCST)- or upper critical solution temperature (UCST)-type phase behaviours. In this study, the toxicity of these polymers to human umbilical vein endothelial cells (HUVECs) was investigated to assess the safety and biocompatibility. Up to 100 μg/ml, thermoresponsive polymers did not induce cytotoxicity to HUVECs, showing as unaltered mitochondrial viability assessed as cell counting kit-8 (CCK-8) assay and membrane integrity assessed as lactate dehydrogenase (LDH) assay. Inflammatory response, assessed as the release of chemokine-soluble monocyte chemotactic protein 1 (sMCP-1) and interleukin-8 (IL-8) as well as cytokine IL-6, was not significantly affected by the polymers. In addition, 1 μM thapsigargin (TG), an endoplasmic reticulum (ER) stress inducer, significantly decreased mitochondrial viability, but did not affect membrane integrity or inflammatory response. The presence of thermoresponsive polymers with LCST-type phase behaviour did not further affect the effects of TG. In conclusion, the thermoresponsive polymers used in this study are not toxic to endothelial cells and therefore could be further considered as safe materials for biomedical applications. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
ADVANCEMENTS IN TIME-SPECTRA ANALYSIS METHODS FOR LEAD SLOWING-DOWN SPECTROSCOPY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leon E.; Anderson, Kevin K.; Gesh, Christopher J.
2010-08-11
Direct measurement of Pu in spent nuclear fuel remains a key challenge for safeguarding nuclear fuel cycles of today and tomorrow. Lead slowing-down spectroscopy (LSDS) is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic mass with an uncertainty lower than the approximately 10 percent typical of today’s confirmatory assay methods. Pacific Northwest National Laboratory’s (PNNL) previous work to assess the viability of LSDS for the assay of pressurized water reactor (PWR) assemblies indicated that the method could provide direct assay of Pu-239 and U-235 (and possibly Pu-240 and Pu-241)more » with uncertainties less than a few percent, assuming suitably efficient instrumentation, an intense pulsed neutron source, and improvements in the time-spectra analysis methods used to extract isotopic information from a complex LSDS signal. This previous simulation-based evaluation used relatively simple PWR fuel assembly definitions (e.g. constant burnup across the assembly) and a constant initial enrichment and cooling time. The time-spectra analysis method was founded on a preliminary analytical model of self-shielding intended to correct for assay-signal nonlinearities introduced by attenuation of the interrogating neutron flux within the assembly.« less
Larsson, Marie C; Lerm, Maria; Ängeby, Kristian; Nordvall, Michaela; Juréen, Pontus; Schön, Thomas
2014-11-01
The intracellular (IC) effect of drugs against Mycobacterium tuberculosis (Mtb) is not well established but increasingly important to consider when combining current and future multidrug regimens into the best possible treatment strategies. For this purpose, we developed an IC model based on a genetically modified Mtb H37Rv strain, expressing the Vibrio harvei luciferase (H37Rv-lux) infecting the human macrophage like cell line THP-1. Cells were infected at a low multiplicity of infection (1:1) and subsequently exposed to isoniazid (INH), ethambutol (EMB), amikacin (AMI) or levofloxacin (LEV) for 5days in a 96-well format. Cell viability was evaluated by Calcein AM and was maintained throughout the experiment. The number of viable H37Rv-lux was determined by luminescence and verified by a colony forming unit analysis. The results were compared to the effects of the same drugs in broth cultures. AMI, EMB and LEV were significantly less effective intracellularly (MIC90: >4mg/L, 8mg/L and 2mg/L, respectively) compared to extracellularly (MIC90: 0.5mg/L for AMI and EMB; 0.25mg/L for LEV). The reverse was the case for INH (IC: 0.064mg/L vs EC: 0.25mg/L). In conclusion, this luciferase based method, in which monitoring of cell viability is included, has the potential to become a useful tool while evaluating the intracellular effects of anti-mycobacterial drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
Hatzinger, P.B.; Palmer, P.; Smith, R.L.; Penarrieta, C.T.; Yoshinari, T.
2003-01-01
A study was undertaken to measure aerobic respiration by indigenous bacteria in a sand and gravel aquifer on western Cape Cod, MA using tetrazolium salts and by direct oxygen consumption using gas chromatography (GC). In groundwater and aquifer slurries, the rate of aerobic respiration calculated from the direct GC assay was more than 600 times greater than that using the tetrazolium salt 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride (INT). To explain this discrepancy, the toxicity of INT and two additional tetrazolium salts, sodium 3???-[1-(phenylamino)-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzenesulfonic acid hydrate (XTT) and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), to bacterial isolates from the aquifer was investigated. Each of the three tetrazolium salts was observed to be toxic to some of the groundwater isolates at concentrations normally used in electron transport system (ETS) and viability assays. For example, incubation of cells with XTT (3 mM) caused the density of four of the five groundwater strains tested to decline by more than four orders of magnitude. A reasonable percentage (>57%) of cells killed by CTC and INT contained visible formazan crystals (the insoluble, reduced form of the salts) after 4 h of incubation. Thus, many of the cells reduced enough CTC or INT prior to dying to be considered viable by microscopic evaluation. However, one bacterium (Pseudomonas fluorescens) that remained viable and culturable in the presence of INT and CTC, did not incorporate formazan crystals into more than a few percent of cells, even after 24 h of incubation. This strain would be considered nonviable based on traditional tetrazolium salt reduction assays. The data show that tetrazolium salt assays are likely to dramatically underestimate total ETS activity in groundwater and, although they may provide a reasonable overall estimate of viable cell numbers in a community of groundwater bacteria, some specific strains may be falsely considered nonviable by this assay due to poor uptake or reduction of the salts. ?? 2003 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumara Swamy, M.; Sudipta, K. M.; Jayanta, K.; Balasubramanya, S.
2015-01-01
Biosynthesis of silver nanoparticles (Ag Nps) was carried out using methanol leaves extract of L. reticulata. Ag Nps were characterized based on the observations of UV-visible spectroscopy, transmission electron microscopy, and X-ray diffraction (XRD) analysis. These Ag Nps were tested for antimicrobial activity by agar well diffusion method against different pathogenic microorganisms and antioxidant activity was performed using DPPH assay. Further, the in vitro cytotoxic effects of Ag Nps were screened against HCT15 cancer cell line and viability of tumor cells was confirmed using MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole)) assay. The nuclear condensation was studied using the propidium iodide-staining method. The color change from green to dark brown and the absorbance peak at about 420 nm indicated the formation of nanoparticles. XRD pattern showed characteristic peaks indexed to the crystalline planes (111), (200) and (220) of face-centered cubic silver. The nanoparticles were of spherical shape with varying sizes ranging from 50 to 70 nm. Biosynthesized Ag Nps showed potent antibacterial activity and effective radical scavenging activity. MTT assay revealed a dose-dependent decrease in cell viability. Microscopic observations showed distinct cellular morphological changes indicating unhealthy cells, whereas the control appeared normal. Increase in the number of propidium iodide positive cells were observed in maximum concentration. Methanolic leaf extract of L. reticulata acts as an excellent capping agent for the formation of silver nanoparticles and demonstrates immense biological activities. Hence, these Ag NPs can be used as antibacterial, antioxidant as well as cytotoxic agent in treating many medical complications.
Perumal Samy, R; Pachiappan, A; Gopalakrishnakone, P; Thwin, Maung M; Hian, Yap E; Chow, Vincent TK; Bow, Ho; Weng, Joseph T
2006-01-01
Background Burkholderia pseudomallei are the causative agent of melioidosis. Increasing resistance of the disease to antibiotics is a severe problem in treatment regime and has led to intensification of the search for new drugs. Antimicrobial peptides are the most ubiquitous in nature as part of the innate immune system and host defense mechanism. Methods Here, we investigated a group of venoms (snakes, scorpions and honey bee venoms) for antimicrobial properties against two strains of Gram-negative bacteria Burkholderia pseudomallei by using disc-diffusion assay for in vitro susceptibility testing. The antibacterial activities of the venoms were compared with that of the isolated L-amino acid oxidase (LAAO) and phospholipase A2 (PLA2s) enzymes. MICs were determined using broth dilution method. Bacterial growth was assessed by measurement of optical density at the lowest dilutions (MIC 0.25 mg/ml). The cell viability was measured using tetrazolium salts (XTT) based cytotoxic assay. Results The studied venoms showed high antimicrobial activity. The venoms of C. adamanteus, Daboia russelli russelli, A. halys, P. australis, B. candidus and P. guttata were equally as effective as Chloramphenicol and Ceftazidime (30 μg/disc). Among those tested, phospholipase A2 enzymes (crotoxin B and daboiatoxin) showed the most potent antibacterial activity against Gram-negative (TES) bacteria. Naturally occurring venom peptides and phospholipase A2 proved to possess highly potent antimicrobial activity against Burkholderia pseudomallei. The XTT-assay results showed that the cell survival decreased with increasing concentrations (0.05–10 mg/mL) of Crotalus adamanteus venom, with no effect on the cell viability evident at 0.5 mg/mL. Conclusion This antibacterial profile of snake venoms reported herein will be useful in the search for potential antibacterial agents against drug resistant microorganisms like B. pseudomallei. PMID:16784542
El habbash, Aisha I.; Ibrahim, Mohamed Yousif; Yahayu, Maizatulakmal; Omer, Fatima Abd Elmutaal; Abd Rahman, Mashitoh; Nordin, Noraziah; Lian, Gwendoline Ee Cheng
2017-01-01
Natural medicinal products possess diverse chemical structures and have been an essential source for drug discovery. Therefore, in this study, α-mangostin (AM) is a plant-derived compound was investigated for the apoptotic effect on human cervical cancer cells (HeLa). The cytotoxic effects of AM on the viability of HeLa and human normal ovarian cell line (SV40) were evaluated by using MTT assay. Results showed that AM inhibited HeLa cells viability at concentration- and time-dependent manner with IC50 value of 24.53 ± 1.48 µM at 24 h. The apoptogenic effects of AM on HeLa were assessed using fluorescence microscopy analysis. The effect of AM on cell proliferation was also studied through clonogenic assay. ROS production evaluation, flow cytometry (cell cycle) analysis, caspases 3/7, 8, and 9 assessment and multiple cytotoxicity assays were conducted to determine the mechanism of cell apoptosis. This was associated with G2/M phase cell cycle arrest and elevation in ROS production. AM induced mitochondrial apoptosis which was confirmed based on the significant increase in the levels of caspases 3/7 and 9 in a dose-dependent manner. Furthermore, the MMP disruption and increased cell permeability, concurrent with cytochrome c release from the mitochondria to the cytosol provided evidence that AM can induce apoptosis via mitochondrial-dependent pathway. AM exerted a remarkable antitumor effect and induced characteristic apoptogenic morphological changes on HeLa cells, which indicates the occurrence of cell death. This study reveals that AM could be a potential antitumor compound on cervical cancer in vitro and can be considered for further cervical cancer preclinical and in vivo testing. PMID:28740747
Metallinou, Chryssa; Köster, Frank; Diedrich, Klaus; Nikolettos, Nikos; Asimakopoulos, Byron
2012-01-01
We investigated the effects of the gonadotropin-releasing hormone (GnRH) agonist triptorelin as well the GnRH antagonist cetrorelix those of on the viability and steroidogenesis in human granulosa luteinized (hGL) cell cultures. The hGL cells were obtained from 34 women undergoing ovarian stimulation for IVF treatment. The cells were cultured for 48 h with or without 1 nM or 3 nM of cetrorelix or triptorelin in serum-free media. The cell viability was evaluated by the MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. The concentrations of estradiol and progesterone in culture supernatants were measured by ELISA. Treatment with triptorelin slightly increased cell viability, whereas treatment with 3 nM cetrorelix led to a significant decrease. Estradiol concentrations were reduced with 3 nM triptorelin. Cultures treated with high-dose of either cetrorelix or triptorelin tended to secrete less progesterone than controls. Cetrorelix significantly reduces the viability of hGL cells. Triptorelin and cetrorelix may have minor effects on steroidogenesis. These results suggest that GnRH analogues may influence ovarian functions.
Development of an in vitro skin sensitization test based on ROS production in THP-1 cells.
Saito, Kazutoshi; Miyazawa, Masaaki; Nukada, Yuko; Sakaguchi, Hitoshi; Nishiyama, Naohiro
2013-03-01
Recently, it has been reported that reactive oxygen species (ROS) produced by contact allergens can affect dendritic cell migration and contact hypersensitivity. The aim of the present study was to develop a new in vitro assay that could predict the skin sensitizing potential of chemicals by measuring ROS production in THP-1 (human monocytic leukemia cell line) cells. THP-1 cells were pre-loaded with a ROS sensitive fluorescent dye, 5-(and 6-)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA), for 15min, then incubated with test chemicals for 30min. The fluorescence intensity was measured by flow cytometry. For the skin sensitizers, 25 out of 30 induced over a 2-fold ROS production at more than 90% of cell viability. In contrast, increases were only seen in 4 out of 20 non-sensitizers. The overall accuracy for the local lymph node assay (LLNA) was 82% for 50 chemicals tested. A correlation was found between the estimated concentration showing 2-fold ROS production in the ROS assay and the EC3 values (estimated concentration required to induce positive response) of the LLNA. These results indicated that the THP-1 cell-based ROS assay was a rapid and highly sensitive detection system able to predict skin sensitizing potentials and potency of chemicals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rodríguez-Huamán, Ángel; Casimiro-Gonzales, Sandra; Chávez-Pérez, Jorge Antonio; Gonzales-Arimborgo, Carla; Cisneros-Fernández, Richard; Aguilar-Mendoza, Luis Ángel; Gonzales, Gustavo F
2017-05-01
Reactive oxygen species (ROS) are normally produced during cell metabolism, there is strong evidence to suggest that ROS produced in excess impair the cell and may be etiologically related to various neurodegenerative diseases. This study was undertaken to examine the effects of Lepidium meyenii (MACA) methanol leaf extract on neurotoxicity in PC12 cell exposed to 6-hydroxydopamine (6-OHDA). Fresh samples of "maca" leaves were processed in order to obtain foliar extracts and to evaluate the neurobiological activity on PC12 cells, subjected to the cytotoxic effect of 6-OHDA through the determination of the capacity antioxidant, cell viability and cytotoxicity assays on PC12 cells. The results of the tests of antioxidant activity, showed maximum values of 2262.37 and 1305.36 expressed in Trolox equivalents (TEAC), for the methanolic and aqueous fractions respectively. Cell viability assays at a dose of 10 μg extract showed an increase of 31% and 60% at 6 and 12 h of pretreatment, respectively. Cytotoxicity assays at the same dose and exposure time showed a 31.4% and 47.8% reduction in lactate dehydrogenase (LDH) activity and an increase in superoxide dismutase (SOD) activity. The results allow us to affirm that the methanolic foliar extract of "maca" presents in vitro neurobiological activity of antioxidant protection, increase in cell viability and reduction of cytotoxicity against oxidative stress generated by 6-OHDA. In conclusion, the present study shows a protective role for Lepidium meyenii leaf extract on 6-OHDA-induced toxicity by an antioxidant effect.
NASA Astrophysics Data System (ADS)
St-Georges-Robillard, A.; Masse, M.; Kendall-Dupont, J.; Strupler, M.; Patra, B.; Jermyn, M.; Mes-Masson, A.-M.; Leblond, F.; Gervais, T.
2016-02-01
There is a growing effort in the biomicrosystems community to develop a personalized treatment response assay for cancer patients using primary cells, patient-derived spheroids, or live tissues on-chip. Recently, our group has developed a technique to cut tumors in 350 μm diameter microtissues and keep them alive on-chip, enabling multiplexed in vitro drug assays on primary tumor tissue. Two-photon microscopy, confocal microscopy and flow cytometry are the current standard to assay tissue chemosensitivity on-chip. While these techniques provide microscopic and molecular information, they are not adapted for high-throughput analysis of microtissues. We present a spectroscopic imaging system that allows rapid quantitative measurements of multiple fluorescent viability markers simultaneously by using a liquid crystal tunable filter to record fluorescence and transmittance spectra. As a proof of concept, 24 spheroids composed of ovarian cancer cell line OV90 were formed in a microfluidic chip, stained with two live cell markers (CellTrackerTM Green and Orange), and imaged. Fluorescence images acquired were normalized to the acquisition time and gain of the camera, dark noise was removed, spectral calibration was applied, and spatial uniformity was corrected. Spectral un-mixing was applied to separate each fluorophore's contribution. We have demonstrated that rapid and simultaneous viability measurements on multiple spheroids can be achieved, which will have a significant impact on the prediction of a tumor's response to multiple treatment options. This technique may be applied as well in drug discovery to assess the potential of a drug candidate directly on human primary tissue.
Nitrofen induces apoptosis independently of retinaldehyde dehydrogenase (RALDH) inhibition.
Kling, David E; Cavicchio, Amanda J; Sollinger, Christina A; Schnitzer, Jay J; Kinane, T Bernard; Newburg, David S
2010-06-01
Nitrofen is a diphenyl ether that induces congenital diaphragmatic hernia (CDH) in rodents. Its mechanism of action has been hypothesized as inhibition of the retinaldehyde dehydrogenase (RALDH) enzymes with consequent reduced retinoic acid signaling. To determine if nitrofen inhibits RALDH enzymes, a reporter gene construct containing a retinoic acid response-element (RARE) was transfected into HEK-293 cells and treated with varying concentrations of nitrofen in the presence of retinaldehyde (retinal). Cell death was characterized by caspace-cleavage microplate assays and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assays. Ex vivo analyses of cell viability were characterized in fetal rat lung explants using Live/Dead staining. Cell proliferation and apoptosis were assessed using fluorescent immunohistochemistry with phosphorylated histone and activated caspase antibodies on explant tissues. Nile red staining was used to identify intracellular lipid droplets. Nitrofen-induced dose-dependent declines in RARE-reporter gene expression. However, similar reductions were observed in control-reporter constructs suggesting that nitrofen compromised cell viability. These observed declines in cell viability resulted from increased cell death and were confirmed using two independent assays. Ex vivo analyses showed that mesenchymal cells were particularly susceptible to nitrofen-induced apoptosis while epithelial cell proliferation was dramatically reduced in fetal rat lung explants. Nitrofen treatment of these explants also showed profound lipid redistribution, primarily to phagocytes. The observed declines in nitrofen-associated retinoic acid signaling appear to be independent of RALDH inhibition and likely result from nitrofen induced cell death/apoptosis. These results support a cellular apoptotic mechanism of CDH development, independent of RALDH inhibition.
Yang, Xiujiang; Sun, Bo; Zhu, Haihang; Jiang, Ziting
2015-01-01
The aim was to explore the effect of negative pressure on the proliferation and metastasis of human pancreatic cancer SW1990 cells. Three groups were conducted in the work: normal control group (NC group, 0 mm Hg), low negative pressure group (LN group, -300 mm Hg), and high negative pressure group (HN group, -600 mm Hg). Cell morphological assay was conducted using an inverted Nikon TE2000-S microscope. Cell viability was assayed using cell counting kit-8 solution. Cell apoptosis was evaluated with flow cytometry. Cell migration was investigated using transwell assay. Compared to LN and HN groups, SW1990 cells in NC group grew quite well, showing a higher density. The NC group represented the highest cell viability. The HN group represented the lowest cell viability, which was lower than that of the LN group (P < 0.01). The apoptosis rate in NC group, LN group and HN group was 1.91% ± 0.13%, 2.31% ± 0.06% and 15.22% ± 0.81%, respectively (P < 0.05). The average number of migration cells in NC group was 53.60 ± 4.14 (× 200), which was decreased to 18.93 ± 3.67 and 11.07 ± 3.01 in LN group and HN group, respectively (P < 0.01). The negative pressure shows suppression effects on the proliferation and metastasis of human pancreatic cancer SW1990 cells. It is indicated that negative pressure may be involved in the development of human pancreatic cancer by influencing cell biological characteristics.
Kashem, Mohammed A; Kennedy, Charles A; Fogarty, Kylie E; Dimock, Janice R; Zhang, Yunlong; Sanville-Ross, Mary L; Skow, Donna J; Brunette, Steven R; Swantek, Jennifer L; Hummel, Heidi S; Swindle, John; Nelson, Richard M
2016-01-01
Sphingosine kinase 1 (SphK1) is a lipid kinase that phosphorylates sphingosine to produce the bioactive sphingolipid, sphingosine-1-phosphate (S1P), and therefore represents a potential drug target for a variety of pathological processes such as fibrosis, inflammation, and cancer. We developed two assays compatible with high-throughput screening to identify small-molecule inhibitors of SphK1: a purified component enzyme assay and a genetic complementation assay in yeast cells. The biochemical enzyme assay measures the phosphorylation of sphingosine-fluorescein to S1P-fluorescein by recombinant human full-length SphK1 using an immobilized metal affinity for phosphochemicals (IMAP) time-resolved fluorescence resonance energy transfer format. The yeast assay employs an engineered strain of Saccharomyces cerevisiae, in which the human gene encoding SphK1 replaced the yeast ortholog and quantitates cell viability by measuring intracellular adenosine 5'-triphosphate (ATP) using a luciferase-based luminescent readout. In this assay, expression of human SphK1 was toxic, and the resulting yeast cell death was prevented by SphK1 inhibitors. We optimized both assays in a 384-well format and screened ∼10(6) compounds selected from the Boehringer Ingelheim library. The biochemical IMAP high-throughput screen identified 5,561 concentration-responsive hits, most of which were ATP competitive and not selective over sphingosine kinase 2 (SphK2). The yeast screen identified 205 concentration-responsive hits, including several distinct compound series that were selective against SphK2 and were not ATP competitive.
NASA Astrophysics Data System (ADS)
Salinas, E.
2015-12-01
Combustion-derived nanomaterials or ultrafine (<1 μm) atmospheric aerosols are primarily products of anthropogenic activities, such as the burning of fossil fuels. Ultrafine particles (UFPs) can absorb other noxious pollutants including volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), toxic organic compounds, and heavy metals. The combination of high population density, meteorological conditions, and industrial productivity brings high levels of air pollution to the metropolitan area of El Paso, Texas, USA/ Ciudad Juarez, Chihuahua, Mexico, comprising the Paso del Norte air basin. A study conducted by scientists from the Research Triangle Park in North Carolina, analyzed sites adjacent to heavy-traffic highways in El Paso and elucidated higher UFP concentrations in comparison to previously published work exploring pollution and adverse health effects in the basin. UFPs can penetrate deep into the alveolar sacs of the lung, reaching distant alveolar sacs and inducing a series of immune responses that are detrimental to the body: evidence suggests that UFPs can also cross the alveolar-blood barrier and potentially endanger the body's immune response. The physical properties of UFPs and the dynamics of local atmospheric and topographical conditions indicate that emissions of nanosized carbonaceous aerosols could pose significant threats to biological tissues upon inhalation by local residents of the Paso del Norte. This study utilizes Black Carbon (BC) as a model for environmental UFPs and its effects on the immunological response. An in vitro approach is used to measure the ability of BC to promote cell death upon long-term exposure. Human epithelial lung cells (A549), human peripheral-blood monocytes (THP-1), murine macrophages (RAW264.7), and murine epithelial lung cells (LA-4) were treated with BC and assessed for metabolic activity after chronic exposure utilizing three distinct and independent cell viability assays. The cell viability experiments included a chronic study at 7, 10, and 14 days of UFP exposure at six different concentrations of BC: 100μM, 300μM, 600μM, 1,250μM, 2,500μM, and 5,000μM conducting the Trypan Blue (TB) Exclusion Assay, Calcein-AM Viability Assay, and CellTiter-Glo Viability Assay.
Survival of Cryptosporidium parvum oocysts under various environmental pressures.
Robertson, L J; Campbell, A T; Smith, H V
1992-01-01
The survival of various isolates of Cryptosporidium parvum oocysts under a range of environmental pressures including freezing, desiccation, and water treatment processes and in physical environments commonly associated with oocysts such as feces and various water types was monitored. Oocyst viability was assessed by in vitro excystation and by a viability assay based on the exclusion or inclusion of two fluorogenic vital dyes. Although desiccation was found to be lethal, a small proportion of oocysts were able to withstand exposure to temperatures as low as -22 degrees C. The water treatment processes investigated did not affect the survival of oocysts when pH was corrected. However, contact with lime, ferric sulfate, or alum had a significant impact on oocyst survival if the pH was not corrected. Oocysts demonstrated longevity in all water types investigated, including seawater, and when in contact with feces were considered to develop an enhanced impermeability to small molecules which might increase the robustness of the oocysts when exposed to environmental pressures. PMID:1482175
Burdo, Joseph R
2013-01-01
Since 2009 at Boston College, we have been offering a Research in Neuroscience course using cultured neurons in an in vitro model of stroke. The students work in groups to learn how to perform sterile animal cell culture and run several basic bioassays to assess cell viability. They are then tasked with analyzing the scientific literature in an attempt to identify and predict the intracellular pathways involved in neuronal death, and identify dietary antioxidant compounds that may provide protection based on their known effects in other cells. After each group constructs a hypothesis pertaining to the potential neuroprotection, we purchase one compound per group and the students test their hypotheses using a commonly performed viability assay. The groups generate quantitative data and perform basic statistics on that data to analyze it for statistical significance. Finally, the groups compile their data and other elements of their research experience into a poster for our departmental research celebration at the end of the spring semester.
Burdo, Joseph R.
2013-01-01
Since 2009 at Boston College, we have been offering a Research in Neuroscience course using cultured neurons in an in vitro model of stroke. The students work in groups to learn how to perform sterile animal cell culture and run several basic bioassays to assess cell viability. They are then tasked with analyzing the scientific literature in an attempt to identify and predict the intracellular pathways involved in neuronal death, and identify dietary antioxidant compounds that may provide protection based on their known effects in other cells. After each group constructs a hypothesis pertaining to the potential neuroprotection, we purchase one compound per group and the students test their hypotheses using a commonly performed viability assay. The groups generate quantitative data and perform basic statistics on that data to analyze it for statistical significance. Finally, the groups compile their data and other elements of their research experience into a poster for our departmental research celebration at the end of the spring semester. PMID:23805059
Shah, Amita; Shah, Sarita; Mani, Gopinath; Wenke, Joseph; Agrawal, Mauli
2011-04-01
Glow-discharge gas-plasma (GP) treatment has been shown to induce surface modifications such that cell adhesion and growth are enhanced. However, it is not known which gas used in GP treatment is optimal for endothelial cell function. Polylactic acid (PLA) films treated oxygen, argon, or nitrogen GP were characterized using contact angles, scanning electron microscopy, atomic force microscopy, optical profilometry, and x-ray photoelectron spectroscopy. All three GP treatments decreased the carbon atomic concentration and surface roughness and increased the oxygen atomic concentration. Human umbilical vein endothelial cells were cultured on the PLA films for up to 7 days. Based on proliferation and live/dead assays, surface chemistry was shown to have the greatest effect on the attachment, proliferation, and viability of these cells, while roughness did not have a significant influence. Of the different gases, endothelial cell viability, attachment and proliferation were most significantly increased on PLA surfaces treated with oxygen and argon gas plasma. Copyright © 2010 John Wiley & Sons, Ltd.
Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth
FERNANDES, Ana Paula; JUNQUEIRA, Marina de Azevedo; MARQUES, Nádia Carolina Teixeira; MACHADO, Maria Aparecida Andrade Moreira; SANTOS, Carlos Ferreira; OLIVEIRA, Thais Marchini; SAKAI, Vivien Thiemy
2016-01-01
ABSTRACT Low-Level Laser Therapy stimulates the proliferation of a variety of types of cells. However, very little is known about its effect on stem cells from human exfoliated deciduous teeth (SHED). Objective This study aimed to evaluate the influence of different laser therapy energy densities on SHED viability and proliferation. Material and Methods SHED were irradiated according to the groups: I (1.2 J/cm2 - 0.5 mW – 10 s), II (2.5 J/cm2 – 10 mW – 10 s), III (3.7 J/cm2 – 15 mW – 10 s), IV (5.0 J/cm2 – 20 mW – 10 s), V (6.2 J/cm2 – 25 mW – 10 s), and VI (not irradiated – control group). Cell viability was assessed 6 and 24 h after irradiation measuring the mitochondrial activity and using the Crystal Violet assay. Cell proliferation was assessed after 24, 48, and 72 h of irradiation by SRB assay. Results MTT assay demonstrated differences from 6 to 24 hours after irradiation. After 24 h, groups I and IV showed higher absorbance values than those of control group. Crystal Violet assay showed statistically differences in the absorbance rate from 6 to 24 h after irradiation for groups III and VI. At 24 h after irradiation, Group III absorbance rate was greater than that of groups I, II, and IV. Group VI absorbance rate was greater than that of groups I and IV. SRB assay showed that the group I had higher rates than those of groups II, III, V, and VI, at 24 h after irradiation. After 48 h, group I exhibited the greatest cell proliferation rate followed by groups III, V, and VI. After 72 h, group III exhibited the lowest cell proliferation rate than those of groups II, IV, and V. Conclusions The Low-Level Laser Therapy energy densities used in this study did not cause loss of cell viability and stimulated SHED proliferation within the parameters described in this study. PMID:27556203
Duan, Qiaonan; Wang, Zichen; Fernandez, Nicolas F; Rouillard, Andrew D; Tan, Christopher M; Benes, Cyril H; Ma'ayan, Avi
2014-11-15
Recently, several high profile studies collected cell viability data from panels of cancer cell lines treated with many drugs applied at different concentrations. Such drug sensitivity data for cancer cell lines provide suggestive treatments for different types and subtypes of cancer. Visualization of these datasets can reveal patterns that may not be obvious by examining the data without such efforts. Here we introduce Drug/Cell-line Browser (DCB), an online interactive HTML5 data visualization tool for interacting with three of the recently published datasets of cancer cell lines/drug-viability studies. DCB uses clustering and canvas visualization of the drugs and the cell lines, as well as a bar graph that summarizes drug effectiveness for the tissue of origin or the cancer subtypes for single or multiple drugs. DCB can help in understanding drug response patterns and prioritizing drug/cancer cell line interactions by tissue of origin or cancer subtype. DCB is an open source Web-based tool that is freely available at: http://www.maayanlab.net/LINCS/DCB CONTACT: avi.maayan@mssm.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Deliormanlı, Aylin M; Atmaca, Harika
2018-05-25
Graphene-containing 13-93 bioactive glass and poly(ε-caprolactone)-based bilayer, electrically conductive scaffolds were prepared for osteochondral tissue repair. Biological response of osteoblastic MC3T3-E1 and chondrogenic ATDC5 cells to the composite scaffolds was assessed under mono-culture and co-culture conditions. Cytotoxicity was investigated using MTT assay, cartilage matrix production was evaluated by Alcian blue staining, and mineralization of both types of cells in the different culture systems was observed by Alizarin red S staining. Results showed that osteoblastic and chondrogenic cells utilized in the study did not show toxic response to the prepared scaffolds under mono-culture conditions and higher cell viability rates were obtained in co-culture conditions. Larger mineralized areas were determined under co-culture conditions and calcium deposition amount significantly increased compared with that in control group samples after 21 days. Additionally, the amount of glycosaminoglycans synthesized in co-culture was higher compared to mono-culture conditions. Electric stimulation applied under mono-culture conditions suppressed the viability of MC3T3-E1 cells whereas it enhanced the viability rates of ATDC5 cells. The study suggests that the designed bilayered osteochondral constructs have the potential for osteochondral defect repair.
Investigating the importance of flow when utilizing hyaluronan scaffolds for tissue engineering.
Donegan, Gail C; Hunt, John A; Rhodes, Nicholas
2010-02-01
Esterified hyaluronan scaffolds offer significant advantages for tissue engineering. They are recognized by cellular receptors, interact with many other extracellular matrix proteins and their metabolism is mediated by intrinsic cellular pathways. In this study differences in the viability and structural integrity of vascular tissue models cultured on hyaluronan scaffolds under laminar flow conditions highlighted potential differences in the biodegradation kinetics, processes and end-products, depending on the culture environment. Critical factors are likely to include seeding densities and the duration and magnitude of applied biomechanical stress. Proteomic evaluation of the timing and amount of remodelling protein expression, the resulting biomechanical changes arising from this response and metabolic cell viability assay, together with examination of tissue morphology, were conducted in vascular tissue models cultured on esterified hyaluronan felt and PTFE mesh scaffolds. The vascular tissue models were derived using complete cell sheets derived from harvested and expanded umbilical cord vein cells. This seeding method utilizes high-density cell populations from the outset, while the cells are already supported by their own abundant extracellular matrix. Type I and type IV collagen expression in parallel with MMP-1 and MMP-2 expression were monitored in the tissue models over a 10 day culture period under laminar flow regimes using protein immobilization technologies. Uniaxial tensile testing and scanning electron microscopy were used to compare the resulting effects of hydrodynamic stimulation upon structural integrity, while viability assays were conducted to evaluate the effects of shear on metabolic function. The proteomic results showed that the hyaluronan felt-supported tissues expressed higher levels of all remodelling proteins than those cultured on PTFE mesh. Overall, a 21% greater expression of type I collagen, 24% higher levels of type IV collagen, 24% higher levels of MMP-1 and 34% more MMP-2 were observed during hydrodynamic stress. This was coupled with a loss of structural integrity in these models after the introduction of laminar flow, as compared to the increases in all mechanical properties observed in the PTFE mesh-supported tissues. However, under flow conditions, the hyaluronan-supported tissues showed some recovery of the viability originally lost during static culture conditions, in contrast to PTFE mesh-based models, where initial gains were followed by a decline in metabolic viability after applied shear stress. Proteomic, cell viability and mechanical testing data emphasized the need for extended in vitro evaluations to enable better understanding of multi-stage remodelling and reparative processes in tissues cultured on biodegradable scaffolds. This study also highlighted the possibility that in high-density tissue culture with a biodegradable component, dynamic conditions may be more conducive to optimal tissue development than the static environment because they facilitate the efficient removal of high concentrations of degradation end-products accumulating in the pericellular space.
Measuring Total and Germinable Spore Populations
NASA Technical Reports Server (NTRS)
Noell, A.C.; Yung, P.T.; Yang, W.; Lee, C.; Ponce, A.
2011-01-01
It has been shown that bacterial endospores can be enumerated using a microscopy based assay that images the luminescent halos from terbium ions bound to dipicolinic acid, a spore specific chemical marker released upon spore germination. Further development of the instrument has simplified it towards automation while at the same time improving image quality. Enumeration of total spore populations has also been developed allowing measurement of the percentage of viable spores in any population by comparing the germinable/culturable spores to the total. Percentage viability will allow a more quantitative comparison of the ability of spores to survive across a wide range of extreme environments.
Development of an in vitro alternative assay method for vaginal irritation.
Ayehunie, Seyoum; Cannon, Chris; Larosa, Karen; Pudney, Jeffrey; Anderson, Deborah J; Klausner, Mitchell
2011-01-11
The vaginal mucosa is commonly exposed to chemicals and therapeutic agents that may result in irritation and/or inflammation. In addition to acute effects, vaginal irritation and inflammation can make women more susceptible to infections such as HIV-1 and herpes simplex virus 2 (HSV-2). Hence, the vaginal irritation potential of feminine care formulations and vaginally administered therapeutic agents is a significant public health concern. Traditionally, testing of such materials has been performed using the rabbit vaginal irritation (RVI) assay. In the current study, we investigated whether the organotypic, highly differentiated EpiVaginal™ tissue could be used as a non-animal alternative to the RVI test. The EpiVaginal tissue was exposed to a single application of ingredients commonly found in feminine hygiene products and the effects on tissue viability (MTT assay), barrier disruption (measured by transepithelial electrical resistance, TEER and sodium fluorescein (NaFl) leakage), and inflammatory cytokine release (interleukin (IL)-1α, IL-1β, IL-6, and IL-8) patterns were examined. When compared to untreated controls, two irritating ingredients, nonoxynol 9 and benzalkonium chloride, reduced tissue viability to <40% and TEER to <60% while increasing NaFl leakage by 11-24% and IL-1α and IL-1β release by >100%. Four other non-irritating materials had minimal effects on these parameters. Assay reproducibility was confirmed by testing the chemicals using three different tissue production lots and by using tissues reconstructed from cells obtained from three different donors. Coefficients of variation between tissue lots reconstructed with cells obtained from the same donor or lots reconstructed with cells obtained from different donors were less than 10% and 12%, respectively. In conclusion, decreases in tissue viability and barrier function and increases in IL-1α and IL-1β release appear to be useful endpoints for preclinical screening of topically applied chemicals and formulations for their vaginal irritation potential. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
SU-F-T-59: The Effect of Radiotherapy Dose On Immunoadjuvants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreau, M; Yasmin-Karim, S; Hao, Y
Purpose: Combining radiotherapy with immunotherapy is a promising approach to enhance treatment outcomes for cancer patients. This in-vitro study investigated which radiotherapy doses could adversely affect the function of anti-CD40 mAb, which is one of the key immunoadjuvants under investigations for priming such combination therapy. Methods: Human monocyte derived THP-1 cells were treated with 100ng/mL of PMA in chamber slides to differentiate into macrophage. The THP-1 differentiated macrophages were treated with 2uL/ml of the anti-CD40 mAb and incubated at 37°C and 5% CO2 for 24 hours. Anti-CD40 mAb treated cells were then irradiated at different doses of x-rays: (0, 2,more » 4, 6, 8, and 12) Gy using the Small Animal Radiotherapy Research Platform (SARRP). After radiation, the cells were left at 4°C for 2 hours followed by immunofluorescence assay. A Nikon inverted live-cell imaging system with fluorescence microscope was used to image the cells mounted on a slide fixed with Dapi. For comparison, an ELISA assay was performed with the antibody added to 3mL of PBS in multiple 10mm dishes. The 10mm dishes were irradiated at different x-ray dose: (0, 2, 4, 6, 8. 10, 12, and 15) Gy using the SARRP. Results: The anti-CD40 mAb activating the macrophages starts to lose their viability due to radiation dose between 8Gy to 12Gy as indicated by the immunofluorescence assay. The ELISA assay, also indicated that such high doses could lead to loss of the mAb’s viability. Conclusion: This work suggests that high doses like those employed during Stereotactic Ablative Radiotherapy may affect the viability of immunoadjuvants such as anti-CD 40. This study avails in-vivo experiments combining radiotherapy with anti-cd40 to get synergistic outcomes, including in the treatment of metastatic disease.« less
Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun
2011-01-01
To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were measured using 3-(4,5)-dimethylthiahiazo (-z-y1)-3 5-di-phenytetrazoliumromide (MTT) assay and transwell migration assay. Cell damage was determined with the lactate dehydrogenase (LDH) assay. Cell viability and median lethal time (LT₅₀) were measured by 7-amino-actinomycin D (7-AAD) staining and flow cytometry analysis. Cellular effects after exposure of HCECs to the four anti-inflammatory eye drops were concentration dependent. The differences of cellular toxicity on cell proliferation became significant at lower concentrations (<0.002%). Diclofenac Sodium Eye Drops showed significant increasing effects on cell damage and viability when compared with the other three solutions. Tobramycin & Dex Eye Drops inhibited the migration of HCECs significantly. Tobramycin & Dex Eye Drops showed the quickest effect on cell viability: the LT₅₀ was 3.28, 9.23, 10.38, and 23.80 min for Tobramycin & Dex Eye Drops, Diclofenac Sodium Eye Drops, Pranoprofen Eye Drops, and Bromfenac Sodium Hydrate Eye Drops, respectively. However, the comparisons of cellular toxicity revealed significant differences between the eye drops and their active components under the same concentration. The corneal epithelial toxicity differences among the active components of the four eye drops became significant as higher concentration (>0.020%). The four anti-inflammatory eye drops showed different cellular effects on HCECs, and the toxicity was not related with their active components, which provides new reference for the clinical application and drug research and development.
López-García, Jorge; Kuceková, Zdenka; Humpolíček, Petr; Mlček, Jiři; Sáha, Petr
2013-10-30
The phenolic extract of chives flowers (Allium schoenoprasum, Liliaceae), introduced Sage (Salvia pratensis, Lamiaceae), European elderberry (Sambucus nigra, Caprifoliaceae) and common dandelion (Taraxacum officinale, Asteraceae) were characterised by High Performance Liquid Chromatography and incorporated in different concentrations onto atelocollagen thin films. In order to assess the biological impact of these phenolic compounds on cell viability, human immortalised non-tumorigenic keratinocyte cell line was seeded on the thin films and cell proliferation was determined by using an MTT assay. In addition, their antimicrobial activity was estimated by using an agar diffusion test. Data indicated the concomitance between cell viability and concentration of polyphenols. These findings suggest that these phenolic-endowed atelocollagen films might be suitable for tissue engineering applications, on account of the combined activity of polyphenols and collagen.
Neutral Red versus MTT assay of cell viability in the presence of copper compounds.
Gomez Perez, Mariela; Fourcade, Lyvia; Mateescu, Mircea Alexandru; Paquin, Joanne
2017-10-15
Copper is essential for numerous physiological functions, and copper compounds may display therapeutic as well as cytotoxic effects. The MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay is a standard test largely used in cytotoxicity studies. This report shows that low micromolar levels of copper compounds such as Cu(II)Urea 2 , Cu(II)Ser 2 and CuCl 2 can interfere with the MTT assay making improper the detection of formazan product of MTT reduction. Comparatively, the Neutral Red assay appears to be sensitive and showing no interference with these compounds. The lactate dehydrogenase alternative assay cannot be used because of inhibitory effect of these copper compounds on the enzyme activity. Copyright © 2017 Elsevier Inc. All rights reserved.
Yoshitani, Kazuhiro; Kido, Akira; Honoki, Kanya; Akahane, Manabu; Fujii, Hiromasa; Tanaka, Yasuhito
2011-07-15
Bisphosphonates (BPs) are agents used for treating disorders of excessive bone resorption. In addition, due to their cell-killing activity, BPs were potent candidates for adjuvant cancer therapy. On the other hand, low-concentrations of BPs have been reported to increase cellular viability in several types of tumor cells. Therefore, we focused on the effect of BPs on cellular aggressiveness of malignant bone tumors at low concentrations. MTS assay was performed using osteosarcoma cell lines MG63 and HOS, fibrosarcoma cell line HT1080, and prostate cancer cell line PC3. All the cell lines showed toxicity at high concentrations. On the other hand, at lower concentrations, the cellular viabilities of HOS and MG63 were rather higher than those of untreated controls. Since this tendency was most evident, HOS was used for further assays, including cellular motility, bone resorption activity, and cathepsin K activity. The low-concentration of alendronate enhanced cellular viability and motility, which correlated with the expression of connexin 43 at the mRNA and protein levels. Interestingly, oleamide, a potent connexin 43 inhibitor, had an inhibitory effect on the enhanced proliferation. Our data suggest that alendronate may enhance the proliferation of osteoblastic cell line through connexin 43 activation. Copyright © 2011 Elsevier GmbH. All rights reserved.
BK/TD models for analyzing in vitro impedance data on cytotoxicity.
Teng, S; Barcellini-Couget, S; Beaudouin, R; Brochot, C; Desousa, G; Rahmani, R; Pery, A R R
2015-06-01
The ban of animal testing has enhanced the development of new in vitro technologies for cosmetics safety assessment. Impedance metrics is one such technology which enables monitoring of cell viability in real time. However, analyzing real time data requires moving from static to dynamic toxicity assessment. In the present study, we built mechanistic biokinetic/toxicodynamic (BK/TD) models to analyze the time course of cell viability in cytotoxicity assay using impedance. These models account for the fate of the tested compounds during the assay. BK/TD models were applied to analyze HepaRG cell viability, after single (48 h) and repeated (4 weeks) exposures to three hepatotoxic compounds (coumarin, isoeugenol and benzophenone-2). The BK/TD models properly fit the data used for their calibration that was obtained for single or repeated exposure. Only for one out of the three compounds, the models calibrated with a single exposure were able to predict repeated exposure data. We therefore recommend the use of long-term exposure in vitro data in order to adequately account for chronic hepatotoxic effects. The models we propose here are capable of being coupled with human biokinetic models in order to relate dose exposure and human hepatotoxicity. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Effects of drinking desalinated seawater on cell viability and proliferation.
Macarrão, Camila Longhi; Bachi, André Luis Lacerda; Mariano, Mario; Abel, Lucia Jamli
2017-06-01
Desalination of seawater is becoming an important means to address the increasing scarcity of freshwater resources in the world. Seawater has been used as drinking water in the health, food, and medical fields and various beneficial effects have been suggested, although not confirmed. Given the presence of 63 minerals and trace elements in drinking desalinated seawater (63 DSW), we evaluated their effects on the behavior of tumorigenic and nontumorigenic cells through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and annexin-V-fluorescein isothiocyanate/propidium iodide staining. Our results showed that cell viability and proliferation in the presence of 63 DSW were significantly greater than in mineral water and in the presence of fetal bovine serum in a dose-dependent manner. Furthermore, 63 DSW showed no toxic effect on murine embryonic fibroblast (NIH-3T3) and murine melanoma (B16-F10) cells. In another assay, we also showed that pre-treatment of non-adherent THP-1 cells with 63 DSW reduces apoptosis incidence, suggesting a protective effect against cell death. We conclude that cell viability and proliferation were improved by the mineral components of 63 DSW and this effect can guide further studies on health effects associated with DSW consumption.
Freitas, Dayanne da S; Morgado-Díaz, José A; Gehren, Adriana S; Vidal, Flávia C B; Fernandes, Raquel Maria T; Romão, Wanderson; Tose, Lilian V; Frazão, Fabiola N S; Costa, Maria Célia P; Silva, Dulcelena F; Nascimento, Maria do Desterro S B
2017-06-01
To analyse the antineoplastic activity of fractions derived from the hydroalcoholic extract of Euterpe oleracea Mart. seed in the MCF-7 cell line and to identify the compounds responsible for the antineoplastic action. Cells were treated with 10, 20, 40 and 60 μg/ml with the hexane, chloroform and ethyl acetate fraction (EAF) of the hydroalcoholic extract of açaí seed, for 24 and 48 h. After treatment, cell viability was measured using MTT assay and cell death was assessed using the Annexin-Pi assay. The most cytotoxic fraction under study was analysed by mass spectrometry using an electrospray ionization source and a cyclotron analyser coupled to a Fourier transform. Data were analysed statistically by analysis of variance (ANOVA) or by Student's t-test, where appropriate. All fractions caused significant reduction in the cell viability, but the EAF was the most cytotoxic (P < 0.001). It was observed the absence of significant annexin staining but increase Pi staining (P < 0.001). The EAF is composed of epicatechin, proanthocyanidin A 2 and trimeric and tetrameric procyanidins. In this study, we demonstrated that EAF was the most effective fraction in reducing cell viability and causing necroptosis in the MCF-7 cell. © 2017 Royal Pharmaceutical Society.
Tectonic-1 contributes to the growth and migration of prostate cancer cells in vitro
WANG, ZHIJUN; GAO, YI; LIU, YUSHAN; CHEN, JIE; WANG, JUNKAI; GAN, SISHUN; XU, DANFENG; CUI, XINGANG
2015-01-01
Tectonic-1 (TCTN1) is an upstream gene involved in embryonic development. The aim of the present study was to investigate the effect of the TCTN1 gene on the viability and migration of prostate cancer cells. Lentivirus-mediated short hairpin RNA (shRNA) was constructed to silence the expression of TCTN1 in PC-3 and DU145 prostate cancer cells. Cell viability and proliferation were measured using MTT and colony formation assays, and the distribution of cells in phases of the cell cycle was determined using flow cytometry. Cell migration was detected using a Transwell assay. The results demonstrated that TCTN1 was widely expressed in several human prostate cancer cell lines. Knockdown of the TCTN1 gene by RNA interference markedly suppressed cell viability and colony formation in the PC-3 and DU145 cell lines. Cell cycle progression was also arrested by TCTN1 silencing. In addition, knockdown of the TCTN1 gene led to the inhibition of cell migration in the two cell lines. These findings confirmed the direct association between the TCTN1 gene and prostate cancer growth in vitro. With further understanding and clinical investigation, this indicates the potential for future development of a novel marker for early detection and gene therapy for prostate cancer. PMID:26310786
Viability of human fibroblasts in coconut water as a storage medium.
Moreira-Neto, J J S; Gondim, J O; Raddi, M S G; Pansani, C A
2009-09-01
To evaluate the effectiveness of a new storage medium for avulsed teeth, coconut water, in maintaining the viability of human fibroblasts. Cell viability after different time periods was evaluated in the following storage media: coconut water, coconut water with sodium bicarbonate, milk, saline and still mineral water. Human fibroblasts were seeded in Eagle's minimal essential medium (EMEM) supplemented with 7.5% foetal calf serum. After trypsinisation, 100 microL of culture medium containing approximately 10(4) cells mL(-1) were collected and pipetted into the wells of 96-well plates, which were incubated overnight in 5% CO(2) and 95% air mixture at 37 degrees C. EMEM was then replaced by the storage media and the plates were incubated at 37 degrees C for 1, 2 and 4 h. Cell viability was determined using the neutral red assay. The proportions of viable cells after exposure to the storage media were analysed statistically by anova and the least significant difference (LSD) test (alpha = 5%). Milk had the greatest capacity to maintain cell viability (P < 0.05), followed by coconut water with sodium bicarbonate and saline. Coconut water was significantly worse at maintaining cell viability compared to milk, coconut water with sodium bicarbonate and saline. The smallest number of viable cells was observed for mineral water (P < 0.05). Coconut water was worse than milk in maintaining human fibroblast cell viability.
Soy milk as a storage medium to preserve human fibroblast cell viability: an in vitro study.
Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Reis, Manuella Verdinelli de Paula; Fernandes Neto, Alfredo Júlio; Soares, Carlos José
2012-01-01
Soy milk (SM) is widely consumed worldwide as a substitute for cow milk. It is a source of vitamins, carbohydrates and sugars, but its capacity to preserve cell viability has not been evaluated. The purpose of the present study was to investigate the efficacy of SM to maintain the viability of human fibroblasts at short periods compared with different cow milks. Human mouth fibroblasts were cultured and stored in the following media at room temperature: 10% Dulbecco's Modified Eagle Medium (DMEM) (positive control group); long shelf-life ultra-high temperature whole cow milk (WM); long shelf-life ultra-high temperature skim cow milk (SKM); powdered cow milk (PM); and soy milk (SM). After 5, 15, 30 and 45 min, cell viability was analyzed using the MTT assay. Data were analyzed statistically by the Kruskal-Wallis test with post-analysis using the Dunn's method (α=0.05). SKM showed the lowest capacity to maintain cell viability in all analyzed times (p<0.05). At 30 and 45 min, the absorbance levels in control group (DMEM) and SM were significantly higher than in SKM (p<0.05). Cell viability decreased along the time (5-45 min). The results indicate that SM can be used as a more adequate storage medium for avulsed teeth. SKM was not as effective in preserving cell viability as the cell culture medium and SM.
Monnery, Bryn D; Wright, Michael; Cavill, Rachel; Hoogenboom, Richard; Shaunak, Sunil; Steinke, Joachim H G; Thanou, Maya
2017-04-15
The mechanism of polycation cytotoxicity and the relationship to polymer molecular weight is poorly understood. To gain an insight into this important phenomenon a range of newly synthesised uniform (near monodisperse) linear polyethylenimines, commercially available poly(l-lysine)s and two commonly used PEI-based transfectants (broad 22kDa linear and 25kDa branched) were tested for their cytotoxicity against the A549 human lung carcinoma cell line. Cell membrane damage assays (LDH release) and cell viability assays (MTT) showed a strong relationship to dose and polymer molecular weight, and increasing incubation times revealed that even supposedly "non-toxic" low molecular weight polymers still damage cell membranes. The newly proposed mechanism of cell membrane damage is acid catalysed hydrolysis of lipidic phosphoester bonds, which was supported by observations of the hydrolysis of DOPC liposomes. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cristescu, R.; Popescu, C.; Socol, G.; Iordache, I.; Mihailescu, I. N.; Mihaiescu, D. E.; Grumezescu, A. M.; Balan, A.; Stamatin, I.; Chifiriuc, C.; Bleotu, C.; Saviuc, C.; Popa, M.; Chrisey, D. B.
2012-09-01
We report on thin film deposition of nanostructured Fe3O4/oleic acid/ceftriaxone and Fe3O4/oleic acid/cefepime nanoparticles (core/shell/adsorption-shell) were fabricated by matrix assisted pulsed laser evaporation (MAPLE) onto inert substrates. The thin films were characterized by profilometry, Fourier transform infrared spectroscopy, atomic force microscopy, and investigated by in vitro biological assays. The biological properties tested included the investigation of the microbial viability and the microbial adherence to the glass coverslip nanoparticle film, using Gram-negative and Gram-positive bacterial strains with known antibiotic susceptibility behavior, the microbial adherence to the HeLa cells monolayer grown on the nanoparticle pellicle, and the cytotoxicity on eukaryotic cells. The proposed system, based on MAPLE, could be used for the development of novel anti-microbial materials or strategies for fighting pathogenic biofilms frequently implicated in the etiology of biofilm associated chronic infections.
2013-10-01
transcription factor that controls expression of genes encoding important antioxidant and stress response proteins through binding to the antioxidant response...abundant in many species from the Cucurbita family such as cucumber, watermelon , melon root, culture from radicle. To facilitate further studies of the...via Griess assay in LPS- activated cells treated with BA for 24 h. (B) viability was measured by the MTT assay. (C) iNOS protein levels were
The effect of five artificial sweeteners on Caco-2, HT-29 and HEK-293 cells.
van Eyk, Armorel Diane
2015-01-01
Artificial sweeteners (AS) have been associated with tumor development (including colon cancer) in both animals and humans although evidence has been conflicting. Additional research was thus conducted by studying the effects of 5 AS on the morphology, cell proliferation and DNA in cells by utilizing Caco-2, HT-29 (colon) and HEK-293 (kidney) cell lines. Cells were exposed to sodium cyclamate, sodium saccharin, sucralose and acesulfame-K (0-50 mM) and aspartame (0-35 mM) over 24, 48 and 72 hours. Morphological changes were presented photographically and % cell viability was determined by using the MTT cell viability assay. Possible DNA damage (comet assay) induced by the AS (0.1, 1 and 10 mM, treated for 24, 48 and 72 hours) was studied. The appearance of "comets" was scored from no damage to severe damage (0-4). Cells became flatter and less well defined at higher AS concentrations (>10 mM). At concentrations >10 mM, decreased cell viability was noted with both increasing concentration and increasing incubation time for all cell lines tested. In general, HEK-293 cells seemed to be less affected then the colon cancer cells. Sucralose and sodium saccharin seemed to elicit the greatest degree of DNA fragmentation of all the sweeteners tested in all the cell lines used. Morphological cell alterations, cell viability and DNA fragmentation seemed to be more in the colon cancer cells. Further studies have to be performed to clarify mechanisms involved causing these alterations in mammalian cells.
Wu, Qing; Lin, Wei-Dong; Liao, Guan-Qun; Zhang, Li-Guo; Wen, Shun-Qian; Lin, Jia-Ying
2015-01-01
AIM: To investigate the antiproliferative activity of cinobufacini on human hepatocellular carcinoma HepG2 cells and the possible mechanism of its action. METHODS: HepG2 cells were treated with different concentrations of cinobufacini. Cell viability was measured by methylthiazolyl tetrazolium (MTT) assay. Cell cycle distribution was analyzed by flow cytometry (FCM). Cytoskeletal and nuclear alterations were observed by fluorescein isothiocyanate-phalloidin and DAPI staining under a laser scanning confocal microscope. Changes in morphology and ultrastructure of cells were detected by atomic force microscopy (AFM) at the nanoscale level. RESULTS: MTT assay indicated that cinobufacini significantly inhibited the viability of HepG2 cells in a dose-dependent manner. With the concentration of cinobufacini increasing from 0 to 0.10 mg/mL, the cell viability decreased from 74.9% ± 2.7% to 49.41% ± 2.2% and 39.24% ± 2.1% (P < 0.05). FCM analysis demonstrated cell cycle arrest at S phase induced by cinobufacini. The immunofluorescence studies of cytoskeletal and nuclear morphology showed that after cinobufacini treatment, the regular reorganization of actin filaments in HepG2 cells become chaotic, while the nuclei were not damaged seriously. Additionally, high-resolution AFM imaging revealed that cell morphology and ultrastructure changed a lot after treatment with cinobufacini. It appeared as significant shrinkage and deep pores in the cell membrane, with larger particles and a rougher cell surface. CONCLUSION: Cinobufacini inhibits the viability of HepG2 cells via cytoskeletal destruction and cell membrane toxicity. PMID:25624718
Antioxidant, pro-oxidant and cytotoxic properties of parsley.
Dorman, H J Damien; Lantto, Tiina A; Raasmaja, Atso; Hiltunen, Raimo
2011-06-01
Parsley (Petroselinum crispum) leaves were macerated with a mixture of methanol: water: acetic acid to produce a crude extract which was then defatted with (40°-60°) petrol. Antioxidant activity of the extract was evaluated using a battery of in vitro assays, viz., iron(iii) reduction, iron(ii) chelation and free radical scavenging assays. Evaluation of the pro-oxidant activity of the extract was based upon its effects upon DNA fragmentation and protein carbonylation. Cytotoxicity and apoptotic effects of the extract were determined in non-cancerous CV1-P fibroblast and cancerous A375 melanoma cells using MTT and LDH tests and caspase 3-like activity assay. The highest concentration, 2.0 mg ml(-1), decreased the viability of both cell lines, however, the cancerous melanoma cells were slightly susceptible to the effects. The observed cytotoxicity was not due to the caspase 3 activity. In conclusion, the toxicity might be explained by the pro-oxidative activity of components within the extract against proteins and/or DNA but it is not related to caspase 3-dependent apoptosis within cells.
2011-01-01
Background Engineered nanomaterials display unique properties that may have impact on human health, and thus require a reliable evaluation of their potential toxicity. Here, we performed a standardized in vitro screening of 23 engineered nanomaterials. We thoroughly characterized the physicochemical properties of the nanomaterials and adapted three classical in vitro toxicity assays to eliminate nanomaterial interference. Nanomaterial toxicity was assessed in ten representative cell lines. Results Six nanomaterials induced oxidative cell stress while only a single nanomaterial reduced cellular metabolic activity and none of the particles affected cell viability. Results from heterogeneous and chemically identical particles suggested that surface chemistry, surface coating and chemical composition are likely determinants of nanomaterial toxicity. Individual cell lines differed significantly in their response, dependent on the particle type and the toxicity endpoint measured. Conclusion In vitro toxicity of the analyzed engineered nanomaterials cannot be attributed to a defined physicochemical property. Therefore, the accurate identification of nanomaterial cytotoxicity requires a matrix based on a set of sensitive cell lines and in vitro assays measuring different cytotoxicity endpoints. PMID:21345205
Lyng, Fiona M; Desplanques, Maxime; Jella, Kishore Kumar; Garcia, Amaya; McClean, Brendan
2012-10-01
The aim of this study was to investigate the importance of serum serotonin levels in the measurement of bystander cell death. The study was undertaken as part of an intercomparison exercise involving seven European laboratories funded under the European Union Sixth Framework Programme (FP6) Non-Targeted Effects (NOTE) integrated project. Three batches of foetal bovine serum were tested; serum with high and low serotonin content from the intercomparison exercise as well as serum from the home laboratory. Three sets of human keratinocytes (HaCaT cell line) were cultured in DMEM:F12 medium supplemented with serum with high or low serotonin content or serum from the home laboratory and both donor and recipient HaCaT cells were plated. The donor HaCaT cells were irradiated (0.5 Gy) using a cobalt 60 teletherapy unit, the medium was harvested 1 hour post irradiation and transferred to the recipient HaCaT cells. Bystander induced cell death was measured by the clonogenic survival assay and the Alamar blue viability assay. A significant reduction in cell survival, as measured by the clonogenic assay, and in cell viability, as measured by the Alamar blue assay, was observed in the recipient HaCaT cells treated with medium from irradiated cells compared to the cells treated with medium from unirradiated cells. No significant difference was found between the three batches of serum. The data suggest that in our cell system and with our endpoints (clonogenic assay and Alamar blue assay), serum serotonin levels do not play a role in bystander-induced cell death.
Vancová, Marie; Rudenko, Nataliia; Vaněček, Jiří; Golovchenko, Maryna; Strnad, Martin; Rego, Ryan O M; Tichá, Lucie; Grubhoffer, Libor; Nebesářová, Jana
2017-01-01
To understand the response of the Lyme disease spirochete Borrelia burgdorferi exposed to stress conditions and assess the viability of this spirochete, we used a correlative cryo-fluorescence and cryo-scanning microscopy approach. This approach enables simple exposition of bacteria to various experimental conditions that can be stopped at certain time intervals by cryo-immobilization, examination of cell viability without necessity to maintain suitable culture conditions during viability assays, and visualization of structures in their native state at high magnification. We focused on rare and transient events e.g., the formation of round bodies and the presence of membranous blebs in spirochetes exposed to culture medium, host sera either without or with the bacteriolytic effect and water. We described all crucial steps of the workflow, particularly the influence of freeze-etching and accelerating voltage on the visualization of topography. With the help of newly designed cryo-transport device, we achieved greater reproducibility.
2015-01-01
We have demonstrated a multistep 2-dimensional paper network immunoassay based on controlled rehydration of patterned, dried reagents. Previous work has shown that signal enhancement improves the limit of detection in 2-dimensional paper network assays, but until now, reagents have only been included as wet or dried in separate conjugate pads placed at the upstream end of the assay device. Wet reagents are not ideal for point-of-care because they must be refrigerated and typically limit automation and require more user steps. Conjugate pads allow drying but do not offer any control of the reagent distribution upon rehydration and can be a source of error when pads do not contact the assay membrane uniformly. Furthermore, each reagent is dried on a separate pad, increasing the fabrication complexity when implementing multistep assays that require several different reagents. Conversely, our novel method allows for consistent, controlled rehydration from patterned reagent storage depots directly within the paper membrane. In this assay demonstration, four separate reagents were patterned in different regions of the assay device: a gold-antibody conjugate used for antigen detection and three different signal enhancement components that must not be mixed until immediately before use. To show the viability of patterning and drying reagents directly onto a paper device for dry reagent storage and subsequent controlled release, we tested this device with the malaria antigen Plasmodium falciparum histidine-rich protein 2 (PfHRP2) as an example of target analyte. In this demonstration, the signal enhancement step increases the visible signal by roughly 3-fold and decreases the analytical limit of detection by 2.75-fold. PMID:24882058
Effect of sodium hypochlorite on human pulp cells: an in vitro study
Essner, Mark D.; Javed, Amjad; Eleazer, Paul D.
2014-01-01
Background The purpose of this study was to determine the effect of sodium hypochlorite (NaOCl) on human pulp cells to provide an aid in determining its optimum concentration in maintaining the viability of remaining pulp cells in the revascularization of immature permanent teeth with apical periodontitis. Study design Human pulp tissue cells taken from extracted third molars were plated, incubated, and subjected to various concentrations of NaOCl (0.33%, 0.16%, 0.08%, and 0.04%) for 5-, 10-, and 15-minute time intervals to simulate possible contact times in vivo. The Cell Titer–Glo Luminescent Cell Viability Assay was used to determine the number of viable cells present in culture following treatment. Results The results showed an increase in cell viability with the lowering of NaOCl concentration. The use of 0.04% NaOCl was similar to the control, indicating nearly complete preservation of cell viability at all time intervals tested. As sodium hypochlorite concentration increased from 0.04% to 0.33%, cell viability decreased correspondingly. Conclusions The results indicate that the lowest concentration of NaOCl tested did not affect the viability of cells. This may prove beneficial in developing a new treatment protocol to help preserve existing vital pulp cells in revascularization cases. PMID:21821446
Har, Chan Hooi; Keong, Chan Kok
2005-01-01
The effects of tocotrienols on murine liver cell viability and their apoptotic events were studied over a dose range of 0-32 microg mL(-1). Normal murine liver cells (BNL CL.2) and murine liver cancer cells (BNL 1ME A.7R.1) were treated with tocotrienols (T(3)), alpha tocopherol (alpha-T) and the chemo drug, Doxorubicin (Doxo, as a positive control). Cell viability assay showed that T(3) significantly (P < or = 0.05) lowered the percentage of BNL 1ME A.7R.1 cell viability in a dose-responsive manner (8-16 microg mL(-1)), whereas T did not show any significant (P>0.05) inhibition in cell viability with increasing treatment doses of 0-16 microg mL(-1). The IC(50) for tocotrienols were 9.8, 8.9, 8.1, 9.7, 8.1 and 9.3 microg mL(-1) at 12, 24, 36, 48, 60 and 72 hours respectively. Early apoptosis was detected 6 hours following T(3) treatment of BNL 1ME A.7R.1 liver cancer cells, using Annexin V-FITC fluorescence microscopy assay for apoptosis, but none were observed for the non-treated liver cancer cells at the average IC(50) of 8.98 microg mL(-1) tocotrienols for liver cancer cells. Several apoptotic bodies were detected in BNL 1ME A.7R.1 liver cancer cells at 6 hours post-treatment with tocotrienols (8.98 microg mL(-1)) using Acridine Orange/Propidium Iodide fluorescence assay. However, only a couple of apoptotic bodies were seen in the non-treated liver cancer cells and the BNL CL.2 normal liver cells. Some mitotic bodies were also observed in the T(3)-treated BNL 1ME A.7R.1 liver cancer cells but were not seen in the untreated BNL 1ME A.7R.1 cells and the BNL CL.2 liver cells. Following T(3)-treatment (8.98 microg mL(-1)) of the BNL 1ME A.7R.1 liver cancer cells, 24.62%, 25.53% and 44.90% of the cells showed elevated active caspase 3 activity at 9, 12 and 24 hours treatment period, respectively. DNA laddering studies indicated DNA fragmentation occurred in the T(3)-treated liver cancer cells, BNL 1ME A.7R.1 but not in non-treated liver cancer cells and the T(3)-treated and non-treated normal liver cells. These results suggest that tocotrienols were able to reduce the cell viability in the murine liver cancer cells at a dose of 8-32 microg mL(-1) and that this decrease in percentage cell viability may be due to apoptosis.
Hutchison, Janine R; Erikson, Rebecca L; Sheen, Allison M; Ozanich, Richard M; Kelly, Ryan T
2015-09-21
Bacillus anthracis is the causative agent of anthrax and can be contracted by humans and herbivorous mammals by inhalation, ingestion, or cutaneous exposure to bacterial spores. Due to its stability and disease potential, B. anthracis is a recognized biothreat agent and robust detection and viability methods are needed to identify spores from unknown samples. Here we report the use of smartphone-based microscopy (SPM) in combination with a simple microfluidic incubation device (MID) to detect 50 to 5000 B. anthracis Sterne spores in 3 to 5 hours. This technique relies on optical monitoring of the conversion of the ∼1 μm spores to the filamentous vegetative cells that range from tens to hundreds of micrometers in length. This distinguishing filament formation is unique to B. anthracis as compared to other members of the Bacillus cereus group. A unique feature of this approach is that the sample integrity is maintained, and the vegetative biomass can be removed from the chip for secondary molecular analysis such as PCR. Compared with existing chip-based and rapid viability PCR methods, this new approach reduces assay time by almost half, and is highly sensitive, specific, and cost effective.
Pinho, R O; Lima, D M A; Shiomi, H H; Siqueira, J B; Silva, H T; Lopes, P S; Guimarães, S E F; Guimarães, J D
2014-05-01
The objective of this study was to evaluate the effect of different cryo-protectants (glycerol, dimethylacetamide and dimethylformamide alone or combined and added to lactose-egg yolk extender) on the viability of frozen/thawed semen from the Piau breed as assessed by in vitro testing. Frozen semen samples (n=20) were used from five male swine. Five different freezing extenders, including 2% glycerol (Group 1 - G), 2% glycerol and 3% dimethylacetamide (Group 2 - GA), 2% glycerol and 3% dimethylformamide (Group 3 - GF), 5% dimethylacetamide (Group 4 - A) and 5% dimethylformamide (group 5 - F), were evaluated. To assess post-thawing sperm quality, sperm motility and morphology were evaluated. Sperm viability was determined using the hypoosmotic swelling test, supravital staining, and a fluorescent assay (carboxyfluorescein diacetate and propidium iodide). The mean total sperm motility of semen immediately after thawing was 46.2±1.3, 57.7±1.5, 53.2±2.1, 51.7±1.2, and 46.5±1.6% for groups 1-5, respectively. Groups 2 (GA) and 3 (GF) had greater motility values (P<0.05). Fluorescent assay values of 22.3±2.3%, 35.2±3.7%, 30.8±3.4%, 36.6±3.7%, and 26.5±3.8% were obtained for Groups 1-5, respectively, showing that Group 4 (A) sperm had greater viability than those from Group 1 (G), although there was no differences between the other treatments (P>0.05). The other complementary tests (hypoosmotic swelling test and supra-vital staining) demonstrated that sperm in Groups 2 (GA), 3 (GF) and 4 (A) had the greatest viability and there were no significant differences among these three groups (P>0.05). The most effective cryo-protectant combinations likely minimized and controlled the deleterious processes that occur in the sperm cell during freezing/thawing, thus improving post-thawing sperm viability. In conclusion, the combination of amides (3%) and glycerol (2%) or dimethylacetamide (5%) alone were more efficient at cryo-protection than glycerol alone for semen freezing in the Piau swine breed. Copyright © 2014 Elsevier B.V. All rights reserved.
Opačić-Galić, V; Petrović, V; Zivković, S; Jokanović, V; Nikolić, B; Knežević-Vukčević, J; Mitić-Ćulafić, D
2013-06-01
To characterize and investigate the genotoxic effect of a new endodontic cement based on dicalcium- and tricalcium-silicate (CS) with hydroxyapatite (HA) on human lymphocytes. Hydrothermal treatment was applied for synthesis of CS and HA. The final mixture HA-CS, with potential to be used in endodontic practice, is composed of CS (34%) and HA (66%). Human lymphocytes were incubated with HA, HA-CS and CS for 1 h, at 37 °C and 5% CO2. Cell viability was determined using the trypan blue exclusion assay. To evaluate the level of DNA damage comet assay (single cell gel electrophoresis) was performed. For the statistical analysis anova and Duncan's Post Hoc Test were used. The SEM analysis indicated that CS consisted mostly of agglomerates of several micrometers in size, built up from smaller particles, with dimensions between 117 and 477 nm. This is promising because dimensions of agglomerates are not comparable with channels inside the cell membranes, whereas their nano-elements provide evident activity, important for faster setting of these mixtures compared to MTA. Values of DNA damage obtained in the comet assay indicated low genotoxic risk of the new endodontic materials. The significantly improved setting characteristics and low genotoxic risk of the new material support further research. © 2012 International Endodontic Journal.
Utami, Diah Ayu Satyari; Widanarni; Suprayudi, M Agus
2015-02-01
The main things that need to be considered in the preparation of probiotics are viability during preparation and storage which are the disadvantages of the use of fresh culture probiotics. Dried probiotic can be applied through the feed, easy to be applied and has a long shelf life but application of dried probiotic in aquaculture is still not widely studied. This study aimed to evaluate the quality of dried Bacillus NP5 as the probiotic through in vitro assays and determine the best dose for the growth performance of tilapia. The treatment of in vitro assays including the production of dried probiotic without using of the coating material and dried by spray drying method (NS); freeze drying method (NF); with using of the coating material and dried by spray drying method (WS); freeze drying method (WF). The treatment which showed the best result at in vitro assays was applied for in vivo assays. The in vivo assays containing 4 treatments and 5 replicates which were control (K) and the administration of dried Bacillus NP5 Rf(R) (10(10) CFU g(-1)) in feed with dose of 0.5% (A), 1% (B) and 2% (C). The fish fed 3 times a day by at satiation for 28 days. Probiotic that encapsulated by maltodextrin and dried by spray drying method that stored in room temperature had the higher percentage product, viability after drying process and storage. The administration of 0.5% dried Bacillus NP5 showed the best growth performance in tilapia.
Johnson, Tylor J; Zahler, Jacob D; Baldwin, Emily L; Zhou, Ruanbao; Gibbons, William R
2016-07-01
Cyanobacteria are currently being engineered to photosynthetically produce next-generation biofuels and high-value chemicals. Many of these chemicals are highly toxic to cyanobacteria, thus strains with increased tolerance need to be developed. The volatility of these chemicals may necessitate that experiments be conducted in a sealed environment to maintain chemical concentrations. Therefore, carbon sources such as NaHCO3 must be used for supporting cyanobacterial growth instead of CO2 sparging. The primary goal of this study was to determine the optimal initial concentration of NaHCO3 for use in growth trials, as well as if daily supplementation of NaHCO3 would allow for increased growth. The secondary goal was to determine the most accurate method to assess growth of Anabaena sp. PCC 7120 in a sealed environment with low biomass titers and small sample volumes. An initial concentration of 0.5g/L NaHCO3 was found to be optimal for cyanobacteria growth, and fed-batch additions of NaHCO3 marginally improved growth. A separate study determined that a sealed test tube environment is necessary to maintain stable titers of volatile chemicals in solution. This study also showed that a SYTO® 9 fluorescence-based assay for cell viability was superior for monitoring filamentous cyanobacterial growth compared to absorbance, chlorophyll α (chl a) content, and biomass content due to its accuracy, small sampling size (100μL), and high throughput capabilities. Therefore, in future chemical inhibition trials, it is recommended that 0.5g/L NaHCO3 is used as the carbon source, and that culture viability is monitored via the SYTO® 9 fluorescence-based assay that requires minimum sample size. Copyright © 2016 Elsevier B.V. All rights reserved.
Xia, Shuang; Zhu, Pei; Pi, Fuwei; Zhang, Yinzhi; Li, Yun; Wang, Jiasheng; Sun, Xiulan
2017-11-15
A simple and convenient cell-based electrochemical biosensor was developed to assess the individual and combined toxicity of deoxynivalenol (DON), zearalenone (ZEN), and Aflatoxin B 1 (AFB 1 ) on Hep G2 cells. The sensor was modified in succession with AuNPs (gold nanoparticles), cysteamine, and laminin. The cells interacting with laminin formed tight cell-to-electrode contacts, and collagen was used to maintain cell adhesion and viability. Electrochemical impedance spectroscopy (EIS) was developed to evaluate mycotoxin toxicity. Experimental results show that DON, ZEN, and AFB 1 caused a significant decrease in cell viability in a dose dependent manner. The EIS value decreased with concentrations of DON, ZEN, and AFB 1 in the range of 0.01-20, 0.1-50, and 0.1-3.5μg/mL, and IC 50 obtained using the developed method was 48.5, 59.0, and 3.10μg/mL, respectively. A synergistic effect was observed between DON and ZEN, an additive effect was observed between DON and AFB 1 , and an antagonism effect was found in the binary mixtures of ZEN and AFB 1 and ternary mixtures. These results were confirmed via CCK-8 assay. Utilizing SEM, we found that cells treated with mycotoxins caused significant changes in cell morphology, thus lessening cell adsorption and impedance reduction. Biological assay indicated that EIS patterns correlated with [Ca 2+ ] i concentrations and apoptosis and necrotic cells ratios, thus effecting electrochemical signals. This method is simpler, more convenient, sensitive, and has a quicker response rate than most conventional cytotoxicity evaluation methods. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Hakeem, Abdul; Zahid, Fouzia; Duan, Ruixue; Asif, Muhammad; Zhang, Tianchi; Zhang, Zhenyu; Cheng, Yong; Lou, Xiaoding; Xia, Fan
2016-02-01
Herein, we design novel cellulose conjugated mesoporous silica nanoparticle (CLS-MSP) based nanotherapeutics for stimuli responsive intracellular doxorubicin (DOX) delivery. DOX molecules are entrapped in pores of the fabricated mesoporous silica nanoparticles (MSPs) while cellulose is used as an encapsulating material through esterification on the outlet of the pores of the MSPs to avoid premature DOX release under physiological conditions. In in vitro studies, stimuli responsive DOX release is successfully achieved from DOX loaded cellulose conjugated mesoporous silica nanoparticles (DOX/CLS-MSPs) by pH and cellulase triggers. Intracellular accumulation of DOX/CLS-MSPs in human liver cancer cells (HepG2 cells) is investigated through confocal microscope magnification. Cell viability of HepG2 cells is determined as the percentage of the cells incubated with DOX/CLS-MSPs compared with that of non-incubated cells through an MTT assay.Herein, we design novel cellulose conjugated mesoporous silica nanoparticle (CLS-MSP) based nanotherapeutics for stimuli responsive intracellular doxorubicin (DOX) delivery. DOX molecules are entrapped in pores of the fabricated mesoporous silica nanoparticles (MSPs) while cellulose is used as an encapsulating material through esterification on the outlet of the pores of the MSPs to avoid premature DOX release under physiological conditions. In in vitro studies, stimuli responsive DOX release is successfully achieved from DOX loaded cellulose conjugated mesoporous silica nanoparticles (DOX/CLS-MSPs) by pH and cellulase triggers. Intracellular accumulation of DOX/CLS-MSPs in human liver cancer cells (HepG2 cells) is investigated through confocal microscope magnification. Cell viability of HepG2 cells is determined as the percentage of the cells incubated with DOX/CLS-MSPs compared with that of non-incubated cells through an MTT assay. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08753h
Gao, Yan; Li, Peng
2013-01-01
In this study, we introduced a novel and convenient approach to culture multiple cells in localized arrays of microfluidic chambers using one-step vacuum actuation. In one device, we integrated 8 individually addressable regions of culture chambers, each only requiring one simple vacuum operation to seed cells lines. Four cell lines were seeded in designated regions in one device via sequential injection with high purity (99.9%-100%) and cultured for long-term. The on-chip simultaneous culture of HuT 78, Ramos, PC-3 and C166-GFP cells for 48 h was demonstrated with viabilities of 92%+/−2%, 94%+/−4%, 96%+/−2% and 97%+/−2%, respectively. The longest culture period for C166-GFP cells in this study was 168 h with a viability of 96%+/−10%. Cell proliferation in each individual side channel can be tracked. Mass transport between the main channel and side channels was achieved through diffusion and studied using fluorescein solution. The main advantage of this device is the capability to perform multiple cell-based assays on the same device for better comparative studies. After treating cells with staurosporine or anti-human CD95 for 16 h, the apoptotic cell percentage of HuT 78, CCRF-CEM, PC-3 and Ramos cells were 36%+/−3%, 24%+/−4%, 12%+/−2%, 18%+/−4% for staurosporine, and 63%+/−2%, 45%+/−1%, 3%+/−3%, 27%+/−12% for anti-human CD95, respectively. With the advantages of enhanced integration, ease of use and fabrication, and flexibility, this device will be suitable for long-term multiple cell monitoring and cell based assays. PMID:23813077
Cell viability test after laser guidance
NASA Astrophysics Data System (ADS)
Rosenbalm, Tabitha N.; Owens, Sarah; Bakken, Daniel; Gao, Bruce Z.
2006-02-01
To precisely control the position of multiple types of cells in a coculture for the study of cell-cell interactions, we have developed a laser micropatterning technique. The technique employs the optical forces generated by a weakly focused laser beam. In the beam's focal region, the optical force draws microparticles, such as cells, into the center of the beam, propels them along the beam axis, and guides them onto a target surface. Specific patterns are created through computercontrolled micromanipulation of the substrate relative to the laser beam. Preliminary data have demonstrated cell viability after laser guidance. This project was designed to systematically vary the controllable laser parameters, namely, intensity and exposure time of the laser on single cells, and thus determine the laser parameters that allow negligible cell damage with functional cellular position control. To accomplish this goal, embryonic day 7 (E7) chick forebrain neurons were cultured in 35 mm petri dishes. Control and test cells were selected one hour after cell placement to allow cell attachment. Test cells were subjected to the laser at the focal region. The experimental parameters were chosen as: wavelength - 800 nm, intensities - 100 mW, 200 mW, and 300 mW, and exposure times - 10 s and 60 s. Results were analyzed based on neurite outgrowth and the Live/Dead assay (Viability/Cytoxicity kit from Molecular Probes). No statistical difference (p >> 0.1, student t-test) in viability or function was found between the control neurons and those exposed to the laser. This confirms that laser guidance seems to be a promising method for cellular manipulation.
Cellular proliferation, cellular viability, and biocompatibility of HA-ZnO composites.
Saha, Naresh; Dubey, Ashutosh K; Basu, Bikramjit
2012-01-01
One of the important issues in the development of hydroxyapatite (HA)-based biomaterials is the prosthetic infection, which limits wider use of monolithic HA despite superior cellular response. Recently, we reported that ZnO addition to HA can induce bactericidal property. It is therefore important to assess how ZnO addition influences the cytotoxicity property and cell adhesion/proliferation on HA-ZnO composite surfaces in vitro. In the above perspective, the objective of this study is to investigate the cell type and material composition dependent cellular proliferation and viability of pressureless sintered HA-ZnO composites. The combination of cell viability data as well as morphological observations of cultured human osteoblast-like SaOS2 cells and mouse fibroblast L929 cells suggests that HA-ZnO composites containing 10 Wt % or lower ZnO exhibit the ability to support cell adhesion and proliferation. Both SaOS2 and L929 cells exhibit extensive multidirectional network of actin cytoskeleton and cell flattening on the lower ZnO containing (≤10 Wt %) HA-ZnO composites. The in vitro results illustrate how variation in ZnO content can influence significantly the cell vitality, as evaluated using MTT biochemical assay. Also, the critical statistical analysis reveals that ZnO addition needs to be carefully tailored to ensure good in vitro cytocompatibility. The underlying reasons for difference in biological properties are analyzed. It is suggested that surface wettability as well as dissolution of ZnO, both contribute to the observed differences in cellular viability and proliferation. Copyright © 2011 Wiley Periodicals, Inc.
Odewumi, Caroline; Latinwo, Lekan M; Sinclair, Andre; Badisa, Veera L D; Abdullah, Ahkinyala; Badisa, Ramesh B
2015-11-01
Cadmium is an environmentally hazardous metal, which causes toxicity in humans. Inhalation of cigarette smoke and industrial fumes containing cadmium are sources of cadmium exposure. It is responsible for the malfunction of various organs, leading to disease particularly in the lungs, liver and kidneys. In the present study, the effect of cadmium chloride (CdCl2) on cell viability, and the expression levels of interleukin (IL)‑1α and IL‑10 cytokines at various concentrations and incubation durations were assessed in MRC‑9 human normal lung and A549 human lung cancer cells to elucidate the mechanism of cadmium toxicity. Cell viability was measured using a crystal violet dye binding assay. The expression levels of the cytokines were measured by cytokine specific enzyme‑linked immunosorbent assay kits. The viability assay results revealed higher sensitivity of the A549 lung cancer cells to CdCl2 compared with the normal MRC‑9 lung cells. In the normal MRC‑9 lung cells, higher expression levels of the cytokines were observed at the lowest CdCl2 concentration at a shorter exposure time compared with the lung cancer cells. Higher levels of the cytokines were observed in the A549 lung cancer cells at all other times and concentrations compared with the MRC‑9 cells, indicating higher levels of inflammation. The cytokine levels were reduced at higher CdCl2 concentrations and longer exposure durations, demonstrating the toxic effect of cadmium. The results indicated that CdCl2 affected the expression levels of the cytokines and led to cytotoxicity in human lung cells, and suggested that compounds which reduce inflammation may prevent cadmium toxicity.
Qu, Wei; Li, Dichen; Wang, Yufei; Wu, Qining; Hao, Dingjun
2018-06-04
BACKGROUND Radioresistance restricts the application of radiotherapy in human osteosarcoma (OS). This study investigated the molecular mechanism of radioresistance in OS, which may provide clues to finding ideal targets for genetic therapy. MATERIAL AND METHODS The human OS cell line MG63 was employed as parent cells. After repeat low-dose X-ray irradiation of MG63, the radioresistant OS cell line MG63R was produced. Colony formation assay was used to assess the radioresistance. Cell viability was evaluated by CCK-8 assay. Flow cytometry was used to detect cell apoptosis, and wound healing assay was used to evaluate invasive capacity. The nuclear translocation was evaluated by fluorescent immunohistochemistry. Protein expression levels were assessed by Western blotting. Specific siRNA against Shh was used to silence Shh. RESULTS More survival colony formation, elevated cell viability, less cell apoptosis, and increased wound closure were found in MG63R than in MG63 cells exposed to irradiation. The nuclear translocation of Gli, expression levels of Shh, Smo, Ptch1, Bcl2, active MMP2, and active MMP9 were increased in MG63R cells compared with MG63 cells. Transfection of Shh-siRNA suppressed expression levels of Shh, Smo, Ptch1, Bcl2, active MMP2, and active MMP9, as well as the nuclear translocation of Gli in MG63R cells. The cell viability, survival colony formation, and wound closure were impaired, whereas cell apoptosis was increased, in siRNA-transfected MG63R cells than in control MG63R cells exposed to irradiation. CONCLUSIONS Activation of Shh signaling was involved in radioresistance of OS cells. Blocking this signaling can impair the radioresistance capacity of OS cells.
Zafar, S; Coates, D E; Cullinan, M P; Drummond, B K; Milne, T; Seymour, G J
2016-11-01
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a serious complication of bisphosphonate therapy. The mechanism underlying BRONJ pathogenesis is poorly understood. To determine the effects of zoledronic acid (ZA) and geranylgeraniol (GGOH) on the mevalonate pathway (MVP) in osteoblasts generated from the human mandibular alveolar bone in terms of cell viability/proliferation, migration, apoptosis and gene expression. Primary human osteoblasts (HOBs) isolated from the mandibular alveolar bone were phenotyped. HOBs were cultured with or without ZA and GGOH for up to 72 h. Cellular behaviour was examined using a CellTiter-Blue® viability assay, an Ibidi culture-insert migration assay, an Apo-ONE® Homogeneous Caspase-3/7 apoptosis assay and transmission electron microscopy (TEM). Quantitative real-time reverse transcriptase polymerase chain reaction (qRT 2 -PCR) was used to determine the simultaneous expression of 168 osteogenic and angiogenic genes modulated in the presence of ZA and GGOH. ZA decreased cell viability and migration and induced apoptosis in HOBs. TEM revealed signs of apoptosis in ZA-treated HOBs. However, the co-addition of GGOH ameliorated the effect of ZA and partially restored the cells to the control state. Twenty-eight genes in the osteogenic array and 27 genes in the angiogenic array were significantly regulated in the presence of ZA compared with those in the controls at one or more time points. The cytotoxic effect of ZA on HOBs and its reversal by the addition of GGOH suggests that the effect of ZA on HOBs is mediated via the MVP. The results suggest that GGOH could be used as a possible therapeutic/preventive strategy for BRONJ.
2011-01-01
Background Numerous reports have identified therapeutic roles for plants and their extracts and constituents. The aim of this study was to assess the efficacies of three plant extracts for their potential antioxidant and anti-inflammatory activity in primary human skin fibroblasts. Methods Aqueous extracts and formulations of white tea, witch hazel and rose were subjected to assays to measure anti-collagenase, anti-elastase, trolox equivalent and catalase activities. Skin fibroblast cells were employed to determine the effect of each extract/formulation on IL-8 release induced by the addition of hydrogen peroxide. Microscopic examination along with Neutral Red viability testing was employed to ascertain the effects of hydrogen peroxide directly on cell viability. Results Considerable anti-collagenase, anti-elastase, and antioxidant activities were measured for all extracts apart from the witch hazel distillate which showed no activity in the collagenase assay or in the trolox equivalence assay. All of the extracts and products tested elicited a significant decrease in the amount of IL-8 produced by fibroblast cells compared to the control (p < 0.05). None of the test samples exhibited catalase activity or had a significant effect on the spontaneous secretion of IL-8 in the control cells which was further corroborated with the microscopy results and the Neutral Red viability test. Conclusions These data show that the extracts and products tested have a protective effect on fibroblast cells against hydrogen peroxide induced damage. This approach provides a potential method to evaluate the claims made for plant extracts and the products in which these extracts are found. PMID:21995704
Kim, Tae-im; Choi, Seung-il; Lee, Hyung Keun; Cho, Young Jae; Kim, Eung Kweon
2008-06-30
The present study investigated the effect of mitomycin C (MMC) on cell viability, apoptosis, and transforming growth factor beta-induced protein (TGFBIp) expression in cultured normal corneal fibroblasts and heterozygote or homozygote granular corneal dystrophy type II (GCD II) corneal fibroblasts. Keratocytes were obtained from normal cornea or from heterozygote or homozygote GCD II patients after lamellar or penetrating keratoplasty. To measure cell viability, corneal fibroblasts were incubated with 0.02% MMC for 3 h, 6 h, and 24 h or with 0%, 0.01%, 0.02%, and 0.04% MMC for 24 h and then tested using lactate dehydrogenase (LDH) and 3-[4,5-demethylthiazol-2,5-diphenyl-2H-tetrazolium bromide] (MTT) assays. To measure apoptosis, cells were analyzed by FACS analysis and annexin V staining. Bcl-xL, Bax, and TGFBI mRNA expression was measured using reverse transcription polymerase chain reaction (RT-PCR) assays. Cellular and media levels of TGFBIp protein were measured by immunoblotting. MTT and LDH assays showed that MMC reduced cell viability in all three cell types in a dose-dependent and time-dependent manner (p<0.05). FACS analysis and annexin V staining showed that MMC caused apoptosis with GCD II homozygote cells being most affected. RT-PCR analysis showed that MMC decreased Bcl-xL mRNA expression and increased Bax mRNA expression in all cell types. RT-PCR and immunoblotting analysis showed that MMC reduced TGFBI mRNA levels and cellular and media TGFBIp protein levels in all cell types. MMC induced apoptosis, and the effects of MMC were greatest in GCD II homozygote cells. MMC also reduced the production of TGFBIp in all three types of corneal fibroblasts. These findings may explain the additional therapeutic effect of MMC in GCD II patients.
Biologic assessment of antiseptic mouthwashes using a three-dimensional human oral mucosal model.
Moharamzadeh, Keyvan; Franklin, Kirsty L; Brook, Ian M; van Noort, Richard
2009-05-01
The biologic safety profile of oral health care products is often assumed on the basis of simplistic test models such as monolayer cell culture systems. We developed and characterized a tissue-engineered human oral mucosal model, which was proven to represent a potentially more informative and more clinically relevant alternative for the biologic assessment of mouthwashes. The aim of this study was to evaluate the biologic effects of alcohol-containing mouthwashes on an engineered human oral mucosal model. Three-dimensional (3D) models were engineered by the air/liquid interface culture technique using human oral fibroblasts and keratinocytes. The models were exposed to phosphate buffered saline (negative control), triethylene glycol dimethacrylate (positive control), cola, and three types of alcohol-containing mouthwashes. The biologic response was recorded using basic histology; a cell proliferation assay; 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tissue-viability assay; transmission electron microscopy (TEM) analysis; and the measurement of release of interleukin (IL)-1beta by enzyme-linked immunosorbent assay. Statistical analysis showed that there was no significant difference in tissue viability among the mouthwashes, cola, and negative control groups. However, exposure to the positive control significantly reduced the tissue viability and caused severe cytotoxic epithelial damage as confirmed by histology and TEM analysis. A significant increase of IL-1beta release was observed with the positive control and, to a lesser extent, with two of the tested mouthrinses. The 3D human oral mucosal model can be a suitable model for the biologic testing of mouthwashes. The alcohol-containing mouthwashes tested in this study do not cause significant cytotoxic damage and may slightly stimulate IL-1beta release.
Gong, Hong-Yan; Zheng, Fang; Zhang, Chao; Chen, Xi-Yan; Liu, Jing-Jing; Yue, Xiu-Qin
2016-09-01
Ischemic brain injury (IBI) can cause nerve injury and is a leading cause of morbidity and mortality worldwide. The neuroprotective effects of propofol against IBI have been previously demonstrated. However, the neuroprotective effects of propofol on hippocampal neurons are not yet entirely clear. In the present study, models of IBI were established in hypoxia-exposed hippocampal neuronal cells. Cell viability assay and apoptosis assay were performed to examine the neuroprotective effects of propofol on hippocampal neurons in IBI. A significant decrease in cell viability and a significant increase in cell apoptosis were observed in the IBI group compared with the control group, accompanied by a decrease in glial glutamate transporter-1 (GLT‑1) expression as determined by RT-qPCR and western blot analysis. The effects of IBI were reversed by propofol treatment. The siRNA-mediated knockdown of GLT‑1 in the hypoxia-exposed hippocampal neuronal cells led to an increase in cell apoptosis, Jun N-terminal kinase (JNK) activation and N-methyl-D‑aspartate (NMDA) receptor (NR1 and NR2B) activation, as well as to a decrease in cell viability and a decrease in Akt activation. The effects of RNA interference-mediated GLT‑1 gene silencing on cell viability, JNK activation, NMDAR activation, cell apoptosis and Akt activation in the hippocampal neuronal cells were slightly reversed by propofol treatment. The JNK agonist, anisomycin, and the Akt inhibitor, LY294002, both significantly blocked the effects of propofol on hippocampal neuronal cell viability and apoptosis in IBI. The decrease in JNK activation and the increase in Akt activation caused by GLT‑1 overexpression were reversed by NMDA. Collectively, our findings suggest that propofol treatment protects hippocampal neurons against IBI by enhancing GLT‑1 expression and inhibiting the activation of NMDAR via the JNK/Akt signaling pathway.
Han, Qingfang; Zhang, Wenke; Meng, Jinlai; Ma, Li; Li, Aihua
2018-04-01
Polycystic ovary syndrome (PCOS) is a common endocrine disease characterized by hyperandrogenism, irregular menses, and polycystic ovaries. Several long non-coding RNAs (lncRNAs) are aberrantly expressed in PCOS patients; however, little is known about the effects of the lncRNA-low expression in tumor (lncRNA-LET) on PCOS. We aimed to explore the effects of lncRNA-LET on human granulosa-like tumor cell line, KGN. Expression of lncRNA-LET in normal IOSE80 cells and granulosa cells was determined by qRT-PCR. KGN cell viability, apoptosis and migration were measured by trypan blue exclusion method, flow cytometry assay and wound healing assay, respectively. TGF-β1 was used to induce epithelial-mesenchymal transition (EMT) process. LncRNA-LET expression and mRNA expressions of TIMP2 and EMT-related proteins were measured by qRT-PCR. Western blot analysis was used to measure the protein expression of apoptosis-related proteins, EMT-related proteins, TIMP2, and the proteins in the Wnt/β-catenin and Notch signaling pathways. lncRNA-LET was down-regulated in KGN cells, and its overexpression inhibited cell viability and migration, and promoted apoptosis in KGN cells. Overexpression of lncRNA-LET increased the expression of E-cadherin and decreased the expressions of N-cadherin and vimentin in KGN cells. These effects of lncRNA-LET on KGN cells were reversed by TIMP2 suppression. Overexpression of TIMP2 inhibited cell viability, migration and EMT process, and increased apoptosis by activating the Wnt/β-catenin and Notch pathways. Overexpression of lncRNA-LET inhibits cell viability, migration and EMT process, and increases apoptosis in KGN cells by up-regulating the expression of TIMP2 and activating the Wnt/β-catenin and notch signaling pathways. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Wagner, Alixandra; Eldawud, Reem; White, Andrew; Agarwal, Sushant; Stueckle, Todd A.; Sierros, Konstantinos A.; Rojanasakul, Yon; Gupta, Rakesh K.; Dinu, Cerasela Zoica
2016-01-01
Background Montmorillonite is a type of nanoclay that originates from the clay fraction of the soil and is incorporated into polymers to form nanocomposites with enhanced mechanical strength, barrier, and flammability properties used for food packaging, automotive, and medical devices. However, with implementation in such consumer applications, the interaction of montmorillonite-based composites or derived byproducts with biological systems needs to be investigated. Methods Herein we examined the potential of Cloisite Na+ (pristine) and Cloisite 30B (organically modified montmorillonite nanoclay) and their thermally degraded byproducts’ to induce toxicity in model human lung epithelial cells. The experimental set-up mimicked biological exposure in manufacturing and disposal areas and employed cellular treatments with occupationally relevant doses of nanoclays previously characterized using spectroscopical and microscopical approaches. For nanoclay-cellular interactions and for cellular analyses respectively, biosensorial-based analytical platforms were used, with induced cellular changes being confirmed via live cell counts, viability assays, and cell imaging. Results Our analysis of byproducts’ chemical and physical properties revealed both structural and functional changes. Real-time high throughput analyses of exposed cellular systems confirmed that nanoclay induced significant toxic effects, with Cloisite 30B showing time-dependent decreases in live cell count and cellular viability relative to control and pristine nanoclay, respectively. Byproducts produced less toxic effects; all treatments caused alterations in the cell morphology upon exposure. Conclusions Our morphological, behavioral, and viability cellular changes show that nanoclays have the potential to produce toxic effects when used both in manufacturing or disposal environments. General significance The reported toxicological mechanisms prove the extensibility of a biosensorial-based platform for cellular behavior analysis upon treatment with a variety of nanomaterials. PMID:27612663
Souza, B D M; Lückemeyer, D D; Reyes-Carmona, J F; Felippe, W T; Simões, C M O; Felippe, M C S
2011-02-01
To evaluate the effectiveness of various storage media at 5 °C for maintaining the viability of human periodontal ligament fibroblasts (PDLF). Plates with PDLF were soaked in recently prepared Hank's balanced salt solution (HBSS), skimmed milk, whole milk, Save-A-Tooth(®) system's HBSS (Save), natural coconut water, industrialized coconut water or tap water (negative control) at 5 °C for 3, 6, 24, 48, 72, 96 and 120 h. Minimum essential medium (MEM) at 37 °C served as the positive control. PDL cell viability was determined by MTT assay. Data were statistically analysed by Kruskal-Wallis test complemented by the Scheffé test (α=5%). The greatest number of viable cells was observed for MEM. Skimmed and whole milk, followed by natural coconut water and HBSS, were the most effective media in maintaining cell viability (P<0.05). From 24 to 120 h, Save, industrialized coconut water and tap water were the worst storage media. Skimmed and whole milk had the greatest capacity to maintain PDLF viability when compared with natural coconut water, HBSS, Save, industrialized coconut water and tap water. © 2010 International Endodontic Journal.
Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury*
Mei, Chen; He, Sha-sha; Yin, Peng; Xu, Lei; Shi, Ya-ran; Yu, Xiao-hong; Lyu, An; Liu, Feng-hua; Jiang, Lin-shu
2016-01-01
Objective: Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. Materials and methods: An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. Results: HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Conclusions: Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock. PMID:27256675
Li, Xiu Juan; Ren, Zhao Jun; Tang, Jin Hai; Yu, Qiao
2017-01-01
Treatment of breast cancer remains a clinical challenge. This study aims to validate exosomal microRNA-1246 (miR-1246) as a serum biomarker for breast cancer and understand the underlying mechanism in breast cancer progression. The expression levels of endogenous and exosomal miRNAs were examined by real time PCR, and the expression level of the target protein was detected by western blot. Scanning electron and confocal microscopy were used to characterize exosomes and to study their uptake and transfer. Luciferase reporter plasmids and its mutant were used to confirm direct targeting. Furthermore, the functional significance of exosomal miR-1246 was estimated by invasion assay and cell viability assay. In this study, we demonstrate that exosomes carrying microRNA can be transferred among different cell lines through direct uptake. miR-1246 is highly expressed in metastatic breast cancer MDA-MB-231 cells compared to non-metastatic breast cancer cells or non-malignant breast cells. Moreover, miR-1246 can suppress the expression level of its target gene, Cyclin-G2 (CCNG2), indicating its functional significance. Finally, treatment with exosomes derived from MDA-MB-231 cells could enhance the viability, migration and chemotherapy resistance of non-malignant HMLE cells. Together, our results support an important role of exosomes and exosomal miRNAs in regulating breast tumor progression, which highlights their potential for applications in miRNA-based therapeutics. © 2017 The Author(s). Published by S. Karger AG, Basel.
Parthuisot, N.; Binet, M.; Touron-Bodilis, A.; Pougnard, C.; Lebaron, P.; Baudart, J.
2011-01-01
A new method was developed for the rapid and sensitive detection of viable Legionella pneumophila. The method combines specific immunofluorescence (IF) staining using monoclonal antibodies with a bacterial viability marker (ChemChrome V6 cellular esterase activity marker) by means of solid-phase cytometry (SPC). IF methods were applied to the detection and enumeration of both the total and viable L. pneumophila cells in water samples. The sensitivity of the IF methods coupled to SPC was 34 cells liter−1, and the reproducibility was good, with the coefficient of variation generally falling below 30%. IF methods were applied to the enumeration of total and viable L. pneumophila cells in 46 domestic hot water samples as well as in cooling tower water and natural water samples, such as thermal spring water and freshwater samples. Comparison with standard plate counts showed that (i) the total direct counts were always higher than the plate counts and (ii) the viable counts were higher than or close to the plate counts. With domestic hot waters, when the IF assay was combined with the viability test, SPC detected up to 3.4 × 103 viable but nonculturable L. pneumophila cells per liter. These direct IF methods could be a powerful tool for high-frequency monitoring of domestic hot waters or for investigating the occurrence of viable L. pneumophila in both man-made water systems and environmental water samples. PMID:21742913
Greenhalgh, Richard; Greenhalgh, Malcolm; Alshareef, Fadwa; Robson, Geoffrey D
2017-10-01
Industrial antimicrobials have been extensively used to control unwanted microbial growth by incorporation into a variety of products such as plastics and paints, reducing biodeterioration and biofouling and extending the lifespan of the product. Industrial antimicrobials generally have broad sites of action affecting core cellular functions such as central metabolism, enzyme function, cell wall or DNA synthesis and can either be biocidal or biostatic. In addition, susceptibility can be affected by the metabolic state of the microbe, with metabolically inactive cells generally more resistant than metabolically active cells. Previously it was demonstrated that cytosolically expressed green fluorescent protein could be used as a real-time viability indicator in the yeast Aureobasidium pullulans based on the pH dependent fluorescence of GFP and the collapse of the proton gradient across the cell membrane during cell death. In this study we report on the development and validation of an equivalent GFP fluorescence viability assay in Escherichia coli and used this assay to study the effect of five antimicrobials commonly used in plastics; 4,5-dichloro-2-octyl-isothiazol-3-one (DCOIT), sodium pyrithione, 1,2-benzisothiazol-3-one (BIT), 2-octyl-isothiazol-3-one (OIT) and n-butyl-1,2-benzisothiazol-3-one (BBIT). The results demonstrate broad differences amongst the antimicrobials in both relative efficacy, rate of effect and for some antimicrobials, marked differences in sensitivity toward growing and non-growing cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Alkahtani, Ahmed; Alkahtany, Sarah M; Anil, Sukumaran
2014-07-01
To evaluate and compare the cytotoxicity of various concentrations of sodium hypochlorite on immortalized human bone marrow mesenchymal stem cells (MSCs). The 5.25 percent sodium hypochlo-rite (NaOCl) at concentrations of 0.5, 0.1, 0.025, 0.0125, and 0.005 mg/ml were used to assess the cytotoxic effect on MSCs. Immortalized human bone marrow mesenchymal stem cells (hTERT-MSCs) were exposed to NaOCl at 5 different concentrations. Cell viability was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alamarBlue assays. The cell morphology changes were assessed with scanning electron microscopy (SEM) after exposure to 2, 4, and 24 hour incubation. The ethidium bromide/acridine orange (EB/ AO) fuorescent stain was applied to the cells in the 8-chamber slides after they were incubated with the testing agents for 2 and 4 hours to detect live and dead cells. The observations were quantitatively and qualitatively analyzed. The cell viability study using MTT assay and AB assay showed significant reduction with varying concentration at 2 and 4 hours incubation period. The cell viability decreased with the higher percentage of NaOCl. The exposure time also revealed an inverse relation to the cell viability. The SEM analysis showed reduction in the number of cells and morphological alterations with 0.5 mg/ml at 2 and 4 hours compared to 0.025 mg/ml NaOCl. Destruction of the cells with structural alterations and lysis was evident under fuorescence microscope when the cells were exposed to 0.5 mg/ml NaOCl. Within the limitations of this in vitro study it can be concluded that NaOCl is toxic to the human bone marrow MSCs. The cell lysis was evident with higher concentration of sodium hypochlorite. From the observations, it can be concluded that a lower concentration of NaOCl may be used as endodontic irrigant due to its cytotoxic properties. Further studies are mandatory to evolve a consensus on the optimal concentration of sodium hypochlorite to be used as endodontic irrigant.
Impedance Flow Cytometry as a Tool to Analyze Microspore and Pollen Quality.
Heidmann, Iris; Di Berardino, Marco
2017-01-01
Analyzing pollen quality in an efficient and reliable manner is of great importance to the industries involved in seed and fruit production, plant breeding, and plant research. Pollen quality parameters, viability and germination capacity, are analyzed by various staining methods or by in vitro germination assays, respectively. These methods are time-consuming, species-dependent, and require a lab environment. Furthermore, the obtained viability data are often poorly related to in vivo pollen germination and seed set. Here, we describe a quick, label-free method to analyze pollen using microfluidic chips inserted into an impedance flow cytometer (IFC). Using this approach, pollen quality parameters are determined by a single measurement in a species-independent manner. The advantage of this protocol is that pollen viability and germination can be analyzed quickly by a reliable and standardized method.
NASA Astrophysics Data System (ADS)
Myung, Sung-Woon; Kim, Byung-Hoon
2016-01-01
Three-dimensional (3D) chitosan and hydroxyapatite (HAp)/chitosan (CH) scaffolds were fabricated by additive manufacturing, then their surfaces were etched with oxygen (O2) and nitrogen (N2) plasma. O2 and N2 plasma etching was performed to increase surface properties such as hydrophilicity, roughness, and surface chemistry on the scaffolds. After etching, hydroxyapatite was exposed on the surface of 3D HAp/CH scaffolds. The surface morphology and chemical properties were characterized by contact angle measurement, scanning electron microscopy, X-ray diffraction, and attenuated total reflection Fourier infrared spectroscopy. The cell viability of 3D chitosan scaffolds was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The differentiation of preosteoblast cells was evaluated by alkaline phosphatase assay. The cell viability was improved by O2 and N2 plasma etching of 3D chitosan scaffolds. The present fabrication process for 3D scaffolds might be applied to a potential tool for preparing biocompatible scaffolds.
Generation of reactive oxygen species from porous silicon microparticles in cell culture medium.
Low, Suet Peng; Williams, Keryn A; Canham, Leigh T; Voelcker, Nicolas H
2010-06-01
Nanostructured (porous) silicon is a promising biodegradable biomaterial, which is being intensively researched as a tissue engineering scaffold and drug-delivery vehicle. Here, we tested the biocompatibility of non-treated and thermally-oxidized porous silicon particles using an indirect cell viability assay. Initial direct cell culture on porous silicon determined that human lens epithelial cells only poorly adhered to non-treated porous silicon. Using an indirect cell culture assay, we found that non-treated microparticles caused complete cell death, indicating that these particles generated a toxic product in cell culture medium. In contrast, thermally-oxidized microparticles did not reduce cell viability significantly. We found evidence for the generation of reactive oxygen species (ROS) by means of the fluorescent probe 2',7'-dichlorofluorescin. Our results suggest that non-treated porous silicon microparticles produced ROS, which interacted with the components of the cell culture medium, leading to the formation of cytotoxic species. Oxidation of porous silicon microparticles not only mitigated, but also abolished the toxic effects.
Efficacy of surface-generated nitric oxide against Candida albicans adhesion and biofilm formation.
Privett, Benjamin J; Nutz, Steven T; Schoenfisch, Mark H
2010-11-01
This report details the efficacy of nitric oxide (NO)-releasing xerogel surfaces composed of N-(6-aminohexyl)aminopropyl trimethoxysilane (AHAP3) and isobutyltrimethoxysilane (BTMOS) against Candida albicans adhesion, viability, and biofilm formation. A parallel plate flow cell assay was used to examine the effect of NO on planktonic fungal cells. Nitric oxide fluxes as low as 14 pmol cm(-2) s(-1) were sufficient to reduce fungal adhesion by ∼49% over the controls after 90 min. By utilizing a fluorescence live/dead assay and replicate plating, NO flux was determined to reduce fungal viability in a dose-dependent manner. The formation of C. albicans biofilms on NO-releasing xerogel-coated silicon rubber (SiR) coupons was impeded when compared to control (non-NO-releasing) and bare SiR surfaces. The synergistic efficacy of NO and silver sulfadiazine against adhered fungal cells and biofilms is reported with increased killing and biofilm inhibition over NO alone.
Tardif, Keith D; Jorgensen, Shane; Langer, Janine; Prichard, Mark; Schlaberg, Robert
2014-11-01
Most herpes simplex virus (HSV) isolates from treatment-naïve patients are susceptible to antivirals. However, prolonged antiviral therapy can select for drug-resistant strains, especially in immunocompromised patients. Standard phenotypic methods for antiviral resistance testing are labor and time-intense and molecular resistance determinants are insufficiently understood for routine diagnostic use of genotypic resistance testing. To enable rapid, scalable antiviral susceptibility testing and minimize viral passage, we developed a 7-day, 96-well assay for simultaneous HSV 1/2 titration and phenotypic resistance testing for acyclovir and foscarnet. The assay was optimized and validated by testing clinical isolates and laboratory strains (n=39) with known IC50 for acyclovir (23 resistant) and foscarnet (1 resistant) based on plaque reduction or dye-uptake assays. A chemiluminescent detection reagent is used for quantification of cytopathic effect instead of plaque counting or measuring dye-uptake. Drug concentrations inhibiting 50% of chemiluminescent signal reduction (IC50) were determined concurrently at each of three virus dilutions. Results agree for 92.3% (acyclovir) and 100% (foscarnet) of isolates. For all three discordant samples, results of reference testing by plaque reduction agreed with the chemiluminescent assay. Reproducibility studies showed 100% qualitative agreement and 3-37% coefficient of variation based on IC50. Chemiluminescence detection as a surrogate for cellular viability with an automated plate reader provides improved throughput and workflow, as well as high accuracy and reproducibility for antiviral drug susceptibility testing. Copyright © 2014 Elsevier B.V. All rights reserved.
Balaure, Paul Catalin; Andronescu, Ecaterina; Grumezescu, Alexandru Mihai; Ficai, Anton; Huang, Keng-Shiang; Yang, Chih-Hui; Chifiriuc, Carmen Mariana; Lin, Yung-Sheng
2013-01-30
This work is focused on the fabrication of a new drug delivery system based on polyanionic matrix (e.g. sodium alginate), polycationic matrix (e.g. chitosan) and silica network. The FT-IR, SEM, DTA-TG, eukaryotic cell cycle and viability, and in vitro assay of the influence of the biocomposite on the efficacy of antibiotic drugs were investigated. The obtained results demonstrated the biocompatibility and the ability of the fabricated biocomposite to maintain or improve the efficacy of the following antibiotics: piperacillin-tazobactam, cefepime, piperacillin, imipenem, gentamicin, ceftazidime against Pseudomonas aeruginosa ATCC 27853 and cefazolin, cefaclor, cefuroxime, ceftriaxone, cefoxitin, trimethoprim/sulfamethoxazole against Escherichia coli ATCC 25922 reference strains. Copyright © 2012 Elsevier B.V. All rights reserved.
Emanuele, Anthony A.; Adams, Nancy E.; Chen, Yi-Chen; Maurelli, Anthony T.; Garcia, George A.
2014-01-01
VirF is an AraC-type transcriptional regulator responsible for activating the transcription of virulence genes required for the intracellular invasion and cell-to-cell spread of Shigella flexneri. Gene disruption studies have validated VirF as a potential target for an anti-virulence therapy to treat shigellosis by determining that VirF is necessary for virulence, but not required for bacterial viability. Using a bacteria-based, β-galactosidase reporter assay we completed a high-throughput screening (HTS) campaign monitoring VirF activity in the presence of over 140,000 small molecules. From our screening campaign we identified five lead compounds to pursue in tissue-culture-based invasion and cell-to-cell spread assays and toxicity screens. Our observations of activity in these models for infection have validated our approach of targeting virulence regulation and have allowed us to identify a promising chemical scaffold from our HTS for hit-to-lead development. Interestingly, differential effects on invasion versus cell-to-cell spread suggest that the compounds’ efficacies may depend, in part, on the specific promoter that VirF is recognizing. PMID:24549153
Haydari, Sakineh; Safari, Manouchehr; Zarbakhsh, Sam; Bandegi, Ahmad Reza; Miladi-Gorji, Hossein
2016-11-10
This study was designed to investigate whether free access to a running wheel during pregnancy in morphine-dependent mothers would influence the viability, proliferation and BDNF levels of bone marrow stromal cells in rat pups. Pregnant rats were made dependent by chronic administration of morphine in drinking water simultaneously with free access to a running wheel. Male pups are weaned at 21days of birth and their bones marrows were aspirated from the femurs and tibias and also the bone marrow stromal cells (BMSCs) cultured. MTT assay was used to determine cell viability and proliferation rate. The level of BDNF was measured in the supernant of BMSCs culture by ELISA. The sedentary morphine-dependent mothers' pups showed a significant increase in the percentage cell viability and proliferation rate and also a significant decrease in the BDNF protein levels in BMSCs. The rat pups borne from exercising the control and morphine-dependent mothers exhibited an increase in the percentage viability, proliferation rate and BDNF levels of the BMSCs. This study showed that maternal exercise during pregnancy in morphine-dependent and non-dependent mothers, with increasing of BDNF levels increased the proliferation and viability of BMSCs in the rat pups. Also, chronic administration of morphine during pregnancy was able to increase the proliferation and viability of BMSCs in the rat pups. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Lee, Jia-Ying Joey; Miller, James Alastair; Basu, Sreetama; Kee, Ting-Zhen Vanessa; Loo, Lit-Hsin
2018-06-01
Human lungs are susceptible to the toxicity induced by soluble xenobiotics. However, the direct cellular effects of many pulmonotoxic chemicals are not always clear, and thus, a general in vitro assay for testing pulmonotoxicity applicable to a wide variety of chemicals is not currently available. Here, we report a study that uses high-throughput imaging and artificial intelligence to build an in vitro pulmonotoxicity assay by automatically comparing and selecting human lung-cell lines and their associated quantitative phenotypic features most predictive of in vivo pulmonotoxicity. This approach is called "High-throughput In vitro Phenotypic Profiling for Toxicity Prediction" (HIPPTox). We found that the resulting assay based on two phenotypic features of a human bronchial epithelial cell line, BEAS-2B, can accurately classify 33 reference chemicals with human pulmonotoxicity information (88.8% balance accuracy, 84.6% sensitivity, and 93.0% specificity). In comparison, the predictivity of a standard cell-viability assay on the same set of chemicals is much lower (77.1% balanced accuracy, 84.6% sensitivity, and 69.5% specificity). We also used the assay to evaluate 17 additional test chemicals with unknown/unclear human pulmonotoxicity, and experimentally confirmed that many of the pulmonotoxic reference and predicted-positive test chemicals induce DNA strand breaks and/or activation of the DNA-damage response (DDR) pathway. Therefore, HIPPTox helps us to uncover these common modes-of-action of pulmonotoxic chemicals. HIPPTox may also be applied to other cell types or models, and accelerate the development of predictive in vitro assays for other cell-type- or organ-specific toxicities.
Zhang, Jing; Liu, Likun; Wang, Jing; Ren, Baoyin; Zhang, Lin; Li, Weiling
2018-07-15
Astragalus membranaceus which was originally described in the Shennong's Classic of Materia Medica, the earliest complete Pharmacopoeia of China written from the Warring States Period to Han Dynasty, has been widely used in Chinese medicine for > 2000 years, especially in the prescription of curing cancer. A. membranaceus has various bioactivities, such as anti-tumor, anti-viral, anti-oxidant, anti-diabetes, anti-inflammation, anti-atherosclerosis, immunomodulation, hepatoprotection, hematopoiesis, neuroprotection and so on. As an important component of A. membranaceus, whether formononetin has a close relationship with its tumor-inhibiting effect on ovarian cancer cell has been investigated. The present study aimed to demonstrate the anti-proliferation, anti- migration and invasion effects of formononetin on ovarian cancer cells and further explore the underlying molecular mechanisms associated with apoptosis, migration and invasion. MTT assay was performed to detect the viability of ovarian cancer cells. DAPI staining, Annexin-V assay and assay for mitochondrial membrane potential detected the apoptosis of ovarian cancer cells treated by formononetin. The migration and invasion of ovarian cancer cells which exposed to formononetin were detected by scratch assay and transwell assay. Meanwhile, the protein-level changes of in ovarian cancer cells treated by formononetin were assessed by western blot analysis. MTT assays indicated that cell viability significantly decreased in ovarian cancer cells treated with formononetin. DAPI staining, Annexin-V assay and assay for mitochondrial membrane potential suggested that formononetin suppressed cells proliferation by inducing apoptosis. We detected the expression of apoptosis-related proteins in ovarian cancer cells after treatment with formononetin and found the expression of caspase 3/9 proteins and the ratio of Bax/Bcl-2 were increased in a dose-dependent manner. In addition, wound healing and transwell chamber assays showed that formononetin suppressed the migration and invasion of ovarian cancer cells. And formononetin decreased expression of MMP-2/9 proteins and phosphorylation level of ERK. The present results demonstrated that formononetin have potential effects on induction of apoptosis and suppression of migration and invasion. Copyright © 2018 Elsevier B.V. All rights reserved.
Lee, H; Nguyen, T T; Kim, M; Jeong, J-H; Park, J-B
2018-05-31
Quercetin has been reported to exert many beneficial effects on the protection against various diseases, such as diabetes, cancer, and inflammation. The aim of this study is to evaluate the potential osteogenic differentiation ability of mesenchymal stem cells in the presence of quercetin. Quercetin-loaded poly(lactic-co-glycolic acid) microspheres were prepared using an electrospraying technique. Characterization of the microspheres was evaluated with a scanning electron microscope and release profile. Three-dimensional cell spheroids were fabricated using silicon elastomer-based concave microwells. Qualitative results of cellular viability were seen under a confocal microscope, and quantitative cellular viability was evaluated using the Cell Counting Kit-8 assay. The alkaline phosphatase activity and Alizarin Red S staining were performed. A quantitative real-time polymerase chain reaction and a western blot analysis were performed. Spheroids were well formed irrespective of quercetin concentration. Most of the cells in spheroids emitted green fluorescence, and the morphology was round without significant changes. The application of quercetin-loaded microspheres produced a significant increase in the alkaline phosphatase activity. The real-time polymerase chain reaction results showed a significant increase in Runx2, and western blot results showed higher expression of Runx2 protein expression. Biodegradable microspheres loaded with quercetin produced prolonged release profiles with increased mineralization. Microspheres loaded with quercetin can be used for the enhancement of osteoblastic differentiation in cell therapy. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regen, Francesca; Herzog, Irmelin; Hahn, Eric
2017-02-01
Use of the atypical antipsychotic clozapine (CZP) is compromised by the risk of potentially fatal agranulocytosis/granulocytopenia (CIAG). To address this, we have established a simple, personalized cell culture-based strategy to identify CIAG-susceptible patients, hypothesizing that an immunogenic and possibly haptene-based mechanism underlies CIAG pathophysiology. To detect a putative haptene-induced response to CZP in vitro exposure, a traditional lymphocyte stimulation assay was adapted and applied to patient-specific peripheral blood-derived mononuclear cells (PBMC). 6 patients with a history of CIAG, 6 patients under CZP treatment (without CIAG) and 12 matched healthy controls were studied. In vitro CZP exposure, even at strikingly lowmore » levels, resulted in significantly increased proliferation rates only in CIAG patients' PBMC. Other parameters including cell viability and mitogen-induced proliferation were also affected by in vitro CZP exposure, yet there was no significant difference between the groups. This personalized approach is a starting point for further investigations into a putative haptene-based mechanism underlying CIAG development, and may facilitate the future development of predictive testing. - Highlights: • Clozapine induces proliferation in PBMCs from patients with a history of CIAG. • Simple, PBMC-based assay results in robust effects of physiological clozapine levels. • Haptene-based mechanisms discussed to underlie clozapine-induced proliferation.« less
Yu, J; Xie, L; Chen, S; Zhang, J; Guo, G; Chen, B
Producing sufficient numbers of DCs at one time point and subsequently cryopreserving the generated DCs in ready-for-use aliquots for clinical application is useful in cancer treatment. To study the effects of a simplified cryopreservation method and thawing procedures acting on the biological characteristics and specific cytotoxic activity of cord blood derived DC-based esophageal carcinoma vaccine. CD34+ hematopoietic stem cells were isolated from cord blood using CD34+ Progenitor Cell Isolation Kit by magnetic cell sorting system (MACS). The CD34+ cells were expanded with cytokines as DCs, and fused with EC109 cells by PEG-3600. The fused cells were transferred to a freezing tube without rate-controlled freezing and stored at -80 degree C for three weeks. During cryopreservation, 2.5% DMSO, 2.5% glucose and 10% FCS at final concentration was used as stock solution. After thawing, cells were assayed for Typan blue viability, morphology, immunophenotypes and T-cell stimulatory capacity, and specific CTL activity. Cryopreservation does not cause significant changes in the phenotypes expression or morphology of the fused cells, and the viability were well preserved (Typan blue viability was 77.2±1.8%). After being stimulated by DC-based esophageal carcinoma vaccine either before or after cryopreservation, the numbers of CD3+T/CD4+T and CD3+T/CD8+T lymphocytes increased obviously, especially for CD3+T/CD4+T, and the ratio of CD4/CD8 changed from 0.85 to 1.29 and 1.25 respectively. Specific CTL activity were well preserved (compare to the fresh fused vaccine, P>0.05). A simple -80 degree C freezing and storage method is practical for cord blood derived DC-based esophageal carcinoma vaccine. It will greatly facilitate the clinical use of DC-based vaccine for immunotherapy.
Jambor, Tomas; Greifova, Hana; Kovacik, Anton; Kovacikova, Eva; Tvrda, Eva; Forgacs, Zsolt; Massanyi, Peter; Lukac, Norbert
2018-05-01
Over the last decade, there is growing incidence of male reproductive malfunctions. It has been documented that numerous environmental contaminants, such as endocrine disruptors (EDs) may adversely affect the reproductive functions of humans as well as wildlife species. The aim of this in vitro study was to examine the effects of 4-octylphenol (4-OP) on the steroidogenesis in mice Leydig cells. We evaluated the impact of this endocrine disruptor on the cholesterol levels and hormone secretion in a primary culture. Subsequently, we determined the cell viability and generation of reactive oxygen species (ROS) following 4-OP treatment. Isolated mice Leydig cells were cultured in the presence of different 4-OP concentrations (0.04-5.0 μg/mL) and 1 mM cyclic adenosine-monophosphate during 44 h. Cholesterol levels were determined from the culture medium using photometry. Quantification of steroid secretion was performed by enzyme-linked immunosorbent assay. The cell viability was assessed using the metabolic activity assay, while ROS production was assessed by the chemiluminescence technique. Slightly increased cholesterol levels were recorded following exposure to the whole applied range of 4-OP, without significant changes (P>0.05). In contrast, the secretion of steroid hormones, specifically dehydroepiandrosterone, androstenedione, and testosterone was decreased following exposure to 4-OP. Experimental doses of 4-OP did not affect cell viability significantly; however a moderate decrease was recorded following the higher doses (2.5 and 5.0 μg/mL) of 4-OP. Furthermore, relative treatment of 4-OP (5.0 μg/mL) caused a significant (P < 0.001) ROS overproduction in the exposed cells. Copyright © 2018 Elsevier Ltd. All rights reserved.
Raghavan, Shreya; Ward, Maria R; Rowley, Katelyn R; Wold, Rachel M; Takayama, Shuichi; Buckanovich, Ronald J; Mehta, Geeta
2015-07-01
Ovarian cancer grows and metastasizes from multicellular spheroidal aggregates within the ascites fluid. Multicellular tumor spheroids are therefore physiologically significant 3D in vitro models for ovarian cancer research. Conventional hanging drop cultures require high starting cell numbers, and are tedious for long-term maintenance. In this study, we generate stable, uniform multicellular spheroids using very small number of ovarian cancer cells in a novel 384 well hanging drop array platform. We used novel tumor spheroid platform and two ovarian cancer cell lines (A2780 and OVCAR3) to demonstrate the stable incorporation of as few as 10 cells into a single spheroid. Spheroids had uniform geometry, with projected areas (42.60×10(3)μm-475.22×10(3)μm(2) for A2780 spheroids and 37.24×10(3)μm(2)-281.01×10(3)μm(2) for OVCAR3 spheroids) that varied as a function of the initial cell seeding density. Phalloidin and nuclear stains indicated cells formed tightly packed spheroids with demarcated boundaries and cell-cell interaction within spheroids. Cells within spheroids demonstrated over 85% viability. 3D tumor spheroids demonstrated greater resistance (70-80% viability) to cisplatin chemotherapy compared to 2D cultures (30-50% viability). Ovarian cancer spheroids can be generated from limited cell numbers in high throughput 384 well plates with high viability. Spheroids demonstrate therapeutic resistance relative to cells in traditional 2D culture. Stable incorporation of low cell numbers is advantageous when translating this research to rare patient-derived cells. This system can be used to understand ovarian cancer spheroid biology, as well as carry out preclinical drug sensitivity assays. Copyright © 2015 Elsevier Inc. All rights reserved.
Baste, Jean-Marc; Gay, Arnaud; Smail, Hassiba; Noël, Romain; Bubenheim, Michael; Begueret, Hugues; Morin, Jean-Paul; Litzler, Pierre-Yves
2015-01-01
Donors after cardiac death (DCD) in lung transplantation is considered as a solution for organ shortage. However, it is characterized by warm ischemic period, which could be involved in severe Ischemia-Reperfusion lesion (IR) with early graft dysfunction. We describe a new hybrid model combining in vivo ischemia followed by in vitro reoxygenation using organ-specific culture. A hybrid model using in vivo ischemic period followed by in vitro lung slice reoxygenation was set up in rat to mimic DCD in lung transplantation with in vitro perfusion. Different markers (bioenergetics, oxidant stress assays, and histology) were measured to evaluate the viability of lung tissue after different ischemic times (I-0, I-1, I-2, I-4, I-15 hours) and reoxygenation times (R-0, R-1, R-4, R-24 hours). No differences were found in cell viability, ATP concentrations, extracellular LDH assays or histology, demonstrating extensive viability of up to 4 hours in lung tissue warm ischemia. We found oxidative stress mainly during the ischemic period with no burst at reoxygenation. Cytosolic anti-oxidant system was involved first (I-0,I-1,I-2) followed by mitochondrial anti-oxidant system for extensive ischemia (I-4). Histological features showed differences in this model of ischemia-reoxygenation between bronchial epithelium and lung parenchymal cells, with epithelium regeneration after 2 hours of warm ischemia and 24 hours of perfusion. The results of our hybrid model experiment suggest extensive lung viability of up to 4 hours ischemia. Our model could be an interesting tool to evaluate ex vivo reconditioning techniques after different in vivo lung insults.
Effects of polyhexamethylene guanidine phosphate on human gingival fibroblasts.
Vitt, Anton; Slizen, Veronica; Boström, Elisabeth A; Yucel-Lindberg, Tülay; Kats, Anna; Sugars, Rachael V; Gustafsson, Anders; Buhlin, Kåre
2017-10-01
Polyhexamethylene guanidine phosphate (PHMG-P) was compared to chlorhexidine (CHX) in order to determine potential cytotoxic and immune-modulatory effects on human gingival fibroblasts. Cytotoxic effects of PHMG-P and CHX on human gingival fibroblasts were assessed using cell viability assay at various time points and concentrations. The effects of PHMG-P and CHX on the secretion of prostaglandin (PG) E 2 , interleukin (IL)-6, IL-8 and matrix metalloproteinase (MMP)-1 by non-stimulated or IL-1β stimulated fibroblasts were evaluated by enzyme-linked immunosorbent assays. PHMG-P concentration 0.00009% led to the total loss of fibroblast viability within 24 h, whereas inhibition of fibroblast viability by CHX occurred at significantly higher concentrations of 0.0009% (p < .001). Short-term exposure to 0.005% PHMG-P led to loss of fibroblast viability after 5 min, whilst cells exposed to 0.005% CHX survived 30 min of treatment (p < .001). IL-1β stimulation induced an inflammatory response with a significant increase in the secretion of PGE 2 , IL-6, IL-8 and MMP-1. Treatment of IL-1β stimulated fibroblasts in combination with PHMG-P or CHX at concentrations of 0.000045 or 0.0.00009% resulted in significantly decreased PGE 2 , IL-6, IL-8 and MMP-1 levels. PHMG-P or CHX alone did not affect the baseline secretion of PGE 2 , IL-6, IL-8 or MMP-1 by gingival fibroblasts. Cytotoxic effects on gingival fibroblasts were triggered by both PHMG-P and CHX at concentrations below those used in clinical practice. The tested antiseptics did not cause inflammation and reduced IL-1β-induced secretion of inflammatory mediators and collagenase by gingival fibroblasts, which suggests anti-inflammatory properties.
Portela, Maristela Barbosa; Lima de Amorim, Elaine; Santos, Adrielle Mangabeira; Alexandre da Rocha Curvelo, José; de Oliveira Martins, Karol; Capillé, Cauli Lima; Maria de Araújo Soares, Rosangela; Barbosa de Araújo Castro, Gloria Fernanda
2017-01-01
This study aimed to assess, in vitro, the biofilm viability and the phospholipase and protease production of Candida spp. from the saliva of HIV infected children and healthy controls, and to correlate the results with the use of medical data. A total of 79 isolates were analyzed: 48 Candida albicans isolates (33/15) and 20 Candida parapsilosis sensu lato complex isolates (12/8) (from HIV/control patients, respectively), and 8 Candida krusei, 1 Candida tropicalis, 1 Candida dubliniensis and 1 Candida guilliermondii from HIV patients. The XTT (2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-Carboxanilide) reduction assay analyzed the biofilm viability. Phospholipase and protease assays were performed using the egg yolk and Bovine Serum Albumin agar plate methods, respectively. All isolates were able to form biofilm with cell viability. Quantitatively, Candida isolates from both groups presented a similar ability to form biofilm (p > 0.05). The biofilm viability activity was higher in C. albicans isolates than in non-albicans Candida isolates (p < 0.05) for both groups. Phospholipase activity was detected in 32 isolates (40.5%) and it was significantly higher in the HIV group (p = 0.006). Protease activity was detected in 66 isolates (84.8%) and most of them were relatively/very strong producers. No statistical association with medical data was found in the HIV group. Although Candida spp. isolates from HIV-positive children presented higher phospholipase production, in vitro they exhibited reduced virulence factors compared to isolates from healthy individuals. This finding may enlighten the role played by immunosuppression in the modulation of Candida virulence attributes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Raghavan, Shreya; Ward, Maria R.; Rowley, Katelyn R.; Wold, Rachel M.; Takayama, Shuichi; Buckanovich, Ronald J.; Mehta, Geeta
2015-01-01
Background Ovarian cancer grows and metastasizes from multicellular spheroidal aggregates within the ascites fluid. Multicellular tumor spheroids are therefore physiologically significant3Din vitro models for ovarian cancer research. Conventional hanging drop cultures require high starting cell numbers, and are tedious for long-term maintenance. In this study, we generate stable, uniform multicellular spheroids using very small number of ovarian cancer cells in a novel 384 well hanging drop array platform. Methods We used novel tumor spheroid platform and two ovarian cancer cell lines (A2780 and OVCAR3) to demonstrate the stable incorporation of as few as 10 cells into a single spheroid. Results Spheroids had uniform geometry, with projected areas (42.60 × 103 μm–475.22 × 103 μm2 for A2780 spheroids and 37.24 × 103 μm2–281.01 × 103 μm2 for OVCAR3 spheroids) that varied as a function of the initial cell seeding density. Phalloidin and nuclear stains indicated cells formed tightly packed spheroids with demarcated boundaries and cell–cell interaction within spheroids. Cells within spheroids demonstrated over 85% viability. 3D tumor spheroids demonstrated greater resistance (70–80% viability) to cisplatin chemotherapy compared to 2D cultures (30–50% viability). Conclusions Ovarian cancer spheroids can be generated from limited cell numbers in high throughput 384 well plates with high viability. Spheroids demonstrate therapeutic resistance relative to cells in traditional 2D culture. Stable incorporation of low cell numbers is advantageous when translating this research to rare patient-derived cells. This system can be used to understand ovarian cancer spheroid biology, as well as carry out preclinical drug sensitivity assays. PMID:25913133
Prueksakorn, Attaporn; Puasiri, Subin; Ruangsri, Supanigar; Makeudom, Anupong; Sastraruji, Thanapat; Krisanaprakornkit, Suttichai; Chailertvanitkul, Pattama
2016-12-01
Tooth avulsion causes an injury to the periodontal ligament (PDL). The success of tooth replantation depends on the quantity and quality of PDL cells. The aim of this study was to examine the preservative and proliferative effects of Thai propolis extract, previously shown to exert anti-inflammatory and antioxidant activities, on human PDL cells. Ninety-six premolars were left to air dry for 30 min and stored in Hank's balanced salt solution (HBSS), milk, or various concentrations of propolis extract from 0.25 to 10 mg ml -1 for 3 h. PDL cells were isolated by collagenase and trypsin digestion, and their viability was determined by a trypan blue dye exclusion assay. PDL tissues were also scraped off the root surface and cultured to determine cell growth and morphology. The alamarBlue ® and BrdU assays were performed to determine the cytotoxic and proliferative effects of the extract on cultured PDL cells, respectively. A non-toxic dose of 2.5 mg ml -1 of propolis extract yielded the greatest percentage of cell viability (78.84 ± 3.34%), which was significantly higher than those of the other concentrations (P < 0.001). Nevertheless, this percentage was not significantly different from that of HBSS (80.14 ± 2.44%; P = 1.00), but was significantly higher than that of milk (71.27 ± 2.79%; P < 0.001). The cells grown from PDL explants looked like fibroblasts. However, 2.5 mg ml -1 of the extract did not induce PDL cell proliferation. Thai propolis extract at 2.5 mg ml -1 appears to be the most effective dose for preserving the viability of PDL cells, and this was comparable to HBSS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Li, Haoran; Lu, Yan; Pang, Yangyang; Li, Mengjiao; Cheng, Xi; Chen, Jiawei
2017-02-01
The main purpose of this study was to evaluate propofol and its combined effect with cisplatin on apoptosis of cervical cancer cells and molecular mechanisms of this phenomenon. The effects of propofol and cisplatin on cell viability and apoptosis were detected by cell counting kit-8 (CCK-8) assay, colony formation assay and flow cytometry assay. Besides, protein expression of EGFR/JAK2/STAT3 pathway was determined by western blot. STAT3 was over-expressed in cervical cancer cells by STAT3 cDNA. Expression of EGFR and STAT3 protein of human tissues was evaluated by immunohistochemistry (IHC) assay. In this study, we found that not only propofol alone could inhibit cervical cancer cells viability but also could increase the inhibitory effect of cisplatin on cervical cancer cells growth. Meanwhile, propofol sensitized cervical cancer cells to cisplatin-induced apoptosis but not affected normal cervical cells. In genetic level, propofol could enhance the anti-tumor effect of cisplatin through EGFR/JAK2/STAT3 pathway. Further studies indicated that overexpression of EGFR and STAT3 is related to poor prognoses in cervical cancer patients, which contributed to confirm the clinical role of combined application of propofol and cisplatin. Propofol enhances the cisplatin-induced cell apoptosis cervical cancer cells via EGFR/JAK2/STAT3 pathway and may be developed as a potential therapeutic agent to treat cervical cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Investigation of toxicity and mutagenicity of cold atmospheric argon plasma.
Maisch, T; Bosserhoff, A K; Unger, P; Heider, J; Shimizu, T; Zimmermann, J L; Morfill, G E; Landthaler, M; Karrer, S
2017-04-01
Cold atmospheric argon plasma is recognized as a new contact free approach for the decrease of bacterial load on chronic wounds in patients. So far very limited data are available on its toxicity and mutagenicity on eukaryotic cells. Thus, the toxic/mutagenic potential of cold atmospheric argon plasma using the MicroPlaSter β ® , which has been used efficiently in humans treating chronic and acute wounds, was investigated using the XTT assay in keratinocytes and fibroblasts and the HGPRT (hypoxanthine guanine phosphoribosyl transferase) assay with V79 Chinese hamster cells. The tested clinical parameter of a 2 min cold atmospheric argon plasma treatment revealed no relevant toxicity on keratinocytes (viability: 76% ± 0.17%) and on fibroblasts (viability: 81.8 ± 0.10) after 72 hr as compared to the untreated controls. No mutagenicity was detected in the HGPRT assay with V79 cells even after repetitive CAP treatments of 2-10 min every 24 hr for up to 5 days. In contrast, UV-C irradiation of V79 cells, used as a positive control in the HGPRT test, led to DNA damage and mutagenic effects. Our findings indicate that cold atmospheric plasma using the MicroPlaSter β ® shows negligible effects on keratinocytes and fibroblasts but no mutagenic potential in the HGPRT assay, indicating a new contact free safe technology. Environ. Mol. Mutagen. 58:172-177, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Antimicrobial activity of Willowherb (Epilobium angustifolium L.) leaves and flowers.
Kosalec, Ivan; Kopjar, Nevenka; Kremer, Dario
2013-08-01
Since the aetiology of benign prostatic hyperplasia (BHP) is still unknown, the use of medicinal herb extracts and products prepared thereof are recommended due to their antimicrobial activity, especially during early stages of BHP. A comparison was performed of the in vitro antimicrobial activity (using broth microdilution assay) of flowers and leaves of willowherb (Epilobium angustifolium L., Onagraceae) from Mt. Velebit (Croatia). The strains (standard ATCC and clinical isolates) of Staphylococcus aureus (including MRSA), Bacillus subtilis, Escherichia coli (including p-fimbriae positive strain), Pseudomonas aeruginosa, Proteus mirabilis, Candida albicans, C. tropicalis, C. dubliniensis and Saccharomyces cerevisiae were susceptible with MIC values between 4.6±0.2 and 18.2±0.8 mg/mL. The results of in vitro studies showed that no differences were found in the antimicrobial activity between the ethanol extracts of leaves and flowers of E. angustifolium. Using the quantitative fluorescent assay with ethidium bromide and acridine orange, the viability of C. albicans ATCC 10231 was assessed after in vitro exposure to E. angustifolium leaf and flower ethanol extracts. Apoptosis of C. albicans blastospores dominated over necrosis in all treated samples after short-term exposure with 6 to 12 mg/mL of extracts. In addition to the valuable biological activity of E. angustifolium extracts, the data obtained from the in vitro diffusion, the dilution assay and antifungal viability fluorescent assay suggest that leaf and flower ethanol extracts of E. angustifolium L. are a promising complementary herbal therapy of conditions such as BHP.
Flavonoids, alkali earth and rare earth elements affect germination of pecan pollen
USDA-ARS?s Scientific Manuscript database
The factors regulating pecan [Carya illinoinensis (Wangenh.) K. Koch] pollen grain germination on receptive stigmatic flower surfaces in vivo or in vitro in pollen viability assays are poorly understood. While there are many potential regulating factors, there is evidence for involvement of flavonol...
Activity of vetiver extracts and essential oil against Meloidogyne incognita
USDA-ARS?s Scientific Manuscript database
Vetiver, a nonhost grass for certain nematodes, was studied for production of compounds active against the root-knot nematode Meloidogyne incognita. In laboratory assays studying effects on second-stage juvenile (J2) activity and viability, crude vetiver root and shoot extracts were nematotoxic, res...
Four chemicals that had been tested in an in vivo toxicological screen were tested in a Chinese hamster ovary (CHO) cytotoxicity assay. Cell density, viability, ATP concentration, rate of protein synthesis, and cellular protein concentration were decreased by exposure to acrylami...
Bankier, Claire; Cheong, Yuen; Mahalingam, Suntharavathanan; Edirisinghe, Mohan; Ren, Guogang; Cloutman-Green, Elaine; Ciric, Lena
2018-01-01
Bacterial cell quantification after exposure to antimicrobial compounds varies widely throughout industry and healthcare. Numerous methods are employed to quantify these antimicrobial effects. With increasing demand for new preventative methods for disease control, we aimed to compare and assess common analytical methods used to determine antimicrobial effects of novel nanoparticle combinations on two different pathogens. Plate counts of total viable cells, flow cytometry (LIVE/DEAD BacLight viability assay) and qPCR (viability qPCR) were used to assess the antimicrobial activity of engineered nanoparticle combinations (NPCs) on Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria at different concentrations (0.05, 0.10 and 0.25 w/v%). Results were analysed using linear models to assess the effectiveness of different treatments. Strong antimicrobial effects of the three NPCs (AMNP0-2) on both pathogens could be quantified using the plate count method and flow cytometry. The plate count method showed a high log reduction (>8-log) for bacteria exposed to high NPC concentrations. We found similar antimicrobial results using the flow cytometry live/dead assay. Viability qPCR analysis of antimicrobial activity could not be quantified due to interference of NPCs with qPCR amplification. Flow cytometry was determined to be the best method to measure antimicrobial activity of the novel NPCs due to high-throughput, rapid and quantifiable results.
NASA Astrophysics Data System (ADS)
Pereira, M. M.; Raposo, N. R. B.; Brayner, R.; Teixeira, E. M.; Oliveira, V.; Quintão, C. C. R.; Camargo, L. S. A.; Mattoso, L. H. C.; Brandão, H. M.
2013-02-01
Cellulose nanofibers (CNF) have mechanical properties that make them very attractive for applications in the construction of polymeric matrices, drug delivery and tissue engineering. However, little is known about their impact on mammalian cells. The objective of this study was to evaluate the cytotoxicity of CNF and their effect on gene expression of fibroblasts cultured in vitro. The morphology of CNF was analyzed by transmission electron microscopy and the surface charge by Zeta potential. Cell viability was analyzed by flow cytometry assay and gene expression of biomarkers focused on cell stress response such as Heat shock protein 70.1 (HSP70.1) and Peroxiredoxin 1 (PRDX1) and apoptosis as B-cell leukemia (BCL-2) and BCL-2 associated X protein (BAX) by RT-PCR assay. Low concentrations of CNF (0.02-100 μg ml-1) did not cause cell death; however, at concentrations above 200 μg ml-1, the nanofibers significantly decreased cell viability (86.41 ± 5.37%). The exposure to high concentrations of CNF (2000 and 5000 μg ml-1) resulted in increased HSP70.1, PRDX1 and BAX gene expression. The current study concludes that, under the conditions tested, high concentrations (2000 and 5000 μg ml-1) of CNF cause decreased cell viability and affect the expression of stress- and apoptosis-associated molecular markers.
Dexmedetomidine Protects Neural Stem Cells from Ketamine-Induced Injury.
Lu, Pan; Lei, Shan; Li, Weisong; Lu, Yang; Zheng, Juan; Wang, Ning; Xia, Yongjun; Lu, Haixia; Chen, Xinlin; Liu, Yong; Zhang, Peng-Bo
2018-06-19
Ketamine inhibits the proliferation of neural stem cells (NSCs) and disturbs normal neurogenesis. Dexmedetomidine provides neuroprotection against volatile anesthetic-induced neuroapoptosis and cognitive impairment in the developing brain. Whether it may protect NSCs from ketamine-induced injury remains unknown. In this study, we investigated the protective effects of dexmedetomidine on ketamine-exposed NSCs and explored the mechanisms potentially involved. Primary NSC cultures were characterized using immunofluorescence. Cell viability was determined using a Cell Counting Kit 8 assay. Proliferation and apoptosis were assessed with BrdU incorporation and TUNEL assays, respectively. Protein levels of cleaved caspase-3, phosphorylated protein kinase B (p-Akt), and glycogen synthase kinase-3β (p-GSK-3β) were quantified using western blotting. Ket-amine significantly decreased NSC viability and proliferation and increased their apoptosis. Dexmedetomidine increased NSC proliferation and decreased their apoptosis in a dose-dependent manner. Furthermore, dexmedetomidine pretreatment notably augmented the viability and proliferation of ketamine-exposed NSCs and reduced their apoptosis. Moreover, dexmedetomidine lessened caspase-3 activation and increased p-Akt and p-GSK-3β levels in NSCs exposed to ketamine. The protective effects of dexmedetomidine on ketamine-exposed NSCs could be partly reversed by the PI3K inhibitor LY294002. Collectively, these findings indicate that dexmedetomidine may protect NSCs from ketamine-induced injury via the PI3K/Akt/GSK-3β signaling pathway. © 2018 The Author(s). Published by S. Karger AG, Basel.
Gong, Gu; Yuan, Libang; Cai, Lin; Ran, Maorong; Zhang, Yulan; Gong, Huaqu; Dai, Xuemei; Wu, Wei; Dong, Hailong
2014-01-01
Tetramethylpyrazine (TMP) has been widely used in China as a drug for the treatment of various diseases. Recent studies have suggested that TMP has a protective effect on ischemic neuronal damage. However, the exact mechanism is still unclear. This study aims to investigate the mechanism of TMP mediated ischemic hippocampal neurons injury induced by oxygen-glucose deprivation (OGD). The effect of TMP on hippocampal neurons viability was detected by MTT assay, LDH release assay and apoptosis rate was measured by flow cytometry. TMP significantly suppressed neuron apoptosis in a concentration-dependent manner. TMP could significantly reduce the elevated levels of connexin32 (Cx32) induced by OGD. Knockdown of Cx32 by siRNA attenuated OGD injury. Moreover, our study showed that viability was increased in siRNA-Cx32-treated-neurons, and neuron apoptosis was suppressed by activating Bcl-2 expression and inhibiting Bax expression. Over expression of Cx32 could decrease neurons viability and increase LDH release. Furthermore, OGD increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the neuron injury and Cx32 up-regulation. Taken together, TMP can reverse the OGD-induced Cx32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathways.
Zhaleh, M; Azadbakht, M; Bidmeshki Pour, A
2017-01-01
Staurospurine induces apoptosis in cell line. Bone Marrow Mesenchymal stem cells Soup is a promising tool for cell proliferation via a variety of secreted factors. In this study, we examined the effects of BMSCs Soup on Staurospurine induced-cell death in MCF-7 and AGS cells. There were three Groups: Group I: no incubation with BM Soup; Group II: incubated with 24 h BM Soup; Group III: incubation with 48 h BM Soup. There were two treatments in each group. The treatments were 1μM Staurospurine (Treatment 1) and 0.0 μM Staurospurine (Treatment 2). The cells were cultured in culture medium containing 0.2 % BSA. We obtained the cell viability, cell death and NO concentration. Our results showed that BM soup administration for 48 hours protectsed against 1μM staurosporine concentration induced cell death and reduced cell toxicity in MCF-7 and AGS cells. Cell viability and cell toxicity assay showed that BM soup in time dependent manner increased cell viability (p < 0.05) and cell death assay showed that cell death in time dependent manner was decreased(p < 0.05). Our data showed that BM soup with increasing NO concentration reduced staurospurine induced cell death and cell cytotoxicity (p < 0.05). It's concluded that BMSCs soup suppressed staurospurine-induced cytotoxicity activity process in MCF-7 and AGS cells (Fig. 9, Ref. 79).
Mas, Sergi; Crescenti, Anna; Gassó, Patricia; Deulofeu, Ramon; Molina, Rafael; Ballesta, Antonio; Kensler, Thomas W; Lafuente, Amalia
2007-01-01
Among the vegetables with anti-carcinogenic properties, members of the genus Brassica are the most effective at reducing the risk of cancer. This property may be explained by their principle bioactive compounds, isothiocyanates (ITCs). The aim of this study was to measure the amounts of ITCs in extracts from vegetables of the Brasssica genus and assay them for potency of induction of apoptosis in a colorectal cancer cell line (HT-29). ITCs were determined by the cyclocondensation assay with 1,2-benzenedithiol and induction of apoptosis by assessment of cell viability, caspase-3 activity and DNA fragmentation. Purple cabbage extract showed the highest ITC concentration per gram, fresh weight, followed by black cabbage and Romanesco cauliflower. At ITC concentrations of 7.08 microg/mL these extracts decreased cell viability and induced caspase-3 and DNA fragmentation at 48h. Brussels sprouts showed the strongest effects on cell viability and caspase-3 activity. Varieties of Brassica Oleracea are rich sources of ITCs that potently inhibit the growth of colon cancer cells by inducting apoptosis. All the extracts showed anticancer activity at ITC concentrations of between 3.54 to 7.08 mug/mL, which are achievable in vivo. Our results showed that ITC concentration and the chemopreventive responses of plant extracts vary among the varieties of Brassica Oleracea studied and among their cultivars.
Wang, Kai; Jin, Xiao-Lu; Shen, Xiao-Ge; Sun, Li-Ping; Wu, Li-Ming; Wei, Jiang-Qin; Marcucci, Maria Cristina; Hu, Fu-Liang; Liu, Jian-Xin
2016-01-01
Chinese propolis (CP), an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T), we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS), heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA) did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin) had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis.
Jin, Xiao-Lu; Shen, Xiao-Ge; Sun, Li-Ping; Wu, Li-Ming; Wei, Jiang-Qin; Marcucci, Maria Cristina; Hu, Fu-Liang; Liu, Jian-Xin
2016-01-01
Chinese propolis (CP), an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T), we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS), heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA) did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin) had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis. PMID:27433029
Cytotoxic outcomes of orthodontic bands with and without silver solder in different cell lineages.
Jacoby, Letícia Spinelli; Rodrigues Junior, Valnês da Silva; Campos, Maria Martha; Macedo de Menezes, Luciane
2017-05-01
The safety of orthodontic materials is a matter of high interest. In this study, we aimed to assess the in-vitro cytotoxicity of orthodontic band extracts, with and without silver solder, by comparing the viability outcomes of the HaCat keratinocytes, the fibroblastic cell lineages HGF and MRC-5, and the kidney epithelial Vero cells. Sterilized orthodontic bands with and without silver solder joints were added to culture media (6 cm 2 /mL) and incubated for 24 hours at 37°C under continuous agitation. Subsequently, the cell cultures were exposed to the obtained extracts for 24 hours, and an assay was performed to evaluate the cell viability. Copper strip extracts were used as positive control devices. The extracts from orthodontic bands with silver solder joints significantly reduced the viability of the HaCat, MRC-5, and Vero cell lines, whereas the viability of HGF was not altered by this material. Conversely, the extracts of orthodontic bands without silver solder did not significantly modify the viability index of all evaluated cell lines. Except for HGF fibroblasts, all tested cell lines showed decreased viability percentages after exposure to extracts of orthodontic bands containing silver solder joints. These data show the relevance of testing the toxicity of orthodontic devices in different cell lines. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Chen, Wei-Ting; Chen, Ying-Kai; Lin, Song-Shei; Hsu, Fei-Ting
2018-04-01
Previous studies have indicated that hyperforin inhibits tumor growth of hepatocellular carcinoma. However, the anticancer effects of hyperforin in non-small cell lung cancer (NSCLC) are ambiguous. The aim of the present study was to investigate the anticancer effect of hyperforin in NSCLC. NSCLC CL1-5-F4 cells were treated with different concentrations of hyperforin or NF-κB inhibitor (QNZ) for different time periods. Change of cell viability, NF-κB activation, apoptotic signaling pathways, expression of anti-apoptotic proteins, and cell invasion were detected using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, NF-κB reporter gene assay, flow cytometry, western blotting, and cell invasion assay. The results demonstrated that hyperforin significantly promotes extrinsic and intrinsic apoptotic pathways, and inhibits cell viability and NF-κB activation. In addition, results also indicated that blockage of NF-κB activation reduces the levels of anti-apoptotic proteins and cell invasion in CL1-5-F4 cells. These results suggested hyperforin induces apoptosis and inhibits NF-κB-modulated anti-apoptotic and invasive potential in NSCLC. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Efthymiou, Anastasia; Shaltouki, Atossa; Steiner, Joseph P; Jha, Balendu; Heman-Ackah, Sabrina M; Swistowski, Andrzej; Zeng, Xianmin; Rao, Mahendra S; Malik, Nasir
2014-01-01
Rapid and effective drug discovery for neurodegenerative disease is currently impeded by an inability to source primary neural cells for high-throughput and phenotypic screens. This limitation can be addressed through the use of pluripotent stem cells (PSCs), which can be derived from patient-specific samples and differentiated to neural cells for use in identifying novel compounds for the treatment of neurodegenerative diseases. We have developed an efficient protocol to culture pure populations of neurons, as confirmed by gene expression analysis, in the 96-well format necessary for screens. These differentiated neurons were subjected to viability assays to illustrate their potential in future high-throughput screens. We have also shown that organelles such as nuclei and mitochondria could be live-labeled and visualized through fluorescence, suggesting that we should be able to monitor subcellular phenotypic changes. Neurons derived from a green fluorescent protein-expressing reporter line of PSCs were live-imaged to assess markers of neuronal maturation such as neurite length and co-cultured with astrocytes to demonstrate further maturation. These studies confirm that PSC-derived neurons can be used effectively in viability and functional assays and pave the way for high-throughput screens on neurons derived from patients with neurodegenerative disorders.
Profiling of the Tox21 Chemical Collection for Mitochondrial ...
Mitochondrial dysfunction has been implicated in the pathogenesis of a variety of disorders including cancer, diabetes, and neurodegenerative and cardiovascular diseases. Understanding how different environmental chemicals and drug-like molecules impact mitochondrial function represents an initial step in predicting exposure-related toxic effects and defining a possible role for such compounds in the onset of various diseases. OBJECTIVES: To identify individual chemicals and general structural features associated with the disruption of mitochondrial membrane potential (MMP). METHODS: We used a multiplexed quantitative high throughput screening (qHTS) approach combined with informatics tools to screen the Tox21 10,000 compound library (~8300 unique chemicals) at 15 concentrations in triplicate to identify chemicals and structural features that are associated with changes in MMP in HepG2 cells. RESULTS: In the primary screening, approximately 11% of the compounds (913 unique compounds) decreased the MMP after 1 h of treatment without affecting cell viability. Additionally, 309 compounds decreased MMP over a concentration range that also produced measurable cytotoxicity [half maximal inhibitory concentration (IC50) in MMP assay/IC50 in viability assay) ≤ 3, p<0.05]. Over 11% of the structural clusters that constitute the Tox21 library (76 of 651 clusters) were significantly enriched for compounds that decreased the MMP. CONCLUSIONS: Our multiplexed qHTS approach
The expression and function of epithelial membrane protein 1 in laryngeal carcinoma.
Li, Hong; Zhang, Xiaowen; Jiang, Xuejun; Ji, Xu
2017-01-01
In this study, we compared the expression of epithelial membrane protein 1 (EMP1) on the steady-state mRNA level (by quantitative real-time PCR) and on the protein level (by western immunoblot and immunohistochemistry) in 51 pairs of laryngeal carcinoma tissues and matched cancer-free peritumor tissues, and we analyzed the correlation between EMP1 expression and different clinicopathological factors. Furthermore, we ectopically expressed EMP1 in human laryngeal carcinoma Hep-2 cells and examined the effects on cell viability, apoptosis, colonogenicity, and motility, by MTT assay, flow cytometry, colony formation assay and Transwell migration assay, respectively. EMP1 expression (on both the mRNA and protein levels) was significantly lower in the cancer tissues than in matched peritumor tissues (P<0.05). In laryngeal cancers, the level of EMP1 protein was correlated with histological grade (P<0.05), but not with age, gender, clinical stage, cancer subtype or lymph node metastasis (P>0.05). Functionally, ectopic expression of EMP1 in Hep-2 cells significantly reduced cell viability, colony formation, and migration, but enhanced apoptosis. Therefore, EMP1 is a tumor suppressor in laryngeal carcinoma. Boosting EMP1 expression in laryngeal carcinoma initiates multiple anticancer phenotypes and thus presents a promising therapeutic strategy for laryngeal cancer.
Biocompatibility Evaluation of Four Dentin Adhesives Used as Indirect Pulp Capping Materials
Cortés, Olga; Bernabé, Antonia
2017-01-01
Background In many cases, the indirect pulp treatment (IPT) is an acceptable treatment for deciduous teeth with reversible pulp inflammation. Various medicaments have been used for IPT, ranging from calcium hydroxide and glass ionomers to dentin adhesives. Objective This in vitro trial aimed to measure cytotoxicity in a cell culture, comparing the following four adhesives: Xeno® V (XE), Excite® F DSC (EX), Adhese® OneF (AD) and Prime & Bond NT (PB). Materials and methods The adhesives were prepared according to the manufacturer’s instructions. After 24 hours of exposure, the cell viability was evaluated using a photometrical test (MTT test). Data were subjected to analysis of variance (ANOVA). Results Adhesives, the main component of which was 2-hydroxyethyl methacrylate (HEMA), were found to be less cytotoxic, while those that included the monomer urethane dimethacrylate (UDMA were the most cytotoxic) in their composition. The effects on cell viability assay varied between the adhesives assayed with statistically significant differences. Conclusions The results may support the argument that Adhese® OneF is the least cytotoxic of the adhesives assayed, and may be considered as an adhesive agent for indirect pulp treatment. However, Prime and Bond NT showed a reduced biocompatibility under the same conditions. PMID:28827848
Phenolic compounds alone or in combination may be involved in propolis effects on human monocytes.
Cardoso, Eliza de Oliveira; Conti, Bruno José; Santiago, Karina Basso; Conte, Fernanda Lopes; Oliveira, Lucas Pires Garcia; Hernandes, Rodrigo Tavanelli; Golim, Marjorie de Assis; Sforcin, José Maurício
2017-01-01
Propolis is a natural product with a complex chemical composition. Its isolated compounds exert biological activities; however, its synergistic effects are unknown. The involvement of phenolic acids (caffeic - Caf, dihydrocinnamic - Cin and p-coumaric - Cou) alone or in combination was investigated in the action of propolis in human monocytes. Cell viability was analysed by MTT assay; TNF-α, IL-6 and IL-10 production by enzyme-linked immunosorbent assay (ELISA); cell markers expression by flow cytometry; colony-forming units were counted to assess the microbicidal activity; and H 2 O 2 production was analysed by colorimetric assay. Treatments did not affect monocytes viability. Propolis and combinations containing Caf enhanced TNF-α production by resting cells. Propolis, Cin, Cou and Caf + Cin stimulated IL-6 production. All treatments upregulated IL-10. In LPS-stimulated cells, treatments downregulated IL-6 and maintained TNF-α and IL-10 production. A lower TLR-2 expression was seen than propolis. Caf + Cin enhanced TLR-4 expression. Propolis, Caf and Caf + Cin stimulated H 2 O 2 production, whereas propolis, Cin, Cou, and Caf + Cin + Cou induced a higher fungicidal activity. Cin and Cin + Cou increased the bactericidal activity of human monocytes. Propolis activated human monocytes, and acids were involved differently in propolis activity. © 2016 Royal Pharmaceutical Society.
Tagboto, S; Griffiths, A Paul
2007-01-01
Background It is well recognised that there is often a disparity between the structural changes observed in the kidney following renal injury and the function of the organ. For this reason, we carried out studies to explore possible means of studying and quantifying the severity of renal ischaemic damage using a laboratory model. Methods To do this, freshly isolated rabbit kidney tissue was subjected to warm (37°C) or cold (1°C) ischaemia for 20 hours. Following this, the tissue was stained using Haematoxylin and Eosin (H+E), Periodic Schiff reagent (PAS) and the novel monoclonal antibody CD10 stain. Additionally, ischaemic damage to the kidneys was assessed by biochemical tests of tissue viability using formazan-based colorimetry. Results CD 10 antibody intensely stained the brush border of control kidney tissue with mild or no cytoplasmic staining. Cell injury was accompanied by a redistribution of CD10 into the lumen and cell cytoplasm. There was good correlation between a score of histological damage using the CD 10 monoclonal antibody stain and the biochemical assessment of viability. Similarly, a score of histological damage using traditional PAS staining correlated well with that using the CD10 antibody stain. In particular, the biochemical assay and the monoclonal antibody staining techniques were able to demonstrate the efficacy of Soltran (this solution is used cold to preserve freshly isolated human kidneys prior to transplantation) in preserving renal tissue at cold temperatures compared to other randomly selected solutions. Conclusion We conclude that the techniques described using the CD10 monoclonal antibody stain may be helpful in the diagnosis and assessment of ischaemic renal damage. In addition, biochemical tests of viability may have an important role in routine histopathological work by giving additional information about cellular viability which may have implications on the function of the organ. PMID:17531101
Lushnikova, Iryna; Nikandrova, Yelyzaveta; Skibo, Galyna
2017-10-01
Neurodegenerative diseases of different genesis are the result of cellular damages including those caused by oxygen and glucose deficit. Neuronal survival or death in brain pathologies depends on a variety of interrelated molecular mechanisms. A key role in modulation of neuron viability belongs to HIF (hypoxia-inducible factor) and NCAM (neural cell adhesion molecules) signaling pathways. In this work, we used organotypic and dissociated hippocampal cultures to analyze cell viability and HIF-1α immunopositive (HIF-1α + ) signal after 30 min oxygen-glucose deprivation (OGD) followed by 24 h of reoxygenation in the presence of FGL (synthetic NCAM-derived mimetic peptide). According to LDH- and MTS-assay of cell viability, FGL showed a neuroprotective effect, which was attributed to the association with FGFR. We showed that these effects correlated with changes of the HIF-1α + level suggesting the communications of HIF and NCAM signaling pathways. These data extend our knowledge of neurodegeneration mechanisms and open additional potential for the development of neuroprotection strategies. © 2017 International Federation for Cell Biology.
Anti-tumor effects of osthole on ovarian cancer cells in vitro.
Jiang, Guoqiang; Liu, Jia; Ren, Baoyin; Tang, Yawei; Owusu, Lawrence; Li, Man; Zhang, Jing; Liu, Likun; Li, Weiling
2016-12-04
Cnidium monnieri (L.) Cusson is a commonly used traditional Chinese medicine to treat gynecological disease in some countries. Osthole, an active O-methylated coumadin isolated from Cnidium monnieri (L.) Cusson, has been shown to induce various beneficial biochemical effects such as anti-seizure and anti-inflammatory effects. However, the anti-tumor mechanism of osthole is not well known. Here, we show that osthole inhibited the proliferation and migration of two widely used ovarian cancer cell lines, A2780 and OV2008 cells, in a dose-dependent manner. The study investigated the molecular mechanisms underlying ovarian cancer cells proliferation, apoptosis, cell cycle arrest and migration triggered by osthole. Ovarian cancer cell lines A2780, OV2008 and normal ovarian cell line IOSE80 were used as experimental model. MTT assay was employed to evaluate cell viability. Flow cytometry assays were performed to confirm apoptosis and cell cycle. We employed wound healing and transwell assays to delineate invasive and migratory potential triggered by osthole. MTT assays indicated that cell viability significantly decreased in ovarian cancer cells treated with osthole without effect on normal ovarian cells. Flow cytometric analysis revealed that osthole suppressed cells proliferation by promoting G2/M arrest and inducing apoptosis. The underlying mechanisms involved were regulation of the relative apoptotic protein Bcl-2, Bax and Caspase 3/9. In addition, wound healing and transwell assays revealed that the migratory potential and activity of matrix metalloproteinase MMP-2 and MMP-9 were markedly inhibited when cells were exposed to osthole. Our findings suggested that osthole has the potential to be used in novel anti-cancer therapeutic formulations for ovarian cancer treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Bastos, V; Duarte, I F; Santos, C; Oliveira, H
2017-02-01
Silver nanoparticles (AgNPs) are widely used in industrial, cosmetic, and biomedical products, and humans are frequently exposed to these products through the skin. It is widely recognized that the characteristics of AgNPs (e.g., size, coating) may influence their cytotoxic effects, but their correlation with DNA damage and mitotic disorders remains poorly explored. In this study, human keratinocytes (HaCaT cell line) were exposed to well-characterized 30 nm AgNPs coated with citrate, and their effects on viability, DNA fragmentation (assessed by the comet assay), and micronuclei (MNi) induction (assessed by the cytokinesis-block micronucleus cytome assays, CBMN) were investigated. The results showed that 10 and 40 μg/mL AgNPs decreased cell proliferation and viability, and induced a significant genetic damage. This was observed by an increase of DNA amount in comet tail, which linearly correlated with dose and time of exposure. Also, cytostaticity (increase of mononucleated cells) and MNi rates increased in treated cells. In contrast, no significant changes were observed in nucleoplasmatic bridges (NPBs) or nuclear buds (NBUDs), although NBUDs tended to increase in all conditions and periods. The cytostatic effects on HaCaT cells were also shown by the decrease of their nuclear division index. Thus, both comet and CBMN assays supported the observation that citrate-AgNPs induced genotoxic effects on HaCaT cells. Considering that AgNPs are present in a vast number of consumer products and also in multiple nanomedicine skin applications and formulations, more research is needed to determine the properties that confer less toxicity of AgNPs to different cell lines.
Shivapriya, S.; Ilango, K.; Dubey, G.P.
2015-01-01
Aim and objective Hippophae rhamnoides is an edible, nutrient rich plant found in the northern regions of India. It belongs to the family Elaeagnaceae and is well known for its traditional pharmacological activities. The present study was aimed to investigate the antioxidant and neuroprotective activities of H. rhamnoides. Methodology The hydroalcoholic extract of H. rhamnoides was evaluated for free radical scavenging activity using DPPH, hydroxyl radical scavenging and ferric thiocyanate assays. In vitro neuroprotective activity was assessed on human neuroblastoma cell line-IMR32 against hydrogen peroxide (H2O2) induced cytotoxicity. The neuroprotective effect was determined by measuring the cell viability through tetrazolium dye MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reducing assay and propidium iodide (PI) staining. Also the intracellular reactive oxygen species (ROS) activity was assessed using dichloro-dihydro-fluorescein diacetate (DCFDA) assay by flowcytometer. Results The results of the study demonstrated that H. rhamnoides extract possesses potential free radical scavenging activity. The IC50 value for DPPH and OH radical scavenging assay was 70.92 μg/ml and 0.463 mg/ml, also the extract was also found to have considerable level of lipid peroxidation activity. The neuroprotective effect of H. rhamnoides was confirmed by its cell viability enhancing capacity against hydrogen peroxide induced cell cytotoxicity. The extract acted on IMR32 cells in a dose dependent manner as observed through PI and MTT assays. The percentage intracellular ROS activity was reduced by 60–70% in treated cells compared to H2O2 control. Conclusion Thus the outcome of the study suggests that H. rhamnoides acts as a neuroprotectant against oxidative stress induced neurodegeneration. PMID:26288571
Kim, Byung-Chul; Kim, Youn-Sub; Lee, Jin-Woo; Seo, Jin-Hee; Ji, Eun-Sang; Lee, Hyejung; Park, Yong-Il
2011-01-01
Nitric oxide (NO) is a reactive free radical and a messenger molecule in many physiological functions. However, excessive NO is believed to be a mediator of neurotoxicity. The medicinal plant Coriolus versicolor is known to possess anti-tumor and immune-potentiating activities. In this study, we investigated whether Coriolus versicolor possesses a protective effect against NO donor sodium nitroprusside (SNP)-induced apoptosis in the human neuroblastoma cell line SK-N-MC. We utilized 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, 4,6-diamidino-2-phenylindole (DAPI) staining, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, DNA fragmentation assay, reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis, and caspase-3 enzyme activity assay in SK-N-MC cells. MTT assay showed that SNP treatment significantly reduces the viability of cells, and the viabilities of cells pre-treated with the aqueous extract of Coriolus versicolor cultivated in citrus extract (CVEcitrus) was increased. However, aqueous extract of Coriolus versicolor cultivated in synthetic medium (CVEsynthetic) showed no protective effect and aqueous citrus extract (CE) had a little protective effect. The cell treated with SNP exhibited several apoptotic features, while those pre-treated for 1 h with CVEcitrus prior to SNP expose showed reduced apoptotic features. The cells pre-treated for 1 h with CVEcitrus prior to SNP expose inhibited p53 and Bax expressions and caspase-3 enzyme activity up-regulated by SNP. We showed that CVEcitrus exerts a protective effect against SNP-induced apoptosis in SK-N-MC cells. Our study suggests that CVEcitrus has therapeutic value in the treatment of a variety of NO-induced brain diseases. PMID:22110367
Kim, Byung-Chul; Kim, Youn-Sub; Lee, Jin-Woo; Seo, Jin-Hee; Ji, Eun-Sang; Lee, Hyejung; Park, Yong-Il; Kim, Chang-Ju
2011-06-01
Nitric oxide (NO) is a reactive free radical and a messenger molecule in many physiological functions. However, excessive NO is believed to be a mediator of neurotoxicity. The medicinal plant Coriolus versicolor is known to possess anti-tumor and immune-potentiating activities. In this study, we investigated whether Coriolus versicolor possesses a protective effect against NO donor sodium nitroprusside (SNP)-induced apoptosis in the human neuroblastoma cell line SK-N-MC. We utilized 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, 4,6-diamidino-2-phenylindole (DAPI) staining, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, DNA fragmentation assay, reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis, and caspase-3 enzyme activity assay in SK-N-MC cells. MTT assay showed that SNP treatment significantly reduces the viability of cells, and the viabilities of cells pre-treated with the aqueous extract of Coriolus versicolor cultivated in citrus extract (CVE(citrus)) was increased. However, aqueous extract of Coriolus versicolor cultivated in synthetic medium (CVE(synthetic)) showed no protective effect and aqueous citrus extract (CE) had a little protective effect. The cell treated with SNP exhibited several apoptotic features, while those pre-treated for 1 h with CVE(citrus) prior to SNP expose showed reduced apoptotic features. The cells pre-treated for 1 h with CVE(citrus) prior to SNP expose inhibited p53 and Bax expressions and caspase-3 enzyme activity up-regulated by SNP. We showed that CVE(citrus) exerts a protective effect against SNP-induced apoptosis in SK-N-MC cells. Our study suggests that CVE(citrus) has therapeutic value in the treatment of a variety of NO-induced brain diseases.
miR-34a: Multiple Opposing Targets and One Destiny in Hepatocellular Carcinoma.
Yacoub, Radwa Alaa; Fawzy, Injie Omar; Assal, Reem Amr; Hosny, Karim Adel; Zekri, Abdel-Rahman Nabawy; Esmat, Gamal; El Tayebi, Hend Mohamed; Abdelaziz, Ahmed Ihab
2016-12-28
Background and Aims: The role of miR-34a in hepatocellular carcinoma (HCC) is controversial and several unresolved issues remain, including its expression pattern and relevance to tumor etiology, tumor stage and prognosis, and finally, its impact on apoptosis. Methods: miR-34a expression was assessed in hepatitis C virus (HCV)-induced non-metastatic HCC tissues by RT-Q-PCR. Huh-7 cells were transfected with miR-34a mimics and the impact of miR-34a was examined on 84 pro-apoptotic/anti-apoptotic genes using PCR array; its net effect was tested on cell viability via MTT assay. Results: miR-34a expression was up-regulated in HCC tissues. Moreover, miR-34a induced a large set of pro-apoptotic/anti-apoptotic genes, with a net result of triggering apoptosis and repressing cell viability. Conclusions: HCC-related differential expression of miR-34a could be etiology-based or stage-specific, and low expression of miR-34a may predict poor prognosis. This study's findings also emphasize the role of miR-34a in apoptosis.
Viability and Virulence of Entomopathogenic Nematodes Exposed to Ultraviolet Radiation.
Shapiro-Ilan, David I; Hazir, Selcuk; Lete, Luis
2015-09-01
Entomopathogenic nematodes (EPNs) can be highly effective biocontrol agents, but their efficacy can be reduced due to exposure to environmental stress such as from ultraviolet (UV) radiation. Our objectives were to 1) compare UV tolerance among a broad array of EPN species, and 2) investigate the relationship between reduced nematode viability (after exposure to UV) and virulence. Nematodes exposed to a UV radiation (254 nm) for 10 or 20 min were assessed separately for viability (survival) and virulence to Galleria mellonella. We compared 9 different EPN species and 15 strains: Heterorhabditis bacteriophora (Baine, fl11, Oswego, and Vs strains), H. floridensis (332), H. georgiana (Kesha), H. indica (HOM1), H. megidis (UK211), Steinernema carpocapsae (All, Cxrd, DD136, and Sal strains), S. feltiae (SN), S. rarum (17C&E), and S. riobrave (355). In viability assessments, steinernematids, particularly strains of S. carpocapsae, generally exhibited superior UV tolerance compared with the heterorhabditids. However, some heterorhabditids tended to be more tolerant than others, e.g., H. megidis and H. bacteriophora (Baine) were most susceptible and H. bacteriophora (Vs) was the only heterorhabditid that did not exhibit a significant effect after 10 min of exposure. All heterorhabditids experienced reduced viability after 20 min exposure though several S. carpocapsae strains did not. In total, after 10 or 20 min exposure, the viability of seven nematode strains did not differ from their non-UV exposed controls. In virulence assays, steinernematids (particularly S. carpocapsae strains) also tended to exhibit higher UV tolerance. However, in contrast to the viability measurements, all nematodes experienced a reduction in virulence relative to their controls. Correlation analysis revealed that viability among nematode strains is not necessarily related to virulence. In conclusion, our results indicate that the impact of UV varies substantially among EPNs, and viability alone is not a sufficient measure for potential impact on biocontrol efficacy as other characters such as virulence may be severely affected even when viability remains high.
Berntsen, Hanne Friis; Bjørklund, Cesilie Granum; Audinot, Jean-Nicolas; Hofer, Tim; Verhaegen, Steven; Lentzen, Esther; Gutleb, Arno Christian; Ropstad, Erik
2017-12-01
The toxicity of long chained perfluoroalkyl acids (PFAAs) has previously been reported to be related to the length of the perfluorinated carbon chain and functional group attached. In the present study, we compared the cytotoxicity of six PFAAs, using primary cultures of rat cerebellar granule neurons (CGNs). Two perfluoroalkyl sulfonic acids (PFSAs, chain length C 6 and C 8 ) and four perfluoroalkyl carboxylic acids (PFCAs, chain length C 8 -C 11 ) were studied. These PFAAs have been detected in human blood and the brain tissue of mammals. The cell viability trypan blue and MTT assays were used to determine toxicity potencies (based on LC 50 values) after 24h exposure (in descending order): perfluoroundecanoic acid (PFUnDA)≥perfluorodecanoic acid (PFDA)>perfluorooctanesulfonic acid potassium salt (PFOS)>perfluorononanoic acid (PFNA)>perfluorooctanoic acid (PFOA)>perfluorohexanesulfonic acid potassium salt (PFHxS). Concentrations of the six PFAAs that produced equipotent effects after 24h exposure were used to further explore the dynamics of viability changes during this period. Therefore viability was assessed at 10, 30, 60, 90, 120 and 180min as well as 6, 12, 18 and 24h. A difference in the onset of reduction in viability was observed, occurring relatively quickly (30-60min) for PFOS, PFDA and PFUnDA, and much slower (12-24h) for PFHxS, PFOA and PFNA. A slight protective effect of vitamin E against PFOA, PFNA and PFOS-induced reduction in viability indicated a possible involvement of oxidative stress. PFOA and PFOS did not induce lipid peroxidation on their own, but significantly accelerated cumene hydroperoxide-induced lipid peroxidation. When distribution of the six PFAAs in the CGN-membrane was investigated using NanoSIMS50 imaging, two distinct patterns appeared. Whereas PFHxS, PFOS and PFUnDA aggregated in large hotspots, PFOA, PFNA and PFDA showed a more dispersed distribution pattern. In conclusion, the toxicity of the investigated PFAAs increased with increasing carbon chain length. For molecules with a similar chain length, a sulfonate functional group led to greater toxicity than a carboxyl group. Copyright © 2017 Elsevier B.V. All rights reserved.
Cancino-Faure, Beatriz; Fisa, Roser; Alcover, M. Magdalena; Jimenez-Marco, Teresa; Riera, Cristina
2016-01-01
Molecular techniques based on real-time polymerase chain reaction (qPCR) allow the detection and quantification of DNA but are unable to distinguish between signals from dead or live cells. Because of the lack of simple techniques to differentiate between viable and nonviable cells, the aim of this study was to optimize and evaluate a straightforward test based on propidium monoazide (PMA) dye action combined with a qPCR assay (PMA-qPCR) for the selective quantification of viable/nonviable epimastigotes of Trypanosoma cruzi. PMA has the ability to penetrate the plasma membrane of dead cells and covalently cross-link to the DNA during exposure to bright visible light, thereby inhibiting PCR amplification. Different concentrations of PMA (50–200 μM) and epimastigotes of the Maracay strain of T. cruzi (1 × 105–10 parasites/mL) were assayed; viable and nonviable parasites were tested and quantified by qPCR with a TaqMan probe specific for T. cruzi. In the PMA-qPCR assay optimized at 100 μM PMA, a significant qPCR signal reduction was observed in the nonviable versus viable epimastigotes treated with PMA, with a mean signal reduction of 2.5 logarithm units and a percentage of signal reduction > 98%, in all concentrations of parasites assayed. This signal reduction was also observed when PMA-qPCR was applied to a mixture of live/dead parasites, which allowed the detection of live cells, except when the concentration of live parasites was low (10 parasites/mL). The PMA-qPCR developed allows differentiation between viable and nonviable epimastigotes of T. cruzi and could thus be a potential method of parasite viability assessment and quantification. PMID:27139452
NASA Astrophysics Data System (ADS)
Vergauwe, Nicolas; Witters, Daan; Ceyssens, Frederik; Vermeir, Steven; Verbruggen, Bert; Puers, Robert; Lammertyn, Jeroen
2011-05-01
Electrowetting-on-dielectric (EWOD) lab-on-a-chip systems have already proven their potential within a broad range of bio-assays. Nevertheless, research on the analytical performance of those systems is limited, yet crucial for a further breakthrough in the diagnostic field. Therefore, this paper presents the intrinsic possibilities of an EWOD lab-on-a-chip as a versatile platform for homogeneous and heterogeneous bio-assays with high analytical performance. Both droplet dispensing and splitting cause variations in droplet size, thereby directly influencing the assay's performance. The extent to which they influence the performance is assessed by a theoretical sensitivity analysis, which allows the definition of a basic framework for the reduction of droplet size variability. Taking advantage of the optimized droplet manipulations, both homogeneous and heterogeneous bio-assays are implemented in the EWOD lab-on-a-chip to demonstrate the analytical capabilities and versatility of the device. A fully on-chip enzymatic assay is realized with high analytical performance. It demonstrates the promising capabilities of an EWOD lab-on-a-chip in food-related and medical applications, such as nutritional and blood analyses. Further, a magnetic bio-assay for IgE detection using superparamagnetic nanoparticles is presented whereby the nanoparticles are used as solid carriers during the bio-assay. Crucial elements are the precise manipulation of the superparamagnetic nanoparticles with respect to dispensing and separation. Although the principle of using nano-carriers is demonstrated for protein detection, it can be easily extended to a broader range of bio-related applications like DNA sensing. In heterogeneous bio-assays the chip surface is actively involved during the execution of the bio-assay. Through immobilization of specific biological compounds like DNA, proteins and cells a reactive chip surface is realized, which enhances the bio-assay performance. To demonstrate this potential, on-chip adhesion islands are fabricated to immobilize MCF-7 human breast cancer cells. Viability studies are performed to assess the functionalization efficiency.
Microelectrode array (MEA) recordings are increasingly being used as an in vitro method to detect and characterize the ability of drugs, chemicals and particles to cause neurotoxicity. While effects of compounds on spontaneous network activity is easily determined by MEA recordin...
Background: The relatively high prevalence of Legionella pneumophila in premise plumbing systems has been widely reported. Published reports indicate Legionella has a comparatively high resistance to chlorine and moreover has the ability to grow in phagocytic amoeba which could p...
There is considerable public concern that the majority of commercial chemicals have not been evaluated for their potential to cause developmental neurotoxicity. Although several chemicals are assessed annually under the current developmental neurotoxicity guidelines, time, resour...
This manuscript compares the toxicity of a number of organotin species present in drinking water using a set of in vitro assays that model neuronal differentiation, and viability and apoptosis. Dibutyltin (DBT), dimethyltin (DMT), monomethyltin (MMT), and the positive control tri...
Maternal and/or postnatal undernutrition are widespread in human populations and are components of many experimental developmental and reproductive toxicology bio-assays. This study investigated in utero and/or pre-weaning undernutrition effects on reproductive maturation and se...
Pollen Biology of Ornamental Ginger (Hedychium spp. J. Koenig)
USDA-ARS?s Scientific Manuscript database
An improved in vitro pollen germination assay was developed to assess the viability of stored Hedychium pollen. The effect of polyethylene glycol (PEG) (10, 15, and 20% w/v) on pollen germination and tube growth was evaluated for H. longicornutum and two commercial Hedychium cultivars, ‘Orange Brush...
Valenzuela, Manuel; Bastias, Lorena; Montenegro, Iván; Werner, Enrique; Madrid, Alejandro; Godoy, Patricio; Párraga, Mario; Villena, Joan
2018-01-01
Antioxidants are known to be beneficial to health. This paper evaluates the potential chemopreventive and anticancer properties of phenolic compounds present in grape juice extracts (GJE) from Autumn Royal and Ribier varieties. The effects of these GJE on viability (SRB day assay) and metastatic potential (migration and invasion parameters) of colon cancer cell lines HT-29 and SW-480 were evaluated. The effects of GJE on two matrix metalloproteinase gene expressions (MMP2 and MMP9) were also evaluated via qRT-PCR. In the former, GJE reduced cell viability in both cell lines in a dose-dependent manner. GJE treatment also reduced cell migration and invasion. Moreover, MMP-2 and MMP-9 gene expression diminished depending on extract and on cell type. Conclusions . These results provide novel information concerning anticancer properties of selected GJE by revealing selective cytotoxicity and the ability to reduce invasiveness of colon cancer cells.
Valenzuela, Manuel; Bastias, Lorena; Montenegro, Iván; Werner, Enrique; Madrid, Alejandro; Godoy, Patricio
2018-01-01
Antioxidants are known to be beneficial to health. This paper evaluates the potential chemopreventive and anticancer properties of phenolic compounds present in grape juice extracts (GJE) from Autumn Royal and Ribier varieties. The effects of these GJE on viability (SRB day assay) and metastatic potential (migration and invasion parameters) of colon cancer cell lines HT-29 and SW-480 were evaluated. The effects of GJE on two matrix metalloproteinase gene expressions (MMP2 and MMP9) were also evaluated via qRT-PCR. In the former, GJE reduced cell viability in both cell lines in a dose-dependent manner. GJE treatment also reduced cell migration and invasion. Moreover, MMP-2 and MMP-9 gene expression diminished depending on extract and on cell type. Conclusions. These results provide novel information concerning anticancer properties of selected GJE by revealing selective cytotoxicity and the ability to reduce invasiveness of colon cancer cells. PMID:29552079
[Effect of cadmium chloride on immigration of mouse neural stem cell].
Zhang, Yuyuan; Wang, Qunan; Chai, Xiaoyu; Shen, Zhongzhou; Gao, Liuwei
2015-01-01
To investigate the effects of cadmium chloride on cytoactive and immigration of mouse neural stem cell (mNSC). MTT assay was used to detect cytoactive at 24 hours. The immigration of mNSC was determined by immunofluorescence staining. Compared with control, CdCl2 treatment at 10.0 μmol/L for 24 h resulted in a decrease in cellular viability (70.08 ± 6.21)% (P < 0.05). Compared with control, Aa/Ab and Dm/Db display decreasing tendency in a dose-dependent manner (r(s Aa/Ab) = - 0.90, γ(s Dm/Db) = - 0.90, P < 0.05) after CdCl2 treatment at 0.1 - 10.0 μmol/L for 24 h. Cadmium chloride treatment inhibits immigration of mNSC, and shows negative effect on cell viability. Meanwhile, the effect of cadmium chloride on immigration is more obvious than cell viability at the same concentration for same treatment time.
Mao, Shun; Lu, Ganhua; Yu, Kehan; ...
2010-01-01
We study the protein viability on Au nanoparticles during an electrospray and electrostatic-force-directed assembly process, through which Au nanoparticle-antibody conjugates are assembled onto the surface of carbon nanotubes (CNTs) to fabricate carbon nanotube field-effect transistor (CNTFET) biosensors. Enzyme-linked immunosorbent assay (ELISA) and field-effect transistor (FET) measurements have been used to investigate the antibody activity after the nanoparticle assembly. Upon the introduction of matching antigens, the colored reaction from the ELISA and the change in the electrical characteristic of the CNTFET device confirm that the antibody activity is preserved during the assembly process.
Induction of cell death in renal cell carcinoma with combination of D-fraction and vitamin C.
Alexander, Bobby; Fishman, Andrew I; Eshghi, Majid; Choudhury, Muhammad; Konno, Sensuke
2013-09-01
Although several conventional therapeutic options for advanced renal cell carcinoma (RCC) are currently available, the unsatisfactory outcomes demand establishing more effective interventions. D-fraction (PDF), a bioactive proteoglucan of Maitake mushroom, demonstrates anticancer and immunomodulatory activities, which are also shown to be potentiated by vitamin C (VC). We thus hypothesized that a combination of PDF and VC (PDF + VC) could be an alternative approach to more effectively inhibit the growth of RCC. We examined the dose-dependent effects of PDF + VC on RCC cell viability and also performed biochemical assays to explore the growth regulatory mechanism. Human RCC, ACHN cell line, was employed and exposed to varying concentrations of PDF or VC and their combinations. Cell viability at specified times was determined by MTT assay. Lipid peroxidation assay, cell cycle analysis, and Western blot analysis were also performed. PDF or VC alone led to the significant reduction in cell viability at 72 hours with PDF >500 µg/mL and VC ≥300 µM. When various combinations of PDF and VC were tested, the combination of the ineffective concentrations of PDF (300 µg/mL) and VC (200 µM) resulted in ~90% cell death in 24 hours. Lipid peroxidation assay then indicated significantly (~2.5 fold) elevated oxidative stress with this PDF + VC. Cell cycle analysis also indicated a G1 cell cycle arrest following a 6-hour PDF + VC treatment. Western blots further revealed a downregulation of Bcl2, an upregulation of Bax, and proteolytic activation of PARP (poly[ADP-ribose] polymerase) in PDF + VC-treated cells, indicating induction of apoptosis. The present study demonstrates that the combination of PDF and VC can become highly cytotoxic, inducing severe cell death in ACHN cells. This cytotoxic mechanism appears to be primarily attributed to oxidative stress, accompanied by a G1 cell cycle arrest. Such cell death induced by PDF + VC could be more likely linked to apoptosis, as indicated by the modulation of apoptosis regulators (Bcl2, Bax, and PARP). Therefore, as PDF and VC may work synergistically to induce apoptotic cell death, they may have clinical implications in an alternative, improved therapeutic modality for advanced RCC.
Tanti, N.C.; Jones, L.; Sheardown, H.
2010-01-01
Purpose Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. Methods An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Results Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of β1 and α3 integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Conclusions Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells. PMID:20169012
Gorbet, M B; Tanti, N C; Jones, L; Sheardown, H
2010-02-19
Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of beta(1) and alpha(3) integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells.
Lopes, Juliana Ramos; da Silva Kavagutti, Mayume; de Medeiros, Felipe Arthur Faustino; de Campos Zuccari, Debora Aparecida Pires
2017-01-01
The high rates of women's death from breast cancer occur due to acquired resistance by patients to certain treatments, enabling the recurrence and/or tumor growth, invasion and metastasis. It has been demonstrated that the presence of cancer stem cells in human tumors, as responsible for recurrence and resistance to therapy. Studies have identified OCT4 as responsible for self-renewal and maintenance of pluripotency of stem cells. Thus, it is interesting to study potential drugs that target this specific population in breast cancer. Melatonin, appears to have oncostatic effects on cancer cells, however, little is known about its therapeutic effect on cancer stem cells. Evaluate the viability and the expression of OCT4 in breast cancer stem cells, MCF-7 and MDA-MB- 231, after melatonin treatment. The cells were grown in a 3-dimensional model of mammospheres, representing the breast cancer stem cell population and treated or not with melatonin. The cell viability of mammospheres were evaluated by MTT assay and the OCT4 expression, a cancer stem cells marker, was verified by immunocitochemistry. Our results demonstrated that the melatonin treatment decreased the cell viability of MCF-7 and MDAMB- 231 mammospheres. Furthermore, it was observed that in both cell lines, the expression of OCT4 was decreased in melatonin-treated cells compared to the control group. This fact suggests that melatonin is effective against breast cancer stem cells inhibiting the cell viability via OCT 4. Based on that, we believe that melatonin has a high potential to be used as an alternative treatment for breast cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Bukhari, Maurish; Burm, Hayley; Samways, Damien S K
2016-10-01
Ionic "vital dyes" are commonly used to assess cell viability based on the idea that their permeation is contingent on a loss of membrane integrity. However, the possibility that dye entry is conducted into live cells by endogenous membrane transporters must be recognized and controlled for. Several cation-selective plasma membrane-localized ion channels, including the adenosine 5'-triphosphate (ATP)-gated P2X receptors, have been reported to conduct entry of the DNA-binding fluorescence dye, YO-PRO-1, into live cells. Extracellular ATP often becomes elevated as a result of release from dying cells, and so it is possible that activation of P2X channels on neighboring live cells could lead to exaggerated estimation of cytotoxicity. Here, we screened a number of fluorescent vital dyes for ion channel-mediated uptake in HEK293 cells expressing recombinant P2X2, P2X7, or TRPV1 channels. Our data shows that activation of all three channels caused substantial uptake and nuclear accumulation of YO-PRO-1, 4',6-diamidino-2-phenylindole (DAPI), and Hoechst 33258 into transfected cells and did so well within the time period usually used for incubation of cells with vital dyes. In contrast, channel activation in the presence of propidium iodide and SYTOX Green caused no measurable uptake and accumulation during a 20-min exposure, suggesting that these dyes are not likely to exhibit measurable uptake through these particular ion channels during a conventional cell viability assay. Caution is encouraged when choosing and employing cationic dyes for the purpose of cell viability assessment, particularly when there is a likelihood of cells expressing ion channels permeable to large ions.
Zhu, Fenlu; Heditke, Sarah; Kurtzberg, Joanne; Waters-Pick, Barbara; Hari, Parameswaran; Margolis, David A; Keever-Taylor, Carolyn A
2015-12-01
Removing DMSO post-thaw results in: reduced infusion reactions, improved recovery and stability of viable CD34+ cells. Validated methods use 5%-8.3% Dextran 40 with 2.5%-4.2% HSA for this purpose. Recent shortages of clinical grade Dextran require identification of suitable alternatives. PBPC were used to compare a standard 2X wash medium of 5 parts 10% Dextran 40 in saline (DEX) with 1 part 25% HSA (8.3% DEX/ 4.2% HSA) with Hydroxyethyl Starch (HES)-based solutions. Cells in replicate bags were diluted with an equal volume of wash solution, equilibrated 5 minutes, the bag filled with wash medium, pelleted and the supernatant expressed. Bags were restored to the frozen volume in wash medium and tested by single platform flow cytometry and CFU. Total viability, viable TNC, MNC, and CD34+ cell recovery, and CD34+ cell viability were compared immediately post-thaw and after 90 minutes. 5.2% HES/4.2% HSA did not differ from our standard in CD34 recovery or viability. Due to concerns that high concentrations of HES could affect renal function we tested 0.6% HES/2.5% HSA resulting in significantly poorer CD34 recovery and viability. Results improved using 2.4% HES/4.2% HSA and when 0.6% HES/4.2%HSA was used no significant differences were seen. CFU assays confirmed no differences between the standard dextran arm and HES at 2.4% or 0.6% so long as HSA was at 4.2%. We conclude that HES from 0.6% to 5.2% with 4.2% HSA is a suitable substitute for Dextran 40 as a reconstitution/washing medium for PBPC products. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
L929 cell cytotoxicity associated with experimental and commercial dental flosses
NASA Astrophysics Data System (ADS)
Tua-ngam, P.; Supanitayanon, L.; Dechkunakorn, S.; Anuwongnukroh, N.; Srikhirin, T.; Roongrujimek, P.
2017-11-01
This aim of the study was to investigate the cytotoxicity of two commercial and two experimental dental flosses. Two commercial, Oral B® Essential Floss (nylon-waxed) and Thai Silk Floss (silk-waxed), and two experimental, Floss X (nylon-waxed) and Floss Xu (nylon-unwaxed) dental flosses were used. The cytotoxic assay was performed by using cell cultures (L929) which were subjected to cell viability test with methyl-tetrazolium. Each floss specimen (0.4 g) was placed in 1 ml of Minimum Essential Medium at 37°C with 5% CO2 at 100% humidity in an incubator for 24 hours. After incubation, the cell mitochondrial activity was evaluated for detecting viable cells using optical density as per the guidelines of ISO 10993-5:2009(E). Cytotoxic effects were evaluated by measuring percentage of cell viability at 3 points of time- 5 mins, 30 mins, and 1 hr. The results showed that two commercial dental flosses and Floss X had cell viability about 90% at the three time points; however, the experimental Floss Xu presented 80% cell viability at 5 min and <70% cell viability at 30 min and 1 hr. The results concluded that the commercial dental flosses and the experimental dental floss with wax tested in this study were acceptable for clinical use.
Improvement in the Viability of Cryopreserved Cells by Microencapsulation
NASA Astrophysics Data System (ADS)
Matsumoto, Yoshifumi; Morinaga, Yukihiro; Ujihira, Masanobu; Oka, Kotaro; Tanishita, Kazuo
The advantages of microencapsulated cells over those of suspended cells were evaluated for improving viability in cryopreservation. Rat pheochromocytoma (PC12) cells were selected as the test biological cells and then microencapsulated in alginate-polylysine-alginate membranes. These microencapsulated PC12 cells were frozen by differential scanning calorimetry (DSC) at various cooling rates, from 0.5 to 10°C/min. Their latent heat was measured during freezing from 4 to -80°C. The post-thaw viability was evaluated by dopamine-concentration measurement and by trypan blue exclusion assay. Results showed that at cooling rates of 0.5 and 1°C/min, the latent heat of microencapsulated PC12 cells was lower than that of suspended cells. This lower latent heat is caused by the fact that the extra-microcapsule froze and the intra-capsule remained unfrozen due to the formation of ice crystals in the extra-capsule space. The post-thaw viability of microencapsulated PC12 cells was improved when the cooling rate was 0.5 or 1°C/min, compared with that of suspended cells. Therefore, in microencapsulated PC12 cells, maintaining the intra-microcapsules in an unfrozen state during freezing reduces the solution effect and thus improves the post-thaw viability.
Oliveira, Lucas Pires Garcia; Conte, Fernanda Lopes; Cardoso, Eliza de Oliveira; Conti, Bruno José; Santiago, Karina Basso; Golim, Marjorie de Assis; Cruz, Maria Teresa; Sforcin, José Maurício
2016-12-01
Geopropolis (GEO) in combination with doxorubicin (DOX) reduced HEp-2 cells viability compared to GEO and DOX alone. A possible effect of this combination on the innate immunity could take place, and its effects were analysed on THP-1 cell - a human leukaemia monocytic cell line used as a model to study monocyte activity and macrophage activity, assessing cell viability, expression of cell markers and cytokine production. THP-1 cells were incubated with GEO, DOX and their combination. Cell viability was assessed by MTT assay, cell markers expression by flow cytometry and cytokine production by ELISA. GEO + DOX did not affect cell viability. GEO alone or in combination increased TLR-4 and CD80 but not HLA-DR and TLR-2 expression. GEO stimulated TNF-α production while DOX alone or in combination did not affect it. GEO alone or in combination inhibited IL-6 production. GEO exerted a pro-inflammatory profile by increasing TLR-4 and CD80 expression and TNF-α production, favouring the activation of the immune/inflammatory response. GEO + DOX did not affect cell viability and presented an immunomodulatory action. Lower concentrations of DOX combined to GEO could be used in cancer patients, avoiding side effects and benefiting from the biological properties of GEO. © 2016 Royal Pharmaceutical Society.
Souza, Beatriz Dulcineia Mendes de; Alves, Ana Maria Hecke; Santos, Luciane Geanini Pena Dos; Simões, Claudia Maria de Oliveira; Felippe, Wilson Tadeu; Felippe, Mara Cristina Santos
2016-01-01
The objective of this study was to evaluate the effectiveness of various storage media at 20 °C in maintaining the viability of human periodontal ligament fibroblasts (HPLF) over time. HPLF were maintained at 20 °C in skim milk (SM), whole milk (WM), freshly prepared Hank's balanced salt solution (HBSS), Save-A-Tooth(r), natural coconut water (NCW), coconut water industrialized (ICW) and tap water (negative control) for 3, 6, 24, 48, 72, 96 and 120 h. Cells maintained in Minimal Essential Medium (MEM-37) at 37 °C served as a positive control. Cell viability was determined by MTT assay. Statistical analysis was performed by Kruskal-Wallis test and Scheffe test (α = 5%). From 24 h, NCW was significantly better in maintaining cell viability than all other tested storage media (p<0.05). SM and WM were significantly better than HBSS for up to 72 h. Save-A-Tooth(r) and ICW were the worst conservation storage media. In conclusion, the effectiveness of the tested storage media to maintain the viability of the periodontal ligament cells was as follows, in a descending order: NCW > MEM-37> SM and IM> HBSS> ICW > Save-A-Tooth(r)> tap water.
MC3T3-E1 Cells on Titanium Surfaces with Nanometer Smoothness and Fibronectin Immobilization
Hayakawa, Tohru; Yoshida, Eiji; Yoshimura, Yoshitaka; Uo, Motohiro; Yoshinari, Masao
2012-01-01
The present study was aimed to evaluate the viability and total protein contents of osteoblast-like cells on the titanium surface with different surface mechanical treatment, namely, nanometer smoothing (Ra: approximately 2.0 nm) and sandblasting (Ra: approximately 1.0 μm), and biochemical treatment, namely, with or without fibronectin immobilization. Fibronectin could be easily immobilized by tresyl chloride-activation technique. MC3T3-E1 cells were seeded on the different titanium surfaces. Cell viability was determined by MTT assay. At 1 day of cell culture, there were no significant differences in cell viability among four different titanium surfaces. At 11 days, sandblasted titanium surface with fibronectin immobilization showed the significantly highest cell viability than other titanium surface. No significant differences existed for total protein contents among four different titanium surfaces at 11 days of cell culture. Scanning electron microscopy observation revealed that smoothness of titanium surface produced more spread cell morphologies, but that fibronectin immobilization did not cause any changes of the morphologies of attached cells. Fibronectin immobilization provided greater amount of the number of attached cells and better arrangement of attached cells. In conclusion, the combination of sandblasting and fibronectin immobilization enhanced the cell viability and fibronectin immobilization providing better arrangements of attached cells. PMID:22675359
Marino, Anna Maria Fausta; Percipalle, Maurizio; Giunta, Renato Paolo; Salvaggio, Antonio; Caracappa, Giulia; Alfonzetti, Tiziana; Aparo, Alessandra; Reale, Stefano
2017-03-01
We report a rapid and reliable method for the detection of Toxoplasma gondii in meat and animal tissues based on real-time polymerase chain reaction (PCR). Samples were collected from cattle, small ruminants, horses, and pigs raised or imported into Sicily, Italy. All DNA preparations were assayed by real-time PCR tests targeted to a 98-bp long fragment in the AF 529-bp repeat element and to the B1 gene using specific primers. Diagnostic sensitivity (100%), diagnostic specificity (100%), limit of detection (0.01 pg), efficiency (92-109%), and precision (mean coefficient of variation = 0.60%), repeatability (100%), reproducibility (100%), and robustness were evaluated using 240 DNA extracted samples (120 positives and 120 negative as per the OIE nested PCR method) from different matrices. Positive results were confirmed by the repetition of both real-time and nested PCR assays. Our study demonstrates the viability of a reliable, rapid, and specific real-time PCR on a large scale to monitor contamination with Toxoplasma cysts in meat and animal specimens. This validated method can be used for postmortem detection in domestic and wild animals and for food safety purposes.
Toxicity of Nanoparticles and an Overview of Current Experimental Models.
Bahadar, Haji; Maqbool, Faheem; Niaz, Kamal; Abdollahi, Mohammad
2016-01-01
Nanotechnology is a rapidly growing field having potential applications in many areas. Nanoparticles (NPs) have been studied for cell toxicity, immunotoxicity, and genotoxicity. Tetrazolium-based assays such as MTT, MTS, and WST-1 are used to determine cell viability. Cell inflammatory response induced by NPs is checked by measuring inflammatory biomarkers, such as IL-8, IL-6, and tumor necrosis factor, using ELISA. Lactate dehydrogenase (LDH) assay is used for cell membrane integrity. Different types of cell cultures, including cancer cell lines have been employed as in vitro toxicity models. It has been generally agreed that NPs interfere with either assay materials or with detection systems. So far, toxicity data generated by employing such models are conflicting and inconsistent. Therefore, on the basis of available experimental models, it may be difficult to judge and list some of the more valuable NPs as more toxic to biological systems and vice versa. Considering the potential applications of NPs in many fields and the growing apprehensions of FDA about the toxic potential of nanoproducts, it is the need of the hour to look for new internationally agreed free of bias toxicological models by focusing more on in vivo studies.
Solar, Paula; González, Guillermo; Vilos, Cristian; Herrera, Natalia; Juica, Natalia; Moreno, Mabel; Simon, Felipe; Velásquez, Luis
2015-02-13
Advances in nanostructure materials are leading to novel strategies for drug delivery and targeting, contrast media for magnetic resonance imaging (MRI), agents for hyperthermia and nanocarriers. Superparamagnetic iron oxide nanoparticles (SPIONs) are useful for all of these applications, and in drug-release systems, SPIONs allow for the localization, direction and concentration of drugs, providing a broad range of therapeutic applications. In this work, we developed and characterized polymeric nanoparticles based on poly (3-hydroxybutyric acid-co-hydroxyvaleric acid) (PHBV) functionalized with SPIONs and/or the antibiotic ceftiofur. These nanoparticles can be used in multiple biomedical applications, and the hybrid SPION-ceftiofur nanoparticles (PHBV/SPION/CEF) can serve as a multifunctional platform for the diagnosis and treatment of cancer and its associated bacterial infections. Morphological examination using transmission electron microscopy (TEM) showed nanoparticles with a spherical shape and a core-shell structure. The particle size was evaluated using dynamic light scattering (DLS), which revealed a diameter of 243.0 ± 17 nm. The efficiency of encapsulation (45.5 ± 0.6% w/v) of these polymeric nanoparticles was high, and their components were evaluated using spectroscopy. UV-VIS, FTIR and DSC showed that all of the nanoparticles contained the desired components, and these compounds interacted to form a nanocomposite. Using the agar diffusion method and live/dead bacterial viability assays, we demonstrated that these nanoparticles have antimicrobial properties against Escherichia coli, and they retain their magnetic properties as measured using a vibrating sample magnetometer (VSM). Cytotoxicity was assessed in HepG2 cells using live/dead viability assays and MTS, and these assays showed low cytotoxicity with IC50 > 10 mg/mL nanoparticles. Our results indicate that hybrid and multifunctional PHBV/SPION/CEF nanoparticles are suitable as a superparamagnetic drug delivery system that can guide, concentrate and site-specifically release drugs with antibacterial activity.
You, Yuanyuan; Peng, Bo; Ben, Songbin; Hou, Weijian; Sun, Liguang; Jiang, Wei
2018-07-01
Lead (Pb 2+ ) is a well-known type of neurotoxin and chronic exposure to Pb 2+ induces cognition dysfunction. In this work, the potential role of early growth response gene 1 (EGR1) in the linkage of Pb 2+ exposure and disrupted in scherophernia-1 (DISC1) activity was investigated. Human neuroblastoma cell line SH-SY5Y was subjected to different concentrations of lead acetate (PbAc) to determine the effect of Pb 2+ exposure on the cell viability, apoptosis, and activity of EGR1 and DISC1. Then the expression of EGR1 in SH-SY5Y cells was knocked down with specific siRNA to assess the function of EGR1 in Pb 2+ induced activation of DISC1. The interaction between EGR1 and DISC1 was further validated with dual luciferase assay, Supershift electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation (ChIP)-PCR. Administration of PbAc decreased cell viability and induced apoptosis in SH-SY5Y cells in a dose-dependent manner. Additionally, exposure to PbAc also up-regulated expression of EGR1 and DISC1 at all concentrations. Knockdown of EGR1 blocked the effect of PbAc on SH-SY5Y cells, indicating the central role of EGR1 in the function of Pb 2+ on activity of DISC1. Based on the results of dual luciferase assay, Supershift EMSA, and ChIP-PCR, EGR1 mediated the effect of Pb 2+ on DISC1 by directly bound to the promoter region of DISC1 gene. The current study elaborated the mechanism involved in the effect of Pb 2+ exposure on expression of DISC1 for the first time: EGR1 activated by Pb 2+ substitution of zinc triggered the transcription of DISC1 gene by directly binding to its promoter.
Kim, Ju Sun; Kim, Jung Eun; Kim, Kyung; Lee, Jeeyun; Park, Joon Oh; Lim, Ho Yeong; Park, Young Suk; Kang, Won Ki; Kim, Seung Tae
2017-01-01
Background: Anti-EGFR therapies have been recommended for advanced colorectal cancer (CRC) with wild-type RAS and PIK3CA mutation. However, PIK3CA mutations are a poor prognostic marker and a negative predictor of response to anti-EGFR therapies in RAS wild-type CRC. Therefore, new and advanced treatment strategies are needed for personalized medical treatment of patients with wild-type RAS and PIK3CA mutation. Methods: Patient-derived tumor cells were collected from the ascites of a refractory colon cancer patient with wild-type RAS and PIK3CA mutation. We performed a cell viability assay for cetuximab, AZD5363 (AKT inhibitor), and everolimus (mTOR inhibitor) using PDCs. We also evaluated combinations of cetuximab plus AZD5363 or everolimus in a cell viability assay. Results: Based on cellular proliferation by MTT assay, tumor cells were significantly inhibited by 1uM cetuximab (control vs. cetuximab, mean growth = 100.0% vs 58.07%, p = 0.0103), 1uM AZD5363 (control vs. AZD5363, mean growth = 100.0% vs 58.22%, p = 0.0123), and 1uM everolimus (control vs. everolimus, mean growth = 100.0% vs 52.17%, p = 0.0011). Tumor cell growth was more profoundly reduced by combinations of cetuximab plus AZD5363 (control vs. cetuximab plus AZD5363, mean growth = 100.0% vs 25.00%, p < 0.0001) or everolimus (control vs. cetuximab+everolimus, mean growth = 100.0% vs 28.24%, p < 0.0001). Conclusions: Taken together, these results indicate that RAS wild-type and PIK3CA mutant PDCs originating from CRC are considerably inhibited by treatment with cetuximab plus AZD5363 or everolimus, with downregulation of the AKT and ERK pathways. These combinations may be considered as new options for advanced CRC patients with wild-type RAS and PIK3CA mutation in the context of clinical trials.
Martins, Christine Men; Hamanaka, Elizane Ferreira; Hoshida, Thayse Yumi; Sell, Ana Maria; Hidalgo, Mirian Marubayashi; Silveira, Catarina Soares; Poi, Wilson Roberto
2016-01-01
Tooth replantation success depends on the condition of cementum periodontal ligament after tooth avulsion; which is influenced by storage medium. The dragon's blood (Croton lechleri) sap has been suggested as a promising medium because it supports collagen formation and exhibits healing, anti-inflammatory and antimicrobial properties. Thus, the aim of this study was to evaluate the efficacy of dragon's blood sap as a storage medium for avulsed teeth through evaluation of functional and metabolic cell viability. This in vitro study compared the efficacy of different storage media to maintain the viability of human peripheral blood mononuclear and periodontal ligament cells. A 10% dragon's blood sap was tested while PBS was selected as its control. Ultra pasteurized whole milk was used for comparison as a commonly used storage medium. DMEM and distilled water were the positive and negative controls, respectively. The viability was assessed through trypan blue exclusion test and colorimetric MTT assay after 1, 3, 6, 10 and 24 h of incubation. The dragon's blood sap showed promising results due to its considerable maintenance of cell viability. For trypan blue test, the dragon's blood sap was similar to milk (p<0.05) and both presented the highest viability values. For MTT, the dragon's blood sap showed better results than all storage media, even better than milk (p<0.05). It was concluded that the dragon's blood sap was as effective as milk, the gold standard for storage medium. The experimental sap preserved the membrane of all cells and the functional viability of periodontal ligament cells.
A High-Content Live-Cell Viability Assay and Its Validation on a Diverse 12K Compound Screen.
Chiaravalli, Jeanne; Glickman, J Fraser
2017-08-01
We have developed a new high-content cytotoxicity assay using live cells, called "ImageTOX." We used a high-throughput fluorescence microscope system, image segmentation software, and the combination of Hoechst 33342 and SYTO 17 to simultaneously score the relative size and the intensity of the nuclei, the nuclear membrane permeability, and the cell number in a 384-well microplate format. We then performed a screen of 12,668 diverse compounds and compared the results to a standard cytotoxicity assay. The ImageTOX assay identified similar sets of compounds to the standard cytotoxicity assay, while identifying more compounds having adverse effects on cell structure, earlier in treatment time. The ImageTOX assay uses inexpensive commercially available reagents and facilitates the use of live cells in toxicity screens. Furthermore, we show that we can measure the kinetic profile of compound toxicity in a high-content, high-throughput format, following the same set of cells over an extended period of time.
Clinically viable magnetic poly(lactide-co-glycolide) (PLGA) particles for MRI-based cell tracking
Granot, Dorit; Nkansah, Michael K.; Bennewitz, Margaret F.; Tang, Kevin S.; Markakis, Eleni A.; Shapiro, Erik M.
2013-01-01
Purpose To design, fabricate, characterize and in vivo assay clinically viable magnetic particles for MRI-based cell tracking. Methods PLGA encapsulated magnetic nano- and microparticles were fabricated. Multiple biologically relevant experiments were performed to assess cell viability, cellular performance and stem cell differentiation. In vivo MRI experiments were performed to separately test cell transplantation and cell migration paradigms, as well as in vivo biodegradation. Results Highly magnetic nano- (~100 nm) and microparticles (~1–2 μm) were fabricated. Magnetic cell labeling in culture occurred rapidly achieving 3–50 pg Fe/cell at 3 hrs for different particles types, and >100 pg Fe/cell after 10 hours, without the requirement of a transfection agent, and with no effect on cell viability. The capability of magnetically labeled mesenchymal or neural stem cells to differentiate down multiple lineages, or for magnetically labeled immune cells to release cytokines following stimulation, was uncompromised. An in vivo biodegradation study revealed that NPs degraded ~80% over the course of 12 weeks. MRI detected as few as 10 magnetically labeled cells, transplanted into the brains of rats. Also, these particles enabled the in vivo monitoring of endogenous neural progenitor cell migration in rat brains over 2 weeks. Conclusion The robust MRI properties and benign safety profile of these particles make them promising candidates for clinical translation for MRI-based cell tracking. PMID:23568825
Ali, M Ajmal; Farah, M Abul; Al-Hemaid, Fahad M; Abou-Tarboush, Faisal M; Al-Anazi, Khaled M; Wabaidur, S M; Alothman, Z A; Lee, Joongku
2016-03-01
Natural products from wild and medicinal plants, either in the form of crude extracts or pure compounds provide unlimited opportunities for new drug leads owing to the unmatched availability of chemical diversity. In the present study, the cytotoxic potential of crude ethanolic extract of Ochradenus arabicus was analyzed by MTT cell viability assay in MCF-7 adenocarcinoma breast cancer cells. We further investigated its effect against oxidative stress induced by anticancer drug doxorubicin. In addition, Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) based chromatographic profiling of crude extract of O. arabicus was performed. The MTT assay data showed that the extract is moderately toxic to the MCF-7 cells. However, its treatment alone does not induce oxidative stress while doxorubicin increases the level of oxidative stress in MCF-7 cells. Whereas, simultaneous treatment of plant extract and doxorubicin significantly (p < 0.05) decreased the level of intracellular reactive oxygen species (ROS) and lipid peroxidation while an increase in the reduced glutathione and superoxide dismutase activity was observed in time and dose dependent manner. Hence, our finding confirmed cytotoxic and antioxidant potential of crude extract of O. arabicus in MCF-7 cells. However, further investigations on O. arabicus as a potential chemotherapeutic agent are needed. The analysis of bioactive compounds present in the plant extracts involving the applications of common phytochemical screening assays such as chromatographic techniques is discussed.
Kashima, Hajime; Momose, Fumiyasu; Umehara, Hiroshi; Miyoshi, Nao; Ogo, Naohisa; Muraoka, Daisuke; Shiku, Hiroshi; Harada, Naozumi; Asai, Akira
2016-01-01
Forkhead box protein p3 (Foxp3) is crucial to the development and suppressor function of regulatory T cells (Tregs) that have a significant role in tumor-associated immune suppression. Development of small molecule inhibitors of Foxp3 function is therefore considered a promising strategy to enhance anti-tumor immunity. In this study, we developed a novel cell-based assay system in which the NF-κB luciferase reporter signal is suppressed by the co-expressed Foxp3 protein. Using this system, we screened our chemical library consisting of approximately 2,100 compounds and discovered that a cancer chemotherapeutic drug epirubicin restored the Foxp3-inhibited NF-κB activity in a concentration-dependent manner without influencing cell viability. Using immunoprecipitation assay in a Treg-like cell line Karpas-299, we found that epirubicin inhibited the interaction between Foxp3 and p65. In addition, epirubicin inhibited the suppressor function of murine Tregs and thereby improved effector T cell stimulation in vitro. Administration of low dose epirubicin into tumor-bearing mice modulated the function of immune cells at the tumor site and promoted their IFN-γ production without direct cytotoxicity. In summary, we identified the novel action of epirubicin as a Foxp3 inhibitor using a newly established luciferase-based cellular screen. Our work also demonstrated our screen system is useful in accelerating discovery of Foxp3 inhibitors.
Ubilla, A; Valdebenito, I; Árias, M E; Risopatrón, J
2016-05-01
In vitro storage of salmonid eggs leads to aging of the cells causing a decline in quality and reducing their capacity to develop and produce embryos. The quality of salmonid embryos is assessed by morphologic analyses; however, data on the application of biomarkers to determine the cell viability and DNA integrity of embryos in these species are limited. The aim of this study was to evaluate the effect on embryo development, viability and DNA fragmentation in the embryonic cells of in vitro storage time at 4 °C of rainbow trout (Oncorhynchus mykiss) eggs. The embryos were obtained by IVF from eggs stored for 0 (control), 48, and 96 hours at 4 °C. At 72 hours after fertilization, dechorionated embryos were examined to determine percentages of developed embryos (embryos with normal cell division morphology), viability (LIVE/DEAD sperm viability kit), and DNA integrity (terminal deoxynucleotidyl transferase [TdT] dUTP nick-end labeling assay). The percentage of developing embryos decreased (P < 0.05) with storage time of the eggs (95.10 ± 2.55; 88.14 ± 4.50; 79.99 ± 6.60 for 0, 48, and 96 hours, respectively). Similarly, cell viability decreased (P < 0.05; 96.07 ± 7.15; 80.42 ± 8.55; 77.47 ± 7.88 for 0, 48, and 96 hours, respectively), and an increase (P < 0.05) in DNA fragmentation in the embryos was observed at 96-hour storage. A positive correlation was found between cell DNA fragmentation and storage time (r = 0.8173; P < 0.0001). The results revealed that terminal deoxynucleotidyl transferase [TdT] dUTP nick-end labeling assay technique is reliable mean to assess the state of the DNA in salmonid embryos and that in vitro eggs storage for 96h reduces embryo development and cell DNA integrity. DNA integrity evaluation constitutes a biomarker of the quality of the ova and resulting embryos so as to predict their capacity to produce good-quality embryos in salmonids, particularly under culture conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Popova, Dina; Jacobsson, Stig O P
2014-04-01
The majority of environmental and commercial chemicals have not been evaluated for their potential to cause neurotoxicity. We have investigated if neuron specific anti-βIII-tubulin antibodies are useful in a microplate assay of neurite outgrowth of retinoic acid-induced neurons from mouse P19 embryonal carcinoma cells. By incubating the P19-derived neurons with the primary anti-βIII-tubulin antibody and a secondary Alexa Fluor 488-conjugated antibody, followed by measuring the fluorescence in a microplate reader, a time-dependent increase in anti-βIII-tubulin immunofluorescence was observed. The relative fluorescence units increased by 4.3-fold from 2 to 10 days in culture. The results corresponded well with those obtained by semi-automatic tracing of neurites in fluorescence microscopy images of βIII-tubulin-labeled neurons. The sensitivity of the neurite outgrowth assay using a microplate reader to detect neurotoxicity produced by nocodazole, methyl mercury chloride and okadaic acid was significantly higher than for a cell viability assay measuring intracellular fluorescence of calcein-AM. The microplate-based method to measure toxicity targeting neurites using anti-βIII-tubulin antibodies is however less sensitive than the extracellular lactate dehydrogenase activity assay to detect general cytotoxicity produced by high concentrations of clomipramine, or glutamate-induced excitotoxicity. In conclusion, the fluorescence microplate assay for the detection of neurite outgrowth by measuring changes in βIII-tubulin immunoreactivity is a rapid and sensitive method to assess chemical- or toxin-induced neurite toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Maye, S; Stanton, C; Fitzgerald, G F; Kelly, P M
2016-01-01
Complement activity has only recently been characterized in raw bovine milk. However, the activity of this component of the innate immune system was found to diminish as milk was subjected to heat or partitioning during cream separation. Detection of complement in milk relies on a bactericidal assay. This assay exploits the specific growth susceptibility of Escherichia coli O111 to the presence of complement. Practical application of the assay was demonstrated when a reduction in complement activity was recorded in the case of pasteurized and reduced-fat milks. This presented an opportunity to improve the functionality of the bactericidal assay by incorporating bioluminescence capability into the target organism. Following some adaptation, the strain was transformed by correctly integrating the p16Slux plasmid. Growth properties of the transformed strain of E. coli O111 were unaffected by the modification. The efficacy of the strain adaptation was correlated using the LINEST function analysis [r=0.966; standard error of prediction (SEy)=0.957] bioluminescence with that of bactericidal assay total plate counts within the range of 7.5 to 9.2 log cfu/mL using a combination of raw and processed milk samples. Importantly, the transformed E. coli O111 p16Slux strain could be identified in milk and broth samples using bioluminescence measurement, thus enabling the bactericidal assay-viability test to be monitored in real time throughout incubation. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber.
Yang, Jen Ming; Yang, Jhe Hao; Tsou, Shu Chun; Ding, Chian Hua; Hsu, Chih Chin; Yang, Kai Chiang; Yang, Chun Chen; Chen, Ko Shao; Chen, Szi Wen; Wang, Jong Shyan
2016-09-01
To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1day seeded. Cell-cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and cell-ECM adhesion was shown on day 7. The cell number was also increased on all of the crosslinked electrospun fibers. It seems that the PVA based electrospun hydrogel nanofibers prepared with post-crosslinking method can be used as scaffold for tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.
Love, Sara A; Thompson, John W; Haynes, Christy L
2012-09-01
As nanoparticles have found increased use in both consumer and medical applications, corresponding increases in possible exposure to humans necessitate studies examining the impacts of these nanomaterials in biological systems. This article examines the effects of approximately 30-nm-diameter gold nanoparticles, with positively and negatively charged surface coatings in human blood. Here, we study the exposure effects, with up to 72 h of exposure to 5, 15, 25 and 50 µg/ml nanoparticles on hemolysis, reactive oxygen species (ROS) generation and platelet aggregation in subsets of cells from human blood. Assessing viability with hemolysis, results show significant changes in a concentration-dependent fashion. Rates of ROS generation were investigated using the dichlorofluorscein diacetate-based assay as ROS generation is a commonly suspected mechanism of nanoparticle toxicity; herein, ROS was not a significant factor. Optical monitoring of platelet aggregation revealed that none of the examined nanoparticles induced aggregation upon short-term exposure.
Arung, Enos Tangke; Kuspradini, Harlinda; Kusuma, Irawan Wijaya; Shimizu, Kuniyoshi; Kondo, Ryuichiro
2012-04-01
In searching for a new material made from natural resources that could be used as a whitening agent, we focused on the plants used for skin treatment by the native people of East Kalimantan. The methanol extract of the leaves of Eupatorium triplinerve Vahl showed antimelanogenesis activity in a melanin biosynthesis assay. By activity-guided fractionation, 7-methoxycoumarin (1) was isolated as an active compound. The IC50 of 1 on mushroom tyrosinase was 2360 μM (L-tyrosine was used as the substrate) and above 2840 μM (L-DOPA was used as the substrate), respectively. Regarding melanin formation inhibition in B16 melanoma cells, the IC50 of 1 was 1780 μM with 83% cell viability at IC50. Based on these results, we validated that the leaf extract is in line with the traditional use of the Dayak tribe in East Kalimantan. Copyright © 2012. Published by Elsevier B.V.
Activation of Schwann cells in vitro by magnetic nanocomposites via applied magnetic field.
Liu, Zhongyang; Huang, Liangliang; Liu, Liang; Luo, Beier; Liang, Miaomiao; Sun, Zhen; Zhu, Shu; Quan, Xin; Yang, Yafeng; Ma, Teng; Huang, Jinghui; Luo, Zhuojing
2015-01-01
Schwann cells (SCs) are attractive seed cells in neural tissue engineering, but their application is limited by attenuated biological activities and impaired functions with aging. Therefore, it is important to explore an approach to enhance the viability and biological properties of SCs. In the present study, a magnetic composite made of magnetically responsive magnetic nanoparticles (MNPs) and a biodegradable chitosan-glycerophosphate polymer were prepared and characterized. It was further explored whether such magnetic nanocomposites via applied magnetic fields would regulate SC biological activities. The magnetization of the magnetic nanocomposite was measured by a vibrating sample magnetometer. The compositional characterization of the magnetic nanocomposite was examined by Fourier-transform infrared and X-ray diffraction. The tolerance of SCs to the magnetic fields was tested by flow-cytometry assay. The proliferation of cells was examined by a 5-ethynyl-2-deoxyuridine-labeling assay, a PrestoBlue assay, and a Live/Dead assay. Messenger ribonucleic acid of BDNF, GDNF, NT-3, and VEGF in SCs was assayed by quantitative real-time polymerase chain reaction. The amount of BDNF, GDNF, NT-3, and VEGF secreted from SCs was determined by enzyme-linked immunosorbent assay. It was found that magnetic nanocomposites containing 10% MNPs showed a cross-section diameter of 32.33±1.81 µm, porosity of 80.41%±0.72%, and magnetization of 5.691 emu/g at 8 kOe. The 10% MNP magnetic nanocomposites were able to support cell adhesion and spreading and further promote proliferation of SCs under magnetic field exposure. Interestingly, a magnetic field applied through the 10% MNP magnetic scaffold significantly increased the gene expression and protein secretion of BDNF, GDNF, NT-3, and VEGF. This work is the first stage in our understanding of how to precisely regulate the viability and biological properties of SCs in tissue-engineering grafts, which combined with additional molecular factors may lead to the development of new nerve grafts.
Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad
2016-01-01
Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography–Mass Spectrometry (GC–MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC–MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer. PMID:27065865
Musa, Marahaini; Nasir, Nurul Fatihah Mohamad; Thirumulu, Kannan Ponnuraj
2014-01-01
Royal jelly is a nutritious substance produced by the young nurse bees and contains significant amounts of proteins which are important for cell growth and proliferation. The aim of this study was to evaluate the effect of royal jelly as an alternative to fetal bovine serum (FBS) in cell culture using cell proliferation assays and live cell imaging. MRC-5 cells were treated with various concentrations of royal jelly extract in MTT assay. The control groups were comprised of Alpha-Minimal Essential Medium (α-MEM) alone and α-MEM with 10% FBS. Subsequently, the cell proliferation was studied for 10 days using Alamar Blue assay and live cell imaging from 48 to 72 h. The population doubling time (PDT) was determined using trypan blue assay after live cell imaging. In MTT assay, 0.156 and 0.078 mg/ml of royal jelly produced higher cell viability compared to positive control group but were not significantly different (P > 0.05). In the Alamar Blue assay, 0.156 and 0.078 mg/ml of royal jelly produced greater percentage of reduction at day 3 even though no significant difference was found (P > 0.05). Based on live cell imaging, the PDT for positive, negative, 0.156 and 0.078 mg/ml of royal jelly groups were 29.09, 62.50, 41.67 and 41.67 h respectively. No significant difference was found in the PDT between all the groups (P > 0.05). Royal jelly does not exhibit similar ability like FBS to facilitate cell growth under the present test conditions.
Leong, Sze Ying; Burritt, David John; Oey, Indrawati
2016-04-01
This study evaluated the health-promoting properties of Pinot Noir juices (Vitis vinifera L.) obtained at different maceration times after pulsed electric fields (PEF) using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and human intestinal Caco-2 cells assays. Juice quality, anthocyanins, total phenolics and vitamin C were also determined. The evaluation of bioprotective capacity of the juice against H2O2-induced oxidative stress in Caco-2 cells was determined using biomarkers for cellular health and integrity: cell viability and lactate dehydrogenase (LDH) leakage. Compared to untreated grape juice, PEF pre-treatment on grapes enhanced the release of the major anthocyanin found in Pinot Noir, i.e. malvidin-3-O-glucoside (+224%). Increase in the content of total phenolic (+61%) and vitamin C (+19%) as well as improvement in the DPPH scavenging activity (+31%) and bioprotective capacity (+25% for cell viability and +30% for LDH leakage) were observed in grape juices following PEF treatment. Bioprotective capacity determined by the cellular biomarkers had significant linear correlations with malvidin-3-O-glucoside content (0.71⩽r⩽0.73) whereas DPPH scavenging activity was not well correlated with malvidin-3-O-glucoside (r=0.30) and total phenolics (r=0.30). Therefore, evaluation of the bioprotective capacities using Caco-2 cell assay performed in this study makes a novel contribution to the current knowledge that demonstrates the capability of PEF technology to produce plant-based foods with better phytochemical composition and exhibiting the capacity to protect cells from oxidative stress. Copyright © 2015 Elsevier Ltd. All rights reserved.
Photoinitiator-Free Synthesis of Endothelial Cell Adhesive and Enzymatically Degradable Hydrogels
Jones, Derek R.; Marchant, Roger E.; von Recum, Horst; Gupta, Anirban Sen; Kottke-Marchant, Kandice
2015-01-01
We report on a photoinitiator-free synthetic method of incorporating bioactivity into poly(ethylene glycol) (PEG) hydrogels in order to control physical properties, enzymatic biodegradability and cell-specific adhesiveness of the polymer network, while eliminating the need for UV-mediated photopolymerization. To accomplish this, hydrogel networks were polymerized using Michael addition with four-arm PEG acrylate (10 kDa), using a collagenase sensitive peptide (CSP) as a crosslinker, and introducing an endothelial cell adhesive peptide either terminally (RGD) or attached to the crosslinking peptide sequence (CSP-RGD). The efficiency of the Michael addition reactions were determined by NMR and Ellman’s assay. Successful decoupling of cell adhesivity and physical properties was demonstrated by quantifying and comparing the swelling ratios and Young’s Moduli of various hydrogel formulations. Degradation profiles were established by incubating functionalized hydrogels in collagenase solutions (0.0 – 1.0 µg/mL), demonstrating that functionalized hydrogels degraded at a rate dependent upon collagenase concentration. Moreover, it was shown that the degradation rate was independent of CSP-RGD concentration. Cell attachment and proliferation on functionalized hydrogels were compared for various RGD concentrations, providing evidence that cell attachment and proliferation were directly related to relative amounts of the CSP-RGD combination peptide. An increase in cell viability was achieved using Michael addition techniques when compared to UV-polymerization, and was assessed by a LIVE/DEAD fluorescence assay. This photoinitiator-free method shows promise in creating hydrogel-based tissue engineering scaffolds allow for decoupled cell adhesivity and physical properties and that render greater cell viability. PMID:25462848
NASA Astrophysics Data System (ADS)
Deng, Xiaofeng; Xiong, Li; Wen, Yu; Liu, Zhongtao; Pei, Dongni; Huang, Yaxun; Miao, Xiongying
2014-03-01
Background and aims: Nanoparticles have been explored recently as an efficient delivery system for photosensitizers in photodynamic therapy. In this study, polyhematoporphyrin (C34H38N4NaO5,) was loaded into hollow silica nanoparticles (HSNP) by one-step wet chemical-based synthetic route. We evaluate the efficacy and safety of polyhematoporphyrin-loaded HSNP with hepatobiliary malignant cells and in vivo models. Methods: Human liver cancer, cholangiocarcinoma and gallbladder cancer cells were cultured with the HSNP and cellular viability was determined by MTT assay. Apoptotic and necrotic cells were measured by flow cytometry. Finally, we investigate its effect in vivo. Results: In MTT assay, the cell viability of QBC939, Huh-7, GBC-SD and HepG2 cells of the HSNP was 6.4+/-1.3%, 6.5+/-1.2%, 3.7+/-1.2% and 4.7+/-2.0%, respectively, which were significant different from that of free polyhematoporphyrin 62.4+/-4.7%, 62.5+/-6.0%, 33.4+/-6.5% and 44.3+/-1.9%. Flow cytometry demonstrated the laser-induced cell death with polyhematoporphyrin-loaded HSNP was much more severe. Similarly, in vivo results of each kind of cell revealed 14 days post-photoradiated, tumor sizes of the HSNP group were significantly smaller. Administration of the HSNP without illumination cannot cause killing effect both in vitro and in vivo experiments. Conclusions: HSNP is a desirable delivery system in photodynamic therapy for hepatobiliary malignacies, with improved aqueous solubility, stability and transport efficiency of photosensitizers.
Cleanroom Maintenance Significantly Reduces Abundance but Not Diversity of Indoor Microbiomes.
Mahnert, Alexander; Vaishampayan, Parag; Probst, Alexander J; Auerbach, Anna; Moissl-Eichinger, Christine; Venkateswaran, Kasthuri; Berg, Gabriele
2015-01-01
Cleanrooms have been considered microbially-reduced environments and are used to protect human health and industrial product assembly. However, recent analyses have deciphered a rather broad diversity of microbes in cleanrooms, whose origin as well as physiological status has not been fully understood. Here, we examined the input of intact microbial cells from a surrounding built environment into a spacecraft assembly cleanroom by applying a molecular viability assay based on propidium monoazide (PMA). The controlled cleanroom (CCR) was characterized by ~6.2*103 16S rRNA gene copies of intact bacterial cells per m2 floor surface, which only represented 1% of the total community that could be captured via molecular assays without viability marker. This was in contrast to the uncontrolled adjoining facility (UAF) that had 12 times more living bacteria. Regarding diversity measures retrieved from 16S rRNA Illumina-tag analyzes, we observed, however, only a minor drop in the cleanroom facility allowing the conclusion that the number but not the diversity of microbes is strongly affected by cleaning procedures. Network analyses allowed tracking a substantial input of living microbes to the cleanroom and a potential enrichment of survival specialists like bacterial spore formers and archaeal halophiles and mesophiles. Moreover, the cleanroom harbored a unique community including 11 exclusive genera, e.g., Haloferax and Sporosarcina, which are herein suggested as indicators of cleanroom environments. In sum, our findings provide evidence that archaea are alive in cleanrooms and that cleaning efforts and cleanroom maintenance substantially decrease the number but not the diversity of indoor microbiomes.
Peschel, Wieland; Politi, Matteo
2015-08-01
The medicinal use of different chemovars and extracts of Cannabis sativa L. requires standardization beyond ∆9-tetrahydrocannabinol (THC) with complementing methods. We investigated the suitability of (1)H NMR key signals for distinction of four chemotypes measured in deuterated dimethylsulfoxide together with two new validated HPLC/DAD methods used for identification and extract profiling based on the main pattern of cannabinoids and other phenolics alongside the assayed content of THC, cannabidiol (CBD), cannabigerol (CBG) their acidic counterparts (THCA, CBDA, CBGA), cannabinol (CBN) and cannflavin A and B. Effects on cell viability (MTT assay, HeLa) were tested. The dominant cannabinoid pairs allowed chemotype recognition via assignment of selective proton signals and via HPLC even in cannabinoid-low extracts from the THC, CBD and CBG type. Substantial concentrations of cannabinoid acids in non-heated extracts suggest their consideration for total values in chemotype distinction and specifications of herbal drugs and extracts. Cannflavin A/B are extracted and detected together with cannabinoids but always subordinated, while other phenolics can be accumulated via fractionation and detected in a wide fingerprint but may equally serve as qualitative marker only. Cell viability reduction in HeLa was more determined by the total cannabinoid content than by the specific cannabinoid profile. Therefore the analysis and labeling of total cannabinoids together with the content of THC and 2-4 lead cannabinoids are considered essential. The suitability of analytical methods and the range of compound groups summarized in group and ratio markers are discussed regarding plant classification and pharmaceutical specification. Copyright © 2015 Elsevier B.V. All rights reserved.
Cleanroom Maintenance Significantly Reduces Abundance but Not Diversity of Indoor Microbiomes
Mahnert, Alexander; Vaishampayan, Parag; Probst, Alexander J.; Auerbach, Anna; Moissl-Eichinger, Christine; Venkateswaran, Kasthuri; Berg, Gabriele
2015-01-01
Cleanrooms have been considered microbially-reduced environments and are used to protect human health and industrial product assembly. However, recent analyses have deciphered a rather broad diversity of microbes in cleanrooms, whose origin as well as physiological status has not been fully understood. Here, we examined the input of intact microbial cells from a surrounding built environment into a spacecraft assembly cleanroom by applying a molecular viability assay based on propidium monoazide (PMA). The controlled cleanroom (CCR) was characterized by ~6.2*103 16S rRNA gene copies of intact bacterial cells per m2 floor surface, which only represented 1% of the total community that could be captured via molecular assays without viability marker. This was in contrast to the uncontrolled adjoining facility (UAF) that had 12 times more living bacteria. Regarding diversity measures retrieved from 16S rRNA Illumina-tag analyzes, we observed, however, only a minor drop in the cleanroom facility allowing the conclusion that the number but not the diversity of microbes is strongly affected by cleaning procedures. Network analyses allowed tracking a substantial input of living microbes to the cleanroom and a potential enrichment of survival specialists like bacterial spore formers and archaeal halophiles and mesophiles. Moreover, the cleanroom harbored a unique community including 11 exclusive genera, e.g., Haloferax and Sporosarcina, which are herein suggested as indicators of cleanroom environments. In sum, our findings provide evidence that archaea are alive in cleanrooms and that cleaning efforts and cleanroom maintenance substantially decrease the number but not the diversity of indoor microbiomes. PMID:26273838
Kim, YongBok; Kim, GeunHyung
2015-01-01
Herein, poly(ɛ-caprolactone) (PCL) surfaces were treated to form various roughness values (R(a)=290-445 nm) and polar functional groups on the surfaces using a plasma-etching process, followed by immersion into simulated body fluid (SBF) for apatite formation. The surface morphology, chemical composition, and mean roughness of the plasma-etched PCL surfaces were measured, and various physical and morphological properties (water contact angles, protein absorption ability, and crystallite size of the apatite layer) of the in vitro mineralized PCL surfaces were evaluated. The roughened PCL surface P-3, which was treated with a sufficient plasma exposure time (4 h), achieved homogeneously distributed apatite formation after soaking in SBF for 7 days, as compared with other surfaces that were untreated or plasma-treated for 30 min or 2 h. Furthermore, to demonstrate their feasibility as a biomimetic surface, pre-osteoblast cells (MC3T3-E1) were cultured on the mineralized PCL surfaces, and cell viability, DAPI-phalloidin fluorescence assay, and alizarin red-staining of the P-3 surface were highly improved compared to the P-1 surface treated with a 30-min plasma exposure time; compared to untreated mineralized PCL surface (N-P), P-3 showed even greater improvements in cell viability and DAPI-phalloidin fluorescence assay. Based on these results, we found that the mineralized PCL surface supplemented with the appropriate plasma treatment can be implicitly helpful to achieve rapid hard tissue regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.
Arora, Nivedita; Alsaied, Osama; Dauer, Patricia; Majumder, Kaustav; Modi, Shrey; Giri, Bhuwan; Dudeja, Vikas; Banerjee, Sulagna; Von Hoff, Daniel; Saluja, Ashok
2017-01-01
Gastric cancer is the third leading cause of cancer related mortality worldwide with poor survival rates. Even though a number of chemotherapeutic compounds have been used against this disease, stomach cancer has not been particularly sensitive to these drugs. In this study we have evaluated the effect of triptolide, a naturally derived diterpene triepoxide and its water soluble pro-drug Minnelide on several gastric adenocarcinoma cell lines both as monotherapy and in combination with CPT-11. Gastric cancer cell lines MKN28 and MKN45 were treated with varying doses of triptolide in vitro. Cell viability was measured using MTT based assay kit. Apoptotic cell death was assayed by measuring caspase activity. Effect of the triptolide pro-drug, Minnelide, was evaluated by implanting the gastric cancer cells subcutaneously in athymic nude mice. Gastric cancer cell lines MKN28 and MKN45 cells exhibited decreased cell viability and increased apoptosis when treated with varying doses of triptolide in vitro. When implanted in athymic nude mice, treatment with Minnelide reduced tumor burden in both MKN28 derived tumors as well as MKN45 derived tumors. Additionally, we also evaluated Minnelide as a single agent and in combination with CPT-11 in the NCI-N87 human gastric tumor xenograft model. Our results indicated that the combination of Minnelide with CPT-11 resulted in significantly smaller tumors compared to control. These studies are extremely encouraging as Minnelide is currently undergoing phase 1 clinical trials for gastrointestinal cancers.
Gomes, Rafael G. B.; da Silva, Camila T.; Taniguchi, Juliana B.; No, Joo Hwan; Lombardot, Benoit; Schwartz, Olivier; Hansen, Michael A. E.; Freitas-Junior, Lucio H.
2013-01-01
Chikungunya virus (CHIKV) is a mosquito-borne arthrogenic alphavirus that causes acute febrile illness in humans accompanied by joint pains and in many cases, persistent arthralgia lasting weeks to years. The re-emergence of CHIKV has resulted in numerous outbreaks in the eastern hemisphere, and threatens to expand in the foreseeable future. Unfortunately, no effective treatment is currently available. The present study reports the use of resazurin in a cell-based high-throughput assay, and an image-based high-content assay to identify and characterize inhibitors of CHIKV-infection in vitro. CHIKV is a highly cytopathic virus that rapidly kills infected cells. Thus, cell viability of HuH-7 cells infected with CHIKV in the presence of compounds was determined by measuring metabolic reduction of resazurin to identify inhibitors of CHIKV-associated cell death. A kinase inhibitor library of 4,000 compounds was screened against CHIKV infection of HuH-7 cells using the resazurin reduction assay, and the cell toxicity was also measured in non-infected cells. Seventy-two compounds showing ≥50% inhibition property against CHIKV at 10 µM were selected as primary hits. Four compounds having a benzofuran core scaffold (CND0335, CND0364, CND0366 and CND0415), one pyrrolopyridine (CND0545) and one thiazol-carboxamide (CND3514) inhibited CHIKV-associated cell death in a dose-dependent manner, with EC50 values between 2.2 µM and 7.1 µM. Based on image analysis, these 6 hit compounds did not inhibit CHIKV replication in the host cell. However, CHIKV-infected cells manifested less prominent apoptotic blebs typical of CHIKV cytopathic effect compared with the control infection. Moreover, treatment with these compounds reduced viral titers in the medium of CHIKV-infected cells by up to 100-fold. In conclusion, this cell-based high-throughput screening assay using resazurin, combined with the image-based high content assay approach identified compounds against CHIKV having a novel antiviral activity - inhibition of virus-induced CPE - likely by targeting kinases involved in apoptosis. PMID:24205414
Alexsandra da Silva Neto Trajano, Larissa; da Silva, Camila Luna; de Carvalho, Simone Nunes; Cortez, Erika; Mencalha, André Luiz; de Souza da Fonseca, Adenilson; Stumbo, Ana Carolina
2016-07-01
Low-level infrared laser is considered safe and effective for treatment of muscle injuries. However, the mechanism involved on beneficial effects of laser therapy are not understood. The aim was to evaluate cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser at therapeutic fluences. C2C12 myoblast cultures at different (2 and 10 %) fetal bovine serum (FBS) concentrations were exposed to low-level infrared laser (808 nm, 100 mW) at different fluences (10, 35, and 70 J/cm(2)) and evaluated after 24, 48, and 72 h. Cell viability was evaluated by WST-1 assay; reactive oxygen species (ROS), apoptosis, and necrosis were evaluated by flow cytometry. Cell viability was decreased atthe lowest FBS concentration. Laser exposure increased the cell viability in myoblast cultures at 2 % FBS after 48 and 72 h, but no significant increase in ROS was observed. Apoptosis was decreased at the higher fluence and necrosis was increased at lower fluence in myoblast cultures after 24 h of laser exposure at 2 % FBS. No laser-induced alterations were obtained at 10 % FBS. Results show that level of reactive oxygen species is not altered, at least to those evaluated in this study, but low-level infrared laser exposure affects cell viability, apoptosis, and necrosis in myoblast cultures depending on laser fluence and physiologic conditions of cells.
Chhana, Ashika; Callon, Karen E; Pool, Bregina; Naot, Dorit; Gamble, Gregory D; Dray, Michael; Pitto, Rocco; Bentley, Jarome; McQueen, Fiona M; Cornish, Jillian; Dalbeth, Nicola
2013-12-01
Cartilage damage is frequently observed in advanced destructive gout. The aim of our study was to investigate the effects of monosodium urate monohydrate (MSU) crystals on chondrocyte viability and function. The alamarBlue assay and flow cytometry were used to assess the viability of primary human chondrocytes and cartilage explants following culture with MSU crystals. The number of dead chondrocytes in cartilage explants cultured with MSU crystals was quantified. Real-time PCR was used to determine changes in the relative mRNA expression levels of chondrocytic genes. The histological appearance of cartilage in joints affected by gout was also examined. MSU crystals rapidly reduced primary human chondrocyte and cartilage explant viability in a dose-dependent manner (p < 0.01 for both). Cartilage explants cultured with MSU crystals had a greater percentage of dead chondrocytes at the articular surface compared to untreated cartilage (p = 0.004). Relative mRNA expression of type II collagen and the cartilage matrix proteins aggrecan and versican was decreased in chondrocytes following culture with MSU crystals (p < 0.05 for all). However, expression of the degradative enzymes ADAMTS4 and ADAMTS5 was increased (p < 0.05 for both). In joints affected by gout, normal cartilage architecture was lost, with empty chondrocyte lacunae observed. MSU crystals have profound inhibitory effects on chondrocyte viability and function. Interactions between MSU crystals and chondrocytes may contribute to cartilage damage in gout through reduction of chondrocyte viability and promotion of a catabolic state.
Shen, Jia; Ma, Hailin; Zhang, Tiancheng; Liu, Hui; Yu, Linghua; Li, Guosheng; Li, Huishuang; Hu, Meichun
2017-01-01
The tubulin/microtubule system, which is an integral component of the cytoskeleton, plays an essential role in mitosis. Targeting mitotic progression by disturbing microtubule dynamics is a rational strategy for cancer treatment. Microtubule polymerization assay was performed to examine the effect of Magnolol (a novel natural phenolic compound isolated from Magnolia obovata) on cellular microtubule polymerization in human non-small cell lung cancer (NSCLC) cells. Cell cycle analysis, mitotic index assay, cell proliferation assay, colony formation assay, western blotting analysis of cell cycle regulators, Annexin V-FITC/PI staining, and live/dead viability staining were carried out to investigate the Magnolol's inhibitory effect on proliferation and viability of NSCLS cells in vitro. Xenograft model of human A549 NSCLC tumor was used to determine the Magnolol's efficacy in vivo. Magnolol treatment effectively inhibited cell proliferation and colony formation of NSCLC cells. Further study proved that Magnolol induced the mitotic phase arrest and inhibited G2/M progression in a dose-dependent manner, which were mechanistically associated with expression alteration of a series of cell cycle regulators. Furthermore, Magnolol treatment disrupted the cellular microtubule organization via inhibiting the polymerization of microtubule. We also found treatment with NSCLC cells with Magnolol resulted in apoptosis activation through a p53-independent pathway, and autophgy induction via down-regulation of the Akt/mTOR pathway. Finally, Magnolol treatment significantly suppressed the NSCLC tumor growth in mouse xenograft model in vivo. These findings identify Magnolol as a promising candidate with anti-microtubule polymerization activity for NSCLC treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.
Zongyi, Yin; Funian, Zou; Hao, Li; Ying, Cheng; Jialin, Zhang
2017-01-01
Rapid, efficient, and economic method for the isolation and purification of islets has been pursued by numerous islet-related researchers. In this study, we compared the advantages and disadvantages of our developed patented method with those of commonly used conventional methods (Ficoll-400, 1077, and handpicking methods). Cell viability was assayed using Trypan blue, cell purity and yield were assayed using diphenylthiocarbazone, and islet function was assayed using acridine orange/ethidium bromide staining and enzyme-linked immunosorbent assay-glucose stimulation testing 4 days after cultivation. The results showed that our islet isolation and purification method required 12 ± 3 min, which was significantly shorter than the time required in Ficoll-400, 1077, and HPU groups (34 ± 3, 41 ± 4, and 30 ± 4 min, respectively; P < 0.05). There was no significant difference in islet viability among the four groups. The islet purity, function, yield, and cost of our method were superior to those of the Ficoll-400 and 1077 methods, but inferior to the handpicking method. However, the handpicking method may cause wrist injury and visual impairment in researchers during large-scale islet isolation (>1000 islets). In summary, the MCT method is a rapid, efficient, and economic method for isolating and purifying murine islet cell clumps. This method overcomes some of the shortcomings of conventional methods, showing a relatively higher quality and yield of islets within a shorter duration at a lower cost. Therefore, the current method provides researchers with an alternative option for islet isolation and should be widely generalized. PMID:28207765
TRAIL Enhances Shikonin Induced Apoptosis through ROS/JNK Signaling in Cholangiocarcinoma Cells.
Zhou, Guangyao; Yang, Zuqin; Wang, Xiaodong; Tao, Ran; Zhou, Yuanping
2017-01-01
Cholangiocarcinoma (CCA), arising from varying locations within the biliary tree, is the second most common primary liver malignancy worldwide. Shikonin, an active compound extracted from the Chinese herb Zicao, holds anti-bacterial, anti-inflammatory, and anti-tumor activities. However, the effect of shikonin on human cholangiocarcinoma and detailed mechanisms of TRAIL enhancement remains to be elucidated. The purpose of the study was to investigate the protective functions of TRAIL enhancement for shikonin induced apoptosis in cholangiocarcinoma cells. We use MTT assay, apoptosis assay, caspase activity assay, flow cytometry assay, real time PCR and Western blot to observe the effects of TRAIL on shikonin induced cholangiocarcinoma cells apoptosis and its mechanism. Shikonin inhibited cell viability and induced apoptosis of CCA cells, effects enhanced by TRAIL treatment via activation of caspase-3, -8, -9. Furhermore, TRAIL enhanced anti-proliferation of shikonin and shikonin induced apoptosis through induction of ROS mediated JNK activation, while AKT activation had an effect on shikonin anti-proliferation activity, but not in the TRAIL enhanced counterparts. Finally, shikonin upregulated DR5 expression, an effect essential for TRAIL-enhanced activities of shikonin in RBE cells. Our results revealed that shikonin could inhibit cells viability and induce apoptosis of CCA cells, effects enhanced by TRAIL treatment via ROS mediated JNK signalling pathways, involving up-regulation of DR5 expression. Our results provide further insight into the mechanism underlying the anti-tumor effects of shikonin by TRAIL enhanced in CCA and a new therapeutic strategy to CCA treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.
Zongyi, Yin; Funian, Zou; Hao, Li; Ying, Cheng; Jialin, Zhang; Baifeng, Li
2017-01-01
Rapid, efficient, and economic method for the isolation and purification of islets has been pursued by numerous islet-related researchers. In this study, we compared the advantages and disadvantages of our developed patented method with those of commonly used conventional methods (Ficoll-400, 1077, and handpicking methods). Cell viability was assayed using Trypan blue, cell purity and yield were assayed using diphenylthiocarbazone, and islet function was assayed using acridine orange/ethidium bromide staining and enzyme-linked immunosorbent assay-glucose stimulation testing 4 days after cultivation. The results showed that our islet isolation and purification method required 12 ± 3 min, which was significantly shorter than the time required in Ficoll-400, 1077, and HPU groups (34 ± 3, 41 ± 4, and 30 ± 4 min, respectively; P < 0.05). There was no significant difference in islet viability among the four groups. The islet purity, function, yield, and cost of our method were superior to those of the Ficoll-400 and 1077 methods, but inferior to the handpicking method. However, the handpicking method may cause wrist injury and visual impairment in researchers during large-scale islet isolation (>1000 islets). In summary, the MCT method is a rapid, efficient, and economic method for isolating and purifying murine islet cell clumps. This method overcomes some of the shortcomings of conventional methods, showing a relatively higher quality and yield of islets within a shorter duration at a lower cost. Therefore, the current method provides researchers with an alternative option for islet isolation and should be widely generalized.
Effect of intracameral injection of fibrin tissue sealant on the rabbit anterior segment
Chew, Annabel C.Y.; Tan, Donald T.H.; Poh, Rebekah; HM, Htoon; Beuerman, Roger W.
2010-01-01
Purpose To investigate the effect of intracameral injection of fibrin tissue sealant on the anterior segment structures in a rabbit model. Methods One eye of 10 rabbits received an intracameral injection of fibrin tissue sealant with a thrombin concentration of 500 IU (TISSEEL), and the fellow eye received an intracameral injection of balanced salt solution as a control. The rabbits were followed up with serial slit-lamp examinations, photography, high resolution anterior segment optical coherence tomography scans with pachymetry measurement, and intraocular pressure (IOP) monitoring until complete dissolution of the fibrin sealant. Corneal endothelial cell viability was evaluated using live/dead cell assays. Apoptosis of the cornea and trabecular meshwork were evaluated using TUNEL assays. Ultra-structural examinations of the cornea and trabecular meshwork were performed using electron microscopy. Histology of the trabecular meshwork and iris were analyzed using light microscopy. Results The quantity of the intracameral fibrin sealant was shown to be significantly correlated with increased IOP and pachymetry post-operatively. Complete dissolution of the fibrin sealant occurred between 15 and 30 days. Live/dead cell assays showed no decrease in viability of the corneal endothelium, and TUNEL assays showed no increase in apoptosis of the corneal epithelium, stroma, endothelium, or trabecular meshwork in the eyes with the fibrin sealant. Light and electron microscopy of the anterior segment structures were unremarkable. Conclusion The intracameral use of fibrin glue was associated with a transient increase in IOP and pachymetry. However, there was no evidence of toxicity or structural damage to the corneal endothelium, trabecular meshwork, or iris. PMID:20596250
Najafi, A; Najafi, M H; Zanganeh, Z; Sharafi, M; Martinez-Pastor, F; Adeldust, H
2014-12-01
A soybean lecithin-based extender supplemented with hyaluronic acid (HA) was assayed for effectiveness to improve the quality of frozen-thawed ram semen. HA has not been tested yet in an extender containing soybean lecithin for freezing ram semen. Thus, the aim of this study was to analyse the effects of soybean lecithin at 1% or 1.5% along with HA at 0, 0.5 and 1 mg ml(-1) in a Tris-based extender on the motion characteristics, membrane integrity (HOST), viability, GSH peroxidase (GSH-PX) activity, lipid peroxidation and acrosomal status after freezing-thawing. Semen was collected from four Mehraban rams during the breeding season and frozen in the six lecithin×HA extenders. The extender containing 1.5% lecithin supplemented with no HA yielded higher total motility (52.5%±1.6), viability (55.8%±1.6) and membrane integrity (44.5%±1.7), but the effects of the lecithin concentration did not reach signification. Linearity-related parameters, ALH, BCF, lipid peroxidation, GSH-PX activity, morphology and acrosomal status were not affected by the extender composition. In general, adding HA significantly decreased sperm velocity (1 mg ml(-1) HA), total motility (only with 1.5% lecithin), viability (1 mg ml(-1) HA for 1% lecithin; both concentrations for 1.5% lecithin) and membrane integrity. In conclusion, adding HA to the freezing extender supplemented with soybean lecithin failed to improve quality-related variables in ram semen. Increasing the lecithin content could have a positive effect, but further studies are needed. © 2014 Blackwell Verlag GmbH.
Saini, Divya; Gadicherla, Prahlad; Chandra, Prakash; Anandakrishna, Latha
2017-06-01
The viability of periodontal ligament (PDL) cells is a significant determinant of the long-term prognosis of replanted avulsed teeth. A storage medium is often required to maintain the viability of these cells during the extra-alveolar period. Many studies have been carried out to search for the most suitable storage medium for avulsed teeth, but an ideal solution has not yet been found. The purpose of the study was to compare and analyze the ability of coconut milk and probiotic milk to maintain PDL cell viability. In an in vitro setting, 69 caries free human premolars with normal periodontium that had been extracted for orthodontic purposes were randomly divided into two experimental groups on the basis of storage media used (i.e., coconut milk or probiotic milk) and a Hanks' balanced salt solution (HBSS) control group (23 samples per group). Immediately after extraction, the teeth were stored dry for 20 min and then immersed for 30 min in one of the storage media. The teeth were then subjected to collagenase-dispase assay and labeled with 0.5% trypan blue staining solution for determination of cell viability. The number of viable cells was counted under a light microscope and statistically analyzed using anova and post hoc Tukey test (P ≤ 0.05). Statistical analysis demonstrated there was a significant difference (P < 0.001) between coconut milk and probiotic milk as well as HBSS in maintaining cell viability. However, there was no significant difference between probiotic milk and HBSS in ability to maintain PDL cell viability (P > 0.05). Coconut milk may not be suitable as an interim transport media due to poor maintenance of cell viability. However, probiotic milk was able to maintain PDL cell viability as well as HBSS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Badran, Karam W.; Manuel, Cyrus T.; Loy, Anthony Chin; Conderman, Christian; Yau, Yuk Yee; Lin, Jennifer; Tjoa, Tjoson; Su, Erica; Protsenko, Dmitriy; Wong, Brian J. F.
2016-01-01
Objectives/Hypothesis To demonstrate the dosimetry effect of electromechanical reshaping (EMR) on cartilage shape change, structural integrity, cellular viability, and remodeling of grafts in an in vivo long-term animal model. Study Design Animal study. Methods A subperichondrial cartilaginous defect was created within the base of the pinna of 31 New Zealand white rabbits. Autologous costal cartilage grafts were electromechanically reshaped to resemble the rabbit auricular base framework and mechanically secured into the pinna base defect. Forty-nine costal cartilage specimens (four control and 45 experimental) successfully underwent EMR using a paired set of voltage-time combinations and survived for 6 or 12 weeks. Shape change was measured, and specimens were analyzed using digital imaging, tissue histology, and confocal microscopy with LIVE-DEAD viability assays. Results Shape change was proportional to charge transfer in all experimental specimens (P <.01) and increased with voltage. All experimental specimens contoured to the auricular base. Focal cartilage degeneration and fibrosis was observed where needle electrodes were inserted, ranging from 2.2 to 3.9 mm. The response to injury increased with increasing charge transfer and survival duration. Conclusions EMR results in appropriate shape change in cartilage grafts with chondrocyte injury highly localized. These studies suggest that elements of auricular reconstruction may be feasible using EMR. Extended survival periods and further optimization of voltage-time pairs are necessary to evaluate the long-term effects and shape-change potential of EMR. PMID:25779479
NASA Astrophysics Data System (ADS)
Catauro, M.; Bollino, F.; Papale, F.
2016-05-01
The health of astronauts, during space flight, is threatened by bone loss induced by microgravity, mainly attributed to an imbalance in the bone remodeling process. In the present work, the response to the microgravity of bone cells has been studied using the SAOS-2 cell line grown under the condition of weightlessness, simulated by means of a Random Positioning Machine (RPM). Cell viability after 72 h of rotation has been evaluated by means of WST-8 assay and compared to that of control cells. Although no significant difference between the two cell groups has been observed in terms of viability, F-actin staining showed that microgravity environment induces cell apoptosis and altered F-actin organization. To investigate the possibility of hindering the trend of the cells towards the death, after 72 h of rotation the cells have been seeded onto biocompatible ZrO2/PCL hybrid coatings, previously obtained using a sol-gel dip coating procedure. WST-8 assay, carried out after 24 h, showed that the materials are able to inhibit the pro-apoptotic effect of microgravity on cells.
Candida albicans Biofilms Do Not Trigger Reactive Oxygen Species and Evade Neutrophil Killing
Xie, Zhihong; Thompson, Angela; Sobue, Takanori; Kashleva, Helena; Xu, Hongbin; Vasilakos, John; Dongari-Bagtzoglou, Anna
2012-01-01
Neutrophils are found within Candida albicans biofilms in vivo and could play a crucial role in clearing the pathogen from biofilms forming on catheters and mucosal surfaces. Our goal was to compare the antimicrobial activity of neutrophils against developing and mature C. albicans biofilms and identify biofilm-specific properties mediating resistance to immune cells. Antibiofilm activity was measured with the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)2H-tetrazolium-5-carboxanilide assay and a molecular Candida viability assay. Reactive oxygen species generation was assessed by measuring fluorescence of 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester in preloaded neutrophils. We found that mature biofilms were resistant to leukocytic killing and did not trigger reactive oxygen species, even though neutrophils retained their viability and functional activation potential. Beta-glucans found in the extracellular matrix negatively affected antibiofilm activities. We conclude that these polymers act as a decoy mechanism to prevent neutrophil activation and that this represents an important innate immune evasion mechanism of C. albicans biofilms. PMID:23033146
Swelling-induced chloride current in glioblastoma proliferation, migration, and invasion.
Wong, Raymond; Chen, Wenliang; Zhong, Xiao; Rutka, James T; Feng, Zhong-Ping; Sun, Hong-Shuo
2018-01-01
Glioblastoma (GBM) remains as the most common and aggressive brain tumor. The survival of GBM has been linked to the aberrant activation of swelling-induced chloride current I Cl,swell . In this study, we investigated the effects of I Cl,swell on cell viability, proliferation, and migration in the human GBM cell lines, U251 and U87, using a combination of patch clamp electrophysiology, MTT, colony formation, wound healing assays and Western immunoblotting. First, we showed that the specific inhibitor of I Cl,swell , DCPIB, potently reduced the I Cl,swell in U87 cells. Next, in both U87 and U251 cells, we found that DCPIB reduced GBM viability, proliferation, colony formation, migration, and invasion. In addition, our Western immunoblot assay showed that DCPIB-treated U251 cells had a reduction in JAK2, STAT3, and Akt phosphorylation, thus, suggesting that DCPIB potentially suppresses GBM functions through inhibition of the JAK2/STAT3 and PI3K/Akt signaling pathways. Therefore, the I Cl,swell may be a potential drug target for GBM. © 2017 Wiley Periodicals, Inc.
Jambor, Tomáš; Tvrdá, Eva; Tušimová, Eva; Kováčik, Anton; Bistáková, Jana; Forgács, Zsolt; Lukáč, Norbert
2017-03-01
Nonylphenol is considered an endocrine disruptor and has been reported to affect male reproductive functions. In our in vitro study, we evaluated the effects of 4-nonylphenol (4-NP) on cholesterol levels, hormone formation and viability in cultured Leydig cells from adult ICR male mice. We also determined the potential impact of 4-NP on generation of reactive oxygen species (ROS) after 44 h of cultivation. The cells were cultured with addition of 0.04; 0.2; 1.0; 2.5 and 5.0 μg/mL of 4-NP in the present of 1 IU/mL human chorionic gonadotropin (hCG) and compared to the control. The quantity of cholesterol was determined from culture medium using photometry. Determination of hormone production was performed by enzyme-linked immunosorbent assay. Metabolic activity assay was used for quantification of cell viability. The chemiluminescence technique, which uses a luminometer to measure reactive oxygen species, was employed. Applied doses of 4-NP (0.04-5.0 μg/mL) slight increase cholesterol levels and decrease production of dehydroepiandrosterone after 44 h of cultivation, but not significantly. Incubation of 4-NP treated cells with hCG significantly (P < 0.001) inhibited androstenedione, but not testosterone, formation at the highest concentration (5.0 μg/mL). The viability was significantly (P < 0.05); (P < 0.001) increased at 1.0; 2.5 and 5.0 μg/mL of 4-NP after 44 h treatment. Furthermore, 44 h treatment of 4-NP (0.04-5.0 μg/mL) caused significant (P < 0.001) intracellular accumulation of ROS in exposed cells. Taken together, the results of our in vitro study reported herein is consistent with the conclusion that 4-nonylphenol is able to influence hormonal profile, cell viability and generate ROS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Real-Time Cytotoxicity Assay for Rapid and Sensitive Detection of Ricin from Complex Matrices
Pauly, Diana; Worbs, Sylvia; Kirchner, Sebastian; Shatohina, Olena; Dorner, Martin B.; Dorner, Brigitte G.
2012-01-01
Background In the context of a potential bioterrorist attack sensitive and fast detection of functionally active toxins such as ricin from complex matrices is necessary to be able to start timely countermeasures. One of the functional detection methods currently available for ricin is the endpoint cytotoxicity assay, which suffers from a number of technical deficits. Methodology/Findings This work describes a novel online cytotoxicity assay for the detection of active ricin and Ricinus communis agglutinin, that is based on a real-time cell electronic sensing system and impedance measurement. Characteristic growth parameters of Vero cells were monitored online and used as standardized viability control. Upon incubation with toxin the cell status and the cytotoxic effect were visualized using a characteristic cell index–time profile. For ricin, tested in concentrations of 0.06 ng/mL or above, a concentration-dependent decrease of cell index correlating with cytotoxicity was recorded between 3.5 h and 60 h. For ricin, sensitive detection was determined after 24 h, with an IC50 of 0.4 ng/mL (for agglutinin, an IC50 of 30 ng/mL was observed). Using functionally blocking antibodies, the specificity for ricin and agglutinin was shown. For detection from complex matrices, ricin was spiked into several food matrices, and an IC50 ranging from 5.6 to 200 ng/mL was observed. Additionally, the assay proved to be useful in detecting active ricin in environmental sample materials, as shown for organic fertilizer containing R. communis material. Conclusions/Significance The cell-electrode impedance measurement provides a sensitive online detection method for biologically active cytotoxins such as ricin. As the cell status is monitored online, the assay can be standardized more efficiently than previous approaches based on endpoint measurement. More importantly, the real-time cytotoxicity assay provides a fast and easy tool to detect active ricin in complex sample matrices. PMID:22532852
Esmaeelian, Babak; Benkendorff, Kirsten; Johnston, Martin R.; Abbott, Catherine A.
2013-01-01
Dicathais orbita is a large Australian marine gastropod known to produce bioactive compounds with anticancer properties. In this research, we used bioassay guided fractionation from the egg mass extract of D. orbita using flash column chromatography and identified fractions containing tyrindoleninone and 6-bromoisatin as the most active against colon cancer cells HT29 and Caco-2. Liquid chromatography coupled with mass spectrometry (LCMS) and 1H NMR were used to characterize the purity and chemical composition of the isolated compounds. An MTT assay was used to determine effects on cell viability. Necrosis and apoptosis induction using caspase/LDH assay and flow cytometry (PI/Annexin-V) and cell cycle analysis were also investigated. Our results show that semi-purified 6-bromoisatin had the highest anti-cancer activity by inhibiting cell viability (IC50 = ~100 µM) and increasing caspase 3/7 activity in both of the cell lines at low concentration. The fraction containing 6-bromoisatin induced 77.6% apoptosis and arrested 25.7% of the cells in G2/M phase of cell cycle in HT29 cells. Tyrindoleninone was less potent but significantly decreased the viability of HT29 cells at IC50 = 390 µM and induced apoptosis at 195 µM by increasing caspase 3/7 activity in these cells. This research will facilitate the development of these molluscan natural products as novel complementary medicines for colorectal cancer. PMID:24152558
An unattended verification station for UF6 cylinders: Field trial findings
NASA Astrophysics Data System (ADS)
Smith, L. E.; Miller, K. A.; McDonald, B. S.; Webster, J. B.; Zalavadia, M. A.; Garner, J. R.; Stewart, S. L.; Branney, S. J.; Todd, L. C.; Deshmukh, N. S.; Nordquist, H. A.; Kulisek, J. A.; Swinhoe, M. T.
2017-12-01
In recent years, the International Atomic Energy Agency (IAEA) has pursued innovative techniques and an integrated suite of safeguards measures to address the verification challenges posed by the front end of the nuclear fuel cycle. Among the unattended instruments currently being explored by the IAEA is an Unattended Cylinder Verification Station (UCVS), which could provide automated, independent verification of the declared relative enrichment, 235U mass, total uranium mass, and identification for all declared uranium hexafluoride cylinders in a facility (e.g., uranium enrichment plants and fuel fabrication plants). Under the auspices of the United States and European Commission Support Programs to the IAEA, a project was undertaken to assess the technical and practical viability of the UCVS concept. The first phase of the UCVS viability study was centered on a long-term field trial of a prototype UCVS system at a fuel fabrication facility. A key outcome of the study was a quantitative performance evaluation of two nondestructive assay (NDA) methods being considered for inclusion in a UCVS: Hybrid Enrichment Verification Array (HEVA), and Passive Neutron Enrichment Meter (PNEM). This paper provides a description of the UCVS prototype design and an overview of the long-term field trial. Analysis results and interpretation are presented with a focus on the performance of PNEM and HEVA for the assay of over 200 "typical" Type 30B cylinders, and the viability of an "NDA Fingerprint" concept as a high-fidelity means to periodically verify that material diversion has not occurred.
Kano, Satoshi; Sugibayashi, Kenji
2006-02-01
The aim of this study was to kinetically and dynamically analyze in vitro cytotoxicity as an index of skin irritation by use of a three-dimensional cultured human skin model and to compare the in vitro assay data with data from living animals. A cationic surfactant, cetylpyridinium chloride (CPC), was selected as a model irritant. Living skin equivalent-high (LSE-high) and hairless mice were used for the in vitro and in vivo tests, respectively. Skin irritation dermatodynamics was evaluated by calorimetric thiazoyl blue (MTT) conversion assay both for in vitro and in vivo tests, whereas dermatokinetics of CPC in LSE-high and mouse skin were evaluated using HPLC. The time course of cell viability in the skin after application of CPC to intact skin was distinctly different from that of stratum-corneum-stripped skin in both LSE-high and hairless mice. Biphasic behavior characterized by two first-order rates with an inflection time point was observed in intact skin, whereas cell viability monoexponentially decreased immediately after CPC application in stripped skin. The time courses of cell viability in the skin and dermatodynamics were closely related to that of dermatokinetics of CPC. The present study demonstrates that the in vitro cytotoxic profile was similar to the in vivo cytotoxicity test and that dermatodynamics was related to dermatokinetics of CPC.
Kang, Minyong; Jeong, Chang Wook; Ku, Ja Hyeon; Kwak, Cheol; Kim, Hyeon Hoe
2014-01-01
Statins are cholesterol reduction agents that exhibit anti-cancer activity in several human cancers. Because autophagy is a crucial survival mechanism for cancer cells under stress conditions, cooperative inhibition of autophagy acts synergistically with other anti-cancer drugs. Thus, this study investigates whether combined treatment of atorvastatin and autophagy inhibitors results in enhancing the cytotoxic effects of atorvastatin, upon human bladder cancer cells, T24 and J82, in vitro. To measure cell viability, we performed the EZ-Cytox cell viability assay. We examined apoptosis by flow cytometry using annexin-V/propidium iodide (PI and western blot using procaspase-3 and poly (ADP-ribose) polymerase (PARP) antibodies. To examine autophagy activation, we evaluated the co-localization of LC3 and LysoTracker by immunocytochemistry, as well as the expression of LC3 and p62/sequestosome-1 (SQSTM1) by western blot. In addition, we assessed the survival and proliferation of T24 and J82 cells by a clonogenic assay. We found that atorvastatin reduced the cell viability of T24 and J82 cells via apoptotic cell death and induced autophagy activation, shown by the co-localization of LC3 and LysoTracker. Moreover, pharmacologic inhibition of autophagy significantly enhanced atorvastatin-induced apoptosis in T24 and J82 cells. In sum, inhibition of autophagy potentiates atorvastatin-induced apoptotic cell death in human bladder cancer cells in vitro, providing a potential therapeutic approach to treat bladder cancer. PMID:24815071
Yabes, Joseph M.; White, Brian K.; Murray, Clinton K.; Sanchez, Carlos J.; Mende, Katrin; Beckius, Miriam L.; Zera, Wendy C.; Wenke, Joseph C.; Akers, Kevin S.
2016-01-01
Soft-tissue invasive fungal infections are increasingly recognized as significant entities directly contributing to morbidity and mortality. They complicate clinical care, requiring aggressive surgical debridement and systemic antifungal therapy. To evaluate new topical approaches to therapy, we examined the antifungal activity and cytotoxicity of Manuka Honey (MH) and polyhexamethylene biguanide (PHMB). The activities of multiple concentrations of MH (40%, 60%, 80%) and PHMB (0.01%, 0.04%, 0.1%) against 13 clinical mold isolates were evaluated using a time-kill assay between 5 min and 24 h. Concentrations were selected to represent current clinical use. Cell viability was examined in parallel for human epidermal keratinocytes, dermal fibroblasts and osteoblasts, allowing determination of the 50% viability (LD50) concentration. Antifungal activity of both agents correlated more closely with exposure time than concentration. Exophiala and Fusarium growth was completely suppressed at 5 min for all PHMB concentrations, and at 12 and 6 h, respectively, for all MH concentrations. Only Lichtheimia had persistent growth to both agents at 24 h. Viability assays displayed concentration-and time-dependent toxicity for PHMB. For MH, exposure time predicted cytotoxicity only when all cell types were analyzed in aggregate. This study demonstrates that MH and PHMB possess primarily time-dependent antifungal activity, but also exert in vitro toxicity on human cells which may limit clinical use. Further research is needed to determine ideal treatment strategies to optimize antifungal activity against molds while limiting cytotoxicity against host tissues in vivo. PMID:27601610
Inhibition of Clostridium perfringens epsilon toxin by β-cyclodextrin derivatives.
Robinson, Tanisha M; Jicsinszky, Laszlo; Karginov, Andrei V; Karginov, Vladimir A
2017-10-15
Clostridium perfringens epsilon toxin (ETX) is considered as one of the most dangerous potential biological weapons. The goal of this work was to identify inhibitors of ETX using a novel approach for the inactivation of pore-forming toxins. The approach is based on the blocking of the target pore with molecules having the same symmetry as the pore itself. About 200 various β-cyclodextrin derivatives were screened for inhibitors of ETX activity using a colorimetric cell viability assay. Several compounds with dose-dependent activities at low micromolar concentrations have been identified. The same compounds were also able to inhibit lethal toxin of Bacillus anthracis. Copyright © 2017 Elsevier B.V. All rights reserved.
Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance
Riggio, Cristina; Calatayud, Maria Pilar; Hoskins, Clare; Pinkernelle, Josephine; Sanz, Beatriz; Torres, Teobaldo Enrique; Ibarra, Manuel Ricardo; Wang, Lijun; Keilhoff, Gerburg; Goya, Gerardo Fabian; Raffa, Vittoria; Cuschieri, Alfred
2012-01-01
Purpose It has been proposed in the literature that Fe3O4 magnetic nanoparticles (MNPs) could be exploited to enhance or accelerate nerve regeneration and to provide guidance for regenerating axons. MNPs could create mechanical tension that stimulates the growth and elongation of axons. Particles suitable for this purpose should possess (1) high saturation magnetization, (2) a negligible cytotoxic profile, and (3) a high capacity to magnetize mammalian cells. Unfortunately, the materials currently available on the market do not satisfy these criteria; therefore, this work attempts to overcome these deficiencies. Methods Magnetite particles were synthesized by an oxidative hydrolysis method and characterized based on their external morphology and size distribution (high-resolution transmission electron microscopy [HR-TEM]) as well as their colloidal (Z potential) and magnetic properties (Superconducting QUantum Interference Devices [SQUID]). Cell viability was assessed via Trypan blue dye exclusion assay, cell doubling time, and MTT cell proliferation assay and reactive oxygen species production. Particle uptake was monitored via Prussian blue staining, intracellular iron content quantification via a ferrozine-based assay, and direct visualization by dual-beam (focused ion beam/scanning electron microscopy [FIB/SEM]) analysis. Experiments were performed on human neuroblastoma SH-SY5Y cell line and primary Schwann cell cultures of the peripheral nervous system. Results This paper reports on the synthesis and characterization of polymer-coated magnetic Fe3O4 nanoparticles with an average diameter of 73 ± 6 nm that are designed as magnetic actuators for neural guidance. The cells were able to incorporate quantities of iron up to 2 pg/cell. The intracellular distribution of MNPs obtained by optical and electronic microscopy showed large structures of MNPs crossing the cell membrane into the cytoplasm, thus rendering them suitable for magnetic manipulation by external magnetic fields. Specifically, migration experiments under external magnetic fields confirmed that these MNPs can effectively actuate the cells, thus inducing measurable migration towards predefined directions more effectively than commercial nanoparticles (fluidMAG-ARA supplied by Chemicell). There were no observable toxic effects from MNPs on cell viability for working concentrations of 10 μg/mL (EC25 of 20.8 μg/mL, compared to 12 μg/mL in fluidMAG-ARA). Cell proliferation assays performed with primary cell cultures of the peripheral nervous system confirmed moderate cytotoxicity (EC25 of 10.35 μg/mL). Conclusion These results indicate that loading neural cells with the proposed MNPs is likely to be an effective strategy for promoting non-invasive neural regeneration through cell magnetic actuation. PMID:22811603
Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance.
Riggio, Cristina; Calatayud, Maria Pilar; Hoskins, Clare; Pinkernelle, Josephine; Sanz, Beatriz; Torres, Teobaldo Enrique; Ibarra, Manuel Ricardo; Wang, Lijun; Keilhoff, Gerburg; Goya, Gerardo Fabian; Raffa, Vittoria; Cuschieri, Alfred
2012-01-01
It has been proposed in the literature that Fe(3)O(4) magnetic nanoparticles (MNPs) could be exploited to enhance or accelerate nerve regeneration and to provide guidance for regenerating axons. MNPs could create mechanical tension that stimulates the growth and elongation of axons. Particles suitable for this purpose should possess (1) high saturation magnetization, (2) a negligible cytotoxic profile, and (3) a high capacity to magnetize mammalian cells. Unfortunately, the materials currently available on the market do not satisfy these criteria; therefore, this work attempts to overcome these deficiencies. Magnetite particles were synthesized by an oxidative hydrolysis method and characterized based on their external morphology and size distribution (high-resolution transmission electron microscopy [HR-TEM]) as well as their colloidal (Z potential) and magnetic properties (Superconducting QUantum Interference Devices [SQUID]). Cell viability was assessed via Trypan blue dye exclusion assay, cell doubling time, and MTT cell proliferation assay and reactive oxygen species production. Particle uptake was monitored via Prussian blue staining, intracellular iron content quantification via a ferrozine-based assay, and direct visualization by dual-beam (focused ion beam/scanning electron microscopy [FIB/SEM]) analysis. Experiments were performed on human neuroblastoma SH-SY5Y cell line and primary Schwann cell cultures of the peripheral nervous system. This paper reports on the synthesis and characterization of polymer-coated magnetic Fe(3)O(4) nanoparticles with an average diameter of 73 ± 6 nm that are designed as magnetic actuators for neural guidance. The cells were able to incorporate quantities of iron up to 2 pg/cell. The intracellular distribution of MNPs obtained by optical and electronic microscopy showed large structures of MNPs crossing the cell membrane into the cytoplasm, thus rendering them suitable for magnetic manipulation by external magnetic fields. Specifically, migration experiments under external magnetic fields confirmed that these MNPs can effectively actuate the cells, thus inducing measurable migration towards predefined directions more effectively than commercial nanoparticles (fluidMAG-ARA supplied by Chemicell). There were no observable toxic effects from MNPs on cell viability for working concentrations of 10 μg/mL (EC(25) of 20.8 μg/mL, compared to 12 μg/mL in fluidMAG-ARA). Cell proliferation assays performed with primary cell cultures of the peripheral nervous system confirmed moderate cytotoxicity (EC(25) of 10.35 μg/mL). These results indicate that loading neural cells with the proposed MNPs is likely to be an effective strategy for promoting non-invasive neural regeneration through cell magnetic actuation.
Wang, Lu; Yang, Lei; Lu, Ying; Chen, Yingzhun; Liu, Tianhua; Peng, Yanli; Zhou, Yuhong; Cao, Yang; Bi, Zhenggang; Liu, Tianyi; Liu, Zhenhong; Shan, Hongli
2016-01-01
Osteosarcoma is the second highest cause of cancer-related death in children and adolescents. Majority of osteosarcoma patients (90%) show metastasis. Previous reports revealed that osthole showed antitumor activities via induction of apoptosis and inhibition of proliferation. However, the potential effects and detailed molecular mechanisms involved remained unclear. Cell viability was analyzed by MTT assay in osteosarcoma cell lines MG-63 and SAOS-2. Cell cycle was detected by flow cytometry. The effects of migration and invasion were evaluated by wound healing assay and transwell assays. Moreover, the level of proteins expression was determined by Western blot. The cell viability of MG63 and SAOS-2 were markedly inhibited by osthole in a dose- and time-dependent manner. Cell cycle was arrested and the ability of migration and invasion was obviously reduced when cells were exposed to osthole. Moreover, enzymes involved in PTEN/Akt pathway were regulated such as PTEN and p-Akt proteins. Furthermore, osthole inhibited the tumor growth in vivo. Our study unraveled, for the first time, the ability of osthole to suppress osteosarcoma and elucidated the regulation of PTEN/Akt pathway as a signaling mechanism for the anti-tumor action of osthole. These findings indicate that osthole may represent a novel therapeutic strategy in the treatment of osteosarcoma. © 2016 The Author(s) Published by S. Karger AG, Basel.
In vitro evaluation of wound healing and antimicrobial potential of ozone therapy.
Borges, Gabriel Álvares; Elias, Silvia Taveira; da Silva, Sandra Márcia Mazutti; Magalhães, Pérola Oliveira; Macedo, Sergio Bruzadelli; Ribeiro, Ana Paula Dias; Guerra, Eliete Neves Silva
2017-03-01
Although ozone therapy is extensively applied when wound repair and antimicrobial effect are necessary, little is known about cellular mechanisms regarding this process. Thus, this study aimed to evaluate ozone cytotoxicity in fibroblasts (L929) and keratinocytes (HaCaT) cell lines, its effects on cell migration and its antimicrobial activity. Cells were treated with ozonated phosphate-buffered saline (8, 4, 2, 1, 0.5 and 0.25 μg/mL ozone), chlorhexidine 0.2% or buffered-solution, and cell viability was determined through MTT assay. The effect of ozone on cell migration was evaluated through scratch wound healing and transwell migration assays. The minimum inhibitory concentrations for Candida albicans and Staphylococcus aureus were determined. Ozone showed no cytotoxicity for the cell lines, while chlorhexidine markedly reduced cell viability. Although no significant difference between control and ozone-treated cells was observed in the scratch assay, a considerable increase in fibroblasts migration was noticed on cells treated with 8 μg/mL ozonated solution. Ozone alone did not inhibit growth of microorganisms; however, its association with chlorhexidine resulted in antimicrobial activity. This study confirms the wound healing and antimicrobial potential of ozone therapy and presents the need for studies to elucidate the molecular mechanisms through which it exerts such biological effects. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Kipandula, Wakisa; Young, Simon A; MacNeill, Stuart A; Smith, Terry K
2018-06-01
Diseases caused by the pathogenic kinetoplastids continue to incapacitate and kill hundreds of thousands of people annually throughout the tropics and sub-tropics. Unfortunately, in the countries where these neglected diseases occur, financial obstacles to drug discovery and technical limitations associated with biochemical studies impede the development of new, safe, easy to administer and effective drugs. Here we report the development and optimisation of a Crithidia fasciculata resazurin viability assay, which is subsequently used for screening and identification of anti-crithidial compounds in the MMV and GSK open access chemical boxes. The screening assay had an average Z' factor of 0.7 and tolerated a maximum dimethyl sulfoxide concentration of up to 0.5%. We identified from multiple chemical boxes two compound series exhibiting nanomolar potency against C. fasciculata, one centred around a 5-nitrofuran-2-yl scaffold, a well-known moiety in several existing anti-infectives, and another involving a 2-(pyridin-2-yl) pyrimidin-4-amine scaffold which seems to have pan-kinetoplastid activity. This work facilitates the future use of C. fasciculata as a non-pathogenic and inexpensive biological resource to identify mode of action/protein target(s) of potentially pan-trypanocidal potent compounds. This knowledge will aid in the development of new treatments for African sleeping sickness, Chagas disease and leishmaniasis. Copyright © 2018 Elsevier B.V. All rights reserved.
Kloesch, Burkhard; Gober, Lukas; Loebsch, Silvia; Vcelar, Brigitta; Helson, Lawrence; Steiner, Guenter
2016-01-01
The polyphenol curcumin is produced in the rhizome of Curcuma longa and exhibits potent anti-inflammatory, antioxidant, and chemopreventive activities. Due to the fact that curcumin is poorly soluble in water, many delivery systems have been developed to improve its solubility and bioavailability achieving optimum therapeutic application. In this study, we evaluated the biological effects of a liposomal curcumin formulation (Lipocurc™) on human synovial fibroblasts (SW982) and mouse macrophages (RAW264). Cellular uptake of liposomes was studied using calcein-loaded liposomes. Effects of Lipocurc™ on cell viability and proliferation were determined with Celltox green cytotoxicity assay and 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay, respectively. To induce cytokine/chemokine expression, the cells were stimulated with interleukin (IL)1β or lipopolysaccharide (LPS). The release of IL6, IL8, and tumor necrosis factor-alpha (TNFα) was quantified by enzyme-linked immunosorbent assay (ELISA). Data showed that the liposomal curcumin formulation Lipocurc™ was significantly less toxic to synovial fibroblasts and macrophages compared to non-encapsulated, free curcumin. Furthermore, Lipocurc™ effectively reduced pro-inflammatory cytokine/chemokine expression in synovial fibroblasts as well as in macrophages without affecting cell viability, suggesting that this curcumin nanoformulation might be a promising tool for the treatment of inflammatory diseases. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
L-N-Acetylcysteine protects against radiation-induced apoptosis in a cochlear cell line.
Low, Wong-Kein; Sun, Li; Tan, Michelle G K; Chua, Alvin W C; Wang, De-Yun
2008-04-01
L-N-Acetylcysteine (L-NAC) significantly reduced reactive oxygen species (ROS) generation and cochlear cell apoptosis after irradiation. The safe and effective use of L-NAC in reducing radiation-induced sensorineural hearing loss (SNHL) should be verified by further in vivo studies. Radiation-induced SNHL is a common complication after radiotherapy of head and neck tumours. There is growing evidence to suggest that ROS play an important role in apoptotic cochlear cell death from ototoxicity, resulting in SNHL. The aim of this study was to evaluate the effectiveness of L-NAC, an antioxidant, on radiation-induced apoptosis in cochlear cells. The OC-k3 cochlear cell line was studied after 0 and 20 Gy of gamma-irradiation. Cell viability assay was performed using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide. Flow cytometry and TUNEL assay were done with and without the addition of 10 mmol/L of L-NAC. Intracellular generation of ROS was detected by 2',7'-dichlorofluorescein diacetate, with comparisons made using fluorescence intensity. L-NAC increased the viability of cells after irradiation. Generation of ROS was demonstrated at 1 h post-irradiation and was significantly reduced by L-NAC (p<0.0001). Flow cytometry and TUNEL assay showed cell apoptosis at 72 h post-irradiation, which was diminished by the addition of L-NAC.
Antibacterial abilities and biocompatibilities of Ti-Ag alloys with nanotubular coatings.
Liu, Xingwang; Tian, Ang; You, Junhua; Zhang, Hangzhou; Wu, Lin; Bai, Xizhuang; Lei, Zeming; Shi, Xiaoguo; Xue, Xiangxin; Wang, Hanning
To endow implants with both short- and long-term antibacterial activities without impairing their biocompatibility, novel Ti-Ag alloy substrates with different proportions of Ag (1, 2, and 4 wt% Ag) were generated with nanotubular coverings (TiAg-NT). Unlike commercial pure Ti and titania nanotube, the TiAg-NT samples exhibited short-term antibacterial activity against Staphylococcus aureus ( S. aureus ), as confirmed by scanning electron microscopy and double staining with SYTO 9 and propidium iodide. A film applicator coating assay and a zone of inhibition assay were performed to investigate the long-term antibacterial activities of the samples. The cellular viability and cytotoxicity were evaluated through a Cell Counting Kit-8 assay. Annexin V-FITC/propidium iodide double staining was used to assess the level of MG63 cell apoptosis on each sample. All of the TiAg-NT samples, particularly the nanotube-coated Ti-Ag alloy with 2 wt% Ag (Ti2%Ag-NT), could effectively inhibit bacterial adhesion and kill the majority of adhered S. aureus on the first day of culture. Additionally, the excellent antibacterial abilities exhibited by the TiAg-NT samples were sustained for at least 30 days. Although Ti2%Ag-NT had less biocompatibility than titania nanotube, its performance was satisfactory, as demonstrated by the higher cellular viability and lower cell apoptosis rate obtained with it compared with those achieved with commercial pure Ti. The Ti1%Ag-NT and Ti4%Ag-NT samples did not yield good cell viability. This study indicates that the TiAg-NT samples can prevent biofilm formation and maintain their antibacterial ability for at least 1 month. Ti2%Ag-NT exhibited better antibacterial ability and biocompatibility than commercial pure Ti, which could be attributed to the synergistic effect of the presence of Ag (2 wt%) and the morphology of the nanotubes. Ti2%Ag-NT may offer a potential implant material that is capable of preventing implant-related infection.
Antibacterial abilities and biocompatibilities of Ti–Ag alloys with nanotubular coatings
Liu, Xingwang; Tian, Ang; You, Junhua; Zhang, Hangzhou; Wu, Lin; Bai, Xizhuang; Lei, Zeming; Shi, Xiaoguo; Xue, Xiangxin; Wang, Hanning
2016-01-01
Purpose To endow implants with both short- and long-term antibacterial activities without impairing their biocompatibility, novel Ti–Ag alloy substrates with different proportions of Ag (1, 2, and 4 wt% Ag) were generated with nanotubular coverings (TiAg-NT). Methods Unlike commercial pure Ti and titania nanotube, the TiAg-NT samples exhibited short-term antibacterial activity against Staphylococcus aureus (S. aureus), as confirmed by scanning electron microscopy and double staining with SYTO 9 and propidium iodide. A film applicator coating assay and a zone of inhibition assay were performed to investigate the long-term antibacterial activities of the samples. The cellular viability and cytotoxicity were evaluated through a Cell Counting Kit-8 assay. Annexin V-FITC/propidium iodide double staining was used to assess the level of MG63 cell apoptosis on each sample. Results All of the TiAg-NT samples, particularly the nanotube-coated Ti–Ag alloy with 2 wt% Ag (Ti2%Ag-NT), could effectively inhibit bacterial adhesion and kill the majority of adhered S. aureus on the first day of culture. Additionally, the excellent antibacterial abilities exhibited by the TiAg-NT samples were sustained for at least 30 days. Although Ti2%Ag-NT had less biocompatibility than titania nanotube, its performance was satisfactory, as demonstrated by the higher cellular viability and lower cell apoptosis rate obtained with it compared with those achieved with commercial pure Ti. The Ti1%Ag-NT and Ti4%Ag-NT samples did not yield good cell viability. Conclusion This study indicates that the TiAg-NT samples can prevent biofilm formation and maintain their antibacterial ability for at least 1 month. Ti2%Ag-NT exhibited better antibacterial ability and biocompatibility than commercial pure Ti, which could be attributed to the synergistic effect of the presence of Ag (2 wt%) and the morphology of the nanotubes. Ti2%Ag-NT may offer a potential implant material that is capable of preventing implant-related infection. PMID:27843315
Ginsenoside G-Rh2 synergizes with SMI-4a in anti-melanoma activity through autophagic cell death.
Lv, Da-Lun; Chen, Lei; Ding, Wei; Zhang, Wei; Wang, He-Li; Wang, Shuai; Liu, Wen-Bei
2018-01-01
Melanoma is a leading cause of cancer death worldwide, and SMI-4a and G-Rh2 exert anti-tumor activity in multiple cancer. However, SMI-4a as well as a synergistic relationship between SMI-4a and G-Rh2 in anti-melanoma capacity are still unknown. Therefore, we investigated the effects of SMI-4a and combined SMI-4a with G-Rh2 on the viability, apoptosis and autophagy of melanoma, and to preliminarily explore the underlying mechanism of SMI-4a and combined SMI-4a with G-Rh2 in inhibiting tumor growth. Cell viability was examined with cell counting Kit 8 assay and colony formation assay; Apoptosis was evaluated by flow cytometry and Caspase 3/7 activity assay; Western blotting was used to test proteins related to autophagy and the AKT/mammalian target of rapamycin (mTOR) signaling pathway; Tumor xenograft model in BALB/c nude mice was performed to evaluate the effects of SMI-4a and combined SMI-4a with G-Rh2 in anti-melanoma in vivo. SMI-4a, a pharmacological inhibitor of PIM-1, could decrease cell viability, induce apoptosis, and promote Caspase 3/7 activity in both A375 and G361 melanoma cells, and SMI-4a inhibited tumor growth by inducing autophagy via down-regulating AKT/mTOR axis in melanoma cells. Furthermore, G-Rh2 amplified the anti-tumor activity of SMI-4a in melanoma cells via strengthening autophagy. Our results suggested that SMI-4a could enhance autophagy-inducing apoptosis by inhibiting AKT/mTOR signaling pathway in melanoma cells, and G-Rh2 could enhance the effects of SMI-4a against melanoma cancer via amplifying autophagy induction. This study demonstrates that combined SMI-4a and G-Rh2 might be a novel alternative strategy for melanoma treatment.
Soares, Júlia Ribeiro; José Tenório de Melo, Edésio; da Cunha, Maura; Fernandes, Kátia Valevski Sales; Taveira, Gabriel Bonan; da Silva Pereira, Lidia; Pimenta, Samy; Trindade, Fernanda Gomes; Regente, Mariana; Pinedo, Marcela; de la Canal, Laura; Gomes, Valdirene Moreira; de Oliveira Carvalho, André
2017-01-01
Plant defensins were discovered at beginning of the 90s'; however, their precise mechanism of action is still unknown. Herein, we studied ApDef 1 -Saccharomyces cerevisiae interaction. ApDef 1 -S. cerevisiae interaction was studied by determining the MIC, viability and death kinetic assays. Viability assay was repeated with hydroxyurea synchronized-yeast and pretreated with CCCP. Plasma membrane permeabilization, ROS induction, chromatin condensation, and caspase activation analyses were assessed through Sytox green, DAB, DAPI and FITC-VAD-FMK, respectively. Viability assay was done in presence of ascorbic acid and Z-VAD-FMK. Ultrastructural analysis was done by electron microscopy. ApDef 1 caused S. cerevisiae cell death and MIC was 7.8μM. Whole cell population died after 18h of ApDef 1 interaction. After 3h, 98.76% of synchronized cell population died. Pretreatment with CCCP protected yeast from ApDef 1 induced death. ApDef 1 -S. cerevisiae interaction resulted in membrane permeabilization, H 2 O 2 increased production, chromatin condensation and caspase activation. Ascorbic acid prevented yeast cell death and membrane permeabilization. Z-VAD-FMK prevented yeast cell death. ApDef 1 -S. cerevisiae interaction caused cell death through cell cycle dependentprocess which requires preserved membrane potential. After interaction, yeast went through uncontrolled ROS production and accumulation, which led to plasma membrane permeabilization, chromatin condensation and, ultimately, cell death by activation of caspase-dependent apoptosis via. We show novel requirements for the interaction between plant defensin and fungi cells, i.e. cell cycle phase and membrane potential, and we indicate that membrane permeabilization is probably caused by ROS and therefore, it would be an indirect event of the ApDef 1 -S. cerevisiae interaction. Copyright © 2016 Elsevier B.V. All rights reserved.
Carvalho, Eunice B; Maga, Elizabeth A; Quetz, Josiane S; Lima, Ila F N; Magalhães, Hemerson Y F; Rodrigues, Felipe A R; Silva, Antônio V A; Prata, Mara M G; Cavalcante, Paloma A; Havt, Alexandre; Bertolini, Marcelo; Bertolini, Luciana R; Lima, Aldo A M
2012-08-11
Enteroaggregative Escherichia coli (EAEC) causes diarrhea, malnutrition and poor growth in children. Human breast milk decreases disease-causing bacteria by supplying nutrients and antimicrobial factors such as lysozyme. Goat milk with and without human lysozyme (HLZ) may improve the repair of intestinal barrier function damage induced by EAEC. This work investigates the effect of the milks on intestinal barrier function repair, bacterial adherence in Caco-2 and HEp-2 cells, intestinal cell proliferation, migration, viability and apoptosis in IEC-6 cells in the absence or presence of EAEC. Rat intestinal epithelial cells (IEC-6, ATCC, Rockville, MD) were used for proliferation, migration and viability assays and human colon adenocarcinoma (Caco-2, ATCC, Rockville, MD) and human larynx carcinoma (HEp-2, ATCC, Rockville, MD) cells were used for bacterial adhesion assays. Goats expressing HLZ in their milk were generated and express HLZ in milk at concentration of 270 μg/ml. Cells were incubated with pasteurized milk from either transgenic goats expressing HLZ or non-transgenic control goats in the presence and absence of EAEC strain 042 (O44:H18). Cellular proliferation was significantly greater in the presence of both HLZ transgenic and control goat milk compared to cells with no milk. Cellular migration was significantly decreased in the presence of EAEC alone but was restored in the presence of milk. Milk from HLZ transgenic goats had significantly more migration compared to control milk. Both milks significantly reduced EAEC adhesion to Caco-2 cells and transgenic milk resulted in less colonization than control milk using a HEp-2 assay. Both milks had significantly increased cellular viability as well as less apoptosis in both the absence and presence of EAEC. These data demonstrated that goat milk is able to repair intestinal barrier function damage induced by EAEC and that goat milk with a higher concentration of lysozyme offers additional protection.