Sample records for based virtual reality

  1. Learning Rationales and Virtual Reality Technology in Education.

    ERIC Educational Resources Information Center

    Chiou, Guey-Fa

    1995-01-01

    Defines and describes virtual reality technology and differentiates between virtual learning environment, learning material, and learning tools. Links learning rationales to virtual reality technology to pave conceptual foundations for application of virtual reality technology education. Constructivism, case-based learning, problem-based learning,…

  2. A Virtual Reality-Based Simulation of Abdominal Surgery

    DTIC Science & Technology

    1994-06-30

    415) 591-7881 In! IhNiI 1 SHORT TITLE: A Virtual Reality -Based Simulation of Abdominal Surgery REPORTING PERIOD: October 31, 1993-June 30, 1994 The...Report - A Virtual Reality -Based Simulation Of Abdominal Surgery Page 2 June 21, 1994 TECHNICAL REPORT SUMMARY Virtual Reality is a marriage between...applications of this technology. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations. simulate and

  3. Walking training associated with virtual reality-based training increases walking speed of individuals with chronic stroke: systematic review with meta-analysis.

    PubMed

    Rodrigues-Baroni, Juliana M; Nascimento, Lucas R; Ada, Louise; Teixeira-Salmela, Luci F

    2014-01-01

    To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions.

  4. Walking training associated with virtual reality-based training increases walking speed of individuals with chronic stroke: systematic review with meta-analysis

    PubMed Central

    Rodrigues-Baroni, Juliana M.; Nascimento, Lucas R.; Ada, Louise; Teixeira-Salmela, Luci F.

    2014-01-01

    OBJECTIVE: To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? METHOD: A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. RESULTS: Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. CONCLUSIONS: This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions. PMID:25590442

  5. Exploring Virtual Reality for Classroom Use: The Virtual Reality and Education Lab at East Carolina University.

    ERIC Educational Resources Information Center

    Auld, Lawrence W. S.; Pantelidis, Veronica S.

    1994-01-01

    Describes the Virtual Reality and Education Lab (VREL) established at East Carolina University to study the implications of virtual reality for elementary and secondary education. Highlights include virtual reality software evaluation; hardware evaluation; computer-based curriculum objectives which could use virtual reality; and keeping current…

  6. Effects of virtual reality-based bilateral upper-extremity training on brain activity in post-stroke patients.

    PubMed

    Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee

    2015-07-01

    [Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.

  7. Virtual Reality: Toward Fundamental Improvements in Simulation-Based Training.

    ERIC Educational Resources Information Center

    Thurman, Richard A.; Mattoon, Joseph S.

    1994-01-01

    Considers the role and effectiveness of virtual reality in simulation-based training. The theoretical and practical implications of verity, integration, and natural versus artificial interface are discussed; a three-dimensional classification scheme for virtual reality is described; and the relationship between virtual reality and other…

  8. Innovative application of virtual display technique in virtual museum

    NASA Astrophysics Data System (ADS)

    Zhang, Jiankang

    2017-09-01

    Virtual museum refers to display and simulate the functions of real museum on the Internet in the form of 3 Dimensions virtual reality by applying interactive programs. Based on Virtual Reality Modeling Language, virtual museum building and its effective interaction with the offline museum lie in making full use of 3 Dimensions panorama technique, virtual reality technique and augmented reality technique, and innovatively taking advantages of dynamic environment modeling technique, real-time 3 Dimensions graphics generating technique, system integration technique and other key virtual reality techniques to make sure the overall design of virtual museum.3 Dimensions panorama technique, also known as panoramic photography or virtual reality, is a technique based on static images of the reality. Virtual reality technique is a kind of computer simulation system which can create and experience the interactive 3 Dimensions dynamic visual world. Augmented reality, also known as mixed reality, is a technique which simulates and mixes the information (visual, sound, taste, touch, etc.) that is difficult for human to experience in reality. These technologies make virtual museum come true. It will not only bring better experience and convenience to the public, but also be conducive to improve the influence and cultural functions of the real museum.

  9. Virtual reality measures in neuropsychological assessment: a meta-analytic review.

    PubMed

    Neguț, Alexandra; Matu, Silviu-Andrei; Sava, Florin Alin; David, Daniel

    2016-02-01

    Virtual reality-based assessment is a new paradigm for neuropsychological evaluation, that might provide an ecological assessment, compared to paper-and-pencil or computerized neuropsychological assessment. Previous research has focused on the use of virtual reality in neuropsychological assessment, but no meta-analysis focused on the sensitivity of virtual reality-based measures of cognitive processes in measuring cognitive processes in various populations. We found eighteen studies that compared the cognitive performance between clinical and healthy controls on virtual reality measures. Based on a random effects model, the results indicated a large effect size in favor of healthy controls (g = .95). For executive functions, memory and visuospatial analysis, subgroup analysis revealed moderate to large effect sizes, with superior performance in the case of healthy controls. Participants' mean age, type of clinical condition, type of exploration within virtual reality environments, and the presence of distractors were significant moderators. Our findings support the sensitivity of virtual reality-based measures in detecting cognitive impairment. They highlight the possibility of using virtual reality measures for neuropsychological assessment in research applications, as well as in clinical practice.

  10. Cognitive training on stroke patients via virtual reality-based serious games.

    PubMed

    Gamito, Pedro; Oliveira, Jorge; Coelho, Carla; Morais, Diogo; Lopes, Paulo; Pacheco, José; Brito, Rodrigo; Soares, Fabio; Santos, Nuno; Barata, Ana Filipa

    2017-02-01

    Use of virtual reality environments in cognitive rehabilitation offers cost benefits and other advantages. In order to test the effectiveness of a virtual reality application for neuropsychological rehabilitation, a cognitive training program using virtual reality was applied to stroke patients. A virtual reality-based serious games application for cognitive training was developed, with attention and memory tasks consisting of daily life activities. Twenty stroke patients were randomly assigned to two conditions: exposure to the intervention, and waiting list control. The results showed significant improvements in attention and memory functions in the intervention group, but not in the controls. Overall findings provide further support for the use of VR cognitive training applications in neuropsychological rehabilitation. Implications for Rehabilitation Improvements in memory and attention functions following a virtual reality-based serious games intervention. Training of daily-life activities using a virtual reality application. Accessibility to training contents.

  11. Stepping into the virtual unknown: feasibility study of a virtual reality-based test of ocular misalignment.

    PubMed

    Nesaratnam, N; Thomas, P; Vivian, A

    2017-10-01

    IntroductionDissociated tests of strabismus provide valuable information for diagnosis and monitoring of ocular misalignment in patients with normal retinal correspondence. However, they are vulnerable to operator error and rely on a fixed head position. Virtual reality headsets obviate the need for head fixation, while providing other clear theoretical advantages, including complete control over the illumination and targets presented for the patient's interaction.PurposeWe compared the performance of a virtual reality-based test of ocular misalignment to that of the traditional Lees screen, to establish the feasibility of using virtual reality technology in ophthalmic settings in the future.MethodsThree patients underwent a traditional Lees screen test, and a virtual reality headset-based test of ocular motility. The virtual reality headset-based programme consisted of an initial test to measure horizontal and vertical deviation, followed by a test for torsion.ResultsThe pattern of deviation obtained using the virtual reality-based test showed agreement with that obtained from the Lees screen for patients with a fourth nerve palsy, comitant esotropia, and restrictive thyroid eye disease.ConclusionsThis study reports the first use of a virtual reality headset in assessing ocular misalignment, and demonstrates that it is a feasible dissociative test of strabismus.

  12. Psychological benefits of virtual reality for patients in rehabilitation therapy.

    PubMed

    Chen, Chih-Hung; Jeng, Ming-Chang; Fung, Chin-Ping; Doong, Ji-Liang; Chuang, Tien-Yow

    2009-05-01

    Whether virtual rehabilitation is beneficial has not been determined. To investigate the psychological benefits of virtual reality in rehabilitation. An experimental group underwent therapy with a virtual-reality-based exercise bike, and a control group underwent the therapy without virtual-reality equipment. Hospital laboratory. 30 patients suffering from spinal-cord injury. A designed rehabilitation therapy. Endurance, Borg's rating-of-perceived-exertion scale, the Activation-Deactivation Adjective Check List (AD-ACL), and the Simulator Sickness Questionnaire. The differences between the experimental and control groups were significant for AD-ACL calmness and tension. A virtual-reality-based rehabilitation program can ease patients' tension and induce calm.

  13. Education about Hallucinations Using an Internet Virtual Reality System: A Qualitative Survey

    ERIC Educational Resources Information Center

    Yellowlees, Peter M.; Cook, James N.

    2006-01-01

    Objective: The authors evaluate an Internet virtual reality technology as an education tool about the hallucinations of psychosis. Method: This is a pilot project using Second Life, an Internet-based virtual reality system, in which a virtual reality environment was constructed to simulate the auditory and visual hallucinations of two patients…

  14. Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation.

    PubMed

    Zaveri, Pavan P; Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary

    2016-02-09

    Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education.

  15. Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation

    PubMed Central

    Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary

    2016-01-01

    Introduction: Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. Methods: After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. Results: The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Conclusions: Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education. PMID:27014520

  16. Operating Room Performance Improves after Proficiency-Based Virtual Reality Cataract Surgery Training.

    PubMed

    Thomsen, Ann Sofia Skou; Bach-Holm, Daniella; Kjærbo, Hadi; Højgaard-Olsen, Klavs; Subhi, Yousif; Saleh, George M; Park, Yoon Soo; la Cour, Morten; Konge, Lars

    2017-04-01

    To investigate the effect of virtual reality proficiency-based training on actual cataract surgery performance. The secondary purpose of the study was to define which surgeons benefit from virtual reality training. Multicenter masked clinical trial. Eighteen cataract surgeons with different levels of experience. Cataract surgical training on a virtual reality simulator (EyeSi) until a proficiency-based test was passed. Technical performance in the operating room (OR) assessed by 3 independent, masked raters using a previously validated task-specific assessment tool for cataract surgery (Objective Structured Assessment of Cataract Surgical Skill). Three surgeries before and 3 surgeries after the virtual reality training were video-recorded, anonymized, and presented to the raters in random order. Novices (non-independently operating surgeons) and surgeons having performed fewer than 75 independent cataract surgeries showed significant improvements in the OR-32% and 38%, respectively-after virtual reality training (P = 0.008 and P = 0.018). More experienced cataract surgeons did not benefit from simulator training. The reliability of the assessments was high with a generalizability coefficient of 0.92 and 0.86 before and after the virtual reality training, respectively. Clinically relevant cataract surgical skills can be improved by proficiency-based training on a virtual reality simulator. Novices as well as surgeons with an intermediate level of experience showed improvement in OR performance score. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  17. Simulators and virtual reality in surgical education.

    PubMed

    Chou, Betty; Handa, Victoria L

    2006-06-01

    This article explores the pros and cons of virtual reality simulators, their abilities to train and assess surgical skills, and their potential future applications. Computer-based virtual reality simulators and more conventional box trainers are compared and contrasted. The virtual reality simulator provides objective assessment of surgical skills and immediate feedback further to enhance training. With this ability to provide standardized, unbiased assessment of surgical skills, the virtual reality trainer has the potential to be a tool for selecting, instructing, certifying, and recertifying gynecologists.

  18. Virtual Reality: An Instructional Medium for Visual-Spatial Tasks.

    ERIC Educational Resources Information Center

    Regian, J. Wesley; And Others

    1992-01-01

    Describes an empirical exploration of the instructional potential of virtual reality as an interface for simulation-based training. Shows that subjects learned spatial-procedural and spatial-navigational skills in virtual reality. (SR)

  19. Designing a Virtual-Reality-Based, Gamelike Math Learning Environment

    ERIC Educational Resources Information Center

    Xu, Xinhao; Ke, Fengfeng

    2016-01-01

    This exploratory study examined the design issues related to a virtual-reality-based, gamelike learning environment (VRGLE) developed via OpenSimulator, an open-source virtual reality server. The researchers collected qualitative data to examine the VRGLE's usability, playability, and content integration for math learning. They found it important…

  20. Assessment method of digital Chinese dance movements based on virtual reality technology

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Shao, Shuyuan; Wang, Shumin

    2008-03-01

    Virtual reality has played an increasing role in such areas as medicine, architecture, aviation, engineering science and advertising. However, in the art fields, virtual reality is still in its infancy in the representation of human movements. Based on the techniques of motion capture and reuse of motion capture data in virtual reality environment, this paper presents an assessment method in order to evaluate the quantification of dancers' basic Arm Position movements in Chinese traditional dance. In this paper, the data for quantifying traits of dance motions are defined and measured on dancing which performed by an expert and two beginners, with results indicating that they are beneficial for evaluating dance skills and distinctiveness, and the assessment method of digital Chinese dance movements based on virtual reality technology is validity and feasibility.

  1. Effects of virtual reality-based training and task-oriented training on balance performance in stroke patients.

    PubMed

    Lee, Hyung Young; Kim, You Lim; Lee, Suk Min

    2015-06-01

    [Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training.

  2. Effects of virtual reality-based training and task-oriented training on balance performance in stroke patients

    PubMed Central

    Lee, Hyung Young; Kim, You Lim; Lee, Suk Min

    2015-01-01

    [Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training. PMID:26180341

  3. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms.

    PubMed

    Rutkowski, Tomasz M

    2016-01-01

    The paper reviews nine robotic and virtual reality (VR) brain-computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI-lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms.

  4. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms

    PubMed Central

    Rutkowski, Tomasz M.

    2016-01-01

    The paper reviews nine robotic and virtual reality (VR) brain–computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI–lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms. PMID:27999538

  5. The role of virtual articulator in prosthetic and restorative dentistry.

    PubMed

    Koralakunte, Pavankumar Ravi; Aljanakh, Mohammad

    2014-07-01

    Virtual reality is a computer based technology linked with the future of dentistry and dental practice. The virtual articulator is one such application in prosthetic and restorative dentistry based on virtual reality that will significantly reduce the limitations of the mechanical articulator, and by simulation of real patient data, allow analyses with regard to static and dynamic occlusion as well as to jaw relation. It is the purpose of this article to present the concepts and strategies for a future replacement of the mechanical articulator by a virtual one. Also, a brief note on virtual reality haptic system has been highlighted along with newly developed touch enabled virtual articulator.

  6. Virtual rehabilitation: What are the practical barriers for home-based research?

    PubMed Central

    Threapleton, Kate; Drummond, Avril; Standen, Penny

    2016-01-01

    Virtual reality technologies are becoming increasingly accessible and affordable to deliver, and consequently the interest in applying virtual reality within rehabilitation is growing. This has resulted in the emergence of research exploring the utility of virtual reality and interactive video gaming interventions for home use by patients. The aim of this paper is to highlight the practical factors and difficulties that may be encountered in research in this area, and to make recommendations for addressing these. Whilst this paper focuses on examples drawn mainly from stroke rehabilitation research, many of the issues raised are relevant to other conditions where virtual reality approaches have the potential to be applied to home-based rehabilitation. PMID:29942551

  7. Exploring Learner Acceptance of the Use of Virtual Reality in Medical Education: A Case Study of Desktop and Projection-Based Display Systems

    ERIC Educational Resources Information Center

    Huang, Hsiu-Mei; Liaw, Shu-Sheng; Lai, Chung-Min

    2016-01-01

    Advanced technologies have been widely applied in medical education, including human-patient simulators, immersive virtual reality Cave Automatic Virtual Environment systems, and video conferencing. Evaluating learner acceptance of such virtual reality (VR) learning environments is a critical issue for ensuring that such technologies are used to…

  8. When Rural Reality Goes Virtual.

    ERIC Educational Resources Information Center

    Husain, Dilshad D.

    1998-01-01

    In rural towns where sparse population and few business are barriers, virtual reality may be the only way to bring work-based learning to students. A partnership between a small-town high school, the Ohio Supercomputer Center, and a high-tech business will enable students to explore the workplace using virtual reality. (JOW)

  9. Cochrane review: virtual reality for stroke rehabilitation.

    PubMed

    Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M

    2012-09-01

    Virtual reality and interactive video gaming are innovative therapy approaches in the field of stroke rehabilitation. The primary objective of this review was to determine the effectiveness of virtual reality on motor function after stroke. The impact on secondary outcomes including activities of daily living was also assessed. Randomised and quasi-randomised controlled trials that compared virtual reality with an alternative or no intervention were included in the review. The authors searched the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, electronic databases, trial registers, reference lists, Dissertation Abstracts, conference proceedings and contacted key researchers and virtual reality manufacturers. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. Nineteen studies with a total of 565 participants were included in the review. Variation in intervention approaches and outcome data collected limited the extent to which studies could be compared. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardised mean difference, SMD) 0.53, 95% confidence intervals [CI] 0.25 to 0.81)) based on seven studies, and activities of daily living (ADL) function (SMD 0.81, 95% CI 0.39 to 1.22) based on three studies. No statistically significant effects were found for grip strength (based on two studies) or gait speed (based on three studies). Virtual reality appears to be a promising approach however, further studies are required to confirm these findings.

  10. Virtual reality in surgical skills training.

    PubMed

    Palter, Vanessa N; Grantcharov, Teodor P

    2010-06-01

    With recent concerns regarding patient safety, and legislation regarding resident work hours, it is accepted that a certain amount of surgical skills training will transition to the surgical skills laboratory. Virtual reality offers enormous potential to enhance technical and non-technical skills training outside the operating room. Virtual-reality systems range from basic low-fidelity devices to highly complex virtual environments. These systems can act as training and assessment tools, with the learned skills effectively transferring to an analogous clinical situation. Recent developments include expanding the role of virtual reality to allow for holistic, multidisciplinary team training in simulated operating rooms, and focusing on the role of virtual reality in evidence-based surgical curriculum design. Copyright 2010 Elsevier Inc. All rights reserved.

  11. The Role of Virtual Articulator in Prosthetic and Restorative Dentistry

    PubMed Central

    Aljanakh, Mohammad

    2014-01-01

    Virtual reality is a computer based technology linked with the future of dentistry and dental practice. The virtual articulator is one such application in prosthetic and restorative dentistry based on virtual reality that will significantly reduce the limitations of the mechanical articulator, and by simulation of real patient data, allow analyses with regard to static and dynamic occlusion as well as to jaw relation. It is the purpose of this article to present the concepts and strategies for a future replacement of the mechanical articulator by a virtual one. Also, a brief note on virtual reality haptic system has been highlighted along with newly developed touch enabled virtual articulator. PMID:25177664

  12. Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis.

    PubMed

    Bergeron, Mathieu; Lortie, Catherine L; Guitton, Matthieu J

    2015-01-01

    Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies.

  13. Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis

    PubMed Central

    Bergeron, Mathieu; Lortie, Catherine L.; Guitton, Matthieu J.

    2015-01-01

    Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies. PMID:26556560

  14. Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery.

    PubMed

    Robison, R Aaron; Liu, Charles Y; Apuzzo, Michael L J

    2011-11-01

    To review virtual reality in neurosurgery, including the history of simulation and virtual reality and some of the current implementations; to examine some of the technical challenges involved; and to propose a potential paradigm for the development of virtual reality in neurosurgery going forward. A search was made on PubMed using key words surgical simulation, virtual reality, haptics, collision detection, and volumetric modeling to assess the current status of virtual reality in neurosurgery. Based on previous results, investigators extrapolated the possible integration of existing efforts and potential future directions. Simulation has a rich history in surgical training, and there are numerous currently existing applications and systems that involve virtual reality. All existing applications are limited to specific task-oriented functions and typically sacrifice visual realism for real-time interactivity or vice versa, owing to numerous technical challenges in rendering a virtual space in real time, including graphic and tissue modeling, collision detection, and direction of the haptic interface. With ongoing technical advancements in computer hardware and graphic and physical rendering, incremental or modular development of a fully immersive, multipurpose virtual reality neurosurgical simulator is feasible. The use of virtual reality in neurosurgery is predicted to change the nature of neurosurgical education, and to play an increased role in surgical rehearsal and the continuing education and credentialing of surgical practitioners. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Visualizing Compound Rotations with Virtual Reality

    ERIC Educational Resources Information Center

    Flanders, Megan; Kavanagh, Richard C.

    2013-01-01

    Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…

  16. Research on three-dimensional visualization based on virtual reality and Internet

    NASA Astrophysics Data System (ADS)

    Wang, Zongmin; Yang, Haibo; Zhao, Hongling; Li, Jiren; Zhu, Qiang; Zhang, Xiaohong; Sun, Kai

    2007-06-01

    To disclose and display water information, a three-dimensional visualization system based on Virtual Reality (VR) and Internet is researched for demonstrating "digital water conservancy" application and also for routine management of reservoir. To explore and mine in-depth information, after completion of modeling high resolution DEM with reliable quality, topographical analysis, visibility analysis and reservoir volume computation are studied. And also, some parameters including slope, water level and NDVI are selected to classify easy-landslide zone in water-level-fluctuating zone of reservoir area. To establish virtual reservoir scene, two kinds of methods are used respectively for experiencing immersion, interaction and imagination (3I). First virtual scene contains more detailed textures to increase reality on graphical workstation with virtual reality engine Open Scene Graph (OSG). Second virtual scene is for internet users with fewer details for assuring fluent speed.

  17. Virtual reality simulation: using three-dimensional technology to teach nursing students.

    PubMed

    Jenson, Carole E; Forsyth, Diane McNally

    2012-06-01

    The use of computerized technology is rapidly growing in the classroom and in healthcare. An emerging computer technology strategy for nursing education is the use of virtual reality simulation. This computer-based three-dimensional educational tool simulates real-life patient experiences in a risk-free environment, allows for repeated practice sessions, requires clinical decision making, exposes students to diverse patient conditions, provides immediate feedback, and is portable. The purpose of this article was to review the importance of virtual reality simulation as a computerized teaching strategy. In addition, a project to explore readiness of nursing faculty at one major Midwestern university for the use of virtual reality simulation as a computerized teaching strategy is described where faculty thought virtual reality simulation would increase students' knowledge of an intravenous line insertion procedure. Faculty who practiced intravenous catheter insertion via virtual reality simulation expressed a wide range of learning experiences from using virtual reality simulation that is congruent with the literature regarding the barriers to student learning. Innovative teaching strategies, such as virtual reality simulation, address barriers of increasing patient acuity, high student-to-faculty ratio, patient safety concerns from faculty, and student anxiety and can offer rapid feedback to students.

  18. Telemanipulation, telepresence, and virtual reality for surgery in the year 2000

    NASA Astrophysics Data System (ADS)

    Satava, Richard M.

    1995-12-01

    The new technologic revolution in medicine is based upon information technologies, and telemanipulation, telepresence and virtual reality are essential components. Telepresence surgery returns the look and feel of `open surgery' to the surgeon and promises enhancement of physical capabilities above normal human performance. Virtual reality provides basic medical education, simulation of surgical procedures, medical forces and disaster medicine practice, and virtual prototyping of medical equipment.

  19. Virtual reality for dermatologic surgery: virtually a reality in the 21st century.

    PubMed

    Gladstone, H B; Raugi, G J; Berg, D; Berkley, J; Weghorst, S; Ganter, M

    2000-01-01

    In the 20th century, virtual reality has predominantly played a role in training pilots and in the entertainment industry. Despite much publicity, virtual reality did not live up to its perceived potential. During the past decade, it has also been applied for medical uses, particularly as training simulators, for minimally invasive surgery. Because of advances in computer technology, virtual reality is on the cusp of becoming an effective medical educational tool. At the University of Washington, we are developing a virtual reality soft tissue surgery simulator. Based on fast finite element modeling and using a personal computer, this device can simulate three-dimensional human skin deformations with real-time tactile feedback. Although there are many cutaneous biomechanical challenges to solve, it will eventually provide more realistic dermatologic surgery training for medical students and residents than the currently used models.

  20. Determining sensitivity/specificity of virtual reality-based neuropsychological tool for detecting residual abnormalities following sport-related concussion.

    PubMed

    Teel, Elizabeth; Gay, Michael; Johnson, Brian; Slobounov, Semyon

    2016-05-01

    Computer-based neuropsychological (NP) evaluation is an effective clinical tool used to assess cognitive function which complements the clinical diagnosis of a concussion. However, some researchers and clinicians argue its lack of ecological validity places limitations on externalizing results to a sensory rich athletic environment. Virtual reality-based NP assessment offers clinical advantages using an immersive environment and evaluating domains not typically assessed by traditional NP assessments. The sensitivity and specificity of detecting lingering cognitive abnormalities was examined on components of a virtual reality-based NP assessment battery to cohort affiliation (concussed vs. controls). Data were retrospectively gathered on 128 controls (no concussion) and 24 concussed college-age athletes on measures of spatial navigation, whole body reaction, attention, and balance in a virtual environment. Concussed athletes were tested within 10 days (M = 8.33, SD = 1.06) of concussion and were clinically asymptomatic at the time of testing. A priori alpha level was set at 0.05 for all tests. Spatial navigation (sensitivity 95.8%/specificity 91.4%, d = 1.89), whole body reaction time (sensitivity 95.2%/specificity 89.1%, d = 1.50) and combined virtual reality modules (sensitivity 95.8%,/specificity 96.1%, d = 3.59) produced high sensitivity/specificity values when determining performance-based variability between groups. Use of a virtual reality-based NP platform can detect lingering cognitive abnormalities resulting from concussion in clinically asymptomatic participants. Virtual reality NP platforms may compliment the traditional concussion assessment battery by providing novel information. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Virtual reality in surgery and medicine.

    PubMed

    Chinnock, C

    1994-01-01

    This report documents the state of development of enhanced and virtual reality-based systems in medicine. Virtual reality systems seek to simulate a surgical procedure in a computer-generated world in order to improve training. Enhanced reality systems seek to augment or enhance reality by providing improved imaging alternatives for specific patient data. Virtual reality represents a paradigm shift in the way we teach and evaluate the skills of medical personnel. Driving the development of virtual reality-based simulators is laparoscopic abdominal surgery, where there is a perceived need for better training techniques; within a year, systems will be fielded for second-year residency students. Further refinements over perhaps the next five years should allow surgeons to evaluate and practice new techniques in a simulator before using them on patients. Technical developments are rapidly improving the realism of these machines to an amazing degree, as well as bringing the price down to affordable levels. In the next five years, many new anatomical models, procedures, and skills are likely to become available on simulators. Enhanced reality systems are generally being developed to improve visualization of specific patient data. Three-dimensional (3-D) stereovision systems for endoscopic applications, head-mounted displays, and stereotactic image navigation systems are being fielded now, with neurosurgery and laparoscopic surgery being major driving influences. Over perhaps the next five years, enhanced and virtual reality systems are likely to merge. This will permit patient-specific images to be used on virtual reality simulators or computer-generated landscapes to be input into surgical visualization instruments. Percolating all around these activities are developments in robotics and telesurgery. An advanced information infrastructure eventually will permit remote physicians to share video, audio, medical records, and imaging data with local physicians in real time. Surgical robots are likely to be deployed for specific tasks in the operating room (OR) and to support telesurgery applications. Technical developments in robotics and motion control are key components of many virtual reality systems. Since almost all of the virtual reality and enhanced reality systems will be digitally based, they are also capable of being put "on-line" for tele-training, consulting, and even surgery. Advancements in virtual and enhanced reality systems will be driven in part by consumer applications of this technology. Many of the companies that will supply systems for medical applications are also working on commercial products. A big consumer hit can benefit the entire industry by increasing volumes and bringing down costs.(ABSTRACT TRUNCATED AT 400 WORDS)

  2. An Analysis of Learners' Intentions toward Virtual Reality Learning Based on Constructivist and Technology Acceptance Approaches

    ERIC Educational Resources Information Center

    Huang, Hsiu-Mei; Liaw, Shu-Sheng

    2018-01-01

    Within a constructivist paradigm, the virtual reality technology focuses on the learner's actively interactive learning processes and attempts to reduce the gap between the learner's knowledge and a real-life experience. Recently, virtual reality technologies have been developed for a wide range of applications in education, but further research…

  3. Moving from Virtual Reality Exposure-Based Therapy to Augmented Reality Exposure-Based Therapy: A Review

    PubMed Central

    Baus, Oliver; Bouchard, Stéphane

    2014-01-01

    This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed “safely” to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user’s experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia. PMID:24624073

  4. Moving from virtual reality exposure-based therapy to augmented reality exposure-based therapy: a review.

    PubMed

    Baus, Oliver; Bouchard, Stéphane

    2014-01-01

    This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed "safely" to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user's experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia.

  5. A Practical Guide, with Theoretical Underpinnings, for Creating Effective Virtual Reality Learning Environments

    ERIC Educational Resources Information Center

    O'Connor, Eileen A.; Domingo, Jelia

    2017-01-01

    With the advent of open source virtual environments, the associated cost reductions, and the more flexible options, avatar-based virtual reality environments are within reach of educators. By using and repurposing readily available virtual environments, instructors can bring engaging, community-building, and immersive learning opportunities to…

  6. Can virtual reality be used to conduct mass prophylaxis clinic training? A pilot program.

    PubMed

    Yellowlees, Peter; Cook, James N; Marks, Shayna L; Wolfe, Daniel; Mangin, Elanor

    2008-03-01

    To create and evaluate a pilot bioterrorism defense training environment using virtual reality technology. The present pilot project used Second Life, an internet-based virtual world system, to construct a virtual reality environment to mimic an actual setting that might be used as a Strategic National Stockpile (SNS) distribution site for northern California in the event of a bioterrorist attack. Scripted characters were integrated into the system as mock patients to analyze various clinic workflow scenarios. Users tested the virtual environment over two sessions. Thirteen users who toured the environment were asked to complete an evaluation survey. Respondents reported that the virtual reality system was relevant to their practice and had potential as a method of bioterrorism defense training. Computer simulations of bioterrorism defense training scenarios are feasible with existing personal computer technology. The use of internet-connected virtual environments holds promise for bioterrorism defense training. Recommendations are made for public health agencies regarding the implementation and benefits of using virtual reality for mass prophylaxis clinic training.

  7. Virtual reality for spherical images

    NASA Astrophysics Data System (ADS)

    Pilarczyk, Rafal; Skarbek, Władysław

    2017-08-01

    Paper presents virtual reality application framework and application concept for mobile devices. Framework uses Google Cardboard library for Android operating system. Framework allows to create virtual reality 360 video player using standard OpenGL ES rendering methods. Framework provides network methods in order to connect to web server as application resource provider. Resources are delivered using JSON response as result of HTTP requests. Web server also uses Socket.IO library for synchronous communication between application and server. Framework implements methods to create event driven process of rendering additional content based on video timestamp and virtual reality head point of view.

  8. Virtual reality exposure therapy in anxiety disorders: a quantitative meta-analysis.

    PubMed

    Opriş, David; Pintea, Sebastian; García-Palacios, Azucena; Botella, Cristina; Szamosközi, Ştefan; David, Daniel

    2012-02-01

    Virtual reality exposure therapy (VRET) is a promising intervention for the treatment of the anxiety disorders. The main objective of this meta-analysis is to compare the efficacy of VRET, used in a behavioral or cognitive-behavioral framework, with that of the classical evidence-based treatments, in anxiety disorders. A comprehensive search of the literature identified 23 studies (n = 608) that were included in the final analysis. The results show that in the case of anxiety disorders, (1) VRET does far better than the waitlist control; (2) the post-treatment results show similar efficacy between the behavioral and the cognitive behavioral interventions incorporating a virtual reality exposure component and the classical evidence-based interventions, with no virtual reality exposure component; (3) VRET has a powerful real-life impact, similar to that of the classical evidence-based treatments; (4) VRET has a good stability of results over time, similar to that of the classical evidence-based treatments; (5) there is a dose-response relationship for VRET; and (6) there is no difference in the dropout rate between the virtual reality exposure and the in vivo exposure. Implications are discussed. © 2011 Wiley Periodicals, Inc.

  9. Canoe game-based virtual reality training to improve trunk postural stability, balance, and upper limb motor function in subacute stroke patients: a randomized controlled pilot study.

    PubMed

    Lee, Myung-Mo; Shin, Doo-Chul; Song, Chang-Ho

    2016-07-01

    [Purpose] This study was aimed at investigating the preliminary therapeutic efficacy and usefulness of canoe game-based virtual reality training for stroke patients. [Subjects and Methods] Ten stroke patients were randomly assigned to an experimental group (EG; n=5) or a control group (CG; n=5). Patients in both groups participated in a conventional rehabilitation program, but those in the EG additionally participated in a 30-min canoe game-based virtual reality training program 3 days a week for 4 weeks. Therapeutic efficacy was assessed based on trunk postural stability, balance, and upper limb motor function. In addition, the usefulness of canoe game-based virtual reality training was assessed in the EG and therapist group (TG; n=20), which consisted of physical and occupational therapists, by using the System Usability Scale (SUS). [Results] Improvements in trunk postural stability, balance, and upper limb motor function were observed in the EG and CG, but were greater in the EG. The mean SUS scores in the EG and TG were 71 ± 5.2 and 74.2 ± 4.8, respectively. [Conclusion] Canoe game-based virtual reality training is an acceptable and effective intervention for improving trunk postural stability, balance, and upper limb motor function in stroke patients.

  10. Teachers' Conceptions and Their Approaches to Teaching in Virtual Reality and Simulation-Based Learning Environments

    ERIC Educational Resources Information Center

    Keskitalo, Tuulikki

    2011-01-01

    This research article focuses on virtual reality (VR) and simulation-based training, with a special focus on the pedagogical use of the Virtual Centre of Wellness Campus known as ENVI (Rovaniemi, Finland). In order to clearly understand how teachers perceive teaching and learning in such environments, this research examines the concepts of…

  11. The Influences of the 2D Image-Based Augmented Reality and Virtual Reality on Student Learning

    ERIC Educational Resources Information Center

    Liou, Hsin-Hun; Yang, Stephen J. H.; Chen, Sherry Y.; Tarng, Wernhuar

    2017-01-01

    Virtual reality (VR) learning environments can provide students with concepts of the simulated phenomena, but users are not allowed to interact with real elements. Conversely, augmented reality (AR) learning environments blend real-world environments so AR could enhance the effects of computer simulation and promote students' realistic experience.…

  12. Virtual reality for stroke rehabilitation: an abridged version of a Cochrane review.

    PubMed

    Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M

    2015-08-01

    Virtual reality and interactive video gaming have emerged as new treatment approaches in stroke rehabilitation settings over the last ten years. The primary objective of this review was to determine the effectiveness of virtual reality on upper limb function and activity after stroke. The impact on secondary outcomes including gait, cognitive function and activities of daily living was also assessed. Randomized and quasi-randomized controlled trials comparing virtual reality with an alternative intervention or no intervention were eligible to be included in the review. The authors searched a number of electronic databases including: the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, clinical trial registers, reference lists, Dissertation Abstracts and contacted key researchers in the field. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. A total of 37 randomized or quasi randomized controlled trials with a total of 1019 participants were included in the review. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardized mean difference [SMD] 0.28, 95% confidence intervals [CI] 0.08 to 0.49) based on 12 studies and significantly more effective than no therapy in improving upper limber function (SMD 0.44 [95% CI 0.15 to 0.73]) based on nine studies. The use of virtual reality also significantly improved activities of daily living function when compared to more conventional therapy approaches (SMD 0.43 [95% CI 0.18 to 0.69]) based on eight studies. While there are a large number of studies assessing the efficacy of virtual reality they tend to be small and many are at risk of bias. While there is evidence to support the use of virtual reality intervention as part of upper limb training programs, more research is required to determine whether it is beneficial in terms of improving lower limb function and gait and cognitive function.

  13. A Discussion of Knowledge Based Design

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A discussion of knowledge and Knowledge- Based design as related to the design of aircraft is presented. The paper discusses the perceived problem with existing design studies and introduces the concepts of design and knowledge for a Knowledge- Based design system. A review of several Knowledge-Based design activities is provided. A Virtual Reality, Knowledge-Based system is proposed and reviewed. The feasibility of Virtual Reality to improve the efficiency and effectiveness of aerodynamic and multidisciplinary design, evaluation, and analysis of aircraft through the coupling of virtual reality technology and a Knowledge-Based design system is also reviewed. The final section of the paper discusses future directions for design and the role of Knowledge-Based design.

  14. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke.

    PubMed

    Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S; Zhou, Shufeng; Huang, Dongfeng

    2013-11-05

    The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex.

  15. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke

    PubMed Central

    Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S.; Zhou, Shufeng; Huang, Dongfeng

    2013-01-01

    The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex. PMID:25206611

  16. Open multi-agent control architecture to support virtual-reality-based man-machine interfaces

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel

    2001-10-01

    Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.

  17. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients.

    PubMed

    Wang, Zun-Rong; Wang, Ping; Xing, Liang; Mei, Li-Ping; Zhao, Jun; Zhang, Tong

    2017-11-01

    Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238).

  18. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients

    PubMed Central

    Wang, Zun-rong; Wang, Ping; Xing, Liang; Mei, Li-ping; Zhao, Jun; Zhang, Tong

    2017-01-01

    Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238). PMID:29239328

  19. Open Source Meets Virtual Reality--An Instructor's Journey Unearths New Opportunities for Learning, Community, and Academia

    ERIC Educational Resources Information Center

    O'Connor, Eileen A.

    2015-01-01

    Opening with the history, recent advances, and emerging ways to use avatar-based virtual reality, an instructor who has used virtual environments since 2007 shares how these environments bring more options to community building, teaching, and education. With the open-source movement, where the source code for virtual environments was made…

  20. Subjective visual vertical assessment with mobile virtual reality system.

    PubMed

    Ulozienė, Ingrida; Totilienė, Milda; Paulauskas, Andrius; Blažauskas, Tomas; Marozas, Vaidotas; Kaski, Diego; Ulozas, Virgilijus

    2017-01-01

    The subjective visual vertical (SVV) is a measure of a subject's perceived verticality, and a sensitive test of vestibular dysfunction. Despite this, and consequent upon technical and logistical limitations, SVV has not entered mainstream clinical practice. The aim of the study was to develop a mobile virtual reality based system for SVV test, evaluate the suitability of different controllers and assess the system's usability in practical settings. In this study, we describe a novel virtual reality based system that has been developed to test SVV using integrated software and hardware, and report normative values across healthy population. Participants wore a mobile virtual reality headset in order to observe a 3D stimulus presented across separate conditions - static, dynamic and an immersive real-world ("boat in the sea") SVV tests. The virtual reality environment was controlled by the tester using a Bluetooth connected controllers. Participants controlled the movement of a vertical arrow using either a gesture control armband or a general-purpose gamepad, to indicate perceived verticality. We wanted to compare 2 different methods for object control in the system, determine normal values and compare them with literature data, to evaluate the developed system with the help of the system usability scale questionnaire and evaluate possible virtually induced dizziness with the help of subjective visual analog scale. There were no statistically significant differences in SVV values during static, dynamic and virtual reality stimulus conditions, obtained using the two different controllers and the results are compared to those previously reported in the literature using alternative methodologies. The SUS scores for the system were high, with a median of 82.5 for the Myo controller and of 95.0 for the Gamepad controller, representing a statistically significant difference between the two controllers (P<0.01). The median of virtual reality-induced dizziness for both devices was 0.7. The mobile virtual reality based system for implementation of subjective visual vertical test, is accurate and applicable in the clinical environment. The gamepad-based virtual object control method was preferred by the users. The tests were well tolerated with low dizziness scores in the majority of patients. Copyright © 2018 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Sp. z o.o. All rights reserved.

  1. Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform.

    PubMed

    Sucar, Luis Enrique; Orihuela-Espina, Felipe; Velazquez, Roger Luis; Reinkensmeyer, David J; Leder, Ronald; Hernández-Franco, Jorge

    2014-05-01

    Virtual reality platforms capable of assisting rehabilitation must provide support for rehabilitation principles: promote repetition, task oriented training, appropriate feedback, and a motivating environment. As such, development of these platforms is a complex process which has not yet reached maturity. This paper presents our efforts to contribute to this field, presenting Gesture Therapy, a virtual reality-based platform for rehabilitation of the upper limb. We describe the system architecture and main features of the platform and provide preliminary evidence of the feasibility of the platform in its current status.

  2. Novel virtual reality system integrating online self-face viewing and mirror visual feedback for stroke rehabilitation: rationale and feasibility.

    PubMed

    Shiri, Shimon; Feintuch, Uri; Lorber-Haddad, Adi; Moreh, Elior; Twito, Dvora; Tuchner-Arieli, Maya; Meiner, Zeev

    2012-01-01

    To introduce the rationale of a novel virtual reality system based on self-face viewing and mirror visual feedback, and to examine its feasibility as a rehabilitation tool for poststroke patients. A novel motion capture virtual reality system integrating online self-face viewing and mirror visual feedback has been developed for stroke rehabilitation.The system allows the replacement of the impaired arm by a virtual arm. Upon making small movements of the paretic arm, patients view themselves virtually performing healthy full-range movements. A sample of 6 patients in the acute poststroke phase received the virtual reality treatment concomitantly with conservative rehabilitation treatment. Feasibility was assessed during 10 sessions for each participant. All participants succeeded in operating the system, demonstrating its feasibility in terms of adherence and improvement in task performance. Patients' performance within the virtual environment and a set of clinical-functional measures recorded before the virtual reality treatment, at 1 week, and after 3 months indicated neurological status and general functioning improvement. These preliminary results indicate that this newly developed virtual reality system is safe and feasible. Future randomized controlled studies are required to assess whether this system has beneficial effects in terms of enhancing upper limb function and quality of life in poststroke patients.

  3. Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning

    PubMed Central

    Vorstenbosch, Marc; Kooloos, Jan

    2017-01-01

    A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different visuospatial ability. Sixty-three participants engaged in a one-hour session including a study phase and posttest. One group studied 3D models of the anatomy of the deep neck in full stereoptic virtual reality; one group studied those structures in virtual reality without stereoptic depth. The control group experienced an unrelated virtual reality environment. A post hoc questionnaire explored cognitive load and problem solving strategies of the participants. We found no effect of condition on learning. Visuospatial ability however did impact correct answers at F(1) = 5.63 and p = .02. No evidence was found for an impact of cognitive load on performance. Possibly, participants were able to solve the posttest items based on visuospatial information contained in the test items themselves. Additionally, the virtual anatomy may have been complex enough to discourage memory based strategies. It is important to control the amount of visuospatial information present in test items. PMID:28656109

  4. Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning.

    PubMed

    Luursema, Jan-Maarten; Vorstenbosch, Marc; Kooloos, Jan

    2017-01-01

    A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different visuospatial ability. Sixty-three participants engaged in a one-hour session including a study phase and posttest. One group studied 3D models of the anatomy of the deep neck in full stereoptic virtual reality; one group studied those structures in virtual reality without stereoptic depth. The control group experienced an unrelated virtual reality environment. A post hoc questionnaire explored cognitive load and problem solving strategies of the participants. We found no effect of condition on learning. Visuospatial ability however did impact correct answers at F (1) = 5.63 and p = .02. No evidence was found for an impact of cognitive load on performance. Possibly, participants were able to solve the posttest items based on visuospatial information contained in the test items themselves. Additionally, the virtual anatomy may have been complex enough to discourage memory based strategies. It is important to control the amount of visuospatial information present in test items.

  5. Using Immersive Virtual Reality for Electrical Substation Training

    ERIC Educational Resources Information Center

    Tanaka, Eduardo H.; Paludo, Juliana A.; Cordeiro, Carlúcio S.; Domingues, Leonardo R.; Gadbem, Edgar V.; Euflausino, Adriana

    2015-01-01

    Usually, distribution electricians are called upon to solve technical problems found in electrical substations. In this project, we apply problem-based learning to a training program for electricians, with the help of a virtual reality environment that simulates a real substation. Using this virtual substation, users may safely practice maneuvers…

  6. Theoretical Bases for Using Virtual Reality in Education

    ERIC Educational Resources Information Center

    Chen, Chwen Jen

    2009-01-01

    This article elaborates on how the technical capabilities of virtual reality support the constructivist learning principles. It introduces VRID, a model for instructional design and development that offers explicit guidance on how to produce an educational virtual environment. The define phase of VRID consists of three main tasks: forming a…

  7. Human Behavior Representation in Constructive Simulation (La representation du comportement humain dans la simulation constructive)

    DTIC Science & Technology

    2009-09-01

    Environmental Medicine USN United States Navy VAE Virtual Air Environment VACP Visual, Auditory, Cognitive, Psychomotor (demand) VR Virtual Reality ...0 .5 m/s. Another useful approach to capturing leg, trunk, whole body, or movement tasks comes from virtual reality - based training research and...referred to as semi-automated forces (SAF). From: http://www.sedris.org/glossary.htm#C_grp. Constructive Models Abstractions from the reality to

  8. Simulation-based training for thoracoscopic lobectomy: a randomized controlled trial: virtual-reality versus black-box simulation.

    PubMed

    Jensen, Katrine; Ringsted, Charlotte; Hansen, Henrik Jessen; Petersen, René Horsleben; Konge, Lars

    2014-06-01

    Video-assisted thoracic surgery is gradually replacing conventional open thoracotomy as the method of choice for the treatment of early-stage non-small cell lung cancers, and thoracic surgical trainees must learn and master this technique. Simulation-based training could help trainees overcome the first part of the learning curve, but no virtual-reality simulators for thoracoscopy are commercially available. This study aimed to investigate whether training on a laparoscopic simulator enables trainees to perform a thoracoscopic lobectomy. Twenty-eight surgical residents were randomized to either virtual-reality training on a nephrectomy module or traditional black-box simulator training. After a retention period they performed a thoracoscopic lobectomy on a porcine model and their performance was scored using a previously validated assessment tool. The groups did not differ in age or gender. All participants were able to complete the lobectomy. The performance of the black-box group was significantly faster during the test scenario than the virtual-reality group: 26.6 min (SD 6.7 min) versus 32.7 min (SD 7.5 min). No difference existed between the two groups when comparing bleeding and anatomical and non-anatomical errors. Simulation-based training and targeted instructions enabled the trainees to perform a simulated thoracoscopic lobectomy. Traditional black-box training was more effective than virtual-reality laparoscopy training. Thus, a dedicated simulator for thoracoscopy should be available before establishing systematic virtual-reality training programs for trainees in thoracic surgery.

  9. An innovative training program based on virtual reality and treadmill: effects on gait of persons with multiple sclerosis.

    PubMed

    Peruzzi, Agnese; Zarbo, Ignazio Roberto; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat

    2017-07-01

    In this single blind randomized controlled trial, we examined the effect of a virtual reality-based training on gait of people with multiple sclerosis. Twenty-five individuals with multiple sclerosis with mild to moderate disability were randomly assigned to either the control group (n = 11) or the experimental group (n = 14). The subjects in the control group received treadmill training. Subjects in the experimental group received virtual reality based treadmill training. Clinical measures and gait parameters were evaluated. Subjects in both the groups significantly improved the walking endurance and speed, cadence and stride length, lower limb joint ranges of motion and powers, during single and dual task gait. Moreover, subjects in the experimental group also improved balance, as indicated by the results of the clinical motor tests (p < 0.05). Between-group comparisons revealed that the experimental group improved significantly more than control group in hip range of motion and hip generated power at terminal stance at post-training. Our results support the perceived benefits of training programs that incorporate virtual reality to improve gait measures in individuals with multiple sclerosis. Implication of rehabilitation Gait deficits are common in multiple sclerosis (85%) and worsen during dual task activities. Intensive and progressive treadmill training, with and without virtual reality, is effective on dual task gait in persons with multiple sclerosis. Virtual reality-based treadmill training requiring obstacle negotiation increases the range of motion and the power generated at the hip, consequently allowing longer stride length and, consequently, higher gait speed.

  10. [Application of 3D virtual reality technology with multi-modality fusion in resection of glioma located in central sulcus region].

    PubMed

    Chen, T N; Yin, X T; Li, X G; Zhao, J; Wang, L; Mu, N; Ma, K; Huo, K; Liu, D; Gao, B Y; Feng, H; Li, F

    2018-05-08

    Objective: To explore the clinical and teaching application value of virtual reality technology in preoperative planning and intraoperative guide of glioma located in central sulcus region. Method: Ten patients with glioma in the central sulcus region were proposed to surgical treatment. The neuro-imaging data, including CT, CTA, DSA, MRI, fMRI were input to 3dgo sczhry workstation for image fusion and 3D reconstruction. Spatial relationships between the lesions and the surrounding structures on the virtual reality image were obtained. These images were applied to the operative approach design, operation process simulation, intraoperative auxiliary decision and the training of specialist physician. Results: Intraoperative founding of 10 patients were highly consistent with preoperative simulation with virtual reality technology. Preoperative 3D reconstruction virtual reality images improved the feasibility of operation planning and operation accuracy. This technology had not only shown the advantages for neurological function protection and lesion resection during surgery, but also improved the training efficiency and effectiveness of dedicated physician by turning the abstract comprehension to virtual reality. Conclusion: Image fusion and 3D reconstruction based virtual reality technology in glioma resection is helpful for formulating the operation plan, improving the operation safety, increasing the total resection rate, and facilitating the teaching and training of the specialist physician.

  11. Effects of virtual reality for stroke individuals based on the International Classification of Functioning and Health: a systematic review.

    PubMed

    Palma, Gisele Carla Dos Santos; Freitas, Tatiana Beline; Bonuzzi, Giordano Márcio Gatinho; Soares, Marcos Antonio Arlindo; Leite, Paulo Henrique Wong; Mazzini, Natália Araújo; Almeida, Murilo Ruas Groschitz; Pompeu, José Eduardo; Torriani-Pasin, Camila

    2017-05-01

    This review determines the effects of virtual reality interventions for stroke subjects based on the International Classification of Functioning, Disability,and Health (ICF) framework. Virtual reality is a promising tool for therapy for stroke rehabilitation, but the effects of virtual reality interventions on post-stroke patients based on the specific ICF domains (Body Structures, Body Functions, Activity, and Participation) have not been investigated. A systematic review was conducted, including trials with adults with a clinical diagnosis of a chronic, subacute, or acute stroke. Eligible trials had to include studies with an intervention protocol and follow-up, with a focus on upper limbs and/or lower limbs and/or balance. The Physiotherapy Evidence Database (PEDro) was used to assess the methodological quality of randomized controlled trials. Each trial was separated according to methodological quality into a high-quality trial (PEDro ≥ 6) and a low-quality trial (PEDro ≤ 6). Only high-quality trials were analyzed specifically based on the outcome of these trials. In total, 54 trials involving 1811 participants were included. Of the papers included and considered high quality, 14 trials evaluated areas of the Body Structures component, 20 trials of the Body Functions domain, 17 trials of the Activity component, and 8 trials of the Participation domain. In relation to ICF Part 2, four trials evaluated areas of the Personal Factors component and one trial evaluated domains of the Environmental Factors component. The effects of virtual reality on stroke rehabilitation based on the ICF framework are positive in Body Function and Body Structure. However, the results in the domains Activity and Participation are inconclusive. More high-quality clinical trials are needed to confirm the effectiveness of virtual reality in the domains of Activity and Participation.

  12. A Feasibility Study of Virtual Reality-Based Coping Skills Training for Nicotine Dependence

    ERIC Educational Resources Information Center

    Bordnick, Patrick S.; Traylor, Amy C.; Carter, Brian L.; Graap, Ken M.

    2012-01-01

    Objective: Virtual reality (VR)-based cue reactivity has been successfully used for the assessment of drug craving. Going beyond assessment of cue reactivity, a novel VR-based treatment approach for smoking cessation was developed and tested for feasibility. Method: In a randomized experiment, 10-week treatment feasibility trial, 46…

  13. A computer-based training system combining virtual reality and multimedia

    NASA Technical Reports Server (NTRS)

    Stansfield, Sharon A.

    1993-01-01

    Training new users of complex machines is often an expensive and time-consuming process. This is particularly true for special purpose systems, such as those frequently encountered in DOE applications. This paper presents a computer-based training system intended as a partial solution to this problem. The system extends the basic virtual reality (VR) training paradigm by adding a multimedia component which may be accessed during interaction with the virtual environment. The 3D model used to create the virtual reality is also used as the primary navigation tool through the associated multimedia. This method exploits the natural mapping between a virtual world and the real world that it represents to provide a more intuitive way for the student to interact with all forms of information about the system.

  14. Virtual reality and the traditional method for phlebotomy training among college of nursing students in Kuwait: implications for nursing education and practice.

    PubMed

    Vidal, Victoria L; Ohaeri, Beatrice M; John, Pamela; Helen, Delles

    2013-01-01

    This quasi-experimental study, with a control group and experimental group, compares the effectiveness of virtual reality simulators on developing phlebotomy skills of nursing students with the effectiveness of traditional methods of teaching. Performance of actual phlebotomy on a live client was assessed after training, using a standardized form. Findings showed that students who were exposed to the virtual reality simulator performed better in the following performance metrics: pain factor, hematoma formation, and number of reinsertions. This study confirms that the use of the virtual reality-based system to supplement the traditional method may be the optimal program for training.

  15. Sense of presence and anxiety during virtual social interactions between a human and virtual humans.

    PubMed

    Morina, Nexhmedin; Brinkman, Willem-Paul; Hartanto, Dwi; Emmelkamp, Paul M G

    2014-01-01

    Virtual reality exposure therapy (VRET) has been shown to be effective in treatment of anxiety disorders. Yet, there is lack of research on the extent to which interaction between the individual and virtual humans can be successfully implanted to increase levels of anxiety for therapeutic purposes. This proof-of-concept pilot study aimed at examining levels of the sense of presence and anxiety during exposure to virtual environments involving social interaction with virtual humans and using different virtual reality displays. A non-clinical sample of 38 participants was randomly assigned to either a head-mounted display (HMD) with motion tracker and sterescopic view condition or a one-screen projection-based virtual reality display condition. Participants in both conditions engaged in free speech dialogues with virtual humans controlled by research assistants. It was hypothesized that exposure to virtual social interactions will elicit moderate levels of sense of presence and anxiety in both groups. Further it was expected that participants in the HMD condition will report higher scores of sense of presence and anxiety than participants in the one-screen projection-based display condition. Results revealed that in both conditions virtual social interactions were associated with moderate levels of sense of presence and anxiety. Additionally, participants in the HMD condition reported significantly higher levels of presence than those in the one-screen projection-based display condition (p = .001). However, contrary to the expectations neither the average level of anxiety nor the highest level of anxiety during exposure to social virtual environments differed between the groups (p = .97 and p = .75, respectively). The findings suggest that virtual social interactions can be successfully applied in VRET to enhance sense of presence and anxiety. Furthermore, our results indicate that one-screen projection-based displays can successfully activate levels of anxiety in social virtual environments. The outcome can prove helpful in using low-cost projection-based virtual reality environments for treating individuals with social phobia.

  16. The 'mad scientists': psychoanalysis, dream and virtual reality.

    PubMed

    Leclaire, Marie

    2003-04-01

    The author explores the concept of reality-testing as a means of assessing the relationship with reality that prevails in dream and in virtual reality. Based on a model developed by Jean Laplanche, she compares these activities in detail in order to determine their respective independence from the function of reality-testing. By carefully examining the concept of hallucination in the writings of Freud and Daniel Dennett, the author seeks to pinpoint the specific modalities of interaction between perceptions, ideas, wishes and actions that converge in the 'belief' and in the 'sense of reality'. The paper's main thesis consists of the distinction that it draws between immediacy-testing and reality-testing, with the further argument that this distinction not only dissipates the conceptual vagueness that generally surrounds the latter of the two concepts but also that it promotes a more precise analysis of the function of reality in dream and in virtual reality.

  17. Effectiveness of conventional versus virtual reality-based balance exercises in vestibular rehabilitation for unilateral peripheral vestibular loss: results of a randomized controlled trial.

    PubMed

    Meldrum, Dara; Herdman, Susan; Vance, Roisin; Murray, Deirdre; Malone, Kareena; Duffy, Douglas; Glennon, Aine; McConn-Walsh, Rory

    2015-07-01

    To compare the effectiveness of virtual reality-based balance exercises to conventional balance exercises during vestibular rehabilitation in patients with unilateral peripheral vestibular loss (UVL). Assessor-blind, randomized controlled trial. Two acute care university teaching hospitals. Patients with UVL (N=71) who had dizziness/vertigo, and gait and balance impairment. Patients with UVL were randomly assigned to receive 6 weeks of either conventional (n=36) or virtual reality-based (n=35) balance exercises during vestibular rehabilitation. The virtual reality-based group received an off-the-shelf virtual reality gaming system for home exercise, and the conventional group received a foam balance mat. Treatment comprised weekly visits to a physiotherapist and a daily home exercise program. The primary outcome was self-preferred gait speed. Secondary outcomes included other gait parameters and tasks, Sensory Organization Test (SOT), dynamic visual acuity, Hospital Anxiety and Depression Scale, Vestibular Rehabilitation Benefits Questionnaire, and Activities Balance Confidence Questionnaire. The subjective experience of vestibular rehabilitation was measured with a questionnaire. Both groups improved, but there were no significant differences in gait speed between the groups postintervention (mean difference, -.03m/s; 95% confidence interval [CI], -.09 to .02m/s). There were also no significant differences between the groups in SOT scores (mean difference, .82%; 95% CI, -5.00% to 6.63%) or on any of the other secondary outcomes (P>.05). In both groups, adherence to exercise was high (∼77%), but the virtual reality-based group reported significantly more enjoyment (P=.001), less difficulty with (P=.009) and less tiredness after (P=.03) balance exercises. At 6 months, there were no significant between-group differences in physical outcomes. Virtual reality-based balance exercises performed during vestibular rehabilitation were not superior to conventional balance exercises during vestibular rehabilitation but may provide a more enjoyable method of retraining balance after unilateral peripheral vestibular loss. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Visuo-Haptic Mixed Reality with Unobstructed Tool-Hand Integration.

    PubMed

    Cosco, Francesco; Garre, Carlos; Bruno, Fabio; Muzzupappa, Maurizio; Otaduy, Miguel A

    2013-01-01

    Visuo-haptic mixed reality consists of adding to a real scene the ability to see and touch virtual objects. It requires the use of see-through display technology for visually mixing real and virtual objects, and haptic devices for adding haptic interaction with the virtual objects. Unfortunately, the use of commodity haptic devices poses obstruction and misalignment issues that complicate the correct integration of a virtual tool and the user's real hand in the mixed reality scene. In this work, we propose a novel mixed reality paradigm where it is possible to touch and see virtual objects in combination with a real scene, using commodity haptic devices, and with a visually consistent integration of the user's hand and the virtual tool. We discuss the visual obstruction and misalignment issues introduced by commodity haptic devices, and then propose a solution that relies on four simple technical steps: color-based segmentation of the hand, tracking-based segmentation of the haptic device, background repainting using image-based models, and misalignment-free compositing of the user's hand. We have developed a successful proof-of-concept implementation, where a user can touch virtual objects and interact with them in the context of a real scene, and we have evaluated the impact on user performance of obstruction and misalignment correction.

  19. Vicher: A Virtual Reality Based Educational Module for Chemical Reaction Engineering.

    ERIC Educational Resources Information Center

    Bell, John T.; Fogler, H. Scott

    1996-01-01

    A virtual reality application for undergraduate chemical kinetics and reactor design education, Vicher (Virtual Chemical Reaction Model) was originally designed to simulate a portion of a modern chemical plant. Vicher now consists of two programs: Vicher I that models catalyst deactivation and Vicher II that models nonisothermal effects in…

  20. A DBR Framework for Designing Mobile Virtual Reality Learning Environments

    ERIC Educational Resources Information Center

    Cochrane, Thomas Donald; Cook, Stuart; Aiello, Stephen; Christie, Duncan; Sinfield, David; Steagall, Marcus; Aguayo, Claudio

    2017-01-01

    This paper proposes a design based research (DBR) framework for designing mobile virtual reality learning environments. The application of the framework is illustrated by two design-based research projects that aim to develop more authentic educational experiences and learner-centred pedagogies in higher education. The projects highlight the first…

  1. Virtual Reality: Teaching Tool of the Twenty-First Century?

    ERIC Educational Resources Information Center

    Hoffman, Helene; Vu, Dzung

    1997-01-01

    Virtual reality-based procedural and surgical simulations promise to revolutionize medical training. A wide range of simulations representing diverse content areas and varied implementation strategies are under development or in early use. The new systems will make broad-based training experiences available for students at all levels without risks…

  2. Virtual-Reality-Based Social Interaction Training for Children with High-Functioning Autism

    ERIC Educational Resources Information Center

    Ke, Fengfeng; Im, Tami

    2013-01-01

    Employing the multiple-baseline across-subjects design, the authors examined the implementation and potential effect of a virtual-reality-based social interaction program on the interaction and communication performance of children with high functioning autism. The data were collected via behavior observation and analysis, questionnaires, and…

  3. A Physiologically Informed Virtual Reality Based Social Communication System for Individuals with Autism

    ERIC Educational Resources Information Center

    Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan

    2015-01-01

    Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components…

  4. An investigation of the efficacy of collaborative virtual reality systems for moderated remote usability testing.

    PubMed

    Chalil Madathil, Kapil; Greenstein, Joel S

    2017-11-01

    Collaborative virtual reality-based systems have integrated high fidelity voice-based communication, immersive audio and screen-sharing tools into virtual environments. Such three-dimensional collaborative virtual environments can mirror the collaboration among usability test participants and facilitators when they are physically collocated, potentially enabling moderated usability tests to be conducted effectively when the facilitator and participant are located in different places. We developed a virtual collaborative three-dimensional remote moderated usability testing laboratory and employed it in a controlled study to evaluate the effectiveness of moderated usability testing in a collaborative virtual reality-based environment with two other moderated usability testing methods: the traditional lab approach and Cisco WebEx, a web-based conferencing and screen sharing approach. Using a mixed methods experimental design, 36 test participants and 12 test facilitators were asked to complete representative tasks on a simulated online shopping website. The dependent variables included the time taken to complete the tasks; the usability defects identified and their severity; and the subjective ratings on the workload index, presence and satisfaction questionnaires. Remote moderated usability testing methodology using a collaborative virtual reality system performed similarly in terms of the total number of defects identified, the number of high severity defects identified and the time taken to complete the tasks with the other two methodologies. The overall workload experienced by the test participants and facilitators was the least with the traditional lab condition. No significant differences were identified for the workload experienced with the virtual reality and the WebEx conditions. However, test participants experienced greater involvement and a more immersive experience in the virtual environment than in the WebEx condition. The ratings for the virtual environment condition were not significantly different from those for the traditional lab condition. The results of this study suggest that participants were productive and enjoyed the virtual lab condition, indicating the potential of a virtual world based approach as an alternative to conventional approaches for synchronous usability testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Virtual reality and robotics for stroke rehabilitation: where do we go from here?

    PubMed

    Wade, Eric; Winstein, Carolee J

    2011-01-01

    Promoting functional recovery after stroke requires collaborative and innovative approaches to neurorehabilitation research. Task-oriented training (TOT) approaches that include challenging, adaptable, and meaningful activities have led to successful outcomes in several large-scale multisite definitive trials. This, along with recent technological advances of virtual reality and robotics, provides a fertile environment for furthering clinical research in neurorehabilitation. Both virtual reality and robotics make use of multimodal sensory interfaces to affect human behavior. In the therapeutic setting, these systems can be used to quantitatively monitor, manipulate, and augment the users' interaction with their environment, with the goal of promoting functional recovery. This article describes recent advances in virtual reality and robotics and the synergy with best clinical practice. Additionally, we describe the promise shown for automated assessments and in-home activity-based interventions. Finally, we propose a broader approach to ensuring that technology-based assessment and intervention complement evidence-based practice and maintain a patient-centered perspective.

  6. Immersive virtual reality improves movement patterns in patients after ACL reconstruction: implications for enhanced criteria-based return-to-sport rehabilitation.

    PubMed

    Gokeler, Alli; Bisschop, Marsha; Myer, Gregory D; Benjaminse, Anne; Dijkstra, Pieter U; van Keeken, Helco G; van Raay, Jos J A M; Burgerhof, Johannes G M; Otten, Egbert

    2016-07-01

    The purpose of this study was to evaluate the influence of immersion in a virtual reality environment on knee biomechanics in patients after ACL reconstruction (ACLR). It was hypothesized that virtual reality techniques aimed to change attentional focus would influence altered knee flexion angle, knee extension moment and peak vertical ground reaction force (vGRF) in patients following ACLR. Twenty athletes following ACLR and 20 healthy controls (CTRL) performed a step-down task in both a non-virtual reality environment and a virtual reality environment displaying a pedestrian traffic scene. A motion analysis system and force plates were used to measure kinematics and kinetics during a step-down task to analyse each single-leg landing. A significant main effect was found for environment for knee flexion excursion (P = n.s.). Significant interaction differences were found between environment and groups for vGRF (P = 0.004), knee moment (P < 0.001), knee angle at peak vGRF (P = 0.01) and knee flexion excursion (P = 0.03). There was larger effect of virtual reality environment on knee biomechanics in patients after ACLR compared with controls. Patients after ACLR immersed in virtual reality environment demonstrated knee joint biomechanics that approximate those of CTRL. The results of this study indicate that a realistic virtual reality scenario may distract patients after ACLR from conscious motor control. Application of clinically available technology may aid in current rehabilitation programmes to target altered movement patterns after ACLR. Diagnostic study, Level III.

  7. Virtual reality training in laparoscopic surgery: A systematic review & meta-analysis.

    PubMed

    Alaker, Medhat; Wynn, Greg R; Arulampalam, Tan

    2016-05-01

    Laparoscopic surgery requires a different and sometimes more complex skill set than does open surgery. Shortened working hours, less training times, and patient safety issues necessitates that these skills need to be acquired outside the operating room. Virtual reality simulation in laparoscopic surgery is a growing field, and many studies have been published to determine its effectiveness. This systematic review and meta-analysis aims to evaluate virtual reality simulation in laparoscopic abdominal surgery in comparison to other simulation models and to no training. A systematic literature search was carried out until January 2014 in full adherence to PRISMA guidelines. All randomised controlled studies comparing virtual reality training to other models of training or to no training were included. Only studies utilizing objective and validated assessment tools were included. Thirty one randomised controlled trials that compare virtual reality training to other models of training or to no training were included. The results of the meta-analysis showed that virtual reality simulation is significantly more effective than video trainers, and at least as good as box trainers. The use of Proficiency-based VR training, under supervision with prompt instructions and feedback, and the use of haptic feedback, has proven to be the most effective way of delivering the virtual reality training. The incorporation of virtual reality training into surgical training curricula is now necessary. A unified platform of training needs to be established. Further studies to assess the impact on patient outcomes and on hospital costs are necessary. (PROSPERO Registration number: CRD42014010030). Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  8. Reasons to Use Virtual Reality in Education and Training Courses and a Model to Determine When to Use Virtual Reality

    ERIC Educational Resources Information Center

    Pantelidis, Veronica S.

    2009-01-01

    Many studies have been conducted on the use of virtual reality in education and training. This article lists examples of such research. Reasons to use virtual reality are discussed. Advantages and disadvantages of using virtual reality are presented, as well as suggestions on when to use and when not to use virtual reality. A model that can be…

  9. Development of a low-cost virtual reality workstation for training and education

    NASA Technical Reports Server (NTRS)

    Phillips, James A.

    1996-01-01

    Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) it involves 3-dimensional computer graphics; (2) it includes real-time feedback and response to user actions; and (3) it must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, but the high cost of VR technology has limited its practical application to fields with big budgets, such as military combat simulation, commercial pilot training, and certain projects within the space program. However, in the last year there has been a revolution in the cost of VR technology. The speed of inexpensive personal computers has increased dramatically, especially with the introduction of the Pentium processor and the PCI bus for IBM-compatibles, and the cost of high-quality virtual reality peripherals has plummeted. The result is that many public schools, colleges, and universities can afford a PC-based workstation capable of running immersive virtual reality applications. My goal this summer was to assemble and evaluate such a system.

  10. [Virtual reality simulation training in gynecology: review and perspectives].

    PubMed

    Ricard-Gauthier, Dominique; Popescu, Silvia; Benmohamed, Naida; Petignat, Patrick; Dubuisson, Jean

    2016-10-26

    Laparoscopic simulation has rapidly become an important tool for learning and acquiring technical skills in surgery. It is based on two different complementary pedagogic tools : the box model trainer and the virtual reality simulator. The virtual reality simulator has shown its efficiency by improving surgical skills, decreasing operating time, improving economy of movements and improving self-confidence. The main objective of this tool is the opportunity to easily organize a regular, structured and uniformed training program enabling an automated individualized feedback.

  11. The effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis: a randomized controlled trial.

    PubMed

    Park, Jin-Hyuck; Park, Ji-Hyuk

    2016-03-01

    [Purpose] The purpose of this study was to investigate the effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis. [Subjects] The subjects were chronic stroke patients with hemiparesis. [Methods] Thirty subjects were randomly assigned to either the control group or experimental group. All subjects received 20 sessions (5 days in a week) of virtual reality movement therapy using the Nintendo Wii. In addition to Wii-based virtual reality movement therapy, experimental group subjects performed mental practice consisting of 5 minutes of relaxation, Wii games imagination, and normalization phases before the beginning of Wii games. To compare the two groups, the upper extremity subtest of the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log were performed. [Results] Both groups showed statistically significant improvement in the Fugl-Meyer Assessment, Box and Block Test, and quality of the movement subscale of Motor Activity Log after the interventions. Also, there were significant differences in the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log between the two groups. [Conclusion] Game-based virtual reality movement therapy alone may be helpful to improve functional recovery of the upper extremity, but the addition of MP produces a lager improvement.

  12. Feedback from video for virtual reality Navigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsap, L V

    2000-10-27

    Important preconditions for wide acceptance of virtual reality (VR) systems include their comfort, ease and naturalness to use. Most existing trackers super from discomfort-related issues. For example, body-based trackers (hand controllers, joysticks, helmet attachments, etc.) restrict spontaneity and naturalness of motion, while ground-based devices (e.g., hand controllers) limit the workspace by literally binding an operator to the ground. There are similar problems with controls. This paper describes using real-time video with registered depth information (from a commercially available camera) for virtual reality navigation. Camera-based setup can replace cumbersome trackers. The method includes selective depth processing for increased speed, and amore » robust skin-color segmentation for accounting illumination variations.« less

  13. Applied virtual reality at the Research Triangle Institute

    NASA Technical Reports Server (NTRS)

    Montoya, R. Jorge

    1994-01-01

    Virtual Reality (VR) is a way for humans to use computers in visualizing, manipulating and interacting with large geometric data bases. This paper describes a VR infrastructure and its application to marketing, modeling, architectural walk through, and training problems. VR integration techniques used in these applications are based on a uniform approach which promotes portability and reusability of developed modules. For each problem, a 3D object data base is created using data captured by hand or electronically. The object's realism is enhanced through either procedural or photo textures. The virtual environment is created and populated with the data base using software tools which also support interactions with and immersivity in the environment. These capabilities are augmented by other sensory channels such as voice recognition, 3D sound, and tracking. Four applications are presented: a virtual furniture showroom, virtual reality models of the North Carolina Global TransPark, a walk through the Dresden Fraunenkirche, and the maintenance training simulator for the National Guard.

  14. Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training.

    PubMed

    Cohen, Alan R; Lohani, Subash; Manjila, Sunil; Natsupakpong, Suriya; Brown, Nathan; Cavusoglu, M Cenk

    2013-08-01

    Virtual reality simulation is a promising alternative to training surgical residents outside the operating room. It is also a useful aide to anatomic study, residency training, surgical rehearsal, credentialing, and recertification. Surgical simulation is based on a virtual reality with varying degrees of immersion and realism. Simulators provide a no-risk environment for harmless and repeatable practice. Virtual reality has three main components of simulation: graphics/volume rendering, model behavior/tissue deformation, and haptic feedback. The challenge of accurately simulating the forces and tactile sensations experienced in neurosurgery limits the sophistication of a virtual simulator. The limited haptic feedback available in minimally invasive neurosurgery makes it a favorable subject for simulation. Virtual simulators with realistic graphics and force feedback have been developed for ventriculostomy, intraventricular surgery, and transsphenoidal pituitary surgery, thus allowing preoperative study of the individual anatomy and increasing the safety of the procedure. The authors also present experiences with their own virtual simulation of endoscopic third ventriculostomy.

  15. Exploring barriers and facilitators to the clinical use of virtual reality for post-stroke unilateral spatial neglect assessment.

    PubMed

    Ogourtsova, Tatiana; Archambault, Philippe S; Lamontagne, Anouk

    2017-11-07

    Hemineglect, defined as a failure to attend to the contralesional side of space, is a prevalent and disabling post-stroke deficit. Conventional hemineglect assessments lack sensitivity as they contain mainly non-functional tasks performed in near-extrapersonal space, using static, two-dimensional methods. This is of concern given that hemineglect is a strong predictor for functional deterioration, limited post-stroke recovery, and difficulty in community reintegration. With the emerging field of virtual reality, several virtual tools have been proposed and have reported better sensitivity in neglect-related deficits detection than conventional methods. However, these and future virtual reality-based tools are yet to be implemented in clinical practice. The present study aimed to explore the barriers/facilitators perceived by clinicians in the use of virtual reality for hemineglect assessment; and to identify features of an optimal virtual assessment. A qualitative descriptive process, in the form of focus groups, self-administered questionnaire and individual interviews was used. Two focus groups (n = 11 clinicians) were conducted and experts in the field (n = 3) were individually interviewed. Several barriers and facilitators, including personal, institutional, client suitability, and equipment factors, were identified. Clinicians and experts in the field reported numerous features for the virtual tool optimization. Factors identified through this study lay the foundation for the development of a knowledge translation initiative towards an implementation of a virtual assessment for hemineglect. Addressing the identified barriers/facilitators during implementation and incorporating the optimal features in the design of the virtual assessment could assist and promote its eventual adoption in clinical settings. Implications for rehabilitation A multimodal and active knowledge translation intervention built on the presently identified modifiable factors is suggested to be implemented to support the clinical integration of a virtual reality-based assessment for post-stroke hemineglect. To amplify application and usefulness of a virtual-reality based tool in the assessment of post-stroke hemineglect, optimal features identified in the present study should be incorporated in the design of such technology.

  16. [The virtual reality simulation research of China Mechanical Virtual Human based on the Creator/Vega].

    PubMed

    Wei, Gaofeng; Tang, Gang; Fu, Zengliang; Sun, Qiuming; Tian, Feng

    2010-10-01

    The China Mechanical Virtual Human (CMVH) is a human musculoskeletal biomechanical simulation platform based on China Visible Human slice images; it has great realistic application significance. In this paper is introduced the construction method of CMVH 3D models. Then a simulation system solution based on Creator/Vega is put forward for the complex and gigantic data characteristics of the 3D models. At last, combined with MFC technology, the CMVH simulation system is developed and a running simulation scene is given. This paper provides a new way for the virtual reality application of CMVH.

  17. Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI.

    PubMed

    Hoffman, Hunter G; Richards, Todd L; Coda, Barbara; Bills, Aric R; Blough, David; Richards, Anne L; Sharar, Sam R

    2004-06-07

    This study investigated the neural correlates of virtual reality analgesia. Virtual reality significantly reduced subjective pain ratings (i.e. analgesia). Using fMRI, pain-related brain activity was measured for each participant during conditions of no virtual reality and during virtual reality (order randomized). As predicted, virtual reality significantly reduced pain-related brain activity in all five regions of interest; the anterior cingulate cortex, primary and secondary somatosensory cortex, insula, and thalamus (p<0.002, corrected). Results showed direct modulation of human brain pain responses by virtual reality distraction. Copyright 2004 Lippincott Williams and Wilkins

  18. Students' Expectations of the Learning Process in Virtual Reality and Simulation-Based Learning Environments

    ERIC Educational Resources Information Center

    Keskitalo, Tuulikki

    2012-01-01

    Expectations for simulations in healthcare education are high; however, little is known about healthcare students' expectations of the learning process in virtual reality (VR) and simulation-based learning environments (SBLEs). This research aims to describe first-year healthcare students' (N=97) expectations regarding teaching, studying, and…

  19. Usual and Virtual Reality Video Game-Based Physiotherapy for Children and Youth with Acquired Brain Injuries

    ERIC Educational Resources Information Center

    Levac, Danielle; Miller, Patricia; Missiuna, Cheryl

    2012-01-01

    Little is known about how therapists promote learning of functional motor skills for children with acquired brain injuries. This study explores physiotherapists' description of these interventions in comparison to virtual reality (VR) video game-based therapy. Six physiotherapists employed at a children's rehabilitation center participated in…

  20. Virtual Reality versus Computer-Aided Exposure Treatments for Fear of Flying

    ERIC Educational Resources Information Center

    Tortella-Feliu, Miquel; Botella, Cristina; Llabres, Jordi; Breton-Lopez, Juana Maria; del Amo, Antonio Riera; Banos, Rosa M.; Gelabert, Joan M.

    2011-01-01

    Evidence is growing that two modalities of computer-based exposure therapies--virtual reality and computer-aided psychotherapy--are effective in treating anxiety disorders, including fear of flying. However, they have not yet been directly compared. The aim of this study was to analyze the efficacy of three computer-based exposure treatments for…

  1. Experience of Adult Facilitators in a Virtual-Reality-Based Social Interaction Program for Children with Autism

    ERIC Educational Resources Information Center

    Ke, Fengfeng; Im, Tami; Xue, Xinrong; Xu, Xinhao; Kim, Namju; Lee, Sungwoong

    2015-01-01

    This phenomenological study explored and described the experiences and perceptions of adult facilitators who facilitated virtual-reality-based social interaction for children with autism. Extensive data were collected from iterative, in-depth interviews; online activities observation; and video analysis. Four salient themes emerged through the…

  2. Clinician perceptions of virtual reality to assess and treat returning veterans.

    PubMed

    Kramer, Teresa L; Pyne, Jeffrey M; Kimbrell, Timothy A; Savary, Patricia E; Smith, Jeffrey L; Jegley, Susan M

    2010-11-01

    Implementation of evidence-based, innovative treatments is necessary to address posttraumatic stress disorder (PTSD) and related mental health problems of Operation Enduring Freedom and Operation Iraqi Freedom (OEF-OIF) military service personnel. The purpose of this study was to characterize mental health clinicians' perceptions of virtual reality as an assessment tool or adjunct to exposure therapy. Focus groups were conducted with 18 prescribing and nonprescribing mental health clinicians within the Veterans Health Administration. Group discussion was digitally recorded, downloaded into Ethnograph software, and coded to arrive at primary, secondary, and tertiary themes. Most frequently mentioned barriers pertained to aspects of virtual reality, followed by veteran characteristics. Organizational barriers were more relevant when implementing virtual reality as a treatment adjunct. Although the study demonstrated that use of virtual reality as a therapy was feasible and acceptable to clinicians, successful implementation of the technology as an assessment and treatment tool will depend on consideration of the facilitators and barriers that were identified.

  3. Investigation of virtual reality concept based on system analysis of conceptual series

    NASA Astrophysics Data System (ADS)

    Romanova, A.; Shuklin, D. A.; Kalinkina, M. E.; Gotskaya, I. B.; Ponomarev, Y. E.

    2018-05-01

    The paper covers approaches to the definition of virtual reality from the point of view of the humanitarian sciences and technology. Each approach analyzing problems of concept perception of methods interpreted by representatives of philosophy, psychology and sociology is singled out. Terminological analysis of the basic concepts is carried out and their refinement is constructed in the process of comparing the concepts of virtuality and virtual reality. Using the analysis of selected sources, a number of singularity characteristics of the given concept are singled out and its definition is specified. Results consist in combining the interpretation of all approaches to determine the concept of virtual reality. Due to the use of a comprehensive approach to the definition of the investigated concept, which allows us to consider the object of research as a set of elements that are subject to study with the help of a corresponding set of methods, one can conclude that the concept under study is complex and multifaceted. The authors noted that virtual reality technologies have a flexible concept depending on the field of application.

  4. Community-based pedestrian safety training in virtual reality : a pragmatic trial.

    DOT National Transportation Integrated Search

    2015-06-01

    Child pedestrian injuries are a leading cause of mortality and morbidity across the United States : and the world. Repeated practice at the cognitive-perceptual task of crossing a street may lead to : safer pedestrian behavior. Virtual reality offers...

  5. Truck driver fatigue assessment using a virtual reality system.

    DOT National Transportation Integrated Search

    2016-10-17

    In this study, a fully immersive Virtual Reality (VR) based driving simulator was developed to serve : as a proof-of-concept that VR can be utilized to assess the level of fatigue (or drowsiness) truck : drivers typically experience during real...

  6. A novel augmented reality system of image projection for image-guided neurosurgery.

    PubMed

    Mahvash, Mehran; Besharati Tabrizi, Leila

    2013-05-01

    Augmented reality systems combine virtual images with a real environment. To design and develop an augmented reality system for image-guided surgery of brain tumors using image projection. A virtual image was created in two ways: (1) MRI-based 3D model of the head matched with the segmented lesion of a patient using MRIcro software (version 1.4, freeware, Chris Rorden) and (2) Digital photograph based model in which the tumor region was drawn using image-editing software. The real environment was simulated with a head phantom. For direct projection of the virtual image to the head phantom, a commercially available video projector (PicoPix 1020, Philips) was used. The position and size of the virtual image was adjusted manually for registration, which was performed using anatomical landmarks and fiducial markers position. An augmented reality system for image-guided neurosurgery using direct image projection has been designed successfully and implemented in first evaluation with promising results. The virtual image could be projected to the head phantom and was registered manually. Accurate registration (mean projection error: 0.3 mm) was performed using anatomical landmarks and fiducial markers position. The direct projection of a virtual image to the patients head, skull, or brain surface in real time is an augmented reality system that can be used for image-guided neurosurgery. In this paper, the first evaluation of the system is presented. The encouraging first visualization results indicate that the presented augmented reality system might be an important enhancement of image-guided neurosurgery.

  7. Virtual Reality Based Collaborative Design by Children with High-Functioning Autism: Design-Based Flexibility, Identity, and Norm Construction

    ERIC Educational Resources Information Center

    Ke, Fengfeng; Lee, Sungwoong

    2016-01-01

    This exploratory case study examined the process and potential impact of collaborative architectural design and construction in an OpenSimulator-based virtual reality (VR) on the social skills development of children with high-functioning autism (HFA). Two children with a formal medical diagnosis of HFA and one typically developing peer, aged…

  8. Virtual reality in the treatment of persecutory delusions: randomised controlled experimental study testing how to reduce delusional conviction.

    PubMed

    Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M

    2016-07-01

    Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Cognitive therapy using virtual reality could prove highly effective in treating delusions. © The Royal College of Psychiatrists 2016.

  9. Virtual reality in the treatment of persecutory delusions: randomised controlled experimental study testing how to reduce delusional conviction

    PubMed Central

    Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M.

    2016-01-01

    Background Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. Aims To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Method Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. Results In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Conclusion Cognitive therapy using virtual reality could prove highly effective in treating delusions. PMID:27151071

  10. Virtual reality and paranoid ideations in people with an 'at-risk mental state' for psychosis.

    PubMed

    Valmaggia, Lucia R; Freeman, Daniel; Green, Catherine; Garety, Philippa; Swapp, David; Antley, Angus; Prescott, Corinne; Fowler, David; Kuipers, Elizabeth; Bebbington, Paul; Slater, Mel; Broome, Matthew; McGuire, Philip K

    2007-12-01

    Virtual reality provides a means of studying paranoid thinking in controlled laboratory conditions. However, this method has not been used with a clinical group. To establish the feasibility and safety of using virtual reality methodology in people with an at-risk mental state and to investigate the applicability of a cognitive model of paranoia to this group. Twenty-one participants with an at-risk mental state were assessed before and after entering a virtual reality environment depicting the inside of an underground train. Virtual reality did not raise levels of distress at the time of testing or cause adverse experiences over the subsequent week. Individuals attributed mental states to virtual reality characters including hostile intent. Persecutory ideation in virtual reality was predicted by higher levels of trait paranoia, anxiety, stress, immersion in virtual reality, perseveration and interpersonal sensitivity. Virtual reality is an acceptable experimental technique for use with individuals with at-risk mental states. Paranoia in virtual reality was understandable in terms of the cognitive model of persecutory delusions.

  11. AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.

    PubMed

    Gaffary, Yoren; Le Gouis, Benoit; Marchal, Maud; Argelaguet, Ferran; Arnaldi, Bruno; Lecuyer, Anatole

    2017-11-01

    Does it feel the same when you touch an object in Augmented Reality (AR) or in Virtual Reality (VR)? In this paper we study and compare the haptic perception of stiffness of a virtual object in two situations: (1) a purely virtual environment versus (2) a real and augmented environment. We have designed an experimental setup based on a Microsoft HoloLens and a haptic force-feedback device, enabling to press a virtual piston, and compare its stiffness successively in either Augmented Reality (the virtual piston is surrounded by several real objects all located inside a cardboard box) or in Virtual Reality (the same virtual piston is displayed in a fully virtual scene composed of the same other objects). We have conducted a psychophysical experiment with 12 participants. Our results show a surprising bias in perception between the two conditions. The virtual piston is on average perceived stiffer in the VR condition compared to the AR condition. For instance, when the piston had the same stiffness in AR and VR, participants would select the VR piston as the stiffer one in 60% of cases. This suggests a psychological effect as if objects in AR would feel "softer" than in pure VR. Taken together, our results open new perspectives on perception in AR versus VR, and pave the way to future studies aiming at characterizing potential perceptual biases.

  12. Use of the stereoscopic virtual reality display system for the detection and characterization of intracranial aneurysms: A Icomparison with conventional computed tomography workstation and 3D rotational angiography.

    PubMed

    Liu, Xiujuan; Tao, Haiquan; Xiao, Xigang; Guo, Binbin; Xu, Shangcai; Sun, Na; Li, Maotong; Xie, Li; Wu, Changjun

    2018-07-01

    This study aimed to compare the diagnostic performance of the stereoscopic virtual reality display system with the conventional computed tomography (CT) workstation and three-dimensional rotational angiography (3DRA) for intracranial aneurysm detection and characterization, with a focus on small aneurysms and those near the bone. First, 42 patients with suspected intracranial aneurysms underwent both 256-row CT angiography (CTA) and 3DRA. Volume rendering (VR) images were captured using the conventional CT workstation. Next, VR images were transferred to the stereoscopic virtual reality display system. Two radiologists independently assessed the results that were obtained using the conventional CT workstation and stereoscopic virtual reality display system. The 3DRA results were considered as the ultimate reference standard. Based on 3DRA images, 38 aneurysms were confirmed in 42 patients. Two cases were misdiagnosed and 1 was missed when the traditional CT workstation was used. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of the conventional CT workstation were 94.7%, 85.7%, 97.3%, 75%, and99.3%, respectively, on a per-aneurysm basis. The stereoscopic virtual reality display system missed a case. The sensitivity, specificity, PPV, NPV, and accuracy of the stereoscopic virtual reality display system were 100%, 85.7%, 97.4%, 100%, and 97.8%, respectively. No difference was observed in the accuracy of the traditional CT workstation, stereoscopic virtual reality display system, and 3DRA in detecting aneurysms. The stereoscopic virtual reality display system has some advantages in detecting small aneurysms and those near the bone. The virtual reality stereoscopic vision obtained through the system was found as a useful tool in intracranial aneurysm diagnosis and pre-operative 3D imaging. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Virtual reality simulators and training in laparoscopic surgery.

    PubMed

    Yiannakopoulou, Eugenia; Nikiteas, Nikolaos; Perrea, Despina; Tsigris, Christos

    2015-01-01

    Virtual reality simulators provide basic skills training without supervision in a controlled environment, free of pressure of operating on patients. Skills obtained through virtual reality simulation training can be transferred on the operating room. However, relative evidence is limited with data available only for basic surgical skills and for laparoscopic cholecystectomy. No data exist on the effect of virtual reality simulation on performance on advanced surgical procedures. Evidence suggests that performance on virtual reality simulators reliably distinguishes experienced from novice surgeons Limited available data suggest that independent approach on virtual reality simulation training is not different from proctored approach. The effect of virtual reality simulators training on acquisition of basic surgical skills does not seem to be different from the effect the physical simulators. Limited data exist on the effect of virtual reality simulation training on the acquisition of visual spatial perception and stress coping skills. Undoubtedly, virtual reality simulation training provides an alternative means of improving performance in laparoscopic surgery. However, future research efforts should focus on the effect of virtual reality simulation on performance in the context of advanced surgical procedure, on standardization of training, on the possibility of synergistic effect of virtual reality simulation training combined with mental training, on personalized training. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  14. Intercepting real and simulated falling objects: what is the difference?

    PubMed

    Baurès, Robin; Benguigui, Nicolas; Amorim, Michel-Ange; Hecht, Heiko

    2009-10-30

    The use of virtual reality is nowadays common in many studies in the field of human perception and movement control, particularly in interceptive actions. However, the ecological validity of the simulation is often taken for granted without having been formally established. If participants were to perceive the real situation and its virtual equivalent in a different fashion, the generalization of the results obtained in virtual reality to real life would be highly questionable. We tested the ecological validity of virtual reality in this context by comparing the timing of interceptive actions based upon actually falling objects and their simulated counterparts. The results show very limited differences as a function of whether participants were confronted with a real ball or a simulation thereof. And when present, such differences were limited to the first trial only. This result validates the use of virtual reality when studying interceptive actions of accelerated stimuli.

  15. The potential of virtual reality-based training to enhance the functional autonomy of Alzheimer's disease patients in cooking activities: A single case study.

    PubMed

    Foloppe, Déborah A; Richard, Paul; Yamaguchi, Takehiko; Etcharry-Bouyx, Frédérique; Allain, Philippe

    2018-07-01

    Impairments in performing activities of daily living occur early in the course of Alzheimer's disease (AD). There is a great need to develop non-pharmacological therapeutic interventions likely to reduce dependency in everyday activities in AD patients. This study investigated whether it was possible to increase autonomy in these patients in cooking activities using interventions based on errorless learning, vanishing-cue, and virtual reality techniques. We recruited a 79-year-old woman who met NINCDS-ADRDA criteria for probable AD. She was trained in four cooking tasks for four days per task, one hour per day, in virtual and in real conditions. Outcome measures included subjective data concerning the therapeutic intervention and the experience of virtual reality, repeated assessments of training activities, neuropsychological scores, and self-esteem and quality of life measures. The results indicated that our patient could relearn some cooking activities using virtual reality techniques. Transfer to real life was also observed. Improvement of the task performance remained stable over time. This case report supports the value of a non-immersive virtual kitchen to help people with AD to relearn cooking activities.

  16. An efficient and scalable deformable model for virtual reality-based medical applications.

    PubMed

    Choi, Kup-Sze; Sun, Hanqiu; Heng, Pheng-Ann

    2004-09-01

    Modeling of tissue deformation is of great importance to virtual reality (VR)-based medical simulations. Considerable effort has been dedicated to the development of interactively deformable virtual tissues. In this paper, an efficient and scalable deformable model is presented for virtual-reality-based medical applications. It considers deformation as a localized force transmittal process which is governed by algorithms based on breadth-first search (BFS). The computational speed is scalable to facilitate real-time interaction by adjusting the penetration depth. Simulated annealing (SA) algorithms are developed to optimize the model parameters by using the reference data generated with the linear static finite element method (FEM). The mechanical behavior and timing performance of the model have been evaluated. The model has been applied to simulate the typical behavior of living tissues and anisotropic materials. Integration with a haptic device has also been achieved on a generic personal computer (PC) platform. The proposed technique provides a feasible solution for VR-based medical simulations and has the potential for multi-user collaborative work in virtual environment.

  17. Designing 3 Dimensional Virtual Reality Using Panoramic Image

    NASA Astrophysics Data System (ADS)

    Wan Abd Arif, Wan Norazlinawati; Wan Ahmad, Wan Fatimah; Nordin, Shahrina Md.; Abdullah, Azrai; Sivapalan, Subarna

    The high demand to improve the quality of the presentation in the knowledge sharing field is to compete with rapidly growing technology. The needs for development of technology based learning and training lead to an idea to develop an Oil and Gas Plant Virtual Environment (OGPVE) for the benefit of our future. Panoramic Virtual Reality learning based environment is essential in order to help educators overcome the limitations in traditional technical writing lesson. Virtual reality will help users to understand better by providing the simulations of real-world and hard to reach environment with high degree of realistic experience and interactivity. Thus, in order to create a courseware which will achieve the objective, accurate images of intended scenarios must be acquired. The panorama shows the OGPVE and helps to generate ideas to users on what they have learnt. This paper discusses part of the development in panoramic virtual reality. The important phases for developing successful panoramic image are image acquisition and image stitching or mosaicing. In this paper, the combination of wide field-of-view (FOV) and close up image used in this panoramic development are also discussed.

  18. BIM based virtual environment for fire emergency evacuation.

    PubMed

    Wang, Bin; Li, Haijiang; Rezgui, Yacine; Bradley, Alex; Ong, Hoang N

    2014-01-01

    Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management.

  19. Virtual reality for emergency training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altinkemer, K.

    1995-12-31

    Virtual reality is a sequence of scenes generated by a computer as a response to the five different senses. These senses are sight, sound, taste, touch, smell. Other senses that can be used in virtual reality include balance, pheromonal, and immunological senses. Many application areas include: leisure and entertainment, medicine, architecture, engineering, manufacturing, and training. Virtual reality is especially important when it is used for emergency training and management of natural disasters including earthquakes, floods, tornados and other situations which are hard to emulate. Classical training methods for these extraordinary environments lack the realistic surroundings that virtual reality can provide.more » In order for virtual reality to be a successful training tool the design needs to include certain aspects; such as how real virtual reality should be and how much fixed cost is entailed in setting up the virtual reality trainer. There are also pricing questions regarding the price per training session on virtual reality trainer, and the appropriate training time length(s).« less

  20. Investigating Learners' Attitudes toward Virtual Reality Learning Environments: Based on a Constructivist Approach

    ERIC Educational Resources Information Center

    Huang, Hsiu-Mei; Rauch, Ulrich; Liaw, Shu-Sheng

    2010-01-01

    The use of animation and multimedia for learning is now further extended by the provision of entire Virtual Reality Learning Environments (VRLE). This highlights a shift in Web-based learning from a conventional multimedia to a more immersive, interactive, intuitive and exciting VR learning environment. VRLEs simulate the real world through the…

  1. Virtual Reality-Based Technologies in Dental Medicine: Knowledge, Attitudes and Practice among Students and Practitioners

    ERIC Educational Resources Information Center

    Sabalic, Maja; Schoener, Jason D.

    2017-01-01

    Virtual reality-based technologies have been used in dentistry for almost two decades. Dental simulators, planning software and CAD/CAM (computer-aided design/computer-aided manufacturing) systems have significantly developed over the years and changed both dental education and clinical practice. This study aimed to assess the knowledge, attitudes…

  2. Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training.

    PubMed

    Fang, Te-Yung; Wang, Pa-Chun; Liu, Chih-Hsien; Su, Mu-Chun; Yeh, Shih-Ching

    2014-02-01

    Virtual reality simulation training may improve knowledge of anatomy and surgical skills. We evaluated a 3-dimensional, haptic, virtual reality temporal bone simulator for dissection training. The subjects were 7 otolaryngology residents (3 training sessions each) and 7 medical students (1 training session each). The virtual reality temporal bone simulation station included a computer with software that was linked to a force-feedback hand stylus, and the system recorded performance and collisions with vital anatomic structures. Subjects performed virtual reality dissections and completed questionnaires after the training sessions. Residents and students had favorable responses to most questions of the technology acceptance model (TAM) questionnaire. The average TAM scores were above neutral for residents and medical students in all domains, and the average TAM score for residents was significantly higher for the usefulness domain and lower for the playful domain than students. The average satisfaction questionnaire for residents showed that residents had greater overall satisfaction with cadaver temporal bone dissection training than training with the virtual reality simulator or plastic temporal bone. For medical students, the average comprehension score was significantly increased from before to after training for all anatomic structures. Medical students had significantly more collisions with the dura than residents. The residents had similar mean performance scores after the first and third training sessions for all dissection procedures. The virtual reality temporal bone simulator provided satisfactory training for otolaryngology residents and medical students. Copyright © 2013. Published by Elsevier Ireland Ltd.

  3. Immersive and interactive virtual reality to improve learning and retention of neuroanatomy in medical students: a randomized controlled study.

    PubMed

    Ekstrand, Chelsea; Jamal, Ali; Nguyen, Ron; Kudryk, Annalise; Mann, Jennifer; Mendez, Ivar

    2018-02-23

    Spatial 3-dimensional understanding of the brain is essential to learning neuroanatomy, and 3-dimensional learning techniques have been proposed as tools to enhance neuroanatomy training. The aim of this study was to examine the impact of immersive virtual-reality neuroanatomy training and compare it to traditional paper-based methods. In this randomized controlled study, participants consisted of first- or second-year medical students from the University of Saskatchewan recruited via email and posters displayed throughout the medical school. Participants were randomly assigned to the virtual-reality group or the paper-based group and studied the spatial relations between neural structures for 12 minutes after performing a neuroanatomy baseline test, with both test and control questions. A postintervention test was administered immediately after the study period and 5-9 days later. Satisfaction measures were obtained. Of the 66 participants randomly assigned to the study groups, 64 were included in the final analysis, 31 in the virtual-reality group and 33 in the paper-based group. The 2 groups performed comparably on the baseline questions and showed significant performance improvement on the test questions following study. There were no significant differences between groups for the control questions, the postintervention test questions or the 7-day postintervention test questions. Satisfaction survey results indicated that neurophobia was decreased. Results from this study provide evidence that training in neuroanatomy in an immersive and interactive virtual-reality environment may be an effective neuroanatomy learning tool that warrants further study. They also suggest that integration of virtual-reality into neuroanatomy training may improve knowledge retention, increase study motivation and decrease neurophobia. Copyright 2018, Joule Inc. or its licensors.

  4. Immersive and interactive virtual reality to improve learning and retention of neuroanatomy in medical students: a randomized controlled study

    PubMed Central

    Ekstrand, Chelsea; Jamal, Ali; Nguyen, Ron; Kudryk, Annalise; Mann, Jennifer; Mendez, Ivar

    2018-01-01

    Background: Spatial 3-dimensional understanding of the brain is essential to learning neuroanatomy, and 3-dimensional learning techniques have been proposed as tools to enhance neuroanatomy training. The aim of this study was to examine the impact of immersive virtual-reality neuroanatomy training and compare it to traditional paper-based methods. Methods: In this randomized controlled study, participants consisted of first- or second-year medical students from the University of Saskatchewan recruited via email and posters displayed throughout the medical school. Participants were randomly assigned to the virtual-reality group or the paper-based group and studied the spatial relations between neural structures for 12 minutes after performing a neuroanatomy baseline test, with both test and control questions. A postintervention test was administered immediately after the study period and 5-9 days later. Satisfaction measures were obtained. Results: Of the 66 participants randomly assigned to the study groups, 64 were included in the final analysis, 31 in the virtual-reality group and 33 in the paper-based group. The 2 groups performed comparably on the baseline questions and showed significant performance improvement on the test questions following study. There were no significant differences between groups for the control questions, the postintervention test questions or the 7-day postintervention test questions. Satisfaction survey results indicated that neurophobia was decreased. Interpretation: Results from this study provide evidence that training in neuroanatomy in an immersive and interactive virtual-reality environment may be an effective neuroanatomy learning tool that warrants further study. They also suggest that integration of virtual-reality into neuroanatomy training may improve knowledge retention, increase study motivation and decrease neurophobia. PMID:29510979

  5. [Application of virtual reality in the motor aspects of neurorehabilitation].

    PubMed

    Peñasco-Martín, Benito; de los Reyes-Guzmán, Ana; Gil-Agudo, Ángel; Bernal-Sahún, Alberto; Pérez-Aguilar, Beatriz; de la Peña-González, Ana Isabel

    2010-10-16

    Virtual reality allows the user to interact with elements within a simulated scene. In recent times we have been witness to the introduction of virtual reality-based devices as one of the most significant novelties in neurorehabilitation. To review the clinical applications of the developments based on virtual reality for the neurorehabilitation treatment of the motor aspects of the most frequent disabling processes with a neurological origin. A review was carried out of the Medline, Physiotherapy Evidence Database, Ovid and Cochrane Library databases up until April 2009. This was completed with a web search using Google. No clinical trial conducted on its effectiveness has been found to date. The information that was collected is based on the description of the various prototypes produced by the different groups involved in their development. In most cases they are clinical trials conducted with a small number of patients, which have focused more on testing the validity of the device and checking whether it works correctly than on attempting to prove its clinical effectiveness. Although most of the clinical applications refer to patients with stroke, there were also several applications for patients with spinal cord injuries, multiple sclerosis, Parkinson's disease or balance disorders. Virtual reality is a novel tool with a promising future in neurorehabilitation. Further studies are needed to demonstrate its clinical effectiveness as compared to the traditional techniques.

  6. The use of PC based VR in clinical medicine: the VREPAR projects.

    PubMed

    Riva, G; Bacchetta, M; Baruffi, M; Borgomainerio, E; Defrance, C; Gatti, F; Galimberti, C; Fontaneto, S; Marchi, S; Molinari, E; Nugues, P; Rinaldi, S; Rovetta, A; Ferretti, G S; Tonci, A; Wann, J; Vincelli, F

    1999-01-01

    Virtual reality (VR) is an emerging technology that alters the way individuals interact with computers: a 3D computer-generated environment in which a person can move about and interact as if he actually was inside it. Given to the high computational power required to create virtual environments, these are usually developed on expensive high-end workstations. However, the significant advances in PC hardware that have been made over the last three years, are making PC-based VR a possible solution for clinical assessment and therapy. VREPAR - Virtual Reality Environments for Psychoneurophysiological Assessment and Rehabilitation - are two European Community funded projects (Telematics for health - HC 1053/HC 1055 - http://www.psicologia.net) that are trying to develop a modular PC-based virtual reality system for the medical market. The paper describes the rationale of the developed modules and the preliminary results obtained.

  7. Virtual Reality and the Virtual Library.

    ERIC Educational Resources Information Center

    Oppenheim, Charles

    1993-01-01

    Explains virtual reality, including proper and improper uses of the term, and suggests ways that libraries might be affected by it. Highlights include elements of virtual reality systems; possible virtual reality applications, including architecture, the chemical industry, transport planning, armed forces, and entertainment; and the virtual…

  8. The effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis: a randomized controlled trial

    PubMed Central

    Park, Jin-Hyuck; Park, Ji-Hyuk

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis. [Subjects] The subjects were chronic stroke patients with hemiparesis. [Methods] Thirty subjects were randomly assigned to either the control group or experimental group. All subjects received 20 sessions (5 days in a week) of virtual reality movement therapy using the Nintendo Wii. In addition to Wii-based virtual reality movement therapy, experimental group subjects performed mental practice consisting of 5 minutes of relaxation, Wii games imagination, and normalization phases before the beginning of Wii games. To compare the two groups, the upper extremity subtest of the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log were performed. [Results] Both groups showed statistically significant improvement in the Fugl-Meyer Assessment, Box and Block Test, and quality of the movement subscale of Motor Activity Log after the interventions. Also, there were significant differences in the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log between the two groups. [Conclusion] Game-based virtual reality movement therapy alone may be helpful to improve functional recovery of the upper extremity, but the addition of MP produces a lager improvement. PMID:27134363

  9. Virtualisation Devices for Student Learning: Comparison between Desktop-Based (Oculus Rift) and Mobile-Based (Gear VR) Virtual Reality in Medical and Health Science Education

    ERIC Educational Resources Information Center

    Moro, Christian; Stromberga, Zane; Stirling, Allan

    2017-01-01

    Consumer-grade virtual reality has recently become available for both desktop and mobile platforms and may redefine the way that students learn. However, the decision regarding which device to utilise within a curriculum is unclear. Desktop-based VR has considerably higher setup costs involved, whereas mobile-based VR cannot produce the quality of…

  10. Virtual Reality

    DTIC Science & Technology

    1993-04-01

    until exhausted. SECURITY CLASSIFICATION OF THIS PAGE All other editions are obsolete. UNCLASSIFIED " VIRTUAL REALITY JAMES F. DAILEY, LIEUTENANT COLONEL...US" This paper reviews the exciting field of virtual reality . The author describes the basic concepts of virtual reality and finds that its numerous...potential benefits to society could revolutionize everyday life. The various components that make up a virtual reality system are described in detail

  11. Collaboration and Dialogue in Virtual Reality

    ERIC Educational Resources Information Center

    Jensen, Camilla Gyldendahl

    2017-01-01

    "Virtual reality" adds a new dimension to problem-based learning (PBL) environments in the architecture and building construction educations, where a realistic and lifelike presence in a building enables students to assess and discuss how the various solutions interact with each other. Combined with "Building Information…

  12. Virtual reality training for improving the skills needed for performing surgery of the ear, nose or throat.

    PubMed

    Piromchai, Patorn; Avery, Alex; Laopaiboon, Malinee; Kennedy, Gregor; O'Leary, Stephen

    2015-09-09

    Virtual reality simulation uses computer-generated imagery to present a simulated training environment for learners. This review seeks to examine whether there is evidence to support the introduction of virtual reality surgical simulation into ear, nose and throat surgical training programmes. 1. To assess whether surgeons undertaking virtual reality simulation-based training achieve surgical ('patient') outcomes that are at least as good as, or better than, those achieved through conventional training methods.2. To assess whether there is evidence from either the operating theatre, or from controlled (simulation centre-based) environments, that virtual reality-based surgical training leads to surgical skills that are comparable to, or better than, those achieved through conventional training. The Cochrane Ear, Nose and Throat Disorders Group (CENTDG) Trials Search Co-ordinator searched the CENTDG Trials Register; Central Register of Controlled Trials (CENTRAL 2015, Issue 6); PubMed; EMBASE; ERIC; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 27 July 2015. We included all randomised controlled trials and controlled trials comparing virtual reality training and any other method of training in ear, nose or throat surgery. We used the standard methodological procedures expected by The Cochrane Collaboration. We evaluated both technical and non-technical aspects of skill competency. We included nine studies involving 210 participants. Out of these, four studies (involving 61 residents) assessed technical skills in the operating theatre (primary outcomes). Five studies (comprising 149 residents and medical students) assessed technical skills in controlled environments (secondary outcomes). The majority of the trials were at high risk of bias. We assessed the GRADE quality of evidence for most outcomes across studies as 'low'. Operating theatre environment (primary outcomes) In the operating theatre, there were no studies that examined two of three primary outcomes: real world patient outcomes and acquisition of non-technical skills. The third primary outcome (technical skills in the operating theatre) was evaluated in two studies comparing virtual reality endoscopic sinus surgery training with conventional training. In one study, psychomotor skill (which relates to operative technique or the physical co-ordination associated with instrument handling) was assessed on a 10-point scale. A second study evaluated the procedural outcome of time-on-task. The virtual reality group performance was significantly better, with a better psychomotor score (mean difference (MD) 1.66, 95% CI 0.52 to 2.81; 10-point scale) and a shorter time taken to complete the operation (MD -5.50 minutes, 95% CI -9.97 to -1.03). Controlled training environments (secondary outcomes) In a controlled environment five studies evaluated the technical skills of surgical trainees (one study) and medical students (three studies). One study was excluded from the analysis. Surgical trainees: One study (80 participants) evaluated the technical performance of surgical trainees during temporal bone surgery, where the outcome was the quality of the final dissection. There was no difference in the end-product scores between virtual reality and cadaveric temporal bone training. Medical students: Two other studies (40 participants) evaluated technical skills achieved by medical students in the temporal bone laboratory. Learners' knowledge of the flow of the operative procedure (procedural score) was better after virtual reality than conventional training (SMD 1.11, 95% CI 0.44 to 1.79). There was also a significant difference in end-product score between the virtual reality and conventional training groups (SMD 2.60, 95% CI 1.71 to 3.49). One study (17 participants) revealed that medical students acquired anatomical knowledge (on a scale of 0 to 10) better during virtual reality than during conventional training (MD 4.3, 95% CI 2.05 to 6.55). No studies in a controlled training environment assessed non-technical skills. There is limited evidence to support the inclusion of virtual reality surgical simulation into surgical training programmes, on the basis that it can allow trainees to develop technical skills that are at least as good as those achieved through conventional training. Further investigations are required to determine whether virtual reality training is associated with better real world outcomes for patients and the development of non-technical skills. Virtual reality simulation may be considered as an additional learning tool for medical students.

  13. Virtual Reality Applications for Stress Management Training in the Military.

    PubMed

    Pallavicini, Federica; Argenton, Luca; Toniazzi, Nicola; Aceti, Luciana; Mantovani, Fabrizia

    2016-12-01

    Stress Management Training programs are increasingly being adopted in the military field for resilience empowerment and primary stress prevention. In the last several years, advanced technologies (virtual reality in particular) have been integrated in order to develop more innovative and effective stress training programs for military personnel, including soldiers, pilots, and other aircrew professionals. This systematic review describes experimental studies that have been conducted in recent years to test the effectiveness of virtual reality-based Stress Management Training programs developed for military personnel. This promising state-of-the-art technology has the potential to be a successful new approach in empowering soldiers and increasing their resilience to stress. To provide an overview from 2001 to 2016 of the application of virtual reality for Stress Management Training programs developed for the military, a computer-based search for relevant publications was performed in several databases. Databases used in the search were PsycINFO, Web of Science (Web of Knowledge), PubMed, and Medline. The search string was: ("Virtual Reality") AND ("Military") AND ["Stress Training" OR ("Stress Management")]. There were 14 studies that met the inclusion criteria and were included in the review. The main observation to be drawn from this review is that virtual reality can provide interactive Stress Management Training to decrease levels of perceived stress and negative affect in military personnel. This technology appears to be a promising tool for assessing individuals' resilience to stress and for identifying the impact that stress can have on physiological reactivity and performance.Pallavicini F, Argenton L, Toniazzi N, Aceti L, Mantovani F. Virtual realtiy applications for stress management training in the military. Aerosp Med Hum Perform. 2016; 87(12):1021-1030.

  14. Transforming Clinical Imaging Data for Virtual Reality Learning Objects

    ERIC Educational Resources Information Center

    Trelease, Robert B.; Rosset, Antoine

    2008-01-01

    Advances in anatomical informatics, three-dimensional (3D) modeling, and virtual reality (VR) methods have made computer-based structural visualization a practical tool for education. In this article, the authors describe streamlined methods for producing VR "learning objects," standardized interactive software modules for anatomical sciences…

  15. PC-Based Virtual Reality for CAD Model Viewing

    ERIC Educational Resources Information Center

    Seth, Abhishek; Smith, Shana S.-F.

    2004-01-01

    Virtual reality (VR), as an emerging visualization technology, has introduced an unprecedented communication method for collaborative design. VR refers to an immersive, interactive, multisensory, viewer-centered, 3D computer-generated environment and the combination of technologies required to build such an environment. This article introduces the…

  16. Virtual Reality and Its Potential Application in Education and Training.

    ERIC Educational Resources Information Center

    Milheim, William D.

    1995-01-01

    An overview is provided of current trends in virtual reality research and development, including discussion of hardware, types of virtual reality, and potential problems with virtual reality. Implications for education and training are explored. (Author/JKP)

  17. Effects of a virtual reality-based exercise program on functional recovery in stroke patients: part 1

    PubMed Central

    Lee, Kyoung-Hee

    2015-01-01

    This study aimed to determine the effects of a virtual reality exercise program using the Interactive Rehabilitation and Exercise System (IREX) on the recovery of motor and cognitive function and the performance of activities of daily living in stroke patients. [Subjects] The study enrolled 10 patients diagnosed with stroke who received occupational therapy at the Department of Rehabilitation Medicine of Hospital A between January and March 2014. [Methods] The patients took part in the virtual reality exercise program for 30 minutes each day, three times per week, for 4 weeks. Then, the patients were re-evaluated to determine changes in upper extremity function, cognitive function, and performance of activities of daily living 4 weeks after the baseline assessment. [Results] In the experimental group, there were significant differences in the Korea-Mini Mental Status Evaluation, Korean version of the modified Barthel index, and Fugl-Meyer assessment scores between the baseline and endpoint. [Conclusion] The virtual reality exercise program was effective for restoring function in stroke patients. Further studies should develop systematic protocols for rehabilitation training with a virtual reality exercise program. PMID:26180287

  18. Effects of a virtual reality-based exercise program on functional recovery in stroke patients: part 1.

    PubMed

    Lee, Kyoung-Hee

    2015-06-01

    This study aimed to determine the effects of a virtual reality exercise program using the Interactive Rehabilitation and Exercise System (IREX) on the recovery of motor and cognitive function and the performance of activities of daily living in stroke patients. [Subjects] The study enrolled 10 patients diagnosed with stroke who received occupational therapy at the Department of Rehabilitation Medicine of Hospital A between January and March 2014. [Methods] The patients took part in the virtual reality exercise program for 30 minutes each day, three times per week, for 4 weeks. Then, the patients were re-evaluated to determine changes in upper extremity function, cognitive function, and performance of activities of daily living 4 weeks after the baseline assessment. [Results] In the experimental group, there were significant differences in the Korea-Mini Mental Status Evaluation, Korean version of the modified Barthel index, and Fugl-Meyer assessment scores between the baseline and endpoint. [Conclusion] The virtual reality exercise program was effective for restoring function in stroke patients. Further studies should develop systematic protocols for rehabilitation training with a virtual reality exercise program.

  19. Validation of a method for real time foot position and orientation tracking with Microsoft Kinect technology for use in virtual reality and treadmill based gait training programs.

    PubMed

    Paolini, Gabriele; Peruzzi, Agnese; Mirelman, Anat; Cereatti, Andrea; Gaukrodger, Stephen; Hausdorff, Jeffrey M; Della Croce, Ugo

    2014-09-01

    The use of virtual reality for the provision of motor-cognitive gait training has been shown to be effective for a variety of patient populations. The interaction between the user and the virtual environment is achieved by tracking the motion of the body parts and replicating it in the virtual environment in real time. In this paper, we present the validation of a novel method for tracking foot position and orientation in real time, based on the Microsoft Kinect technology, to be used for gait training combined with virtual reality. The validation of the motion tracking method was performed by comparing the tracking performance of the new system against a stereo-photogrammetric system used as gold standard. Foot position errors were in the order of a few millimeters (average RMSD from 4.9 to 12.1 mm in the medio-lateral and vertical directions, from 19.4 to 26.5 mm in the anterior-posterior direction); the foot orientation errors were also small (average %RMSD from 5.6% to 8.8% in the medio-lateral and vertical directions, from 15.5% to 18.6% in the anterior-posterior direction). The results suggest that the proposed method can be effectively used to track feet motion in virtual reality and treadmill-based gait training programs.

  20. Virtual reality-based cognitive training for drug abusers: A randomised controlled trial.

    PubMed

    Man, David W K

    2018-05-08

    Non-pharmacological means are being developed to enhance cognitive abilities in drug abusers. This study evaluated virtual reality (VR) as an intervention tool for enhancing cognitive and vocational outcomes in 90 young ketamine users (KU) randomly assigned to a treatment group (virtual reality group, VRG; tutor-administered group, TAG) or wait-listed control group (CG). Two training programmes with similar content but different delivery modes (VR-based and manual-based) were applied using a virtual boutique as a training scenario. Outcome assessments comprised the Digit Vigilance Test, Rivermead Behavioural Memory Test, Wisconsin Cart Sorting Test, work-site test and self-efficacy pre- and post-test and during 3- and 6-month follow-ups. The VRG exhibited significant improvements in attention and improvements in memory that were maintained after 3 months. Both the VRG and TAG exhibited significantly improved vocational skills after training which were maintained during follow-up, and improved self-efficacy. VR-based cognitive training might target cognitive problems in KU.

  1. Virtual reality training for surgical trainees in laparoscopic surgery.

    PubMed

    Nagendran, Myura; Gurusamy, Kurinchi Selvan; Aggarwal, Rajesh; Loizidou, Marilena; Davidson, Brian R

    2013-08-27

    Standard surgical training has traditionally been one of apprenticeship, where the surgical trainee learns to perform surgery under the supervision of a trained surgeon. This is time-consuming, costly, and of variable effectiveness. Training using a virtual reality simulator is an option to supplement standard training. Virtual reality training improves the technical skills of surgical trainees such as decreased time for suturing and improved accuracy. The clinical impact of virtual reality training is not known. To assess the benefits (increased surgical proficiency and improved patient outcomes) and harms (potentially worse patient outcomes) of supplementary virtual reality training of surgical trainees with limited laparoscopic experience. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE and Science Citation Index Expanded until July 2012. We included all randomised clinical trials comparing virtual reality training versus other forms of training including box-trainer training, no training, or standard laparoscopic training in surgical trainees with little laparoscopic experience. We also planned to include trials comparing different methods of virtual reality training. We included only trials that assessed the outcomes in people undergoing laparoscopic surgery. Two authors independently identified trials and collected data. We analysed the data with both the fixed-effect and the random-effects models using Review Manager 5 analysis. For each outcome we calculated the mean difference (MD) or standardised mean difference (SMD) with 95% confidence intervals based on intention-to-treat analysis. We included eight trials covering 109 surgical trainees with limited laparoscopic experience. Of the eight trials, six compared virtual reality versus no supplementary training. One trial compared virtual reality training versus box-trainer training and versus no supplementary training, and one trial compared virtual reality training versus box-trainer training. There were no trials that compared different forms of virtual reality training. All the trials were at high risk of bias. Operating time and operative performance were the only outcomes reported in the trials. The remaining outcomes such as mortality, morbidity, quality of life (the primary outcomes of this review) and hospital stay (a secondary outcome) were not reported. Virtual reality training versus no supplementary training: The operating time was significantly shorter in the virtual reality group than in the no supplementary training group (3 trials; 49 participants; MD -11.76 minutes; 95% CI -15.23 to -8.30). Two trials that could not be included in the meta-analysis also showed a reduction in operating time (statistically significant in one trial). The numerical values for operating time were not reported in these two trials. The operative performance was significantly better in the virtual reality group than the no supplementary training group using the fixed-effect model (2 trials; 33 participants; SMD 1.65; 95% CI 0.72 to 2.58). The results became non-significant when the random-effects model was used (2 trials; 33 participants; SMD 2.14; 95% CI -1.29 to 5.57). One trial could not be included in the meta-analysis as it did not report the numerical values. The authors stated that the operative performance of virtual reality group was significantly better than the control group. Virtual reality training versus box-trainer training: The only trial that reported operating time did not report the numerical values. In this trial, the operating time in the virtual reality group was significantly shorter than in the box-trainer group. Of the two trials that reported operative performance, only one trial reported the numerical values. The operative performance was significantly better in the virtual reality group than in the box-trainer group (1 trial; 19 participants; SMD 1.46; 95% CI 0.42 to 2.50). In the other trial that did not report the numerical values, the authors stated that the operative performance in the virtual reality group was significantly better than the box-trainer group. Virtual reality training appears to decrease the operating time and improve the operative performance of surgical trainees with limited laparoscopic experience when compared with no training or with box-trainer training. However, the impact of this decreased operating time and improvement in operative performance on patients and healthcare funders in terms of improved outcomes or decreased costs is not known. Further well-designed trials at low risk of bias and random errors are necessary. Such trials should assess the impact of virtual reality training on clinical outcomes.

  2. Virtual reality and gaming systems to improve walking and mobility for people with musculoskeletal and neuromuscular conditions.

    PubMed

    Deutsch, Judith E

    2009-01-01

    Improving walking for individuals with musculoskeletal and neuromuscular conditions is an important aspect of rehabilitation. The capabilities of clinicians who address these rehabilitation issues could be augmented with innovations such as virtual reality gaming based technologies. The chapter provides an overview of virtual reality gaming based technologies currently being developed and tested to improve motor and cognitive elements required for ambulation and mobility in different patient populations. Included as well is a detailed description of a single VR system, consisting of the rationale for development and iterative refinement of the system based on clinical science. These concepts include: neural plasticity, part-task training, whole task training, task specific training, principles of exercise and motor learning, sensorimotor integration, and visual spatial processing.

  3. Virtual reality system for treatment of the fear of public speaking using image-based rendering and moving pictures.

    PubMed

    Lee, Jae M; Ku, Jeong H; Jang, Dong P; Kim, Dong H; Choi, Young H; Kim, In Y; Kim, Sun I

    2002-06-01

    The fear of speaking is often cited as the world's most common social phobia. The rapid growth of computer technology enabled us to use virtual reality (VR) for the treatment of the fear of public speaking. There have been two techniques used to construct a virtual environment for the treatment of the fear of public speaking: model-based and movie-based. Virtual audiences and virtual environments made by model-based technique are unrealistic and unnatural. The movie-based technique has a disadvantage in that each virtual audience cannot be controlled respectively, because all virtual audiences are included in one moving picture file. To address this disadvantage, this paper presents a virtual environment made by using image-based rendering (IBR) and chroma keying simultaneously. IBR enables us to make the virtual environment realistic because the images are stitched panoramically with the photos taken from a digital camera. And the use of chroma keying allows a virtual audience to be controlled individually. In addition, a real-time capture technique was applied in constructing the virtual environment to give the subjects more interaction, in that they can talk with a therapist or another subject.

  4. Are Spatial Visualization Abilities Relevant to Virtual Reality?

    ERIC Educational Resources Information Center

    Chen, Chwen Jen

    2006-01-01

    This study aims to investigate the effects of virtual reality (VR)-based learning environment on learners of different spatial visualization abilities. The findings of the aptitude-by-treatment interaction study have shown that learners benefit most from the Guided VR mode, irrespective of their spatial visualization abilities. This indicates that…

  5. Virtual Reality Social Cognition Training for Young Adults with High-Functioning Autism

    ERIC Educational Resources Information Center

    Kandalaft, Michelle R.; Didehbani, Nyaz; Krawczyk, Daniel C.; Allen, Tandra T.; Chapman, Sandra B.

    2013-01-01

    Few evidence-based social interventions exist for young adults with high-functioning autism, many of whom encounter significant challenges during the transition into adulthood. The current study investigated the feasibility of an engaging Virtual Reality Social Cognition Training intervention focused on enhancing social skills, social cognition,…

  6. Virtual Reality as Innovative Approach to the Interior Designing

    NASA Astrophysics Data System (ADS)

    Kaleja, Pavol; Kozlovská, Mária

    2017-06-01

    We can observe significant potential of information and communication technologies (ICT) in interior designing field, by development of software and hardware virtual reality tools. Using ICT tools offer realistic perception of proposal in its initial idea (the study). A group of real-time visualization, supported by hardware tools like Oculus Rift HTC Vive, provides free walkthrough and movement in virtual interior with the possibility of virtual designing. By improving of ICT software tools for designing in virtual reality we can achieve still more realistic virtual environment. The contribution presented proposal of an innovative approach of interior designing in virtual reality, using the latest software and hardware ICT virtual reality technologies

  7. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback.

    PubMed

    Lemole, G Michael; Banerjee, P Pat; Luciano, Cristian; Neckrysh, Sergey; Charbel, Fady T

    2007-07-01

    Mastery of the neurosurgical skill set involves many hours of supervised intraoperative training. Convergence of political, economic, and social forces has limited neurosurgical resident operative exposure. There is need to develop realistic neurosurgical simulations that reproduce the operative experience, unrestricted by time and patient safety constraints. Computer-based, virtual reality platforms offer just such a possibility. The combination of virtual reality with dynamic, three-dimensional stereoscopic visualization, and haptic feedback technologies makes realistic procedural simulation possible. Most neurosurgical procedures can be conceptualized and segmented into critical task components, which can be simulated independently or in conjunction with other modules to recreate the experience of a complex neurosurgical procedure. We use the ImmersiveTouch (ImmersiveTouch, Inc., Chicago, IL) virtual reality platform, developed at the University of Illinois at Chicago, to simulate the task of ventriculostomy catheter placement as a proof-of-concept. Computed tomographic data are used to create a virtual anatomic volume. Haptic feedback offers simulated resistance and relaxation with passage of a virtual three-dimensional ventriculostomy catheter through the brain parenchyma into the ventricle. A dynamic three-dimensional graphical interface renders changing visual perspective as the user's head moves. The simulation platform was found to have realistic visual, tactile, and handling characteristics, as assessed by neurosurgical faculty, residents, and medical students. We have developed a realistic, haptics-based virtual reality simulator for neurosurgical education. Our first module recreates a critical component of the ventriculostomy placement task. This approach to task simulation can be assembled in a modular manner to reproduce entire neurosurgical procedures.

  8. Effect of virtual reality-based rehabilitation on upper-extremity function in patients with brain tumor: controlled trial.

    PubMed

    Yoon, Jisun; Chun, Min Ho; Lee, Sook Joung; Kim, Bo Ryun

    2015-06-01

    The aim of this study was to evaluate the benefit of virtual reality-based rehabilitation on upper-extremity function in patients with brain tumor. Patients with upper-extremity dysfunction were divided into age-matched and tumor type-matched two groups. The intervention group performed the virtual reality program 30 mins per session for 9 sessions and conventional occupational therapy 30 mins per session for 6 sessions for 3 wks, whereas the control group received conventional occupational therapy alone 30 mins per session for 15 sessions for 3 wks. The Box and Block test, the Manual Function test, and the Fugl-Meyer scale were used to evaluate upper-extremity function. The Korean version of the Modified Barthel Index was used to assess activities of daily living. Forty patients completed the study (20 for each group). Each group exhibited significant posttreatment improvements in the Box and Block test, Manual Function test, Fugl-Meyer scale, and Korean version of the Modified Barthel Index scores. The Box and Block test, the Fugl-Meyer scale, and the Manual Function test showed greater improvements in shoulder/elbow/forearm function in the intervention group and hand function in the control group. Virtual reality-based rehabilitation combined with conventional occupational therapy may be more effective than conventional occupational therapy, especially for proximal upper-extremity function in patients with brain tumor. Further studies considering hand function, such as use of virtual reality programs that targeting hand use, are required.

  9. The Use of Virtual Reality in Patients with Eating Disorders: Systematic Review

    PubMed Central

    Clus, Damien; Larsen, Mark Erik; Lemey, Christophe

    2018-01-01

    Background Patients with eating disorders are characterized by pathological eating habits and a tendency to overestimate their weight and body shape. Virtual reality shows promise for the evaluation and management of patients with eating disorders. This technology, when accepted by this population, allows immersion in virtual environments, assessment, and therapeutic approaches, by exposing users to high-calorie foods or changes in body shape. Objective To better understand the value of virtual reality, we conducted a review of the literature, including clinical studies proposing the use of virtual reality for the evaluation and management of patients with eating disorders. Methods We searched PubMed, PsycINFO, ScienceDirect, the Cochrane Library, Scopus, and Web of Science up to April 2017. We created the list of keywords based on two domains: virtual reality and eating disorders. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses to identify, select, and critically appraise relevant research while minimizing bias. Results The initial database searches identified 311 articles, 149 of which we removed as duplicates. We analyzed the resulting set of 26 unique studies that met the inclusion criteria. Of these, 8 studies were randomized controlled trials, 13 were nonrandomized studies, and 5 were clinical trials with only 1 participant. Most articles focused on clinical populations (19/26, 73%), with the remainder reporting case-control studies (7/26, 27%). Most of the studies used visual immersive equipment (16/26, 62%) with a head-mounted display (15/16, 94%). Two main areas of interest emerged from these studies: virtual work on patients’ body image (7/26, 27%) and exposure to virtual food stimuli (10/26, 38%). Conclusions We conducted a broad analysis of studies on the use of virtual reality in patients with eating disorders. This review of the literature showed that virtual reality is an acceptable and promising therapeutic tool for patients with eating disorders. PMID:29703715

  10. The virtues of virtual reality in exposure therapy.

    PubMed

    Gega, Lina

    2017-04-01

    Virtual reality can be more effective and less burdensome than real-life exposure. Optimal virtual reality delivery should incorporate in situ direct dialogues with a therapist, discourage safety behaviours, allow for a mismatch between virtual and real exposure tasks, and encourage self-directed real-life practice between and beyond virtual reality sessions. © The Royal College of Psychiatrists 2017.

  11. Virtual Reality in the Classroom.

    ERIC Educational Resources Information Center

    Pantelidis, Veronica S.

    1993-01-01

    Considers the concept of virtual reality; reviews its history; describes general uses of virtual reality, including entertainment, medicine, and design applications; discusses classroom uses of virtual reality, including a software program called Virtus WalkThrough for use with a computer monitor; and suggests future possibilities. (34 references)…

  12. Implementing Virtual Reality Technology as an Effective Web Based Kiosk: Darulaman's Teacher Training College Tour (Ipda Vr Tour)

    ERIC Educational Resources Information Center

    Fadzil, Azman

    2006-01-01

    At present, the development of Virtual Reality (VR) technology is expanding due to the importance and needs to use the 3D elements and 360 degrees panorama in expressing a clearer picture to consumers in various fields such as education, military, medicine, entertainment and so on. The web based VR kiosk project in Darulaman's Teacher Training…

  13. European consensus on a competency-based virtual reality training program for basic endoscopic surgical psychomotor skills.

    PubMed

    van Dongen, Koen W; Ahlberg, Gunnar; Bonavina, Luigi; Carter, Fiona J; Grantcharov, Teodor P; Hyltander, Anders; Schijven, Marlies P; Stefani, Alessandro; van der Zee, David C; Broeders, Ivo A M J

    2011-01-01

    Virtual reality (VR) simulators have been demonstrated to improve basic psychomotor skills in endoscopic surgery. The exercise configuration settings used for validation in studies published so far are default settings or are based on the personal choice of the tutors. The purpose of this study was to establish consensus on exercise configurations and on a validated training program for a virtual reality simulator, based on the experience of international experts to set criterion levels to construct a proficiency-based training program. A consensus meeting was held with eight European teams, all extensively experienced in using the VR simulator. Construct validity of the training program was tested by 20 experts and 60 novices. The data were analyzed by using the t test for equality of means. Consensus was achieved on training designs, exercise configuration, and examination. Almost all exercises (7/8) showed construct validity. In total, 50 of 94 parameters (53%) showed significant difference. A European, multicenter, validated, training program was constructed according to the general consensus of a large international team with extended experience in virtual reality simulation. Therefore, a proficiency-based training program can be offered to training centers that use this simulator for training in basic psychomotor skills in endoscopic surgery.

  14. The use of virtual reality in the study, assessment, and treatment of body image in eating disorders and nonclinical samples: a review of the literature.

    PubMed

    Ferrer-García, Marta; Gutiérrez-Maldonado, José

    2012-01-01

    This article reviews research into the use of virtual reality in the study, assessment, and treatment of body image disturbances in eating disorders and nonclinical samples. During the last decade, virtual reality has emerged as a technology that is especially suitable not only for the assessment of body image disturbances but also for its treatment. Indeed, several virtual environment-based software systems have been developed for this purpose. Furthermore, virtual reality seems to be a good alternative to guided imagery and in vivo exposure, and is therefore very useful for studies that require exposure to life-like situations but which are difficult to conduct in the real world. Nevertheless, review highlights the lack of published controlled studies and the presence of methodological drawbacks that should be considered in future studies. This article also discusses the implications of the results obtained and proposes directions for future research. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Simulation Of Assembly Processes With Technical Of Virtual Reality

    NASA Astrophysics Data System (ADS)

    García García, Manuel; Arenas Reina, José Manuel; Lite, Alberto Sánchez; Sebastián Pérez, Miguel Ángel

    2009-11-01

    Virtual reality techniques use at industrial processes provides a real approach to product life cycle. For components manual assembly, the use of virtual surroundings facilitates a simultaneous engineering in which variables such as human factors and productivity take a real act. On the other hand, in the actual phase of industrial competition it is required a rapid adjustment to client needs and to market situation. In this work it is analyzed the assembly of the front components of a vehicle using virtual reality tools and following up a product-process design methodology which includes every life service stage. This study is based on workstations design, taking into account productive and human factors from the ergonomic point of view implementing a postural study of every assembly operation, leaving the rest of stages for a later study. Design is optimized applying this methodology together with the use of virtual reality tools. It is also achieved a 15% reduction on time assembly and of 90% reduction in muscle—skeletal diseases at every assembly operation.

  16. Surgical approaches to complex vascular lesions: the use of virtual reality and stereoscopic analysis as a tool for resident and student education.

    PubMed

    Agarwal, Nitin; Schmitt, Paul J; Sukul, Vishad; Prestigiacomo, Charles J

    2012-08-01

    Virtual reality training for complex tasks has been shown to be of benefit in fields involving highly technical and demanding skill sets. The use of a stereoscopic three-dimensional (3D) virtual reality environment to teach a patient-specific analysis of the microsurgical treatment modalities of a complex basilar aneurysm is presented. Three different surgical approaches were evaluated in a virtual environment and then compared to elucidate the best surgical approach. These approaches were assessed with regard to the line-of-sight, skull base anatomy and visualisation of the relevant anatomy at the level of the basilar artery and surrounding structures. Overall, the stereoscopic 3D virtual reality environment with fusion of multimodality imaging affords an excellent teaching tool for residents and medical students to learn surgical approaches to vascular lesions. Future studies will assess the educational benefits of this modality and develop a series of metrics for student assessments.

  17. Development of a virtual reality training system for endoscope-assisted submandibular gland removal.

    PubMed

    Miki, Takehiro; Iwai, Toshinori; Kotani, Kazunori; Dang, Jianwu; Sawada, Hideyuki; Miyake, Minoru

    2016-11-01

    Endoscope-assisted surgery has widely been adopted as a basic surgical procedure, with various training systems using virtual reality developed for this procedure. In the present study, a basic training system comprising virtual reality for the removal of submandibular glands under endoscope assistance was developed. The efficacy of the training system was verified in novice oral surgeons. A virtual reality training system was developed using existing haptic devices. Virtual reality models were constructed from computed tomography data to ensure anatomical accuracy. Novice oral surgeons were trained using the developed virtual reality training system. The developed virtual reality training system included models of the submandibular gland and surrounding connective tissues and blood vessels entering the submandibular gland. Cutting or abrasion of the connective tissue and manipulations, such as elevation of blood vessels, were reproduced by the virtual reality system. A training program using the developed system was devised. Novice oral surgeons were trained in accordance with the devised training program. Our virtual reality training system for endoscope-assisted removal of the submandibular gland is effective in the training of novice oral surgeons in endoscope-assisted surgery. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. The Use of Virtual Reality in the Study of People's Responses to Violent Incidents.

    PubMed

    Rovira, Aitor; Swapp, David; Spanlang, Bernhard; Slater, Mel

    2009-01-01

    This paper reviews experimental methods for the study of the responses of people to violence in digital media, and in particular considers the issues of internal validity and ecological validity or generalisability of results to events in the real world. Experimental methods typically involve a significant level of abstraction from reality, with participants required to carry out tasks that are far removed from violence in real life, and hence their ecological validity is questionable. On the other hand studies based on field data, while having ecological validity, cannot control multiple confounding variables that may have an impact on observed results, so that their internal validity is questionable. It is argued that immersive virtual reality may provide a unification of these two approaches. Since people tend to respond realistically to situations and events that occur in virtual reality, and since virtual reality simulations can be completely controlled for experimental purposes, studies of responses to violence within virtual reality are likely to have both ecological and internal validity. This depends on a property that we call 'plausibility' - including the fidelity of the depicted situation with prior knowledge and expectations. We illustrate this with data from a previously published experiment, a virtual reprise of Stanley Milgram's 1960s obedience experiment, and also with pilot data from a new study being developed that looks at bystander responses to violent incidents.

  19. The Use of Virtual Reality in the Study of People's Responses to Violent Incidents

    PubMed Central

    Rovira, Aitor; Swapp, David; Spanlang, Bernhard; Slater, Mel

    2009-01-01

    This paper reviews experimental methods for the study of the responses of people to violence in digital media, and in particular considers the issues of internal validity and ecological validity or generalisability of results to events in the real world. Experimental methods typically involve a significant level of abstraction from reality, with participants required to carry out tasks that are far removed from violence in real life, and hence their ecological validity is questionable. On the other hand studies based on field data, while having ecological validity, cannot control multiple confounding variables that may have an impact on observed results, so that their internal validity is questionable. It is argued that immersive virtual reality may provide a unification of these two approaches. Since people tend to respond realistically to situations and events that occur in virtual reality, and since virtual reality simulations can be completely controlled for experimental purposes, studies of responses to violence within virtual reality are likely to have both ecological and internal validity. This depends on a property that we call ‘plausibility’ – including the fidelity of the depicted situation with prior knowledge and expectations. We illustrate this with data from a previously published experiment, a virtual reprise of Stanley Milgram's 1960s obedience experiment, and also with pilot data from a new study being developed that looks at bystander responses to violent incidents. PMID:20076762

  20. Virtual reality: past, present and future.

    PubMed

    Gobbetti, E; Scateni, R

    1998-01-01

    This report provides a short survey of the field of virtual reality, highlighting application domains, technological requirements, and currently available solutions. The report is organized as follows: section 1 presents the background and motivation of virtual environment research and identifies typical application domain, section 2 discusses the characteristics a virtual reality system must have in order to exploit the perceptual and spatial skills of users, section 3 surveys current input/output devices for virtual reality, section 4 surveys current software approaches to support the creation of virtual reality systems, and section 5 summarizes the report.

  1. Virtual Reality in Schools: The Ultimate Educational Technology.

    ERIC Educational Resources Information Center

    Reid, Robert D.; Sykes, Wylmarie

    1999-01-01

    Discusses the use of virtual reality as an educational tool. Highlights include examples of virtual reality in public schools that lead to a more active learning process, simulated environments, integrating virtual reality into any curriculum, benefits to teachers and students, and overcoming barriers to implementation. (LRW)

  2. BIM Based Virtual Environment for Fire Emergency Evacuation

    PubMed Central

    Rezgui, Yacine; Ong, Hoang N.

    2014-01-01

    Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management. PMID:25197704

  3. T59. VIRTUAL REALTY ASSESSMENT OF FUNCTIONAL CAPACITY IN EARLY SCHIZOPHRENIA: ASSOCIATIONS WITH NEUROCOGNITION, FUNCTIONAL CAPACITY PERFORMANCE, AND DAILY FUNCTIONING

    PubMed Central

    Ventura, Joseph; Welikson, Tamara; Subotnik, Kenneth L; Ered, Arielle; Keefe, Richard; Hellemann, Gerhard H; Nuechterlein, Keith H

    2018-01-01

    Abstract Background Research using virtual reality assessment of functional capacity has shown promise as a reliable and valid way to assess treatment response in patients with established schizophrenia. There has been little work on virtual reality based assessments of functional capacity for patients in the early phase of schizophrenia. We examined whether virtual reality based assessment methods reveal functional capacity deficits in young patients and relevant relationships with established measures of neurocognition, functional capacity performance, and daily functioning. Methods The sample consisted of UCLA Aftercare Research Program patients (n=42) who were diagnosed by trained raters administering the SCID and who met criteria for schizophrenia, schizoaffective disorder, or schizophreniform disorder, and screened normal control subjects (n=13). Patients were within 2 years of their first psychotic episode upon clinic entry, were an average of 23.2 years old, and had an average of 12.9 years of education. The Virtual Reality Functional Capacity Assessment Tool (VRFCAT) was the computer-based measure of functional capacity. We used the MATRICS Consensus Cognitive Battery (MCCB) as an objective measure of neurocognition and the UCSD Performance-Based Skills Assessment (UPSA) to assess functional capacity performance. The Global Functioning Scale: Role and Social, and the Role Functioning Scale were used to assess work and school performance, familial interactions, and social functioning. Results We were able to confirm that the deficit in functional capacity performance measured using VRFCAT is present in the early course of schizophrenia in that the patients were slower and committed more errors (M=830.41) as compared with normal controls (M=716.84; t=3.0, p<.01). Virtual reality based assessment of functional capacity was correlated with objective measures of neurocognition (MCCB Overall Composite), r=-.71, p=<.01, standard approaches to functional capacity assessment (UPSA), r=-.66, p=<.01, work and school functioning (r=-.52, p<.01), and level of social relationships (r=-.43, p=<.03), but not familial relationships (r=-.03, p=.87). Interestingly, neither neurocognition (MCCB) nor functional capacity performance (UPSA) were correlated with the level of familial relationships. Discussion We extend previous findings in that even patients in the early course of schizophrenia showed virtual reality based functional capacity performance deficits when compared with normal control subjects. Virtual reality based performance was correlated with neurocognition, suggesting that it may be sensitive to changes in cognition. Furthermore, correlations with everyday work/school and social functioning indicate promise as a co-primary measure to index change in functioning in response to treatment. Interestingly, none of our measures of functional capacity or neurocognition were correlated with familial relationships indicating that the determinates of family interactions might be driven by factors other than cognitive capacities.

  4. The need for virtual reality simulators in dental education: A review.

    PubMed

    Roy, Elby; Bakr, Mahmoud M; George, Roy

    2017-04-01

    Virtual reality simulators are becoming an essential part of modern education. The benefits of Virtual reality in dentistry is constantly being assessed as a method or an adjunct to improve fine motor skills, hand-eye coordination in pre-clinical settings and overcome the monetary and intellectual challenges involved with such training. This article, while providing an overview of the virtual reality dental simulators, also looks at the link between virtual reality simulation and current pedagogical knowledge.

  5. Therapists' perception of benefits and costs of using virtual reality treatments.

    PubMed

    Segal, Robert; Bhatia, Maneet; Drapeau, Martin

    2011-01-01

    Research indicates that virtual reality is effective in the treatment of many psychological difficulties and is being used more frequently. However, little is known about therapists' perception of the benefits and costs related to the use of virtual therapy in treatment delivery. In the present study, 271 therapists completed an online questionnaire that assessed their perceptions about the potential benefits and costs of using virtual reality in psychotherapy. Results indicated that therapists perceived the potential benefits as outweighing the potential costs. Therapists' self-reported knowledge of virtual reality, theoretical orientation, and interest in using virtual reality were found to be associated with perceptual measures. These findings contribute to the current knowledge of the perception of virtual reality amongst psychotherapists.

  6. Serious games for screening pre-dementia conditions: from virtuality to reality? A pilot project.

    PubMed

    Zucchella, Chiara; Sinforiani, Elena; Tassorelli, Cristina; Cavallini, Elena; Tost-Pardell, Daniela; Grau, Sergi; Pazzi, Stefania; Puricelli, Stefano; Bernini, Sara; Bottiroli, Sara; Vecchi, Tomaso; Sandrini, Giorgio; Nappi, Giuseppe

    2014-01-01

    Conventional cognitive assessment is based on a pencil-and-paper neuropsychological evaluation, which is time consuming, expensive and requires the involvement of several professionals. Information and communication technology could be exploited to allow the development of tools that are easy to use, reduce the amount of data processing, and provide controllable test conditions. Serious games (SGs) have the potential to be new and effective tools in the management and treatment of cognitive impairments Serious games for screening pre-dementia conditions: from virtuality to reality? A pilot project in the elderly. Moreover, by adopting SGs in 3D virtual reality settings, cognitive functions might be evaluated using tasks that simulate daily activities, increasing the "ecological validity" of the assessment. In this commentary we report our experience in the creation of the Smart Aging platform, a 3D SGand virtual environment-based platform for the early identification and characterization of mild cognitive impairment.

  7. Virtual reality goes to war: a brief review of the future of military behavioral healthcare.

    PubMed

    Rizzo, Albert; Parsons, Thomas D; Lange, Belinda; Kenny, Patrick; Buckwalter, John G; Rothbaum, Barbara; Difede, JoAnn; Frazier, John; Newman, Brad; Williams, Josh; Reger, Greg

    2011-06-01

    Numerous reports indicate that the incidence of posttraumatic stress disorder (PTSD) in returning OEF/OIF military personnel is creating a significant healthcare challenge. These findings have served to motivate research on how to better develop and disseminate evidence-based treatments for PTSD. Virtual Reality delivered exposure therapy for PTSD has been previously used with reports of positive outcomes. This article details how virtual reality applications are being designed and implemented across various points in the military deployment cycle to prevent, identify and treat combat-related PTSD in OIF/OEF Service Members and Veterans. The summarized projects in these areas have been developed at the University of Southern California Institute for Creative Technologies, a U.S. Army University Affiliated Research Center, and this paper will detail efforts to use virtual reality to deliver exposure therapy, assess PTSD and cognitive function and provide stress resilience training prior to deployment.

  8. The Perceptions of CEIT Postgraduate Students Regarding Reality Concepts: Augmented, Virtual, Mixed and Mirror Reality

    ERIC Educational Resources Information Center

    Taçgin, Zeynep; Arslan, Ahmet

    2017-01-01

    The purpose of this study is to determine perception of postgraduate Computer Education and Instructional Technologies (CEIT) students regarding the concepts of Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), Augmented Virtuality (AV) and Mirror Reality; and to offer a table that includes differences and similarities between…

  9. Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial.

    PubMed

    Yang, Yea-Ru; Tsai, Meng-Pin; Chuang, Tien-Yow; Sung, Wen-Hsu; Wang, Ray-Yau

    2008-08-01

    This is a single blind randomized controlled trial to examine the effect of virtual reality-based training on the community ambulation in individuals with stroke. Twenty subjects with stroke were assigned randomly to either the control group (n=9) or the experimental group (n=11). Subjects in the control group received the treadmill training. Subjects in the experimental group underwent the virtual reality-based treadmill training. Walking speed, community walking time, walking ability questionnaire (WAQ), and activities-specific balance confidence (ABC) scale were evaluated. Subjects in the experimental group improved significantly in walking speed, community walking time, and WAQ score at posttraining and 1-month follow-up periods. Their ABC score also significantly increased at posttraining but did not maintain at follow-up period. Regarding the between-group comparisons, the experimental group improved significantly more than control group in walking speed (P=0.03) and community walking time (P=0.04) at posttraining period and in WAQ score (P=0.03) at follow-up period. Our results support the perceived benefits of gait training programs that incorporate virtual reality to augment the community ambulation of individuals with stroke.

  10. Ambient Intelligence in Multimeda and Virtual Reality Environments for the rehabilitation

    NASA Astrophysics Data System (ADS)

    Benko, Attila; Cecilia, Sik Lanyi

    This chapter presents a general overview about the use of multimedia and virtual reality in rehabilitation and assistive and preventive healthcare. This chapter deals with multimedia, virtual reality applications based AI intended for use by medical doctors, nurses, special teachers and further interested persons. It describes methods how multimedia and virtual reality is able to assist their work. These include the areas how multimedia and virtual reality can help the patients everyday life and their rehabilitation. In the second part of the chapter we present the Virtual Therapy Room (VTR) a realized application for aphasic patients that was created for practicing communication and expressing emotions in a group therapy setting. The VTR shows a room that contains a virtual therapist and four virtual patients (avatars). The avatars are utilizing their knowledge base in order to answer the questions of the user providing an AI environment for the rehabilitation. The user of the VTR is the aphasic patient who has to solve the exercises. The picture that is relevant for the actual task appears on the virtual blackboard. Patient answers questions of the virtual therapist. Questions are about pictures describing an activity or an object in different levels. Patient can ask an avatar for answer. If the avatar knows the answer the avatars emotion changes to happy instead of sad. The avatar expresses its emotions in different dimensions. Its behavior, face-mimic, voice-tone and response also changes. The emotion system can be described as a deterministic finite automaton where places are emotion-states and the transition function of the automaton is derived from the input-response reaction of an avatar. Natural language processing techniques were also implemented in order to establish highquality human-computer interface windows for each of the avatars. Aphasic patients are able to interact with avatars via these interfaces. At the end of the chapter we visualize the possible future research field.

  11. Virtual Reality and Computer-Enhanced Training Devices Equally Improve Laparoscopic Surgical Skill in Novices

    PubMed Central

    Kanumuri, Prathima; Ganai, Sabha; Wohaibi, Eyad M.; Bush, Ronald W.; Grow, Daniel R.

    2008-01-01

    Background: The study aim was to compare the effectiveness of virtual reality and computer-enhanced video-scopic training devices for training novice surgeons in complex laparoscopic skills. Methods: Third-year medical students received instruction on laparoscopic intracorporeal suturing and knot tying and then underwent a pretraining assessment of the task using a live porcine model. Students were then randomized to objectives-based training on either the virtual reality (n=8) or computer-enhanced (n=8) training devices for 4 weeks, after which the assessment was repeated. Results: Posttraining performance had improved compared with pretraining performance in both task completion rate (94% versus 18%; P<0.001*) and time [181±58 (SD) versus 292±24*]. Performance of the 2 groups was comparable before and after training. Of the subjects, 88% thought that haptic cues were important in simulators. Both groups agreed that their respective training systems were effective teaching tools, but computer-enhanced device trainees were more likely to rate their training as representative of reality (P<0.01). Conclusions: Training on virtual reality and computer-enhanced devices had equivalent effects on skills improvement in novices. Despite the perception that haptic feedback is important in laparoscopic simulation training, its absence in the virtual reality device did not impede acquisition of skill. PMID:18765042

  12. A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery

    PubMed Central

    Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J.; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng

    2017-01-01

    Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the “integrated image” on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications. PMID:28198442

  13. A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery.

    PubMed

    Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng

    2017-02-15

    Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the "integrated image" on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications.

  14. Enhancing an Instructional Design Model for Virtual Reality-Based Learning

    ERIC Educational Resources Information Center

    Chen, Chwen Jen; Teh, Chee Siong

    2013-01-01

    In order to effectively utilize the capabilities of virtual reality (VR) in supporting the desired learning outcomes, careful consideration in the design of instruction for VR learning is crucial. In line with this concern, previous work proposed an instructional design model that prescribes instructional methods to guide the design of VR-based…

  15. Are Learning Styles Relevant to Virtual Reality?

    ERIC Educational Resources Information Center

    Chen, Chwen Jen; Toh, Seong Chong; Ismail, Wan Mohd Fauzy Wan

    2005-01-01

    This study aims to investigate the effects of a virtual reality (VR)-based learning environment on learners with different learning styles. The findings of the aptitude-by-treatment interaction study have shown that learners benefit most from the VR (guided exploration) mode, irrespective of their learning styles. This shows that the VR-based…

  16. The Design, Development and Evaluation of a Virtual Reality Based Learning Environment

    ERIC Educational Resources Information Center

    Chen, Chwen Jen

    2006-01-01

    Many researchers and instructional designers increasingly recognise the benefits of utilising three dimensional virtual reality (VR) technology in instruction. In general, there are two types of VR system, the immersive system and the non-immersive system. This article focuses on the latter system that merely uses the conventional personal…

  17. Use of Virtual Reality Technology to Enhance Undergraduate Learning in Abnormal Psychology

    ERIC Educational Resources Information Center

    Stark-Wroblewski, Kim; Kreiner, David S.; Boeding, Christopher M.; Lopata, Ashley N.; Ryan, Joseph J.; Church, Tina M.

    2008-01-01

    We examined whether using virtual reality (VR) technology to provide students with direct exposure to evidence-based psychological treatment approaches would enhance their understanding of and appreciation for such treatments. Students enrolled in an abnormal psychology course participated in a VR session designed to help clients overcome the fear…

  18. Comparing two types of navigational interfaces for Virtual Reality.

    PubMed

    Teixeira, Luís; Vilar, Elisângela; Duarte, Emília; Rebelo, Francisco; da Silva, Fernando Moreira

    2012-01-01

    Previous studies suggest significant differences between navigating virtual environments in a life-like walking manner (i.e., using treadmills or walk-in-place techniques) and virtual navigation (i.e., flying while really standing). The latter option, which usually involves hand-centric devices (e.g., joysticks), is the most common in Virtual Reality-based studies, mostly due to low costs, less space and technology demands. However, recently, new interaction devices, originally conceived for videogames have become available offering interesting potentialities for research. This study aimed to explore the potentialities of the Nintendo Wii Balance Board as a navigation interface in a Virtual Environment presented in an immersive Virtual Reality system. Comparing participants' performance while engaged in a simulated emergency egress allows determining the adequacy of such alternative navigation interface on the basis of empirical results. Forty university students participated in this study. Results show that participants were more efficient when performing navigation tasks using the Joystick than with the Balance Board. However there were no significantly differences in the behavioral compliance with exit signs. Therefore, this study suggests that, at least for tasks similar to the studied, the Balance Board have good potentiality to be used as a navigation interface for Virtual Reality systems.

  19. Virtual environments simulation in research reactor

    NASA Astrophysics Data System (ADS)

    Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin

    2017-01-01

    Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.

  20. Virtual surgical telesimulations in otolaryngology.

    PubMed

    Navarro Newball, Andrés A; Hernández, Carlos J; Velez, Jorge A; Munera, Luis E; García, Gregorio B; Gamboa, Carlos A; Reyes, Antonio J

    2005-01-01

    Distance learning can be enhanced with the use of virtual reality; this paper describes the design and initial validation of a Web Environment for Surgery Skills Training on Otolaryngology (WESST-OT). WESST-OT was created aimed to help trainees to gain the skills required in order to perform the Functional Endoscopic Sinus Surgery procedure (FESS), since training centers and specialist in this knowledge are scarce in Colombia; also, it is part of a web based educational cycle which simulates the stages of a real procedure. WESST-OT is one from the WESST family of telesimulators which started to be developed from an architecture proposed at the Medicine Meets Virtual Reality conference 2002; also, it is a step towards the use of virtual reality technologies in Latin America.

  1. ME science as mobile learning based on virtual reality

    NASA Astrophysics Data System (ADS)

    Fradika, H. D.; Surjono, H. D.

    2018-04-01

    The purpose of this article described about ME Science (Mobile Education Science) as mobile learning application learning of Fisika Inti. ME Science is a product of research and development (R&D) that was using Alessi and Trollip model. Alessi and Trollip model consists three stages that are: (a) planning include analysis of problems, goals, need, and idea of development product, (b) designing includes collecting of materials, designing of material content, creating of story board, evaluating and review product, (c) developing includes development of product, alpha testing, revision of product, validation of product, beta testing, and evaluation of product. The article describes ME Science only to development of product which include development stages. The result of development product has been generates mobile learning application based on virtual reality that can be run on android-based smartphone. These application consist a brief description of learning material, quizzes, video of material summery, and learning material based on virtual reality.

  2. Anatomical education and surgical simulation based on the Chinese Visible Human: a three-dimensional virtual model of the larynx region.

    PubMed

    Liu, Kaijun; Fang, Binji; Wu, Yi; Li, Ying; Jin, Jun; Tan, Liwen; Zhang, Shaoxiang

    2013-09-01

    Anatomical knowledge of the larynx region is critical for understanding laryngeal disease and performing required interventions. Virtual reality is a useful method for surgical education and simulation. Here, we assembled segmented cross-section slices of the larynx region from the Chinese Visible Human dataset. The laryngeal structures were precisely segmented manually as 2D images, then reconstructed and displayed as 3D images in the virtual reality Dextrobeam system. Using visualization and interaction with the virtual reality modeling language model, a digital laryngeal anatomy instruction was constructed using HTML and JavaScript languages. The volume larynx models can thus display an arbitrary section of the model and provide a virtual dissection function. This networked teaching system of the digital laryngeal anatomy can be read remotely, displayed locally, and manipulated interactively.

  3. Will Anything Useful Come Out of Virtual Reality? Examination of a Naval Application

    DTIC Science & Technology

    1993-05-01

    The term virtual reality can encompass varying meanings, but some generally accepted attributes of a virtual environment are that it is immersive...technology, but at present there are few practical applications which are utilizing the broad range of virtual reality technology. This paper will discuss an...Operability, operator functions, Virtual reality , Man-machine interface, Decision aids/decision making, Decision support. ASW.

  4. [Use of virtual reality in forensic psychiatry. A new paradigm?].

    PubMed

    Fromberger, P; Jordan, K; Müller, J L

    2014-03-01

    For more than 20 years virtual realities (VR) have been successfully used in the assessment and treatment of psychiatric disorders. The most important advantages of VR are the high ecological validity of virtual environments, the entire controllability of virtual stimuli in the virtual environment and the capability to induce the sensation of being in the virtual environment instead of the physical environment. VRs provide the opportunity to face the user with stimuli and situations which are not available or too risky in reality. Despite these advantages VR-based applications have not yet been applied in forensic psychiatry. On the basis of an overview of the recent state-of-the-art in VR-based applications in general psychiatry, the article demonstrates the advantages and possibilities of VR-based applications in forensic psychiatry. Up to now only preliminary studies regarding the VR-based assessment of pedophilic interests exist. These studies demonstrate the potential of ecologically valid VR-based applications for the assessment of forensically relevant disorders. One of the most important advantages is the possibility of VR to assess the behavior of forensic inpatients in crime-related situations without endangering others. This provides completely new possibilities not only regarding the assessment but also for the treatment of forensic inpatients. Before utilizing these possibilities in the clinical practice exhaustive research and development will be necessary. Given the high potential of VR-based applications, this effort would be worth it.

  5. Using smartphone technology to deliver a virtual pedestrian environment: usability and validation.

    PubMed

    Schwebel, David C; Severson, Joan; He, Yefei

    2017-09-01

    Various programs effectively teach children to cross streets more safely, but all are labor- and cost-intensive. Recent developments in mobile phone technology offer opportunity to deliver virtual reality pedestrian environments to mobile smartphone platforms. Such an environment may offer a cost- and labor-effective strategy to teach children to cross streets safely. This study evaluated usability, feasibility, and validity of a smartphone-based virtual pedestrian environment. A total of 68 adults completed 12 virtual crossings within each of two virtual pedestrian environments, one delivered by smartphone and the other a semi-immersive kiosk virtual environment. Participants completed self-report measures of perceived realism and simulator sickness experienced in each virtual environment, plus self-reported demographic and personality characteristics. All participants followed system instructions and used the smartphone-based virtual environment without difficulty. No significant simulator sickness was reported or observed. Users rated the smartphone virtual environment as highly realistic. Convergent validity was detected, with many aspects of pedestrian behavior in the smartphone-based virtual environment matching behavior in the kiosk virtual environment. Anticipated correlations between personality and kiosk virtual reality pedestrian behavior emerged for the smartphone-based system. A smartphone-based virtual environment can be usable and valid. Future research should develop and evaluate such a training system.

  6. Development of virtual environment for treating acrophobia.

    PubMed

    Ku, J; Jang, D; Shin, M; Jo, H; Ahn, H; Lee, J; Cho, B; Kim, S I

    2001-01-01

    Virtual Reality (VR) is a new technology that makes humans communicate with computer. It allows the user to see, hear, feel and interact in a three-dimensional virtual world created graphically. Virtual Reality Therapy (VRT), based on this sophisticated technology, has been recently used in the treatment of subjects diagnosed with acrophobia, a disorder that is characterized by marked anxiety upon exposure to heights, avoidance of heights, and a resulting interference in functioning. Conventional virtual reality system for the treatment of acrophobia has a limitation in scope that it is based on over-costly devices or somewhat unrealistic graphic scene. The goal of this study was to develop a inexpensive and more realistic virtual environment for the exposure therapy of acrophobia. We constructed two types virtual environment. One is constituted a bungee-jump tower in the middle of a city. It includes the open lift surrounded by props beside tower that allowed the patient to feel sense of heights. Another is composed of diving boards which have various heights. It provides a view of a lower diving board and people swimming in the pool to serve the patient stimuli upon exposure to heights.

  7. The Potential of Using Virtual Reality Technology in Physical Activity Settings

    ERIC Educational Resources Information Center

    Pasco, Denis

    2013-01-01

    In recent years, virtual reality technology has been successfully used for learning purposes. The purposes of the article are to examine current research on the role of virtual reality in physical activity settings and discuss potential application of using virtual reality technology to enhance learning in physical education. The article starts…

  8. A One-Year Case Study: Understanding the Rich Potential of Project-Based Learning in a Virtual Reality Class for High School Students

    ERIC Educational Resources Information Center

    Morales, Teresa M.; Bang, EunJin; Andre, Thomas

    2013-01-01

    This paper presents a qualitative case analysis of a new and unique, high school, student-directed, project-based learning (PBL), virtual reality (VR) class. In order to create projects, students learned, on an independent basis, how to program an industrial-level VR machine. A constraint was that students were required to produce at least one…

  9. Implementing Virtual Reality Technology as an Effective WEB Based KIOSK: Darulaman's Teacher Training College Tour (IPDA VR Tour)

    ERIC Educational Resources Information Center

    Azman, Fadzil

    2004-01-01

    At present the development of Virtual Reality (VR) technology is expanding due to the importance and needs to use the 3D elements and 360 degrees panorama. In expressing a clearer picture to consumers in various fields such as education, military, medicine, entertainment and so on. In live with the development the web based VR kiosk project in…

  10. Using mixed methods to evaluate efficacy and user expectations of a virtual reality-based training system for upper-limb recovery in patients after stroke: a study protocol for a randomised controlled trial.

    PubMed

    Schuster-Amft, Corina; Eng, Kynan; Lehmann, Isabelle; Schmid, Ludwig; Kobashi, Nagisa; Thaler, Irène; Verra, Martin L; Henneke, Andrea; Signer, Sandra; McCaskey, Michael; Kiper, Daniel

    2014-09-06

    In recent years, virtual reality has been introduced to neurorehabilitation, in particular with the intention of improving upper-limb training options and facilitating motor function recovery. The proposed study incorporates a quantitative part and a qualitative part, termed a mixed-methods approach: (1) a quantitative investigation of the efficacy of virtual reality training compared to conventional therapy in upper-limb motor function are investigated, (2a) a qualitative investigation of patients' experiences and expectations of virtual reality training and (2b) a qualitative investigation of therapists' experiences using the virtual reality training system in the therapy setting. At three participating clinics, 60 patients at least 6 months after stroke onset will be randomly allocated to an experimental virtual reality group (EG) or to a control group that will receive conventional physiotherapy or occupational therapy (16 sessions, 45 minutes each, over the course of 4 weeks). Using custom data gloves, patients' finger and arm movements will be displayed in real time on a monitor, and they will move and manipulate objects in various virtual environments. A blinded assessor will test patients' motor and cognitive performance twice before, once during, and twice after the 4-week intervention. The primary outcome measure is the Box and Block Test. Secondary outcome measures are the Chedoke-McMaster Stroke Assessments (hand, arm and shoulder pain subscales), the Chedoke-McMaster Arm and Hand Activity Inventory, the Line Bisection Test, the Stroke Impact Scale, the MiniMentalState Examination and the Extended Barthel Index. Semistructured face-to-face interviews will be conducted with patients in the EG after intervention finalization with a focus on the patients' expectations and experiences regarding the virtual reality training. Therapists' perspectives on virtual reality training will be reviewed in three focus groups comprising four to six occupational therapists and physiotherapists. The interviews will help to gain a deeper understanding of the phenomena under investigation to provide sound recommendations for the implementation of the virtual reality training system for routine use in neurorehabilitation complementing the quantitative clinical assessments. Cliniclatrials.gov Identifier: NCT01774669 (15 January 2013).

  11. Usability evaluation of low-cost virtual reality hand and arm rehabilitation games.

    PubMed

    Seo, Na Jin; Arun Kumar, Jayashree; Hur, Pilwon; Crocher, Vincent; Motawar, Binal; Lakshminarayanan, Kishor

    2016-01-01

    The emergence of lower-cost motion tracking devices enables home-based virtual reality rehabilitation activities and increased accessibility to patients. Currently, little documentation on patients' expectations for virtual reality rehabilitation is available. This study surveyed 10 people with stroke for their expectations of virtual reality rehabilitation games. This study also evaluated the usability of three lower-cost virtual reality rehabilitation games using a survey and House of Quality analysis. The games (kitchen, archery, and puzzle) were developed in the laboratory to encourage coordinated finger and arm movements. Lower-cost motion tracking devices, the P5 Glove and Microsoft Kinect, were used to record the movements. People with stroke were found to desire motivating and easy-to-use games with clinical insights and encouragement from therapists. The House of Quality analysis revealed that the games should be improved by obtaining evidence for clinical effectiveness, including clinical feedback regarding improving functional abilities, adapting the games to the user's changing functional ability, and improving usability of the motion-tracking devices. This study reports the expectations of people with stroke for rehabilitation games and usability analysis that can help guide development of future games.

  12. Virtual reality training improves balance function.

    PubMed

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-09-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.

  13. Virtual reality training improves balance function

    PubMed Central

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-01-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651

  14. Immersive Virtual Reality Therapy with Myoelectric Control for Treatment-resistant Phantom Limb Pain: Case Report.

    PubMed

    Chau, Brian; Phelan, Ivan; Ta, Phillip; Humbert, Sarah; Hata, Justin; Tran, Duc

    2017-01-01

    Objective: Phantom limb pain is a condition frequently experienced after amputation. One treatment for phantom limb pain is traditional mirror therapy, yet some patients do not respond to this intervention, and immersive virtual reality mirror therapy offers some potential advantages. We report the case of a patient with severe phantom limb pain following an upper limb amputation and successful treatment with therapy in a custom virtual reality environment. Methods: An interactive 3-D kitchen environment was developed based on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked, head-mounted virtual reality display. The patient used myoelectric control of a virtual hand as well as motion-tracking control in this setting for five therapy sessions. Pain scale measurements and subjective feedback was elicited at each session. Results: Analysis of the measured pain scales showed statistically significant decreases per session [Visual Analog Scale, Short Form McGill Pain Questionnaire, and Wong-Baker FACES pain scores decreased by 55 percent (p=0.0143), 60 percent (p=0.023), and 90 percent (p=0.0024), respectively]. Significant subjective pain relief persisting between sessions was also reported, as well as marked immersion within the virtual environments. On followup at six weeks, the patient noted continued decrease in phantom limb pain symptoms. Conclusions: Currently available immersive virtual reality technology with myolectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain.

  15. Immersive Virtual Reality Therapy with Myoelectric Control for Treatment-resistant Phantom Limb Pain: Case Report

    PubMed Central

    Phelan, Ivan; Ta, Phillip; Humbert, Sarah; Hata, Justin; Tran, Duc

    2017-01-01

    Objective: Phantom limb pain is a condition frequently experienced after amputation. One treatment for phantom limb pain is traditional mirror therapy, yet some patients do not respond to this intervention, and immersive virtual reality mirror therapy offers some potential advantages. We report the case of a patient with severe phantom limb pain following an upper limb amputation and successful treatment with therapy in a custom virtual reality environment. Methods: An interactive 3-D kitchen environment was developed based on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked, head-mounted virtual reality display. The patient used myoelectric control of a virtual hand as well as motion-tracking control in this setting for five therapy sessions. Pain scale measurements and subjective feedback was elicited at each session. Results: Analysis of the measured pain scales showed statistically significant decreases per session [Visual Analog Scale, Short Form McGill Pain Questionnaire, and Wong-Baker FACES pain scores decreased by 55 percent (p=0.0143), 60 percent (p=0.023), and 90 percent (p=0.0024), respectively]. Significant subjective pain relief persisting between sessions was also reported, as well as marked immersion within the virtual environments. On followup at six weeks, the patient noted continued decrease in phantom limb pain symptoms. Conclusions: Currently available immersive virtual reality technology with myolectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain. PMID:29616149

  16. Virtual reality simulation training for health professions trainees in gastrointestinal endoscopy.

    PubMed

    Walsh, Catharine M; Sherlock, Mary E; Ling, Simon C; Carnahan, Heather

    2012-06-13

    Traditionally, training in gastrointestinal endoscopy has been based upon an apprenticeship model, with novice endoscopists learning basic skills under the supervision of experienced preceptors in the clinical setting. Over the last two decades, however, the growing awareness of the need for patient safety has brought the issue of simulation-based training to the forefront. While the use of simulation-based training may have important educational and societal advantages, the effectiveness of virtual reality gastrointestinal endoscopy simulators has yet to be clearly demonstrated. To determine whether virtual reality simulation training can supplement and/or replace early conventional endoscopy training (apprenticeship model) in diagnostic oesophagogastroduodenoscopy, colonoscopy and/or sigmoidoscopy for health professions trainees with limited or no prior endoscopic experience. Health professions, educational and computer databases were searched until November 2011 including The Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, Scopus, Web of Science, Biosis Previews, CINAHL, Allied and Complementary Medicine Database, ERIC, Education Full Text, CBCA Education, Career and Technical Education @ Scholars Portal, Education Abstracts @ Scholars Portal, Expanded Academic ASAP @ Scholars Portal, ACM Digital Library, IEEE Xplore, Abstracts in New Technologies and Engineering and Computer & Information Systems Abstracts. The grey literature until November 2011 was also searched. Randomised and quasi-randomised clinical trials comparing virtual reality endoscopy (oesophagogastroduodenoscopy, colonoscopy and sigmoidoscopy) simulation training versus any other method of endoscopy training including conventional patient-based training, in-job training, training using another form of endoscopy simulation (e.g. low-fidelity simulator), or no training (however defined by authors) were included.  Trials comparing one method of virtual reality training versus another method of virtual reality training (e.g. comparison of two different virtual reality simulators) were also included. Only trials measuring outcomes on humans in the clinical setting (as opposed to animals or simulators) were included. Two authors (CMS, MES) independently assessed the eligibility and methodological quality of trials, and extracted data on the trial characteristics and outcomes. Due to significant clinical and methodological heterogeneity it was not possible to pool study data in order to perform a meta-analysis. Where data were available for each continuous outcome we calculated standardized mean difference with 95% confidence intervals based on intention-to-treat analysis. Where data were available for dichotomous outcomes we calculated relative risk with 95% confidence intervals based on intention-to-treat-analysis. Thirteen trials, with 278 participants, met the inclusion criteria. Four trials compared simulation-based training with conventional patient-based endoscopy training (apprenticeship model) whereas nine trials compared simulation-based training with no training. Only three trials were at low risk of bias. Simulation-based training, as compared with no training, generally appears to provide participants with some advantage over their untrained peers as measured by composite score of competency, independent procedure completion, performance time, independent insertion depth, overall rating of performance or competency error rate and mucosal visualization. Alternatively, there was no conclusive evidence that simulation-based training was superior to conventional patient-based training, although data were limited. The results of this systematic review indicate that virtual reality endoscopy training can be used to effectively supplement early conventional endoscopy training (apprenticeship model) in diagnostic oesophagogastroduodenoscopy, colonoscopy and/or sigmoidoscopy for health professions trainees with limited or no prior endoscopic experience. However, there remains insufficient evidence to advise for or against the use of virtual reality simulation-based training as a replacement for early conventional endoscopy training (apprenticeship model) for health professions trainees with limited or no prior endoscopic experience. There is a great need for the development of a reliable and valid measure of endoscopic performance prior to the completion of further randomised clinical trials with high methodological quality.

  17. Virtual Realities and the Future of Text.

    ERIC Educational Resources Information Center

    Marcus, Stephen

    1992-01-01

    Discusses issues surrounding virtual reality and "virtual books." Suggests that those who are exploring the territory of virtual realities are already helping to expand and enrich expectations and visions for integrating technology into reading and writing. (RS)

  18. Novel Web-based Education Platforms for Information Communication utilizing Gamification, Virtual and Immersive Reality

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2015-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. This presentation showcase information communication interfaces, games, and virtual and immersive reality applications for supporting teaching and learning of concepts in atmospheric and hydrological sciences. The information communication platforms utilizes latest web technologies and allow accessing and visualizing large scale data on the web. The simulation system is a web-based 3D interactive learning environment for teaching hydrological and atmospheric processes and concepts. The simulation systems provides a visually striking platform with realistic terrain and weather information, and water simulation. The web-based simulation system provides an environment for students to learn about the earth science processes, and effects of development and human activity on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users.

  19. Effect of virtual reality on cognition in stroke patients.

    PubMed

    Kim, Bo Ryun; Chun, Min Ho; Kim, Lee Suk; Park, Ji Young

    2011-08-01

    To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients.

  20. Home-based virtual reality balance training and conventional balance training in Parkinson's disease: A randomized controlled trial.

    PubMed

    Yang, Wen-Chieh; Wang, Hsing-Kuo; Wu, Ruey-Meei; Lo, Chien-Shun; Lin, Kwan-Hwa

    2016-09-01

    Virtual reality has the advantage to provide rich sensory feedbacks for training balance function. This study tested if the home-based virtual reality balance training is more effective than the conventional home balance training in improving balance, walking, and quality of life in patients with Parkinson's disease (PD). Twenty-three patients with idiopathic PD were recruited and underwent twelve 50-minute training sessions during the 6-week training period. The experimental group (n = 11) was trained with a custom-made virtual reality balance training system, and the control group (n = 12) was trained by a licensed physical therapist. Outcomes were measured at Week 0 (pretest), Week 6 (posttest), and Week 8 (follow-up). The primary outcome was the Berg Balance Scale. The secondary outcomes included the Dynamic Gait Index, timed Up-and-Go test, Parkinson's Disease Questionnaire, and the motor score of the Unified Parkinson's Disease Rating Scale. The experimental and control groups were comparable at pretest. After training, both groups performed better in the Berg Balance Scale, Dynamic Gait Index, timed Up-and-Go test, and Parkinson's Disease Questionnaire at posttest and follow-up than at pretest. However, no significant differences were found between these two groups at posttest and follow-up. This study did not find any difference between the effects of the home-based virtual reality balance training and conventional home balance training. The two training options were equally effective in improving balance, walking, and quality of life among community-dwelling patients with PD. Copyright © 2015. Published by Elsevier B.V.

  1. The WINCKELMANN300 Project: Dissemination of Culture with Virtual Reality at the Capitoline Museum in Rome

    NASA Astrophysics Data System (ADS)

    Gonizzi Barsanti, S.; Malatesta, S. G.; Lella, F.; Fanini, B.; Sala, F.; Dodero, E.; Petacco, L.

    2018-05-01

    The best way to disseminate culture is, nowadays, the creation of scenarios with virtual and augmented reality that supply the visitors of museums with a powerful, interactive tool that allows to learn sometimes difficult concepts in an easy, entertaining way. 3D models derived from reality-based techniques are nowadays used to preserve, document and restore historical artefacts. These digital contents are also powerful instrument to interactively communicate their significance to non-specialist, making easier to understand concepts sometimes complicated or not clear. Virtual and Augmented Reality are surely a valid tool to interact with 3D models and a fundamental help in making culture more accessible to the wide public. These technologies can help the museum curators to adapt the cultural proposal and the information about the artefacts based on the different type of visitor's categories. These technologies allow visitors to travel through space and time and have a great educative function permitting to explain in an easy and attractive way information and concepts that could prove to be complicated. The aim of this paper is to create a virtual scenario and an augmented reality app to recreate specific spaces in the Capitoline Museum in Rome as they were during Winckelmann's time, placing specific statues in their original position in the 18th century.

  2. Virtual reality: new method of teaching anorectal and pelvic floor anatomy.

    PubMed

    Dobson, Howard D; Pearl, Russell K; Orsay, Charles P; Rasmussen, Mary; Evenhouse, Ray; Ai, Zhuming; Blew, Gregory; Dech, Fred; Edison, Marcia I; Silverstein, Jonathan C; Abcarian, Herand

    2003-03-01

    A clear understanding of the intricate spatial relationships among the structures of the pelvic floor, rectum, and anal canal is essential for the treatment of numerous pathologic conditions. Virtual-reality technology allows improved visualization of three-dimensional structures over conventional media because it supports stereoscopic-vision, viewer-centered perspective, large angles of view, and interactivity. We describe a novel virtual reality-based model designed to teach anorectal and pelvic floor anatomy, pathology, and surgery. A static physical model depicting the pelvic floor and anorectum was created and digitized at 1-mm intervals in a CT scanner. Multiple software programs were used along with endoscopic images to generate a realistic interactive computer model, which was designed to be viewed on a networked, interactive, virtual-reality display (CAVE or ImmersaDesk). A standard examination of ten basic anorectal and pelvic floor anatomy questions was administered to third-year (n = 6) and fourth-year (n = 7) surgical residents. A workshop using the Virtual Pelvic Floor Model was then given, and the standard examination was readministered so that it was possible to evaluate the effectiveness of the Digital Pelvic Floor Model as an educational instrument. Training on the Virtual Pelvic Floor Model produced substantial improvements in the overall average test scores for the two groups, with an overall increase of 41 percent (P = 0.001) and 21 percent (P = 0.0007) for third-year and fourth-year residents, respectively. Resident evaluations after the workshop also confirmed the effectiveness of understanding pelvic anatomy using the Virtual Pelvic Floor Model. This model provides an innovative interactive educational framework that allows educators to overcome some of the barriers to teaching surgical and endoscopic principles based on understanding highly complex three-dimensional anatomy. Using this collaborative, shared virtual-reality environment, teachers and students can interact from locations world-wide to manipulate the components of this model to achieve the educational goals of this project along with the potential for virtual surgery.

  3. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke.

    PubMed

    Lloréns, Roberto; Gil-Gómez, José-Antonio; Alcañiz, Mariano; Colomer, Carolina; Noé, Enrique

    2015-03-01

    To study the clinical effectiveness and the usability of a virtual reality-based intervention compared with conventional physical therapy in the balance recovery of individuals with chronic stroke. Randomized controlled trial. Outpatient neurorehabilitation unit. A total of 20 individuals with chronic stroke. The intervention consisted of 20 one-hour sessions, five sessions per week. The experimental group combined 30 minutes with the virtual reality-based intervention with 30 minutes of conventional training. The control group underwent one hour conventional therapy. Balance performance was assessed at the beginning and at the end of the trial using the Berg Balance Scale, the balance and gait subscales of the Tinetti Performance-Oriented Mobility Assessment, the Brunel Balance Assessment, and the 10-m Walking Test. Subjective data of the virtual reality-based intervention were collected from the experimental group, with a feedback questionnaire at the end of the trial. The results revealed a significant group-by-time interaction in the scores of the Berg Balance Scale (p < 0.05) and in the 10-m Walking Test (p < 0.05). Post-hoc analyses showed greater improvement in the experimental group: 3.8 ±2.6 vs. 1.8 ±1.4 in the Berg Balance Scale, -1.9 ±1.6 seconds vs. 0.0 ±2.3 seconds in the 10-m Walking Test, and also in the number of participants who increased level in the Brunel Balance Assessment (χ(2) = 2.5, p < 0.01). Virtual reality interventions can be an effective resource to enhance the improvement of balance in individuals with chronic stroke. © The Author(s) 2014.

  4. Using Virtual Reality Environment to Improve Joint Attention Associated with Pervasive Developmental Disorder

    ERIC Educational Resources Information Center

    Cheng, Yufang; Huang, Ruowen

    2012-01-01

    The focus of this study is using data glove to practice Joint attention skill in virtual reality environment for people with pervasive developmental disorder (PDD). The virtual reality environment provides a safe environment for PDD people. Especially, when they made errors during practice in virtual reality environment, there is no suffering or…

  5. Naval Applications of Virtual Reality,

    DTIC Science & Technology

    1993-01-01

    Expert Virtual Reality Special Report 󈨡, pp. 67- 72. 14. SUBJECT TERMS 15 NUMBER o0 PAGES man-machine interface virtual reality decision support...collective and individual performance. -" Virtual reality projects could help *y by Mark Gembicki Av-t-abilty CodesA Avafllat Idt Iofe and David Rousseau...alt- 67 VIRTUAL . REALITY SPECIAl, REPORT r-OPY avcriaikxb to DD)C qg .- 154,41X~~~~~~~~~~~~j 1411 iI..:41 T a].’ 1,1 4 1111 I 4 1 * .11 ~ 4 l.~w111511 I

  6. Visuospatial Orientation Learning through Virtual Reality for People with Severe Disability

    ERIC Educational Resources Information Center

    de la Torre-Luque, Alejandro; Valero-Aguayo, Luis; de la Rubia-Cuestas, Ernesto J.

    2017-01-01

    This study aims to test how an intervention based on virtual reality (VR) may enhance visuospatial skills amongst people with disability. A quasi-experimental intra-group study was therefore conducted. Participants were 20 people with severe disability (65% males; 34.35 years, on average, and 84.95% of disability rate according to the Andalusian…

  7. A Virtual Reality Dance Training System Using Motion Capture Technology

    ERIC Educational Resources Information Center

    Chan, J. C. P.; Leung, H.; Tang, J. K. T.; Komura, T.

    2011-01-01

    In this paper, a new dance training system based on the motion capture and virtual reality (VR) technologies is proposed. Our system is inspired by the traditional way to learn new movements-imitating the teacher's movements and listening to the teacher's feedback. A prototype of our proposed system is implemented, in which a student can imitate…

  8. Design and Development of Virtual Reality: Analysis of Challenges Faced by Educators

    ERIC Educational Resources Information Center

    Hanson, Kami; Shelton, Brett E.

    2008-01-01

    There exists an increasingly attractive lure of using virtual reality applications for teaching in all areas of education, but perhaps the largest detriment to its use is the intimidating nature of VR technology for non-technical instructors. What are the challenges to using VR technology for the design and development of VR-based instructional…

  9. Incorporating Kansei Engineering in Instructional Design: Designing Virtual Reality Based Learning Environments from a Novel Perspective

    ERIC Educational Resources Information Center

    Chuah, Kee Man; Chen, Chwen Jen; Teh, Chee Siong

    2008-01-01

    In recent years, the application of virtual reality (VR) technology in education is rapidly gaining momentum. The educational benefits offered by such technology have prompted many educators as well as instructional designers to investigate ways to create effective and engaging VR learning. Instructional designers have examined widely the…

  10. Psychometric Properties of Virtual Reality Vignette Performance Measures: A Novel Approach for Assessing Adolescents' Social Competency Skills

    ERIC Educational Resources Information Center

    Paschall, Mallie J.; Fishbein, Diana H.; Hubal, Robert C.; Eldreth, Diana

    2005-01-01

    This study examined the psychometric properties of performance measures for three novel, interactive virtual reality vignette exercises developed to assess social competency skills of at-risk adolescents. Performance data were collected from 117 African-American male 15-17 year olds. Data for 18 performance measures were obtained, based on…

  11. Feasibility of Using Virtual Reality to Assess Nicotine Cue Reactivity during Treatment

    ERIC Educational Resources Information Center

    Kaganoff, Eili; Bordnick, Patrick S.; Carter, Brian Lee

    2012-01-01

    Cue reactivity assessments have been widely used to assess craving and attention to cues among cigarette smokers. Cue reactivity has the potential to offer insights into treatment decisions; however, the use of cue reactivity in treatment studies has been limited. This study assessed the feasibility of using a virtual reality-based cue reactivity…

  12. Computer-Assisted Culture Learning in an Online Augmented Reality Environment Based on Free-Hand Gesture Interaction

    ERIC Educational Resources Information Center

    Yang, Mau-Tsuen; Liao, Wan-Che

    2014-01-01

    The physical-virtual immersion and real-time interaction play an essential role in cultural and language learning. Augmented reality (AR) technology can be used to seamlessly merge virtual objects with real-world images to realize immersions. Additionally, computer vision (CV) technology can recognize free-hand gestures from live images to enable…

  13. Magical Stories: Blending Virtual Reality and Artificial Intelligence.

    ERIC Educational Resources Information Center

    McLellan, Hilary

    Artificial intelligence (AI) techniques and virtual reality (VR) make possible powerful interactive stories, and this paper focuses on examples of virtual characters in three dimensional (3-D) worlds. Waldern, a virtual reality game designer, has theorized about and implemented software design of virtual teammates and opponents that incorporate AI…

  14. Virtual Reality: An Overview.

    ERIC Educational Resources Information Center

    Franchi, Jorge

    1994-01-01

    Highlights of this overview of virtual reality include optics; interface devices; virtual worlds; potential applications, including medicine and archaeology; problems, including costs; current research and development; future possibilities; and a listing of vendors and suppliers of virtual reality products. (Contains 11 references.) (LRW)

  15. Natural gesture interfaces

    NASA Astrophysics Data System (ADS)

    Starodubtsev, Illya

    2017-09-01

    The paper describes the implementation of the system of interaction with virtual objects based on gestures. The paper describes the common problems of interaction with virtual objects, specific requirements for the interfaces for virtual and augmented reality.

  16. DJINNI: A Novel Technology Supported Exposure Therapy Paradigm for SAD Combining Virtual Reality and Augmented Reality.

    PubMed

    Ben-Moussa, Maher; Rubo, Marius; Debracque, Coralie; Lange, Wolf-Gero

    2017-01-01

    The present paper explores the benefits and the capabilities of various emerging state-of-the-art interactive 3D and Internet of Things technologies and investigates how these technologies can be exploited to develop a more effective technology supported exposure therapy solution for social anxiety disorder. "DJINNI" is a conceptual design of an in vivo augmented reality (AR) exposure therapy mobile support system that exploits several capturing technologies and integrates the patient's state and situation by vision-based, audio-based, and physiology-based analysis as well as by indoor/outdoor localization techniques. DJINNI also comprises an innovative virtual reality exposure therapy system that is adaptive and customizable to the demands of the in vivo experience and therapeutic progress. DJINNI follows a gamification approach where rewards and achievements are utilized to motivate the patient to progress in her/his treatment. The current paper reviews the state of the art of technologies needed for such a solution and recommends how these technologies could be integrated in the development of an individually tailored and yet feasible and effective AR/virtual reality-based exposure therapy. Finally, the paper outlines how DJINNI could be part of classical cognitive behavioral treatment and how to validate such a setup.

  17. DJINNI: A Novel Technology Supported Exposure Therapy Paradigm for SAD Combining Virtual Reality and Augmented Reality

    PubMed Central

    Ben-Moussa, Maher; Rubo, Marius; Debracque, Coralie; Lange, Wolf-Gero

    2017-01-01

    The present paper explores the benefits and the capabilities of various emerging state-of-the-art interactive 3D and Internet of Things technologies and investigates how these technologies can be exploited to develop a more effective technology supported exposure therapy solution for social anxiety disorder. “DJINNI” is a conceptual design of an in vivo augmented reality (AR) exposure therapy mobile support system that exploits several capturing technologies and integrates the patient’s state and situation by vision-based, audio-based, and physiology-based analysis as well as by indoor/outdoor localization techniques. DJINNI also comprises an innovative virtual reality exposure therapy system that is adaptive and customizable to the demands of the in vivo experience and therapeutic progress. DJINNI follows a gamification approach where rewards and achievements are utilized to motivate the patient to progress in her/his treatment. The current paper reviews the state of the art of technologies needed for such a solution and recommends how these technologies could be integrated in the development of an individually tailored and yet feasible and effective AR/virtual reality-based exposure therapy. Finally, the paper outlines how DJINNI could be part of classical cognitive behavioral treatment and how to validate such a setup. PMID:28503155

  18. New directions in virtual environments and gaming to address obesity and diabetes: industry perspective.

    PubMed

    Ruppert, Barb

    2011-03-01

    Virtual reality is increasingly used for education and treatment in the fields of health and medicine. What is the health potential of virtual reality technology from the software development industry perspective? This article presents interviews with Ben Sawyer of Games for Health, Dr. Walter Greenleaf of InWorld Solutions, and Dr. Ernie Medina of MedPlay Technologies. Games for Health brings together researchers, medical professionals, and game developers to share information on the impact that game technologies can have on health, health care, and policy. InWorld is an Internet-based virtual environment designed specifically for behavioral health care. MedPlay Technologies develops wellness training programs that include exergaming technology. The interviewees share their views on software development and other issues that must be addressed to advance the field of virtual reality for health applications. © 2011 Diabetes Technology Society.

  19. History Educators and the Challenge of Immersive Pasts: A Critical Review of Virtual Reality "Tools" and History Pedagogy

    ERIC Educational Resources Information Center

    Allison, John

    2008-01-01

    This paper will undertake a critical review of the impact of virtual reality tools on the teaching of history. Virtual reality is useful in several different ways. History educators, elementary and secondary school teachers and professors, can all profit from the digital environment. Challenges arise quickly however. Virtual reality technologies…

  20. Immersive virtual reality simulations in nursing education.

    PubMed

    Kilmon, Carol A; Brown, Leonard; Ghosh, Sumit; Mikitiuk, Artur

    2010-01-01

    This article explores immersive virtual reality as a potential educational strategy for nursing education and describes an immersive learning experience now being developed for nurses. This pioneering project is a virtual reality application targeting speed and accuracy of nurse response in emergency situations requiring cardiopulmonary resuscitation. Other potential uses and implications for the development of virtual reality learning programs are discussed.

  1. The Use of Virtual Reality in Patients with Eating Disorders: Systematic Review.

    PubMed

    Clus, Damien; Larsen, Mark Erik; Lemey, Christophe; Berrouiguet, Sofian

    2018-04-27

    Patients with eating disorders are characterized by pathological eating habits and a tendency to overestimate their weight and body shape. Virtual reality shows promise for the evaluation and management of patients with eating disorders. This technology, when accepted by this population, allows immersion in virtual environments, assessment, and therapeutic approaches, by exposing users to high-calorie foods or changes in body shape. To better understand the value of virtual reality, we conducted a review of the literature, including clinical studies proposing the use of virtual reality for the evaluation and management of patients with eating disorders. We searched PubMed, PsycINFO, ScienceDirect, the Cochrane Library, Scopus, and Web of Science up to April 2017. We created the list of keywords based on two domains: virtual reality and eating disorders. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses to identify, select, and critically appraise relevant research while minimizing bias. The initial database searches identified 311 articles, 149 of which we removed as duplicates. We analyzed the resulting set of 26 unique studies that met the inclusion criteria. Of these, 8 studies were randomized controlled trials, 13 were nonrandomized studies, and 5 were clinical trials with only 1 participant. Most articles focused on clinical populations (19/26, 73%), with the remainder reporting case-control studies (7/26, 27%). Most of the studies used visual immersive equipment (16/26, 62%) with a head-mounted display (15/16, 94%). Two main areas of interest emerged from these studies: virtual work on patients’ body image (7/26, 27%) and exposure to virtual food stimuli (10/26, 38%). We conducted a broad analysis of studies on the use of virtual reality in patients with eating disorders. This review of the literature showed that virtual reality is an acceptable and promising therapeutic tool for patients with eating disorders. ©Damien Clus, Mark Erik Larsen, Christophe Lemey, Sofian Berrouiguet. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 27.04.2018.

  2. Virtual Reality at the PC Level

    NASA Technical Reports Server (NTRS)

    Dean, John

    1998-01-01

    The main objective of my research has been to incorporate virtual reality at the desktop level; i.e., create virtual reality software that can be run fairly inexpensively on standard PC's. The standard language used for virtual reality on PC's is VRML (Virtual Reality Modeling Language). It is a new language so it is still undergoing a lot of changes. VRML 1.0 came out only a couple years ago and VRML 2.0 came out around last September. VRML is an interpreted language that is run by a web browser plug-in. It is fairly flexible in terms of allowing you to create different shapes and animations. Before this summer, I knew very little about virtual reality and I did not know VRML at all. I learned the VRML language by reading two books and experimenting on a PC. The following topics are presented: CAD to VRML, VRML 1.0 to VRML 2.0, VRML authoring tools, VRML browsers, finding virtual reality applications, the AXAF project, the VRML generator program, web communities and future plans.

  3. Interpretations of virtual reality.

    PubMed

    Voiskounsky, Alexander

    2011-01-01

    University students were surveyed to learn what they know about virtual realities. The two studies were administered with a half-year interval in which the students (N=90, specializing either in mathematics and science, or in social science and humanities) were asked to name particular examples of virtual realities. The second, but not the first study, was administered after the participants had the chance to see the movie "Avatar" (no investigation was held into whether they really saw it). While the students in both studies widely believed that activities such as social networking and online gaming represent virtual realities, some other examples provided by the students in the two studies differ: in the second study the participants expressed a better understanding of the items related to virtual realities. At the same time, not a single participant reported particular psychological states (either regular or altered) as examples of virtual realities. Profound popularization efforts need to be done to acquaint the public, including college students, with virtual realities and let the public adequately understand how such systems work.

  4. A standardized set of 3-D objects for virtual reality research and applications.

    PubMed

    Peeters, David

    2018-06-01

    The use of immersive virtual reality as a research tool is rapidly increasing in numerous scientific disciplines. By combining ecological validity with strict experimental control, immersive virtual reality provides the potential to develop and test scientific theories in rich environments that closely resemble everyday settings. This article introduces the first standardized database of colored three-dimensional (3-D) objects that can be used in virtual reality and augmented reality research and applications. The 147 objects have been normed for name agreement, image agreement, familiarity, visual complexity, and corresponding lexical characteristics of the modal object names. The availability of standardized 3-D objects for virtual reality research is important, because reaching valid theoretical conclusions hinges critically on the use of well-controlled experimental stimuli. Sharing standardized 3-D objects across different virtual reality labs will allow for science to move forward more quickly.

  5. Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System.

    PubMed

    Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama

    2017-01-01

    Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one's center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one's individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one's overall performance in balance-related tasks belonging to different difficulty levels.

  6. Development of a Virtual Museum Including a 4d Presentation of Building History in Virtual Reality

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Tschirschwitz, F.; Deggim, S.

    2017-02-01

    In the last two decades the definition of the term "virtual museum" changed due to rapid technological developments. Using today's available 3D technologies a virtual museum is no longer just a presentation of collections on the Internet or a virtual tour of an exhibition using panoramic photography. On one hand, a virtual museum should enhance a museum visitor's experience by providing access to additional materials for review and knowledge deepening either before or after the real visit. On the other hand, a virtual museum should also be used as teaching material in the context of museum education. The laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has developed a virtual museum (VM) of the museum "Alt-Segeberger Bürgerhaus", a historic town house. The VM offers two options for visitors wishing to explore the museum without travelling to the city of Bad Segeberg, Schleswig-Holstein, Germany. Option a, an interactive computer-based, tour for visitors to explore the exhibition and to collect information of interest or option b, to immerse into virtual reality in 3D with the HTC Vive Virtual Reality System.

  7. [Application of virtual reality in surgical treatment of complex head and neck carcinoma].

    PubMed

    Zhou, Y Q; Li, C; Shui, C Y; Cai, Y C; Sun, R H; Zeng, D F; Wang, W; Li, Q L; Huang, L; Tu, J; Jiang, J

    2018-01-07

    Objective: To investigate the application of virtual reality technology in the preoperative evaluation of complex head and neck carcinoma and he value of virtual reality technology in surgical treatment of head and neck carcinoma. Methods: The image data of eight patients with complex head and neck carcinoma treated from December 2016 to May 2017 was acquired. The data were put into virtual reality system to built the three-dimensional anatomical model of carcinoma and to created the surgical scene. The process of surgery was stimulated by recognizing the relationship between tumor and surrounding important structures. Finally all patients were treated with surgery. And two typical cases were reported. Results: With the help of virtual reality, surgeons could adequately assess the condition of carcinoma and the security of operation and ensured the safety of operations. Conclusions: Virtual reality can provide the surgeons with the sensory experience in virtual surgery scenes and achieve the man-computer cooperation and stereoscopic assessment, which will ensure the safety of surgery. Virtual reality has a huge impact on guiding the traditional surgical procedure of head and neck carcinoma.

  8. Role of virtual reality simulation in endoscopy training

    PubMed Central

    Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen

    2015-01-01

    Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed. PMID:26675895

  9. Role of virtual reality simulation in endoscopy training.

    PubMed

    Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen

    2015-12-10

    Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed.

  10. Hybrid Reality Lab Capabilities - Video 2

    NASA Technical Reports Server (NTRS)

    Delgado, Francisco J.; Noyes, Matthew

    2016-01-01

    Our Hybrid Reality and Advanced Operations Lab is developing incredibly realistic and immersive systems that could be used to provide training, support engineering analysis, and augment data collection for various human performance metrics at NASA. To get a better understanding of what Hybrid Reality is, let's go through the two most commonly known types of immersive realities: Virtual Reality, and Augmented Reality. Virtual Reality creates immersive scenes that are completely made up of digital information. This technology has been used to train astronauts at NASA, used during teleoperation of remote assets (arms, rovers, robots, etc.) and other activities. One challenge with Virtual Reality is that if you are using it for real time-applications (like landing an airplane) then the information used to create the virtual scenes can be old (i.e. visualized long after physical objects moved in the scene) and not accurate enough to land the airplane safely. This is where Augmented Reality comes in. Augmented Reality takes real-time environment information (from a camera, or see through window, and places digitally created information into the scene so that it matches with the video/glass information). Augmented Reality enhances real environment information collected with a live sensor or viewport (e.g. camera, window, etc.) with the information-rich visualization provided by Virtual Reality. Hybrid Reality takes Augmented Reality even further, by creating a higher level of immersion where interactivity can take place. Hybrid Reality takes Virtual Reality objects and a trackable, physical representation of those objects, places them in the same coordinate system, and allows people to interact with both objects' representations (virtual and physical) simultaneously. After a short period of adjustment, the individuals begin to interact with all the objects in the scene as if they were real-life objects. The ability to physically touch and interact with digitally created objects that have the same shape, size, location to their physical object counterpart in virtual reality environment can be a game changer when it comes to training, planning, engineering analysis, science, entertainment, etc. Our Project is developing such capabilities for various types of environments. The video outlined with this abstract is a representation of an ISS Hybrid Reality experience. In the video you can see various Hybrid Reality elements that provide immersion beyond just standard Virtual Reality or Augmented Reality.

  11. Virtual Reality Exploration and Planning for Precision Colorectal Surgery.

    PubMed

    Guerriero, Ludovica; Quero, Giuseppe; Diana, Michele; Soler, Luc; Agnus, Vincent; Marescaux, Jacques; Corcione, Francesco

    2018-06-01

    Medical software can build a digital clone of the patient with 3-dimensional reconstruction of Digital Imaging and Communication in Medicine images. The virtual clone can be manipulated (rotations, zooms, etc), and the various organs can be selectively displayed or hidden to facilitate a virtual reality preoperative surgical exploration and planning. We present preliminary cases showing the potential interest of virtual reality in colorectal surgery for both cases of diverticular disease and colonic neoplasms. This was a single-center feasibility study. The study was conducted at a tertiary care institution. Two patients underwent a laparoscopic left hemicolectomy for diverticular disease, and 1 patient underwent a laparoscopic right hemicolectomy for cancer. The 3-dimensional virtual models were obtained from preoperative CT scans. The virtual model was used to perform preoperative exploration and planning. Intraoperatively, one of the surgeons was manipulating the virtual reality model, using the touch screen of a tablet, which was interactively displayed to the surgical team. The main outcome was evaluation of the precision of virtual reality in colorectal surgery planning and exploration. In 1 patient undergoing laparoscopic left hemicolectomy, an abnormal origin of the left colic artery beginning as an extremely short common trunk from the inferior mesenteric artery was clearly seen in the virtual reality model. This finding was missed by the radiologist on CT scan. The precise identification of this vascular variant granted a safe and adequate surgery. In the remaining cases, the virtual reality model helped to precisely estimate the vascular anatomy, providing key landmarks for a safer dissection. A larger sample size would be necessary to definitively assess the efficacy of virtual reality in colorectal surgery. Virtual reality can provide an enhanced understanding of crucial anatomical details, both preoperatively and intraoperatively, which could contribute to improve safety in colorectal surgery.

  12. Virtual reality exposure in the treatment of social phobia.

    PubMed

    Klinger, Evelyne; Légeron, Patrick; Roy, Stéphane; Chemin, Isabelle; Lauer, Françoise; Nugues, Pierre

    2004-01-01

    Social phobia is one of the most frequent psychiatric disorders and is accessible to two forms of scientifically validated treatments: anti-depressant drugs and cognitive-behavioral therapies. Graded exposure to feared social situations (either in vivo or by imagining the situations) is fundamental to obtain an improvement of the anxious symptoms. Virtual reality (VR) may be an alternative to these standard exposure techniques and seems to bring significant advantages by allowing exposures to numerous and varied situations. Moreover studies have shown that human subjects are appropriately sensitive to virtual environments. This chapter reports the definition of a VR-based clinical protocol and a study to treat social phobia using virtual reality techniques. The virtual environments used in the treatment reproduce four situations that social phobics feel the most threatening: performance, intimacy, scrutiny and assertiveness. With the help of the therapist, the patient learns adapted cognitions and behaviors when coping with social situations, with the aim of reducing her or his anxiety in the corresponding real life situations. Some studies have been carried out using virtual reality in the treatment of fear of public speaking, which is only a small part of the symptomatology of most of social phobic patients. The novelty of our work is to address a larger group of situations that the phobic patients experience with high anxiety. In our protocol, the efficacy of the virtual reality treatment is compared to well established and well validated group cognitive-behavioral treatment.

  13. Cardiovascular effects of Zumba® performed in a virtual environment using XBOX Kinect

    PubMed Central

    Neves, Luceli Eunice Da Silva; Cerávolo, Mariza Paver Da Silva; Silva, Elisangela; De Freitas, Wagner Zeferino; Da Silva, Fabiano Fernandes; Higino, Wonder Passoni; Carvalho, Wellington Roberto Gomes; De Souza, Renato Aparecido

    2015-01-01

    [Purpose] This study evaluated the acute cardiovascular responses during a session of Zumba® Fitness in a virtual reality environment. [Subjects] Eighteen healthy volunteers were recruited. [Methods] The following cardiovascular variables: heart rate, systolic blood pressure, diastolic blood pressure, and double product were assessed before and after the practice of virtual Zumba®, which was performed as a continuous sequence of five choreographed movements lasting for 22 min. The game Zumba Fitness Core®, with the Kinect-based virtual reality system for the XBOX 360, was used to create the virtual environment. Comparisons were made among mean delta values (delta=post-Zumba® minus pre-Zumba® values) for systolic and diastolic blood pressure, heart rate, and double product using Student’s t-test for paired samples. [Results] After a single session, a significant increase was noted in all the analyzed parameters (Systolic blood pressure=18%; Diastolic blood pressure=13%; Heart rate=67%; and Double product=97%). [Conclusion] The results support the feasibility of the use of Zumba Fitness Core® with the Kinect-based virtual reality system for the XBOX 360 in physical activity programs and further favor its indication for this purpose. PMID:26504312

  14. A Virtual Campus Based on Human Factor Engineering

    ERIC Educational Resources Information Center

    Yang, Yuting; Kang, Houliang

    2014-01-01

    Three Dimensional or 3D virtual reality has become increasingly popular in many areas, especially in building a digital campus. This paper introduces a virtual campus, which is based on a 3D model of The Tourism and Culture College of Yunnan University (TCYU). Production of the virtual campus was aided by Human Factor and Ergonomics (HF&E), an…

  15. Virtual reality in surgical training.

    PubMed

    Lange, T; Indelicato, D J; Rosen, J M

    2000-01-01

    Virtual reality in surgery and, more specifically, in surgical training, faces a number of challenges in the future. These challenges are building realistic models of the human body, creating interface tools to view, hear, touch, feel, and manipulate these human body models, and integrating virtual reality systems into medical education and treatment. A final system would encompass simulators specifically for surgery, performance machines, telemedicine, and telesurgery. Each of these areas will need significant improvement for virtual reality to impact medicine successfully in the next century. This article gives an overview of, and the challenges faced by, current systems in the fast-changing field of virtual reality technology, and provides a set of specific milestones for a truly realistic virtual human body.

  16. Immersive Education, an Annotated Webliography

    ERIC Educational Resources Information Center

    Pricer, Wayne F.

    2011-01-01

    In this second installment of a two-part feature on immersive education a webliography will provide resources discussing the use of various types of computer simulations including: (a) augmented reality, (b) virtual reality programs, (c) gaming resources for teaching with technology, (d) virtual reality lab resources, (e) virtual reality standards…

  17. Virtual reality social cognition training for young adults with high-functioning autism.

    PubMed

    Kandalaft, Michelle R; Didehbani, Nyaz; Krawczyk, Daniel C; Allen, Tandra T; Chapman, Sandra B

    2013-01-01

    Few evidence-based social interventions exist for young adults with high-functioning autism, many of whom encounter significant challenges during the transition into adulthood. The current study investigated the feasibility of an engaging Virtual Reality Social Cognition Training intervention focused on enhancing social skills, social cognition, and social functioning. Eight young adults diagnosed with high-functioning autism completed 10 sessions across 5 weeks. Significant increases on social cognitive measures of theory of mind and emotion recognition, as well as in real life social and occupational functioning were found post-training. These findings suggest that the virtual reality platform is a promising tool for improving social skills, cognition, and functioning in autism.

  18. Re-Dimensional Thinking in Earth Science: From 3-D Virtual Reality Panoramas to 2-D Contour Maps

    ERIC Educational Resources Information Center

    Park, John; Carter, Glenda; Butler, Susan; Slykhuis, David; Reid-Griffin, Angelia

    2008-01-01

    This study examines the relationship of gender and spatial perception on student interactivity with contour maps and non-immersive virtual reality. Eighteen eighth-grade students elected to participate in a six-week activity-based course called "3-D GeoMapping." The course included nine days of activities related to topographic mapping.…

  19. An Evolution of Virtual Reality Training Designs for Children with Autism and Fetal Alcohol Spectrum Disorders

    ERIC Educational Resources Information Center

    Strickland, Dorothy C.; McAllister, David; Coles, Claire D.; Osborne, Susan

    2007-01-01

    This article describes an evolution of training programs to use first-person interaction in virtual reality (VR) situations to teach safety skills to children with autism spectrum disorder (ASD) and fetal alcohol spectrum disorder (FASD). Multiple VR programs for children aged 2 to 9 were built and tested between 1992 and 2007. Based on these…

  20. The Input-Interface of Webcam Applied in 3D Virtual Reality Systems

    ERIC Educational Resources Information Center

    Sun, Huey-Min; Cheng, Wen-Lin

    2009-01-01

    Our research explores a virtual reality application based on Web camera (Webcam) input-interface. The interface can replace with the mouse to control direction intention of a user by the method of frame difference. We divide a frame into nine grids from Webcam and make use of the background registration to compute the moving object. In order to…

  1. Creativity in Technology Education Facilitated through Virtual Reality Learning Environments: A Case Study

    ERIC Educational Resources Information Center

    Thorsteinsson, Gisli; Page, Tom

    2007-01-01

    Innovation Education (IE) is a new subject area in Icelandic schools. The aim of the subject is to train students to identify the needs and problems in their environment and to develop solutions: a process of ideation. This activity has been classroom based but now a Virtual Reality Learning Environment technology (VRLE) has been designed to…

  2. Efficient Comparison between Windows and Linux Platform Applicable in a Virtual Architectural Walkthrough Application

    NASA Astrophysics Data System (ADS)

    Thubaasini, P.; Rusnida, R.; Rohani, S. M.

    This paper describes Linux, an open source platform used to develop and run a virtual architectural walkthrough application. It proposes some qualitative reflections and observations on the nature of Linux in the concept of Virtual Reality (VR) and on the most popular and important claims associated with the open source approach. The ultimate goal of this paper is to measure and evaluate the performance of Linux used to build the virtual architectural walkthrough and develop a proof of concept based on the result obtain through this project. Besides that, this study reveals the benefits of using Linux in the field of virtual reality and reflects a basic comparison and evaluation between Windows and Linux base operating system. Windows platform is use as a baseline to evaluate the performance of Linux. The performance of Linux is measured based on three main criteria which is frame rate, image quality and also mouse motion.

  3. The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial.

    PubMed

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-01-01

    Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training of mastoidectomy. Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem completion exercise (intervention). Participants then completed two post-training virtual procedures for assessment and comparison. Cognitive load during the post-training procedures was estimated by reaction time testing on an integrated secondary task. Final-product analysis by two blinded expert raters was used to assess the virtual mastoidectomy performances. Participants in the intervention group had a significantly increased cognitive load during the post-training procedures compared with the control group (52 vs. 41 %, p  = 0.02). This was also reflected in the final-product performance: the intervention group had a significantly lower final-product score than the control group (13.0 vs. 15.4, p  < 0.005). Initial instruction using worked examples followed by a problem completion exercise did not reduce the cognitive load or improve the performance of the following procedures in novices. Increased cognitive load when part tasks needed to be integrated in the post-training procedures could be a possible explanation for this. Other instructional designs and methods are needed to lower the cognitive load and improve the performance in virtual reality surgical simulation training of novices.

  4. VREPAR projects: the use of virtual environments in psycho-neuro-physiological assessment and rehabilitation.

    PubMed

    Riva, G; Bacchetta, M; Baruffi, M; Borgomainerio, E; Defrance, C; Gatti, F; Galimberti, C; Fontaneto, S; Marchi, S; Molinari, E; Nugues, P; Rinaldi, S; Rovetta, A; Ferretti, G S; Tonci, A; Wann, J; Vincelli, F

    1999-01-01

    Due, in large part, to the significant advances in PC hardware that have been made over the last 3 years, PC-based virtual environments are approaching reality. Virtual Reality Environments for Psychoneurophysiological Assessment and Rehabilitation (VREPAR) are two European Community funded projects (Telematics for health-HC 1053/HC 1055, http:// www.psicologia.net) that are trying to develop a PC-based virtual reality system (PC-VRS) for the medical market that can be marketed at a price that is accessible to its possible endusers (hospitals, universities, and research centres) and that would have the modular, connectability, and interoperability characteristics that the existing systems lack. In particular, the projects are developing three hardware/software modules for the application of the PCVRS in psycho-neuro-physiological assessment and rehabilitation. The chosen development areas are eating disorders (bulimia, anorexia, and obesity), movement disorders (Parkinson's disease and torsion dystonia) and stroke disorders (unilateral neglect and hemiparesis). This article describes the rationale of the modules and the preliminary results obtained.

  5. Fully Three-Dimensional Virtual-Reality System

    NASA Technical Reports Server (NTRS)

    Beckman, Brian C.

    1994-01-01

    Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.

  6. Study on the Effectiveness of Virtual Reality Game-Based Training on Balance and Functional Performance in Individuals with Paraplegia

    PubMed Central

    Khurana, Meetika; Walia, Shefali

    2017-01-01

    Objective: To determine whether there is any difference between virtual reality game–based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test–post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game–based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure–III (SCIM-III). Results: There was a significant difference for time (p = .001) and Time × Group effect (p = .001) in mFRT scores, group effect (p = .05) in t-shirt test scores, and time effect (p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game–based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training. PMID:29339902

  7. Study on the Effectiveness of Virtual Reality Game-Based Training on Balance and Functional Performance in Individuals with Paraplegia.

    PubMed

    Khurana, Meetika; Walia, Shefali; Noohu, Majumi M

    2017-01-01

    Objective: To determine whether there is any difference between virtual reality game-based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test-post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game-based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure-III (SCIM-III). Results: There was a significant difference for time ( p = .001) and Time × Group effect ( p = .001) in mFRT scores, group effect ( p = .05) in t-shirt test scores, and time effect ( p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game-based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training.

  8. Transduction between worlds: using virtual and mixed reality for earth and planetary science

    NASA Astrophysics Data System (ADS)

    Hedley, N.; Lochhead, I.; Aagesen, S.; Lonergan, C. D.; Benoy, N.

    2017-12-01

    Virtual reality (VR) and augmented reality (AR) have the potential to transform the way we visualize multidimensional geospatial datasets in support of geoscience research, exploration and analysis. The beauty of virtual environments is that they can be built at any scale, users can view them at many levels of abstraction, move through them in unconventional ways, and experience spatial phenomena as if they had superpowers. Similarly, augmented reality allows you to bring the power of virtual 3D data visualizations into everyday spaces. Spliced together, these interface technologies hold incredible potential to support 21st-century geoscience. In my ongoing research, my team and I have made significant advances to connect data and virtual simulations with real geographic spaces, using virtual environments, geospatial augmented reality and mixed reality. These research efforts have yielded new capabilities to connect users with spatial data and phenomena. These innovations include: geospatial x-ray vision; flexible mixed reality; augmented 3D GIS; situated augmented reality 3D simulations of tsunamis and other phenomena interacting with real geomorphology; augmented visual analytics; and immersive GIS. These new modalities redefine the ways in which we can connect digital spaces of spatial analysis, simulation and geovisualization, with geographic spaces of data collection, fieldwork, interpretation and communication. In a way, we are talking about transduction between real and virtual worlds. Taking a mixed reality approach to this, we can link real and virtual worlds. This paper presents a selection of our 3D geovisual interface projects in terrestrial, coastal, underwater and other environments. Using rigorous applied geoscience data, analyses and simulations, our research aims to transform the novelty of virtual and augmented reality interface technologies into game-changing mixed reality geoscience.

  9. The Virtual Reality Roving Vehicle Project.

    ERIC Educational Resources Information Center

    Winn, William

    1995-01-01

    Describes the Virtual Reality Roving Vehicle project developed at the University of Washington to teach students in grades 4 through 12 about virtual reality. Topics include teacher workshops; virtual worlds created by students; learning outcomes compared with traditional instruction; and the effect of student characteristics, including gender, on…

  10. World Reaction to Virtual Space

    NASA Technical Reports Server (NTRS)

    1999-01-01

    DRaW Computing developed virtual reality software for the International Space Station. Open Worlds, as the software has been named, can be made to support Java scripting and virtual reality hardware devices. Open Worlds permits the use of VRML script nodes to add virtual reality capabilities to the user's applications.

  11. Mixed Reality with HoloLens: Where Virtual Reality Meets Augmented Reality in the Operating Room.

    PubMed

    Tepper, Oren M; Rudy, Hayeem L; Lefkowitz, Aaron; Weimer, Katie A; Marks, Shelby M; Stern, Carrie S; Garfein, Evan S

    2017-11-01

    Virtual reality and augmented reality devices have recently been described in the surgical literature. The authors have previously explored various iterations of these devices, and although they show promise, it has become clear that virtual reality and/or augmented reality devices alone do not adequately meet the demands of surgeons. The solution may lie in a hybrid technology known as mixed reality, which merges many virtual reality and augmented realty features. Microsoft's HoloLens, the first commercially available mixed reality device, provides surgeons intraoperative hands-free access to complex data, the real environment, and bidirectional communication. This report describes the use of HoloLens in the operating room to improve decision-making and surgical workflow. The pace of mixed reality-related technological development will undoubtedly be rapid in the coming years, and plastic surgeons are ideally suited to both lead and benefit from this advance.

  12. Clinical usefulness of the virtual reality-based postural control training on the gait ability in patients with stroke.

    PubMed

    Park, Yu-Hyung; Lee, Chi-Ho; Lee, Byoung-Hee

    2013-01-01

    This study is a single blind randomized controlled trial to determine the effect of virtual reality-based postural control training on the gait ability in patients with chronic stroke. Sixteen subjects were randomly assigned to either experimental group (VR, n= 8) or control group (CPT, n= 8). Subjects in both groups received conventional physical therapy for 60 min per day, five days per week during a period of four weeks. Subjects in the VR group received additional augmented reality-based training for 30 min per day, three days per week during a period of four weeks. The subjects were evaluated one week before and after participating in a four week training and follow-up at one month post-training. Data derived from the gait analyses included spatiotemporal gait parameters, 10 meters walking test (10 mWT). In the gait parameters, subjects in the VR group showed significant improvement, except for cadence at post-training and follow-up within the experimental group. However, no obvious significant improvement was observed within the control group. In between group comparisons, the experimental group (VR group) showed significantly greater improvement only in stride length compared with the control group (P< 0.05), however, no significant difference was observed in other gait parameters. In conclusion, we demonstrate significant improvement in gait ability in chronic stroke patients who received virtual reality based postural control training. These findings suggest that virtual reality (VR) postural control training using real-time information may be a useful approach for enhancement of gait ability in patients with chronic stroke.

  13. Effect of Virtual Reality on Cognition in Stroke Patients

    PubMed Central

    Kim, Bo Ryun; Kim, Lee Suk; Park, Ji Young

    2011-01-01

    Objective To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Method Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. Results The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Conclusion Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients. PMID:22506159

  14. Objective Assessment of Activity Limitation in Glaucoma with Smartphone Virtual Reality Goggles: A Pilot Study.

    PubMed

    Goh, Rachel L Z; Kong, Yu Xiang George; McAlinden, Colm; Liu, John; Crowston, Jonathan G; Skalicky, Simon E

    2018-01-01

    To evaluate the use of smartphone-based virtual reality to objectively assess activity limitation in glaucoma. Cross-sectional study of 93 patients (54 mild, 22 moderate, 17 severe glaucoma). Sociodemographics, visual parameters, Glaucoma Activity Limitation-9 and Visual Function Questionnaire - Utility Index (VFQ-UI) were collected. Mean age was 67.4 ± 13.2 years; 52.7% were male; 65.6% were driving. A smartphone placed inside virtual reality goggles was used to administer the Virtual Reality Glaucoma Visual Function Test (VR-GVFT) to participants, consisting of three parts: stationary, moving ball, driving. Rasch analysis and classical validity tests were conducted to assess performance of VR-GVFT. Twenty-four of 28 stationary test items showed acceptable fit to the Rasch model (person separation 3.02, targeting 0). Eleven of 12 moving ball test items showed acceptable fit (person separation 3.05, targeting 0). No driving test items showed acceptable fit. Stationary test person scores showed good criterion validity, differentiating between glaucoma severity groups ( P = 0.014); modest convergence validity, with mild to moderate correlation with VFQ-UI, better eye (BE) mean deviation, BE pattern deviation, BE central scotoma, worse eye (WE) visual acuity, and contrast sensitivity (CS) in both eyes ( R = 0.243-0.381); and suboptimal divergent validity. Multivariate analysis showed that lower WE CS ( P = 0.044) and greater age ( P = 0.009) were associated with worse stationary test person scores. Smartphone-based virtual reality may be a portable objective simulation test of activity limitation related to glaucomatous visual loss. The use of simulated virtual environments could help better understand the activity limitations that affect patients with glaucoma.

  15. Objective Assessment of Activity Limitation in Glaucoma with Smartphone Virtual Reality Goggles: A Pilot Study

    PubMed Central

    Goh, Rachel L. Z.; McAlinden, Colm; Liu, John; Crowston, Jonathan G.; Skalicky, Simon E.

    2018-01-01

    Purpose To evaluate the use of smartphone-based virtual reality to objectively assess activity limitation in glaucoma. Methods Cross-sectional study of 93 patients (54 mild, 22 moderate, 17 severe glaucoma). Sociodemographics, visual parameters, Glaucoma Activity Limitation-9 and Visual Function Questionnaire – Utility Index (VFQ-UI) were collected. Mean age was 67.4 ± 13.2 years; 52.7% were male; 65.6% were driving. A smartphone placed inside virtual reality goggles was used to administer the Virtual Reality Glaucoma Visual Function Test (VR-GVFT) to participants, consisting of three parts: stationary, moving ball, driving. Rasch analysis and classical validity tests were conducted to assess performance of VR-GVFT. Results Twenty-four of 28 stationary test items showed acceptable fit to the Rasch model (person separation 3.02, targeting 0). Eleven of 12 moving ball test items showed acceptable fit (person separation 3.05, targeting 0). No driving test items showed acceptable fit. Stationary test person scores showed good criterion validity, differentiating between glaucoma severity groups (P = 0.014); modest convergence validity, with mild to moderate correlation with VFQ-UI, better eye (BE) mean deviation, BE pattern deviation, BE central scotoma, worse eye (WE) visual acuity, and contrast sensitivity (CS) in both eyes (R = 0.243–0.381); and suboptimal divergent validity. Multivariate analysis showed that lower WE CS (P = 0.044) and greater age (P = 0.009) were associated with worse stationary test person scores. Conclusions Smartphone-based virtual reality may be a portable objective simulation test of activity limitation related to glaucomatous visual loss. Translational Relevance The use of simulated virtual environments could help better understand the activity limitations that affect patients with glaucoma. PMID:29372112

  16. Virtual Reality and Augmented Reality in Plastic Surgery: A Review.

    PubMed

    Kim, Youngjun; Kim, Hannah; Kim, Yong Oock

    2017-05-01

    Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed.

  17. Virtual Reality and Augmented Reality in Plastic Surgery: A Review

    PubMed Central

    Kim, Youngjun; Kim, Hannah

    2017-01-01

    Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed. PMID:28573091

  18. Virtual reality based adaptive dose assessment method for arbitrary geometries in nuclear facility decommissioning.

    PubMed

    Liu, Yong-Kuo; Chao, Nan; Xia, Hong; Peng, Min-Jun; Ayodeji, Abiodun

    2018-05-17

    This paper presents an improved and efficient virtual reality-based adaptive dose assessment method (VRBAM) applicable to the cutting and dismantling tasks in nuclear facility decommissioning. The method combines the modeling strength of virtual reality with the flexibility of adaptive technology. The initial geometry is designed with the three-dimensional computer-aided design tools, and a hybrid model composed of cuboids and a point-cloud is generated automatically according to the virtual model of the object. In order to improve the efficiency of dose calculation while retaining accuracy, the hybrid model is converted to a weighted point-cloud model, and the point kernels are generated by adaptively simplifying the weighted point-cloud model according to the detector position, an approach that is suitable for arbitrary geometries. The dose rates are calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The geometric modeling capability of VRBAM was verified by simulating basic geometries, which included a convex surface, a concave surface, a flat surface and their combination. The simulation results show that the VRBAM is more flexible and superior to other approaches in modeling complex geometries. In this paper, the computation time and dose rate results obtained from the proposed method were also compared with those obtained using the MCNP code and an earlier virtual reality-based method (VRBM) developed by the same authors. © 2018 IOP Publishing Ltd.

  19. The Immersive Virtual Reality Experience: A Typology of Users Revealed Through Multiple Correspondence Analysis Combined with Cluster Analysis Technique.

    PubMed

    Rosa, Pedro J; Morais, Diogo; Gamito, Pedro; Oliveira, Jorge; Saraiva, Tomaz

    2016-03-01

    Immersive virtual reality is thought to be advantageous by leading to higher levels of presence. However, and despite users getting actively involved in immersive three-dimensional virtual environments that incorporate sound and motion, there are individual factors, such as age, video game knowledge, and the predisposition to immersion, that may be associated with the quality of virtual reality experience. Moreover, one particular concern for users engaged in immersive virtual reality environments (VREs) is the possibility of side effects, such as cybersickness. The literature suggests that at least 60% of virtual reality users report having felt symptoms of cybersickness, which reduces the quality of the virtual reality experience. The aim of this study was thus to profile the right user to be involved in a VRE through head-mounted display. To examine which user characteristics are associated with the most effective virtual reality experience (lower cybersickness), a multiple correspondence analysis combined with cluster analysis technique was performed. Results revealed three distinct profiles, showing that the PC gamer profile is more associated with higher levels of virtual reality effectiveness, that is, higher predisposition to be immersed and reduced cybersickness symptoms in the VRE than console gamer and nongamer. These findings can be a useful orientation in clinical practice and future research as they help identify which users are more predisposed to benefit from immersive VREs.

  20. Do virtual reality games improve mobility skills and balance measurements in community-dwelling older adults? Systematic review and meta-analysis.

    PubMed

    Neri, Silvia Gr; Cardoso, Jefferson R; Cruz, Lorena; Lima, Ricardo M; de Oliveira, Ricardo J; Iversen, Maura D; Carregaro, Rodrigo L

    2017-10-01

    To summarize evidence on the effectiveness of virtual reality games and conventional therapy or no-intervention for fall prevention in the elderly. An electronic data search (last searched December 2016) was performed on 10 databases (Web of Science, EMBASE, PUBMED, CINAHL, LILACS, SPORTDiscus, Cochrane Library, Scopus, SciELO, PEDro) and retained only randomized controlled trials. Sample characteristics and intervention parameters were compared, focusing on clinical homogeneity of demographic characteristics, type/duration of interventions, outcomes (balance, reaction time, mobility, lower limb strength and fear of falling) and low risk of bias. Based on homogeneity, a meta-analysis was considered. Two independent reviewers assessed the risk of bias. A total of 28 studies met the inclusion criteria and were appraised ( n: 1121 elderly participants). We found that virtual reality games presented positive effects on balance and fear of falling compared with no-intervention. Virtual reality games were also superior to conventional interventions for balance improvements and fear of falling. The six studies included in the meta-analysis demonstrated that virtual reality games significantly improved mobility and balance after 3-6 and 8-12 weeks of intervention when compared with no-intervention. The risk of bias revealed that less than one-third of the studies correctly described the random sequence generation and allocation concealment procedures. Our review suggests positive clinical effects of virtual reality games for balance and mobility improvements compared with no-treatment and conventional interventions. However, owing to the high risk of bias and large variability of intervention protocols, the evidence remains inconclusive and further research is warranted.

  1. Virtual Environment User Interfaces to Support RLV and Space Station Simulations in the ANVIL Virtual Reality Lab

    NASA Technical Reports Server (NTRS)

    Dumas, Joseph D., II

    1998-01-01

    Several virtual reality I/O peripherals were successfully configured and integrated as part of the author's 1997 Summer Faculty Fellowship work. These devices, which were not supported by the developers of VR software packages, use new software drivers and configuration files developed by the author to allow them to be used with simulations developed using those software packages. The successful integration of these devices has added significant capability to the ANVIL lab at MSFC. In addition, the author was able to complete the integration of a networked virtual reality simulation of the Space Shuttle Remote Manipulator System docking Space Station modules which was begun as part of his 1996 Fellowship. The successful integration of this simulation demonstrates the feasibility of using VR technology for ground-based training as well as on-orbit operations.

  2. Virtual Reality: Emerging Applications and Future Directions

    ERIC Educational Resources Information Center

    Ludlow, Barbara L.

    2015-01-01

    Virtual reality is an emerging technology that has resulted in rapid expansion in the development of virtual immersive environments for use as educational simulations in schools, colleges and universities. This article presents an overview of virtual reality, describes a number of applications currently being used by special educators for…

  3. Virtual Reality: A Dream Come True or a Nightmare.

    ERIC Educational Resources Information Center

    Cornell, Richard; Bailey, Dan

    Virtual Reality (VR) is a new medium which allows total stimulation of one's senses through human/computer interfaces. VR has applications in training simulators, nano-science, medicine, entertainment, electronic technology, and manufacturing. This paper focuses on some current and potential problems of virtual reality and virtual environments…

  4. Using Virtual Reality For Outreach Purposes in Planetology

    NASA Astrophysics Data System (ADS)

    Civet, François; Le Mouélic, Stéphane; Le Menn, Erwan; Beaunay, Stéphanie

    2016-10-01

    2016 has been a year marked by a technological breakthrough : the availability for the first time to the general public of technologically mature virtual reality devices. Virtual Reality consists in visually immerging a user in a 3D environment reproduced either from real and/or imaginary data, with the possibility to move and eventually interact with the different elements. In planetology, most of the places will remain inaccessible to the public for a while, but a fleet of dedicated spacecraft's such as orbiters, landers and rovers allow the possibility to virtually reconstruct the environments, using image processing, cartography and photogrammetry. Virtual reality can then bridge the gap to virtually "send" any user into the place and enjoy the exploration.We are investigating several type of devices to render orbital or ground based data of planetological interest, mostly from Mars. The most simple system consists of a "cardboard" headset, on which the user can simply use his cellphone as the screen. A more comfortable experience is obtained with more complex systems such as the HTC vive or Oculus Rift headsets, which include a tracking system important to minimize motion sickness. The third environment that we have developed is based on the CAVE concept, were four 3D video projectors are used to project on three 2x3m walls plus the ground. These systems can be used for scientific data analysis, but also prove to be perfectly suited for outreach and education purposes.

  5. Virtual Reality and Computer-Enhanced Training Applied to Wheeled Mobility: An Overview of Work in Pittsburgh

    ERIC Educational Resources Information Center

    Cooper, Rory A.; Ding, Dan; Simpson, Richard; Fitzgerald, Shirley G.; Spaeth, Donald M.; Guo, Songfeng; Koontz, Alicia M.; Cooper, Rosemarie; Kim, Jongbae; Boninger, Michael L.

    2005-01-01

    Some aspects of assistive technology can be enhanced by the application of virtual reality. Although virtual simulation offers a range of new possibilities, learning to navigate in a virtual environment is not equivalent to learning to navigate in the real world. Therefore, virtual reality simulation is advocated as a useful preparation for…

  6. The benefits of virtual reality simulator training for laparoscopic surgery.

    PubMed

    Hart, Roger; Karthigasu, Krishnan

    2007-08-01

    Virtual reality is a computer-generated system that provides a representation of an environment. This review will analyse the literature with regard to any benefit to be derived from training with virtual reality equipment and to describe the current equipment available. Virtual reality systems are not currently realistic of the live operating environment because they lack tactile sensation, and do not represent a complete operation. The literature suggests that virtual reality training is a valuable learning tool for gynaecologists in training, particularly those in the early stages of their careers. Furthermore, it may be of benefit for the ongoing audit of surgical skills and for the early identification of a surgeon's deficiencies before operative incidents occur. It is only a matter of time before realistic virtual reality models of most complete gynaecological operations are available, with improved haptics as a result of improved computer technology. It is inevitable that in the modern climate of litigation virtual reality training will become an essential part of clinical training, as evidence for its effectiveness as a training tool exists, and in many countries training by operating on live animals is not possible.

  7. Augmented reality glass-free three-dimensional display with the stereo camera

    NASA Astrophysics Data System (ADS)

    Pang, Bo; Sang, Xinzhu; Chen, Duo; Xing, Shujun; Yu, Xunbo; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu

    2017-10-01

    An improved method for Augmented Reality (AR) glass-free three-dimensional (3D) display based on stereo camera used for presenting parallax contents from different angle with lenticular lens array is proposed. Compared with the previous implementation method of AR techniques based on two-dimensional (2D) panel display with only one viewpoint, the proposed method can realize glass-free 3D display of virtual objects and real scene with 32 virtual viewpoints. Accordingly, viewers can get abundant 3D stereo information from different viewing angles based on binocular parallax. Experimental results show that this improved method based on stereo camera can realize AR glass-free 3D display, and both of virtual objects and real scene have realistic and obvious stereo performance.

  8. Virtual reality for stroke rehabilitation.

    PubMed

    Laver, Kate E; Lange, Belinda; George, Stacey; Deutsch, Judith E; Saposnik, Gustavo; Crotty, Maria

    2017-11-20

    Virtual reality and interactive video gaming have emerged as recent treatment approaches in stroke rehabilitation with commercial gaming consoles in particular, being rapidly adopted in clinical settings. This is an update of a Cochrane Review published first in 2011 and then again in 2015. Primary objective: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity.Secondary objectives: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on: gait and balance, global motor function, cognitive function, activity limitation, participation restriction, quality of life, and adverse events. We searched the Cochrane Stroke Group Trials Register (April 2017), CENTRAL, MEDLINE, Embase, and seven additional databases. We also searched trials registries and reference lists. Randomised and quasi-randomised trials of virtual reality ("an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion") in adults after stroke. The primary outcome of interest was upper limb function and activity. Secondary outcomes included gait and balance and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data, and assessed risk of bias. A third review author moderated disagreements when required. The review authors contacted investigators to obtain missing information. We included 72 trials that involved 2470 participants. This review includes 35 new studies in addition to the studies included in the previous version of this review. Study sample sizes were generally small and interventions varied in terms of both the goals of treatment and the virtual reality devices used. The risk of bias present in many studies was unclear due to poor reporting. Thus, while there are a large number of randomised controlled trials, the evidence remains mostly low quality when rated using the GRADE system. Control groups usually received no intervention or therapy based on a standard-care approach. results were not statistically significant for upper limb function (standardised mean difference (SMD) 0.07, 95% confidence intervals (CI) -0.05 to 0.20, 22 studies, 1038 participants, low-quality evidence) when comparing virtual reality to conventional therapy. However, when virtual reality was used in addition to usual care (providing a higher dose of therapy for those in the intervention group) there was a statistically significant difference between groups (SMD 0.49, 0.21 to 0.77, 10 studies, 210 participants, low-quality evidence). when compared to conventional therapy approaches there were no statistically significant effects for gait speed or balance. Results were statistically significant for the activities of daily living (ADL) outcome (SMD 0.25, 95% CI 0.06 to 0.43, 10 studies, 466 participants, moderate-quality evidence); however, we were unable to pool results for cognitive function, participation restriction, or quality of life. Twenty-three studies reported that they monitored for adverse events; across these studies there were few adverse events and those reported were relatively mild. We found evidence that the use of virtual reality and interactive video gaming was not more beneficial than conventional therapy approaches in improving upper limb function. Virtual reality may be beneficial in improving upper limb function and activities of daily living function when used as an adjunct to usual care (to increase overall therapy time). There was insufficient evidence to reach conclusions about the effect of virtual reality and interactive video gaming on gait speed, balance, participation, or quality of life. This review found that time since onset of stroke, severity of impairment, and the type of device (commercial or customised) were not strong influencers of outcome. There was a trend suggesting that higher dose (more than 15 hours of total intervention) was preferable as were customised virtual reality programs; however, these findings were not statistically significant.

  9. Improving Physical Fitness of Individuals with Intellectual and Developmental Disability through a Virtual Reality Intervention Program

    ERIC Educational Resources Information Center

    Lotan, Meir; Yalon-Chamovitz, Shira; Weiss, Patrice L.

    2009-01-01

    Individuals with intellectual and developmental disabilities (IDD) are in need of effective physical fitness training programs. The aim was to test the effectiveness of a Virtual Reality (VR)-based exercise program in improving the physical fitness of adults with IDD. A research group (N = 30; mean age = 52.3 plus or minus 5.8 years; moderate IDD…

  10. Virtual Reality as Means to Improve Physical Fitness of Individuals at a Severe Level of Intellectual and Developmental Disability

    ERIC Educational Resources Information Center

    Lotan, Meir; Yalon-Chamovitz, Shira; Weiss, Patrice L.

    2010-01-01

    Individuals with intellectual and developmental disabilities (IDD) are in need of effective and motivating physical fitness training programs. The aim was to test the effectiveness of a virtual reality (VR)-based exercise program in improving the physical fitness of adults with severe IDD when implemented by on-site caregivers. A research group (N…

  11. [What do virtual reality tools bring to child and adolescent psychiatry?

    PubMed

    Bioulac, S; de Sevin, E; Sagaspe, P; Claret, A; Philip, P; Micoulaud-Franchi, J A; Bouvard, M P

    2018-06-01

    Virtual reality is a relatively new technology that enables individuals to immerse themselves in a virtual world. It offers several advantages including a more realistic, lifelike environment that may allow subjects to "forget" they are being assessed, allow a better participation and an increased generalization of learning. Moreover, the virtual reality system can provide multimodal stimuli, such as visual and auditory stimuli, and can also be used to evaluate the patient's multimodal integration and to aid rehabilitation of cognitive abilities. The use of virtual reality to treat various psychiatric disorders in adults (phobic anxiety disorders, post-traumatic stress disorder, eating disorders, addictions…) and its efficacy is supported by numerous studies. Similar research for children and adolescents is lagging behind. This may be particularly beneficial to children who often show great interest and considerable success on computer, console or videogame tasks. This article will expose the main studies that have used virtual reality with children and adolescents suffering from psychiatric disorders. The use of virtual reality to treat anxiety disorders in adults is gaining popularity and its efficacy is supported by various studies. Most of the studies attest to the significant efficacy of the virtual reality exposure therapy (or in virtuo exposure). In children, studies have covered arachnophobia social anxiety and school refusal phobia. Despite the limited number of studies, results are very encouraging for treatment in anxiety disorders. Several studies have reported the clinical use of virtual reality technology for children and adolescents with autistic spectrum disorders (ASD). Extensive research has proven the efficiency of technologies as support tools for therapy. Researches are found to be focused on communication and on learning and social imitation skills. Virtual reality is also well accepted by subjects with ASD. The virtual environment offers the opportunity to administer controlled tasks such as the typical neuropsychological tools, but in an environment much more like a standard classroom. The virtual reality classroom offers several advantages compared to classical tools such as more realistic and lifelike environment but also records various measures in standardized conditions. Most of the studies using a virtual classroom have found that children with Attention Deficit/Hyperactivity Disorder make significantly fewer correct hits and more commission errors compared with controls. The virtual classroom has proven to be a good clinical tool for evaluation of attention in ADHD. For eating disorders, cognitive behavioural therapy (CBT) program enhanced by a body image specific component using virtual reality techniques was shown to be more efficient than cognitive behavioural therapy alone. The body image-specific component using virtual reality techniques boots efficiency and accelerates the CBT change process for eating disorders. Virtual reality is a relatively new technology and its application in child and adolescent psychiatry is recent. However, this technique is still in its infancy and much work is needed including controlled trials before it can be introduced in routine clinical use. Virtual reality interventions should also investigate how newly acquired skills are transferred to the real world. At present virtual reality can be considered a useful tool in evaluation and treatment for child and adolescent disorders. Copyright © 2017 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  12. Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-2-0150 TITLE: Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool PRINCIPAL...AND SUBTITLE Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The proposed study will implement and evaluate a novel, low-cost, Virtual Reality (VR

  13. Review of virtual reality treatment for mental health.

    PubMed

    Gourlay, D; Lun, K C; Liya, G

    2001-01-01

    This paper describes recent research that proposes virtual reality techniques as a therapy for patients with cognitive and psychological problems. Specifically this applies to victims of conditions such as traumatic brain injury, Alzheimers and Parkinsons. Additionally virtual reality therapy offers an alternative to current desensitization techniques for the treatment of phobias Some important issues are examined including means of user interaction, skills transfer to the real world, and side-effects of virtual reality exposure.

  14. A review of virtual reality based training simulators for orthopaedic surgery.

    PubMed

    Vaughan, Neil; Dubey, Venketesh N; Wainwright, Thomas W; Middleton, Robert G

    2016-02-01

    This review presents current virtual reality based training simulators for hip, knee and other orthopaedic surgery, including elective and trauma surgical procedures. There have not been any reviews focussing on hip and knee orthopaedic simulators. A comparison of existing simulator features is provided to identify what is missing and what is required to improve upon current simulators. In total 11 hip replacements pre-operative planning tools were analysed, plus 9 hip trauma fracture training simulators. Additionally 9 knee arthroscopy simulators and 8 other orthopaedic simulators were included for comparison. The findings are that for orthopaedic surgery simulators in general, there is increasing use of patient-specific virtual models which reduce the learning curve. Modelling is also being used for patient-specific implant design and manufacture. Simulators are being increasingly validated for assessment as well as training. There are very few training simulators available for hip replacement, yet more advanced virtual reality is being used for other procedures such as hip trauma and drilling. Training simulators for hip replacement and orthopaedic surgery in general lag behind other surgical procedures for which virtual reality has become more common. Further developments are required to bring hip replacement training simulation up to date with other procedures. This suggests there is a gap in the market for a new high fidelity hip replacement and resurfacing training simulator. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Virtual reality for stroke rehabilitation.

    PubMed

    Laver, Kate E; George, Stacey; Thomas, Susie; Deutsch, Judith E; Crotty, Maria

    2015-02-12

    Virtual reality and interactive video gaming have emerged as recent treatment approaches in stroke rehabilitation. In particular, commercial gaming consoles have been rapidly adopted in clinical settings. This is an update of a Cochrane Review published in 2011. To determine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity. To determine the efficacy of virtual reality compared with an alternative intervention or no intervention on: gait and balance activity, global motor function, cognitive function, activity limitation, participation restriction and quality of life, voxels or regions of interest identified via imaging, and adverse events. Additionally, we aimed to comment on the feasibility of virtual reality for use with stroke patients by reporting on patient eligibility criteria and recruitment. We searched the Cochrane Stroke Group Trials Register (October 2013), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2013, Issue 11), MEDLINE (1950 to November 2013), EMBASE (1980 to November 2013) and seven additional databases. We also searched trials registries and reference lists. Randomised and quasi-randomised trials of virtual reality ("an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion") in adults after stroke. The primary outcome of interest was upper limb function and activity. Secondary outcomes included gait and balance function and activity, and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data and assessed risk of bias. A third review author moderated disagreements when required. The authors contacted investigators to obtain missing information. We included 37 trials that involved 1019 participants. Study sample sizes were generally small and interventions varied. The risk of bias present in many studies was unclear due to poor reporting. Thus, while there are a large number of randomised controlled trials, the evidence remains 'low' or 'very low' quality when rated using the GRADE system. Control groups received no intervention or therapy based on a standard care approach. Intervention approaches in the included studies were predominantly designed to improve motor function rather than cognitive function or activity performance. The majority of participants were relatively young and more than one year post stroke. results were statistically significant for upper limb function (standardised mean difference (SMD) 0.28, 95% confidence intervals (CI) 0.08 to 0.49 based on 12 studies with 397 participants). there were no statistically significant effects for grip strength, gait speed or global motor function. Results were statistically significant for the activities of daily living (ADL) outcome (SMD 0.43, 95% CI 0.18 to 0.69 based on eight studies with 253 participants); however, we were unable to pool results for cognitive function, participation restriction, quality of life or imaging studies. There were few adverse events reported across studies and those reported were relatively mild. Studies that reported on eligibility rates showed that only 26% of participants screened were recruited. We found evidence that the use of virtual reality and interactive video gaming may be beneficial in improving upper limb function and ADL function when used as an adjunct to usual care (to increase overall therapy time) or when compared with the same dose of conventional therapy. There was insufficient evidence to reach conclusions about the effect of virtual reality and interactive video gaming on grip strength, gait speed or global motor function. It is unclear at present which characteristics of virtual reality are most important and it is unknown whether effects are sustained in the longer term.

  16. An Intelligent Virtual Human System For Providing Healthcare Information And Support

    DTIC Science & Technology

    2011-01-01

    for clinical purposes. Shifts in the social and scientific landscape have now set the stage for the next major movement in Clinical Virtual Reality ...College; dMadigan Army Medical Center Army Abstract. Over the last 15 years, a virtual revolution has taken place in the use of Virtual Reality ... Virtual Reality with the “birth” of intelligent virtual humans. Seminal research and development has appeared in the creation of highly interactive

  17. Effectiveness of conventional versus virtual reality based vestibular rehabilitation in the treatment of dizziness, gait and balance impairment in adults with unilateral peripheral vestibular loss: a randomised controlled trial.

    PubMed

    Meldrum, Dara; Herdman, Susan; Moloney, Roisin; Murray, Deirdre; Duffy, Douglas; Malone, Kareena; French, Helen; Hone, Stephen; Conroy, Ronan; McConn-Walsh, Rory

    2012-03-26

    Unilateral peripheral vestibular loss results in gait and balance impairment, dizziness and oscillopsia. Vestibular rehabilitation benefits patients but optimal treatment remains unknown. Virtual reality is an emerging tool in rehabilitation and provides opportunities to improve both outcomes and patient satisfaction with treatment. The Nintendo Wii Fit Plus® (NWFP) is a low cost virtual reality system that challenges balance and provides visual and auditory feedback. It may augment the motor learning that is required to improve balance and gait, but no trials to date have investigated efficacy. In a single (assessor) blind, two centre randomised controlled superiority trial, 80 patients with unilateral peripheral vestibular loss will be randomised to either conventional or virtual reality based (NWFP) vestibular rehabilitation for 6 weeks. The primary outcome measure is gait speed (measured with three dimensional gait analysis). Secondary outcomes include computerised posturography, dynamic visual acuity, and validated questionnaires on dizziness, confidence and anxiety/depression. Outcome will be assessed post treatment (8 weeks) and at 6 months. Advances in the gaming industry have allowed mass production of highly sophisticated low cost virtual reality systems that incorporate technology previously not accessible to most therapists and patients. Importantly, they are not confined to rehabilitation departments, can be used at home and provide an accurate record of adherence to exercise. The benefits of providing augmented feedback, increasing intensity of exercise and accurately measuring adherence may improve conventional vestibular rehabilitation but efficacy must first be demonstrated. Clinical trials.gov identifier: NCT01442623.

  18. Virtual Reality Model of the Three-Dimensional Anatomy of the Cavernous Sinus Based on a Cadaveric Image and Dissection.

    PubMed

    Qian, Zeng-Hui; Feng, Xu; Li, Yang; Tang, Ke

    2018-01-01

    Studying the three-dimensional (3D) anatomy of the cavernous sinus is essential for treating lesions in this region with skull base surgeries. Cadaver dissection is a conventional method that has insurmountable flaws with regard to understanding spatial anatomy. The authors' research aimed to build an image model of the cavernous sinus region in a virtual reality system to precisely, individually and objectively elucidate the complete and local stereo-anatomy. Computed tomography and magnetic resonance imaging scans were performed on 5 adult cadaver heads. Latex mixed with contrast agent was injected into the arterial system and then into the venous system. Computed tomography scans were performed again following the 2 injections. Magnetic resonance imaging scans were performed again after the cranial nerves were exposed. Image data were input into a virtual reality system to establish a model of the cavernous sinus. Observation results of the image models were compared with those of the cadaver heads. Visualization of the cavernous sinus region models built using the virtual reality system was good for all the cadavers. High resolutions were achieved for the images of different tissues. The observed results were consistent with those of the cadaver head. The spatial architecture and modality of the cavernous sinus were clearly displayed in the 3D model by rotating the model and conveniently changing its transparency. A 3D virtual reality model of the cavernous sinus region is helpful for globally and objectively understanding anatomy. The observation procedure was accurate, convenient, noninvasive, and time and specimen saving.

  19. Reality Check: Basics of Augmented, Virtual, and Mixed Reality.

    PubMed

    Brigham, Tara J

    2017-01-01

    Augmented, virtual, and mixed reality applications all aim to enhance a user's current experience or reality. While variations of this technology are not new, within the last few years there has been a significant increase in the number of artificial reality devices or applications available to the general public. This column will explain the difference between augmented, virtual, and mixed reality and how each application might be useful in libraries. It will also provide an overview of the concerns surrounding these different reality applications and describe how and where they are currently being used.

  20. Instrument Motion Metrics for Laparoscopic Skills Assessment in Virtual Reality and Augmented Reality.

    PubMed

    Fransson, Boel A; Chen, Chi-Ya; Noyes, Julie A; Ragle, Claude A

    2016-11-01

    To determine the construct and concurrent validity of instrument motion metrics for laparoscopic skills assessment in virtual reality and augmented reality simulators. Evaluation study. Veterinarian students (novice, n = 14) and veterinarians (experienced, n = 11) with no or variable laparoscopic experience. Participants' minimally invasive surgery (MIS) experience was determined by hospital records of MIS procedures performed in the Teaching Hospital. Basic laparoscopic skills were assessed by 5 tasks using a physical box trainer. Each participant completed 2 tasks for assessments in each type of simulator (virtual reality: bowel handling and cutting; augmented reality: object positioning and a pericardial window model). Motion metrics such as instrument path length, angle or drift, and economy of motion of each simulator were recorded. None of the motion metrics in a virtual reality simulator showed correlation with experience, or to the basic laparoscopic skills score. All metrics in augmented reality were significantly correlated with experience (time, instrument path, and economy of movement), except for the hand dominance metric. The basic laparoscopic skills score was correlated to all performance metrics in augmented reality. The augmented reality motion metrics differed between American College of Veterinary Surgeons diplomates and residents, whereas basic laparoscopic skills score and virtual reality metrics did not. Our results provide construct validity and concurrent validity for motion analysis metrics for an augmented reality system, whereas a virtual reality system was validated only for the time score. © Copyright 2016 by The American College of Veterinary Surgeons.

  1. Outcome Expectancy as a Predictor of Treatment Response in Cognitive Behavioral Therapy for Public Speaking Fears Within Social Anxiety Disorder

    PubMed Central

    Price, Matthew; Anderson, Page L.

    2012-01-01

    Outcome expectancy, the extent that clients anticipate benefiting from therapy, is theorized to be an important predictor of treatment response for cognitive–behavioral therapy. However, there is a relatively small body of empirical research on outcome expectancy and the treatment of social anxiety disorder. This literature, which has examined the association mostly in group-based interventions, has yielded mixed findings. The current study sought to further evaluate the effect of outcome expectancy as a predictor of treatment response for public-speaking fears across both individual virtual reality and group-based cognitive– behavioral therapies. The findings supported outcome expectancy as a predictor of the rate of change in public-speaking anxiety during both individual virtual reality exposure therapy and group cognitive– behavioral therapy. Furthermore, there was no evidence to suggest that the impact of outcome expectancy differed across virtual reality or group treatments. PMID:21967073

  2. The RoboCup Mixed Reality League - A Case Study

    NASA Astrophysics Data System (ADS)

    Gerndt, Reinhard; Bohnen, Matthias; da Silva Guerra, Rodrigo; Asada, Minoru

    In typical mixed reality systems there is only a one-way interaction from real to virtual. A human user or the physics of a real object may influence the behavior of virtual objects, but real objects usually cannot be influenced by the virtual world. By introducing real robots into the mixed reality system, we allow a true two-way interaction between virtual and real worlds. Our system has been used since 2007 to implement the RoboCup mixed reality soccer games and other applications for research and edutainment. Our framework system is freely programmable to generate any virtual environment, which may then be further supplemented with virtual and real objects. The system allows for control of any real object based on differential drive robots. The robots may be adapted for different applications, e.g., with markers for identification or with covers to change shape and appearance. They may also be “equipped” with virtual tools. In this chapter we present the hardware and software architecture of our system and some applications. The authors believe this can be seen as a first implementation of Ivan Sutherland’s 1965 idea of the ultimate display: “The ultimate display would, of course, be a room within which the computer can control the existence of matter …” (Sutherland, 1965, Proceedings of IFIPS Congress 2:506-508).

  3. Computer Based Training: Field Deployable Trainer and Shared Virtual Reality

    NASA Technical Reports Server (NTRS)

    Mullen, Terence J.

    1997-01-01

    Astronaut training has traditionally been conducted at specific sites with specialized facilities. Because of its size and nature the training equipment is generally not portable. Efforts are now under way to develop training tools that can be taken to remote locations, including into orbit. Two of these efforts are the Field Deployable Trainer and Shared Virtual Reality projects. Field Deployable Trainer NASA has used the recent shuttle mission by astronaut Shannon Lucid to the Russian space station, Mir, as an opportunity to develop and test a prototype of an on-orbit computer training system. A laptop computer with a customized user interface, a set of specially prepared CD's, and video tapes were taken to the Mir by Ms. Lucid. Based upon the feedback following the launch of the Lucid flight, our team prepared materials for the next Mir visitor. Astronaut John Blaha will fly on NASA/MIR Long Duration Mission 3, set to launch in mid September. He will take with him a customized hard disk drive and a package of compact disks containing training videos, references and maps. The FDT team continues to explore and develop new and innovative ways to conduct offsite astronaut training using personal computers. Shared Virtual Reality Training NASA's Space Flight Training Division has been investigating the use of virtual reality environments for astronaut training. Recent efforts have focused on activities requiring interaction by two or more people, called shared VR. Dr. Bowen Loftin, from the University of Houston, directs a virtual reality laboratory that conducts much of the NASA sponsored research. I worked on a project involving the development of a virtual environment that can be used to train astronauts and others to operate a science unit called a Biological Technology Facility (BTF). Facilities like this will be used to house and control microgravity experiments on the space station. It is hoped that astronauts and instructors will ultimately be able to share common virtual environments and, using telephone links, conduct interactive training from separate locations.

  4. A randomized, controlled trial of immersive virtual reality analgesia, during physical therapy for pediatric burns.

    PubMed

    Schmitt, Yuko S; Hoffman, Hunter G; Blough, David K; Patterson, David R; Jensen, Mark P; Soltani, Maryam; Carrougher, Gretchen J; Nakamura, Dana; Sharar, Sam R

    2011-02-01

    This randomized, controlled, within-subjects (crossover design) study examined the effects of immersive virtual reality as an adjunctive analgesic technique for hospitalized pediatric burn inpatients undergoing painful physical therapy. Fifty-four subjects (6-19 years old) performed range-of-motion exercises under a therapist's direction for 1-5 days. During each session, subjects spent equivalent time in both the virtual reality and the control conditions (treatment order randomized and counterbalanced). Graphic rating scale scores assessing the sensory, affective, and cognitive components of pain were obtained for each treatment condition. Secondary outcomes assessed subjects' perception of the virtual reality experience and maximum range-of-motion. Results showed that on study day one, subjects reported significant decreases (27-44%) in pain ratings during virtual reality. They also reported improved affect ("fun") during virtual reality. The analgesia and affect improvements were maintained with repeated virtual reality use over multiple therapy sessions. Maximum range-of-motion was not different between treatment conditions, but was significantly greater after the second treatment condition (regardless of treatment order). These results suggest that immersive virtual reality is an effective nonpharmacologic, adjunctive pain reduction technique in the pediatric burn population undergoing painful rehabilitation therapy. The magnitude of the analgesic effect is clinically meaningful and is maintained with repeated use. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.

  5. A Randomized, Controlled Trial of Immersive Virtual Reality Analgesia during Physical Therapy for Pediatric Burn Injuries

    PubMed Central

    Schmitt, Yuko S.; Hoffman, Hunter G.; Blough, David K.; Patterson, David R.; Jensen, Mark P.; Soltani, Maryam; Carrougher, Gretchen J.; Nakamura, Dana; Sharar, Sam R.

    2010-01-01

    This randomized, controlled, within-subjects (crossover design) study examined the effects of immersive virtual reality as an adjunctive analgesic technique for hospitalized pediatric burn inpatients undergoing painful physical therapy. Fifty-four subjects (6–19 years old) performed range-of-motion exercises under a therapist’s direction for one to five days. During each session, subjects spent equivalent time in both the virtual reality and the control conditions (treatment order randomized and counterbalanced). Graphic rating scale scores assessing the sensory, affective, and cognitive components of pain were obtained for each treatment condition. Secondary outcomes assessed subjects’ perception of the virtual reality experience and maximum range-of-motion. Results showed that on study day one, subjects reported significant decreases (27–44%) in pain ratings during virtual reality. They also reported improved affect (“fun”) during virtual reality. The analgesia and affect improvements were maintained with repeated virtual reality use over multiple therapy sessions. Maximum range-of-motion was not different between treatment conditions, but was significantly greater after the second treatment condition (regardless of treatment order). These results suggest that immersive virtual reality is an effective nonpharmacologic, adjunctive pain reduction technique in the pediatric burn population undergoing painful rehabilitation therapy. The magnitude of the analgesic effect is clinically meaningful and is maintained with repeated use. PMID:20692769

  6. Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System

    PubMed Central

    Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama

    2018-01-01

    Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one’s center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one’s individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one’s overall performance in balance-related tasks belonging to different difficulty levels. PMID:29359128

  7. Brain-computer interface: changes in performance using virtual reality techniques.

    PubMed

    Ron-Angevin, Ricardo; Díaz-Estrella, Antonio

    2009-01-09

    The ability to control electroencephalographic (EEG) signals when different mental tasks are carried out would provide a method of communication for people with serious motor function problems. This system is known as a brain-computer interface (BCI). Due to the difficulty of controlling one's own EEG signals, a suitable training protocol is required to motivate subjects, as it is necessary to provide some type of visual feedback allowing subjects to see their progress. Conventional systems of feedback are based on simple visual presentations, such as a horizontal bar extension. However, virtual reality is a powerful tool with graphical possibilities to improve BCI-feedback presentation. The objective of the study is to explore the advantages of the use of feedback based on virtual reality techniques compared to conventional systems of feedback. Sixteen untrained subjects, divided into two groups, participated in the experiment. A group of subjects was trained using a BCI system, which uses conventional feedback (bar extension), and another group was trained using a BCI system, which submits subjects to a more familiar environment, such as controlling a car to avoid obstacles. The obtained results suggest that EEG behaviour can be modified via feedback presentation. Significant differences in classification error rates between both interfaces were obtained during the feedback period, confirming that an interface based on virtual reality techniques can improve the feedback control, specifically for untrained subjects.

  8. Surgery applications of virtual reality

    NASA Technical Reports Server (NTRS)

    Rosen, Joseph

    1994-01-01

    Virtual reality is a computer-generated technology which allows information to be displayed in a simulated, bus lifelike, environment. In this simulated 'world', users can move and interact as if they were actually a part of that world. This new technology will be useful in many different fields, including the field of surgery. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations, simulate and perform surgical procedures (telesurgery), and predict the outcomes of surgery. The authors of this paper describe the basic components of a virtual reality surgical system. These components include: the virtual world, the virtual tools, the anatomical model, the software platform, the host computer, the interface, and the head-coupled display. In the chapter they also review the progress towards using virtual reality for surgical training, planning, telesurgery, and predicting outcomes. Finally, the authors present a training system being developed for the practice of new procedures in abdominal surgery.

  9. [Virtual reality in neurosurgery].

    PubMed

    Tronnier, V M; Staubert, A; Bonsanto, M M; Wirtz, C R; Kunze, S

    2000-03-01

    Virtual reality enables users to immerse themselves in a virtual three-dimensional world and to interact in this world. The simulation is different from the kind in computer games, in which the viewer is active but acts in a nonrealistic world, or on the TV screen, where we are passively driven in an active world. In virtual reality elements look realistic, they change their characteristics and have almost real-world unpredictability. Virtual reality is not only implemented in gambling dens and the entertainment industry but also in manufacturing processes (cars, furniture etc.), military applications and medicine. Especially the last two areas are strongly correlated, because telemedicine or telesurgery was originated for military reasons to operate on war victims from a secure distance or to perform surgery on astronauts in an orbiting space station. In medicine and especially neurosurgery virtual-reality methods are used for education, surgical planning and simulation on a virtual patient.

  10. A Feasibility Study of Virtual Reality-Based Coping Skills Training for Nicotine Dependence

    PubMed Central

    Bordnick, Patrick S.; Traylor, Amy C.; Carter, Brian L.; Graap, Ken M.

    2014-01-01

    Objective Virtual reality (VR)-based cue reactivity has been successfully used for the assessment of drug craving. Going beyond assessment of cue reactivity, a novel VR-based treatment approach for smoking cessation was developed and tested for feasibility. Method In a randomized experiment, 10-week treatment feasibility trial, 46 nicotine-dependent adults, completed the10-week program. Virtual reality skills training (VRST) combined with nicotine replacement therapy (NRT) was compared to NRT alone. Participants were assessed for smoking behavior and coping skills during, at end of treatment, and at posttreatment follow-up. Results Smoking rates and craving for nicotine were significantly lower for the VRST group compared to NRT-only group at the end of treatment. Self-confidence and coping skills were also significantly higher for the VRST group, and number of cigarettes smoked was significantly lower, compared to the control group at follow-up. Conclusions Feasibility of VRST was supported in the current study. PMID:25484549

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markidis, S.; Rizwan, U.

    The use of virtual nuclear control room can be an effective and powerful tool for training personnel working in the nuclear power plants. Operators could experience and simulate the functioning of the plant, even in critical situations, without being in a real power plant or running any risk. 3D models can be exported to Virtual Reality formats and then displayed in the Virtual Reality environment providing an immersive 3D experience. However, two major limitations of this approach are that 3D models exhibit static textures, and they are not fully interactive and therefore cannot be used effectively in training personnel. Inmore » this paper we first describe a possible solution for embedding the output of a computer application in a 3D virtual scene, coupling real-world applications and VR systems. The VR system reported here grabs the output of an application running on an X server; creates a texture with the output and then displays it on a screen or a wall in the virtual reality environment. We then propose a simple model for providing interaction between the user in the VR system and the running simulator. This approach is based on the use of internet-based application that can be commanded by a laptop or tablet-pc added to the virtual environment. (authors)« less

  12. The assessment of virtual reality for human anatomy instruction

    NASA Technical Reports Server (NTRS)

    Benn, Karen P.

    1994-01-01

    This research project seeks to meet the objective of science training by developing, assessing, and validating virtual reality as a human anatomy training medium. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment the traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three dimensional, unlike the one dimensional depiction found in textbooks and the two dimensional depiction found on the computer. Virtual reality is a breakthrough technology that allows one to step through the computer screen into a three dimensional world. This technology offers many opportunities to enhance science education. Therefore, a virtual testing environment of the abdominopelvic region of a human cadaver was created to study the placement of body parts within the nine anatomical divisions of the abdominopelvic region and the four abdominal quadrants.

  13. Proof-of-Concept Part Task Trainer for Close Air Support Procedures

    DTIC Science & Technology

    2016-06-01

    TVDL Tactical Video Down Link VE Virtual Environment VR Virtual Reality WTI Weapons and Tactics Instructor xvii ACKNOWLEDGMENTS I would first...in training of USMC pilots for close air support operations? • What is the feasibility of developing a prototype virtual reality (VR) system that...Chapter IV provides a review of virtual reality (VR)/ virtual environment (VE) and part-task trainers currently used in military training

  14. Virtual reality-based prospective memory training program for people with acquired brain injury.

    PubMed

    Yip, Ben C B; Man, David W K

    2013-01-01

    Acquired brain injuries (ABI) may display cognitive impairments and lead to long-term disabilities including prospective memory (PM) failure. Prospective memory serves to remember to execute an intended action in the future. PM problems would be a challenge to an ABI patient's successful community reintegration. While retrospective memory (RM) has been extensively studied, treatment programs for prospective memory are rarely reported. The development of a treatment program for PM, which is considered timely, can be cost-effective and appropriate to the patient's environment. A 12-session virtual reality (VR)-based cognitive rehabilitation program was developed using everyday PM activities as training content. 37 subjects were recruited to participate in a pretest-posttest control experimental study to evaluate its treatment effectiveness. Results suggest that significantly better changes were seen in both VR-based and real-life PM outcome measures, related cognitive attributes such as frontal lobe functions and semantic fluency. VR-based training may be well accepted by ABI patients as encouraging improvement has been shown. Large-scale studies of a virtual reality-based prospective memory (VRPM) training program are indicated.

  15. Effects of perturbation-based slip training using a virtual reality environment on slip-induced falls.

    PubMed

    Parijat, Prakriti; Lockhart, Thurmon E; Liu, Jian

    2015-04-01

    The purpose of the current study was to design and evaluate the effectiveness of virtual reality training in improving recovery reactions and reducing fall frequency in older adults. Twenty-four older adults were recruited and randomly assigned to two groups (virtual reality training and control). Both groups underwent three sessions including baseline slip, training and transfer of training on slippery surface. Both groups experienced two slips, one during baseline and the other during the transfer of training trial. The training group underwent 12 simulated slips using a visual perturbation induced by tilting a virtual reality scene while walking on the treadmill and the control group performed normal walking during the training session. Kinematic and kinetic data were collected during all the sessions. Results demonstrated a reduced incidence of falls in the training group during the transfer of training trial as compared to the control group. The training group was able to transfer reactive control strategies learned during training to the second slip trial. The reactive adjustments included reduced slip distance. Additionally, gait parameters reflective of gait instability (stride length, step width, variability in stride velocity) reduced after walking in the VR environment for 15-20 min. The results indicated a beneficial effect of the virtual reality training in reducing slip severity and recovery kinematics in healthy older adults.

  16. Documenting the efficacy of virtual reality exposure with psychophysiological and information processing measures.

    PubMed

    Côté, Sophie; Bouchard, Stéphane

    2005-09-01

    Many outcome studies have been conducted to assess the efficacy of virtual reality in the treatment of specific phobias. However, most studies used self-report data. The addition of objective measures of arousal and information processing mechanisms would be a valuable contribution in order to validate the usefulness of virtual reality in the treatment of anxiety disorders. The goal of this study was to document the impact of virtual reality exposure (VRE) on cardiac response and automatic processing of threatening stimuli. Twenty-eight adults suffering from arachnophobia were assessed and received an exposure-based treatment using virtual reality. General outcome and specific processes measures included a battery of standardized questionnaires, a pictorial emotional Stroop task, a behavioral avoidance test and a measure of participants' inter-beat intervals (IBI) while they were looking at a live tarantula. Assessment was conducted before and after treatment. Repeated measures ANOVAs revealed that therapy had a positive impact on questionnaire data, as well as on the behavioral avoidance test. Analyses made on the pictorial Stroop task showed that information processing of spider-related stimuli changed after treatment, which also indicates therapeutic success. Psychophysiological data also showed a positive change after treatment, suggesting a decrease in anxiety. In sum, VRE led to significant therapeutic improvements on objective measures as well as on self-report instruments.

  17. Effects of Perturbation-Based Slip Training using a Virtual Reality Environment on Slip-induced Falls

    PubMed Central

    Parijat, Prakriti; Lockhart, Thurmon E.; Liu, Jian

    2015-01-01

    The purpose of the current study was to design and evaluate the effectiveness of virtual reality training in improving recovery reactions and reducing fall frequency in older adults. Twenty-four older adults were recruited and randomly assigned to two groups (virtual reality training and control). Both groups underwent three sessions including baseline slip, training and transfer of training on slippery surface. Both groups experienced two slips, one during baseline and the other during the transfer of training trial. The training group underwent twelve simulated slips using a visual perturbation induced by tilting a virtual reality scene while walking on the treadmill and the control group performed normal walking during the training session. Kinematic and kinetic data were collected during all the sessions. Results demonstrated a reduced incidence of falls in the training group during the transfer of training trial as compared to the control group. The training group was able to transfer reactive control strategies learned during training to the second slip trial. The reactive adjustments included reduced slip distance. Additionally, gait parameters reflective of gait instability (stride length, step width, variability in stride velocity) reduced after walking in the VR environment for 15–20 min. The results indicated a beneficial effect of the virtual reality training in reducing slip severity and recovery kinematics in healthy older adults. PMID:25245221

  18. User Guide: How to Use and Operate Virtual Reality Equipment in the Systems Assessment and Usability Laboratory (SAUL) for Conducting Demonstrations

    DTIC Science & Technology

    2017-08-01

    ARL-TN-0839 ● AUG 2017 US Army Research Laboratory User Guide: How to Use and Operate Virtual Reality Equipment in the Systems...ARL-TN-0839 ● AUG 2017 US Army Research Laboratory User Guide: How to Use and Operate Virtual Reality Equipment in the Systems...September 2017 4. TITLE AND SUBTITLE User Guide: How to Use and Operate Virtual Reality Equipment in the Systems Assessment and Usability Laboratory

  19. Uses of virtual reality for diagnosis, rehabilitation and study of unilateral spatial neglect: review and analysis.

    PubMed

    Tsirlin, Inna; Dupierrix, Eve; Chokron, Sylvie; Coquillart, Sabine; Ohlmann, Theophile

    2009-04-01

    Unilateral spatial neglect is a disabling condition frequently occurring after stroke. People with neglect suffer from various spatial deficits in several modalities, which in many cases impair everyday functioning. A successful treatment is yet to be found. Several techniques have been proposed in the last decades, but only a few showed long-lasting effects and none could completely rehabilitate the condition. Diagnostic methods of neglect could be improved as well. The disorder is normally diagnosed with pen-and-paper methods, which generally do not assess patients in everyday tasks and do not address some forms of the disorder. Recently, promising new methods based on virtual reality have emerged. Virtual reality technologies hold great opportunities for the development of effective assessment and treatment techniques for neglect because they provide rich, multimodal, and highly controllable environments. In order to stimulate advancements in this domain, we present a review and an analysis of the current work. We describe past and ongoing research of virtual reality applications for unilateral neglect and discuss the existing problems and new directions for development.

  20. Assessment of individual hand performance in box trainers compared to virtual reality trainers.

    PubMed

    Madan, Atul K; Frantzides, Constantine T; Shervin, Nina; Tebbit, Christopher L

    2003-12-01

    Training residents in laparoscopic skills is ideally initiated in an inanimate laboratory with both box trainers and virtual reality trainers. Virtual reality trainers have the ability to score individual hand performance although they are expensive. Here we compared the ability to assess dominant and nondominant hand performance in box trainers with virtual reality trainers. Medical students without laparoscopic experience were utilized in this study (n = 16). Each student performed tasks on the LTS 2000, an inanimate box trainer (placing pegs with both hands and transferring pegs from one hand to another), as well as a task on the MIST-VR, a virtual reality trainer (grasping a virtual object and placing it in a virtual receptable with alternating hands). A surgeon scored students for the inanimate box trainer exercises (time and errors) while the MIST-VR scored students (time, economy of movements, and errors for each hand). Statistical analysis included Pearson correlations. Errors and time for the one-handed tasks on the box trainer did not correlate with errors, time, or economy measured for each hand by the MIST-VR (r = 0.01 to 0.30; P = NS). Total errors on the virtual reality trainer did correlate with errors on transferring pege (r = 0.61; P < 0.05). Economy and time of both dominant and nondominant hand from the MIST-VR correlated with time of transferring pegs in the box trainer (r = 0.53 to 0.77; P < 0.05). While individual hand assessment by the box trainer during 2-handed tasks was related to assessment by the virtual reality trainer, individual hand assessment during 1-handed tasks did not correlate with the virtual reality trainer. Virtual reality trainers, such as the MIST-VR, allow assessment of individual hand skills which may lead to improved laparoscopic skill acquisition. It is difficult to assess individual hand performance with box trainers alone.

  1. The Reality of Virtual Reality Product Development

    NASA Astrophysics Data System (ADS)

    Dever, Clark

    Virtual Reality and Augmented Reality are emerging areas of research and product development in enterprise companies. This talk will discuss industry standard tools and current areas of application in the commercial market. Attendees will gain insights into how to research, design, and (most importantly) ship, world class products. The presentation will recount the lessons learned to date developing a Virtual Reality tool to solve physics problems resulting from trying to perform aircraft maintenance on ships at sea.

  2. ISMCR 1994: Topical Workshop on Virtual Reality. Proceedings of the Fourth International Symposium on Measurement and Control in Robotics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This symposium on measurement and control in robotics included sessions on: (1) rendering, including tactile perception and applied virtual reality; (2) applications in simulated medical procedures and telerobotics; (3) tracking sensors in a virtual environment; (4) displays for virtual reality applications; (5) sensory feedback including a virtual environment application with partial gravity simulation; and (6) applications in education, entertainment, technical writing, and animation.

  3. Virtual Reality: A Strategy for Training in Cross-Cultural Communication.

    ERIC Educational Resources Information Center

    Meyer, Catherine; Dunn-Roberts, Richard

    1992-01-01

    Defines virtual reality and explains terminology, theoretical concepts, and enabling technologies. Research and applications are described; limitations of current technology are considered; and future possibilities are discussed, including the use of virtual reality in training for cross-cultural communication. (22 references) (LRW)

  4. Making Information Overload Work: The Dragon Software System on a Virtual Reality Responsive Workbench

    DTIC Science & Technology

    1998-03-01

    Research Laboratory’s Virtual Reality Responsive Workbench (VRRWB) and Dragon software system which together address the problem of battle space...and describe the lessons which have been learned. Interactive graphics, workbench, battle space visualization, virtual reality , user interface.

  5. [Virtual reality in medical education].

    PubMed

    Edvardsen, O; Steensrud, T

    1998-02-28

    Virtual reality technology has found new applications in industry over the last few years. Medical literature has for several years predicted a break-through in this technology for medical education. Although there is a great potential for this technology in medical education, there seems to be a wide gap between expectations and actual possibilities at present. State of the technology was explored by participation at the conference "Medicine meets virtual reality V" (San Diego Jan. 22-25 1997) and a visit to one of the leading laboratories on virtual reality in medical education. In this paper we introduce some of the basic terminology and technology, review some of the topics covered by the conference, and describe projects running in one of the leading laboratories on virtual reality technology for medical education. With this information in mind, we discuss potential applications of the current technology in medical education. Current virtual reality systems are judged to be too costly and their usefulness in education too limited for routine use in medical education.

  6. Turning Virtual Reality into Reality: A Checklist to Ensure Virtual Reality Studies of Eating Behavior and Physical Activity Parallel the Real World

    PubMed Central

    Tal, Aner; Wansink, Brian

    2011-01-01

    Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. PMID:21527088

  7. Turning virtual reality into reality: a checklist to ensure virtual reality studies of eating behavior and physical activity parallel the real world.

    PubMed

    Tal, Aner; Wansink, Brian

    2011-03-01

    Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. © 2011 Diabetes Technology Society.

  8. French Military Applications of Virtual Reality

    DTIC Science & Technology

    2000-11-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO10631 TITLE: French Military Applications of Virtual Reality...numbers comprise the compilation report: ADPO10609 thru ADP010633 UNCLASSIFIED 23-1 FRENCH MILITARY APPLICATIONS OF VIRTUAL REALITY Jean Paul Papin* and...Pascal Hue DGA/DCE/ETC4/ETAS Etablissement Technique d’ Angers BP 36 49460 MONTREUIL JUIGNE, France INTRODUCTION France is now applying virtual

  9. A Virtual Reality Simulator Prototype for Learning and Assessing Phaco-sculpting Skills

    NASA Astrophysics Data System (ADS)

    Choi, Kup-Sze

    This paper presents a virtual reality based simulator prototype for learning phacoemulsification in cataract surgery, with focus on the skills required for making a cross-shape trench in cataractous lens by an ultrasound probe during the phaco-sculpting procedure. An immersive virtual environment is created with 3D models of the lens and surgical tools. Haptic device is also used as 3D user interface. Phaco-sculpting is simulated by interactively deleting the constituting tetrahedrons of the lens model. Collisions between the virtual probe and the lens are effectively identified by partitioning the space containing the lens hierarchically with an octree. The simulator can be programmed to collect real-time quantitative user data for reviewing and assessing trainee's performance in an objective manner. A game-based learning environment can be created on top of the simulator by incorporating gaming elements based on the quantifiable performance metrics.

  10. A review of haptic simulator for oral and maxillofacial surgery based on virtual reality.

    PubMed

    Chen, Xiaojun; Hu, Junlei

    2018-06-01

    Traditional medical training in oral and maxillofacial surgery (OMFS) may be limited by its low efficiency and high price due to the shortage of cadaver resources. With the combination of visual rendering and feedback force, surgery simulators become increasingly popular in hospitals and medical schools as an alternative to the traditional training. Areas covered: The major goal of this review is to provide a comprehensive reference source of current and future developments of haptic OMFS simulators based on virtual reality (VR) for relevant researchers. Expert commentary: Visual rendering, haptic rendering, tissue deformation, and evaluation are key components of haptic surgery simulator based on VR. Compared with traditional medical training, virtual and tactical fusion of virtual environment in surgery simulator enables considerably vivid sensation, and the operators have more opportunities to practice surgical skills and receive objective evaluation as reference.

  11. Personalization of Learning Activities within a Virtual Environment for Training Based on Fuzzy Logic Theory

    ERIC Educational Resources Information Center

    Mohamed, Fahim; Abdeslam, Jakimi; Lahcen, El Bermi

    2017-01-01

    Virtual Environments for Training (VET) are useful tools for visualization, discovery as well as for training. VETs are based on virtual reality technique to put learners in training situations that emulate genuine situations. VETs have proven to be advantageous in putting learners into varied training situations to acquire knowledge and…

  12. Immersive realities: articulating the shift from VR to mobile AR through artistic practice

    NASA Astrophysics Data System (ADS)

    Margolis, Todd; Cornish, Tracy; Berry, Rodney; DeFanti, Thomas A.

    2012-03-01

    Our contemporary imaginings of technological engagement with digital environments has transitioned from flying through Virtual Reality to mobile interactions with the physical world through personal media devices. Experiences technologically mediated through social interactivity within physical environments are now being preferenced over isolated environments such as CAVEs or HMDs. Examples of this trend can be seen in early tele-collaborative artworks which strove to use advanced networking to join multiple participants in shared virtual environments. Recent developments in mobile AR allow untethered access to such shared realities in places far removed from labs and home entertainment environments, and without the bulky and expensive technologies attached to our bodies that accompany most VR. This paper addresses the emerging trend favoring socially immersive artworks via mobile Augmented Reality rather than sensorially immersive Virtual Reality installations. With particular focus on AR as a mobile, locative technology, we will discuss how concepts of immersion and interactivity are evolving with this new medium. Immersion in context of mobile AR can be redefined to describe socially interactive experiences. Having distinctly different sensory, spatial and situational properties, mobile AR offers a new form for remixing elements from traditional virtual reality with physically based social experiences. This type of immersion offers a wide array of potential for mobile AR art forms. We are beginning to see examples of how artists can use mobile AR to create social immersive and interactive experiences.

  13. Similarities and differences between eating disorders and obese patients in a virtual environment for normalizing eating patterns.

    PubMed

    Perpiñá, Conxa; Roncero, María

    2016-05-01

    Virtual reality has demonstrated promising results in the treatment of eating disorders (ED); however, few studies have examined its usefulness in treating obesity. The aim of this study was to compare ED and obese patients on their reality judgment of a virtual environment (VE) designed to normalize their eating pattern. A second objective was to study which variables predicted the reality of the experience of eating a virtual forbidden-fattening food. ED patients, obese patients, and a non-clinical group (N=62) experienced a non-immersive VE, and then completed reality judgment and presence measures. All participants rated the VE with similar scores for quality, interaction, engagement, and ecological validity; however, ED patients obtained the highest scores on emotional involvement, attention, reality judgment/presence, and negative effects. The obese group gave the lowest scores to reality judgment/presence, satisfaction and sense of physical space, and they held an intermediate position in the attribution of reality to virtually eating a "fattening" food. The palatability of a virtual food was predicted by attention capturing and belonging to the obese group, while the attribution of reality to the virtual eating was predicted by engagement and belonging to the ED group. This study offers preliminary results about the differential impact on ED and obese patients of the exposure to virtual food, and about the need to implement a VE that can be useful as a virtual lab for studying eating behavior and treating obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A Discussion of Virtual Reality As a New Tool for Training Healthcare Professionals.

    PubMed

    Fertleman, Caroline; Aubugeau-Williams, Phoebe; Sher, Carmel; Lim, Ai-Nee; Lumley, Sophie; Delacroix, Sylvie; Pan, Xueni

    2018-01-01

    Virtual reality technology is an exciting and emerging field with vast applications. Our study sets out the viewpoint that virtual reality software could be a new focus of direction in the development of training tools in medical education. We carried out a panel discussion at the Center for Behavior Change 3rd Annual Conference, prompted by the study, "The Responses of Medical General Practitioners to Unreasonable Patient Demand for Antibiotics--A Study of Medical Ethics Using Immersive Virtual Reality" (1). In Pan et al.'s study, 21 general practitioners (GPs) and GP trainees took part in a videoed, 15-min virtual reality scenario involving unnecessary patient demands for antibiotics. This paper was discussed in-depth at the Center for Behavior Change 3rd Annual Conference; the content of this paper is a culmination of findings and feedback from the panel discussion. The experts involved have backgrounds in virtual reality, general practice, medicines management, medical education and training, ethics, and philosophy. Virtual reality is an unexplored methodology to instigate positive behavioral change among clinicians where other methods have been unsuccessful, such as antimicrobial stewardship. There are several arguments in favor of use of virtual reality in medical education: it can be used for "difficult to simulate" scenarios and to standardize a scenario, for example, for use in exams. However, there are limitations to its usefulness because of the cost implications and the lack of evidence that it results in demonstrable behavior change.

  15. Stereoscopic virtual reality models for planning tumor resection in the sellar region.

    PubMed

    Wang, Shou-sen; Zhang, Shang-ming; Jing, Jun-jie

    2012-11-28

    It is difficult for neurosurgeons to perceive the complex three-dimensional anatomical relationships in the sellar region. To investigate the value of using a virtual reality system for planning resection of sellar region tumors. The study included 60 patients with sellar tumors. All patients underwent computed tomography angiography, MRI-T1W1, and contrast enhanced MRI-T1W1 image sequence scanning. The CT and MRI scanning data were collected and then imported into a Dextroscope imaging workstation, a virtual reality system that allows structures to be viewed stereoscopically. During preoperative assessment, typical images for each patient were chosen and printed out for use by the surgeons as references during surgery. All sellar tumor models clearly displayed bone, the internal carotid artery, circle of Willis and its branches, the optic nerve and chiasm, ventricular system, tumor, brain, soft tissue and adjacent structures. Depending on the location of the tumors, we simulated the transmononasal sphenoid sinus approach, transpterional approach, and other approaches. Eleven surgeons who used virtual reality models completed a survey questionnaire. Nine of the participants said that the virtual reality images were superior to other images but that other images needed to be used in combination with the virtual reality images. The three-dimensional virtual reality models were helpful for individualized planning of surgery in the sellar region. Virtual reality appears to be promising as a valuable tool for sellar region surgery in the future.

  16. Virtual Reality, Combat, and Communication.

    ERIC Educational Resources Information Center

    Thrush, Emily Austin; Bodary, Michael

    2000-01-01

    Presents a brief examination of the evolution of virtual reality devices that illustrates how the development of this new medium is influenced by emerging technologies and by marketing pressures. Notes that understanding these influences may help prepare for the role of technical communicators in building virtual reality applications for education…

  17. Impact of Virtual and Augmented Reality Based on Intraoperative Magnetic Resonance Imaging and Functional Neuronavigation in Glioma Surgery Involving Eloquent Areas.

    PubMed

    Sun, Guo-Chen; Wang, Fei; Chen, Xiao-Lei; Yu, Xin-Guang; Ma, Xiao-Dong; Zhou, Ding-Biao; Zhu, Ru-Yuan; Xu, Bai-Nan

    2016-12-01

    The utility of virtual and augmented reality based on functional neuronavigation and intraoperative magnetic resonance imaging (MRI) for glioma surgery has not been previously investigated. The study population consisted of 79 glioma patients and 55 control subjects. Preoperatively, the lesion and related eloquent structures were visualized by diffusion tensor tractography and blood oxygen level-dependent functional MRI. Intraoperatively, microscope-based functional neuronavigation was used to integrate the reconstructed eloquent structure and the real head and brain, which enabled safe resection of the lesion. Intraoperative MRI was used to verify brain shift during the surgical process and provided quality control during surgery. The control group underwent surgery guided by anatomic neuronavigation. Virtual and augmented reality protocols based on functional neuronavigation and intraoperative MRI provided useful information for performing tailored and optimized surgery. Complete resection was achieved in 55 of 79 (69.6%) glioma patients and 20 of 55 (36.4%) control subjects, with average resection rates of 95.2% ± 8.5% and 84.9% ± 15.7%, respectively. Both the complete resection rate and average extent of resection differed significantly between the 2 groups (P < 0.01). Postoperatively, the rate of preservation of neural functions (motor, visual field, and language) was lower in controls than in glioma patients at 2 weeks and 3 months (P < 0.01). Combining virtual and augmented reality based on functional neuronavigation and intraoperative MRI can facilitate resection of gliomas involving eloquent areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Rehabilitation robotics for the upper extremity: review with new directions for orthopaedic disorders.

    PubMed

    Hakim, Renée M; Tunis, Brandon G; Ross, Michael D

    2017-11-01

    The focus of research using technological innovations such as robotic devices has been on interventions to improve upper extremity function in neurologic populations, particularly patients with stroke. There is a growing body of evidence describing rehabilitation programs using various types of supportive/assistive and/or resistive robotic and virtual reality-enhanced devices to improve outcomes for patients with neurologic disorders. The most promising approaches are task-oriented, based on current concepts of motor control/learning and practice-induced neuroplasticity. Based on this evidence, we describe application and feasibility of virtual reality-enhanced robotics integrated with current concepts in orthopaedic rehabilitation shifting from an impairment-based focus to inclusion of more intense, task-specific training for patients with upper extremity disorders, specifically emphasizing the wrist and hand. The purpose of this paper is to describe virtual reality-enhanced rehabilitation robotic devices, review evidence of application in patients with upper extremity deficits related to neurologic disorders, and suggest how this technology and task-oriented rehabilitation approach can also benefit patients with orthopaedic disorders of the wrist and hand. We will also discuss areas for further research and development using a task-oriented approach and a commercially available haptic robotic device to focus on training of grasp and manipulation tasks. Implications for Rehabilitation There is a growing body of evidence describing rehabilitation programs using various types of supportive/assistive and/or resistive robotic and virtual reality-enhanced devices to improve outcomes for patients with neurologic disorders. The most promising approaches using rehabilitation robotics are task-oriented, based on current concepts of motor control/learning and practice-induced neuroplasticity. Based on the evidence in neurologic populations, virtual reality-enhanced robotics may be integrated with current concepts in orthopaedic rehabilitation shifting from an impairment-based focus to inclusion of more intense, task-specific training for patients with UE disorders, specifically emphasizing the wrist and hand. Clinical application of a task-oriented approach may be accomplished using commercially available haptic robotic device to focus on training of grasp and manipulation tasks.

  19. Dynamic Eye gaze and its Potential in Virtual Reality Based Applications for Children with Autism Spectrum Disorders.

    PubMed

    Lahiri, Uttama; Trewyn, Adam; Warren, Zachary; Sarkar, Nilanjan

    2011-01-01

    Children with Autism Spectrum Disorder are often characterized by deficits in social communication skills. While evidence suggests that intensive individualized interventions can improve aspects of core deficits in Autism Spectrum Disorder, at present numerous potent barriers exist related to accessing and implementing such interventions. Researchers are increasingly employing technology to develop more accessible, quantifiable, and individualized intervention tools to address core vulnerabilities related to autism. The present study describes the development and preliminary application of a Virtual Reality technology aimed at facilitating improvements in social communication skills for adolescents with autism. We present preliminary data from the usability study of this technological application for six adolescents with autism and discuss potential future development and application of adaptive Virtual Reality technology within an intervention framework.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez Anez, Francisco

    This paper presents two development projects (STARMATE and VIRMAN) focused on supporting training on maintenance. Both projects aim at specifying, designing, developing, and demonstrating prototypes allowing computer guided maintenance of complex mechanical elements using Augmented and Virtual Reality techniques. VIRMAN is a Spanish development project. The objective is to create a computer tool for maintenance training course elaborations and training delivery based on 3D virtual reality models of complex components. The training delivery includes 3D record displays on maintenance procedures with all complementary information for intervention understanding. Users are requested to perform the maintenance intervention trying to follow up themore » procedure. Users can be evaluated about the level of knowledge achieved. Instructors can check the evaluation records left during the training sessions. VIRMAN is simple software supported by a regular computer and can be used in an Internet framework. STARMATE is a forward step in the area of virtual reality. STARMATE is a European Commission project in the frame of 'Information Societies Technologies'. A consortium of five companies and one research institute shares their expertise in this new technology. STARMATE provides two main functionalities (1) user assistance for achieving assembly/de-assembly and following maintenance procedures, and (2) workforce training. The project relies on Augmented Reality techniques, which is a growing area in Virtual Reality research. The idea of Augmented Reality is to combine a real scene, viewed by the user, with a virtual scene, generated by a computer, augmenting the reality with additional information. The user interface is see-through goggles, headphones, microphone and an optical tracking system. All these devices are integrated in a helmet connected with two regular computers. The user has his hands free for performing the maintenance intervention and he can navigate in the virtual world thanks to a voice recognition system and a virtual pointing device. The maintenance work is guided with audio instructions, 2D and 3D information are directly displayed into the user's goggles: There is a position-tracking system that allows 3D virtual models to be displayed in the real counterpart positions independently of the user allocation. The user can create his own virtual environment, placing the information required wherever he wants. The STARMATE system is applicable to a large variety of real work situations. (author)« less

  1. Virtual reality for intelligent and interactive operating, training, and visualization systems

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Schluse, Michael

    2000-10-01

    Virtual Reality Methods allow a new and intuitive way of communication between man and machine. The basic idea of Virtual Reality (VR) is the generation of artificial computer simulated worlds, which the user not only can look at but also can interact with actively using data glove and data helmet. The main emphasis for the use of such techniques at the IRF is the development of a new generation of operator interfaces for the control of robots and other automation components and for intelligent training systems for complex tasks. The basic idea of the methods developed at the IRF for the realization of Projective Virtual Reality is to let the user work in the virtual world as he would act in reality. The user actions are recognized by the Virtual reality System and by means of new and intelligent control software projected onto the automation components like robots which afterwards perform the necessary actions in reality to execute the users task. In this operation mode the user no longer has to be a robot expert to generate tasks for robots or to program them, because intelligent control software recognizes the users intention and generated automatically the commands for nearly every automation component. Now, Virtual Reality Methods are ideally suited for universal man-machine-interfaces for the control and supervision of a big class of automation components, interactive training and visualization systems. The Virtual Reality System of the IRF-COSIMIR/VR- forms the basis for different projects starting with the control of space automation systems in the projects CIROS, VITAL and GETEX, the realization of a comprehensive development tool for the International Space Station and last but not least with the realistic simulation fire extinguishing, forest machines and excavators which will be presented in the final paper in addition to the key ideas of this Virtual Reality System.

  2. Immersive virtual reality platform for medical training: a "killer-application".

    PubMed

    2000-01-01

    The Medical Readiness Trainer (MRT) integrates fully immersive Virtual Reality (VR), highly advanced medical simulation technologies, and medical data to enable unprecedented medical education and training. The flexibility offered by the MRT environment serves as a practical teaching tool today and in the near future the will serve as an ideal vehicle for facilitating the transition to the next level of medical practice, i.e., telepresence and next generation Internet-based collaborative learning.

  3. [Virtual reality therapy in anxiety disorders].

    PubMed

    Mitrousia, V; Giotakos, O

    2016-01-01

    During the last decade a number of studies have been conducted in order to examine if virtual reality exposure therapy can be an alternative form of therapy for the treatment of mental disorders and particularly for the treatment of anxiety disorders. Imaginal exposure therapy, which is one of the components of Cognitive Behavioral Therapy, cannot be easily applied to all patients and in cases like those virtual reality can be used as an alternative or a supportive psychotherapeutic technique. Most studies using virtual reality have focused on anxiety disorders, mainly in specific phobias, but some extend to other disorders such as eating disorders, drug dependence, pain control and palliative care and rehabilitation. Main characteristics of virtual reality therapy are: "interaction", "immersion", and "presence". High levels of "immersion" and "presence" are associated with increased response to exposure therapy in virtual environments, as well as better therapeutic outcomes and sustained therapeutic gains. Typical devices that are used in order patient's immersion to be achieved are the Head-Mounted Displays (HMD), which are only for individual use, and the computer automatic virtual environment (CAVE), which is a multiuser. Virtual reality therapy's disadvantages lie in the difficulties that arise due to the demanded specialized technology skills, devices' cost and side effects. Therapists' training is necessary in order for them to be able to manipulate the software and the hardware and to adjust it to each case's needs. Devices' cost is high but as technology continuously improves it constantly decreases. Immersion during virtual reality therapy can induce mild and temporary side effects such as nausea, dizziness or headache. Until today, however, experience shows that virtual reality offers several advantages. Patient's avoidance to be exposed in phobic stimuli is reduced via the use of virtual reality since the patient is exposed to them as many times as he wishes and under the supervision of the therapist. The technique takes place in the therapist's office which ensures confidentiality and privacy. The therapist is able to control unpredicted events that can occur during patient's exposure in real environments. Mainly the therapist can control the intensity of exposure and adapt it to the patient's needs. Virtual reality can be proven particularly useful in some specific psychological states. For instance, patients with post-traumatic stress disorder (PTSD) who prone to avoid the reminders of the traumatic events. Exposure in virtual reality can solve this problem providing to the patient a large number of stimuli that activate the senses causing the necessary physiological and psychological anxiety reactions, regardless of his willingness or ability to recall in his imagination the traumatic event.

  4. Augmenting breath regulation using a mobile driven virtual reality therapy framework.

    PubMed

    Abushakra, Ahmad; Faezipour, Miad

    2014-05-01

    This paper presents a conceptual framework of a virtual reality therapy to assist individuals, especially lung cancer patients or those with breathing disorders to regulate their breath through real-time analysis of respiration movements using a smartphone. Virtual reality technology is an attractive means for medical simulations and treatment, particularly for patients with cancer. The theories, methodologies and approaches, and real-world dynamic contents for all the components of this virtual reality therapy (VRT) via a conceptual framework using the smartphone will be discussed. The architecture and technical aspects of the offshore platform of the virtual environment will also be presented.

  5. Virtual Reality Simulation of the International Space Welding Experiment

    NASA Technical Reports Server (NTRS)

    Phillips, James A.

    1996-01-01

    Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) It involves 3-dimensional computer graphics; (2) It includes real-time feedback and response to user actions; and (3) It must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, and we have therefore implemented a VR trainer for the International Space Welding Experiment. My role in the development of the ISWE trainer consisted of the following: (1) created texture-mapped models of the ISWE's rotating sample drum, technology block, tool stowage assembly, sliding foot restraint, and control panel; (2) developed C code for control panel button selection and rotation of the sample drum; (3) In collaboration with Tim Clark (Antares Virtual Reality Systems), developed a serial interface box for the PC and the SGI Indigo so that external control devices, similar to ones actually used on the ISWE, could be used to control virtual objects in the ISWE simulation; (4) In collaboration with Peter Wang (SFFP) and Mark Blasingame (Boeing), established the interference characteristics of the VIM 1000 head-mounted-display and tested software filters to correct the problem; (5) In collaboration with Peter Wang and Mark Blasingame, established software and procedures for interfacing the VPL DataGlove and the Polhemus 6DOF position sensors to the SGI Indigo serial ports. The majority of the ISWE modeling effort was conducted on a PC-based VR Workstation, described below.

  6. Classification of EMG signals using artificial neural networks for virtual hand prosthesis control.

    PubMed

    Mattioli, Fernando E R; Lamounier, Edgard A; Cardoso, Alexandre; Soares, Alcimar B; Andrade, Adriano O

    2011-01-01

    Computer-based training systems have been widely studied in the field of human rehabilitation. In health applications, Virtual Reality presents itself as an appropriate tool to simulate training environments without exposing the patients to risks. In particular, virtual prosthetic devices have been used to reduce the great mental effort needed by patients fitted with myoelectric prosthesis, during the training stage. In this paper, the application of Virtual Reality in a hand prosthesis training system is presented. To achieve this, the possibility of exploring Neural Networks in a real-time classification system is discussed. The classification technique used in this work resulted in a 95% success rate when discriminating 4 different hand movements.

  7. Intelligent virtual reality in the setting of fuzzy sets

    NASA Technical Reports Server (NTRS)

    Dockery, John; Littman, David

    1992-01-01

    The authors have previously introduced the concept of virtual reality worlds governed by artificial intelligence. Creation of an intelligent virtual reality was further proposed as a universal interface for the handicapped. This paper extends consideration of intelligent virtual realty to a context in which fuzzy set principles are explored as a major tool for implementing theory in the domain of applications to the disabled.

  8. The Impact of Virtual Reality Programs in Career and Technical Education

    ERIC Educational Resources Information Center

    Catterson, Anna J.

    2013-01-01

    Instructional technology has evolved from blackboards with chalk to in some cases three-dimensional virtual reality environments in which students are interacting and engaging with other students worldwide. The use of this new instructional methodology, known as "virtual reality," has experienced substantial growth in higher education…

  9. Sweaty Palms! Virtual Reality Applied to Training.

    ERIC Educational Resources Information Center

    Treiber, Karin

    A qualitative case study approach was used to identify the psychosocial effects of the high-fidelity, virtual reality simulation provided in the college-level air traffic control (ATC) training program offered at the Minnesota Air Traffic Control Training Center and to evaluate the applicability of virtual reality to academic/training situations.…

  10. Special Experiences for Exceptional Students: Integrating Virtual Reality into Special Education Classrooms.

    ERIC Educational Resources Information Center

    Miller, Erez Cedric

    This paper discusses some of the potential benefits and hazards that virtual reality holds for exceptional children in the special education system. Topics addressed include (1) applications of virtual reality, including developing academic skills via cyberspace, vocational training, and social learning in cyberspace; (2) telepresence and distance…

  11. Virtual Reality Educational Tool for Human Anatomy.

    PubMed

    Izard, Santiago González; Juanes Méndez, Juan A; Palomera, Pablo Ruisoto

    2017-05-01

    Virtual Reality is becoming widespread in our society within very different areas, from industry to entertainment. It has many advantages in education as well, since it allows visualizing almost any object or going anywhere in a unique way. We will be focusing on medical education, and more specifically anatomy, where its use is especially interesting because it allows studying any structure of the human body by placing the user inside each one. By allowing virtual immersion in a body structure such as the interior of the cranium, stereoscopic vision goggles make these innovative teaching technologies a powerful tool for training in all areas of health sciences. The aim of this study is to illustrate the teaching potential of applying Virtual Reality in the field of human anatomy, where it can be used as a tool for education in medicine. A Virtual Reality Software was developed as an educational tool. This technological procedure is based entirely on software which will run in stereoscopic goggles to give users the sensation of being in a virtual environment, clearly showing the different bones and foramina which make up the cranium, and accompanied by audio explanations. Throughout the results the structure of the cranium is described in detailed from both inside and out. Importance of an exhaustive morphological knowledge of cranial fossae is further discussed. Application for the design of microsurgery is also commented.

  12. Virtual reality in ophthalmology training.

    PubMed

    Khalifa, Yousuf M; Bogorad, David; Gibson, Vincent; Peifer, John; Nussbaum, Julian

    2006-01-01

    Current training models are limited by an unstructured curriculum, financial costs, human costs, and time constraints. With the newly mandated resident surgical competency, training programs are struggling to find viable methods of assessing and documenting the surgical skills of trainees. Virtual-reality technologies have been used for decades in flight simulation to train and assess competency, and there has been a recent push in surgical specialties to incorporate virtual-reality simulation into residency programs. These efforts have culminated in an FDA-approved carotid stenting simulator. What role virtual reality will play in the evolution of ophthalmology surgical curriculum is uncertain. The current apprentice system has served the art of surgery for over 100 years, and we foresee virtual reality working synergistically with our current curriculum modalities to streamline and enhance the resident's learning experience.

  13. E-virtual reality exposure therapy in acrophobia: A pilot study.

    PubMed

    Levy, Fanny; Leboucher, Pierre; Rautureau, Gilles; Jouvent, Roland

    2016-06-01

    Virtual reality therapy is already used for anxiety disorders as an alternative to in vivo and in imagino exposure. To our knowledge, however, no one has yet proposed using remote virtual reality (e-virtual reality). The aim of the present study was to assess e-virtual reality in an acrophobic population. Six individuals with acrophobia each underwent six sessions (two sessions per week) of virtual reality exposure therapy. The first three were remote sessions, while the last three were traditional sessions in the physical presence of the therapist. Anxiety (STAI form Y-A, visual analog scale, heart rate), presence, technical difficulties and therapeutic alliance (Working Alliance Inventory) were measured. In order to control the conditions in which these measures were made, all the sessions were conducted in hospital. None of the participants dropped out. The remote sessions were well accepted. None of the participants verbalized reluctance. No major technical problems were reported. None of the sessions were cancelled or interrupted because of software incidents. Measures (anxiety, presence, therapeutic alliance) were comparable across the two conditions. e-Virtual reality can therefore be used to treat acrophobic disorders. However, control studies are needed to assess online feasibility, therapeutic effects and the mechanisms behind online presence. © The Author(s) 2015.

  14. The effect of virtual reality during dental treatment on child anxiety and behavior.

    PubMed

    Sullivan, C; Schneider, P E; Musselman, R J; Dummett, C O; Gardiner, D

    2000-01-01

    Virtual reality, a three-dimensional computer generated world, has been shown to relax adults during dental treatment. The purpose of this study was to investigate the effect of virtual reality on the behavior and anxiety of children during dental treatment. The behavior, anxiety and heart rate of twenty-six children, ages five to seven years were evaluated for the first five minutes of two restorative treatment visits. Thirteen children viewed virtual reality at their first restorative visit and not the second, and thirteen children viewed virtual reality at the second restorative visit and not the first. Before and immediately following the restorative visits, each child was instructed to draw a human figure. The restorative appointments were video recorded and heart rate monitored. The drawings and videotapes were rated independently by two examiners. The Koppitz method of evaluating drawings was used to measure anxiety. The Frankl behavior rating scale was used to evaluate behavior. Differences (ANOVA) in behavior (p < or = 0.50) and anxiety (p < or = 0.65) were not significant. The overall pulse rate was significantly lower (ANOVA p < or = 0.001) when the child was wearing glasses and viewing virtual reality. In conclusion, virtual reality during dental treatment had no significant effect on the behavior or anxiety but significantly reduced the pulse.

  15. Development and Validation of a Novel Robotic Procedure Specific Simulation Platform: Partial Nephrectomy.

    PubMed

    Hung, Andrew J; Shah, Swar H; Dalag, Leonard; Shin, Daniel; Gill, Inderbir S

    2015-08-01

    We developed a novel procedure specific simulation platform for robotic partial nephrectomy. In this study we prospectively evaluate its face, content, construct and concurrent validity. This hybrid platform features augmented reality and virtual reality. Augmented reality involves 3-dimensional robotic partial nephrectomy surgical videos overlaid with virtual instruments to teach surgical anatomy, technical skills and operative steps. Advanced technical skills are assessed with an embedded full virtual reality renorrhaphy task. Participants were classified as novice (no surgical training, 15), intermediate (less than 100 robotic cases, 13) or expert (100 or more robotic cases, 14) and prospectively assessed. Cohort performance was compared with the Kruskal-Wallis test (construct validity). Post-study questionnaire was used to assess the realism of simulation (face validity) and usefulness for training (content validity). Concurrent validity evaluated correlation between virtual reality renorrhaphy task and a live porcine robotic partial nephrectomy performance (Spearman's analysis). Experts rated the augmented reality content as realistic (median 8/10) and helpful for resident/fellow training (8.0-8.2/10). Experts rated the platform highly for teaching anatomy (9/10) and operative steps (8.5/10) but moderately for technical skills (7.5/10). Experts and intermediates outperformed novices (construct validity) in efficiency (p=0.0002) and accuracy (p=0.002). For virtual reality renorrhaphy, experts outperformed intermediates on GEARS metrics (p=0.002). Virtual reality renorrhaphy and in vivo porcine robotic partial nephrectomy performance correlated significantly (r=0.8, p <0.0001) (concurrent validity). This augmented reality simulation platform displayed face, content and construct validity. Performance in the procedure specific virtual reality task correlated highly with a porcine model (concurrent validity). Future efforts will integrate procedure specific virtual reality tasks and their global assessment. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Vision-based augmented reality system

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Wang, Yongtian; Shi, Qi; Yan, Dayuan

    2003-04-01

    The most promising aspect of augmented reality lies in its ability to integrate the virtual world of the computer with the real world of the user. Namely, users can interact with the real world subjects and objects directly. This paper presents an experimental augmented reality system with a video see-through head-mounted device to display visual objects, as if they were lying on the table together with real objects. In order to overlay virtual objects on the real world at the right position and orientation, the accurate calibration and registration are most important. A vision-based method is used to estimate CCD external parameters by tracking 4 known points with different colors. It achieves sufficient accuracy for non-critical applications such as gaming, annotation and so on.

  17. Demonstration of three gorges archaeological relics based on 3D-visualization technology

    NASA Astrophysics Data System (ADS)

    Xu, Wenli

    2015-12-01

    This paper mainly focuses on the digital demonstration of three gorges archeological relics to exhibit the achievements of the protective measures. A novel and effective method based on 3D-visualization technology, which includes large-scaled landscape reconstruction, virtual studio, and virtual panoramic roaming, etc, is proposed to create a digitized interactive demonstration system. The method contains three stages: pre-processing, 3D modeling and integration. Firstly, abundant archaeological information is classified according to its history and geographical information. Secondly, build up a 3D-model library with the technology of digital images processing and 3D modeling. Thirdly, use virtual reality technology to display the archaeological scenes and cultural relics vividly and realistically. The present work promotes the application of virtual reality to digital projects and enriches the content of digital archaeology.

  18. Evaluating the Effect on User Perception and Performance of Static and Dynamic Contents Deployed in Augmented Reality Based Learning Application

    ERIC Educational Resources Information Center

    Montoya, Mauricio Hincapié; Díaz, Christian Andrés; Moreno, Gustavo Adolfo

    2017-01-01

    Nowadays, the use of technology to improve teaching and learning experiences in the classroom has been promoted. One of these technologies is augmented reality, which allows overlaying layers of virtual information on real scene with the aim of increasing the perception that user has of reality. Augmented reality has proved to offer several…

  19. Can a virtual supermarket bring realism into the lab? Comparing shopping behavior using virtual and pictorial store representations to behavior in a physical store.

    PubMed

    van Herpen, Erica; van den Broek, Eva; van Trijp, Hans C M; Yu, Tian

    2016-12-01

    Immersive virtual reality techniques present new opportunities for research into consumer behavior. The current study examines whether the increased realism of a virtual store compared to pictorial (2D) stimuli elicits consumer behavior that is more in line with behavior in a physical store. We examine the number, variety, and type of products selected, amount of money spent, and responses to price promotions and shelf display, in three product categories (fruit & vegetables, milk, and biscuits). We find that virtual reality elicits behavior that is more similar to behavior in the physical store compared to the picture condition for the number of products selected (Milk: M store  = 1.19, M virtual  = 1.53, M pictures  = 2.58) and amount of money spent (Milk: M store  = 1.27, M virtual  = 1.53, M pictures  = 2.60 Euro), and for the selection of products from different areas of the shelf, both vertically (purchases from top shelves, milk and biscuits: P store  = 21.6%, P virtual  = 33.4%, P pictures  = 50.0%) and horizontally (purchase from left shelf, biscuits: P store  = 35.5%, P virtual  = 53.3%, P pictures  = 66.7%). This indicates that virtual reality can improve realism in responses to shelf allocation. Virtual reality was not able to diminish other differences between lab and physical store: participants bought more products and spent more money (for biscuits and fruit & vegetables), bought more national brands, and responded more strongly to price promotions in both virtual reality and pictorial representations than in the physical store. Implications for the use of virtual reality in studies of consumer food choice behavior as well as for future improvement of virtual reality techniques are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. [Virtual + 1] * Reality

    NASA Astrophysics Data System (ADS)

    Beckhaus, Steffi

    Virtual Reality aims at creating an artificial environment that can be perceived as a substitute to a real setting. Much effort in research and development goes into the creation of virtual environments that in their majority are perceivable only by eyes and hands. The multisensory nature of our perception, however, allows and, arguably, also expects more than that. As long as we are not able to simulate and deliver a fully sensory believable virtual environment to a user, we could make use of the fully sensory, multi-modal nature of real objects to fill in for this deficiency. The idea is to purposefully integrate real artifacts into the application and interaction, instead of dismissing anything real as hindering the virtual experience. The term virtual reality - denoting the goal, not the technology - shifts from a core virtual reality to an “enriched” reality, technologically encompassing both the computer generated and the real, physical artifacts. Together, either simultaneously or in a hybrid way, real and virtual jointly provide stimuli that are perceived by users through their senses and are later formed into an experience by the user's mind.

  1. Using Virtual Worlds to Identify Multidimensional Student Engagement in High School Foreign Language Learning Classrooms

    ERIC Educational Resources Information Center

    Jacob, Laura Beth

    2012-01-01

    Virtual world environments have evolved from object-oriented, text-based online games to complex three-dimensional immersive social spaces where the lines between reality and computer-generated begin to blur. Educators use virtual worlds to create engaging three-dimensional learning spaces for students, but the impact of virtual worlds in…

  2. Cybersickness and Anxiety During Simulated Motion: Implications for VRET.

    PubMed

    Bruck, Susan; Watters, Paul

    2009-01-01

    Some clinicians have suggested using virtual reality environments to deliver psychological interventions to treat anxiety disorders. However, given a significant body of work on cybersickness symptoms which may arise in virtual environments - especially those involving simulated motion - we tested (a) whether being exposed to a virtual reality environment alone causes anxiety to increase, and (b) whether exposure to simulated motion in a virtual reality environment increases anxiety. Using a repeated measures design, we used Kim's Anxiety Scale questionnaire to compare baseline anxiety, anxiety after virtual environment exposure, and anxiety after simulated motion. While there was no significant effect on anxiety for being in a virtual environment with no simulated motion, the introduction of simulated motion caused anxiety to significantly increase, but not to a severe or extreme level. The implications of this work for virtual reality exposure therapy (VRET) are discussed.

  3. Virtual Reality as an Educational and Training Tool for Medicine.

    PubMed

    Izard, Santiago González; Juanes, Juan A; García Peñalvo, Francisco J; Estella, Jesús Mª Gonçalvez; Ledesma, Mª José Sánchez; Ruisoto, Pablo

    2018-02-01

    Until very recently, we considered Virtual Reality as something that was very close, but it was still science fiction. However, today Virtual Reality is being integrated into many different areas of our lives, from videogames to different industrial use cases and, of course, it is starting to be used in medicine. There are two great general classifications for Virtual Reality. Firstly, we find a Virtual Reality in which we visualize a world completely created by computer, three-dimensional and where we can appreciate that the world we are visualizing is not real, at least for the moment as rendered images are improving very fast. Secondly, there is a Virtual Reality that basically consists of a reflection of our reality. This type of Virtual Reality is created using spherical or 360 images and videos, so we lose three-dimensional visualization capacity (until the 3D cameras are more developed), but on the other hand we gain in terms of realism in the images. We could also mention a third classification that merges the previous two, where virtual elements created by computer coexist with 360 images and videos. In this article we will show two systems that we have developed where each of them can be framed within one of the previous classifications, identifying the technologies used for their implementation as well as the advantages of each one. We will also analize how these systems can improve the current methodologies used for medical training. The implications of these developments as tools for teaching, learning and training are discussed.

  4. Architecture and Key Techniques of Augmented Reality Maintenance Guiding System for Civil Aircrafts

    NASA Astrophysics Data System (ADS)

    hong, Zhou; Wenhua, Lu

    2017-01-01

    Augmented reality technology is introduced into the maintenance related field for strengthened information in real-world scenarios through integration of virtual assistant maintenance information with real-world scenarios. This can lower the difficulty of maintenance, reduce maintenance errors, and improve the maintenance efficiency and quality of civil aviation crews. Architecture of augmented reality virtual maintenance guiding system is proposed on the basis of introducing the definition of augmented reality and analyzing the characteristics of augmented reality virtual maintenance. Key techniques involved, such as standardization and organization of maintenance data, 3D registration, modeling of maintenance guidance information and virtual maintenance man-machine interaction, are elaborated emphatically, and solutions are given.

  5. Mastery-Based Virtual Reality Robotic Simulation Curriculum: The First Step Toward Operative Robotic Proficiency.

    PubMed

    Hogg, Melissa E; Tam, Vernissia; Zenati, Mazen; Novak, Stephanie; Miller, Jennifer; Zureikat, Amer H; Zeh, Herbert J

    Hepatobiliary surgery is a highly complex, low-volume specialty with long learning curves necessary to achieve optimal outcomes. This creates significant challenges in both training and measuring surgical proficiency. We hypothesize that a virtual reality curriculum with mastery-based simulation is a valid tool to train fellows toward operative proficiency. This study evaluates the content and predictive validity of robotic simulation curriculum as a first step toward developing a comprehensive, proficiency-based pathway. A mastery-based simulation curriculum was performed in a virtual reality environment. A pretest/posttest experimental design used both virtual reality and inanimate environments to evaluate improvement. Participants self-reported previous robotic experience and assessed the curriculum by rating modules based on difficulty and utility. This study was conducted at the University of Pittsburgh Medical Center (Pittsburgh, PA), a tertiary care academic teaching hospital. A total of 17 surgical oncology fellows enrolled in the curriculum, 16 (94%) completed. Of 16 fellows who completed the curriculum, 4 fellows (25%) achieved mastery on all 24 modules; on average, fellows mastered 86% of the modules. Following curriculum completion, individual test scores improved (p < 0.0001). An average of 2.4 attempts was necessary to master each module (range: 1-17). Median time spent completing the curriculum was 4.2 hours (range: 1.1-6.6). Total 8 (50%) fellows continued practicing modules beyond mastery. Survey results show that "needle driving" and "endowrist 2" modules were perceived as most difficult although "needle driving" modules were most useful. Overall, 15 (94%) fellows perceived improvement in robotic skills after completing the curriculum. In a cohort of board-certified general surgeons who are novices in robotic surgery, a mastery-based simulation curriculum demonstrated internal validity with overall score improvement. Time to complete the curriculum was manageable. Published by Elsevier Inc.

  6. [Treatment of attention deficit hyperactivity disorder in adults using virtual reality through a mindfulness programme].

    PubMed

    Serra-Pla, J F; Pozuelo, M; Richarte, V; Corrales, M; Ibanez, P; Bellina, M; Vidal, R; Calvo, E; Casas, M; Ramos-Quiroga, J A

    2017-02-24

    Attention deficit hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder, which presents a high comorbidity with anxiety and affective signs and symptoms. It has repercussions on the functioning of those suffering from it, who also have low therapy compliance and generate a significant cost both at a personal level and for society. Mindfulness is a psychological treatment that has proved to be effective for ADHD. Virtual reality is widely used as treatment in cases of phobias and other pathologies, with positive results. To develop the first treatment for ADHD in adults based on virtual reality and mindfulness, while also resulting in increased treatment adherence and reduced costs. We conducted a pilot study with 25 patients treated by means of virtual reality, in four 30-minute sessions, and 25 treated with psychostimulants. Measures will be taken pre-treatment, post-treatment and at 3 and 12 months post-treatment, to evaluate both ADHD and also depression, anxiety, functionality and quality of life. Data will be later analysed with the SPSS v. 20 statistical program. An ANOVA of independent groups will be performed to see the differences between treatments and also a test-retest to detect whether the changes will be maintained. It is necessary to use treatments that are effective, reduce costs and increase therapy adherence. Treatment with virtual reality is an interesting alternative to the classical treatments, and is shorter and more attractive for patients.

  7. Virtual Reality as Treatment for Fear of Flying: A Review of Recent Research

    ERIC Educational Resources Information Center

    Price, Matthew; Anderson, Page; Rothbaum, Barbara O.

    2008-01-01

    Virtual reality exposure has recently emerged as an important tool for exposure therapy in the treatment of fear of flying. There have been numerous empirical studies that have evaluated the effectiveness of virtual reality exposure as compared to other treatments including in vivo exposure, progressive muscle relaxation, cognitive therapy,…

  8. Integrating Music into Math in a Virtual Reality Game: Learning Fractions

    ERIC Educational Resources Information Center

    Lim, Taehyeong; Lee, Sungwoong; Ke, Fengfeng

    2016-01-01

    The purpose of this study was to investigate future teachers' experiences and perceptions of using a virtual reality game for elementary math education. The virtual reality game was designed and developed to integrate a musical activity (beat-making) into the math learning of fractions. Five math education major students participated in this…

  9. PTSD in Limb Trauma and Recovery

    DTIC Science & Technology

    2011-10-01

    Virtual reality and Motion Analysis to Characterize Disabilities in Lower...Program 4: “ Virtual reality and Motion Analysis to Characterize Disabilities in Lower Limb Injury” (Christopher Rhea, Ph.D., lead investigator). This...ANSI Std. Z39.18 ANNUAL REPORT 10/16/2011 VIRTUAL REALITY AND MOTION ANALYSIS TO CHARACTERIZE DISABILITIES IN LOWER LIMB INJURY PI: SUSAN

  10. Treatment of Complicated Grief Using Virtual Reality: A Case Report

    ERIC Educational Resources Information Center

    Botella, C.; Osma, J.; Palacios, A. Garcia; Guillen, V.; Banos, R.

    2008-01-01

    This is the first work exploring the application of new technologies, concretely virtual reality, to facilitate emotional processing in the treatment of Complicated Grief. Our research team has designed a virtual reality environment (EMMA's World) to foster the expression and processing of emotions. In this study the authors present a description…

  11. Exploring "Magic Cottage": A Virtual Reality Environment for Stimulating Children's Imaginative Writing

    ERIC Educational Resources Information Center

    Patera, Marianne; Draper, Steve; Naef, Martin

    2008-01-01

    This paper presents an exploratory study that created a virtual reality environment (VRE) to stimulate motivation and creativity in imaginative writing at primary school level. The main aim of the study was to investigate if an interactive, semi-immersive virtual reality world could increase motivation and stimulate pupils' imagination in the…

  12. Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials

    PubMed Central

    Dascal, Julieta; Reid, Mark; IsHak, Waguih William; Spiegel, Brennan; Recacho, Jennifer; Rosen, Bradley

    2017-01-01

    Objective: We evaluated the evidence supporting the use of virtual reality among patients in acute inpatient medical settings. Method: We conducted a systematic review of randomized controlled trials conducted that examined virtual reality applications in inpatient medical settings between 2005 and 2015. We used PsycINFO, PubMed, and Medline databases to identify studies using the keywords virtual reality, VR therapy, treatment, and inpatient. Results: We identified 2,024 citations, among which 11 met criteria for inclusion. Studies addressed three general areas: pain management, eating disorders, and cognitive and motor rehabilitation. Studies were small and heterogeneous and utilized different designs and measures. Virtual reality was generally well tolerated by patients, and a majority of studies demonstrated clinical efficacy. Studies varied in quality, as measured by an evaluation metric developed by Reisch, Tyson, and Mize (average quality score=0.87; range=0.78–0.96). Conclusion: Virtual reality is a promising intervention with several potential applications in the inpatient medical setting. Studies to date demonstrate some efficacy, but there is a need for larger, well-controlled studies to show clinical and cost-effectiveness. PMID:28386517

  13. The Elderly Perceived Meanings and Values of Virtual Reality Leisure Activities: A Means-End Chain Approach.

    PubMed

    Lin, Cheng-Shih; Jeng, Mei-Yuan; Yeh, Tsu-Ming

    2018-04-03

    This study uses means-end chain (MEC) techniques to examine the awareness, decision-making procedure, and personal values of the elderly with regard to virtual reality leisure activities. The results of the study show that elderly respondents value virtual reality leisure activities that are fun, safe, and easy. In terms of outcome benefits, elderly respondents value feeling physically and mentally healthy, firsthand experience, and satisfied curiosity. In value terms, elderly respondents hope that their chosen virtual reality leisure activities improve not only their relationships with others, but also their enjoyment, quality of life, and sense of belonging. The results show that, while consumers with different awarenesses of virtual reality leisure activities have different decision-making processes, they share creating "good memories" as the terminal value with the most significant effect. This presents a potential opportunity to promote virtual reality leisure activities. Relevant bodies or enterprises can seek to create good memories in consumers by developing activities that are safe and fun, promote good health, and provide good service, thereby attracting the interest of elderly consumers.

  14. Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials.

    PubMed

    Dascal, Julieta; Reid, Mark; IsHak, Waguih William; Spiegel, Brennan; Recacho, Jennifer; Rosen, Bradley; Danovitch, Itai

    2017-01-01

    Objective: We evaluated the evidence supporting the use of virtual reality among patients in acute inpatient medical settings. Method: We conducted a systematic review of randomized controlled trials conducted that examined virtual reality applications in inpatient medical settings between 2005 and 2015. We used PsycINFO, PubMed, and Medline databases to identify studies using the keywords virtual reality , VR therapy , treatment , and inpatient. Results: We identified 2,024 citations, among which 11 met criteria for inclusion. Studies addressed three general areas: pain management, eating disorders, and cognitive and motor rehabilitation. Studies were small and heterogeneous and utilized different designs and measures. Virtual reality was generally well tolerated by patients, and a majority of studies demonstrated clinical efficacy. Studies varied in quality, as measured by an evaluation metric developed by Reisch, Tyson, and Mize (average quality score=0.87; range=0.78-0.96). Conclusion: Virtual reality is a promising intervention with several potential applications in the inpatient medical setting. Studies to date demonstrate some efficacy, but there is a need for larger, well-controlled studies to show clinical and cost-effectiveness.

  15. The Elderly Perceived Meanings and Values of Virtual Reality Leisure Activities: A Means-End Chain Approach

    PubMed Central

    Lin, Cheng-Shih; Jeng, Mei-Yuan

    2018-01-01

    This study uses means-end chain (MEC) techniques to examine the awareness, decision-making procedure, and personal values of the elderly with regard to virtual reality leisure activities. The results of the study show that elderly respondents value virtual reality leisure activities that are fun, safe, and easy. In terms of outcome benefits, elderly respondents value feeling physically and mentally healthy, firsthand experience, and satisfied curiosity. In value terms, elderly respondents hope that their chosen virtual reality leisure activities improve not only their relationships with others, but also their enjoyment, quality of life, and sense of belonging. The results show that, while consumers with different awarenesses of virtual reality leisure activities have different decision-making processes, they share creating “good memories” as the terminal value with the most significant effect. This presents a potential opportunity to promote virtual reality leisure activities. Relevant bodies or enterprises can seek to create good memories in consumers by developing activities that are safe and fun, promote good health, and provide good service, thereby attracting the interest of elderly consumers. PMID:29614012

  16. Effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy.

    PubMed

    Shin, Ji-Won; Song, Gui-Bin; Hwangbo, Gak

    2015-07-01

    [Purpose] The purpose of the study was to evaluate the effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy. [Subjects] Sixteen children (9 males, 7 females) with spastic diplegic cerebral palsy were recruited and randomly assigned to the conventional neurological physical therapy group (CG) and virtual reality training group (VRG). [Methods] Eight children in the control group performed 45 minutes of therapeutic exercise twice a week for eight weeks. In the experimental group, the other eight children performed 30 minutes of therapeutic exercise and 15 minutes of a training program using virtual reality twice a week during the experimental period. [Results] After eight weeks of the training program, there were significant differences in eye-hand coordination and visual motor speed in the comparison of the virtual reality training group with the conventional neurological physical therapy group. [Conclusion] We conclude that a well-designed training program using virtual reality can improve eye-hand coordination in children with cerebral palsy.

  17. Learning to Drive a Wheelchair in Virtual Reality

    ERIC Educational Resources Information Center

    Inman, Dean P.; Loge, Ken; Cram, Aaron; Peterson, Missy

    2011-01-01

    This research project studied the effect that a technology-based training program, WheelchairNet, could contribute to the education of children with physical disabilities by providing a chance to practice driving virtual motorized wheelchairs safely within a computer-generated world. Programmers created three virtual worlds for training. Scenarios…

  18. Outcome expectancy as a predictor of treatment response in cognitive behavioral therapy for public speaking fears within social anxiety disorder.

    PubMed

    Price, Matthew; Anderson, Page L

    2012-06-01

    Outcome expectancy, the extent that clients anticipate benefiting from therapy, is theorized to be an important predictor of treatment response for cognitive-behavioral therapy. However, there is a relatively small body of empirical research on outcome expectancy and the treatment of social anxiety disorder. This literature, which has examined the association mostly in group-based interventions, has yielded mixed findings. The current study sought to further evaluate the effect of outcome expectancy as a predictor of treatment response for public-speaking fears across both individual virtual reality and group-based cognitive-behavioral therapies. The findings supported outcome expectancy as a predictor of the rate of change in public-speaking anxiety during both individual virtual reality exposure therapy and group cognitive-behavioral therapy. Furthermore, there was no evidence to suggest that the impact of outcome expectancy differed across virtual reality or group treatments. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  19. Surviving sepsis--a 3D integrative educational simulator.

    PubMed

    Ježek, Filip; Tribula, Martin; Kulhánek, Tomáš; Mateják, Marek; Privitzer, Pavol; Šilar, Jan; Kofránek, Jiří; Lhotská, Lenka

    2015-08-01

    Computer technology offers greater educational possibilities, notably simulation and virtual reality. This paper presents a technology which serves to integrate multiple modalities, namely 3D virtual reality, node-based simulator, Physiomodel explorer and explanatory physiological simulators employing Modelica language and Unity3D platform. This emerging tool chain should allow the authors to concentrate more on educational content instead of application development. The technology is demonstrated through Surviving sepsis educational scenario, targeted on Microsoft Windows Store platform.

  20. A commercially viable virtual reality knee arthroscopy training system.

    PubMed

    McCarthy, A D; Hollands, R J

    1998-01-01

    Arthroscopy is a minimally invasive form of surgery used to inspect joints. It is complex to learn yet current training methods appear inadequate, thus negating the potential benefits to the patient. This paper describes the development and initial assessment of a cost-effective virtual reality based system for training surgeons in arthroscopy of the knee. The system runs on a P.C. Initial assessments by surgeons have been positive and current developments in deformable models are described.

  1. Fostering Learning Through Interprofessional Virtual Reality Simulation Development.

    PubMed

    Nicely, Stephanie; Farra, Sharon

    2015-01-01

    This article presents a unique strategy for improving didactic learning and clinical skill while simultaneously fostering interprofessional collaboration and communication. Senior-level nursing students collaborated with students enrolled in the Department of Interactive Media Studies to design a virtual reality simulation based upon disaster management and triage techniques. Collaborative creation of the simulation proved to be a strategy for enhancing students' knowledge of and skill in disaster management and triage while impacting attitudes about interprofessional communication and teamwork.

  2. Augmented reality and photogrammetry: A synergy to visualize physical and virtual city environments

    NASA Astrophysics Data System (ADS)

    Portalés, Cristina; Lerma, José Luis; Navarro, Santiago

    2010-01-01

    Close-range photogrammetry is based on the acquisition of imagery to make accurate measurements and, eventually, three-dimensional (3D) photo-realistic models. These models are a photogrammetric product per se. They are usually integrated into virtual reality scenarios where additional data such as sound, text or video can be introduced, leading to multimedia virtual environments. These environments allow users both to navigate and interact on different platforms such as desktop PCs, laptops and small hand-held devices (mobile phones or PDAs). In very recent years, a new technology derived from virtual reality has emerged: Augmented Reality (AR), which is based on mixing real and virtual environments to boost human interactions and real-life navigations. The synergy of AR and photogrammetry opens up new possibilities in the field of 3D data visualization, navigation and interaction far beyond the traditional static navigation and interaction in front of a computer screen. In this paper we introduce a low-cost outdoor mobile AR application to integrate buildings of different urban spaces. High-accuracy 3D photo-models derived from close-range photogrammetry are integrated in real (physical) urban worlds. The augmented environment that is presented herein requires for visualization a see-through video head mounted display (HMD), whereas user's movement navigation is achieved in the real world with the help of an inertial navigation sensor. After introducing the basics of AR technology, the paper will deal with real-time orientation and tracking in combined physical and virtual city environments, merging close-range photogrammetry and AR. There are, however, some software and complex issues, which are discussed in the paper.

  3. Virtual reality as a method for evaluation and therapy after traumatic hand surgery.

    PubMed

    Nica, Adriana Sarah; Brailescu, Consuela Monica; Scarlet, Rodica Gabriela

    2013-01-01

    In the last decade, Virtual Reality has encountered a continuous development concerning medical purposes and there are a lot of devices based on the classic "cyberglove" concept that are used as new therapeutic method for upper limb pathology, especially neurologic problems [1;2;3]. One of the VR devices is Pablo (Tyromotion), with very sensitive sensors that can measure the hand grip strenght and the pinch force, also the ROM (range of motion) for all the joints of the upper limb (shoulder, elbow, wrist) and offering the possibility of interactive games based on Virtual Reality concept with application in occupational therapy programs. We used Pablo in our study on patients with hand surgery as an objective tool for assessment and as additional therapeutic method to the classic Rehabilitation program [4;5]. The results of the study proved that Pablo represents a modern option for evaluation of hand deficits and dysfunctions, with objective measurement replacement of classic goniometry and dynamometry, with computerized data base of patients with monitoring of parameters during the recovery program and with better muscular and neuro-cognitive feedback during the interactive therapeutic modules.

  4. Computer-Based Technologies in Dentistry: Types and Applications

    PubMed Central

    Albuha Al-Mussawi, Raja’a M.; Farid, Farzaneh

    2016-01-01

    During dental education, dental students learn how to examine patients, make diagnosis, plan treatment and perform dental procedures perfectly and efficiently. However, progresses in computer-based technologies including virtual reality (VR) simulators, augmented reality (AR) and computer aided design/computer aided manufacturing (CAD/CAM) systems have resulted in new modalities for instruction and practice of dentistry. Virtual reality dental simulators enable repeated, objective and assessable practice in various controlled situations. Superimposition of three-dimensional (3D) virtual images on actual images in AR allows surgeons to simultaneously visualize the surgical site and superimpose informative 3D images of invisible regions on the surgical site to serve as a guide. The use of CAD/CAM systems for designing and manufacturing of dental appliances and prostheses has been well established. This article reviews computer-based technologies, their application in dentistry and their potentials and limitations in promoting dental education, training and practice. Practitioners will be able to choose from a broader spectrum of options in their field of practice by becoming familiar with new modalities of training and practice. PMID:28392819

  5. Computer-Based Technologies in Dentistry: Types and Applications.

    PubMed

    Albuha Al-Mussawi, Raja'a M; Farid, Farzaneh

    2016-06-01

    During dental education, dental students learn how to examine patients, make diagnosis, plan treatment and perform dental procedures perfectly and efficiently. However, progresses in computer-based technologies including virtual reality (VR) simulators, augmented reality (AR) and computer aided design/computer aided manufacturing (CAD/CAM) systems have resulted in new modalities for instruction and practice of dentistry. Virtual reality dental simulators enable repeated, objective and assessable practice in various controlled situations. Superimposition of three-dimensional (3D) virtual images on actual images in AR allows surgeons to simultaneously visualize the surgical site and superimpose informative 3D images of invisible regions on the surgical site to serve as a guide. The use of CAD/CAM systems for designing and manufacturing of dental appliances and prostheses has been well established. This article reviews computer-based technologies, their application in dentistry and their potentials and limitations in promoting dental education, training and practice. Practitioners will be able to choose from a broader spectrum of options in their field of practice by becoming familiar with new modalities of training and practice.

  6. Importance of Virtual Reality to Virtual Reality Exposure Therapy, Study Design of a Randomized Trial.

    PubMed

    McLay, Robert N; Baird, Alicia; Murphy, Jennifer; Deal, William; Tran, Lily; Anson, Heather; Klam, Warren; Johnston, Scott

    2015-01-01

    Post Traumatic Stress Disorder (PTSD) can be a debilitating problem in service members who have served in Iraq or Afghanistan. Virtual Reality Exposure Therapy (VRET) is one of the few interventions demonstrated in randomized controlled trials to be effective for PTSD in this population. There are theoretical reasons to expect that Virtual Reality (VR) adds to the effectiveness of exposure therapy, but there is also added expense and difficulty in using VR. Described is a trial comparing outcomes from VRET and a control exposure therapy (CET) protocol in service members with PTSD.

  7. Exercise/recreation facility for a Lunar or Mars analog

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Discussed here is a project to design an exercise/recreation station for an earth based simulator of a lunar or Martian habitat. Specifically, researchers designed a stationary bicycle that will help people keep fit and prevent muscular atrophy while stationed in space. To help with motivation and provide an element of recreation during the workout, the bicycle is enhanced by a virtual reality system. The system will simulate various riding situations and the choice of mountain bike or road bike. The bike employs a magnetic brake that provides continuously changing tension to simulate actual riding conditions. This braking system will be interfaced directly with the virtual reality system. Also integrated into the virtual reality system will be a monitoring system that regulates heart rate, work rate, and other functions during the course of the session.

  8. Virtual reality training to enhance behavior and cognitive function among children with attention-deficit/hyperactivity disorder: brief report.

    PubMed

    Shema-Shiratzky, Shirley; Brozgol, Marina; Cornejo-Thumm, Pablo; Geva-Dayan, Karen; Rotstein, Michael; Leitner, Yael; Hausdorff, Jeffrey M; Mirelman, Anat

    2018-05-17

    To examine the feasibility and efficacy of a combined motor-cognitive training using virtual reality to enhance behavior, cognitive function and dual-tasking in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Fourteen non-medicated school-aged children with ADHD, received 18 training sessions during 6 weeks. Training included walking on a treadmill while negotiating virtual obstacles. Behavioral symptoms, cognition and gait were tested before and after the training and at 6-weeks follow-up. Based on parental report, there was a significant improvement in children's social problems and psychosomatic behavior after the training. Executive function and memory were improved post-training while attention was unchanged. Gait regularity significantly increased during dual-task walking. Long-term training effects were maintained in memory and executive function. Treadmill-training augmented with virtual-reality is feasible and may be an effective treatment to enhance behavior, cognitive function and dual-tasking in children with ADHD.

  9. VirSSPA- a virtual reality tool for surgical planning workflow.

    PubMed

    Suárez, C; Acha, B; Serrano, C; Parra, C; Gómez, T

    2009-03-01

    A virtual reality tool, called VirSSPA, was developed to optimize the planning of surgical processes. Segmentation algorithms for Computed Tomography (CT) images: a region growing procedure was used for soft tissues and a thresholding algorithm was implemented to segment bones. The algorithms operate semiautomati- cally since they only need seed selection with the mouse on each tissue segmented by the user. The novelty of the paper is the adaptation of an enhancement method based on histogram thresholding applied to CT images for surgical planning, which simplifies subsequent segmentation. A substantial improvement of the virtual reality tool VirSSPA was obtained with these algorithms. VirSSPA was used to optimize surgical planning, to decrease the time spent on surgical planning and to improve operative results. The success rate increases due to surgeons being able to see the exact extent of the patient's ailment. This tool can decrease operating room time, thus resulting in reduced costs. Virtual simulation was effective for optimizing surgical planning, which could, consequently, result in improved outcomes with reduced costs.

  10. Psychometric properties of virtual reality vignette performance measures: a novel approach for assessing adolescents' social competency skills.

    PubMed

    Paschall, Mallie J; Fishbein, Diana H; Hubal, Robert C; Eldreth, Diana

    2005-02-01

    This study examined the psychometric properties of performance measures for three novel, interactive virtual reality vignette exercises developed to assess social competency skills of at-risk adolescents. Performance data were collected from 117 African-American male 15-17 year olds. Data for 18 performance measures were obtained, based on adolescents' interaction with a provocative virtual teenage character. Twelve of the 18 performance measures loaded on two factors corresponding to emotional control and interpersonal communication skills, providing support for their factorial validity. The internal reliability coefficients for the two multi-item measures were 0.88 and 0.91, respectively. Additional analyses with established measures of three psychosocial factors (beliefs supporting aggression, aggressive conflict-resolution style and hostility) and behavioral criteria (e.g., self-reported behavioral misconduct and drug use) provided limited support for the construct and criterion-related validity of the performance measures. Study findings suggest that the virtual reality vignette exercises may represent a promising approach for assessing adolescents' social competency skills.

  11. The mixed reality of things: emerging challenges for human-information interaction

    NASA Astrophysics Data System (ADS)

    Spicer, Ryan P.; Russell, Stephen M.; Rosenberg, Evan Suma

    2017-05-01

    Virtual and mixed reality technology has advanced tremendously over the past several years. This nascent medium has the potential to transform how people communicate over distance, train for unfamiliar tasks, operate in challenging environments, and how they visualize, interact, and make decisions based on complex data. At the same time, the marketplace has experienced a proliferation of network-connected devices and generalized sensors that are becoming increasingly accessible and ubiquitous. As the "Internet of Things" expands to encompass a predicted 50 billion connected devices by 2020, the volume and complexity of information generated in pervasive and virtualized environments will continue to grow exponentially. The convergence of these trends demands a theoretically grounded research agenda that can address emerging challenges for human-information interaction (HII). Virtual and mixed reality environments can provide controlled settings where HII phenomena can be observed and measured, new theories developed, and novel algorithms and interaction techniques evaluated. In this paper, we describe the intersection of pervasive computing with virtual and mixed reality, identify current research gaps and opportunities to advance the fundamental understanding of HII, and discuss implications for the design and development of cyber-human systems for both military and civilian use.

  12. "Juxtapose": An Exploration of Mobile Augmented Reality Collaborations and Professional Practices in a Creative Learning Environment

    ERIC Educational Resources Information Center

    Menorath, Darren; Antonczak, Laurent

    2017-01-01

    This paper examines the state of the art of mobile Augmented Reality (AR) and mobile Virtual Reality (VR) in relation to collaboration and professional practices in a creative digital environment and higher education. To support their discussion, the authors use a recent design-based research project named "Juxtapose," which explores…

  13. Augmenting Your Own Reality: Student Authoring of Science-Based Augmented Reality Games

    ERIC Educational Resources Information Center

    Klopfer, Eric; Sheldon, Josh

    2010-01-01

    Augmented Reality (AR) simulations superimpose a virtual overlay of data and interactions onto a real-world context. The simulation engine at the heart of this technology is built to afford elements of game play that support explorations and learning in students' natural context--their own community and surroundings. In one of the more recent…

  14. Virtual reality for stroke rehabilitation.

    PubMed

    Laver, Kate E; George, Stacey; Thomas, Susie; Deutsch, Judith E; Crotty, Maria

    2011-09-07

    Virtual reality and interactive video gaming have emerged as new treatment approaches in stroke rehabilitation. In particular, commercial gaming consoles are being rapidly adopted in clinical settings; however, there is currently little information about their effectiveness. To evaluate the effects of virtual reality and interactive video gaming on upper limb, lower limb and global motor function after stroke. We searched the Cochrane Stroke Group Trials Register (March 2010), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2010, Issue 1), MEDLINE (1950 to March 2010), EMBASE (1980 to March 2010) and seven additional databases. We also searched trials registries, conference proceedings, reference lists and contacted key researchers in the area and virtual reality equipment manufacturers. Randomised and quasi-randomised trials of virtual reality ('an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion') in adults after stroke. The primary outcomes of interest were: upper limb function and activity, gait and balance function and activity and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data and assessed risk of bias. A third review author moderated disagreements when required. The authors contacted all investigators to obtain missing information. We included 19 trials which involved 565 participants. Study sample sizes were generally small and interventions and outcome measures varied, limiting the ability to which studies could be compared. Intervention approaches in the included studies were predominantly designed to improve motor function rather than cognitive function or activity performance. The majority of participants were relatively young and more than one year post stroke. results were statistically significant for arm function (standardised mean difference (SMD) 0.53, 95% confidence intervals (CI) 0.25 to 0.81 based on seven studies with 205 participants). There were no statistically significant effects for grip strength or gait speed. We were unable to determine the effect on global motor function due to insufficient numbers of comparable studies. results were statistically significant for activities of daily living (ADL) outcome (SMD 0.81, 95% CI 0.39 to 1.22 based on three studies with 101 participants); however, we were unable to pool results for cognitive function, participation restriction and quality of life or imaging studies. There were few adverse events reported across studies and those reported were relatively mild. Studies that reported on eligibility rates showed that only 34% (standard deviation (SD) 26, range 17 to 80) of participants screened were recruited. We found limited evidence that the use of virtual reality and interactive video gaming may be beneficial in improving arm function and ADL function when compared with the same dose of conventional therapy. There was insufficient evidence to reach conclusions about the effect of virtual reality and interactive video gaming on grip strength or gait speed. It is unclear at present which characteristics of virtual reality are most important and it is unknown whether effects are sustained in the longer term. Furthermore, there are currently very few studies evaluating the use of commercial gaming consoles (such as the Nintendo Wii).

  15. Virtual reality as a tool for cross-cultural communication: an example from military team training

    NASA Astrophysics Data System (ADS)

    Downes-Martin, Stephen; Long, Mark; Alexander, Joanna R.

    1992-06-01

    A major problem with communication across cultures, whether professional or national, is that simple language translation if often insufficient to communicate the concepts. This is especially true when the communicators come from highly specialized fields of knowledge or from national cultures with long histories of divergence. This problem becomes critical when the goal of the communication is national negotiation dealing with such high risk items as arms negotiation or trade wars. Virtual Reality technology has considerable potential for facilitating communication across cultures, by immersing the communicators within multiple visual representations of the concepts, and providing control over those representations. Military distributed team training provides a model for virtual reality suitable for cross cultural communication such as negotiation. In both team training and negotiation, the participants must cooperate, agree on a set of goals, and achieve mastery over the concepts being negotiated. Team training technologies suitable for supporting cross cultural negotiation exist (branch wargaming, computer image generation and visualization, distributed simulation), and have developed along different lines than traditional virtual reality technology. Team training de-emphasizes the realism of physiological interfaces between the human and the virtual reality, and emphasizes the interaction of humans with each other and with intelligent simulated agents within the virtual reality. This approach to virtual reality is suggested as being more fruitful for future work.

  16. Validation of reaching in a virtual environment in typically developing children and children with mild unilateral cerebral palsy.

    PubMed

    Robert, Maxime T; Levin, Mindy F

    2018-04-01

    To compare three reaching movements made in two planes between a low-cost, game-based virtual reality and a matched physical environment in typically developing children and children with cerebral palsy (CP). To determine if differences in kinematics are related to sensory deficits. An observational study in which 27 children (typically developing, n=17, mean age 13y, [SD] 2y 2mo, range 9y 3mo-17y 2mo; CP, n=10, mean age 13y 8mo, [SD] 1y 8mo, range 11y 1mo-17y 1mo, Manual Ability Classification System levels I-II) performed 15 trials of three gestures in each of a virtual reality and a matched physical environment. Upper-limb and trunk kinematics were recorded using an electromagnetic system (G4, Polhemus, six markers, 120Hz). Compared to the physical environment, movements in virtual reality made by typically developing children were slower (p=0.002), and involved less trunk flexion (p=0.002) and rotation (p=0.026). Children with CP had more curved trajectories (p=0.005) and used less trunk flexion (p=0.003) and rotation (p=0.005). Elbow and shoulder kinematics differed from 2.8% to 155.4% between environments in both groups. Between groups, there were small, clinically insignificant differences with only the vertical gesture being longer in typically developing children. Children with CP who had greater tactile impairment used more trunk displacement. Clinicians and researchers need to be aware of differences in movement variables when setting goals or designing protocols for improving reaching in children with CP using low-cost, game-based virtual reality systems. Upper-limb kinematics differed in each group when reaching in physical versus virtual environments. There were small differences in movements made by children with mild unilateral cerebral palsy (CP) compared to typically developing children. Differences in reaching kinematics should be considered when goal setting using virtual reality interventions for children with mild unilateral CP. © 2018 Mac Keith Press.

  17. Educational MOO: Text-Based Virtual Reality for Learning in Community. ERIC Digest.

    ERIC Educational Resources Information Center

    Turbee, Lonnie

    MOO stands for "Multi-user domain, Object-Oriented." Early multi-user domains, or "MUDs," began as net-based dungeons-and-dragons type games, but MOOs have evolved from these origins to become some of cyberspace's most fascinating and engaging online communities. MOOs are social environments in a text-based virtual reality…

  18. Psychology Student Opinion of Virtual Reality as a Tool to Educate about Schizophrenia

    ERIC Educational Resources Information Center

    Tichon, Jennifer; Loh, Jennifer; King, Robert

    2004-01-01

    Virtual Reality (VR) techniques are increasingly being used in e-health education, training and in trial clinical programs in the treatment of certain types of mental illness. Undergraduate psychology student opinion of the use of Virtual Reality (VR) to teach them about schizophrenia at the University of Queensland, was determined with reference…

  19. The Effects of Virtual Reality Learning Environment on Student Cognitive and Linguistic Development

    ERIC Educational Resources Information Center

    Chen, Yu-Li

    2016-01-01

    Virtual reality (VR) has brought about numerous alternative learning opportunities in the last decade, and with modern products such as Oculus Rift and other wearable Virtual Reality technologies being introduced into society, VR will promisingly continue to provide yet unseen opportunities in the next few decades and therefore is a technology…

  20. Naval Science and Technology Future Force Magazine

    Science.gov Websites

    Issues Contact Us Links RSS Feed Facebook IT'S EASY TO SEE THE COST SAVINGS OF VIRTUAL REALITY TRAINING THE [...] Not Just a Fad: Virtual Reality Really Does Benefit the Military IT'S EASY TO SEE THE COST SAVINGS OF VIRTUAL REALITY TRAINING-BUT IS IT AS EFFECTIVE AS, OR EVEN BETTER THAN, OTHER TYPES OF

  1. Study of Co-Located and Distant Collaboration with Symbolic Support via a Haptics-Enhanced Virtual Reality Task

    ERIC Educational Resources Information Center

    Yeh, Shih-Ching; Hwang, Wu-Yuin; Wang, Jin-Liang; Zhan, Shi-Yi

    2013-01-01

    This study intends to investigate how multi-symbolic representations (text, digits, and colors) could effectively enhance the completion of co-located/distant collaborative work in a virtual reality context. Participants' perceptions and behaviors were also studied. A haptics-enhanced virtual reality task was developed to conduct…

  2. A Desktop Virtual Reality Earth Motion System in Astronomy Education

    ERIC Educational Resources Information Center

    Chen, Chih Hung; Yang, Jie Chi; Shen, Sarah; Jeng, Ming Chang

    2007-01-01

    In this study, a desktop virtual reality earth motion system (DVREMS) is designed and developed to be applied in the classroom. The system is implemented to assist elementary school students to clarify earth motion concepts using virtual reality principles. A study was conducted to observe the influences of the proposed system in learning.…

  3. The Use of Virtual Reality Tools in the Reading-Language Arts Classroom

    ERIC Educational Resources Information Center

    Pilgrim, J. Michael; Pilgrim, Jodi

    2016-01-01

    This article presents virtual reality as a tool for classroom literacy instruction. Building on the traditional use of images as a way to scaffold prior knowledge, we extend this idea to share ways virtual reality enables experiential learning through field trip-like experiences. The use of technology tools such Google Street view, Google…

  4. Pulse!!: a model for research and development of virtual-reality learning in military medical education and training.

    PubMed

    Dunne, James R; McDonald, Claudia L

    2010-07-01

    Pulse!! The Virtual Clinical Learning Lab at Texas A&M University-Corpus Christi, in collaboration with the United States Navy, has developed a model for research and technological development that they believe is an essential element in the future of military and civilian medical education. The Pulse!! project models a strategy for providing cross-disciplinary expertise and resources to educational, governmental, and business entities challenged with meeting looming health care crises. It includes a three-dimensional virtual learning platform that provides unlimited, repeatable, immersive clinical experiences without risk to patients, and is available anywhere there is a computer. Pulse!! utilizes expertise in the fields of medicine, medical education, computer science, software engineering, physics, computer animation, art, and architecture. Lab scientists collaborate with the commercial virtual-reality simulation industry to produce research-based learning platforms based on cutting-edge computer technology.

  5. Virtual-reality-based attention assessment of ADHD: ClinicaVR: Classroom-CPT versus a traditional continuous performance test.

    PubMed

    Neguț, Alexandra; Jurma, Anda Maria; David, Daniel

    2017-08-01

    Virtual-reality-based assessment may be a good alternative to classical or computerized neuropsychological assessment due to increased ecological validity. ClinicaVR: Classroom-CPT (VC) is a neuropsychological test embedded in virtual reality that is designed to assess attention deficits in children with attention deficit hyperactivity disorder (ADHD) or other conditions associated with impaired attention. The present study aimed to (1) investigate the diagnostic validity of VC in comparison to a traditional continuous performance test (CPT), (2) explore the task difficulty of VC, (3) address the effect of distractors on the performance of ADHD participants and typically-developing (TD) controls, and (4) compare the two measures on cognitive absorption. A total of 33 children diagnosed with ADHD and 42 TD children, aged between 7 and 13 years, participated in the study and were tested with a traditional CPT or with VC, along with several cognitive measures and an adapted version of the Cognitive Absorption Scale. A mixed multivariate analysis of covariance (MANCOVA) revealed that the children with ADHD performed worse on correct responses had more commissions and omissions errors than the TD children, as well as slower target reaction times . The results showed significant differences between performance in the virtual environment and the traditional computerized one, with longer reaction times in virtual reality. The data analysis highlighted the negative influence of auditory distractors on attention performance in the case of the children with ADHD, but not for the TD children. Finally, the two measures did not differ on the cognitive absorption perceived by the children.

  6. Agreement and reliability of pelvic floor measurements during contraction using three-dimensional pelvic floor ultrasound and virtual reality.

    PubMed

    Speksnijder, L; Rousian, M; Steegers, E A P; Van Der Spek, P J; Koning, A H J; Steensma, A B

    2012-07-01

    Virtual reality is a novel method of visualizing ultrasound data with the perception of depth and offers possibilities for measuring non-planar structures. The levator ani hiatus has both convex and concave aspects. The aim of this study was to compare levator ani hiatus volume measurements obtained with conventional three-dimensional (3D) ultrasound and with a virtual reality measurement technique and to establish their reliability and agreement. 100 symptomatic patients visiting a tertiary pelvic floor clinic with a normal intact levator ani muscle diagnosed on translabial ultrasound were selected. Datasets were analyzed using a rendered volume with a slice thickness of 1.5 cm at the level of minimal hiatal dimensions during contraction. The levator area (in cm(2)) was measured and multiplied by 1.5 to get the levator ani hiatus volume in conventional 3D ultrasound (in cm(3)). Levator ani hiatus volume measurements were then measured semi-automatically in virtual reality (cm(3) ) using a segmentation algorithm. An intra- and interobserver analysis of reliability and agreement was performed in 20 randomly chosen patients. The mean difference between levator ani hiatus volume measurements performed using conventional 3D ultrasound and virtual reality was 0.10 (95% CI, - 0.15 to 0.35) cm(3). The intraclass correlation coefficient (ICC) comparing conventional 3D ultrasound with virtual reality measurements was > 0.96. Intra- and interobserver ICCs for conventional 3D ultrasound measurements were > 0.94 and for virtual reality measurements were > 0.97, indicating good reliability for both. Levator ani hiatus volume measurements performed using virtual reality were reliable and the results were similar to those obtained with conventional 3D ultrasonography. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  7. Using Virtual Reality and Videogames for Traumatic Brain Injury Rehabilitation: A Structured Literature Review.

    PubMed

    Pietrzak, Eva; Pullman, Stephen; McGuire, Annabel

    2014-08-01

    This article reviews the available literature about the use of novel methods of rehabilitation using virtual reality interventions for people living with posttraumatic brain injuries. The MEDLINE, EMBASE, SCOPUS, and Cochrane Library databases were searched using the terms "virtual reality" OR "video games" AND "traumatic brain injury." Included studies investigated therapeutic use of virtual reality in adults with a brain trauma resulting from acquired closed head injury, reported outcomes that included measures of motor or cognitive functionality, and were published in a peer-reviewed journal written in English. Eighteen articles fulfilled inclusion criteria. Eight were case studies, five studies had a quasi-experimental design with a pre-post comparison, and five were pilot randomized control trials or comparative studies. The virtual reality systems used were commercial or custom designed for the study and ranged from expensive, fully immersive systems to cheap online games or videogames. In before-after comparisons, improvements in balance were seen in four case studies and two small randomized control trials. Between-group comparisons in these randomized control trials showed no difference between virtual reality and traditional therapy. Post-training improvements were also seen for upper extremity functions (five small studies) and for various cognitive function measures (four case studies and one pilot randomized control trial). Attitudes of participants toward virtual reality interventions was more positive than for traditional therapy (three studies). The evidence that the use of virtual reality in rehabilitation of traumatic brain injury improves motor and cognitive functionality is currently very limited. However, this approach has the potential to provide alternative, possibly more affordable and available rehabilitation therapy for traumatic brain injury in settings where access to therapy is limited by geographical or financial constraints.

  8. A virtual tour of virtual reality

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2018-03-01

    Virtual-reality glasses might still be on the starting blocks, but plenty of companies are working on the technology. Margaret Harris tries on some examples at the Photonics West show in San Francisco

  9. A discrete mechanics framework for real time virtual surgical simulations with application to virtual laparoscopic nephrectomy.

    PubMed

    Zhou, Xiangmin; Zhang, Nan; Sha, Desong; Shen, Yunhe; Tamma, Kumar K; Sweet, Robert

    2009-01-01

    The inability to render realistic soft-tissue behavior in real time has remained a barrier to face and content aspects of validity for many virtual reality surgical training systems. Biophysically based models are not only suitable for training purposes but also for patient-specific clinical applications, physiological modeling and surgical planning. When considering the existing approaches for modeling soft tissue for virtual reality surgical simulation, the computer graphics-based approach lacks predictive capability; the mass-spring model (MSM) based approach lacks biophysically realistic soft-tissue dynamic behavior; and the finite element method (FEM) approaches fail to meet the real-time requirement. The present development stems from physics fundamental thermodynamic first law; for a space discrete dynamic system directly formulates the space discrete but time continuous governing equation with embedded material constitutive relation and results in a discrete mechanics framework which possesses a unique balance between the computational efforts and the physically realistic soft-tissue dynamic behavior. We describe the development of the discrete mechanics framework with focused attention towards a virtual laparoscopic nephrectomy application.

  10. Augmented reality (AR) and virtual reality (VR) applied in dentistry.

    PubMed

    Huang, Ta-Ko; Yang, Chi-Hsun; Hsieh, Yu-Hsin; Wang, Jen-Chyan; Hung, Chun-Cheng

    2018-04-01

    The OSCE is a reliable evaluation method to estimate the preclinical examination of dental students. The most ideal assessment for OSCE is used the augmented reality simulator to evaluate. This literature review investigated a recently developed in virtual reality (VR) and augmented reality (AR) starting of the dental history to the progress of the dental skill. As result of the lacking of technology, it needs to depend on other device increasing the success rate and decreasing the risk of the surgery. The development of tracking unit changed the surgical and educational way. Clinical surgery is based on mature education. VR and AR simultaneously affected the skill of the training lesson and navigation system. Widely, the VR and AR not only applied in the dental training lesson and surgery, but also improved all field in our life. Copyright © 2018. Published by Elsevier Taiwan.

  11. The effects of virtual reality game exercise on balance and gait of the elderly

    PubMed Central

    Park, Eun-Cho; Kim, Seong-Gil; Lee, Chae-Woo

    2015-01-01

    [Purpose] The aim of this study was to examine the effects of ball exercise as a general exercise on the balance abilities of elderly individuals by comparing ball exercise with virtual reality exercise. [Subjects and Methods] Thirty elderly individuals residing in communities were randomly divided into a virtual reality game group and a ball exercise group and conducted exercise for 30 min 3 times a week for 8 weeks. [Results] Step length increased significantly, and the average sway speed and Timed Up and Go time significantly decreased in both groups. A comparison of sway length after the intervention between the two groups revealed that the virtual reality game exercise resulted in a reduction than the ball exercise. [Conclusion] The results of this study indicated that the virtual reality game exercise may improve balance and gait of elderly individuals in communities. PMID:25995578

  12. Performance on a virtual reality angled laparoscope task correlates with spatial ability of trainees.

    PubMed

    Rosenthal, Rachel; Hamel, Christian; Oertli, Daniel; Demartines, Nicolas; Gantert, Walter A

    2010-08-01

    The aim of the present study was to investigate whether trainees' performance on a virtual reality angled laparoscope navigation task correlates with scores obtained on a validated conventional test of spatial ability. 56 participants of a surgery workshop performed an angled laparoscope navigation task on the Xitact LS 500 virtual reality Simulator. Performance parameters were correlated with the score of a validated paper-and-pencil test of spatial ability. Performance at the conventional spatial ability test significantly correlated with performance at the virtual reality task for overall task score (p < 0.001), task completion time (p < 0.001) and economy of movement (p = 0.035), not for endoscope travel speed (p = 0.947). In conclusion, trainees' performance in a standardized virtual reality camera navigation task correlates with their innate spatial ability. This VR session holds potential to serve as an assessment tool for trainees.

  13. Integration Head Mounted Display Device and Hand Motion Gesture Device for Virtual Reality Laboratory

    NASA Astrophysics Data System (ADS)

    Rengganis, Y. A.; Safrodin, M.; Sukaridhoto, S.

    2018-01-01

    Virtual Reality Laboratory (VR Lab) is an innovation for conventional learning media which show us whole learning process in laboratory. There are many tools and materials are needed by user for doing practical in it, so user could feel new learning atmosphere by using this innovation. Nowadays, technologies more sophisticated than before. So it would carry in education and it will be more effective, efficient. The Supported technologies are needed us for making VR Lab such as head mounted display device and hand motion gesture device. The integration among them will be used us for making this research. Head mounted display device for viewing 3D environment of virtual reality laboratory. Hand motion gesture device for catching user real hand and it will be visualized in virtual reality laboratory. Virtual Reality will show us, if using the newest technologies in learning process it could make more interesting and easy to understand.

  14. Visual field examination method using virtual reality glasses compared with the Humphrey perimeter.

    PubMed

    Tsapakis, Stylianos; Papaconstantinou, Dimitrios; Diagourtas, Andreas; Droutsas, Konstantinos; Andreanos, Konstantinos; Moschos, Marilita M; Brouzas, Dimitrios

    2017-01-01

    To present a visual field examination method using virtual reality glasses and evaluate the reliability of the method by comparing the results with those of the Humphrey perimeter. Virtual reality glasses, a smartphone with a 6 inch display, and software that implements a fast-threshold 3 dB step staircase algorithm for the central 24° of visual field (52 points) were used to test 20 eyes of 10 patients, who were tested in a random and consecutive order as they appeared in our glaucoma department. The results were compared with those obtained from the same patients using the Humphrey perimeter. High correlation coefficient ( r =0.808, P <0.0001) was found between the virtual reality visual field test and the Humphrey perimeter visual field. Visual field examination results using virtual reality glasses have a high correlation with the Humphrey perimeter allowing the method to be suitable for probable clinical use.

  15. [Real patients in virtual reality: the link between phantom heads and clinical dentistry].

    PubMed

    Serrano, C M; Wesselink, P R; Vervoorn, J M

    2018-05-01

    Preclinical training in phantom heads has until now been considered the 'gold standard' for restorative dental education, but the transition from preclinic to the treatment of real patients has remained a challenge. With the introduction of the latest generation of virtual reality simulators, students and dental practitioners can make digital impressions of their patients in virtual reality models and practice procedures in virtual reality before clinically performing them. In this way, clinical decisions can be investigated and practiced prior to actual treatment, enhancing the safety of the treatment and the self-confidence to perform it. With the 3M™ True Definition Scanner and the Moog Simodont Dental Trainer, 3 masters students and a general dental practitioner practiced their procedures in virtual reality prior to performing them on real patients. They were very satisfied with this preparation and the result of the treatment.

  16. Development of a Virtual Reality Simulator for Natural Orifice Translumenal Endoscopic Surgery (NOTES) Cholecystectomy Procedure.

    PubMed

    Ahn, Woojin; Dargar, Saurabh; Halic, Tansel; Lee, Jason; Li, Baichun; Pan, Junjun; Sankaranarayanan, Ganesh; Roberts, Kurt; De, Suvranu

    2014-01-01

    The first virtual-reality-based simulator for Natural Orifice Translumenal Endoscopic Surgery (NOTES) is developed called the Virtual Translumenal Endoscopic Surgery Trainer (VTESTTM). VTESTTM aims to simulate hybrid NOTES cholecystectomy procedure using a rigid scope inserted through the vaginal port. The hardware interface is designed for accurate motion tracking of the scope and laparoscopic instruments to reproduce the unique hand-eye coordination. The haptic-enabled multimodal interactive simulation includes exposing the Calot's triangle and detaching the gall bladder while performing electrosurgery. The developed VTESTTM was demonstrated and validated at NOSCAR 2013.

  17. In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy.

    PubMed

    Golomb, Meredith R; McDonald, Brenna C; Warden, Stuart J; Yonkman, Janell; Saykin, Andrew J; Shirley, Bridget; Huber, Meghan; Rabin, Bryan; Abdelbaky, Moustafa; Nwosu, Michelle E; Barkat-Masih, Monica; Burdea, Grigore C

    2010-01-01

    Golomb MR, McDonald BC, Warden SJ, Yonkman J, Saykin AJ, Shirley B, Huber M, Rabin B, AbdelBaky M, Nwosu ME, Barkat-Masih M, Burdea GC. In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. To investigate whether in-home remotely monitored virtual reality videogame-based telerehabilitation in adolescents with hemiplegic cerebral palsy can improve hand function and forearm bone health, and demonstrate alterations in motor circuitry activation. A 3-month proof-of-concept pilot study. Virtual reality videogame-based rehabilitation systems were installed in the homes of 3 participants and networked via secure Internet connections to the collaborating engineering school and children's hospital. Adolescents (N=3) with severe hemiplegic cerebral palsy. Participants were asked to exercise the plegic hand 30 minutes a day, 5 days a week using a sensor glove fitted to the plegic hand and attached to a remotely monitored videogame console installed in their home. Games were custom developed, focused on finger movement, and included a screen avatar of the hand. Standardized occupational therapy assessments, remote assessment of finger range of motion (ROM) based on sensor glove readings, assessment of plegic forearm bone health with dual-energy x-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT), and functional magnetic resonance imaging (fMRI) of hand grip task. All 3 adolescents showed improved function of the plegic hand on occupational therapy testing, including increased ability to lift objects, and improved finger ROM based on remote measurements. The 2 adolescents who were most compliant showed improvements in radial bone mineral content and area in the plegic arm. For all 3 adolescents, fMRI during grip task contrasting the plegic and nonplegic hand showed expanded spatial extent of activation at posttreatment relative to baseline in brain motor circuitry (eg, primary motor cortex and cerebellum). Use of remotely monitored virtual reality videogame telerehabilitation appears to produce improved hand function and forearm bone health (as measured by DXA and pQCT) in adolescents with chronic disability who practice regularly. Improved hand function appears to be reflected in functional brain changes. Copyright (c) 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Short-term motor learning through non-immersive virtual reality task in individuals with down syndrome.

    PubMed

    de Mello Monteiro, Carlos Bandeira; da Silva, Talita Dias; de Abreu, Luiz Carlos; Fregni, Felipe; de Araujo, Luciano Vieira; Ferreira, Fernando Henrique Inocêncio Borba; Leone, Claudio

    2017-04-14

    Down syndrome (DS) has unique physical, motor and cognitive characteristics. Despite cognitive and motor difficulties, there is a possibility of intervention based on the knowledge of motor learning. However, it is important to study the motor learning process in individuals with DS during a virtual reality task to justify the use of virtual reality to organize intervention programs. The aim of this study was to analyze the motor learning process in individuals with DS during a virtual reality task. A total of 40 individuals participated in this study, 20 of whom had DS (24 males and 8 females, mean age of 19 years, ranging between 14 and 30 yrs.) and 20 typically developing individuals (TD) who were matched by age and gender to the individuals with DS. To examine this issue, we used software that uses 3D images and reproduced a coincidence-timing task. The results showed that all individuals improved performance in the virtual task, but the individuals with DS that started the task with worse performance showed higher difference from the beginning. Besides that, they were able to retain and transfer the performance with increase of speed of the task. Individuals with DS are able to learn movements from virtual tasks, even though the movement time was higher compared to the TD individuals. The results showed that individuals with DS who started with low performance improved coincidence- timing task with virtual objects, but were less accurate than typically developing individuals. ClinicalTrials.gov Identifier: NCT02719600 .

  19. Virtual reality, augmented reality…I call it i-Reality.

    PubMed

    Grossmann, Rafael J

    2015-01-01

    The new term improved reality (i-Reality) is suggested to include virtual reality (VR) and augmented reality (AR). It refers to a real world that includes improved, enhanced and digitally created features that would offer an advantage on a particular occasion (i.e., a medical act). I-Reality may help us bridge the gap between the high demand for medical providers and the low supply of them by improving the interaction between providers and patients.

  20. Virtual TeleRehab: a case study.

    PubMed

    Pareto, Lena; Johansson, Britt; Zeller, Sally; Sunnerhagen, Katharina S; Rydmark, Martin; Broeren, Jurgen

    2011-01-01

    We examined the efficacy of a remotely based occupational therapy intervention. A 40-year-old woman who suffered a stroke participated in a telerehabilitation program. The intervention method is based on virtual reality gaming to enhance the training experience and to facilitate the relearning processes. The results indicate that Virtual TeleRehab is an effective method for motivational, economical, and practical reasons by combining game-based rehabilitation in the home with weekly distance meetings.

  1. Development of and feedback on a fully automated virtual reality system for online training in weight management skills.

    PubMed

    Thomas, J Graham; Spitalnick, Josh S; Hadley, Wendy; Bond, Dale S; Wing, Rena R

    2015-01-01

    Virtual reality (VR) technology can provide a safe environment for observing, learning, and practicing use of behavioral weight management skills, which could be particularly useful in enhancing minimal contact online weight management programs. The Experience Success (ES) project developed a system for creating and deploying VR scenarios for online weight management skills training. Virtual environments populated with virtual actors allow users to experiment with implementing behavioral skills via a PC-based point and click interface. A culturally sensitive virtual coach guides the experience, including planning for real-world skill use. Thirty-seven overweight/obese women provided feedback on a test scenario focused on social eating situations. They reported that the scenario gave them greater skills, confidence, and commitment for controlling eating in social situations. © 2014 Diabetes Technology Society.

  2. Development of and Feedback on a Fully Automated Virtual Reality System for Online Training in Weight Management Skills

    PubMed Central

    Spitalnick, Josh S.; Hadley, Wendy; Bond, Dale S.; Wing, Rena R.

    2014-01-01

    Virtual reality (VR) technology can provide a safe environment for observing, learning, and practicing use of behavioral weight management skills, which could be particularly useful in enhancing minimal contact online weight management programs. The Experience Success (ES) project developed a system for creating and deploying VR scenarios for online weight management skills training. Virtual environments populated with virtual actors allow users to experiment with implementing behavioral skills via a PC-based point and click interface. A culturally sensitive virtual coach guides the experience, including planning for real-world skill use. Thirty-seven overweight/obese women provided feedback on a test scenario focused on social eating situations. They reported that the scenario gave them greater skills, confidence, and commitment for controlling eating in social situations. PMID:25367014

  3. Modular mechatronic system for stationary bicycles interfaced with virtual environment for rehabilitation.

    PubMed

    Ranky, Richard G; Sivak, Mark L; Lewis, Jeffrey A; Gade, Venkata K; Deutsch, Judith E; Mavroidis, Constantinos

    2014-06-05

    Cycling has been used in the rehabilitation of individuals with both chronic and post-surgical conditions. Among the challenges with implementing bicycling for rehabilitation is the recruitment of both extremities, in particular when one is weaker or less coordinated. Feedback embedded in virtual reality (VR) augmented cycling may serve to address the requirement for efficacious cycling; specifically recruitment of both extremities and exercising at a high intensity. In this paper a mechatronic rehabilitation bicycling system with an interactive virtual environment, called Virtual Reality Augmented Cycling Kit (VRACK), is presented. Novel hardware components embedded with sensors were implemented on a stationary exercise bicycle to monitor physiological and biomechanical parameters of participants while immersing them in an augmented reality simulation providing the user with visual, auditory and haptic feedback. This modular and adaptable system attaches to commercially-available stationary bicycle systems and interfaces with a personal computer for simulation and data acquisition processes. The complete bicycle system includes: a) handle bars based on hydraulic pressure sensors; b) pedals that monitor pedal kinematics with an inertial measurement unit (IMU) and forces on the pedals while providing vibratory feedback; c) off the shelf electronics to monitor heart rate and d) customized software for rehabilitation. Bench testing for the handle and pedal systems is presented for calibration of the sensors detecting force and angle. The modular mechatronic kit for exercise bicycles was tested in bench testing and human tests. Bench tests performed on the sensorized handle bars and the instrumented pedals validated the measurement accuracy of these components. Rider tests with the VRACK system focused on the pedal system and successfully monitored kinetic and kinematic parameters of the rider's lower extremities. The VRACK system, a virtual reality mechatronic bicycle rehabilitation modular system was designed to convert most bicycles in virtual reality (VR) cycles. Preliminary testing of the augmented reality bicycle system was successful in demonstrating that a modular mechatronic kit can monitor and record kinetic and kinematic parameters of several riders.

  4. ViRPET--combination of virtual reality and PET brain imaging

    DOEpatents

    Majewski, Stanislaw; Brefczynski-Lewis, Julie

    2017-05-23

    Various methods, systems and apparatus are provided for brain imaging during virtual reality stimulation. In one example, among others, a system for virtual ambulatory environment brain imaging includes a mobile brain imager configured to obtain positron emission tomography (PET) scans of a subject in motion, and a virtual reality (VR) system configured to provide one or more stimuli to the subject during the PET scans. In another example, a method for virtual ambulatory environment brain imaging includes providing stimulation to a subject through a virtual reality (VR) system; and obtaining a positron emission tomography (PET) scan of the subject while moving in response to the stimulation from the VR system. The mobile brain imager can be positioned on the subject with an array of imaging photodetector modules distributed about the head of the subject.

  5. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    NASA-Ames is intensively developing virtual-reality (VR) capabilities that can extend and augment computer-generated and remote spatial environments. VR is envisioned not only as a basis for improving human/machine interactions involved in planetary exploration, but also as a medium for the more widespread sharing of the experience of exploration, thereby broadening the support-base for the lunar and planetary-exploration endeavors. Imagery representative of Mars are being gathered for VR presentation at such terrestrial sites as Antarctica and Death Valley.

  6. Augmented reality in the surgery of cerebral arteriovenous malformations: technique assessment and considerations.

    PubMed

    Cabrilo, Ivan; Bijlenga, Philippe; Schaller, Karl

    2014-09-01

    Augmented reality technology has been used for intraoperative image guidance through the overlay of virtual images, from preoperative imaging studies, onto the real-world surgical field. Although setups based on augmented reality have been used for various neurosurgical pathologies, very few cases have been reported for the surgery of arteriovenous malformations (AVM). We present our experience with AVM surgery using a system designed for image injection of virtual images into the operating microscope's eyepiece, and discuss why augmented reality may be less appealing in this form of surgery. N = 5 patients underwent AVM resection assisted by augmented reality. Virtual three-dimensional models of patients' heads, skulls, AVM nidi, and feeder and drainage vessels were selectively segmented and injected into the microscope's eyepiece for intraoperative image guidance, and their usefulness was assessed in each case. Although the setup helped in performing tailored craniotomies, in guiding dissection and in localizing drainage veins, it did not provide the surgeon with useful information concerning feeder arteries, due to the complexity of AVM angioarchitecture. The difficulty in intraoperatively conveying useful information on feeder vessels may make augmented reality a less engaging tool in this form of surgery, and might explain its underrepresentation in the literature. Integrating an AVM's hemodynamic characteristics into the augmented rendering could make it more suited to AVM surgery.

  7. Multisensory Integration in the Virtual Hand Illusion with Active Movement

    PubMed Central

    Satoh, Satoru; Hachimura, Kozaburo

    2016-01-01

    Improving the sense of immersion is one of the core issues in virtual reality. Perceptual illusions of ownership can be perceived over a virtual body in a multisensory virtual reality environment. Rubber Hand and Virtual Hand Illusions showed that body ownership can be manipulated by applying suitable visual and tactile stimulation. In this study, we investigate the effects of multisensory integration in the Virtual Hand Illusion with active movement. A virtual xylophone playing system which can interactively provide synchronous visual, tactile, and auditory stimulation was constructed. We conducted two experiments regarding different movement conditions and different sensory stimulations. Our results demonstrate that multisensory integration with free active movement can improve the sense of immersion in virtual reality. PMID:27847822

  8. Virtual reality based surgery simulation for endoscopic gynaecology.

    PubMed

    Székely, G; Bajka, M; Brechbühler, C; Dual, J; Enzler, R; Haller, U; Hug, J; Hutter, R; Ironmonger, N; Kauer, M; Meier, V; Niederer, P; Rhomberg, A; Schmid, P; Schweitzer, G; Thaler, M; Vuskovic, V; Tröster, G

    1999-01-01

    Virtual reality (VR) based surgical simulator systems offer very elegant possibilities to both enrich and enhance traditional education in endoscopic surgery. However, while a wide range of VR simulator systems have been proposed and realized in the past few years, most of these systems are far from able to provide a reasonably realistic surgical environment. We explore the basic approaches to the current limits of realism and ultimately seek to extend these based on our description and analysis of the most important components of a VR-based endoscopic simulator. The feasibility of the proposed techniques is demonstrated on a first modular prototype system implementing the basic algorithms for VR-training in gynaecologic laparoscopy.

  9. A physiologically informed virtual reality based social communication system for individuals with autism.

    PubMed

    Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan

    2015-04-01

    Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components of conversation based on (1) performance alone or (2) the composite effect of performance and physiological metrics of predicted engagement (e.g., gaze pattern, pupil dilation, blink rate). Participants showed improved performance and looking pattern within the physiologically sensitive system as compared to the performance based system. This suggests that physiologically informed technologies may have the potential of being an effective tool in the hands of interventionists.

  10. Virtual reality exposure therapy for combat-related posttraumatic stress disorder.

    PubMed

    Rothbaum, Barbara O; Rizzo, Albert Skip; Difede, JoAnn

    2010-10-01

    Posttraumatic stress disorder (PTSD) is a chronic, debilitating, psychological condition that occurs in a subset of individuals who experience or witness life-threatening traumatic events. PTSD is highly prevalent in those who served in the military. In this paper, we present the underlying theoretical foundations and existing research on virtual reality exposure therapy, a recently emerging treatment for PTSD. Three virtual reality scenarios used to treat PTSD in active duty military and combat veterans and survivors of terrorism are presented: Virtual Vietnam, Virtual Iraq, and Virtual World Trade Center. Preliminary results of ongoing trials are presented. © 2010 Association for Research in Nervous and Mental Disease.

  11. Augmenting the Thermal Flux Experiment: A Mixed Reality Approach with the HoloLens

    ERIC Educational Resources Information Center

    Strzys, M. P.; Kapp, S.; Thees, M.; Kuhn, J.; Lukowicz, P.; Knierim, P.; Schmidt, A.

    2017-01-01

    In the field of Virtual Reality (VR) and Augmented Reality (AR), technologies have made huge progress during the last years and also reached the field of education. The virtuality continuum, ranging from pure virtuality on one side to the real world on the other, has been successfully covered by the use of immersive technologies like head-mounted…

  12. Physical Models and Virtual Reality Simulators in Otolaryngology.

    PubMed

    Javia, Luv; Sardesai, Maya G

    2017-10-01

    The increasing role of simulation in the medical education of future otolaryngologists has followed suit with other surgical disciplines. Simulators make it possible for the resident to explore and learn in a safe and less stressful environment. The various subspecialties in otolaryngology use physical simulators and virtual-reality simulators. Although physical simulators allow the operator to make direct contact with its components, virtual-reality simulators allow the operator to interact with an environment that is computer generated. This article gives an overview of the various types of physical simulators and virtual-reality simulators used in otolaryngology that have been reported in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. New perspectives and limitations in the use of virtual reality in the rehabilitation of motor disorders

    NASA Astrophysics Data System (ADS)

    De Mauro, Alessandro; Ardanza, Aitor; Monge, Esther; Molina Rueda, Francisco

    2013-03-01

    Several studies have shown that both virtual and augmented reality are technologies suitable for rehabilitation therapy due to the inherent ability of simulating real daily life activities while improving patient motivation. In this paper we will first present the state of the art in the use of virtual and augmented reality applications for rehabilitation of motor disorders and second we will focus on the analysis of the results of our project. In particular, requirements of patients with cerebrovascular accidents, spinal cord injuries and cerebral palsy to the use of virtual and augmented reality systems will be detailed.

  14. Alleviating travel anxiety through virtual reality and narrated video technology.

    PubMed

    Ahn, J C; Lee, O

    2013-01-01

    This study presents an empirical evidence of benefit of narrative video clips in embedded virtual reality websites of hotels for relieving travel anxiety. Even though it was proven that virtual reality functions do provide some relief in travel anxiety, a stronger virtual reality website can be built when narrative video clips that show video clips with narration about important aspects of the hotel. We posit that these important aspects are 1. Escape route and 2. Surrounding neighborhood information, which are derived from the existing research on anxiety disorder as well as travel anxiety. Thus we created a video clip that showed and narrated about the escape route from the hotel room, another video clip that showed and narrated about surrounding neighborhood. We then conducted experiments with this enhanced virtual reality website of a hotel by having human subjects play with the website and fill out a questionnaire. The result confirms our hypothesis that there is a statistically significant relationship between the degree of travel anxiety and psychological relief caused by the use of embedded virtual reality functions with narrative video clips of a hotel website (Tab. 2, Fig. 3, Ref. 26).

  15. Contextualized Interdisciplinary Learning in Mainstream Schools Using Augmented Reality-Based Technology: A Dream or Reality?

    ERIC Educational Resources Information Center

    Ong, Alex

    2010-01-01

    The use of augmented reality (AR) tools, where virtual objects such as tables and graphs can be displayed and be interacted with in real scenes created from imaging devices, in mainstream school curriculum is uncommon, as they are potentially costly and sometimes bulky. Thus, such learning tools are mainly applied in tertiary institutions, such as…

  16. Photorealistic virtual anatomy based on Chinese Visible Human data.

    PubMed

    Heng, P A; Zhang, S X; Xie, Y M; Wong, T T; Chui, Y P; Cheng, C Y

    2006-04-01

    Virtual reality based learning of human anatomy is feasible when a database of 3D organ models is available for the learner to explore, visualize, and dissect in virtual space interactively. In this article, we present our latest work on photorealistic virtual anatomy applications based on the Chinese Visible Human (CVH) data. We have focused on the development of state-of-the-art virtual environments that feature interactive photo-realistic visualization and dissection of virtual anatomical models constructed from ultra-high resolution CVH datasets. We also outline our latest progress in applying these highly accurate virtual and functional organ models to generate realistic look and feel to advanced surgical simulators. (c) 2006 Wiley-Liss, Inc.

  17. Instructor feedback versus no instructor feedback on performance in a laparoscopic virtual reality simulator: a randomized educational trial.

    PubMed

    Oestergaard, Jeanett; Bjerrum, Flemming; Maagaard, Mathilde; Winkel, Per; Larsen, Christian Rifbjerg; Ringsted, Charlotte; Gluud, Christian; Grantcharov, Teodor; Ottesen, Bent; Soerensen, Jette Led

    2012-02-28

    Several studies have found a positive effect on the learning curve as well as the improvement of basic psychomotor skills in the operating room after virtual reality training. Despite this, the majority of surgical and gynecological departments encounter hurdles when implementing this form of training. This is mainly due to lack of knowledge concerning the time and human resources needed to train novice surgeons to an adequate level. The purpose of this trial is to investigate the impact of instructor feedback regarding time, repetitions and self-perception when training complex operational tasks on a virtual reality simulator. The study population consists of medical students on their 4th to 6th year without prior laparoscopic experience. The study is conducted in a skills laboratory at a centralized university hospital. Based on a sample size estimation 98 participants will be randomized to an intervention group or a control group. Both groups have to achieve a predefined proficiency level when conducting a laparoscopic salpingectomy using a surgical virtual reality simulator. The intervention group receives standardized instructor feedback of 10 to 12 min a maximum of three times. The control group receives no instructor feedback. Both groups receive the automated feedback generated by the virtual reality simulator. The study follows the CONSORT Statement for randomized trials. Main outcome measures are time and repetitions to reach the predefined proficiency level on the simulator. We include focus on potential sex differences, computer gaming experience and self-perception. The findings will contribute to a better understanding of optimal training methods in surgical education. NCT01497782.

  18. Virtual reality in mental health : a review of the literature.

    PubMed

    Gregg, Lynsey; Tarrier, Nicholas

    2007-05-01

    Several virtual reality (VR) applications for the understanding, assessment and treatment of mental health problems have been developed in the last 10 years. The purpose of this review is to outline the current state of virtual reality research in the treatment of mental health problems. PubMed and PsycINFO were searched for all articles containing the words "virtual reality". In addition a manual search of the references contained in the papers resulting from this search was conducted and relevant periodicals were searched. Studies reporting the results of treatment utilizing VR in the mental health field and involving at least one patient were identified. More than 50 studies using VR were identified, the majority of which were case studies. Seventeen employed a between groups design: 4 involved patients with fear of flying; 3 involved patients with fear of heights; 3 involved patients with social phobia/public speaking anxiety; 2 involved people with spider phobia; 2 involved patients with agoraphobia; 2 involved patients with body image disturbance and 1 involved obese patients. There are both advantages in terms of delivery and disadvantages in terms of side effects to using VR. Although virtual reality based therapy appears to be superior to no treatment the effectiveness of VR therapy over traditional therapeutic approaches is not supported by the research currently available. There is a lack of good quality research on the effectiveness of VR therapy. Before clinicians will be able to make effective use of this emerging technology greater emphasis must be placed on controlled trials with clinically identified populations.

  19. Use of virtual reality systems as proprioception method in cerebral palsy: clinical practice guideline.

    PubMed

    Monge Pereira, E; Molina Rueda, F; Alguacil Diego, I M; Cano de la Cuerda, R; de Mauro, A; Miangolarra Page, J C

    2014-01-01

    The limitations in performing functional activities in children and adolescents with cerebral palsy are important. The use of virtual reality systems is a new treatment approach that reinforces task-oriented motor learning. The purpose of this guide is to study the impact of the use of virtual reality systems in the improvement and acquisition of functional skills, and to evaluate the scientific evidence to determine the strength of recommendation of such interventions. All available full-text articles, regardless of their methodology, were included. The following data bases were consulted: PubMed (Medline), PEDro, EMBASE (OVID-Elsevier), Cochrane Library, Medline (OVID), CINAHL, ISI Web Knowledge. An assessment was made of methodological quality, the level of scientific evidence, and the strength of recommendations using the tools: Critical Review Form - Quantitative Studies and the Guidelines for Critical Review Form - Quantitative Studies and U.S. Preventive Services Task Force. Finally, we included 13 articles and 97 participants were recruited. We obtained significant improvements in outcome measures that assessed postural control and balance, upper limb function, the selective joint control, and gait. The guide has some limitations: the limited number of patients enrolled, clinical diversity and age range, as well as the methodological quality of existing trials. Virtual reality is a promising tool in the treatment of children with cerebral palsy. There is strong scientific evidence of an acceptable recommendation for the use of virtual reality systems in the treatment of cerebral palsy. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  20. Inertial Motion-Tracking Technology for Virtual 3-D

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In the 1990s, NASA pioneered virtual reality research. The concept was present long before, but, prior to this, the technology did not exist to make a viable virtual reality system. Scientists had theories and ideas they knew that the concept had potential, but the computers of the 1970s and 1980s were not fast enough, sensors were heavy and cumbersome, and people had difficulty blending fluidly with the machines. Scientists at Ames Research Center built upon the research of previous decades and put the necessary technology behind them, making the theories of virtual reality a reality. Virtual reality systems depend on complex motion-tracking sensors to convey information between the user and the computer to give the user the feeling that he is operating in the real world. These motion-tracking sensors measure and report an object s position and orientation as it changes. A simple example of motion tracking would be the cursor on a computer screen moving in correspondence to the shifting of the mouse. Tracking in 3-D, necessary to create virtual reality, however, is much more complex. To be successful, the perspective of the virtual image seen on the computer must be an accurate representation of what is seen in the real world. As the user s head or camera moves, turns, or tilts, the computer-generated environment must change accordingly with no noticeable lag, jitter, or distortion. Historically, the lack of smooth and rapid tracking of the user s motion has thwarted the widespread use of immersive 3-D computer graphics. NASA uses virtual reality technology for a variety of purposes, mostly training of astronauts. The actual missions are costly and dangerous, so any opportunity the crews have to practice their maneuvering in accurate situations before the mission is valuable and instructive. For that purpose, NASA has funded a great deal of virtual reality research, and benefited from the results.

  1. Virtual reality in the assessment and treatment of psychosis: a systematic review of its utility, acceptability and effectiveness.

    PubMed

    Rus-Calafell, M; Garety, P; Sason, E; Craig, T J K; Valmaggia, L R

    2018-02-01

    Over the last two decades, there has been a rapid increase of studies testing the efficacy and acceptability of virtual reality in the assessment and treatment of mental health problems. This systematic review was carried out to investigate the use of virtual reality in the assessment and the treatment of psychosis. Web of Science, PsychInfo, EMBASE, Scopus, ProQuest and PubMed databases were searched, resulting in the identification of 638 articles potentially eligible for inclusion; of these, 50 studies were included in the review. The main fields of research in virtual reality and psychosis are: safety and acceptability of the technology; neurocognitive evaluation; functional capacity and performance evaluation; assessment of paranoid ideation and auditory hallucinations; and interventions. The studies reviewed indicate that virtual reality offers a valuable method of assessing the presence of symptoms in ecologically valid environments, with the potential to facilitate learning new emotional and behavioural responses. Virtual reality is a promising method to be used in the assessment of neurocognitive deficits and the study of relevant clinical symptoms. Furthermore, preliminary findings suggest that it can be applied to the delivery of cognitive rehabilitation, social skills training interventions and virtual reality-assisted therapies for psychosis. The potential benefits for enhancing treatment are highlighted. Recommendations for future research include demonstrating generalisability to real-life settings, examining potential negative effects, larger sample sizes and long-term follow-up studies. The present review has been registered in the PROSPERO register: CDR 4201507776.

  2. Magnetosensitive e-skins with directional perception for augmented reality

    PubMed Central

    Cañón Bermúdez, Gilbert Santiago; Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Lebanov, Ana; Bischoff, Lothar; Kaltenbrunner, Martin; Fassbender, Jürgen; Schmidt, Oliver G.; Makarov, Denys

    2018-01-01

    Electronic skins equipped with artificial receptors are able to extend our perception beyond the modalities that have naturally evolved. These synthetic receptors offer complimentary information on our surroundings and endow us with novel means of manipulating physical or even virtual objects. We realize highly compliant magnetosensitive skins with directional perception that enable magnetic cognition, body position tracking, and touchless object manipulation. Transfer printing of eight high-performance spin valve sensors arranged into two Wheatstone bridges onto 1.7-μm-thick polyimide foils ensures mechanical imperceptibility. This resembles a new class of interactive devices extracting information from the surroundings through magnetic tags. We demonstrate this concept in augmented reality systems with virtual knob-turning functions and the operation of virtual dialing pads, based on the interaction with magnetic fields. This technology will enable a cornucopia of applications from navigation, motion tracking in robotics, regenerative medicine, and sports and gaming to interaction in supplemented reality. PMID:29376121

  3. Exercise/recreation facility for a lunar or Mars analog

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The University of Idaho, NASA/USRA project for the 1990-91 school year is an exercise/recreation station for an Earth-based simulator of a lunar or martian habitat. Specifically, a stationary bicycle that will help people keep fit and prevent muscular atrophy while stationed in space was designed. To help with motivation and provide an element of recreation during the workout, the bicycle is to be enhanced by a virtual reality system. The system simulates various riding situations, including the choice of a mountain bike or a road bike. The bike employs a magnetic brake that provides continuously changing tension to simulate actual riding conditions. This braking system is interfaced directly with the virtual reality system. Also, integrated into the virtual reality display will be a monitoring system that regulates heart rate, work rate, and other functions during the course of the session.

  4. Polymer-based actuators for virtual reality devices

    NASA Astrophysics Data System (ADS)

    Bolzmacher, Christian; Hafez, Moustapha; Benali Khoudja, Mohamed; Bernardoni, Paul; Dubowsky, Steven

    2004-07-01

    Virtual Reality (VR) is gaining more importance in our society. For many years, VR has been limited to the entertainment applications. Today, practical applications such as training and prototyping find a promising future in VR. Therefore there is an increasing demand for low-cost, lightweight haptic devices in virtual reality (VR) environment. Electroactive polymers seem to be a potential actuation technology that could satisfy these requirements. Dielectric polymers developed the past few years have shown large displacements (more than 300%). This feature makes them quite interesting for integration in haptic devices due to their muscle-like behaviour. Polymer actuators are flexible and lightweight as compared to traditional actuators. Using stacks with several layers of elatomeric film increase the force without limiting the output displacement. The paper discusses some design methods for a linear dielectric polymer actuator for VR devices. Experimental results of the actuator performance is presented.

  5. Validation of virtual reality as a tool to understand and prevent child pedestrian injury.

    PubMed

    Schwebel, David C; Gaines, Joanna; Severson, Joan

    2008-07-01

    In recent years, virtual reality has emerged as an innovative tool for health-related education and training. Among the many benefits of virtual reality is the opportunity for novice users to engage unsupervised in a safe environment when the real environment might be dangerous. Virtual environments are only useful for health-related research, however, if behavior in the virtual world validly matches behavior in the real world. This study was designed to test the validity of an immersive, interactive virtual pedestrian environment. A sample of 102 children and 74 adults was recruited to complete simulated road-crossings in both the virtual environment and the identical real environment. In both the child and adult samples, construct validity was demonstrated via significant correlations between behavior in the virtual and real worlds. Results also indicate construct validity through developmental differences in behavior; convergent validity by showing correlations between parent-reported child temperament and behavior in the virtual world; internal reliability of various measures of pedestrian safety in the virtual world; and face validity, as measured by users' self-reported perception of realism in the virtual world. We discuss issues of generalizability to other virtual environments, and the implications for application of virtual reality to understanding and preventing pediatric pedestrian injuries.

  6. Image fusion in craniofacial virtual reality modeling based on CT and 3dMD photogrammetry.

    PubMed

    Xin, Pengfei; Yu, Hongbo; Cheng, Huanchong; Shen, Shunyao; Shen, Steve G F

    2013-09-01

    The aim of this study was to demonstrate the feasibility of building a craniofacial virtual reality model by image fusion of 3-dimensional (3D) CT models and 3 dMD stereophotogrammetric facial surface. A CT scan and stereophotography were performed. The 3D CT models were reconstructed by Materialise Mimics software, and the stereophotogrammetric facial surface was reconstructed by 3 dMD patient software. All 3D CT models were exported as Stereo Lithography file format, and the 3 dMD model was exported as Virtual Reality Modeling Language file format. Image registration and fusion were performed in Mimics software. Genetic algorithm was used for precise image fusion alignment with minimum error. The 3D CT models and the 3 dMD stereophotogrammetric facial surface were finally merged into a single file and displayed using Deep Exploration software. Errors between the CT soft tissue model and 3 dMD facial surface were also analyzed. Virtual model based on CT-3 dMD image fusion clearly showed the photorealistic face and bone structures. Image registration errors in virtual face are mainly located in bilateral cheeks and eyeballs, and the errors are more than 1.5 mm. However, the image fusion of whole point cloud sets of CT and 3 dMD is acceptable with a minimum error that is less than 1 mm. The ease of use and high reliability of CT-3 dMD image fusion allows the 3D virtual head to be an accurate, realistic, and widespread tool, and has a great benefit to virtual face model.

  7. Web-Based Interactive 3D Visualization as a Tool for Improved Anatomy Learning

    ERIC Educational Resources Information Center

    Petersson, Helge; Sinkvist, David; Wang, Chunliang; Smedby, Orjan

    2009-01-01

    Despite a long tradition, conventional anatomy education based on dissection is declining. This study tested a new virtual reality (VR) technique for anatomy learning based on virtual contrast injection. The aim was to assess whether students value this new three-dimensional (3D) visualization method as a learning tool and what value they gain…

  8. Computer Vision Assisted Virtual Reality Calibration

    NASA Technical Reports Server (NTRS)

    Kim, W.

    1999-01-01

    A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.

  9. Embodying compassion: a virtual reality paradigm for overcoming excessive self-criticism.

    PubMed

    Falconer, Caroline J; Slater, Mel; Rovira, Aitor; King, John A; Gilbert, Paul; Antley, Angus; Brewin, Chris R

    2014-01-01

    Virtual reality has been successfully used to study and treat psychological disorders such as phobias and posttraumatic stress disorder but has rarely been applied to clinically-relevant emotions other than fear and anxiety. Self-criticism is a ubiquitous feature of psychopathology and can be treated by increasing levels of self-compassion. We exploited the known effects of identification with a virtual body to arrange for healthy female volunteers high in self-criticism to experience self-compassion from an embodied first-person perspective within immersive virtual reality. Whereas observation and practice of compassionate responses reduced self-criticism, the additional experience of embodiment also increased self-compassion and feelings of being safe. The results suggest potential new uses for immersive virtual reality in a range of clinical conditions.

  10. Embodying Compassion: A Virtual Reality Paradigm for Overcoming Excessive Self-Criticism

    PubMed Central

    Falconer, Caroline J.; Slater, Mel; Rovira, Aitor; King, John A.; Gilbert, Paul; Antley, Angus; Brewin, Chris R.

    2014-01-01

    Virtual reality has been successfully used to study and treat psychological disorders such as phobias and posttraumatic stress disorder but has rarely been applied to clinically-relevant emotions other than fear and anxiety. Self-criticism is a ubiquitous feature of psychopathology and can be treated by increasing levels of self-compassion. We exploited the known effects of identification with a virtual body to arrange for healthy female volunteers high in self-criticism to experience self-compassion from an embodied first-person perspective within immersive virtual reality. Whereas observation and practice of compassionate responses reduced self-criticism, the additional experience of embodiment also increased self-compassion and feelings of being safe. The results suggest potential new uses for immersive virtual reality in a range of clinical conditions. PMID:25389766

  11. Role of virtual reality for cerebral palsy management.

    PubMed

    Weiss, Patrice L Tamar; Tirosh, Emanuel; Fehlings, Darcy

    2014-08-01

    Virtual reality is the use of interactive simulations to present users with opportunities to perform in virtual environments that appear, sound, and less frequently, feel similar to real-world objects and events. Interactive computer play refers to the use of a game where a child interacts and plays with virtual objects in a computer-generated environment. Because of their distinctive attributes that provide ecologically realistic and motivating opportunities for active learning, these technologies have been used in pediatric rehabilitation over the past 15 years. The ability of virtual reality to create opportunities for active repetitive motor/sensory practice adds to their potential for neuroplasticity and learning in individuals with neurologic disorders. The objectives of this article is to provide an overview of how virtual reality and gaming are used clinically, to present the results of several example studies that demonstrate their use in research, and to briefly remark on future developments. © The Author(s) 2014.

  12. Sensation of presence and cybersickness in applications of virtual reality for advanced rehabilitation.

    PubMed

    Kiryu, Tohru; So, Richard H Y

    2007-09-25

    Around three years ago, in the special issue on augmented and virtual reality in rehabilitation, the topics of simulator sickness was briefly discussed in relation to vestibular rehabilitation. Simulator sickness with virtual reality applications have also been referred to as visually induced motion sickness or cybersickness. Recently, study on cybersickness has been reported in entertainment, training, game, and medical environment in several journals. Virtual stimuli can enlarge sensation of presence, but they sometimes also evoke unpleasant sensation. In order to safely apply augmented and virtual reality for long-term rehabilitation treatment, sensation of presence and cybersickness should be appropriately controlled. This issue presents the results of five studies conducted to evaluate visually-induced effects and speculate influences of virtual rehabilitation. In particular, the influence of visual and vestibular stimuli on cardiovascular responses are reported in terms of academic contribution.

  13. Sensation of presence and cybersickness in applications of virtual reality for advanced rehabilitation

    PubMed Central

    Kiryu, Tohru; So, Richard HY

    2007-01-01

    Around three years ago, in the special issue on augmented and virtual reality in rehabilitation, the topics of simulator sickness was briefly discussed in relation to vestibular rehabilitation. Simulator sickness with virtual reality applications have also been referred to as visually induced motion sickness or cybersickness. Recently, study on cybersickness has been reported in entertainment, training, game, and medical environment in several journals. Virtual stimuli can enlarge sensation of presence, but they sometimes also evoke unpleasant sensation. In order to safely apply augmented and virtual reality for long-term rehabilitation treatment, sensation of presence and cybersickness should be appropriately controlled. This issue presents the results of five studies conducted to evaluate visually-induced effects and speculate influences of virtual rehabilitation. In particular, the influence of visual and vestibular stimuli on cardiovascular responses are reported in terms of academic contribution. PMID:17894857

  14. The Virtual Pelvic Floor, a tele-immersive educational environment.

    PubMed Central

    Pearl, R. K.; Evenhouse, R.; Rasmussen, M.; Dech, F.; Silverstein, J. C.; Prokasy, S.; Panko, W. B.

    1999-01-01

    This paper describes the development of the Virtual Pelvic Floor, a new method of teaching the complex anatomy of the pelvic region utilizing virtual reality and advanced networking technology. Virtual reality technology allows improved visualization of three-dimensional structures over conventional media because it supports stereo vision, viewer-centered perspective, large angles of view, and interactivity. Two or more ImmersaDesk systems, drafting table format virtual reality displays, are networked together providing an environment where teacher and students share a high quality three-dimensional anatomical model, and are able to converse, see each other, and to point in three dimensions to indicate areas of interest. This project was realized by the teamwork of surgeons, medical artists and sculptors, computer scientists, and computer visualization experts. It demonstrates the future of virtual reality for surgical education and applications for the Next Generation Internet. Images Figure 1 Figure 2 Figure 3 PMID:10566378

  15. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion

    PubMed Central

    Smith, Ross T.; Hunter, Estin V.; Davis, Miles G.; Sterling, Michele; Moseley, G. Lorimer

    2017-01-01

    Background Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can’t be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. Method In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50o of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%–200%—the Motor Offset Visual Illusion (MoOVi)—thus simulating more or less movement than that actually occurring. At 50o of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual) feedback, the presence of a virtual body reference, and the use of 360o immersive virtual reality with and without three-dimensional properties, was also investigated. Results Perception of head movement was dependent on visual-kinaesthetic feedback (p = 0.001, partial eta squared = 0.17). That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Discussion Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The MoOVi technique tested here has clear potential for assessment and therapy of people with spinal pain. PMID:28243537

  16. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion.

    PubMed

    Harvie, Daniel S; Smith, Ross T; Hunter, Estin V; Davis, Miles G; Sterling, Michele; Moseley, G Lorimer

    2017-01-01

    Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can't be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50 o of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%-200%-the Motor Offset Visual Illusion (MoOVi)-thus simulating more or less movement than that actually occurring. At 50 o of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual) feedback, the presence of a virtual body reference, and the use of 360 o immersive virtual reality with and without three-dimensional properties, was also investigated. Perception of head movement was dependent on visual-kinaesthetic feedback ( p  = 0.001, partial eta squared = 0.17). That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The MoOVi technique tested here has clear potential for assessment and therapy of people with spinal pain.

  17. Effect of Virtual Reality Exposure and Aural Stimuli on Eye Contact, Directional Focus, and Focus of Attention of Novice Wind Band Conductors

    ERIC Educational Resources Information Center

    Orman, Evelyn K.

    2016-01-01

    This study examined the effects of virtual reality immersion with audio on eye contact, directional focus and focus of attention for novice wind band conductors. Participants (N = 34) included a control group (n = 12) and two virtual reality groups with (n = 10) and without (n = 12) head tracking. Participants completed conducting/score study…

  18. The Learner Characteristics, Features of Desktop 3D Virtual Reality Environments, and College Chemistry Instruction: A Structural Equation Modeling Analysis

    ERIC Educational Resources Information Center

    Merchant, Zahira; Goetz, Ernest T.; Keeney-Kennicutt, Wendy; Kwok, Oi-man; Cifuentes, Lauren; Davis, Trina J.

    2012-01-01

    We examined a model of the impact of a 3D desktop virtual reality environment on the learner characteristics (i.e. perceptual and psychological variables) that can enhance chemistry-related learning achievements in an introductory college chemistry class. The relationships between the 3D virtual reality features and the chemistry learning test as…

  19. Future Cyborgs: Human-Machine Interface for Virtual Reality Applications

    DTIC Science & Technology

    2007-04-01

    FUTURE CYBORGS : HUMAN-MACHINE INTERFACE FOR VIRTUAL REALITY APPLICATIONS Robert R. Powell, Major, USAF April 2007 Blue Horizons...SUBTITLE Future Cyborgs : Human-Machine Interface for Virtual Reality Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Nicholas Negroponte, Being Digital (New York: Alfred A Knopf, Inc, 1995), 123. 23 Ibid. 24 Andy Clark, Natural-Born Cyborgs (New York: Oxford

  20. Virtual Reality and Its Potential Use in Special Education. Identifying Emerging Issues and Trends in Technology for Special Education.

    ERIC Educational Resources Information Center

    Woodward, John

    As part of a 3-year study to identify emerging issues and trends in technology for special education, this paper addresses the possible contributions of virtual reality technology to educational services for students with disabilities. An example of the use of virtual reality in medical imaging introduces the paper and leads to a brief review of…

  1. Summer Students in Virtual Reality: A Pilot Study on Educational Applications of Virtual Reality Technology.

    ERIC Educational Resources Information Center

    Bricken, Meredith; Byrne, Chris M.

    The goal of this study was to take a first step in evaluating the potential of virtual reality (VR) as a learning environment. The context of the study was The Technology Academy, a technology-oriented summer day camp for students ages 5-18, where student activities center around hands-on exploration of new technology (e.g., robotics, MIDI digital…

  2. Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI

    DTIC Science & Technology

    2015-04-01

    virtual reality driving simulator data acquisition. Data collection for the pilot study is nearly complete and data analyses are currently under way...Training for primary study procedures including neuropsychological testing, eye- tracking, virtual reality driving simulator, and EEG data acquisition is...the virtual reality driving simulator. Participants are instructed to drive along a coastal highway while performing the target detection task

  3. Virtual reality and hallucination: a technoetic perspective

    NASA Astrophysics Data System (ADS)

    Slattery, Diana R.

    2008-02-01

    Virtual Reality (VR), especially in a technologically focused discourse, is defined by a class of hardware and software, among them head-mounted displays (HMDs), navigation and pointing devices; and stereoscopic imaging. This presentation examines the experiential aspect of VR. Putting "virtual" in front of "reality" modifies the ontological status of a class of experience-that of "reality." Reality has also been modified [by artists, new media theorists, technologists and philosophers] as augmented, mixed, simulated, artificial, layered, and enhanced. Modifications of reality are closely tied to modifications of perception. Media theorist Roy Ascott creates a model of three "VR's": Verifiable Reality, Virtual Reality, and Vegetal (entheogenically induced) Reality. The ways in which we shift our perceptual assumptions, create and verify illusions, and enter "the willing suspension of disbelief" that allows us entry into imaginal worlds is central to the experience of VR worlds, whether those worlds are explicitly representational (robotic manipulations by VR) or explicitly imaginal (VR artistic creations). The early rhetoric surrounding VR was interwoven with psychedelics, a perception amplified by Timothy Leary's presence on the historic SIGGRAPH panel, and the Wall Street Journal's tag of VR as "electronic LSD." This paper discusses the connections-philosophical, social-historical, and psychological-perceptual between these two domains.

  4. Impact of a virtual reality-based intervention on motor performance and balance of a child with cerebral palsy: a case study

    PubMed Central

    Pavão, Silvia Leticia; Arnoni, Joice Luiza Bruno; de Oliveira, Alyne Kalyane Câmara; Rocha, Nelci Adriana Cicuto Ferreira

    2014-01-01

    OBJECTIVE: To verify the effect of an intervention protocol using virtual reality (VR) on the motor performance and balance of a child with cerebral palsy (CP). CASE DESCRIPTION: To comply with the proposed objectives, a 7-year old child with spastic hemiplegic cerebral palsy (CP), GMFCS level I, was submitted to a physiotherapy intervention protocol of 12 45-minute sessions, twice a week, using virtual reality-based therapy. The protocol used a commercially-available console (XBOX(r)360 Kinect(r)) able to track and reproduce body movements on a screen. Prior to the intervention protocol, the child was evaluated using the Motor Development Scale (MDS) and the Pediatric Balance Scale (PBS) in order to assess motor development and balance, respectively. Two baseline assessments with a 2-week interval between each other were carried out for each tool. Then, the child was re-evaluated after the twelfth session. The results showed no changes in the two baseline scores. After the intervention protocol, the child improved his scores in both tools used: the PBS score increased by 3 points, reaching the maximal score, and the MDS increased from a much inferior motor performance to just an inferior motor performance. COMMENTS: The evidence presented in this case supports the use of virtual reality as a promising tool to be incorporated into the rehabilitation process of patients with neuromotor dysfunction. PMID:25511004

  5. Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback.

    PubMed

    Alaraj, Ali; Luciano, Cristian J; Bailey, Daniel P; Elsenousi, Abdussalam; Roitberg, Ben Z; Bernardo, Antonio; Banerjee, P Pat; Charbel, Fady T

    2015-03-01

    With the decrease in the number of cerebral aneurysms treated surgically and the increase of complexity of those treated surgically, there is a need for simulation-based tools to teach future neurosurgeons the operative techniques of aneurysm clipping. To develop and evaluate the usefulness of a new haptic-based virtual reality simulator in the training of neurosurgical residents. A real-time sensory haptic feedback virtual reality aneurysm clipping simulator was developed using the ImmersiveTouch platform. A prototype middle cerebral artery aneurysm simulation was created from a computed tomographic angiogram. Aneurysm and vessel volume deformation and haptic feedback are provided in a 3-dimensional immersive virtual reality environment. Intraoperative aneurysm rupture was also simulated. Seventeen neurosurgery residents from 3 residency programs tested the simulator and provided feedback on its usefulness and resemblance to real aneurysm clipping surgery. Residents thought that the simulation would be useful in preparing for real-life surgery. About two-thirds of the residents thought that the 3-dimensional immersive anatomic details provided a close resemblance to real operative anatomy and accurate guidance for deciding surgical approaches. They thought the simulation was useful for preoperative surgical rehearsal and neurosurgical training. A third of the residents thought that the technology in its current form provided realistic haptic feedback for aneurysm surgery. Neurosurgical residents thought that the novel immersive VR simulator is helpful in their training, especially because they do not get a chance to perform aneurysm clippings until late in their residency programs.

  6. HTC Vive MeVisLab integration via OpenVR for medical applications

    PubMed Central

    Egger, Jan; Gall, Markus; Wallner, Jürgen; Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter

    2017-01-01

    Virtual Reality, an immersive technology that replicates an environment via computer-simulated reality, gets a lot of attention in the entertainment industry. However, VR has also great potential in other areas, like the medical domain, Examples are intervention planning, training and simulation. This is especially of use in medical operations, where an aesthetic outcome is important, like for facial surgeries. Alas, importing medical data into Virtual Reality devices is not necessarily trivial, in particular, when a direct connection to a proprietary application is desired. Moreover, most researcher do not build their medical applications from scratch, but rather leverage platforms like MeVisLab, MITK, OsiriX or 3D Slicer. These platforms have in common that they use libraries like ITK and VTK, and provide a convenient graphical interface. However, ITK and VTK do not support Virtual Reality directly. In this study, the usage of a Virtual Reality device for medical data under the MeVisLab platform is presented. The OpenVR library is integrated into the MeVisLab platform, allowing a direct and uncomplicated usage of the head mounted display HTC Vive inside the MeVisLab platform. Medical data coming from other MeVisLab modules can directly be connected per drag-and-drop to the Virtual Reality module, rendering the data inside the HTC Vive for immersive virtual reality inspection. PMID:28323840

  7. HTC Vive MeVisLab integration via OpenVR for medical applications.

    PubMed

    Egger, Jan; Gall, Markus; Wallner, Jürgen; Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter

    2017-01-01

    Virtual Reality, an immersive technology that replicates an environment via computer-simulated reality, gets a lot of attention in the entertainment industry. However, VR has also great potential in other areas, like the medical domain, Examples are intervention planning, training and simulation. This is especially of use in medical operations, where an aesthetic outcome is important, like for facial surgeries. Alas, importing medical data into Virtual Reality devices is not necessarily trivial, in particular, when a direct connection to a proprietary application is desired. Moreover, most researcher do not build their medical applications from scratch, but rather leverage platforms like MeVisLab, MITK, OsiriX or 3D Slicer. These platforms have in common that they use libraries like ITK and VTK, and provide a convenient graphical interface. However, ITK and VTK do not support Virtual Reality directly. In this study, the usage of a Virtual Reality device for medical data under the MeVisLab platform is presented. The OpenVR library is integrated into the MeVisLab platform, allowing a direct and uncomplicated usage of the head mounted display HTC Vive inside the MeVisLab platform. Medical data coming from other MeVisLab modules can directly be connected per drag-and-drop to the Virtual Reality module, rendering the data inside the HTC Vive for immersive virtual reality inspection.

  8. Outcomes of a virtual-reality simulator-training programme on basic surgical skills in robot-assisted laparoscopic surgery.

    PubMed

    Phé, Véronique; Cattarino, Susanna; Parra, Jérôme; Bitker, Marc-Olivier; Ambrogi, Vanina; Vaessen, Christophe; Rouprêt, Morgan

    2017-06-01

    The utility of the virtual-reality robotic simulator in training programmes has not been clearly evaluated. Our aim was to evaluate the impact of a virtual-reality robotic simulator-training programme on basic surgical skills. A simulator-training programme in robotic surgery, using the da Vinci Skills Simulator, was evaluated in a population including junior and seasoned surgeons, and non-physicians. Their performances on robotic dots and suturing-skin pod platforms before and after virtual-simulation training were rated anonymously by surgeons experienced in robotics. 39 participants were enrolled: 14 medical students and residents in surgery, 14 seasoned surgeons, 11 non-physicians. Junior and seasoned surgeons' performances on platforms were not significantly improved after virtual-reality robotic simulation in any of the skill domains, in contrast to non-physicians. The benefits of virtual-reality simulator training on several tasks to basic skills in robotic surgery were not obvious among surgeons in our initial and early experience with the simulator. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. A High-Fidelity Virtual Environment for the Study of Paranoia

    PubMed Central

    Broome, Matthew R.; Zányi, Eva; Selmanovic, Elmedin; Czanner, Silvester; Birchwood, Max; Chalmers, Alan; Singh, Swaran P.

    2013-01-01

    Psychotic disorders carry social and economic costs for sufferers and society. Recent evidence highlights the risk posed by urban upbringing and social deprivation in the genesis of paranoia and psychosis. Evidence based psychological interventions are often not offered because of a lack of therapists. Virtual reality (VR) environments have been used to treat mental health problems. VR may be a way of understanding the aetiological processes in psychosis and increasing psychotherapeutic resources for its treatment. We developed a high-fidelity virtual reality scenario of an urban street scene to test the hypothesis that virtual urban exposure is able to generate paranoia to a comparable or greater extent than scenarios using indoor scenes. Participants (n = 32) entered the VR scenario for four minutes, after which time their degree of paranoid ideation was assessed. We demonstrated that the virtual reality scenario was able to elicit paranoia in a nonclinical, healthy group and that an urban scene was more likely to lead to higher levels of paranoia than a virtual indoor environment. We suggest that this study offers evidence to support the role of exposure to factors in the urban environment in the genesis and maintenance of psychotic experiences and symptoms. The realistic high-fidelity street scene scenario may offer a useful tool for therapists. PMID:24455255

  10. A high-fidelity virtual environment for the study of paranoia.

    PubMed

    Broome, Matthew R; Zányi, Eva; Hamborg, Thomas; Selmanovic, Elmedin; Czanner, Silvester; Birchwood, Max; Chalmers, Alan; Singh, Swaran P

    2013-01-01

    Psychotic disorders carry social and economic costs for sufferers and society. Recent evidence highlights the risk posed by urban upbringing and social deprivation in the genesis of paranoia and psychosis. Evidence based psychological interventions are often not offered because of a lack of therapists. Virtual reality (VR) environments have been used to treat mental health problems. VR may be a way of understanding the aetiological processes in psychosis and increasing psychotherapeutic resources for its treatment. We developed a high-fidelity virtual reality scenario of an urban street scene to test the hypothesis that virtual urban exposure is able to generate paranoia to a comparable or greater extent than scenarios using indoor scenes. Participants (n = 32) entered the VR scenario for four minutes, after which time their degree of paranoid ideation was assessed. We demonstrated that the virtual reality scenario was able to elicit paranoia in a nonclinical, healthy group and that an urban scene was more likely to lead to higher levels of paranoia than a virtual indoor environment. We suggest that this study offers evidence to support the role of exposure to factors in the urban environment in the genesis and maintenance of psychotic experiences and symptoms. The realistic high-fidelity street scene scenario may offer a useful tool for therapists.

  11. Virtual reality games for movement rehabilitation in neurological conditions: how do we meet the needs and expectations of the users?

    PubMed

    Lewis, Gwyn N; Rosie, Juliet A

    2012-01-01

    To review quantitative and qualitative studies that have examined the users' response to virtual reality game-based interventions in people with movement disorders associated with chronic neurological conditions. We aimed to determine key themes that influenced users' enjoyment and engagement in the games and develop suggestions as to how future systems could best address their needs and expectations. There were a limited number of studies that evaluated user opinions. From those found, seven common themes emerged: technology limitations, user control and therapist assistance, the novel physical and cognitive challenge, feedback, social interaction, game purpose and expectations, and the virtual environments. Our key recommendations derived from the review were to avoid technology failure, maintain overt therapeutic principles within the games, encompass progression to promote continuing physical and cognitive challenge, and to provide feedback that is easily and readily associated with success. While there have been few studies that have evaluated the users' perspective of virtual rehabilitation games, our findings indicate that canvassing these experiences provides valuable information on the needs of the intended users. Incorporating our recommendations may enhance the efficacy of future systems to optimize the rehabilitation benefits of virtual reality games.

  12. Application of virtual reality GIS in urban planning: an example in Huangdao district

    NASA Astrophysics Data System (ADS)

    Han, Yong; Qiao, Xin; Sun, Weichen; Zhang, Litao

    2007-06-01

    As an important development direction of GIS, Virtual Reality GIS was founded in 1950s. After 1990s, due to the fast development of its theory and the computer technology, Virtual Reality has been applied to many fields: military, aerospace, design, manufactory, information management, business, construction, city management, medical, education, etc.. The most famous project is the Virtual Los Angeles implemented by the Urban Simulation Team (UST) of UCLA. The main focus of the UST is a long-term effort to build a real-time Virtual Reality model of the entire Los Angeles basin for use by architects, urban planners, emergency response teams, and the government entities. When completed, the entire Virtual L.A. model will cover an area well in excess of 10000 square miles and will elegantly scale from satellite images to street level views accurate enough to allow the signs in the window of the shops and the graffiti on the walls to be legible. Till now, the virtual L.A. has been applied to urban environments and design analysis, transportation studies, historic reconstruction and education, etc. Compared to the early development abroad, the development of Virtual Reality GIS in China is relatively late. It is researched in some universities in early years. But recently, it has been attended by the populace and been used in many social fields: urban planning, environmental protection, historic protection and recovery, real estate, tourism, education etc.. The application of Virtual Reality in urban planning of Huangdao District, Qingdao City is introduced in this paper.

  13. Game-Based Learning in an OpenSim-Supported Virtual Environment on Perceived Motivational Quality of Learning

    ERIC Educational Resources Information Center

    Kim, Heesung; Ke, Fengfeng; Paek, Insu

    2017-01-01

    This experimental study was intended to examine whether game-based learning (GBL) that encompasses four particular game characteristics (challenges, a storyline, immediate rewards and the integration of game-play with learning content) in an OpenSimulator-supported virtual reality learning environment can improve perceived motivational quality of…

  14. Virtual Reality: Real Promises and False Expectations.

    ERIC Educational Resources Information Center

    Homan, Willem J.

    1994-01-01

    Examines virtual reality (VR), and discusses the dilemma of defining VR, the limitations of the current technology, and the implications of VR for education. Highlights include a VR experience; human factors and the interface; and altered reality versus VR. (Author/AEF)

  15. Virtual button interface

    DOEpatents

    Jones, Jake S.

    1999-01-01

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch.

  16. Virtual Reality: The Future of Animated Virtual Instructor, the Technology and Its Emergence to a Productive E-Learning Environment.

    ERIC Educational Resources Information Center

    Jiman, Juhanita

    This paper discusses the use of Virtual Reality (VR) in e-learning environments where an intelligent three-dimensional (3D) virtual person plays the role of an instructor. With the existence of this virtual instructor, it is hoped that the teaching and learning in the e-environment will be more effective and productive. This virtual 3D animated…

  17. Mobile devices, Virtual Reality, Augmented Reality, and Digital Geoscience Education.

    NASA Astrophysics Data System (ADS)

    Crompton, H.; De Paor, D. G.; Whitmeyer, S. J.; Bentley, C.

    2016-12-01

    Mobile devices are playing an increasing role in geoscience education. Affordances include instructor-student communication and class management in large classrooms, virtual and augmented reality applications, digital mapping, and crowd-sourcing. Mobile technologies have spawned the sub field of mobile learning or m-learning, which is defined as learning across multiple contexts, through social and content interactions. Geoscientists have traditionally engaged in non-digital mobile learning via fieldwork, but digital devices are greatly extending the possibilities, especially for non-traditional students. Smartphones and tablets are the most common devices but smart glasses such as Pivothead enable live streaming of a first-person view (see for example, https://youtu.be/gWrDaYP5w58). Virtual reality headsets such as Google Cardboard create an immersive virtual field experience and digital imagery such as GigaPan and Structure from Motion enables instructors and/or students to create virtual specimens and outcrops that are sharable across the globe. Whereas virtual reality (VR) replaces the real world with a virtual representation, augmented reality (AR) overlays digital data on the live scene visible to the user in real time. We have previously reported on our use of the AR application called FreshAiR for geoscientific "egg hunts." The popularity of Pokémon Go demonstrates the potential of AR for mobile learning in the geosciences.

  18. Minimally invasive superficial temporal artery to middle cerebral artery bypass through a minicraniotomy: benefit of three-dimensional virtual reality planning using magnetic resonance angiography.

    PubMed

    Fischer, Gerrit; Stadie, Axel; Schwandt, Eike; Gawehn, Joachim; Boor, Stephan; Marx, Juergen; Oertel, Joachim

    2009-05-01

    The aim of the authors in this study was to introduce a minimally invasive superficial temporal artery to middle cerebral artery (STA-MCA) bypass surgery by the preselection of appropriate donor and recipient branches in a 3D virtual reality setting based on 3-T MR angiography data. An STA-MCA anastomosis was performed in each of 5 patients. Before surgery, 3-T MR imaging was performed with 3D magnetization-prepared rapid acquisition gradient echo sequences, and a high-resolution CT 3D dataset was obtained. Image fusion and the construction of a 3D virtual reality model of each patient were completed. In the 3D virtual reality setting, the skin surface, skull surface, and extra- and intracranial arteries as well as the cortical brain surface could be displayed in detail. The surgical approach was successfully visualized in virtual reality. The anatomical relationship of structures of interest could be evaluated based on different values of translucency in all cases. The closest point of the appropriate donor branch of the STA and the most suitable recipient M(3) or M(4) segment could be calculated with high accuracy preoperatively and determined as the center point of the following minicraniotomy. Localization of the craniotomy and the skin incision on top of the STA branch was calculated with the system, and these data were transferred onto the patient's skin before surgery. In all cases the preselected arteries could be found intraoperatively in exact agreement with the preoperative planning data. Successful extracranial-intracranial bypass surgery was achieved without stereotactic neuronavigation via a preselected minimally invasive approach in all cases. Subsequent enlargement of the craniotomy was not necessary. Perioperative complications were not observed. All bypasses remained patent on follow-up. With the application of a 3D virtual reality planning system, the extent of skin incision and tissue trauma as well as the size of the bone flap was minimal. The closest point of the appropriate donor branch of the STA and the most suitable recipient M(3) or M(4) segment could be preoperatively determined with high accuracy so that the STA-MCA bypass could be safely and effectively performed through an optimally located minicraniotomy with a mean diameter of 22 mm without the need for stereotactic guidance.

  19. Evaluating Virtual Reality and Augmented Reality Training for Industrial Maintenance and Assembly Tasks

    ERIC Educational Resources Information Center

    Gavish, Nirit; Gutiérrez, Teresa; Webel, Sabine; Rodríguez, Jorge; Peveri, Matteo; Bockholt, Uli; Tecchia, Franco

    2015-01-01

    The current study evaluated the use of virtual reality (VR) and augmented reality (AR) platforms, developed within the scope of the SKILLS Integrated Project, for industrial maintenance and assembly (IMA) tasks training. VR and AR systems are now widely regarded as promising training platforms for complex and highly demanding IMA tasks. However,…

  20. Simulation-Based Training for Colonoscopy

    PubMed Central

    Preisler, Louise; Svendsen, Morten Bo Søndergaard; Nerup, Nikolaj; Svendsen, Lars Bo; Konge, Lars

    2015-01-01

    Abstract The aim of this study was to create simulation-based tests with credible pass/fail standards for 2 different fidelities of colonoscopy models. Only competent practitioners should perform colonoscopy. Reliable and valid simulation-based tests could be used to establish basic competency in colonoscopy before practicing on patients. Twenty-five physicians (10 consultants with endoscopic experience and 15 fellows with very little endoscopic experience) were tested on 2 different simulator models: a virtual-reality simulator and a physical model. Tests were repeated twice on each simulator model. Metrics with discriminatory ability were identified for both modalities and reliability was determined. The contrasting-groups method was used to create pass/fail standards and the consequences of these were explored. The consultants significantly performed faster and scored higher than the fellows on both the models (P < 0.001). Reliability analysis showed Cronbach α = 0.80 and 0.87 for the virtual-reality and the physical model, respectively. The established pass/fail standards failed one of the consultants (virtual-reality simulator) and allowed one fellow to pass (physical model). The 2 tested simulations-based modalities provided reliable and valid assessments of competence in colonoscopy and credible pass/fail standards were established for both the tests. We propose to use these standards in simulation-based training programs before proceeding to supervised training on patients. PMID:25634177

  1. A Surgical Virtual Reality Simulator Distinguishes Between Expert Gynecologic Laparoscopic Surgeons and Perinatologists

    PubMed Central

    von Dadelszen, Peter; Allaire, Catherine

    2011-01-01

    Background: Concern regarding the quality of surgical training in obstetrics and gynecology residency programs is focusing attention on competency based education. Because open surgical skills cannot necessarily be translated into laparoscopic skills and with minimally invasive surgery becoming standard in operative gynecology, the discrepancy in training between obstetrics and gynecology will widen. Training on surgical simulators with virtual reality may improve surgical skills. However, before incorporation into training programs for gynecology residents the validity of such instruments needs to first be established. We sought to prove the construct validity of a virtual reality laparoscopic simulator, the SurgicalSimTM, by showing its ability to distinguish between surgeons with different laparoscopic experience. Methods: Eleven gynecologic surgeons (experts) and 11 perinatologists (controls) completed 3 tasks on the simulator, and 10 performance parameters were compared. Results: The experts performed faster, more efficiently, and with fewer errors, proving the construct validity of the SurgicalSim. Conclusions: Laparoscopic virtual reality simulators can measure relevant surgical skills and so distinguish between subjects having different skill levels. Hence, these simulators could be integrated into gynecology resident endoscopic training and utilized for objective assessment. Second, the skills required for competency in obstetrics cannot necessarily be utilized for better performance in laparoscopic gynecology. PMID:21985726

  2. Virtual reality: a proposal for pelvic floor muscle training.

    PubMed

    Botelho, Simone; Martinho, Natalia Miguel; Silva, Valéria Regina; Marques, Joseane; Carvalho, Leonardo C; Riccetto, Cássio

    2015-11-01

    This video's proposal was to present one of the pelvic floor muscle (PFM) training programs, used in our research, that we designed as a virtual reality intervention protocol and investigated its effects on PFM contractility. Two clinical, controlled and prospective studies were conducted, one with 19 nulliparous women without urinary symptoms, who were evaluated by both electromyography and digital palpation (DP) and another with 27 postmenopausal women with mixed urinary symptoms (assessed by both ICIQ UI-SF and ICIQ-OAB), evaluated by vaginal dynamometry and DP, with a total of 46 women in both studies. This protocol was designed so that the participant would play a video game, seated on a pressure base platform, while commanding it through her pelvic movements. Using a virtual reality game, five activities were performed during 30 min, twice a week, with a total of 10 sessions. A significant increase in PFM strength was found in both the nulliparous (p = 0.0001) and the postmenopausal (p = 0.0001) groups of women, as ascertained by DP. A significant increase in postmenopausal women's muscle strength and endurance assessed by dynamometry (p = 0.05) and a concomitant decrease in their urinary symptoms, were observed. This virtual reality program promoted an increase in PFM contractility and a decrease in postmenopausal urinary symptoms.

  3. Comprehensive modelling and simulation of cylindrical nanoparticles manipulation by using a virtual reality environment.

    PubMed

    Korayem, Moharam Habibnejad; Hoshiar, Ali Kafash; Ghofrani, Maedeh

    2017-08-01

    With the expansion of nanotechnology, robots based on atomic force microscope (AFM) have been widely used as effective tools for displacing nanoparticles and constructing nanostructures. One of the most limiting factors in AFM-based manipulation procedures is the inability of simultaneously observing the controlled pushing and displacing of nanoparticles while performing the operation. To deal with this limitation, a virtual reality environment has been used in this paper for observing the manipulation operation. In the simulations performed in this paper, first, the images acquired by the atomic force microscope have been processed and the positions and dimensions of nanoparticles have been determined. Then, by dynamically modelling the transfer of nanoparticles and simulating the critical force-time diagrams, a controlled displacement of nanoparticles has been accomplished. The simulations have been further developed for the use of rectangular, V-shape and dagger-shape cantilevers. The established virtual reality environment has made it possible to simulate the manipulation of biological particles in a liquid medium. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The future of the CAVE

    NASA Astrophysics Data System (ADS)

    Defanti, Thomas A.; Acevedo, Daniel; Ainsworth, Richard A.; Brown, Maxine D.; Cutchin, Steven; Dawe, Gregory; Doerr, Kai-Uwe; Johnson, Andrew; Knox, Chris; Kooima, Robert; Kuester, Falko; Leigh, Jason; Long, Lance; Otto, Peter; Petrovic, Vid; Ponto, Kevin; Prudhomme, Andrew; Rao, Ramesh; Renambot, Luc; Sandin, Daniel J.; Schulze, Jurgen P.; Smarr, Larry; Srinivasan, Madhu; Weber, Philip; Wickham, Gregory

    2011-03-01

    The CAVE, a walk-in virtual reality environment typically consisting of 4-6 3 m-by-3 m sides of a room made of rear-projected screens, was first conceived and built in 1991. In the nearly two decades since its conception, the supporting technology has improved so that current CAVEs are much brighter, at much higher resolution, and have dramatically improved graphics performance. However, rear-projection-based CAVEs typically must be housed in a 10 m-by-10 m-by-10 m room (allowing space behind the screen walls for the projectors), which limits their deployment to large spaces. The CAVE of the future will be made of tessellated panel displays, eliminating the projection distance, but the implementation of such displays is challenging. Early multi-tile, panel-based, virtual-reality displays have been designed, prototyped, and built for the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia by researchers at the University of California, San Diego, and the University of Illinois at Chicago. New means of image generation and control are considered key contributions to the future viability of the CAVE as a virtual-reality device.

  5. [Effectiveness of a programme based on a virtual reality game for cognitive enhancement in schizophrenia].

    PubMed

    López-Martín, Olga; Segura Fragoso, Antonio; Rodríguez Hernández, Marta; Dimbwadyo Terrer, Iris; Polonio-López, Begoña

    2016-01-01

    To evaluate the effectiveness of a programme based on a virtual reality game to improve cognitive domains in patients with schizophrenia. A randomized controlled trial was conducted in 40 patients with schizophrenia, 20 in the experimental group and 20 in the control group. The experimental group received 10 sessions with Nintendo Wii(®) for 5 weeks, 50 minutes/session, 2 days/week in addition to conventional treatment. The control group received conventional treatment only. Statistically significant differences in the T-Score were found in 5 of the 6 cognitive domains assessed: processing speed (F=12.04, p=0.001), attention/vigilance (F=12.75, p=0.001), working memory (F=18.86, p <0.01), verbal learning (F=7.6, p=0.009), visual learning (F=3.6, p=0.064), and reasoning and problem solving (F=11.08, p=0.002). Participation in virtual reality interventions aimed at cognitive training have great potential for significant gains in different cognitive domains assessed in patients with schizophrenia. Copyright © 2015 SESPAS. Published by Elsevier Espana. All rights reserved.

  6. A Virtual Reality avatar interaction (VRai) platform to assess residual executive dysfunction in active military personnel with previous mild traumatic brain injury: proof of concept.

    PubMed

    Robitaille, Nicolas; Jackson, Philip L; Hébert, Luc J; Mercier, Catherine; Bouyer, Laurent J; Fecteau, Shirley; Richards, Carol L; McFadyen, Bradford J

    2017-10-01

    This proof of concept study tested the ability of a dual task walking protocol using a recently developed avatar-based virtual reality (VR) platform to detect differences between military personnel post mild traumatic brain injury (mTBI) and healthy controls. The VR platform coordinated motion capture, an interaction and rendering system, and a projection system to present first (participant-controlled) and third person avatars within the context of a specific military patrol scene. A divided attention task was also added. A healthy control group was compared to a group with previous mTBI (both groups comprised of six military personnel) and a repeated measures ANOVA tested for differences between conditions and groups based on recognition errors, walking speed and fluidity and obstacle clearance. The VR platform was well tolerated by both groups. Walking fluidity was degraded for the control group within the more complex navigational dual tasking involving avatars, and appeared greatest in the dual tasking with the interacting avatar. This navigational behaviour was not seen in the mTBI group. The present findings show proof of concept for using avatars, particularly more interactive avatars, to expose differences in executive functioning when applying context-specific protocols (here for the military). Implications for rehabilitation Virtual reality provides a means to control context-specific factors for assessment and intervention. Adding human interaction and agency through avatars increases the ecologic nature of the virtual environment. Avatars in the present application of the Virtual Reality avatar interaction platform appear to provide a better ability to reveal differences between trained, military personal with and without mTBI.

  7. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  8. Virtual reality and planetary exploration

    NASA Astrophysics Data System (ADS)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  9. Stroke rehabilitation at home using virtual reality, haptics and telemedicine.

    PubMed

    Rydmark, Martin; Broeren, Jörgen; Pascher, Ragnar

    2002-01-01

    The objective of this pilot study is to identify the level of difficulty in which subjects with left hemisphere damage in the acute phase after stroke can start practicing in a virtual environment. Second, to test an application of Virtual Reality technology to existing occupational treatment methods in stroke rehabilitation and develop a platform for home rehabilitation controlled telemedically. The findings indicate that the system shows potential as an assessment and training device. The feasibility study setup is working well likewise the assessment method. Developing and increasing the complexity of the tasks must be based on the patient individual neurology, and that the cinematic motion patterns of the patient's are the basis for exercise design.

  10. Virtual Reality for Sensorimotor Rehabilitation Post-Stroke: The Promise and Current State of the Field.

    PubMed

    Fluet, Gerard G; Deutsch, Judith E

    2013-03-01

    Developments over the past 2 years in virtual reality (VR) augmented sensorimotor rehabilitation of upper limb use and gait post-stroke were reviewed. Studies were included if they evaluated comparative efficacy between VR and standard of care, and or differences in VR delivery methods; and were CEBM (center for evidence based medicine) level 2 or higher. Eight upper limb and two gait studies were included and described using the following categories hardware (input and output), software (virtual task and feedback and presentation) intervention (progression and dose), and outcomes. Trends in the field were commented on, gaps in knowledge identified, and areas of future research and translation of VR to practice were suggested.

  11. Virtual reality 3D headset based on DMD light modulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the user’s own eye lens forms a real image on the user’s retina.

  12. Virtual reality in urban water management: communicating urban flooding with particle-based CFD simulations.

    PubMed

    Winkler, Daniel; Zischg, Jonatan; Rauch, Wolfgang

    2018-01-01

    For communicating urban flood risk to authorities and the public, a realistic three-dimensional visual display is frequently more suitable than detailed flood maps. Virtual reality could also serve to plan short-term flooding interventions. We introduce here an alternative approach for simulating three-dimensional flooding dynamics in large- and small-scale urban scenes by reaching out to computer graphics. This approach, denoted 'particle in cell', is a particle-based CFD method that is used to predict physically plausible results instead of accurate flow dynamics. We exemplify the approach for the real flooding event in July 2016 in Innsbruck.

  13. Generating Contextual Descriptions of Virtual Reality (VR) Spaces

    NASA Astrophysics Data System (ADS)

    Olson, D. M.; Zaman, C. H.; Sutherland, A.

    2017-12-01

    Virtual reality holds great potential for science communication, education, and research. However, interfaces for manipulating data and environments in virtual worlds are limited and idiosyncratic. Furthermore, speech and vision are the primary modalities by which humans collect information about the world, but the linking of visual and natural language domains is a relatively new pursuit in computer vision. Machine learning techniques have been shown to be effective at image and speech classification, as well as at describing images with language (Karpathy 2016), but have not yet been used to describe potential actions. We propose a technique for creating a library of possible context-specific actions associated with 3D objects in immersive virtual worlds based on a novel dataset generated natively in virtual reality containing speech, image, gaze, and acceleration data. We will discuss the design and execution of a user study in virtual reality that enabled the collection and the development of this dataset. We will also discuss the development of a hybrid machine learning algorithm linking vision data with environmental affordances in natural language. Our findings demonstrate that it is possible to develop a model which can generate interpretable verbal descriptions of possible actions associated with recognized 3D objects within immersive VR environments. This suggests promising applications for more intuitive user interfaces through voice interaction within 3D environments. It also demonstrates the potential to apply vast bodies of embodied and semantic knowledge to enrich user interaction within VR environments. This technology would allow for applications such as expert knowledge annotation of 3D environments, complex verbal data querying and object manipulation in virtual spaces, and computer-generated, dynamic 3D object affordances and functionality during simulations.

  14. The effects of virtual reality-based bilateral arm training on hemiplegic children's upper limb motor skills.

    PubMed

    Do, Ji-Hye; Yoo, Eun-Young; Jung, Min-Ye; Park, Hae Yean

    2016-01-01

    Hemiplegic cerebral palsy is a neurological symptom appearing on the unilateral arm and leg of the body that causes affected upper/lower limb muscle weakening and dysesthesia and accompanies tetany and difficulties in postural control due to abnormal muscle tone, and difficulties in body coordination. The purpose of this study was to examine the impact of virtual reality-based bilateral arm training on the motor skills of children with hemiplegic cerebral palsy, in terms of their upper limb motor skills on the affected side, as well as their bilateral coordination ability. The research subjects were three children who were diagnosed with hemiplegic cerebral palsy. The research followed an ABA design, which was a single-subject experimental design. The procedure consisted of a total of 20 sessions, including four during the baseline period (A1), 12 during the intervention period (B), and four during the baseline regression period (A2), For the independent variable bilateral arm training based on virtual reality, Nintendo Wii game was played for 30 minutes in each of the 12 sessions. For the dependent variables of upper limb motor skills on the affected side and bilateral coordination ability, a Wolf Motor Function Test (WMFT) was carried out for each session and the Pediatric Motor Activity Log (PMAL) was measured before and after the intervention, as well as after the baseline regression period. To test bilateral coordination ability, shooting baskets in basketball with both hands and moving large light boxes were carried out under operational definitions, with the number of shots and time needed to move boxes measured. The results were presented using visual graphs and bar graphs. The study's results indicated that after virtual reality-based bilateral arm training, improvement occurred in upper limb motor skills on the affected sides, and in bilateral coordination ability, for all of the research subjects. Measurements of the effects of sustained therapy after completion of the intervention, during the baseline regression period, revealed that upper limb motor skills on the affected side and bilateral coordination ability were better than in the baseline period for all subjects. This study confirmed that for children with hemiplegic with cerebral palsy, bilateral arm training based on virtual reality can be an effective intervention method for enhancing the upper limb motor skills on the affected side, as well as bilateral coordination ability.

  15. Virtual Reality and Simulation in Neurosurgical Training.

    PubMed

    Bernardo, Antonio

    2017-10-01

    Recent biotechnological advances, including three-dimensional microscopy and endoscopy, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging, have continued to mold the surgeon-computer relationship. For developing neurosurgeons, such tools can reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills. We explore the current and future roles and application of virtual reality and simulation in neurosurgical training. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Virtual reality 3D headset based on DMD light modulators

    NASA Astrophysics Data System (ADS)

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    2014-06-01

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micromirror devices (DMD). Current methods for presenting information for virtual reality are focused on either polarizationbased modulators such as liquid crystal on silicon (LCoS) devices, or miniature LCD or LED displays often using lenses to place the image at infinity. LCoS modulators are an area of active research and development, and reduce the amount of viewing light by 50% due to the use of polarization. Viewable LCD or LED screens may suffer low resolution, cause eye fatigue, and exhibit a "screen door" or pixelation effect due to the low pixel fill factor. Our approach leverages a mature technology based on silicon micro mirrors delivering 720p resolution displays in a small form-factor with high fill factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high-definition resolution and low power consumption, and many of the design methods developed for DMD projector applications can be adapted to display use. Potential applications include night driving with natural depth perception, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design concept is described in which light from the DMD is imaged to infinity and the user's own eye lens forms a real image on the user's retina resulting in a virtual retinal display.

  17. Laparoscopic baseline ability assessment by virtual reality.

    PubMed

    Madan, Atul K; Frantzides, Constantine T; Sasso, Lisa M

    2005-02-01

    Assessment of any surgical skill is time-consuming and difficult. Currently, there are no accepted metrics for most surgical skills, especially laparoscopic skills. Virtual reality has been utilized for laparoscopic training of surgical residents. Our hypothesis is that this technology can be utilized for laparoscopic ability metrics. This study involved medical students with no previous laparoscopic experience. All students were taken into a porcine laboratory in order to assess two operative tasks (measuring a piece of bowel and placing a piece of bowel into a laparoscopic bag). Then they were taken into an inanimate lab with a Minimally Invasive Surgery Trainer-Virtual Reality (MIST-VR). Each student repeatedly performed one task (placing a virtual reality ball into a receptacle). The students' scores and times from the animate lab were compared with average economy of movement and times from the MIST-VR. The MIST-VR scored both hands individually. Thirty-two first- and second-year medical students were included in the study. There was statistically significant (P < 0.05) correlation between 11 of 16 possible relationships between the virtual reality trainer and operative tasks. While not all of the possible relationships demonstrated statistically significant correlation, the majority of the possible relationships demonstrated statistically significant correlation. Virtual reality may be an avenue for measuring laparoscopic surgical ability.

  18. Effects of virtual reality training using Nintendo Wii and treadmill walking exercise on balance and walking for stroke patients.

    PubMed

    Bang, Yo-Soon; Son, Kyung Hyun; Kim, Hyun Jin

    2016-11-01

    [Purpose] The purpose of this study is to investigate the effects of virtual reality training using Nintendo Wii on balance and walking for stroke patients. [Subjects and Methods] Forty stroke patients with stroke were randomly divided into two exercise program groups: virtual reality training (n=20) and treadmill (n=20). The subjects underwent their 40-minute exercise program three times a week for eight weeks. Their balance and walking were measured before and after the complete program. We measured the left/right weight-bearing and the anterior/posterior weight-bearing for balance, as well as stance phase, swing phase, and cadence for walking. [Results] For balance, both groups showed significant differences in the left/right and anterior/posterior weight-bearing, with significant post-program differences between the groups. For walking, there were significant differences in the stance phase, swing phase, and cadence of the virtual reality training group. [Conclusion] The results of this study suggest that virtual reality training providing visual feedback may enable stroke patients to directly adjust their incorrect weight center and shift visually. Virtual reality training may be appropriate for patients who need improved balance and walking ability by inducing their interest for them to perform planned exercises on a consistent basis.

  19. Effects of virtual reality training using Nintendo Wii and treadmill walking exercise on balance and walking for stroke patients

    PubMed Central

    Bang, Yo-Soon; Son, Kyung Hyun; Kim, Hyun Jin

    2016-01-01

    [Purpose] The purpose of this study is to investigate the effects of virtual reality training using Nintendo Wii on balance and walking for stroke patients. [Subjects and Methods] Forty stroke patients with stroke were randomly divided into two exercise program groups: virtual reality training (n=20) and treadmill (n=20). The subjects underwent their 40-minute exercise program three times a week for eight weeks. Their balance and walking were measured before and after the complete program. We measured the left/right weight-bearing and the anterior/posterior weight-bearing for balance, as well as stance phase, swing phase, and cadence for walking. [Results] For balance, both groups showed significant differences in the left/right and anterior/posterior weight-bearing, with significant post-program differences between the groups. For walking, there were significant differences in the stance phase, swing phase, and cadence of the virtual reality training group. [Conclusion] The results of this study suggest that virtual reality training providing visual feedback may enable stroke patients to directly adjust their incorrect weight center and shift visually. Virtual reality training may be appropriate for patients who need improved balance and walking ability by inducing their interest for them to perform planned exercises on a consistent basis. PMID:27942130

  20. A usability assessment on a virtual reality system for panic disorder treatment

    NASA Astrophysics Data System (ADS)

    Lee, Jaelin; Kawai, Takashi; Yoshida, Nahoko; Izawa, Shuhei; Nomura, Shinobu; Eames, Douglas; Kaiya, Hisanobu

    2008-02-01

    The authors have developed a virtual reality exposure system that reflects the Japanese culture and environment. Concretely, the system focuses on the subway environment, which is the environment most patients receiving treatment for panic disorder at hospitals in Tokyo, Japan tend to avoid. The system is PC based and features realistic video images and highly interactive functionality. In particular, the system enables instant transformation of the virtual space and allows situations to be freely customized according to the condition and symptoms expressed by each patient. Positive results achieved in therapy assessments aimed at patients with panic disorder accompanying agoraphobia indicate the possibility of indoor treatment. Full utilization of the functionality available requires that the interactive functions be easily operable. Accordingly, there appears to be a need for usability testing aimed at determining whether or not a therapist can operate the system naturally while focusing fully on treatment. In this paper, the configuration of the virtual reality exposure system focusing on the subway environment is outlined. Further, the results of usability tests aimed at assessing how naturally it can be operated while focusing fully on treatment are described.

  1. A Physiologically Informed Virtual Reality Based Social Communication System for Individuals with Autism

    PubMed Central

    Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan

    2014-01-01

    Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components of conversation based on (1) performance alone or (2) the composite effect of performance and physiological metrics of predicted engagement (e.g., gaze pattern, pupil dilation, blink rate). Participants showed improved performance and looking pattern within the physiologically sensitive system as compared to the performance based system. This suggests that physiologically informed technologies may have the potential of being an effective tool in the hands of interventionists. PMID:25261247

  2. Virtual reality triage training provides a viable solution for disaster-preparedness.

    PubMed

    Andreatta, Pamela B; Maslowski, Eric; Petty, Sean; Shim, Woojin; Marsh, Michael; Hall, Theodore; Stern, Susan; Frankel, Jen

    2010-08-01

    The objective of this study was to compare the relative impact of two simulation-based methods for training emergency medicine (EM) residents in disaster triage using the Simple Triage and Rapid Treatment (START) algorithm, full-immersion virtual reality (VR), and standardized patient (SP) drill. Specifically, are there differences between the triage performances and posttest results of the two groups, and do both methods differentiate between learners of variable experience levels? Fifteen Postgraduate Year 1 (PGY1) to PGY4 EM residents were randomly assigned to two groups: VR or SP. In the VR group, the learners were effectively surrounded by a virtual mass disaster environment projected on four walls, ceiling, and floor and performed triage by interacting with virtual patients in avatar form. The second group performed likewise in a live disaster drill using SP victims. Setting and patient presentations were identical between the two modalities. Resident performance of triage during the drills and knowledge of the START triage algorithm pre/post drill completion were assessed. Analyses included descriptive statistics and measures of association (effect size). The mean pretest scores were similar between the SP and VR groups. There were no significant differences between the triage performances of the VR and SP groups, but the data showed an effect in favor of the SP group performance on the posttest. Virtual reality can provide a feasible alternative for training EM personnel in mass disaster triage, comparing favorably to SP drills. Virtual reality provides flexible, consistent, on-demand training options, using a stable, repeatable platform essential for the development of assessment protocols and performance standards.

  3. Use of virtual reality gaming systems for children who are critically ill.

    PubMed

    Salem, Yasser; Elokda, Ahmed

    2014-01-01

    Children who are critically ill are frequently viewed as "too sick" to tolerate physical activity. As a result, these children often fail to develop strength or cardiovascular endurance as compared to typically developing children. Previous reports have shown that early participation in physical activity in is safe and feasible for patients who are critically ill and may result in a shorter length of stay and improved functional outcomes. The use of the virtual reality gaming systems has become a popular form of therapy for children with disabilities and has been supported by a growing body of evidence substantiating its effectiveness with this population. The use of the virtual reality gaming systems in pediatric rehabilitation provides the children with opportunity to participate in an exercise program that is fun, enjoyable, playful, and at the same time beneficial. The integration of those systems in rehabilitation of children who are critically ill is appealing and has the potential to offer the possibility of enhancing physical activities. The lack of training studies involving children who are critically ill makes it difficult to set guidelines on the recommended physical activities and virtual reality gaming systems that is needed to confer health benefits. Several considerations should be taken into account before recommended virtual reality gaming systems as a training program for children who are critically ill. This article highlighted guidelines, limitations and challenges that need to be considered when designing exercise program using virtual reality gaming systems for critically ill children. This information is helpful given the popular use of virtual reality gaming systems in rehabilitation, particularly in children who are critically ill.

  4. Relative Panoramic Camera Position Estimation for Image-Based Virtual Reality Networks in Indoor Environments

    NASA Astrophysics Data System (ADS)

    Nakagawa, M.; Akano, K.; Kobayashi, T.; Sekiguchi, Y.

    2017-09-01

    Image-based virtual reality (VR) is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS) positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.

  5. Controlled interaction: strategies for using virtual reality to study perception.

    PubMed

    Durgin, Frank H; Li, Zhi

    2010-05-01

    Immersive virtual reality systems employing head-mounted displays offer great promise for the investigation of perception and action, but there are well-documented limitations to most virtual reality systems. In the present article, we suggest strategies for studying perception/action interactions that try to depend on both scale-invariant metrics (such as power function exponents) and careful consideration of the requirements of the interactions under investigation. New data concerning the effect of pincushion distortion on the perception of surface orientation are presented, as well as data documenting the perception of dynamic distortions associated with head movements with uncorrected optics. A review of several successful uses of virtual reality to study the interaction of perception and action emphasizes scale-free analysis strategies that can achieve theoretical goals while minimizing assumptions about the accuracy of virtual simulations.

  6. Heart rate response to fear conditioning and virtual reality in subthreshold PTSD.

    PubMed

    Roy, Michael J; Costanzo, Michelle E; Jovanovic, Tanja; Leaman, Suzanne; Taylor, Patricia; Norrholm, Seth D; Rizzo, Albert A

    2013-01-01

    Posttraumatic stress disorder (PTSD) is a significant health concern for U.S. military service members (SMs) returning from Afghanistan and Iraq. Early intervention to prevent chronic disability requires greater understanding of subthreshold PTSD symptoms, which are associated with impaired physical health, mental health, and risk for delayed onset PTSD. We report a comparison of physiologic responses for recently deployed SMs with high and low subthreshold PTSD symptoms, respectively, to a fear conditioning task and novel virtual reality paradigm (Virtual Iraq). The high symptom group demonstrated elevated heart rate (HR) response during fear conditioning. Virtual reality sequences evoked significant HR responses which predicted variance of the PTSD Checklist-Military Version self-report. Our results support the value of physiologic assessment during fear conditioning and combat-related virtual reality exposure as complementary tools in detecting subthreshold PTSD symptoms in Veterans.

  7. Virtual button interface

    DOEpatents

    Jones, J.S.

    1999-01-12

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.

  8. Virtual reality in radiology: virtual intervention

    NASA Astrophysics Data System (ADS)

    Harreld, Michael R.; Valentino, Daniel J.; Duckwiler, Gary R.; Lufkin, Robert B.; Karplus, Walter J.

    1995-04-01

    Intracranial aneurysms are the primary cause of non-traumatic subarachnoid hemorrhage. Morbidity and mortality remain high even with current endovascular intervention techniques. It is presently impossible to identify which aneurysms will grow and rupture, however hemodynamics are thought to play an important role in aneurysm development. With this in mind, we have simulated blood flow in laboratory animals using three dimensional computational fluid dynamics software. The data output from these simulations is three dimensional, complex and transient. Visualization of 3D flow structures with standard 2D display is cumbersome, and may be better performed using a virtual reality system. We are developing a VR-based system for visualization of the computed blood flow and stress fields. This paper presents the progress to date and future plans for our clinical VR-based intervention simulator. The ultimate goal is to develop a software system that will be able to accurately model an aneurysm detected on clinical angiography, visualize this model in virtual reality, predict its future behavior, and give insight into the type of treatment necessary. An associated database will give historical and outcome information on prior aneurysms (including dynamic, structural, and categorical data) that will be matched to any current case, and assist in treatment planning (e.g., natural history vs. treatment risk, surgical vs. endovascular treatment risks, cure prediction, complication rates).

  9. Virtual reality for treatment compliance for people with serious mental illness.

    PubMed

    Välimäki, Maritta; Hätönen, Heli M; Lahti, Mari E; Kurki, Marjo; Hottinen, Anja; Metsäranta, Kiki; Riihimäki, Tanja; Adams, Clive E

    2014-10-08

    Virtual reality (VR) is computerised real-time technology, which can be used an alternative assessment and treatment tool in the mental health field. Virtual reality may take different forms to simulate real-life activities and support treatment. To investigate the effects of virtual reality to support treatment compliance in people with serious mental illness. We searched the Cochrane Schizophrenia Group Trials Register (most recent, 17th September 2013) and relevant reference lists. All relevant randomised studies comparing virtual reality with standard care for those with serious mental illnesses. We defined virtual reality as a computerised real-time technology using graphics, sound and other sensory input, which creates the interactive computer-mediated world as a therapeutic tool. All review authors independently selected studies and extracted data. For homogeneous dichotomous data the risk difference (RD) and the 95% confidence intervals (CI) were calculated on an intention-to-treat basis. For continuous data, we calculated mean differences (MD). We assessed risk of bias and created a 'Summary of findings' table using the GRADE approach. We identified three short-term trials (total of 156 participants, duration five to 12 weeks). Outcomes were prone to at least a moderate risk of overestimating positive effects. We found that virtual reality had little effects regarding compliance (3 RCTs, n = 156, RD loss to follow-up 0.02 CI -0.08 to 0.12, low quality evidence), cognitive functioning (1 RCT, n = 27, MD average score on Cognistat 4.67 CI -1.76 to 11.10, low quality evidence), social skills (1 RCT, n = 64, MD average score on social problem solving SPSI-R (Social Problem Solving Inventory - Revised) -2.30 CI -8.13 to 3.53, low quality evidence), or acceptability of intervention (2 RCTs, n = 92, RD 0.05 CI -0.09 to 0.19, low quality evidence). There were no data reported on mental state, insight, behaviour, quality of life, costs, service utilisation, or adverse effects. Satisfaction with treatment - measured using an un-referenced scale - and reported as "interest in training" was better for the virtual reality group (1 RCT, n = 64, MD 6.00 CI 1.39 to 10.61,low quality evidence). There is no clear good quality evidence for or against using virtual reality for treatment compliance among people with serious mental illness. If virtual reality is used, the experimental nature of the intervention should be clearly explained. High-quality studies should be undertaken in this area to explore any effects of this novel intervention and variations of approach.

  10. Measuring Co-Presence and Social Presence in Virtual Environments - Psychometric Construction of a German Scale for a Fear of Public Speaking Scenario.

    PubMed

    Poeschl, Sandra; Doering, Nicola

    2015-01-01

    Virtual reality exposure therapy (VRET) applications use high levels of fidelity in order to produce high levels of presence and thereby elicit an emotional response for the user (like fear for phobia treatment). State of research shows mixed results for the correlation between anxiety and presence in virtual reality exposure, with differing results depending on specific anxiety disorders. A positive correlation for anxiety and presence for social anxiety disorder is not proven up to now. One reason might be that plausibility of the simulation, namely including key triggers for social anxiety (for example verbal and non-verbal behavior of virtual agents that reflects potentially negative human evaluation) might not be acknowledged in current presence questionnaires. A German scale for measuring co-presence and social presence for virtual reality (VR) fear of public speaking scenarios was developed based on a translation and adaption of existing co-presence and social presence questionnaires. A sample of N = 151 students rated co-presence and social presence after using a fear of public speaking application. Four correlated factors were derived by item- and principle axis factor analysis (Promax rotation), representing the presenter's reaction to virtual agents, the reactions of the virtual agents as perceived by the presenter, impression of interaction possibilities, and (co-)presence of other people in the virtual environment. The scale developed can be used as a starting point for future research and test construction for VR applications with a social context.

  11. Virtual reality in autism: state of the art.

    PubMed

    Bellani, M; Fornasari, L; Chittaro, L; Brambilla, P

    2011-09-01

    Autism spectrum disorders are characterized by core deficits with regard to three domains, i.e. social interaction, communication and repetitive or stereotypic behaviour. It is crucial to develop intervention strategies helping individuals with autism, their caregivers and educators in daily life. For this purpose, virtual reality (VR), i.e. a simulation of the real world based on computer graphics, can be useful as it allows instructors and therapists to offer a safe, repeatable and diversifiable environment during learning. This mini review examines studies that have investigated the use of VR in autism.

  12. Future Directions: How Virtual Reality Can Further Improve the Assessment and Treatment of Eating Disorders and Obesity.

    PubMed

    Gutiérrez-Maldonado, José; Wiederhold, Brenda K; Riva, Giuseppe

    2016-02-01

    Transdisciplinary efforts for further elucidating the etiology of eating and weight disorders and improving the effectiveness of the available evidence-based interventions are imperative at this time. Recent studies indicate that computer-generated graphic environments-virtual reality (VR)-can integrate and extend existing treatments for eating and weight disorders (EWDs). Future possibilities for VR to improve actual approaches include its use for altering in real time the experience of the body (embodiment) and as a cue exposure tool for reducing food craving.

  13. Visualization of reservoir simulation data with an immersive virtual reality system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, B.K.

    1996-10-01

    This paper discusses an investigation into the use of an immersive virtual reality (VR) system to visualize reservoir simulation output data. The hardware and software configurations of the test-immersive VR system are described and compared to a nonimmersive VR system and to an existing workstation screen-based visualization system. The structure of 3D reservoir simulation data and the actions to be performed on the data within the VR system are discussed. The subjective results of the investigation are then presented, followed by a discussion of possible future work.

  14. Applications of virtual reality in individuals with alcohol misuse: A systematic review.

    PubMed

    Ghiţă, Alexandra; Gutiérrez-Maldonado, José

    2018-06-01

    Alcohol use and misuse have been intensively studied, due to their negative consequences in the general population. Evidence-based literature emphasizes that alcohol craving plays a crucial role in the development and maintenance of alcohol-drinking patterns. Many individuals develop Alcohol Use Disorders (AUD); significantly, after treatment many also experience relapses, in which alcohol craving has been repeatedly implicated. Cue-exposure therapy (CET) has been widely used in the treatment of alcohol misuse, but the results are inconsistent. Virtual reality (VR) can add effectiveness to cue-exposure techniques by providing multiple variables and inputs that enable personalized alcohol use assessment and treatment. The aim of this review was to examine the applications of virtual reality in individuals who misuse alcohol. We conducted an exhaustive literature search of the Web of Science, Scopus, Embase, Google Scholar, and PsycInfo databases, using as search items terms such as "alcohol" and its derivates, and virtual reality. We identified 13 studies on alcohol craving that implemented virtual reality as an assessment or treatment tool. The studies that incorporate VR present clear limitations. First, no clinical trials were conducted to explore the efficacy of the VR as a treatment tool; nor were there any studies of the generalization of craving responses in the real world, or of the long-term effects of VR treatment. Despite these limitations, the studies included showed consistent results as regards eliciting and reducing alcohol craving. We suggest that VR shows promise as a tool for the assessment and treatment of craving among individuals with alcohol misuse. Further studies implementing VR in the field of alcohol consumption are now required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Instructor feedback versus no instructor feedback on performance in a laparoscopic virtual reality simulator: a randomized educational trial

    PubMed Central

    2012-01-01

    Abstract Background Several studies have found a positive effect on the learning curve as well as the improvement of basic psychomotor skills in the operating room after virtual reality training. Despite this, the majority of surgical and gynecological departments encounter hurdles when implementing this form of training. This is mainly due to lack of knowledge concerning the time and human resources needed to train novice surgeons to an adequate level. The purpose of this trial is to investigate the impact of instructor feedback regarding time, repetitions and self-perception when training complex operational tasks on a virtual reality simulator. Methods/Design The study population consists of medical students on their 4th to 6th year without prior laparoscopic experience. The study is conducted in a skills laboratory at a centralized university hospital. Based on a sample size estimation 98 participants will be randomized to an intervention group or a control group. Both groups have to achieve a predefined proficiency level when conducting a laparoscopic salpingectomy using a surgical virtual reality simulator. The intervention group receives standardized instructor feedback of 10 to 12 min a maximum of three times. The control group receives no instructor feedback. Both groups receive the automated feedback generated by the virtual reality simulator. The study follows the CONSORT Statement for randomized trials. Main outcome measures are time and repetitions to reach the predefined proficiency level on the simulator. We include focus on potential sex differences, computer gaming experience and self-perception. Discussion The findings will contribute to a better understanding of optimal training methods in surgical education. Trial Registration NCT01497782 PMID:22373062

  16. Learning Science in a Virtual Reality Application: The Impacts of Animated-Virtual Actors' Visual Complexity

    ERIC Educational Resources Information Center

    Kartiko, Iwan; Kavakli, Manolya; Cheng, Ken

    2010-01-01

    As the technology in computer graphics advances, Animated-Virtual Actors (AVAs) in Virtual Reality (VR) applications become increasingly rich and complex. Cognitive Theory of Multimedia Learning (CTML) suggests that complex visual materials could hinder novice learners from attending to the lesson properly. On the other hand, previous studies have…

  17. But Why Is Everything so Hard to Do? Exploring Learning and the Complexity Factor in Social Virtual Reality

    ERIC Educational Resources Information Center

    Honebein, Peter C.; Goldsworthy, Richard

    2012-01-01

    Virtual classrooms and virtual activities have waxed and waned, with most focusing on fostering learning in the cognitive domain and, realistically, most becoming rapidly discontinued. But social virtual realities (SVR) are uniquely "social," so what about interpersonal skills? This article describes the authors' experiences exploring SVR as a…

  18. Design Virtual Reality Scene Roam for Tour Animations Base on VRML and Java

    NASA Astrophysics Data System (ADS)

    Cao, Zaihui; hu, Zhongyan

    Virtual reality has been involved in a wide range of academic and commercial applications. It can give users a natural feeling of the environment by creating realistic virtual worlds. Implementing a virtual tour through a model of a tourist area on the web has become fashionable. In this paper, we present a web-based application that allows a user to, walk through, see, and interact with a fully three-dimensional model of the tourist area. Issues regarding navigation and disorientation areaddressed and we suggest a combination of the metro map and an intuitive navigation system. Finally we present a prototype which implements our ideas. The application of VR techniques integrates the visualization and animation of the three dimensional modelling to landscape analysis. The use of the VRML format produces the possibility to obtain some views of the 3D model and to explore it in real time. It is an important goal for the spatial information sciences.

  19. Ecological assessment of divided attention: What about the current tools and the relevancy of virtual reality.

    PubMed

    Lopez Maïté, C; Gaétane, D; Axel, C

    2016-01-01

    The ability to perform two tasks simultaneously has become increasingly important as attention-demanding technologies have become more common in daily life. This type of attentional resources allocation is commonly called "divided attention". Because of the importance of divided attention in natural world settings, substantial efforts have been made recently so as to promote an integrated, realistic assessment of functional abilities in dual-task paradigms. In this context, virtual reality methods appear to be a good solution. However to date, there has been little discussion on validity of such methods. Here, we offer a comparative review of conventional tools used to assess divided attention and of the first virtual reality studies (mostly from the field of road and pedestrian safety). The ecological character of virtual environments leads to a better understanding of the influence of dual-task settings and also makes it possible to clarify issues such as the utility of hands-free phones. After discussing the theoretical and clinical contributions of these studies, we discuss the limits of virtual reality assessment, focusing in particular: (i) on the challenges associated with lack of familiarity with new technological devices; (ii) on the validity of the ecological character of virtual environments; and (iii) on the question of whether the results obtained in a specific context can be generalized to all dual-task situations typical of daily life. To overcome the limitations associated with virtual reality, we propose: (i) to include a standardized familiarization phase in assessment protocols so as to limit the interference caused by the use of new technologies; (ii) to systematically compare virtual reality performance with conventional tests or real-life tests; and (iii) to design dual-task scenarios that are independent from the patient's expertise on one of the two tasks. We conclude that virtual reality appears to constitute a useful tool when used in combination with more conventional tests. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Advanced Maintenance Simulation by Means of Hand-Based Haptic Interfaces

    NASA Astrophysics Data System (ADS)

    Nappi, Michele; Paolino, Luca; Ricciardi, Stefano; Sebillo, Monica; Vitiello, Giuliana

    Aerospace industry has been involved in virtual simulation for design and testing since the birth of virtual reality. Today this industry is showing a growing interest in the development of haptic-based maintenance training applications, which represent the most advanced way to simulate maintenance and repair tasks within a virtual environment by means of a visual-haptic approach. The goal is to allow the trainee to experiment the service procedures not only as a workflow reproduced at a visual level but also in terms of the kinaesthetic feedback involved with the manipulation of tools and components. This study, conducted in collaboration with aerospace industry specialists, is aimed to the development of an immersive virtual capable of immerging the trainees into a virtual environment where mechanics and technicians can perform maintenance simulation or training tasks by directly manipulating 3D virtual models of aircraft parts while perceiving force feedback through the haptic interface. The proposed system is based on ViRstperson, a virtual reality engine under development at the Italian Center for Aerospace Research (CIRA) to support engineering and technical activities such as design-time maintenance procedure validation, and maintenance training. This engine has been extended to support haptic-based interaction, enabling a more complete level of interaction, also in terms of impedance control, and thus fostering the development of haptic knowledge in the user. The user’s “sense of touch” within the immersive virtual environment is simulated through an Immersion CyberForce® hand-based force-feedback device. Preliminary testing of the proposed system seems encouraging.

Top