Sample records for based visual servoing

  1. CLFs-based optimization control for a class of constrained visual servoing systems.

    PubMed

    Song, Xiulan; Miaomiao, Fu

    2017-03-01

    In this paper, we use the control Lyapunov function (CLF) technique to present an optimized visual servo control method for constrained eye-in-hand robot visual servoing systems. With the knowledge of camera intrinsic parameters and depth of target changes, visual servo control laws (i.e. translation speed) with adjustable parameters are derived by image point features and some known CLF of the visual servoing system. The Fibonacci method is employed to online compute the optimal value of those adjustable parameters, which yields an optimized control law to satisfy constraints of the visual servoing system. The Lyapunov's theorem and the properties of CLF are used to establish stability of the constrained visual servoing system in the closed-loop with the optimized control law. One merit of the presented method is that there is no requirement of online calculating the pseudo-inverse of the image Jacobian's matrix and the homography matrix. Simulation and experimental results illustrated the effectiveness of the method proposed here. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. A visual servo-based teleoperation robot system for closed diaphyseal fracture reduction.

    PubMed

    Li, Changsheng; Wang, Tianmiao; Hu, Lei; Zhang, Lihai; Du, Hailong; Zhao, Lu; Wang, Lifeng; Tang, Peifu

    2015-09-01

    Common fracture treatments include open reduction and intramedullary nailing technology. However, these methods have disadvantages such as intraoperative X-ray radiation, delayed union or nonunion and postoperative rotation. Robots provide a novel solution to the aforementioned problems while posing new challenges. Against this scientific background, we develop a visual servo-based teleoperation robot system. In this article, we present a robot system, analyze the visual servo-based control system in detail and develop path planning for fracture reduction, inverse kinematics, and output forces of the reduction mechanism. A series of experimental tests is conducted on a bone model and an animal bone. The experimental results demonstrate the feasibility of the robot system. The robot system uses preoperative computed tomography data to realize high precision and perform minimally invasive teleoperation for fracture reduction via the visual servo-based control system while protecting surgeons from radiation. © IMechE 2015.

  3. Probe Scanning Support System by a Parallel Mechanism for Robotic Echography

    NASA Astrophysics Data System (ADS)

    Aoki, Yusuke; Kaneko, Kenta; Oyamada, Masami; Takachi, Yuuki; Masuda, Kohji

    We propose a probe scanning support system based on force/visual servoing control for robotic echography. First, we have designed and formulated its inverse kinematics the construction of mechanism. Next, we have developed a scanning method of the ultrasound probe on body surface to construct visual servo system based on acquired echogram by the standalone medical robot to move the ultrasound probe on patient abdomen in three-dimension. The visual servo system detects local change of brightness in time series echogram, which is stabilized the position of the probe by conventional force servo system in the robot, to compensate not only periodical respiration motion but also body motion. Then we integrated control method of the visual servo with the force servo as a hybrid control in both of position and force. To confirm the ability to apply for actual abdomen, we experimented the total system to follow the gallbladder as a moving target to keep its position in the echogram by minimizing variation of reaction force on abdomen. As the result, the system has a potential to be applied to automatic detection of human internal organ.

  4. Visual servoing in medical robotics: a survey. Part I: endoscopic and direct vision imaging - techniques and applications.

    PubMed

    Azizian, Mahdi; Khoshnam, Mahta; Najmaei, Nima; Patel, Rajni V

    2014-09-01

    Intra-operative imaging is widely used to provide visual feedback to a clinician when he/she performs a procedure. In visual servoing, surgical instruments and parts of tissue/body are tracked by processing the acquired images. This information is then used within a control loop to manoeuvre a robotic manipulator during a procedure. A comprehensive search of electronic databases was completed for the period 2000-2013 to provide a survey of the visual servoing applications in medical robotics. The focus is on medical applications where image-based tracking is used for closed-loop control of a robotic system. Detailed classification and comparative study of various contributions in visual servoing using endoscopic or direct visual images are presented and summarized in tables and diagrams. The main challenges in using visual servoing for medical robotic applications are identified and potential future directions are suggested. 'Supervised automation of medical robotics' is found to be a major trend in this field. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Concurrent image-based visual servoing with adaptive zooming for non-cooperative rendezvous maneuvers

    NASA Astrophysics Data System (ADS)

    Pomares, Jorge; Felicetti, Leonard; Pérez, Javier; Emami, M. Reza

    2018-02-01

    An image-based servo controller for the guidance of a spacecraft during non-cooperative rendezvous is presented in this paper. The controller directly utilizes the visual features from image frames of a target spacecraft for computing both attitude and orbital maneuvers concurrently. The utilization of adaptive optics, such as zooming cameras, is also addressed through developing an invariant-image servo controller. The controller allows for performing rendezvous maneuvers independently from the adjustments of the camera focal length, improving the performance and versatility of maneuvers. The stability of the proposed control scheme is proven analytically in the invariant space, and its viability is explored through numerical simulations.

  6. Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Warren

    2004-06-01

    There is significant motivation to provide robotic systems with improved autonomy as a means to significantly accelerate deactivation and decommissioning (D&D) operations while also reducing the associated costs, removing human operators from hazardous environments, and reducing the required burden and skill of human operators. To achieve improved autonomy, this project focused on the basic science challenges leading to the development of visual servo controllers. The challenge in developing these controllers is that a camera provides 2-dimensional image information about the 3-dimensional Euclidean-space through a perspective (range dependent) projection that can be corrupted by uncertainty in the camera calibration matrix andmore » by disturbances such as nonlinear radial distortion. Disturbances in this relationship (i.e., corruption in the sensor information) propagate erroneous information to the feedback controller of the robot, leading to potentially unpredictable task execution. This research project focused on the development of a visual servo control methodology that targets compensating for disturbances in the camera model (i.e., camera calibration and the recovery of range information) as a means to achieve predictable response by the robotic system operating in unstructured environments. The fundamental idea is to use nonlinear Lyapunov-based techniques along with photogrammetry methods to overcome the complex control issues and alleviate many of the restrictive assumptions that impact current robotic applications. The outcome of this control methodology is a plug-and-play visual servoing control module that can be utilized in conjunction with current technology such as feature recognition and extraction to enable robotic systems with the capabilities of increased accuracy, autonomy, and robustness, with a larger field of view (and hence a larger workspace). The developed methodology has been reported in numerous peer-reviewed publications and the performance and enabling capabilities of the resulting visual servo control modules have been demonstrated on mobile robot and robot manipulator platforms.« less

  7. Finite-time tracking control for multiple non-holonomic mobile robots based on visual servoing

    NASA Astrophysics Data System (ADS)

    Ou, Meiying; Li, Shihua; Wang, Chaoli

    2013-12-01

    This paper investigates finite-time tracking control problem of multiple non-holonomic mobile robots via visual servoing. It is assumed that the pinhole camera is fixed to the ceiling, and camera parameters are unknown. The desired reference trajectory is represented by a virtual leader whose states are available to only a subset of the followers, and the followers have only interaction. First, the camera-objective visual kinematic model is introduced by utilising the pinhole camera model for each mobile robot. Second, a unified tracking error system between camera-objective visual servoing model and desired reference trajectory is introduced. Third, based on the neighbour rule and by using finite-time control method, continuous distributed cooperative finite-time tracking control laws are designed for each mobile robot with unknown camera parameters, where the communication topology among the multiple mobile robots is assumed to be a directed graph. Rigorous proof shows that the group of mobile robots converges to the desired reference trajectory in finite time. Simulation example illustrates the effectiveness of our method.

  8. Aviation Wide-Angle Visual System (AWAVS). Trainer Design Report. Subsystem Design Report

    DTIC Science & Technology

    1977-05-01

    205 60 Frequency-Gain Plot for FLOLS Meatball Servo 209 61 FLOLS Zoom Servo, Block Diagram 210 62 FLOLS Zoom Iris Servo, Block Diagram and...Servo Input Torques 196 24 FLOLS Servo Components 197 25 FLOLS Meatball Servo Performance 203 26 Inherent Zeros and Poles for FLOLS Meatball Servo...of their relative powers must equal the ratio of 500 ft to the simu- lated range. The FLOLS are on whenever the pilot is within the meatball field

  9. The effect of adaptive servo-ventilation on dyspnoea, haemodynamic parameters and plasma catecholamine concentrations in acute cardiogenic pulmonary oedema.

    PubMed

    Nakano, Shintaro; Kasai, Takatoshi; Tanno, Jun; Sugi, Keiki; Sekine, Yasumasa; Muramatsu, Toshihiro; Senbonmatsu, Takaaki; Nishimura, Shigeyuki

    2015-08-01

    Adaptive servo-ventilation has a potential sympathoinhibitory effect in acute cardiogenic pulmonary oedema (ACPO). To evaluate the acute effects of adaptive servo-ventilation in patients with ACPO. Fifty-eight consecutive patients with ACPO were divided into those who underwent adaptive servo-ventilation and those who received oxygen therapy alone as part of their immediate care. Visual analogue scale, vital signs, blood gas data and plasma catecholamine concentrations at baseline and 1 h during emergency care, and subsequent clinical events (death within 30 days, intubation within seven days or between seven and 30 days, and length of hospital stay) were assessed. Pre-matched and post-propensity score (PS)-matched datasets were analysed. During the first hour of adaptive servo-ventilation, plasma catecholamine concentrations fell significantly (baseline versus 1 h: epinephrine p = 0.003, norepinephrine p < 0.001, dopamine p < 0.001), with falls in blood pressure, heart rate, respiratory rate and pCO2, and rise in HCO3 and pH. In the PS-matched model, visual analogue scale (p = 0.036), systolic blood pressure (from 153.8 ± 30.7 to 133.1 ± 16.3 mmHg; p = 0.025) and plasma dopamine concentration (p = 0.034) fell significantly in the adaptive servo-ventilation group compared with the oxygen therapy alone group. The clinical outcomes between the groups were comparable. In patients with ACPO, emergency care using adaptive servo-ventilation attenuated plasma catecholamine concentrations and led to the improvement of dyspnoea, vital signs and acid-base balance, without adversely influencing clinical outcomes. Using adaptive servo-ventilation, rather than standard oxygen alone, may relieve dyspnoea and improve haemodynamic status, possibly by modulating sympathetic nerve activity. © The European Society of Cardiology 2014.

  10. Visual-servoing optical microscopy

    DOEpatents

    Callahan, Daniel E.; Parvin, Bahram

    2009-06-09

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time: quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  11. Visual-servoing optical microscopy

    DOEpatents

    Callahan, Daniel E [Martinez, CA; Parvin, Bahram [Mill Valley, CA

    2011-05-24

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  12. Visual-servoing optical microscopy

    DOEpatents

    Callahan, Daniel E; Parvin, Bahram

    2013-10-01

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  13. Research on flight stability performance of rotor aircraft based on visual servo control method

    NASA Astrophysics Data System (ADS)

    Yu, Yanan; Chen, Jing

    2016-11-01

    control method based on visual servo feedback is proposed, which is used to improve the attitude of a quad-rotor aircraft and to enhance its flight stability. Ground target images are obtained by a visual platform fixed on aircraft. Scale invariant feature transform (SIFT) algorism is used to extract image feature information. According to the image characteristic analysis, fast motion estimation is completed and used as an input signal of PID flight control system to realize real-time status adjustment in flight process. Imaging tests and simulation results show that the method proposed acts good performance in terms of flight stability compensation and attitude adjustment. The response speed and control precision meets the requirements of actual use, which is able to reduce or even eliminate the influence of environmental disturbance. So the method proposed has certain research value to solve the problem of aircraft's anti-disturbance.

  14. Optical Flow-Based State Estimation for Guided Projectiles

    DTIC Science & Technology

    2015-06-01

    Computer Vision and Image Understanding. 2012;116(5):606–633. 3. Corke P, Lobo J, Dias J. An introduction to inertial and visual sensing. The...International Journal of Robotics Research. 2007;26(6):519–535. 4. Hutchinson S, Hager GD, Corke PI. A tutorial on visual servo control. Robotics and

  15. Adaptive-Repetitive Visual-Servo Control of Low-Flying Aerial Robots via Uncalibrated High-Flying Cameras

    NASA Astrophysics Data System (ADS)

    Guo, Dejun; Bourne, Joseph R.; Wang, Hesheng; Yim, Woosoon; Leang, Kam K.

    2017-08-01

    This paper presents the design and implementation of an adaptive-repetitive visual-servo control system for a moving high-flying vehicle (HFV) with an uncalibrated camera to monitor, track, and precisely control the movements of a low-flying vehicle (LFV) or mobile ground robot. Applications of this control strategy include the use of high-flying unmanned aerial vehicles (UAVs) with computer vision for monitoring, controlling, and coordinating the movements of lower altitude agents in areas, for example, where GPS signals may be unreliable or nonexistent. When deployed, a remote operator of the HFV defines the desired trajectory for the LFV in the HFV's camera frame. Due to the circular motion of the HFV, the resulting motion trajectory of the LFV in the image frame can be periodic in time, thus an adaptive-repetitive control system is exploited for regulation and/or trajectory tracking. The adaptive control law is able to handle uncertainties in the camera's intrinsic and extrinsic parameters. The design and stability analysis of the closed-loop control system is presented, where Lyapunov stability is shown. Simulation and experimental results are presented to demonstrate the effectiveness of the method for controlling the movement of a low-flying quadcopter, demonstrating the capabilities of the visual-servo control system for localization (i.e.,, motion capturing) and trajectory tracking control. In fact, results show that the LFV can be commanded to hover in place as well as track a user-defined flower-shaped closed trajectory, while the HFV and camera system circulates above with constant angular velocity. On average, the proposed adaptive-repetitive visual-servo control system reduces the average RMS tracking error by over 77% in the image plane and over 71% in the world frame compared to using just the adaptive visual-servo control law.

  16. Weighted feature selection criteria for visual servoing of a telerobot

    NASA Technical Reports Server (NTRS)

    Feddema, John T.; Lee, C. S. G.; Mitchell, O. R.

    1989-01-01

    Because of the continually changing environment of a space station, visual feedback is a vital element of a telerobotic system. A real time visual servoing system would allow a telerobot to track and manipulate randomly moving objects. Methodologies for the automatic selection of image features to be used to visually control the relative position between an eye-in-hand telerobot and a known object are devised. A weighted criteria function with both image recognition and control components is used to select the combination of image features which provides the best control. Simulation and experimental results of a PUMA robot arm visually tracking a randomly moving carburetor gasket with a visual update time of 70 milliseconds are discussed.

  17. Visual servoing of a laser ablation based cochleostomy

    NASA Astrophysics Data System (ADS)

    Kahrs, Lüder A.; Raczkowsky, Jörg; Werner, Martin; Knapp, Felix B.; Mehrwald, Markus; Hering, Peter; Schipper, Jörg; Klenzner, Thomas; Wörn, Heinz

    2008-03-01

    The aim of this study is a defined, visually based and camera controlled bone removal by a navigated CO II laser on the promontory of the inner ear. A precise and minimally traumatic opening procedure of the cochlea for the implantation of a cochlear implant electrode (so-called cochleostomy) is intended. Harming the membrane linings of the inner ear can result in damage of remaining organ functions (e.g. complete deafness or vertigo). A precise tissue removal by a laser-based bone ablation system is investigated. Inside the borehole the pulsed laser beam is guided automatically over the bone by using a two mirror galvanometric scanner. The ablation process is controlled by visual servoing. For the detection of the boundary layers of the inner ear the ablation area is monitored by a color camera. The acquired pictures are analyzed by image processing. The results of this analysis are used to control the process of laser ablation. This publication describes the complete system including image processing algorithms and the concept for the resulting distribution of single laser pulses. The system has been tested on human cochleae in ex-vivo studies. Further developments could lead to safe intraoperative openings of the cochlea by a robot based surgical laser instrument.

  18. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller.

    PubMed

    Lopez-Franco, Carlos; Gomez-Avila, Javier; Alanis, Alma Y; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-08-12

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results.

  19. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller

    PubMed Central

    Lopez-Franco, Carlos; Alanis, Alma Y.; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-01-01

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results. PMID:28805689

  20. Semi-Autonomous Electrosurgery for Tumor Resection Using a Multi-Degree of Freedom Electrosurgical Tool and Visual Servoing*

    PubMed Central

    Opfermann, Justin D.; Leonard, Simon; Decker, Ryan S.; Uebele, Nicholas A.; Bayne, Christopher E.; Joshi, Arjun S.; Krieger, Axel

    2017-01-01

    This paper specifies a surgical robot performing semi-autonomous electrosurgery for tumor resection and evaluates its accuracy using a visual servoing paradigm. We describe the design and integration of a novel, multi-degree of freedom electrosurgical tool for the smart tissue autonomous robot (STAR). Standardized line tests are executed to determine ideal cut parameters in three different types of porcine tissue. STAR is then programmed with the ideal cut setting for porcine tissue and compared against expert surgeons using open and laparoscopic techniques in a line cutting task. We conclude with a proof of concept demonstration using STAR to semi-autonomously resect pseudo-tumors in porcine tissue using visual servoing. When tasked to excise tumors with a consistent 4mm margin, STAR can semi-autonomously dissect tissue with an average margin of 3.67 mm and a standard deviation of 0.89mm. PMID:29503760

  1. A new neural net approach to robot 3D perception and visuo-motor coordination

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan

    1992-01-01

    A novel neural network approach to robot hand-eye coordination is presented. The approach provides a true sense of visual error servoing, redundant arm configuration control for collision avoidance, and invariant visuo-motor learning under gazing control. A 3-D perception network is introduced to represent the robot internal 3-D metric space in which visual error servoing and arm configuration control are performed. The arm kinematic network performs the bidirectional association between 3-D space arm configurations and joint angles, and enforces the legitimate arm configurations. The arm kinematic net is structured by a radial-based competitive and cooperative network with hierarchical self-organizing learning. The main goal of the present work is to demonstrate that the neural net representation of the robot 3-D perception net serves as an important intermediate functional block connecting robot eyes and arms.

  2. Building large mosaics of confocal edomicroscopic images using visual servoing.

    PubMed

    Rosa, Benoît; Erden, Mustafa Suphi; Vercauteren, Tom; Herman, Benoît; Szewczyk, Jérôme; Morel, Guillaume

    2013-04-01

    Probe-based confocal laser endomicroscopy provides real-time microscopic images of tissues contacted by a small probe that can be inserted in vivo through a minimally invasive access. Mosaicking consists in sweeping the probe in contact with a tissue to be imaged while collecting the video stream, and process the images to assemble them in a large mosaic. While most of the literature in this field has focused on image processing, little attention has been paid so far to the way the probe motion can be controlled. This is a crucial issue since the precision of the probe trajectory control drastically influences the quality of the final mosaic. Robotically controlled motion has the potential of providing enough precision to perform mosaicking. In this paper, we emphasize the difficulties of implementing such an approach. First, probe-tissue contacts generate deformations that prevent from properly controlling the image trajectory. Second, in the context of minimally invasive procedures targeted by our research, robotic devices are likely to exhibit limited quality of the distal probe motion control at the microscopic scale. To cope with these problems visual servoing from real-time endomicroscopic images is proposed in this paper. It is implemented on two different devices (a high-accuracy industrial robot and a prototype minimally invasive device). Experiments on different kinds of environments (printed paper and ex vivo tissues) show that the quality of the visually servoed probe motion is sufficient to build mosaics with minimal distortion in spite of disturbances.

  3. Microsurgical Clipping of an Anterior Communicating Artery Aneurysm Using a Novel Robotic Visualization Tool in Lieu of the Binocular Operating Microscope: Operative Video.

    PubMed

    Klinger, Daniel R; Reinard, Kevin A; Ajayi, Olaide O; Delashaw, Johnny B

    2018-01-01

    The binocular operating microscope has been the visualization instrument of choice for microsurgical clipping of intracranial aneurysms for many decades. To discuss recent technological advances that have provided novel visualization tools, which may prove to be superior to the binocular operating microscope in many regards. We present an operative video and our operative experience with the BrightMatterTM Servo System (Synaptive Medical, Toronto, Ontario, Canada) during the microsurgical clipping of an anterior communicating artery aneurysm. To the best of our knowledge, the use of this device for the microsurgical clipping of an intracranial aneurysm has never been described in the literature. The BrightMatterTM Servo System (Synaptive Medical) is a surgical exoscope which avoids many of the ergonomic constraints of the binocular operating microscope, but is associated with a steep learning curve. The BrightMatterTM Servo System (Synaptive Medical) is a maneuverable surgical exoscope that is positioned with a directional aiming device and a surgeon-controlled foot pedal. While utilizing this device comes with a steep learning curve typical of any new technology, the BrightMatterTM Servo System (Synaptive Medical) has several advantages over the conventional surgical microscope, which include a relatively unobstructed surgical field, provision of high-definition images, and visualization of difficult angles/trajectories. This device can easily be utilized as a visualization tool for a variety of cranial and spinal procedures in lieu of the binocular operating microscope. We anticipate that this technology will soon become an integral part of the neurosurgeon's armamentarium. Copyright © 2017 by the Congress of Neurological Surgeons

  4. A Visual Servoing-Based Method for ProCam Systems Calibration

    PubMed Central

    Berry, Francois; Aider, Omar Ait; Mosnier, Jeremie

    2013-01-01

    Projector-camera systems are currently used in a wide field of applications, such as 3D reconstruction and augmented reality, and can provide accurate measurements, depending on the configuration and calibration. Frequently, the calibration task is divided into two steps: camera calibration followed by projector calibration. The latter still poses certain problems that are not easy to solve, such as the difficulty in obtaining a set of 2D–3D points to compute the projection matrix between the projector and the world. Existing methods are either not sufficiently accurate or not flexible. We propose an easy and automatic method to calibrate such systems that consists in projecting a calibration pattern and superimposing it automatically on a known printed pattern. The projected pattern is provided by a virtual camera observing a virtual pattern in an OpenGL model. The projector displays what the virtual camera visualizes. Thus, the projected pattern can be controlled and superimposed on the printed one with the aid of visual servoing. Our experimental results compare favorably with those of other methods considering both usability and accuracy. PMID:24084121

  5. Parallel computation of level set method for 500 Hz visual servo control

    NASA Astrophysics Data System (ADS)

    Fei, Xianfeng; Igarashi, Yasunobu; Hashimoto, Koichi

    2008-11-01

    We propose a 2D microorganism tracking system using a parallel level set method and a column parallel vision system (CPV). This system keeps a single microorganism in the middle of the visual field under a microscope by visual servoing an automated stage. We propose a new energy function for the level set method. This function constrains an amount of light intensity inside the detected object contour to control the number of the detected objects. This algorithm is implemented in CPV system and computational time for each frame is 2 [ms], approximately. A tracking experiment for about 25 s is demonstrated. Also we demonstrate a single paramecium can be kept tracking even if other paramecia appear in the visual field and contact with the tracked paramecium.

  6. Piloted Simulator Investigation of Techniques to Achieve Attitude Command Response with Limited Authority Servos

    NASA Technical Reports Server (NTRS)

    Key, David L.; Heffley, Robert K.

    2002-01-01

    The purpose of the study was to develop generic design principles for obtaining attitude command response in moderate to aggressive maneuvers without increasing SCAS series servo authority from the existing +/- 10%. In particular, to develop a scheme that would work on the UH-60 helicopter so that it can be considered for incorporation in future upgrades. The basic math model was a UH-60A version of GENHEL. The simulation facility was the NASA-Ames Vertical Motion Simulator (VMS). Evaluation tasks were Hover, Acceleration-Deceleration, and Sidestep, as defined in ADS-33D-PRF for Degraded Visual Environment (DVE). The DVE was adjusted to provide a Usable Cue Environment (UCE) equal to two. The basic concept investigated was the extent to which the limited attitude command authority achievable by the series servo could be supplemented by a 10%/sec trim servo. The architecture used provided angular rate feedback to only the series servo, shared the attitude feedback between the series and trim servos, and when the series servo approached saturation the attitude feedback was slowly phased out. Results show that modest use of the trim servo does improve pilot ratings, especially in and around hover. This improvement can be achieved with little degradation in response predictability during moderately aggressive maneuvers.

  7. Combined Feature Based and Shape Based Visual Tracker for Robot Navigation

    NASA Technical Reports Server (NTRS)

    Deans, J.; Kunz, C.; Sargent, R.; Park, E.; Pedersen, L.

    2005-01-01

    We have developed a combined feature based and shape based visual tracking system designed to enable a planetary rover to visually track and servo to specific points chosen by a user with centimeter precision. The feature based tracker uses invariant feature detection and matching across a stereo pair, as well as matching pairs before and after robot movement in order to compute an incremental 6-DOF motion at each tracker update. This tracking method is subject to drift over time, which can be compensated by the shape based method. The shape based tracking method consists of 3D model registration, which recovers 6-DOF motion given sufficient shape and proper initialization. By integrating complementary algorithms, the combined tracker leverages the efficiency and robustness of feature based methods with the precision and accuracy of model registration. In this paper, we present the algorithms and their integration into a combined visual tracking system.

  8. Recent results in visual servoing

    NASA Astrophysics Data System (ADS)

    Chaumette, François

    2008-06-01

    Visual servoing techniques consist in using the data provided by a vision sensor in order to control the motions of a dynamic system. Such systems are usually robot arms, mobile robots, aerial robots,… but can also be virtual robots for applications in computer animation, or even a virtual camera for applications in computer vision and augmented reality. A large variety of positioning tasks, or mobile target tracking, can be implemented by controlling from one to all the degrees of freedom of the system. Whatever the sensor configuration, which can vary from one on-board camera on the robot end-effector to several free-standing cameras, a set of visual features has to be selected at best from the image measurements available, allowing to control the degrees of freedom desired. A control law has also to be designed so that these visual features reach a desired value, defining a correct realization of the task. With a vision sensor providing 2D measurements, potential visual features are numerous, since as well 2D data (coordinates of feature points in the image, moments, …) as 3D data provided by a localization algorithm exploiting the extracted 2D measurements can be considered. It is also possible to combine 2D and 3D visual features to take the advantages of each approach while avoiding their respective drawbacks. From the selected visual features, the behavior of the system will have particular properties as for stability, robustness with respect to noise or to calibration errors, robot 3D trajectory, etc. The talk will present the main basic aspects of visual servoing, as well as technical advances obtained recently in the field inside the Lagadic group at INRIA/INRISA Rennes. Several application results will be also described.

  9. Adaptive Control Responses to Behavioral Perturbation Based Upon the Insect

    DTIC Science & Technology

    2006-11-01

    the legs. Visual Sensors Antennal Mechanosensors Antennal Chemosensors Descending Interneurons Controlling Yaw...animals, the antenna were moved back and forth several times with servo motors to identify units that respond to antennal movement in either direction or...role of antennal postures and movements in plume tracking behavior. To date, results have shown that male moths tracking plumes in different wind

  10. Enhanced control of a flexure-jointed micromanipulation system using a vision-based servoing approach

    NASA Astrophysics Data System (ADS)

    Chuthai, T.; Cole, M. O. T.; Wongratanaphisan, T.; Puangmali, P.

    2018-01-01

    This paper describes a high-precision motion control implementation for a flexure-jointed micromanipulator. A desktop experimental motion platform has been created based on a 3RUU parallel kinematic mechanism, driven by rotary voice coil actuators. The three arms supporting the platform have rigid links with compact flexure joints as integrated parts and are made by single-process 3D printing. The mechanism overall size is approximately 250x250x100 mm. The workspace is relatively large for a flexure-jointed mechanism, being approximately 20x20x6 mm. A servo-control implementation based on pseudo-rigid-body models (PRBM) of kinematic behavior combined with nonlinear-PID control has been developed. This is shown to achieve fast response with good noise-rejection and platform stability. However, large errors in absolute positioning occur due to deficiencies in the PRBM kinematics, which cannot accurately capture flexure compliance behavior. To overcome this problem, visual servoing is employed, where a digital microscopy system is used to directly measure the platform position by image processing. By adopting nonlinear PID feedback of measured angles for the actuated joints as inner control loops, combined with auxiliary feedback of vision-based measurements, the absolute positioning error can be eliminated. With controller gain tuning, fast dynamic response and low residual vibration of the end platform can be achieved with absolute positioning accuracy within ±1 micron.

  11. Survey of Visual and Force/Tactile Control of Robots for Physical Interaction in Spain

    PubMed Central

    Garcia, Gabriel J.; Corrales, Juan A.; Pomares, Jorge; Torres, Fernando

    2009-01-01

    Sensors provide robotic systems with the information required to perceive the changes that happen in unstructured environments and modify their actions accordingly. The robotic controllers which process and analyze this sensory information are usually based on three types of sensors (visual, force/torque and tactile) which identify the most widespread robotic control strategies: visual servoing control, force control and tactile control. This paper presents a detailed review on the sensor architectures, algorithmic techniques and applications which have been developed by Spanish researchers in order to implement these mono-sensor and multi-sensor controllers which combine several sensors. PMID:22303146

  12. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, Bahram A.; Maestre, Marcos F.; Fish, Richard H.; Johnston, William E.

    1997-01-01

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations add reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage.

  13. Method and apparatus for accurately manipulating an object during microelectrophoresis

    DOEpatents

    Parvin, B.A.; Maestre, M.F.; Fish, R.H.; Johnston, W.E.

    1997-09-23

    An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations and reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage. 11 figs.

  14. The performance and limitations of FPGA-based digital servos for atomic, molecular, and optical physics experiments

    NASA Astrophysics Data System (ADS)

    Yu, Shi Jing; Fajeau, Emma; Liu, Lin Qiao; Jones, David J.; Madison, Kirk W.

    2018-02-01

    In this work, we address the advantages, limitations, and technical subtleties of employing field programmable gate array (FPGA)-based digital servos for high-bandwidth feedback control of lasers in atomic, molecular, and optical physics experiments. Specifically, we provide the results of benchmark performance tests in experimental setups including noise, bandwidth, and dynamic range for two digital servos built with low and mid-range priced FPGA development platforms. The digital servo results are compared to results obtained from a commercially available state-of-the-art analog servo using the same plant for control (intensity stabilization). The digital servos have feedback bandwidths of 2.5 MHz, limited by the total signal latency, and we demonstrate improvements beyond the transfer function offered by the analog servo including a three-pole filter and a two-pole filter with phase compensation to suppress resonances. We also discuss limitations of our FPGA-servo implementation and general considerations when designing and using digital servos.

  15. The performance and limitations of FPGA-based digital servos for atomic, molecular, and optical physics experiments.

    PubMed

    Yu, Shi Jing; Fajeau, Emma; Liu, Lin Qiao; Jones, David J; Madison, Kirk W

    2018-02-01

    In this work, we address the advantages, limitations, and technical subtleties of employing field programmable gate array (FPGA)-based digital servos for high-bandwidth feedback control of lasers in atomic, molecular, and optical physics experiments. Specifically, we provide the results of benchmark performance tests in experimental setups including noise, bandwidth, and dynamic range for two digital servos built with low and mid-range priced FPGA development platforms. The digital servo results are compared to results obtained from a commercially available state-of-the-art analog servo using the same plant for control (intensity stabilization). The digital servos have feedback bandwidths of 2.5 MHz, limited by the total signal latency, and we demonstrate improvements beyond the transfer function offered by the analog servo including a three-pole filter and a two-pole filter with phase compensation to suppress resonances. We also discuss limitations of our FPGA-servo implementation and general considerations when designing and using digital servos.

  16. Phase-Division-Based Dynamic Optimization of Linkages for Drawing Servo Presses

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Gang; Wang, Li-Ping; Cao, Yan-Ke

    2017-11-01

    Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage optimization and motion planning, a phase-division-based linkage-optimization model for a drawing servo press is established. Considering the motion-planning principles of a drawing servo press, and taking account of work rating and efficiency, the constraints of the optimization model are constructed. Linkage is optimized in two modes: use of either constant eccentric speed or constant slide speed in the work segments. The performances of optimized linkages are compared with those of a mature linkage SL4-2000A, which is optimized by a traditional method. The results show that the work rating of a drawing servo press equipped with linkages optimized by this new method improved and the root-mean-square torque of the servo motors is reduced by more than 10%. This research provides a promising method for designing energy-saving drawing servo presses with high work ratings.

  17. Advanced telepresence surgery system development.

    PubMed

    Jensen, J F; Hill, J W

    1996-01-01

    SRI International is currently developing a prototype remote telepresence surgery system, for the Advanced Research Projects Agency (ARPA), that will bring life-saving surgical care to wounded soldiers in the zone of combat. Remote surgery also has potentially important applications in civilian medicine. In addition, telepresence will find wide medical use in local surgery, in endoscopic, laparoscopic, and microsurgery applications. Key elements of the telepresence technology now being developed for ARPA, including the telepresence surgeon's workstation (TSW) and associated servo control systems, will have direct application to these areas of minimally invasive surgery. The TSW technology will also find use in surgical training, where it will provide an immersive visual and haptic interface for interaction with computer-based anatomical models. In this paper, we discuss our ongoing development of the MEDFAST telesurgery system, focusing on the TSW man-machine interface and its associated servo control electronics.

  18. Inspection of Pole-Like Structures Using a Visual-Inertial Aided VTOL Platform with Shared Autonomy

    PubMed Central

    Sa, Inkyu; Hrabar, Stefan; Corke, Peter

    2015-01-01

    This paper presents an algorithm and a system for vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structures such as light and power distribution poles is a difficult task that is time-consuming, dangerous and expensive. Recently, micro VTOL platforms (i.e., quad-, hexa- and octa-rotors) have been rapidly gaining interest in research, military and even public domains. The unmanned, low-cost and VTOL properties of these platforms make them ideal for situations where inspection would otherwise be time-consuming and/or hazardous to humans. There are, however, challenges involved with developing such an inspection system, for example flying in close proximity to a target while maintaining a fixed stand-off distance from it, being immune to wind gusts and exchanging useful information with the remote user. To overcome these challenges, we require accurate and high-update rate state estimation and high performance controllers to be implemented onboard the vehicle. Ease of control and a live video feed are required for the human operator. We demonstrate a VTOL platform that can operate at close-quarters, whilst maintaining a safe stand-off distance and rejecting environmental disturbances. Two approaches are presented: Position-Based Visual Servoing (PBVS) using an Extended Kalman Filter (EKF) and estimator-free Image-Based Visual Servoing (IBVS). Both use monocular visual, inertia, and sonar data, allowing the approaches to be applied for indoor or GPS-impaired environments. We extensively compare the performances of PBVS and IBVS in terms of accuracy, robustness and computational costs. Results from simulations and indoor/outdoor (day and night) flight experiments demonstrate the system is able to successfully inspect and circumnavigate a vertical pole. PMID:26340631

  19. An open architecture for hybrid force-visual servo control of robotic manipulators in unstructured environments

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Iraj; Janabi-Sharifi, Farrokh

    2005-12-01

    In this paper, a new open architecture for visual servo control tasks is illustrated. A Puma-560 robotic manipulator is used to prove the concept. This design enables doing hybrid forcehisual servo control in an unstructured environment in different modes. Also, it can be controlled through Internet in teleoperation mode using a haptic device. Our proposed structure includes two major parts, hardware and software. In terms of hardware, it consists of a master (host) computer, a slave (target) computer, a Puma 560 manipulator, a CCD camera, a force sensor and a haptic device. There are five DAQ cards, interfacing Puma 560 and a slave computer. An open architecture package is developed using Matlab (R), Simulink (R) and XPC target toolbox. This package has the Hardware-In-the-Loop (HIL) property, i.e., enables one to readily implement different configurations of force, visual or hybrid control in real time. The implementation includes the following stages. First of all, retrofitting of puma was carried out. Then a modular joint controller for Puma 560 was realized using Simulink (R). Force sensor driver and force control implementation were written, using sjknction blocks of Simulink (R). Visual images were captured through Image Acquisition Toolbox of Matlab (R), and processed using Image Processing Toolbox. A haptic device interface was also written in Simulink (R). Thus, this setup could be readily reconfigured and accommodate any other robotic manipulator and/or other sensors without the trouble of the external issues relevant to the control, interface and software, while providing flexibility in components modification.

  20. Visual control of robots using range images.

    PubMed

    Pomares, Jorge; Gil, Pablo; Torres, Fernando

    2010-01-01

    In the last years, 3D-vision systems based on the time-of-flight (ToF) principle have gained more importance in order to obtain 3D information from the workspace. In this paper, an analysis of the use of 3D ToF cameras to guide a robot arm is performed. To do so, an adaptive method to simultaneous visual servo control and camera calibration is presented. Using this method a robot arm is guided by using range information obtained from a ToF camera. Furthermore, the self-calibration method obtains the adequate integration time to be used by the range camera in order to precisely determine the depth information.

  1. Theoretical and Experimental Study of Light Shift in a CPT-Based RB Vapor Cell Frequency Standard

    DTIC Science & Technology

    2001-01-01

    Questions and Answers ROBERT LUTWAK (Datum): When you servo the microwave power to eliminate the light shift, what do you servo to? To what are you...leveling that signal? MIA0 ZHU: Do you mean what I servo to o r where did I do the servo? LUTWAK : What is the error signal that determines the TR

  2. A servo controlled gradient loading triaxial model test system for deep-buried cavern.

    PubMed

    Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai

    2015-10-01

    A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the "real" geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures.

  3. Trifocal Tensor-Based Adaptive Visual Trajectory Tracking Control of Mobile Robots.

    PubMed

    Chen, Jian; Jia, Bingxi; Zhang, Kaixiang

    2017-11-01

    In this paper, a trifocal tensor-based approach is proposed for the visual trajectory tracking task of a nonholonomic mobile robot equipped with a roughly installed monocular camera. The desired trajectory is expressed by a set of prerecorded images, and the robot is regulated to track the desired trajectory using visual feedback. Trifocal tensor is exploited to obtain the orientation and scaled position information used in the control system, and it works for general scenes owing to the generality of trifocal tensor. In the previous works, the start, current, and final images are required to share enough visual information to estimate the trifocal tensor. However, this requirement can be easily violated for perspective cameras with limited field of view. In this paper, key frame strategy is proposed to loosen this requirement, extending the workspace of the visual servo system. Considering the unknown depth and extrinsic parameters (installing position of the camera), an adaptive controller is developed based on Lyapunov methods. The proposed control strategy works for almost all practical circumstances, including both trajectory tracking and pose regulation tasks. Simulations are made based on the virtual experimentation platform (V-REP) to evaluate the effectiveness of the proposed approach.

  4. Reliable vision-guided grasping

    NASA Technical Reports Server (NTRS)

    Nicewarner, Keith E.; Kelley, Robert B.

    1992-01-01

    Automated assembly of truss structures in space requires vision-guided servoing for grasping a strut when its position and orientation are uncertain. This paper presents a methodology for efficient and robust vision-guided robot grasping alignment. The vision-guided grasping problem is related to vision-guided 'docking' problems. It differs from other hand-in-eye visual servoing problems, such as tracking, in that the distance from the target is a relevant servo parameter. The methodology described in this paper is hierarchy of levels in which the vision/robot interface is decreasingly 'intelligent,' and increasingly fast. Speed is achieved primarily by information reduction. This reduction exploits the use of region-of-interest windows in the image plane and feature motion prediction. These reductions invariably require stringent assumptions about the image. Therefore, at a higher level, these assumptions are verified using slower, more reliable methods. This hierarchy provides for robust error recovery in that when a lower-level routine fails, the next-higher routine will be called and so on. A working system is described which visually aligns a robot to grasp a cylindrical strut. The system uses a single camera mounted on the end effector of a robot and requires only crude calibration parameters. The grasping procedure is fast and reliable, with a multi-level error recovery system.

  5. Integrated Cuing Requirements (ICR) Study: Demonstration Data Base and Users Guide.

    DTIC Science & Technology

    1983-07-01

    viewed with a servo-mounted televison camera and used to provide a visual scene for an observer in an ATD. Modulation: Mathematically, the absolute...i(b). CROSS REFERENCE The impact of stationary scene RESULTS. . details was also tested in this See (c) study. See Figure 33.5-1. Ial TEST APPARATUS...size. (See the discussion of * the impact of perceived distance on perceived size in Section 31._.) Figure 33.4-1 Perceived Distance and Velocity of Self

  6. The research on visual industrial robot which adopts fuzzy PID control algorithm

    NASA Astrophysics Data System (ADS)

    Feng, Yifei; Lu, Guoping; Yue, Lulin; Jiang, Weifeng; Zhang, Ye

    2017-03-01

    The control system of six degrees of freedom visual industrial robot based on the control mode of multi-axis motion control cards and PC was researched. For the variable, non-linear characteristics of industrial robot`s servo system, adaptive fuzzy PID controller was adopted. It achieved better control effort. In the vision system, a CCD camera was used to acquire signals and send them to video processing card. After processing, PC controls the six joints` motion by motion control cards. By experiment, manipulator can operate with machine tool and vision system to realize the function of grasp, process and verify. It has influence on the manufacturing of the industrial robot.

  7. Model-based nonlinear control of hydraulic servo systems: Challenges, developments and perspectives

    NASA Astrophysics Data System (ADS)

    Yao, Jianyong

    2018-06-01

    Hydraulic servo system plays a significant role in industries, and usually acts as a core point in control and power transmission. Although linear theory-based control methods have been well established, advanced controller design methods for hydraulic servo system to achieve high performance is still an unending pursuit along with the development of modern industry. Essential nonlinearity is a unique feature and makes model-based nonlinear control more attractive, due to benefit from prior knowledge of the servo valve controlled hydraulic system. In this paper, a discussion for challenges in model-based nonlinear control, latest developments and brief perspectives of hydraulic servo systems are presented: Modelling uncertainty in hydraulic system is a major challenge, which includes parametric uncertainty and time-varying disturbance; some specific requirements also arise ad hoc difficulties such as nonlinear friction during low velocity tracking, severe disturbance, periodic disturbance, etc.; to handle various challenges, nonlinear solutions including parameter adaptation, nonlinear robust control, state and disturbance observation, backstepping design and so on, are proposed and integrated, theoretical analysis and lots of applications reveal their powerful capability to solve pertinent problems; and at the end, some perspectives and associated research topics (measurement noise, constraints, inner valve dynamics, input nonlinearity, etc.) in nonlinear hydraulic servo control are briefly explored and discussed.

  8. Fuzzy model-based servo and model following control for nonlinear systems.

    PubMed

    Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O

    2009-12-01

    This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.

  9. Error analysis and algorithm implementation for an improved optical-electric tracking device based on MEMS

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Wu, Qian-zhong

    2013-09-01

    In order to improve the precision of optical-electric tracking device, proposing a kind of improved optical-electric tracking device based on MEMS, in allusion to the tracking error of gyroscope senor and the random drift, According to the principles of time series analysis of random sequence, establish AR model of gyro random error based on Kalman filter algorithm, then the output signals of gyro are multiple filtered with Kalman filter. And use ARM as micro controller servo motor is controlled by fuzzy PID full closed loop control algorithm, and add advanced correction and feed-forward links to improve response lag of angle input, Free-forward can make output perfectly follow input. The function of lead compensation link is to shorten the response of input signals, so as to reduce errors. Use the wireless video monitor module and remote monitoring software (Visual Basic 6.0) to monitor servo motor state in real time, the video monitor module gathers video signals, and the wireless video module will sent these signals to upper computer, so that show the motor running state in the window of Visual Basic 6.0. At the same time, take a detailed analysis to the main error source. Through the quantitative analysis of the errors from bandwidth and gyro sensor, it makes the proportion of each error in the whole error more intuitive, consequently, decrease the error of the system. Through the simulation and experiment results shows the system has good following characteristic, and it is very valuable for engineering application.

  10. Servo Platform Circuit Design of Pendulous Gyroscope Based on DSP

    NASA Astrophysics Data System (ADS)

    Tan, Lilong; Wang, Pengcheng; Zhong, Qiyuan; Zhang, Cui; Liu, Yunfei

    2018-03-01

    In order to solve the problem when a certain type of pendulous gyroscope in the initial installation deviation more than 40 degrees, that the servo platform can not be up to the speed of the gyroscope in the rough north seeking phase. This paper takes the digital signal processor TMS320F28027 as the core, uses incremental digital PID algorithm, carries out the circuit design of the servo platform. Firstly, the hardware circuit is divided into three parts: DSP minimum system, motor driving circuit and signal processing circuit, then the mathematical model of incremental digital PID algorithm is established, based on the model, writes the PID control program in CCS3.3, finally, the servo motor tracking control experiment is carried out, it shows that the design can significantly improve the tracking ability of the servo platform, and the design has good engineering practice.

  11. Optics derotator servo control system for SONG Telescope

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Ren, Changzhi; Ye, Yu

    2012-09-01

    The Stellar Oscillations Network Group (SONG) is an initiative which aims at designing and building a groundbased network of 1m telescopes dedicated to the study of phenomena occurring in the time domain. Chinese standard node of SONG is an Alt-Az Telescope of F/37 with 1m diameter. Optics derotator control system of SONG telescope adopts the development model of "Industrial Computer + UMAC Motion Controller + Servo Motor".1 Industrial computer is the core processing part of the motion control, motion control card(UMAC) is in charge of the details on the motion control, Servo amplifier accepts the control commands from UMAC, and drives the servo motor. The position feedback information comes from the encoder, to form a closed loop control system. This paper describes in detail hardware design and software design for the optics derotator servo control system. In terms of hardware design, the principle, structure, and control algorithm of servo system based on optics derotator are analyzed and explored. In terms of software design, the paper proposes the architecture of the system software based on Object-Oriented Programming.

  12. The International Solid Earth Research Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Fox, G.; Pierce, M.; Rundle, J.; Donnellan, A.; Parker, J.; Granat, R.; Lyzenga, G.; McLeod, D.; Grant, L.

    2004-12-01

    We describe the architecture and initial implementation of the International Solid Earth Research Virtual Observatory (iSERVO). This has been prototyped within the USA as SERVOGrid and expansion is planned to Australia, China, Japan and other countries. We base our design on a globally scalable distributed "cyber-infrastructure" or Grid built around a Web Services-based approach consistent with the extended Web Service Interoperability approach. The Solid Earth Science Working Group of NASA has identified several challenges for Earth Science research. In order to investigate these, we need to couple numerical simulation codes and data mining tools to observational data sets. This observational data are now available on-line in internet-accessible forms, and the quantity of this data is expected to grow explosively over the next decade. We architect iSERVO as a loosely federated Grid of Grids with each country involved supporting a national Solid Earth Research Grid. The national Grid Operations, possibly with dedicated control centers, are linked together to support iSERVO where an International Grid control center may eventually be necessary. We address the difficult multi-administrative domain security and ownership issues by exposing capabilities as services for which the risk of abuse is minimized. We support large scale simulations within a single domain using service-hosted tools (mesh generation, data repository and sensor access, GIS, visualization). Simulations typically involve sequential or parallel machines in a single domain supported by cross-continent services. We use Web Services implement Service Oriented Architecture (SOA) using WSDL for service description and SOAP for message formats. These are augmented by UDDI, WS-Security, WS-Notification/Eventing and WS-ReliableMessaging in the WS-I+ approach. Support for the latter two capabilities will be available over the next 6 months from the NaradaBrokering messaging system. We augment these specifications with the powerful portlet architecture using WSRP and JSR168 supported by such portal containers as uPortal, WebSphere, and Apache JetSpeed2. The latter portal aggregates component user interfaces for each iSERVO service allowing flexible customization of the user interface. We exploit the portlets produced by the NSF NMI (Middleware initiative) OGCE activity. iSERVO also uses specifications from the Open Geographical Information Systems (GIS) Consortium (OGC) that defines a number of standards for modeling earth surface feature data and services for interacting with this data. The data models are expressed in the XML-based Geography Markup Language (GML), and the OGC service framework are being adapted to use the Web Service model. The SERVO prototype includes a GIS Grid that currently includes the core WMS and WFS (Map and Feature) services. We will follow the best practice in the Grid and Web Service field and will adapt our technology as appropriate. For example, we expect to support services built on WS-RF when is finalized and to make use of the database interfaces OGSA-DAI and its WS-I+ versions. Finally, we review advances in Web Service scripting (such as HPSearch) and workflow systems (such as GCF) and their applications to iSERVO.

  13. Research on phase locked loop in optical memory servo system

    NASA Astrophysics Data System (ADS)

    Qin, Liqin; Ma, Jianshe; Zhang, Jianyong; Pan, Longfa; Deng, Ming

    2005-09-01

    Phase locked loop (PLL) is a closed loop automatic control system, which can track the phase of input signal. It widely applies in each area of electronic technology. This paper research the phase locked loop in optical memory servo area. This paper introduces the configuration of digital phase locked loop (PLL) and phase locked servo system, the control theory, and analyses system's stability. It constructs the phase locked loop experiment system of optical disk spindle servo, which based on special chip. DC motor is main object, this system adopted phase locked servo technique and digital signal processor (DSP) to achieve constant linear velocity (CLV) in controlling optical spindle motor. This paper analyses the factors that affect the stability of phase locked loop in spindle servo system, and discusses the affection to the optical disk readout signal and jitter due to the stability of phase locked loop.

  14. Permanent magnet synchronous motor servo system control based on μC/OS

    NASA Astrophysics Data System (ADS)

    Shi, Chongyang; Chen, Kele; Chen, Xinglong

    2015-10-01

    When Opto-Electronic Tracking system operates in complex environments, every subsystem must operate efficiently and stably. As a important part of Opto-Electronic Tracking system, the performance of PMSM(Permanent Magnet Synchronous Motor) servo system affects the Opto-Electronic Tracking system's accuracy and speed greatly[1][2]. This paper applied embedded real-time operating system μC/OS to the control of PMSM servo system, implemented SVPWM(Space Vector Pulse Width Modulation) algorithm in PMSM servo system, optimized the stability of PMSM servo system. Pointing on the characteristics of the Opto-Electronic Tracking system, this paper expanded μC/OS with software redundancy processes, remote debugging and upgrading. As a result, the Opto- Electronic Tracking system performs efficiently and stably.

  15. Active Guidance of a Handheld Micromanipulator using Visual Servoing.

    PubMed

    Becker, Brian C; Voros, Sandrine; Maclachlan, Robert A; Hager, Gregory D; Riviere, Cameron N

    2009-05-12

    In microsurgery, a surgeon often deals with anatomical structures of sizes that are close to the limit of the human hand accuracy. Robotic assistants can help to push beyond the current state of practice by integrating imaging and robot-assisted tools. This paper demonstrates control of a handheld tremor reduction micromanipulator with visual servo techniques, aiding the operator by providing three behaviors: snap-to, motion-scaling, and standoff-regulation. A stereo camera setup viewing the workspace under high magnification tracks the tip of the micromanipulator and the desired target object being manipulated. Individual behaviors activate in task-specific situations when the micromanipulator tip is in the vicinity of the target. We show that the snap-to behavior can reach and maintain a position at a target with an accuracy of 17.5 ± 0.4μm Root Mean Squared Error (RMSE) distance between the tip and target. Scaling the operator's motions and preventing unwanted contact with non-target objects also provides a larger margin of safety.

  16. GMRT servo system : overview of the upgrades

    NASA Astrophysics Data System (ADS)

    Bagde, Shailendra

    The servo system of the GMRT, designed in the early 1990s by BARC and subsequently commissioned in the antennas by 1996, is a classical nested loop control system. Some of its major subsystems are undergoing significant upgrades to increase reliability, reduce maintenance and overcome obsolescence of components. These include the solid-state interlock system, a PC104 based servo control computer, and advanced BLDC drives and motors.

  17. Visual Servoing via Navigation Functions

    DTIC Science & Technology

    2002-02-06

    kernel was adequate). The PC is equipped with a Data Translations12 DT3155 frame grabber connected to a standard 30Hz NTSC video camera. Using MATLAB’s C...Richard M. Murray, Zexiang Li, and S. Shankar Sastry. A Mathematical Introduction to Robotic Manipulation. CRC Press, Reading, Mass., 1994. [26] Dan Pedoe

  18. A robust vision-based sensor fusion approach for real-time pose estimation.

    PubMed

    Assa, Akbar; Janabi-Sharifi, Farrokh

    2014-02-01

    Object pose estimation is of great importance to many applications, such as augmented reality, localization and mapping, motion capture, and visual servoing. Although many approaches based on a monocular camera have been proposed, only a few works have concentrated on applying multicamera sensor fusion techniques to pose estimation. Higher accuracy and enhanced robustness toward sensor defects or failures are some of the advantages of these schemes. This paper presents a new Kalman-based sensor fusion approach for pose estimation that offers higher accuracy and precision, and is robust to camera motion and image occlusion, compared to its predecessors. Extensive experiments are conducted to validate the superiority of this fusion method over currently employed vision-based pose estimation algorithms.

  19. Study of Servo Press with a Flywheel

    NASA Astrophysics Data System (ADS)

    Tso, Pei-Lum; Li, Cheng-Ho

    The servo press with a flywheel is able to provide flexible motions with energy-saving merit, but its true potential has not been thoroughly studied and verified. In this paper, such the “hybrid-driven” servo press is focused on, and the stamping capacity and the energy distribution between the flywheel and the servomotor are investigated. The capacity is derived based on the principle of energy conservation, and a method of using a capacity percentage plane for evaluation is proposed. A case study is included to illustrate and interpret that the stamping capacity is highly dependent on the programmed punch motions, thus the capacity prediction is always necessary while applying this kind of servo press. The energy distribution is validated by blanking experiments, and the results indicate that the servomotor needs only to provide 15% to the flywheel torque, 12% of the total stamping energy. This validates that the servomotor power is significantly saved in comparison with conventional servo presses.

  20. Research Based on AMESim of Electro-hydraulic Servo Loading System

    NASA Astrophysics Data System (ADS)

    Li, Jinlong; Hu, Zhiyong

    2017-09-01

    Electro-hydraulic servo loading system is a subject studied by many scholars in the field of simulation and control at home and abroad. The electro-hydraulic servo loading system is a loading device simulation of stress objects by aerodynamic moment and other force in the process of movement, its function is all kinds of gas in the lab condition to analyze stress under dynamic load of objects. The purpose of this paper is the design of AMESim electro-hydraulic servo system, PID control technology is used to configure the parameters of the control system, complete the loading process under different conditions, the optimal design parameters, optimization of dynamic performance of the loading system.

  1. Robotized High Intensity Focused Ultrasound (HIFU) system for treatment of mobile organs using motion tracking by ultrasound imaging: An in vitro study.

    PubMed

    Chanel, Laure-Anais; Nageotte, Florent; Vappou, Jonathan; Luo, Jianwen; Cuvillon, Loic; de Mathelin, Michel

    2015-01-01

    High Intensity Focused Ultrasound (HIFU) therapy is a very promising method for ablation of solid tumors. However, intra-abdominal organ motion, principally due to breathing, is a substantial limitation that results in incorrect tumor targeting. The objective of this work is to develop an all-in-one robotized HIFU system that can compensate motion in real-time during HIFU treatment. To this end, an ultrasound visual servoing scheme working at 20 Hz was designed. It relies on the motion estimation by using a fast ultrasonic speckle tracking algorithm and on the use of an interleaved imaging/HIFU sonication sequence for avoiding ultrasonic wave interferences. The robotized HIFU system was tested on a sample of chicken breast undergoing a vertical sinusoidal motion at 0.25 Hz. Sonications with and without motion compensation were performed in order to assess the effect of motion compensation on thermal lesions induced by HIFU. Motion was reduced by more than 80% thanks to this ultrasonic visual servoing system.

  2. Hitchhiking Robots: A Collaborative Approach for Efficient Multi-Robot Navigation in Indoor Environments

    PubMed Central

    Ravankar, Abhijeet; Ravankar, Ankit A.; Kobayashi, Yukinori; Emaru, Takanori

    2017-01-01

    Hitchhiking is a means of transportation gained by asking other people for a (free) ride. We developed a multi-robot system which is the first of its kind to incorporate hitchhiking in robotics, and discuss its advantages. Our method allows the hitchhiker robot to skip redundant computations in navigation like path planning, localization, obstacle avoidance, and map update by completely relying on the driver robot. This allows the hitchhiker robot, which performs only visual servoing, to save computation while navigating on the common path with the driver robot. The driver robot, in the proposed system performs all the heavy computations in navigation and updates the hitchhiker about the current localized positions and new obstacle positions in the map. The proposed system is robust to recover from ‘driver-lost’ scenario which occurs due to visual servoing failure. We demonstrate robot hitchhiking in real environments considering factors like service-time and task priority with different start and goal configurations of the driver and hitchhiker robots. We also discuss the admissible characteristics of the hitchhiker, when hitchhiking should be allowed and when not, through experimental results. PMID:28809803

  3. Hitchhiking Robots: A Collaborative Approach for Efficient Multi-Robot Navigation in Indoor Environments.

    PubMed

    Ravankar, Abhijeet; Ravankar, Ankit A; Kobayashi, Yukinori; Emaru, Takanori

    2017-08-15

    Hitchhiking is a means of transportation gained by asking other people for a (free) ride. We developed a multi-robot system which is the first of its kind to incorporate hitchhiking in robotics, and discuss its advantages. Our method allows the hitchhiker robot to skip redundant computations in navigation like path planning, localization, obstacle avoidance, and map update by completely relying on the driver robot. This allows the hitchhiker robot, which performs only visual servoing, to save computation while navigating on the common path with the driver robot. The driver robot, in the proposed system performs all the heavy computations in navigation and updates the hitchhiker about the current localized positions and new obstacle positions in the map. The proposed system is robust to recover from `driver-lost' scenario which occurs due to visual servoing failure. We demonstrate robot hitchhiking in real environments considering factors like service-time and task priority with different start and goal configurations of the driver and hitchhiker robots. We also discuss the admissible characteristics of the hitchhiker, when hitchhiking should be allowed and when not, through experimental results.

  4. Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure.

    PubMed

    Cowie, Martin R; Woehrle, Holger; Wegscheider, Karl; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K; Somers, Virend K; Zannad, Faiez; Teschler, Helmut

    2015-09-17

    Central sleep apnea is associated with poor prognosis and death in patients with heart failure. Adaptive servo-ventilation is a therapy that uses a noninvasive ventilator to treat central sleep apnea by delivering servo-controlled inspiratory pressure support on top of expiratory positive airway pressure. We investigated the effects of adaptive servo-ventilation in patients who had heart failure with reduced ejection fraction and predominantly central sleep apnea. We randomly assigned 1325 patients with a left ventricular ejection fraction of 45% or less, an apnea-hypopnea index (AHI) of 15 or more events (occurrences of apnea or hypopnea) per hour, and a predominance of central events to receive guideline-based medical treatment with adaptive servo-ventilation or guideline-based medical treatment alone (control). The primary end point in the time-to-event analysis was the first event of death from any cause, lifesaving cardiovascular intervention (cardiac transplantation, implantation of a ventricular assist device, resuscitation after sudden cardiac arrest, or appropriate lifesaving shock), or unplanned hospitalization for worsening heart failure. In the adaptive servo-ventilation group, the mean AHI at 12 months was 6.6 events per hour. The incidence of the primary end point did not differ significantly between the adaptive servo-ventilation group and the control group (54.1% and 50.8%, respectively; hazard ratio, 1.13; 95% confidence interval [CI], 0.97 to 1.31; P=0.10). All-cause mortality and cardiovascular mortality were significantly higher in the adaptive servo-ventilation group than in the control group (hazard ratio for death from any cause, 1.28; 95% CI, 1.06 to 1.55; P=0.01; and hazard ratio for cardiovascular death, 1.34; 95% CI, 1.09 to 1.65; P=0.006). Adaptive servo-ventilation had no significant effect on the primary end point in patients who had heart failure with reduced ejection fraction and predominantly central sleep apnea, but all-cause and cardiovascular mortality were both increased with this therapy. (Funded by ResMed and others; SERVE-HF ClinicalTrials.gov number, NCT00733343.).

  5. Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor

    NASA Astrophysics Data System (ADS)

    Wang, Yannian; Wu, Peizhi; Liu, Chengtao

    2017-09-01

    To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.

  6. A new servo method using servo layer and transverse MR head for submicron track servo on hard computer disks

    NASA Astrophysics Data System (ADS)

    Tan, Baolin; Mapps, Desmond J.; Pan, Genhua; Robinson, Paul

    1996-03-01

    A disk with a data, servo and isolation layer has been fabricated with the data layer magnetized along the circumferential direction. The servo layer was recorded with servo pattern magnetized along the radial direction. A continuous servo signal is obtained and the servo does not occupy any data area. In this new method, the servo and data bits can share media surface area on the disk without interference. Track following on 0.7 μm tracks has been demonstrated using the new servo method on longitudinal rigid disks.

  7. A computer-based servo system for controlling isotonic contractions of muscle.

    PubMed

    Smith, J P; Barsotti, R J

    1993-11-01

    We have developed a computer-based servo system for controlling isotonic releases in muscle. This system is a composite of commercially available devices: an IBM personal computer, an analog-to-digital (A/D) board, an Akers AE801 force transducer, and a Cambridge Technology motor. The servo loop controlling the force clamp is generated by computer via the A/D board, using a program written in QuickBASIC 4.5. Results are shown that illustrate the ability of the system to clamp the force generated by either skinned cardiac trabeculae or single rabbit psoas fibers down to the resolution of the force transducer within 4 ms. This rate is independent of the level of activation of the tissue and the size of the load imposed during the release. The key to the effectiveness of the system consists of two algorithms that are described in detail. The first is used to calculate the error signal to hold force to the desired level. The second algorithm is used to calculate the appropriate gain of the servo for a particular fiber and the size of the desired load to be imposed. The results show that the described computer-based method for controlling isotonic releases in muscle represents a good compromise between simplicity and performance and is an alternative to the custom-built digital/analog servo devices currently being used in studies of muscle mechanics.

  8. Vision-guided gripping of a cylinder

    NASA Technical Reports Server (NTRS)

    Nicewarner, Keith E.; Kelley, Robert B.

    1991-01-01

    The motivation for vision-guided servoing is taken from tasks in automated or telerobotic space assembly and construction. Vision-guided servoing requires the ability to perform rapid pose estimates and provide predictive feature tracking. Monocular information from a gripper-mounted camera is used to servo the gripper to grasp a cylinder. The procedure is divided into recognition and servo phases. The recognition stage verifies the presence of a cylinder in the camera field of view. Then an initial pose estimate is computed and uncluttered scan regions are selected. The servo phase processes only the selected scan regions of the image. Given the knowledge, from the recognition phase, that there is a cylinder in the image and knowing the radius of the cylinder, 4 of the 6 pose parameters can be estimated with minimal computation. The relative motion of the cylinder is obtained by using the current pose and prior pose estimates. The motion information is then used to generate a predictive feature-based trajectory for the path of the gripper.

  9. An Automated Mouse Tail Vascular Access System by Vision and Pressure Feedback.

    PubMed

    Chang, Yen-Chi; Berry-Pusey, Brittany; Yasin, Rashid; Vu, Nam; Maraglia, Brandon; Chatziioannou, Arion X; Tsao, Tsu-Chin

    2015-08-01

    This paper develops an automated vascular access system (A-VAS) with novel vision-based vein and needle detection methods and real-time pressure feedback for murine drug delivery. Mouse tail vein injection is a routine but critical step for preclinical imaging applications. Due to the small vein diameter and external disturbances such as tail hair, pigmentation, and scales, identifying vein location is difficult and manual injections usually result in poor repeatability. To improve the injection accuracy, consistency, safety, and processing time, A-VAS was developed to overcome difficulties in vein detection noise rejection, robustness in needle tracking, and visual servoing integration with the mechatronics system.

  10. Application of IFT and SPSA to servo system control.

    PubMed

    Rădac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M; Preitl, Stefan

    2011-12-01

    This paper treats the application of two data-based model-free gradient-based stochastic optimization techniques, i.e., iterative feedback tuning (IFT) and simultaneous perturbation stochastic approximation (SPSA), to servo system control. The representative case of controlled processes modeled by second-order systems with an integral component is discussed. New IFT and SPSA algorithms are suggested to tune the parameters of the state feedback controllers with an integrator in the linear-quadratic-Gaussian (LQG) problem formulation. An implementation case study concerning the LQG-based design of an angular position controller for a direct current servo system laboratory equipment is included to highlight the pros and cons of IFT and SPSA from an application's point of view. The comparison of IFT and SPSA algorithms is focused on an insight into their implementation.

  11. Photoelectric radar servo control system based on ARM+FPGA

    NASA Astrophysics Data System (ADS)

    Wu, Kaixuan; Zhang, Yue; Li, Yeqiu; Dai, Qin; Yao, Jun

    2016-01-01

    In order to get smaller, faster, and more responsive requirements of the photoelectric radar servo control system. We propose a set of core ARM + FPGA architecture servo controller. Parallel processing capability of FPGA to be used for the encoder feedback data, PWM carrier modulation, A, B code decoding processing and so on; Utilizing the advantage of imaging design in ARM Embedded systems achieves high-speed implementation of the PID algorithm. After the actual experiment, the closed-loop speed of response of the system cycles up to 2000 times/s, in the case of excellent precision turntable shaft, using a PID algorithm to achieve the servo position control with the accuracy of + -1 encoder input code. Firstly, This article carry on in-depth study of the embedded servo control system hardware to determine the ARM and FPGA chip as the main chip with systems based on a pre-measured target required to achieve performance requirements, this article based on ARM chip used Samsung S3C2440 chip of ARM7 architecture , the FPGA chip is chosen xilinx's XC3S400 . ARM and FPGA communicate by using SPI bus, the advantage of using SPI bus is saving a lot of pins for easy system upgrades required thereafter. The system gets the speed datas through the photoelectric-encoder that transports the datas to the FPGA, Then the system transmits the datas through the FPGA to ARM, transforms speed datas into the corresponding position and velocity data in a timely manner, prepares the corresponding PWM wave to control motor rotation by making comparison between the position data and the velocity data setted in advance . According to the system requirements to draw the schematics of the photoelectric radar servo control system and PCB board to produce specially. Secondly, using PID algorithm to control the servo system, the datas of speed obtained from photoelectric-encoder is calculated position data and speed data via high-speed digital PID algorithm and coordinate models. Finally, a large number of experiments verify the reliability of embedded servo control system's functions, the stability of the program and the stability of the hardware circuit. Meanwhile, the system can also achieve the satisfactory of user experience, to achieve a multi-mode motion, real-time motion status monitoring, online system parameter changes and other convenient features.

  12. Robust Hinfinity position control synthesis of an electro-hydraulic servo system.

    PubMed

    Milić, Vladimir; Situm, Zeljko; Essert, Mario

    2010-10-01

    This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Implementation and Validation of Bioplausible Visual Servoing Control

    DTIC Science & Technology

    2013-03-01

    achieve pose stabilization in the context of one -dimensional (1-D) attitude stabilization. These results have been benchmarked against an ideal...scenes representing low (bottom) and high (top) contrast environments used in testing the TurtleBot on the two algorithms...The graph on the left corresponds to the high-contrast simulation environment, and the image on the right corresponds to the low-contrast

  14. Enhancement of tracking performance in electro-optical system based on servo control algorithm

    NASA Astrophysics Data System (ADS)

    Choi, WooJin; Kim, SungSu; Jung, DaeYoon; Seo, HyoungKyu

    2017-10-01

    Modern electro-optical surveillance and reconnaissance systems require tracking capability to get exact images of target or to accurately direct the line of sight to target which is moving or still. This leads to the tracking system composed of image based tracking algorithm and servo control algorithm. In this study, we focus on the servo control function to minimize the overshoot in the tracking motion and do not miss the target. The scheme is to limit acceleration and velocity parameters in the tracking controller, depending on the target state information in the image. We implement the proposed techniques by creating a system model of DIRCM and simulate the same environment, validate the performance on the actual equipment.

  15. Data-Driven Based Asynchronous Motor Control for Printing Servo Systems

    NASA Astrophysics Data System (ADS)

    Bian, Min; Guo, Qingyun

    Modern digital printing equipment aims to the environmental-friendly industry with high dynamic performances and control precision and low vibration and abrasion. High performance motion control system of printing servo systems was required. Control system of asynchronous motor based on data acquisition was proposed. Iterative learning control (ILC) algorithm was studied. PID control was widely used in the motion control. However, it was sensitive to the disturbances and model parameters variation. The ILC applied the history error data and present control signals to approximate the control signal directly in order to fully track the expect trajectory without the system models and structures. The motor control algorithm based on the ILC and PID was constructed and simulation results were given. The results show that data-driven control method is effective dealing with bounded disturbances for the motion control of printing servo systems.

  16. A Novel Real-Time Path Servo Control of a Hardware-in-the-Loop for a Large-Stroke Asymmetric Rod-Less Pneumatic System under Variable Loads.

    PubMed

    Lin, Hao-Ting

    2017-06-04

    This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC) is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally.

  17. A Novel Real-Time Path Servo Control of a Hardware-in-the-Loop for a Large-Stroke Asymmetric Rod-Less Pneumatic System under Variable Loads

    PubMed Central

    Lin, Hao-Ting

    2017-01-01

    This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC) is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally. PMID:28587220

  18. Minimalistic Dynamic Climbing

    DTIC Science & Technology

    2010-11-01

    connected. On this same disk, a servo motor is connected to a light weight leg. An Arduino 77 Body Weight Markers Leg Disk Servo Motor Front View Top View...this control enables more dynamic and fast walking, the control is based on precise joint-angle control. The main consequence of such a control is that... based climbing strategies. Specifically, the four-limbed free-climbing LEMUR robot goes up climbing walls by choosing a sequence of handholds

  19. Nonlinear friction model for servo press simulation

    NASA Astrophysics Data System (ADS)

    Ma, Ninshu; Sugitomo, Nobuhiko; Kyuno, Takunori; Tamura, Shintaro; Naka, Tetsuo

    2013-12-01

    The friction coefficient was measured under an idealized condition for a pulse servo motion. The measured friction coefficient and its changing with both sliding distance and a pulse motion showed that the friction resistance can be reduced due to the re-lubrication during unloading process of the pulse servo motion. Based on the measured friction coefficient and its changes with sliding distance and re-lubrication of oil, a nonlinear friction model was developed. Using the newly developed the nonlinear friction model, a deep draw simulation was performed and the formability was evaluated. The results were compared with experimental ones and the effectiveness was verified.

  20. Improvement of a Pneumatic Control Valve with Self-Holding Function

    NASA Astrophysics Data System (ADS)

    Dohta, Shujiro; Akagi, Tetsuya; Kobayashi, Wataru; Shimooka, So; Masago, Yusuke

    2017-10-01

    The purpose of this study is to develop a small-sized, lightweight and low-cost control valve with low energy consumption and to apply it to the assistive system. We have developed some control valves; a tiny on/off valve using a vibration motor, and an on/off valve with self-holding function. We have also proposed and tested the digital servo valve with self-holding function using permanent magnets and a small-sized servo motor. In this paper, in order to improve the valve, an analytical model of the digital servo valve is proposed. And the simulated results by using the analytical model and identified parameters were compared with the experimental results. Then, the improved digital servo valve was designed based on the calculated results and tested. As a result, we realized the digital servo valve that can control the flow rate more precisely while maintaining its volume and weight compared with the previous valve. As an application of the improved valve, a position control system of rubber artificial muscle was built and the position control was performed successfully.

  1. A Matlab/Simulink-Based Interactive Module for Servo Systems Learning

    ERIC Educational Resources Information Center

    Aliane, N.

    2010-01-01

    This paper presents an interactive module for learning both the fundamental and practical issues of servo systems. This module, developed using Simulink in conjunction with the Matlab graphical user interface (Matlab-GUI) tool, is used to supplement conventional lectures in control engineering and robotics subjects. First, the paper introduces the…

  2. Compact, Lightweight Servo-Controllable Brakes

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.; Townsend, William; Guertin, Jeffrey; Matsuoka, Yoky

    2010-01-01

    Compact, lightweight servo-controllable brakes capable of high torques are being developed for incorporation into robot joints. A brake of this type is based partly on the capstan effect of tension elements. In a brake of the type under development, a controllable intermediate state of torque is reached through on/off switching at a high frequency.

  3. Design of intelligent vehicle control system based on single chip microcomputer

    NASA Astrophysics Data System (ADS)

    Zhang, Congwei

    2018-06-01

    The smart car microprocessor uses the KL25ZV128VLK4 in the Freescale series of single-chip microcomputers. The image sampling sensor uses the CMOS digital camera OV7725. The obtained track data is processed by the corresponding algorithm to obtain track sideline information. At the same time, the pulse width modulation control (PWM) is used to control the motor and servo movements, and based on the digital incremental PID algorithm, the motor speed control and servo steering control are realized. In the project design, IAR Embedded Workbench IDE is used as the software development platform to program and debug the micro-control module, camera image processing module, hardware power distribution module, motor drive and servo control module, and then complete the design of the intelligent car control system.

  4. iSERVO: Implementing the International Solid Earth Research Virtual Observatory by Integrating Computational Grid and Geographical Information Web Services

    NASA Astrophysics Data System (ADS)

    Aktas, Mehmet; Aydin, Galip; Donnellan, Andrea; Fox, Geoffrey; Granat, Robert; Grant, Lisa; Lyzenga, Greg; McLeod, Dennis; Pallickara, Shrideep; Parker, Jay; Pierce, Marlon; Rundle, John; Sayar, Ahmet; Tullis, Terry

    2006-12-01

    We describe the goals and initial implementation of the International Solid Earth Virtual Observatory (iSERVO). This system is built using a Web Services approach to Grid computing infrastructure and is accessed via a component-based Web portal user interface. We describe our implementations of services used by this system, including Geographical Information System (GIS)-based data grid services for accessing remote data repositories and job management services for controlling multiple execution steps. iSERVO is an example of a larger trend to build globally scalable scientific computing infrastructures using the Service Oriented Architecture approach. Adoption of this approach raises a number of research challenges in millisecond-latency message systems suitable for internet-enabled scientific applications. We review our research in these areas.

  5. Development of X-Y servo pneumatic-piezoelectric hybrid actuators for position control with high response, large stroke and nanometer accuracy.

    PubMed

    Chiang, Mao-Hsiung

    2010-01-01

    This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally.

  6. Development of X-Y Servo Pneumatic-Piezoelectric Hybrid Actuators for Position Control with High Response, Large Stroke and Nanometer Accuracy

    PubMed Central

    Chiang, Mao-Hsiung

    2010-01-01

    This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally. PMID:22319266

  7. Efficient visual grasping alignment for cylinders

    NASA Technical Reports Server (NTRS)

    Nicewarner, Keith E.; Kelley, Robert B.

    1992-01-01

    Monocular information from a gripper-mounted camera is used to servo the robot gripper to grasp a cylinder. The fundamental concept for rapid pose estimation is to reduce the amount of information that needs to be processed during each vision update interval. The grasping procedure is divided into four phases: learn, recognition, alignment, and approach. In the learn phase, a cylinder is placed in the gripper and the pose estimate is stored and later used as the servo target. This is performed once as a calibration step. The recognition phase verifies the presence of a cylinder in the camera field of view. An initial pose estimate is computed and uncluttered scan regions are selected. The radius of the cylinder is estimated by moving the robot a fixed distance toward the cylinder and observing the change in the image. The alignment phase processes only the scan regions obtained previously. Rapid pose estimates are used to align the robot with the cylinder at a fixed distance from it. The relative motion of the cylinder is used to generate an extrapolated pose-based trajectory for the robot controller. The approach phase guides the robot gripper to a grasping position. The cylinder can be grasped with a minimal reaction force and torque when only rough global pose information is initially available.

  8. Efficient visual grasping alignment for cylinders

    NASA Technical Reports Server (NTRS)

    Nicewarner, Keith E.; Kelley, Robert B.

    1991-01-01

    Monocular information from a gripper-mounted camera is used to servo the robot gripper to grasp a cylinder. The fundamental concept for rapid pose estimation is to reduce the amount of information that needs to be processed during each vision update interval. The grasping procedure is divided into four phases: learn, recognition, alignment, and approach. In the learn phase, a cylinder is placed in the gripper and the pose estimate is stored and later used as the servo target. This is performed once as a calibration step. The recognition phase verifies the presence of a cylinder in the camera field of view. An initial pose estimate is computed and uncluttered scan regions are selected. The radius of the cylinder is estimated by moving the robot a fixed distance toward the cylinder and observing the change in the image. The alignment phase processes only the scan regions obtained previously. Rapid pose estimates are used to align the robot with the cylinder at a fixed distance from it. The relative motion of the cylinder is used to generate an extrapolated pose-based trajectory for the robot controller. The approach phase guides the robot gripper to a grasping position. The cylinder can be grasped with a minimal reaction force and torque when only rough global pose information is initially available.

  9. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    NASA Astrophysics Data System (ADS)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  10. The effect of withdrawal of visual presentation of errors upon the frequency spectrum of tremor in a manual task

    PubMed Central

    Sutton, G. G.; Sykes, K.

    1967-01-01

    1. When a subject attempts to exert a steady pressure on a joystick he makes small unavoidable errors which, irrespective of their origin or frequency, may be called tremor. 2. Frequency analysis shows that low frequencies always contribute much more to the total error than high frequencies. If the subject is not allowed to check his performance visually, but has to rely on sensations of pressure in the finger tips, etc., the error power spectrum plotted on logarithmic co-ordinates approximates to a straight line falling at 6 db/octave from 0·4 to 9 c/s. In other words the amplitude of the tremor component at each frequency is inversely proportional to frequency. 3. When the subject is given a visual indication of his errors on an oscilloscope the shape of the tremor spectrum alters. The most striking change is the appearance of a tremor peak at about 9 c/s, but there is also a significant increase of error in the range 1-4 c/s. The extent of these changes varies from subject to subject. 4. If the 9 c/s peak represents oscillation of a muscle length-servo it would appear that greater use is made of this servo when positional information is available from the eyes than when proprioceptive impulses from the limbs have to be relied on. ImagesFig. 2 PMID:6048997

  11. Transistor-based interface circuitry

    DOEpatents

    Taubman, Matthew S [Richland, WA

    2007-02-13

    Among the embodiments of the present invention is an apparatus that includes a transistor, a servo device, and a current source. The servo device is operable to provide a common base mode of operation of the transistor by maintaining an approximately constant voltage level at the transistor base. The current source is operable to provide a bias current to the transistor. A first device provides an input signal to an electrical node positioned between the emitter of the transistor and the current source. A second device receives an output signal from the collector of the transistor.

  12. Diurnal rhythms of visual accommodation and blink responses - Implication for flight-deck visual standards

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Williams, B. A.

    1977-01-01

    Possible 24-h variations in accommodation responses were investigated. A recently developed servo-controlled optometer and focus stimulator were used to obtain monocular accommodation response data on four college-age subjects. No 24-h rhythm in accommodation was shown. Heart rate and blink rate also were measured and periodicity analysis showed a mean 24-h rhythm for both; however, blink rate periodograms were significant for only two of the four subjects. Thus, with the qualifications that college students were tested instead of pilots and that they performed monocular laboratory tasks instead of binocular flight-deck tasks, it is concluded that 24-h rhythms in accommodation responses need not be considered in setting visual standards for flight-deck tasks.

  13. Small Autonomous Aircraft Servo Health Monitoring

    NASA Technical Reports Server (NTRS)

    Quintero, Steven

    2008-01-01

    Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.

  14. Programmable Digital Controller

    NASA Technical Reports Server (NTRS)

    Wassick, Gregory J.

    2012-01-01

    An existing three-channel analog servo loop controller has been redesigned for piezoelectric-transducer-based (PZT-based) etalon control applications to a digital servo loop controller. This change offers several improvements over the previous analog controller, including software control over proportional-integral-derivative (PID) parameters, inclusion of other data of interest such as temperature and pressure in the control laws, improved ability to compensate for PZT hysteresis and mechanical mount fluctuations, ability to provide pre-programmed scanning and stepping routines, improved user interface, expanded data acquisition, and reduced size, weight, and power.

  15. Visual Servoing-Based Nanorobotic System for Automated Electrical Characterization of Nanotubes inside SEM.

    PubMed

    Ding, Huiyang; Shi, Chaoyang; Ma, Li; Yang, Zhan; Wang, Mingyu; Wang, Yaqiong; Chen, Tao; Sun, Lining; Toshio, Fukuda

    2018-04-08

    The maneuvering and electrical characterization of nanotubes inside a scanning electron microscope (SEM) has historically been time-consuming and laborious for operators. Before the development of automated nanomanipulation-enabled techniques for the performance of pick-and-place and characterization of nanoobjects, these functions were still incomplete and largely operated manually. In this paper, a dual-probe nanomanipulation system vision-based feedback was demonstrated to automatically perform 3D nanomanipulation tasks, to investigate the electrical characterization of nanotubes. The XY-position of Atomic Force Microscope (AFM) cantilevers and individual carbon nanotubes (CNTs) were precisely recognized via a series of image processing operations. A coarse-to-fine positioning strategy in the Z-direction was applied through the combination of the sharpness-based depth estimation method and the contact-detection method. The use of nanorobotic magnification-regulated speed aided in improving working efficiency and reliability. Additionally, we proposed automated alignment of manipulator axes by visual tracking the movement trajectory of the end effector. The experimental results indicate the system's capability for automated measurement electrical characterization of CNTs. Furthermore, the automated nanomanipulation system has the potential to be extended to other nanomanipulation tasks.

  16. Visual Servoing-Based Nanorobotic System for Automated Electrical Characterization of Nanotubes inside SEM

    PubMed Central

    Ding, Huiyang; Shi, Chaoyang; Ma, Li; Yang, Zhan; Wang, Mingyu; Wang, Yaqiong; Chen, Tao; Sun, Lining; Toshio, Fukuda

    2018-01-01

    The maneuvering and electrical characterization of nanotubes inside a scanning electron microscope (SEM) has historically been time-consuming and laborious for operators. Before the development of automated nanomanipulation-enabled techniques for the performance of pick-and-place and characterization of nanoobjects, these functions were still incomplete and largely operated manually. In this paper, a dual-probe nanomanipulation system vision-based feedback was demonstrated to automatically perform 3D nanomanipulation tasks, to investigate the electrical characterization of nanotubes. The XY-position of Atomic Force Microscope (AFM) cantilevers and individual carbon nanotubes (CNTs) were precisely recognized via a series of image processing operations. A coarse-to-fine positioning strategy in the Z-direction was applied through the combination of the sharpness-based depth estimation method and the contact-detection method. The use of nanorobotic magnification-regulated speed aided in improving working efficiency and reliability. Additionally, we proposed automated alignment of manipulator axes by visual tracking the movement trajectory of the end effector. The experimental results indicate the system’s capability for automated measurement electrical characterization of CNTs. Furthermore, the automated nanomanipulation system has the potential to be extended to other nanomanipulation tasks. PMID:29642495

  17. Optimality based repetitive controller design for track-following servo system of optical disk drives.

    PubMed

    Chen, Wentao; Zhang, Weidong

    2009-10-01

    In an optical disk drive servo system, to attenuate the external periodic disturbances induced by inevitable disk eccentricity, repetitive control has been used successfully. The performance of a repetitive controller greatly depends on the bandwidth of the low-pass filter included in the repetitive controller. However, owing to the plant uncertainty and system stability, it is difficult to maximize the bandwidth of the low-pass filter. In this paper, we propose an optimality based repetitive controller design method for the track-following servo system with norm-bounded uncertainties. By embedding a lead compensator in the repetitive controller, both the system gain at periodic signal's harmonics and the bandwidth of the low-pass filter are greatly increased. The optimal values of the repetitive controller's parameters are obtained by solving two optimization problems. Simulation and experimental results are provided to illustrate the effectiveness of the proposed method.

  18. Synchronous Control Method and Realization of Automated Pharmacy Elevator

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-Quan

    Firstly, the control method of elevator's synchronous motion is provided, the synchronous control structure of double servo motor based on PMAC is accomplished. Secondly, synchronous control program of elevator is implemented by using PMAC linear interpolation motion model and position error compensation method. Finally, the PID parameters of servo motor were adjusted. The experiment proves the control method has high stability and reliability.

  19. Simultaneous tracking and regulation visual servoing of wheeled mobile robots with uncalibrated extrinsic parameters

    NASA Astrophysics Data System (ADS)

    Lu, Qun; Yu, Li; Zhang, Dan; Zhang, Xuebo

    2018-01-01

    This paper presentsa global adaptive controller that simultaneously solves tracking and regulation for wheeled mobile robots with unknown depth and uncalibrated camera-to-robot extrinsic parameters. The rotational angle and the scaled translation between the current camera frame and the reference camera frame, as well as the ones between the desired camera frame and the reference camera frame can be calculated in real time by using the pose estimation techniques. A transformed system is first obtained, for which an adaptive controller is then designed to accomplish both tracking and regulation tasks, and the controller synthesis is based on Lyapunov's direct method. Finally, the effectiveness of the proposed method is illustrated by a simulation study.

  20. Resolved motion rate and resolved acceleration servo-control of wheeled mobile robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, P.F.; Neuman, C.P.; Carnegie-Mellon Univ., Pittsburgh, PA

    1989-01-01

    Accurate motion control of wheeled mobile robots (WMRs) is required for their application to autonomous, semi-autonomous and teleoperated tasks. The similarities between WMRs and stationary manipulators suggest that current, successful, model-based manipulator control algorithms may be applied to WMRs. Special characteristics of WMRs including higher-pairs, closed-chains, friction and unactuated and unsensed joints require innovative modeling methodologies. The WMR modeling challenge has been recently overcome, thus enabling the application of manipulator control algorithms to WMRs. This realization lays the foundation for significant technology transfer from manipulator control to WMR control. We apply two Cartesian-space manipulator control algorithms: resolved motion rate (kinematics-based)more » and resolved acceleration (dynamics-based) control to WMR servo-control. We evaluate simulation studies of two exemplary WMRs: Uranus (a three degree-of-freedom WMR constructed at Carnegie Mellon University), and Bicsun-Bicas (a two degree-of-freedom WMR being constructed at Sandia National Laboratories) under the control of these algorithms. Although resolved motion rate servo-control is adequate for the control of Uranus, resolved acceleration servo-control is required for the control of the mechanically simpler Bicsun-Bicas because it exhibits more dynamic coupling and nonlinearities. Successful accurate motion control of these WMRs in simulation is driving current experimental research studies. 18 refs., 7 figs., 5 tabs.« less

  1. The analysis and compensation of errors of precise simple harmonic motion control under high speed and large load conditions based on servo electric cylinder

    NASA Astrophysics Data System (ADS)

    Ma, Chen-xi; Ding, Guo-qing

    2017-10-01

    Simple harmonic waves and synthesized simple harmonic waves are widely used in the test of instruments. However, because of the errors caused by clearance of gear and time-delay error of FPGA, it is difficult to control servo electric cylinder in precise simple harmonic motion under high speed, high frequency and large load conditions. To solve the problem, a method of error compensation is proposed in this paper. In the method, a displacement sensor is fitted on the piston rod of the electric cylinder. By using the displacement sensor, the real-time displacement of the piston rod is obtained and fed back to the input of servo motor, then a closed loop control is realized. There is compensation of pulses in the next period of the synthetic waves. This paper uses FPGA as the processing core. The software mainly comprises a waveform generator, an Ethernet module, a memory module, a pulse generator, a pulse selector, a protection module, an error compensation module. A durability of shock absorbers is used as the testing platform. The durability mainly comprises a single electric cylinder, a servo motor for driving the electric cylinder, and the servo motor driver.

  2. Dynamic modeling and experiment of a new type of parallel servo press considering gravity counterbalance

    NASA Astrophysics Data System (ADS)

    He, Jun; Gao, Feng; Bai, Yongjun; Wu, Shengfu

    2013-11-01

    The large capacity servo press is traditionally realized by means of redundant actuation, however there exist the over-constraint problem and interference among actuators, which increases the control difficulty and the product cost. A new type of press mechanism with parallel topology is presented to develop the mechanical servo press with high stamping capacity. The dynamic model considering gravity counterbalance is proposed based on the virtual work principle, and then the effect of counterbalance cylinder on the dynamic performance of the servo press is studied. It is found that the motor torque required to operate the press is a lot less than the others when the ratio of the counterbalance force to the gravity of ram is in the vicinity of 1.0. The stamping force of the real press prototype can reach up to 25 MN on the position of 13 mm away from the bottom dead center. The typical deep-drawing process with 1 200 mm stroke at 8 strokes per minute is proposed by means of five order polynomial. On this process condition, the driving torques are calculated based on the above dynamic model and the torque measuring test is also carried out on the prototype. It is shown that the curve trend of calculation torque is consistent to the measured result and that the average error is less than 15%. The parallel mechanism is introduced into the development of large capacity servo press to avoid the over-constraint and interference of traditional redundant actuation, and its dynamic characteristics with gravity counterbalance are presented.

  3. Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system.

    PubMed

    Dixon, W E; Dawson, D M; Zergeroglu, E; Behal, A

    2001-01-01

    This paper considers the problem of position/orientation tracking control of wheeled mobile robots via visual servoing in the presence of parametric uncertainty associated with the mechanical dynamics and the camera system. Specifically, we design an adaptive controller that compensates for uncertain camera and mechanical parameters and ensures global asymptotic position/orientation tracking. Simulation and experimental results are included to illustrate the performance of the control law.

  4. A modern control theory based algorithm for control of the NASA/JPL 70-meter antenna axis servos

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1987-01-01

    A digital computer-based state variable controller was designed and applied to the 70-m antenna axis servos. The general equations and structure of the algorithm and provisions for alternate position error feedback modes to accommodate intertarget slew, encoder referenced tracking, and precision tracking modes are descibed. Development of the discrete time domain control model and computation of estimator and control gain parameters based on closed loop pole placement criteria are discussed. The new algorithm was successfully implemented and tested in the 70-m antenna at Deep Space Network station 63 in Spain.

  5. Definition and design of an experiment to test raster scanning with rotating unbalanced-mass devices on gimbaled payloads

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.; Alhorn, D. C.; Polites, M. E.

    1992-01-01

    An experiment designed to test the feasibility of using rotating unbalanced-mass (RUM) devices for line and raster scanning gimbaled payloads, while expending very little power is described. The experiment is configured for ground-based testing, but the scan concept is applicable to ground-based, balloon-borne, and space-based payloads, as well as free-flying spacecraft. The servos used in scanning are defined; the electronic hardware is specified; and a computer simulation model of the system is described. Simulation results are presented that predict system performance and verify the servo designs.

  6. Modeling of R/C Servo Motor and Application to Underactuated Mechanical Systems

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masato; Kitayoshi, Ryohei; Wada, Takashi; Maruta, Ichiro; Sugie, Toshiharu

    An R/C servo motor is a compact package of a DC geard-motor associated with a position servo controller. They are widely used in small-sized robotics and mechatronics by virtue of their compactness, easiness-to-use and high/weight ratio. However, it is crucial to clarify their internal model (including the embedded position servo) in order to improve control performance of mechatronic systems using R/C servo motors, such as biped robots or underactuted sysyems. In this paper, we propose a simple and realistic internal model of the R/C servo motors including the embedded servo controller, and estimate their physical parameters using continuous-time system identification method. We also provide a model of reference-to-torque transfer function so that we can estimate the internal torque acting on the load.

  7. Optokinetic motion sickness - Attenuation of visually-induced apparent self-rotation by passive head movements

    NASA Technical Reports Server (NTRS)

    Teixeira, R. A.; Lackner, J. R.

    1979-01-01

    An experimental study was conducted on seven normal subjects to evaluate the effectiveness of passive head movements in suppressing the optokinetically-induced illusory self-rotation. Visual simulation was provided by a servo-controlled optokinetic drum. Each subject participated in two experimental sessions. In one condition, the subject's head remained stationary while he gazed passively at a moving stripe pattern. In the other, he gazed passively and relaxed his neck muscles while his head was rotated from side to side. It appears that suppression of optokinetically-induced illusory self-rotation with passive head movements results from the operation of a spatial constancy mechanism interrelating visual, vestibular, and kinesthetic information on ongoing body orientation. The results support the view that optokinetic 'motion sickness' is related, at least in part, to an oculomotor disturbance rather than a visually triggered disturbance of specifically vestibular etiology.

  8. 78 FR 4762 - Airworthiness Directives; Bell Helicopter Textron Canada Limited (Bell) Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ... certain hydraulic servo actuator assemblies (servo) for a loose nut, shaft, and clevis assembly, modifying... through 52430, with a hydraulic servo actuator assembly (servo), part number (P/N) 206-076-062-103...) No. 206L-11-169, Revision B, dated August 29, 2011 (ASB). (2) Applying only hand pressure, determine...

  9. A Hydraulic Blowdown Servo System For Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  10. Visual Servoing for Optimization of Anticancer Drug Uptake in Human Breast Cancer Cells

    DTIC Science & Technology

    2000-09-01

    successfully obtained new DOE Medical Applications Program funding for this research (included in Appendix G: Automated Imaging System for Guiding Antisense ...Guiding Antisense Compounds to Specific mRNVA targets in Living Cells ) that will support this integration and development work with Dr. Parvin and Deep...a DNA and RNA binding fluorescence probe with a very different emission wavelengths, depending on whether it is bound to DNA or RNA ). Cells were then

  11. A failure effects simulation of a low authority flight control augmentation system on a UH-1H helicopter

    NASA Technical Reports Server (NTRS)

    Corliss, L. D.; Talbot, P. D.

    1977-01-01

    A two-pilot moving base simulator experiment was conducted to assess the effects of servo failures of a flight control system on the transient dynamics of a Bell UH-1H helicopter. The flight control hardware considered was part of the V/STOLAND system built with control authorities of from 20-40%. Servo hardover and oscillatory failures were simulated in each control axis. Measurements were made to determine the adequacy of the failure monitoring system time delay and the servo center and lock time constant, the pilot reaction times, and the altitude and attitude excursions of the helicopter at hover and 60 knots. Safe recoveries were made from all failures under VFR conditions. Pilot reaction times were from 0.5 to 0.75 sec. Reduction of monitor delay times below these values resulted in significantly reduced excursion envelopes. A subsequent flight test was conducted on a UH-1H helicopter with the V/STOLAND system installed. Series servo hardovers were introduced in hover and at 60 knots straight and level. Data from these tests are included for comparison.

  12. SAVA 3: A testbed for integration and control of visual processes

    NASA Technical Reports Server (NTRS)

    Crowley, James L.; Christensen, Henrik

    1994-01-01

    The development of an experimental test-bed to investigate the integration and control of perception in a continuously operating vision system is described. The test-bed integrates a 12 axis robotic stereo camera head mounted on a mobile robot, dedicated computer boards for real-time image acquisition and processing, and a distributed system for image description. The architecture was designed to: (1) be continuously operating, (2) integrate software contributions from geographically dispersed laboratories, (3) integrate description of the environment with 2D measurements, 3D models, and recognition of objects, (4) capable of supporting diverse experiments in gaze control, visual servoing, navigation, and object surveillance, and (5) dynamically reconfiguarable.

  13. Autonomous Docking Based on Infrared System for Electric Vehicle Charging in Urban Areas

    PubMed Central

    Pérez, Joshué; Nashashibi, Fawzi; Lefaudeux, Benjamin; Resende, Paulo; Pollard, Evangeline

    2013-01-01

    Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris. PMID:23429581

  14. Autonomous docking based on infrared system for electric vehicle charging in urban areas.

    PubMed

    Pérez, Joshué; Nashashibi, Fawzi; Lefaudeux, Benjamin; Resende, Paulo; Pollard, Evangeline

    2013-02-21

    Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris.

  15. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.

    PubMed

    Chen, Tien-Chi; Yu, Chih-Hsien

    2009-07-01

    A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.

  16. Novel All Digital Ring Cavity Locking Servo

    NASA Astrophysics Data System (ADS)

    Baker, J.; Gallant, D.; Lucero, A.; Miller, H.; Stohs, J.

    We plan to use this servo in the new 50W 589-nm sodium guidestar laser to be installed in the AMOS facility in July 2010. Though the basic design is unchanged from the successful Hillman/Denman design, numerous improvements are being implemented in order to bring the device even further out of the lab and into the field. The basic building block of the Hillman/Denman design are two low noise master oscillators that are injected into higher power slave oscillators that are locked to the frequencies of the master oscillator cavities. In the previous system a traditional analog Pound-Drever-Hall (PDH) loop was employed to provide the frequency locking. Analog servos work well, in general, but robust locking for a complex set of multiply-interconnected PDH servos in the guidestar source challenges existing analog approaches. One of the significant changes demonstrated thus far is the implementation of an all-digital servo using only COTS components and a fast CISC processing architecture for orchestrating the basic PDH loops active within system. Compared to the traditionally used analog servo loops, an all-digital servo is a not only an orders-of-magnitude simpler servo loop to implement but the control loop can be modified by merely changing the computer code. Field conditions are often different from laboratory conditions, requiring subtle algorithm changes, and physical accessibility in the field is generally limited and difficult. Remotely implemented, trimmer-less and solderless servo upgrades are a much welcomed improvement in the field installed guidestar system. Also, OEM replacement of usual benchtop components saves considerable space and weight as well in the locking system. We will report on the details of the servo system and recent experimental results locking a master-slave laser oscillator system using the all-digital Pound-Drever-Hall loop.

  17. High precision tracking control of a servo gantry with dynamic friction compensation.

    PubMed

    Zhang, Yangming; Yan, Peng; Zhang, Zhen

    2016-05-01

    This paper is concerned with the tracking control problem of a voice coil motor (VCM) actuated servo gantry system. By utilizing an adaptive control technique combined with a sliding mode approach, an adaptive sliding mode control (ASMC) law with friction compensation scheme is proposed in presence of both frictions and external disturbances. Based on the LuGre dynamic friction model, a dual-observer structure is used to estimate the unmeasurable friction state, and an adaptive control law is synthesized to effectively handle the unknown friction model parameters as well as the bound of the disturbances. Moreover, the proposed control law is also implemented on a VCM servo gantry system for motion tracking. Simulations and experimental results demonstrate good tracking performance, which outperform traditional control approaches. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Automated, on-board terrain analysis for precision landings

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Hines, Glenn D.

    2006-01-01

    Advances in space robotics technology hinge to a large extent upon the development and deployment of sophisticated new vision-based methods for automated in-space mission operations and scientific survey. To this end, we have developed a new concept for automated terrain analysis that is based upon a generic image enhancement platform|multi-scale retinex (MSR) and visual servo (VS) processing. This pre-conditioning with the MSR and the vs produces a "canonical" visual representation that is largely independent of lighting variations, and exposure errors. Enhanced imagery is then processed with a biologically inspired two-channel edge detection process, followed by a smoothness based criteria for image segmentation. Landing sites can be automatically determined by examining the results of the smoothness-based segmentation which shows those areas in the image that surpass a minimum degree of smoothness. Though the msr has proven to be a very strong enhancement engine, the other elements of the approach|the vs, terrain map generation, and smoothness-based segmentation|are in early stages of development. Experimental results on data from the Mars Global Surveyor show that the imagery can be processed to automatically obtain smooth landing sites. In this paper, we describe the method used to obtain these landing sites, and also examine the smoothness criteria in terms of the imager and scene characteristics. Several examples of applying this method to simulated and real imagery are shown.

  19. Catching What We Can't See: Manual Interception of Occluded Fly-Ball Trajectories

    PubMed Central

    Bosco, Gianfranco; Delle Monache, Sergio; Lacquaniti, Francesco

    2012-01-01

    Control of interceptive actions may involve fine interplay between feedback-based and predictive mechanisms. These processes rely heavily on target motion information available when the target is visible. However, short-term visual memory signals as well as implicit knowledge about the environment may also contribute to elaborate a predictive representation of the target trajectory, especially when visual feedback is partially unavailable because other objects occlude the visual target. To determine how different processes and information sources are integrated in the control of the interceptive action, we manipulated a computer-generated visual environment representing a baseball game. Twenty-four subjects intercepted fly-ball trajectories by moving a mouse cursor and by indicating the interception with a button press. In two separate sessions, fly-ball trajectories were either fully visible or occluded for 750, 1000 or 1250 ms before ball landing. Natural ball motion was perturbed during the descending trajectory with effects of either weightlessness (0 g) or increased gravity (2 g) at times such that, for occluded trajectories, 500 ms of perturbed motion were visible before ball disappearance. To examine the contribution of previous visual experience with the perturbed trajectories to the interception of invisible targets, the order of visible and occluded sessions was permuted among subjects. Under these experimental conditions, we showed that, with fully visible targets, subjects combined servo-control and predictive strategies. Instead, when intercepting occluded targets, subjects relied mostly on predictive mechanisms based, however, on different type of information depending on previous visual experience. In fact, subjects without prior experience of the perturbed trajectories showed interceptive errors consistent with predictive estimates of the ball trajectory based on a-priori knowledge of gravity. Conversely, the interceptive responses of subjects previously exposed to fully visible trajectories were compatible with the fact that implicit knowledge of the perturbed motion was also taken into account for the extrapolation of occluded trajectories. PMID:23166653

  20. Catching what we can't see: manual interception of occluded fly-ball trajectories.

    PubMed

    Bosco, Gianfranco; Delle Monache, Sergio; Lacquaniti, Francesco

    2012-01-01

    Control of interceptive actions may involve fine interplay between feedback-based and predictive mechanisms. These processes rely heavily on target motion information available when the target is visible. However, short-term visual memory signals as well as implicit knowledge about the environment may also contribute to elaborate a predictive representation of the target trajectory, especially when visual feedback is partially unavailable because other objects occlude the visual target. To determine how different processes and information sources are integrated in the control of the interceptive action, we manipulated a computer-generated visual environment representing a baseball game. Twenty-four subjects intercepted fly-ball trajectories by moving a mouse cursor and by indicating the interception with a button press. In two separate sessions, fly-ball trajectories were either fully visible or occluded for 750, 1000 or 1250 ms before ball landing. Natural ball motion was perturbed during the descending trajectory with effects of either weightlessness (0 g) or increased gravity (2 g) at times such that, for occluded trajectories, 500 ms of perturbed motion were visible before ball disappearance. To examine the contribution of previous visual experience with the perturbed trajectories to the interception of invisible targets, the order of visible and occluded sessions was permuted among subjects. Under these experimental conditions, we showed that, with fully visible targets, subjects combined servo-control and predictive strategies. Instead, when intercepting occluded targets, subjects relied mostly on predictive mechanisms based, however, on different type of information depending on previous visual experience. In fact, subjects without prior experience of the perturbed trajectories showed interceptive errors consistent with predictive estimates of the ball trajectory based on a-priori knowledge of gravity. Conversely, the interceptive responses of subjects previously exposed to fully visible trajectories were compatible with the fact that implicit knowledge of the perturbed motion was also taken into account for the extrapolation of occluded trajectories.

  1. Fault Detection and Severity Analysis of Servo Valves Using Recurrence Quantification Analysis

    DTIC Science & Technology

    2014-10-02

    Fault Detection and Severity Analysis of Servo Valves Using Recurrence Quantification Analysis M. Samadani1, C. A. Kitio Kwuimy2, and C. Nataraj3...diagnostics of nonlinear systems. A detailed nonlinear math- ematical model of a servo electro-hydraulic system has been used to demonstrate the procedure...Two faults have been considered associated with the servo valve including the in- creased friction between spool and sleeve and the degradation of the

  2. Operating manual for the miniservo-control tester

    USGS Publications Warehouse

    Rapp, W.L.

    1986-01-01

    Ever since the implementation of servo-control units (regular and minimodels) with manometers at U. S. Geological Survey streamflow stations, the need for an effective and efficient servo-control unit tester has been paramount among field personnel. In numerous cases, servo-control unit failures were blamed on battery failures and vice versa. There was no valid instrument to definitively identify cause of failure, let alone properly diagnose the servo-control/manometer system. In 1983, two servo-control unit testers were developed and fabricated. One was mechanical in fabrication, operation, and serviceability; the other was electronic. The testers were extensively used and evaluated in Maine, Ohio, Kansas, and Louisiana under a wide range of environmental conditions. The consensus to integrate the best aspects of both testers into one instrument allowed the Survey to finally solve its long-time need for an effective, efficient servo-control unit tester. (USGS)

  3. Homography-based visual servo regulation of mobile robots.

    PubMed

    Fang, Yongchun; Dixon, Warren E; Dawson, Darren M; Chawda, Prakash

    2005-10-01

    A monocular camera-based vision system attached to a mobile robot (i.e., the camera-in-hand configuration) is considered in this paper. By comparing corresponding target points of an object from two different camera images, geometric relationships are exploited to derive a transformation that relates the actual position and orientation of the mobile robot to a reference position and orientation. This transformation is used to synthesize a rotation and translation error system from the current position and orientation to the fixed reference position and orientation. Lyapunov-based techniques are used to construct an adaptive estimate to compensate for a constant, unmeasurable depth parameter, and to prove asymptotic regulation of the mobile robot. The contribution of this paper is that Lyapunov techniques are exploited to craft an adaptive controller that enables mobile robot position and orientation regulation despite the lack of an object model and the lack of depth information. Experimental results are provided to illustrate the performance of the controller.

  4. Comparative evaluation of monocular augmented-reality display for surgical microscopes.

    PubMed

    Rodriguez Palma, Santiago; Becker, Brian C; Lobes, Louis A; Riviere, Cameron N

    2012-01-01

    Medical augmented reality has undergone much development recently. However, there is a lack of studies quantitatively comparing the different display options available. This paper compares the effects of different graphical overlay systems in a simple micromanipulation task with "soft" visual servoing. We compared positioning accuracy in a real-time visually-guided task using Micron, an active handheld tremor-canceling microsurgical instrument, using three different displays: 2D screen, 3D screen, and microscope with monocular image injection. Tested with novices and an experienced vitreoretinal surgeon, display of virtual cues in the microscope via an augmented reality injection system significantly decreased 3D error (p < 0.05) compared to the 2D and 3D monitors when confounding factors such as magnification level were normalized.

  5. Dual arm master controller for a bilateral servo-manipulator

    DOEpatents

    Kuban, Daniel P.; Perkins, Gerald S.

    1989-01-01

    A master controller for a mechanically dissimilar bilateral slave servo-manipulator is disclosed. The master controller includes a plurality of drive trains comprising a plurality of sheave arrangements and cables for controlling upper and lower degrees of master movement. The cables and sheaves of the master controller are arranged to effect kinematic duplication of the slave servo-manipulator, despite mechanical differences therebetween. A method for kinematically matching a master controller to a slave servo-manipulator is also disclosed.

  6. Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System.

    PubMed

    Xie, Ruihong; Zhang, Tao; Li, Jiaquan; Dai, Ming

    2017-05-09

    This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight) motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration) control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square) error is 1.253 mrad when tracking 10° 0.2 Hz signal.

  7. Current control circuitry

    DOEpatents

    Taubman, Matthew S [Richland, WA

    2005-03-15

    Among the embodiments of the present invention is an apparatus that includes a transistor (30), a servo device (40), and a current source (50). The servo device (40) is operable to provide a common base mode of operation of the transistor (30) by maintaining an approximately constant voltage level at the transistor base (32b). The current source (150) is operable to provide a bias current to the transistor (30). A first device (24) provides an input signal to an electrical node (70) positioned between the emitter (32e) of the transistor (30) and the current source (50). A second device (26) receives an output signal from the collector (32c) of the transistor (30).

  8. Sinusoidal visuomotor tracking: intermittent servo-control or coupled oscillations?

    PubMed

    Russell, D M; Sternad, D

    2001-12-01

    In visuomotor tasks that involve accuracy demands, small directional changes in the trajectories have been taken as evidence of feedback-based error corrections. In the present study variability, or intermittency, in visuomanual tracking of sinusoidal targets was investigated. Two lines of analyses were pursued: First, the hypothesis that humans fundamentally act as intermittent servo-controllers was re-examined, probing the question of whether discontinuities in the movement trajectory directly imply intermittent control. Second, an alternative hypothesis was evaluated: that rhythmic tracking movements are generated by entrainment between the oscillations of the target and the actor, such that intermittency expresses the degree of stability. In 2 experiments, participants (N = 6 in each experiment) swung 1 of 2 different hand-held pendulums, tracking a rhythmic target that oscillated at different frequencies with a constant amplitude. In 1 line of analyses, the authors tested the intermittency hypothesis by using the typical kinematic error measures and spectral analysis. In a 2nd line, they examined relative phase and its variability, following analyses of rhythmic interlimb coordination. The results showed that visually guided corrective processes play a role, especially for slow movements. Intermittency, assessed as frequency and power components of the movement trajectory, was found to change as a function of both target frequency and the manipulandum's inertia. Support for entrainment was found in conditions in which task frequency was identical to or higher than the effector's eigenfrequency. The results suggest that it is the symmetry between task and effector that determines which behavioral regime is dominant.

  9. Novel ultrasonic real-time scanner featuring servo controlled transducers displaying a sector image.

    PubMed

    Matzuk, T; Skolnick, M L

    1978-07-01

    This paper describes a new real-time servo controlled sector scanner that produces high resolution images and has functionally programmable features similar to phased array systems, but possesses the simplicity of design and low cost best achievable in a mechanical sector scanner. The unique feature is the transducer head which contains a single moving part--the transducer--enclosed within a light-weight, hand held, and vibration free case. The frame rate, sector width, stop action angle, are all operator programmable. The frame rate can be varied from 12 to 30 frames s-1 and the sector width from 0 degrees to 60 degrees. Conversion from sector to time motion (T/M) modes are instant and two options are available, a freeze position high density T/M and a low density T/M obtainable simultaneously during sector visualization. Unusual electronic features are: automatic gain control, electronic recording of images on video tape in rf format, and ability to post-process images during video playback to extract T/M display and to change time gain control (tgc) and image size.

  10. Anti-disturbance rapid vibration suppression of the flexible aerial refueling hose

    NASA Astrophysics Data System (ADS)

    Su, Zikang; Wang, Honglun; Li, Na

    2018-05-01

    As an extremely dangerous phenomenon in autonomous aerial refueling (AAR), the flexible refueling hose vibration caused by the receiver aircraft's excessive closure speed should be suppressed once it appears. This paper proposed a permanent magnet synchronous motor (PMSM) based refueling hose servo take-up system for the vibration suppression of the flexible refueling hose. A rapid back-stepping based anti-disturbance nonsingular fast terminal sliding mode (NFTSM) control scheme with a specially established finite-time convergence NFTSM observer is proposed for the PMSM based hose servo take-up system under uncertainties and disturbances. The unmeasured load torque and other disturbances in the PMSM system are reconstituted by the NFTSM observer and to be compensated during the controller design. Then, with the back-stepping technique, a rapid anti-disturbance NFTSM controller is proposed for the PMSM angular tracking to improve the tracking error convergence speed and tracking precision. The proposed vibration suppression scheme is then applied to PMSM based hose servo take-up system for the refueling hose vibration suppression in AAR. Simulation results show the proposed scheme can suppress the hose vibration rapidly and accurately even the system is exposed to strong uncertainties and probe position disturbances, it is more competitive in tracking accuracy, tracking error convergence speed and robustness.

  11. Modeling and stability of electro-hydraulic servo of hydraulic excavator

    NASA Astrophysics Data System (ADS)

    Jia, Wenhua; Yin, Chenbo; Li, Guo; Sun, Menghui

    2017-11-01

    The condition of the hydraulic excavator is complicated and the working environment is bad. The safety and stability of the control system is influenced by the external factors. This paper selects hydraulic excavator electro-hydraulic servo system as the research object. A mathematical model and simulation model using AMESIM of servo system is established. Then the pressure and flow characteristics are analyzed. The design and optimization of electro-hydraulic servo system and its application in engineering machinery is provided.

  12. Nonlinear mathematical modeling and sensitivity analysis of hydraulic drive unit

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Yu, Bin; Quan, Lingxiao; Ba, Kaixian; Wu, Liujie

    2015-09-01

    The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity indexes values of four measurable parameters, such as supply pressure, proportional gain, initial position of servo cylinder piston and load force, are verified experimentally on test platform of hydraulic drive unit, and the experimental research shows that the sensitivity analysis results obtained through simulation are approximate to the test results. This research indicates each parameter sensitivity characteristics of hydraulic drive unit, the performance-affected main parameters and secondary parameters are got under different working conditions, which will provide the theoretical foundation for the control compensation and structure optimization of hydraulic drive unit.

  13. A discrete time-varying internal model-based approach for high precision tracking of a multi-axis servo gantry.

    PubMed

    Zhang, Zhen; Yan, Peng; Jiang, Huan; Ye, Peiqing

    2014-09-01

    In this paper, we consider the discrete time-varying internal model-based control design for high precision tracking of complicated reference trajectories generated by time-varying systems. Based on a novel parallel time-varying internal model structure, asymptotic tracking conditions for the design of internal model units are developed, and a low order robust time-varying stabilizer is further synthesized. In a discrete time setting, the high precision tracking control architecture is deployed on a Voice Coil Motor (VCM) actuated servo gantry system, where numerical simulations and real time experimental results are provided, achieving the tracking errors around 3.5‰ for frequency-varying signals. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Adaptive servo ventilation for central sleep apnoea in heart failure: SERVE-HF on-treatment analysis.

    PubMed

    Woehrle, Holger; Cowie, Martin R; Eulenburg, Christine; Suling, Anna; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K; Somers, Virend K; Zannad, Faiez; Teschler, Helmut; Wegscheider, Karl

    2017-08-01

    This on-treatment analysis was conducted to facilitate understanding of mechanisms underlying the increased risk of all-cause and cardiovascular mortality in heart failure patients with reduced ejection fraction and predominant central sleep apnoea randomised to adaptive servo ventilation versus the control group in the SERVE-HF trial.Time-dependent on-treatment analyses were conducted (unadjusted and adjusted for predictive covariates). A comprehensive, time-dependent model was developed to correct for asymmetric selection effects (to minimise bias).The comprehensive model showed increased cardiovascular death hazard ratios during adaptive servo ventilation usage periods, slightly lower than those in the SERVE-HF intention-to-treat analysis. Self-selection bias was evident. Patients randomised to adaptive servo ventilation who crossed over to the control group were at higher risk of cardiovascular death than controls, while control patients with crossover to adaptive servo ventilation showed a trend towards lower risk of cardiovascular death than patients randomised to adaptive servo ventilation. Cardiovascular risk did not increase as nightly adaptive servo ventilation usage increased.On-treatment analysis showed similar results to the SERVE-HF intention-to-treat analysis, with an increased risk of cardiovascular death in heart failure with reduced ejection fraction patients with predominant central sleep apnoea treated with adaptive servo ventilation. Bias is inevitable and needs to be taken into account in any kind of on-treatment analysis in positive airway pressure studies. Copyright ©ERS 2017.

  15. Evaluating transient performance of servo mechanisms by analysing stator current of PMSM

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Tan, Luyao; Xu, Guanghua

    2018-02-01

    Smooth running and rapid response are the desired performance goals for the transient motions of servo mechanisms. Because of the uncertain and unobservable transient behaviour of servo mechanisms, it is difficult to evaluate their transient performance. Under the effects of electromechanical coupling, the stator current signals of a permanent-magnet synchronous motor (PMSM) potentially contain the performance information regarding servo mechanisms in use. In this paper, a novel method based on analysing the stator current of the PMSM is proposed for quantifying the transient performance. First, a vector control model is constructed to simulate the stator current behaviour in the transient processes of consecutive speed changes, consecutive load changes, and intermittent start-stops. It is discovered that the amplitude and frequency of the stator current are modulated by the transient load torque and motor speed, respectively. The stator currents under different performance conditions are also simulated and compared. Then, the stator current is processed using a local means decomposition (LMD) algorithm to extract the instantaneous amplitude and instantaneous frequency. The sample entropy of the instantaneous amplitude, which reflects the complexity of the load torque variation, is calculated as a performance indicator of smooth running. The peak-to-peak value of the instantaneous frequency, which defines the range of the motor speed variation, is set as a performance indicator of rapid response. The proposed method is applied to both simulated data in an intermittent start-stops process and experimental data measured for a batch of servo turrets for turning lathes. The results show that the performance evaluations agree with the actual performance.

  16. 78 FR 42406 - Airworthiness Directives; Eurocopter France Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... 3 of the Rotorcraft Flight Manual. Many of the non-compliant servo-controls were installed by the... Emergency AD, we have discovered that the servo-control's component history card or equivalent record may... servo-controls with a non-compliant input lever bearing be replaced and returned to the manufacturer. AD...

  17. Cogging effect minimization in PMSM position servo system using dual high-order periodic adaptive learning compensation.

    PubMed

    Luo, Ying; Chen, Yangquan; Pi, Youguo

    2010-10-01

    Cogging effect which can be treated as a type of position-dependent periodic disturbance, is a serious disadvantage of the permanent magnetic synchronous motor (PMSM). In this paper, based on a simulation system model of PMSM position servo control, the cogging force, viscous friction, and applied load in the real PMSM control system are considered and presented. A dual high-order periodic adaptive learning compensation (DHO-PALC) method is proposed to minimize the cogging effect on the PMSM position and velocity servo system. In this DHO-PALC scheme, more than one previous periods stored information of both the composite tracking error and the estimate of the cogging force is used for the control law updating. Asymptotical stability proof with the proposed DHO-PALC scheme is presented. Simulation is implemented on the PMSM servo system model to illustrate the proposed method. When the constant speed reference is applied, the DHO-PALC can achieve a faster learning convergence speed than the first-order periodic adaptive learning compensation (FO-PALC). Moreover, when the designed reference signal changes periodically, the proposed DHO-PALC can obtain not only faster convergence speed, but also much smaller final error bound than the FO-PALC. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Numerical simulation and experimental study of heat-fluid-solid coupling of double flapper-nozzle servo valve

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zhou, Songlin; Lu, Xianghui; Gao, Dianrong

    2015-09-01

    The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120°C and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution rules of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80°C, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80°C. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo valve, and the obtained results provide the reference value for the design of double flapper-nozzle force feedback servo valve.

  19. Development of the Software for 30 inch Telescope Control System at KHAO

    NASA Astrophysics Data System (ADS)

    Mun, B.-S.; Kim, S.-J.; Jang, M.; Min, S.-W.; Seol, K.-H.; Moon, K.-S.

    2006-12-01

    Even though 30inch optical telescope at Kyung Hee Astronomy Observatory has been used to produce a series of scientific achievements since its first light in 1992, numerous difficulties in the operation of the telescope have hindered the precise observations needed for further researches. Since the currently used PC-TCS (Personal Computer based Telescope Control system) software based on ISA-bus type is outdated, it doesn't have a user friendly interface and make it impossible to scale. Also accumulated errors which are generated by discordance from input and output signals into a motion controller required new control system. Thus we have improved the telescope control system by updating software and modifying mechanical parts. We applied a new BLDC (brushless DC) servo motor system to the mechanical parts of the telescope and developed a control software using Visual Basic 6.0. As a result, we could achieve a high accuracy in controlling of the telescope and use the userfriendly GUI (Graphic User Interface).

  20. Homography-based control scheme for mobile robots with nonholonomic and field-of-view constraints.

    PubMed

    López-Nicolás, Gonzalo; Gans, Nicholas R; Bhattacharya, Sourabh; Sagüés, Carlos; Guerrero, Josechu J; Hutchinson, Seth

    2010-08-01

    In this paper, we present a visual servo controller that effects optimal paths for a nonholonomic differential drive robot with field-of-view constraints imposed by the vision system. The control scheme relies on the computation of homographies between current and goal images, but unlike previous homography-based methods, it does not use the homography to compute estimates of pose parameters. Instead, the control laws are directly expressed in terms of individual entries in the homography matrix. In particular, we develop individual control laws for the three path classes that define the language of optimal paths: rotations, straight-line segments, and logarithmic spirals. These control laws, as well as the switching conditions that define how to sequence path segments, are defined in terms of the entries of homography matrices. The selection of the corresponding control law requires the homography decomposition before starting the navigation. We provide a controllability and stability analysis for our system and give experimental results.

  1. Speed tracking control of pneumatic motor servo systems using observation-based adaptive dynamic sliding-mode control

    NASA Astrophysics Data System (ADS)

    Chen, Syuan-Yi; Gong, Sheng-Sian

    2017-09-01

    This study aims to develop an adaptive high-precision control system for controlling the speed of a vane-type air motor (VAM) pneumatic servo system. In practice, the rotor speed of a VAM depends on the input mass air flow, which can be controlled by the effective orifice area (EOA) of an electronic throttle valve (ETV). As the control variable of a second-order pneumatic system is the integral of the EOA, an observation-based adaptive dynamic sliding-mode control (ADSMC) system is proposed to derive the differential of the control variable, namely, the EOA control signal. In the ADSMC system, a proportional-integral-derivative fuzzy neural network (PIDFNN) observer is used to achieve an ideal dynamic sliding-mode control (DSMC), and a supervisor compensator is designed to eliminate the approximation error. As a result, the ADSMC incorporates the robustness of a DSMC and the online learning ability of a PIDFNN. To ensure the convergence of the tracking error, a Lyapunov-based analytical method is employed to obtain the adaptive algorithms required to tune the control parameters of the online ADSMC system. Finally, our experimental results demonstrate the precision and robustness of the ADSMC system for highly nonlinear and time-varying VAM pneumatic servo systems.

  2. An open source digital servo for atomic, molecular, and optical physics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leibrandt, D. R., E-mail: david.leibrandt@nist.gov; Heidecker, J.

    2015-12-15

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of themore » laser used to probe the narrow clock transition of {sup 27}Al{sup +} in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.« less

  3. An open source digital servo for atomic, molecular, and optical physics experiments.

    PubMed

    Leibrandt, D R; Heidecker, J

    2015-12-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of (27)Al(+) in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  4. An open source digital servo for atomic, molecular, and optical physics experiments

    NASA Astrophysics Data System (ADS)

    Leibrandt, D. R.; Heidecker, J.

    2015-12-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  5. An open source digital servo for atomic, molecular, and optical physics experiments

    PubMed Central

    Leibrandt, D. R.; Heidecker, J.

    2016-01-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser. PMID:26724014

  6. Experimental research of flow servo-valve

    NASA Astrophysics Data System (ADS)

    Takosoglu, Jakub

    Positional control of pneumatic drives is particularly important in pneumatic systems. Some methods of positioning pneumatic cylinders for changeover and tracking control are known. Choking method is the most development-oriented and has the greatest potential. An optimal and effective method, particularly when applied to pneumatic drives, has been searched for a long time. Sophisticated control systems with algorithms utilizing artificial intelligence methods are designed therefor. In order to design the control algorithm, knowledge about real parameters of servo-valves used in control systems of electro-pneumatic servo-drives is required. The paper presents the experimental research of flow servo-valve.

  7. Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems

    NASA Astrophysics Data System (ADS)

    Chan, Kwong Wah; Liao, Wei-Hsin

    2006-03-01

    Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.

  8. A Quasiphysics Intelligent Model for a Long Range Fast Tool Servo

    PubMed Central

    Liu, Qiang; Zhou, Xiaoqin; Lin, Jieqiong; Xu, Pengzi; Zhu, Zhiwei

    2013-01-01

    Accurately modeling the dynamic behaviors of fast tool servo (FTS) is one of the key issues in the ultraprecision positioning of the cutting tool. Herein, a quasiphysics intelligent model (QPIM) integrating a linear physics model (LPM) and a radial basis function (RBF) based neural model (NM) is developed to accurately describe the dynamic behaviors of a voice coil motor (VCM) actuated long range fast tool servo (LFTS). To identify the parameters of the LPM, a novel Opposition-based Self-adaptive Replacement Differential Evolution (OSaRDE) algorithm is proposed which has been proved to have a faster convergence mechanism without compromising with the quality of solution and outperform than similar evolution algorithms taken for consideration. The modeling errors of the LPM and the QPIM are investigated by experiments. The modeling error of the LPM presents an obvious trend component which is about ±1.15% of the full span range verifying the efficiency of the proposed OSaRDE algorithm for system identification. As for the QPIM, the trend component in the residual error of LPM can be well suppressed, and the error of the QPIM maintains noise level. All the results verify the efficiency and superiority of the proposed modeling and identification approaches. PMID:24163627

  9. Multisensory visual servoing by a neural network.

    PubMed

    Wei, G Q; Hirzinger, G

    1999-01-01

    Conventional computer vision methods for determining a robot's end-effector motion based on sensory data needs sensor calibration (e.g., camera calibration) and sensor-to-hand calibration (e.g., hand-eye calibration). This involves many computations and even some difficulties, especially when different kinds of sensors are involved. In this correspondence, we present a neural network approach to the motion determination problem without any calibration. Two kinds of sensory data, namely, camera images and laser range data, are used as the input to a multilayer feedforward network to associate the direct transformation from the sensory data to the required motions. This provides a practical sensor fusion method. Using a recursive motion strategy and in terms of a network correction, we relax the requirement for the exactness of the learned transformation. Another important feature of our work is that the goal position can be changed without having to do network retraining. Experimental results show the effectiveness of our method.

  10. Servo action in the human thumb.

    PubMed Central

    Marsden, C D; Merton, P A; Morton, H B

    1976-01-01

    1. The servo-like properties of muscle in healthy human subjects have been studied by interfering unexpectedly with flexion movements of the top joint of the thumb. This movement is carried out by the flexor pollicis longus muscle only. 2. The movements were standardized in rate by giving the subject a tracking task. They started off against a constant torque load offered by an electric motor. 3. In some movements the load remained constant, but in others, in mid-course, perturbations were introduced at random. Either the movement was halted, or released and allowed to accelerate by reducing the load, or reversed by suddenly increasing the current in the motor, so stretching the muscle. 4. Usually eight or sixteen responses to each kind of perturbation and a similar number of controls against a constant load were averaged. 5. Muscle activity was recorded as the electromyogram from surface electrodes over the belly of the long flexor in the lower forearm. Action potentials were usually full-wave rectified and integrated. 6. About 50 msec after a perturbation the muscle's activity alters in such a sense as to tend to compensate for the perturbation, i.e. it increases after a halt or a stretch and decreases after a release. The latency is similar in each case. 7. These responses are interpreted as manifestations of automatic servo action based on the stretch reflex. They are considered to be too early to be voluntary. 8. This interpretation was supported by measuring voluntary reaction times to perturbations under tracking conditions. They were found to be 90 msec or longer. 9. When the initial load was increased by a factor of 10, the servo responses were all scaled up likewise. Thus to a first approximation the gain of the servo is proportional to initial load. 10. It follows that in relaxed muscle the gain should be zero. This was confirmed by showing that stretching a relaxed muscle gives no reflex, or only a small one. 11. Gain appears to be determined by the level of muscle activation as determined by the effort made by the subject, rather than by the actual pressure exerted by the thumb. 12. Thus in fatigued muscle gain is boosted as the muscle has to be activated more strongly to keep up the same force output. The net effect is to compensate for fatigue and maintain the performance of the servo. 13. The Discussion centres on the implications of gain control in the servo. For a start, if the gain of the stretch reflex arc is zero in relaxed muscle, contractions cannot be initiated via the stretch reflex by simply causing the spindles to contract, as proposed on the original 'follow-up' servo theory. Images Fig. 1 PMID:133238

  11. Preterm infant thermal care: differing thermal environments produced by air versus skin servo-control incubators.

    PubMed

    Thomas, K A; Burr, R

    1999-06-01

    Incubator thermal environments produced by skin versus air servo-control were compared. Infant abdominal skin and incubator air temperatures were recorded from 18 infants in skin servo-control and 14 infants in air servo-control (26- to 29-week gestational age, 14 +/- 2 days postnatal age) for 24 hours. Differences in incubator and infant temperature, neutral thermal environment (NTE) maintenance, and infant and incubator circadian rhythm were examined using analysis of variance and scatterplots. Skin servo-control resulted in more variable air temperature, yet more stable infant temperature, and more time within the NTE. Circadian rhythm of both infant and incubator temperature differed by control mode and the relationship between incubator and infant temperature rhythms was a function of control mode. The differences between incubator control modes extend beyond temperature stability and maintenance of NTE. Circadian rhythm of incubator and infant temperatures is influenced by incubator control.

  12. Active control of residual tool marks for freeform optics functionalization by novel biaxial servo assisted fly cutting.

    PubMed

    Zhu, Zhiwei; To, Suet; Zhang, Shaojian

    2015-09-01

    The inherent residual tool marks (RTM) with particular patterns highly affect optical functions of the generated freeform optics in fast tool servo or slow tool servo (FTS/STS) diamond turning. In the present study, a novel biaxial servo assisted fly cutting (BSFC) method is developed for flexible control of the RTM to be a functional micro/nanotexture in freeform optics generation, which is generally hard to achieve in FTS/STS diamond turning. In the BSFC system, biaxial servo motions along the z-axis and side-feeding directions are mainly adopted for primary surface generation and RTM control, respectively. Active control of the RTM from the two aspects, namely, undesired effect elimination or effective functionalization, are experimentally demonstrated by fabricating a typical F-theta freeform surface with scattering homogenization and two functional microstructures with imposition of secondary phase gratings integrating both reflective and diffractive functions.

  13. Position feedback system for volume holographic storage media

    DOEpatents

    Hays, Nathan J [San Francisco, CA; Henson, James A [Morgan Hill, CA; Carpenter, Christopher M [Sunnyvale, CA; Akin, Jr William R. [Morgan Hill, CA; Ehrlich, Richard M [Saratoga, CA; Beazley, Lance D [San Jose, CA

    1998-07-07

    A method of holographic recording in a photorefractive medium wherein stored holograms may be retrieved with maximum signal-to noise ratio (SNR) is disclosed. A plurality of servo blocks containing position feedback information is recorded in the crystal and made non-erasable by heating the crystal. The servo blocks are recorded at specific increments, either angular or frequency, depending whether wavelength or angular multiplexing is applied, and each servo block is defined by one of five patterns. Data pages are then recorded at positions or wavelengths enabling each data page to be subsequently reconstructed with servo patterns which provide position feedback information. The method of recording data pages and servo blocks is consistent with conventional practices. In addition, the recording system also includes components (e.g. voice coil motor) which respond to position feedback information and adjust the angular position of the reference angle of a reference beam to maximize SNR by reducing crosstalk, thereby improving storage capacity.

  14. 75 FR 68548 - Airworthiness Directives; Airbus Model A318, A319, A320, and A321 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ...: One case of elevator servo-control disconnection has been experienced on an aeroplane of the A320 family. Investigation has revealed that the failure occurred at the servo-control rod eye-end. Further to... servo-control rod eye-ends. In several cases, both actuators of the same elevator surface were affected...

  15. HYDRAULIC SERVO CONTROL MECHANISM

    DOEpatents

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  16. The usability of ventilators: a comparative evaluation of use safety and user experience.

    PubMed

    Morita, Plinio P; Weinstein, Peter B; Flewwelling, Christopher J; Bañez, Carleene A; Chiu, Tabitha A; Iannuzzi, Mario; Patel, Aastha H; Shier, Ashleigh P; Cafazzo, Joseph A

    2016-08-20

    The design complexity of critical care ventilators (CCVs) can lead to use errors and patient harm. In this study, we present the results of a comparison of four CCVs from market leaders, using a rigorous methodology for the evaluation of use safety and user experience of medical devices. We carried out a comparative usability study of four CCVs: Hamilton G5, Puritan Bennett 980, Maquet SERVO-U, and Dräger Evita V500. Forty-eight critical care respiratory therapists participated in this fully counterbalanced, repeated measures study. Participants completed seven clinical scenarios composed of 16 tasks on each ventilator. Use safety was measured by percentage of tasks with use errors or close calls (UE/CCs). User experience was measured by system usability and workload metrics, using the Post-Study System Usability Questionnaire (PSSUQ) and the National Aeronautics and Space Administration Task Load Index (NASA-TLX). Nine of 18 post hoc contrasts between pairs of ventilators were significant after Bonferroni correction, with effect sizes between 0.4 and 1.09 (Cohen's d). There were significantly fewer UE/CCs with SERVO-U when compared to G5 (p = 0.044) and V500 (p = 0.020). Participants reported higher system usability for G5 when compared to PB980 (p = 0.035) and higher system usability for SERVO-U when compared to G5 (p < 0.001), PB980 (p < 0.001), and V500 (p < 0.001). Participants reported lower workload for G5 when compared to PB980 (p < 0.001) and lower workload for SERVO-U when compared to PB980 (p < 0.001) and V500 (p < 0.001). G5 scored better on two of nine possible comparisons; SERVO-U scored better on seven of nine possible comparisons. Aspects influencing participants' performance and perception include the low sensitivity of G5's touchscreen and the positive effect from the quality of SERVO-U's user interface design. This study provides empirical evidence of how four ventilators from market leaders compare and highlights the importance of medical technology design. Within the boundaries of this study, we can infer that SERVO-U demonstrated the highest levels of use safety and user experience, followed by G5. Based on qualitative data, differences in outcomes could be explained by interaction design, quality of hardware components used in manufacturing, and influence of consumer product technology on users' expectations.

  17. A comparison of visual statistics for the image enhancement of FORESITE aerial images with those of major image classes

    NASA Astrophysics Data System (ADS)

    Jobson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.; Hines, Glenn D.

    2006-05-01

    Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally within the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging-terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on the limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters.

  18. A Comparison of Visual Statistics for the Image Enhancement of FORESITE Aerial Images with Those of Major Image Classes

    NASA Technical Reports Server (NTRS)

    Johnson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.; Hines, Glenn D.

    2006-01-01

    Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally with the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging--terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters.

  19. Electrical servo actuator bracket. [fuel control valves on jet engines

    NASA Technical Reports Server (NTRS)

    Sawyer, R. V. (Inventor)

    1981-01-01

    An electrical servo actuator is mounted on a support arm which is allowed to pivot on a bolt through a fixed mounting bracket. The actuator is pivotally connected to the end of the support arm by a bolt which has an extension allowed to pass through a slot in the fixed mounting bracket. An actuator rod extends from the servo actuator to a crank arm which turns a control shaft. A short linear thrust of the rod pivots the crank arm through about 90 for full-on control with the rod contracted into the servo actuator, and full-off control when the rod is extended from the actuator. A spring moves the servo actuator and actuator rod toward the control crank arm once the actuator rod is fully extended in the full-off position. This assures the turning of the control shaft to a full-off position. A stop bolt and slot are provided to limit pivot motion. Once fully extended, the spring pivots the motion.

  20. Performance verification and system parameter identification of spacecraft tape recorder control servo

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, A. K.

    1979-01-01

    Design adequacy of the lead-lag compensator of the frequency loop, accuracy checking of the analytical expression for the electrical motor transfer function, and performance evaluation of the speed control servo of the digital tape recorder used on-board the 1976 Viking Mars Orbiters and Voyager 1977 Jupiter-Saturn flyby spacecraft are analyzed. The transfer functions of the most important parts of a simplified frequency loop used for test simulation are described and ten simulation cases are reported. The first four of these cases illustrate the method of selecting the most suitable transfer function for the hysteresis synchronous motor, while the rest verify and determine the servo performance parameters and alternative servo compensation schemes. It is concluded that the linear methods provide a starting point for the final verification/refinement of servo design by nonlinear time response simulation and that the variation of the parameters of the static/dynamic Coulomb friction is as expected in a long-life space mission environment.

  1. Direct drive digital servo press with high parallel control

    NASA Astrophysics Data System (ADS)

    Murata, Chikara; Yabe, Jun; Endou, Junichi; Hasegawa, Kiyoshi

    2013-12-01

    Direct drive digital servo press has been developed as the university-industry joint research and development since 1998. On the basis of this result, 4-axes direct drive digital servo press has been developed and in the market on April of 2002. This servo press is composed of 1 slide supported by 4 ball screws and each axis has linearscale measuring the position of each axis with high accuracy less than μm order level. Each axis is controlled independently by servo motor and feedback system. This system can keep high level parallelism and high accuracy even with high eccentric load. Furthermore the 'full stroke full power' is obtained by using ball screws. Using these features, new various types of press forming and stamping have been obtained by development and production. The new stamping and forming methods are introduced and 'manufacturing' need strategy of press forming with high added value and also the future direction of press forming are also introduced.

  2. Transfer function verification and block diagram simplification of a very high-order distributed pole closed-loop servo by means of non-linear time-response simulation

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, A. K.

    1975-01-01

    Linear frequency domain methods are inadequate in analyzing the 1975 Viking Orbiter (VO75) digital tape recorder servo due to dominant nonlinear effects such as servo signal limiting, unidirectional servo control, and static/dynamic Coulomb friction. The frequency loop (speed control) servo of the VO75 tape recorder is used to illustrate the analytical tools and methodology of system redundancy elimination and high order transfer function verification. The paper compares time-domain performance parameters derived from a series of nonlinear time responses with the available experimental data in order to select the best possible analytical transfer function representation of the tape transport (mechanical segment of the tape recorder) from several possible candidates. The study also shows how an analytical time-response simulation taking into account most system nonlinearities can pinpoint system redundancy and overdesign stemming from a strictly empirical design approach. System order reduction is achieved through truncation of individual transfer functions and elimination of redundant blocks.

  3. L1 adaptive control of uncertain gear transmission servo systems with deadzone nonlinearity.

    PubMed

    Zuo, Zongyu; Li, Xiao; Shi, Zhiguang

    2015-09-01

    This paper deals with the adaptive control problem of Gear Transmission Servo (GTS) systems in the presence of unknown deadzone nonlinearity and viscous friction. A global differential homeomorphism based on a novel differentiable deadzone model is proposed first. Since there exist both matched and unmatched state-dependent unknown nonlinearities, a full-state feedback L1 adaptive controller is constructed to achieve uniformly bounded transient response in addition to steady-state performance. Finally, simulation results are included to show the elimination of limit cycles, in addition to demonstrating the main results in this paper. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Modelling and Simulation Based on Matlab/Simulink: A Press Mechanism

    NASA Astrophysics Data System (ADS)

    Halicioglu, R.; Dulger, L. C.; Bozdana, A. T.

    2014-03-01

    In this study, design and kinematic analysis of a crank-slider mechanism for a crank press is studied. The crank-slider mechanism is the commonly applied one as direct and indirect drive alternatives in practice. Since inexpensiveness, flexibility and controllability are getting more and more important in many industrial applications especially in automotive industry, a crank press with servo actuator (servo crank press) is taken as an application. Design and kinematic analysis of representative mechanism is presented with geometrical analysis for the inverse kinematic of the mechanism by using desired motion concept of slider. The mechanism is modelled in MATLAB/Simulink platform. The simulation results are presented herein.

  5. Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb.

    PubMed

    Inaba, Hajime; Hosaka, Kazumoto; Yasuda, Masami; Nakajima, Yoshiaki; Iwakuni, Kana; Akamatsu, Daisuke; Okubo, Sho; Kohno, Takuya; Onae, Atsushi; Hong, Feng-Lei

    2013-04-08

    We propose a novel, high-performance, and practical laser source system for optical clocks. The laser linewidth of a fiber-based frequency comb is reduced by phase locking a comb mode to an ultrastable master laser at 1064 nm with a broad servo bandwidth. A slave laser at 578 nm is successively phase locked to a comb mode at 578 nm with a broad servo bandwidth without any pre-stabilization. Laser frequency characteristics such as spectral linewidth and frequency stability are transferred to the 578-nm slave laser from the 1064-nm master laser. Using the slave laser, we have succeeded in observing the clock transition of (171)Yb atoms confined in an optical lattice with a 20-Hz spectral linewidth.

  6. Fuzzy control of small servo motors

    NASA Technical Reports Server (NTRS)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  7. The anatomy of object recognition--visual form agnosia caused by medial occipitotemporal stroke.

    PubMed

    Karnath, Hans-Otto; Rüter, Johannes; Mandler, André; Himmelbach, Marc

    2009-05-06

    The influential model on visual information processing by Milner and Goodale (1995) has suggested a dissociation between action- and perception-related processing in a dorsal versus ventral stream projection. It was inspired substantially by the observation of a double dissociation of disturbed visual action versus perception in patients with optic ataxia on the one hand and patients with visual form agnosia (VFA) on the other. Unfortunately, almost all cases with VFA reported so far suffered from inhalational intoxication, the majority with carbon monoxide (CO). Since CO induces a diffuse and widespread pattern of neuronal and white matter damage throughout the whole brain, precise conclusions from these patients with VFA on the selective role of ventral stream structures for shape and orientation perception were difficult. Here, we report patient J.S., who demonstrated VFA after a well circumscribed brain lesion due to stroke etiology. Like the famous patient D.F. with VFA after CO intoxication studied by Milner, Goodale, and coworkers (Goodale et al., 1991, 1994; Milner et al., 1991; Servos et al., 1995; Mon-Williams et al., 2001a,b; Wann et al., 2001; Westwood et al., 2002; McIntosh et al., 2004; Schenk and Milner, 2006), J.S. showed an obvious dissociation between disturbed visual perception of shape and orientation information on the one side and preserved visuomotor abilities based on the same information on the other. In both hemispheres, damage primarily affected the fusiform and the lingual gyri as well as the adjacent posterior cingulate gyrus. We conclude that these medial structures of the ventral occipitotemporal cortex are integral for the normal flow of shape and of contour information into the ventral stream system allowing to recognize objects.

  8. Bio-inspired optical rotation sensor

    NASA Astrophysics Data System (ADS)

    O'Carroll, David C.; Shoemaker, Patrick A.; Brinkworth, Russell S. A.

    2007-01-01

    Traditional approaches to calculating self-motion from visual information in artificial devices have generally relied on object identification and/or correlation of image sections between successive frames. Such calculations are computationally expensive and real-time digital implementation requires powerful processors. In contrast flies arrive at essentially the same outcome, the estimation of self-motion, in a much smaller package using vastly less power. Despite the potential advantages and a few notable successes, few neuromorphic analog VLSI devices based on biological vision have been employed in practical applications to date. This paper describes a hardware implementation in aVLSI of our recently developed adaptive model for motion detection. The chip integrates motion over a linear array of local motion processors to give a single voltage output. Although the device lacks on-chip photodetectors, it includes bias circuits to use currents from external photodiodes, and we have integrated it with a ring-array of 40 photodiodes to form a visual rotation sensor. The ring configuration reduces pattern noise and combined with the pixel-wise adaptive characteristic of the underlying circuitry, permits a robust output that is proportional to image rotational velocity over a large range of speeds, and is largely independent of either mean luminance or the spatial structure of the image viewed. In principle, such devices could be used as an element of a velocity-based servo to replace or augment inertial guidance systems in applications such as mUAVs.

  9. Design Optimization and Testing of an Active Core for Sandwich Panels

    DTIC Science & Technology

    2009-07-01

    decided to employ servo motors as the actuator in this prototype test rather than using Nitinol spring actuators in the previous report. The servo...motors – although heavier than the Nitinol actuators, have several attractive attributes. Firstly servo motors have excellent respond time given they...are completely electrically actuated, whereas in the case of Nitinol actuators the actuation suffers a lag period for the Joule’s heating to take

  10. Effects of Surface Roughness and Mechanical Properties of Cover-Layer on Near-Field Optical Recording

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hong; Lee, Jun-Seok; Lim, Jungshik; Seo, Jung-Kyo

    2009-03-01

    Narrow gap distance in cover-layer incident near-field recording (NFR) configuration causes a collision problem in the interface between a solid immersion lens and a disk surface. A polymer cover-layer with smooth surface results in a stable gap servo while a nanocomposite cover-layer with high refractive index shows a collision problem during the gap servo test. Even though a dielectric cover-layer, in which the surface is rougher than the polymer, supplements the mechanical properties, an unclear eye pattern due to an unstable gap servo can be obtained after a chemical mechanical polishing. Not only smooth surface but also good mechanical properties of cover-layer are required for the stable gap servo in the NFR.

  11. A disturbance observer-based adaptive control approach for flexure beam nano manipulators.

    PubMed

    Zhang, Yangming; Yan, Peng; Zhang, Zhen

    2016-01-01

    This paper presents a systematic modeling and control methodology for a two-dimensional flexure beam-based servo stage supporting micro/nano manipulations. Compared with conventional mechatronic systems, such systems have major control challenges including cross-axis coupling, dynamical uncertainties, as well as input saturations, which may have adverse effects on system performance unless effectively eliminated. A novel disturbance observer-based adaptive backstepping-like control approach is developed for high precision servo manipulation purposes, which effectively accommodates model uncertainties and coupling dynamics. An auxiliary system is also introduced, on top of the proposed control scheme, to compensate the input saturations. The proposed control architecture is deployed on a customized-designed nano manipulating system featured with a flexure beam structure and voice coil actuators (VCA). Real time experiments on various manipulating tasks, such as trajectory/contour tracking, demonstrate precision errors of less than 1%. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    NASA Astrophysics Data System (ADS)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  13. Novel AC Servo Rotating and Linear Composite Driving Device for Plastic Forming Equipment

    NASA Astrophysics Data System (ADS)

    Liang, Jin-Tao; Zhao, Sheng-Dun; Li, Yong-Yi; Zhu, Mu-Zhi

    2017-07-01

    The existing plastic forming equipment are mostly driven by traditional AC motors with long transmission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for complicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion without transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on the dynamic test benches are conducted. The results indicate that the output torque can attain to 420 N·m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive. the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accuracy direct driving device in plastic forming equipment.

  14. A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery.

    PubMed

    Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G

    2015-02-01

    Surgical quality in phonomicrosurgery can be improved by open-loop laser control (e.g., high-speed scanning capabilities) with a robust and accurate closed-loop visual servoing systems. A new vision-based system for laser scanning control during robot-assisted phonomicrosurgery was developed and tested. Laser scanning was accomplished with a dual control strategy, which adds a vision-based trajectory correction phase to a fast open-loop laser controller. The system is designed to eliminate open-loop aiming errors caused by system calibration limitations and by the unpredictable topology of real targets. Evaluation of the new system was performed using CO(2) laser cutting trials on artificial targets and ex-vivo tissue. This system produced accuracy values corresponding to pixel resolution even when smoke created by the laser-target interaction clutters the camera view. In realistic test scenarios, trajectory following RMS errors were reduced by almost 80 % with respect to open-loop system performances, reaching mean error values around 30 μ m and maximum observed errors in the order of 60 μ m. A new vision-based laser microsurgical control system was shown to be effective and promising with significant positive potential impact on the safety and quality of laser microsurgeries.

  15. IUSThrust Vector Control (TVC) servo system

    NASA Technical Reports Server (NTRS)

    Conner, G. E.

    1979-01-01

    The IUS TVC SERVO SYSTEM which consists of four electrically redundant electromechanical actuators, four potentiometer assemblies, and two controllers to provide movable nozzle control on both IUS solid rocket motors is developed. An overview of the more severe IUS TVC servo system design requirements, the system and component designs, and test data acquired on a preliminary development unit is presented. Attention is focused on the unique methods of sensing movable nozzle position and providing for redundant position locks.

  16. System and method for moving a probe to follow movements of tissue

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Andrews, T. W.; Crawford, D. W.; Cole, M. A. (Inventor)

    1981-01-01

    An apparatus is described for moving a probe that engages moving living tissue such as a heart or an artery that is penetrated by the probe, which moves the probe in synchronism with the tissue to maintain the probe at a constant location with respect to the tissue. The apparatus includes a servo positioner which moves a servo member to maintain a constant distance from a sensed object while applying very little force to the sensed object, and a follower having a stirrup at one end resting on a surface of the living tissue and another end carrying a sensed object adjacent to the servo member. A probe holder has one end mounted on the servo member and another end which holds the probe.

  17. Servo-integrated patterned media by hybrid directed self-assembly.

    PubMed

    Xiao, Shuaigang; Yang, Xiaomin; Steiner, Philip; Hsu, Yautzong; Lee, Kim; Wago, Koichi; Kuo, David

    2014-11-25

    A hybrid directed self-assembly approach is developed to fabricate unprecedented servo-integrated bit-patterned media templates, by combining sphere-forming block copolymers with 5 teradot/in.(2) resolution capability, nanoimprint and optical lithography with overlay control. Nanoimprint generates prepatterns with different dimensions in the data field and servo field, respectively, and optical lithography controls the selective self-assembly process in either field. Two distinct directed self-assembly techniques, low-topography graphoepitaxy and high-topography graphoepitaxy, are elegantly integrated to create bit-patterned templates with flexible embedded servo information. Spinstand magnetic test at 1 teradot/in.(2) shows a low bit error rate of 10(-2.43), indicating fully functioning bit-patterned media and great potential of this approach for fabricating future ultra-high-density magnetic storage media.

  18. Robust Kalman filtering cooperated Elman neural network learning for vision-sensing-based robotic manipulation with global stability.

    PubMed

    Zhong, Xungao; Zhong, Xunyu; Peng, Xiafu

    2013-10-08

    In this paper, a global-state-space visual servoing scheme is proposed for uncalibrated model-independent robotic manipulation. The scheme is based on robust Kalman filtering (KF), in conjunction with Elman neural network (ENN) learning techniques. The global map relationship between the vision space and the robotic workspace is learned using an ENN. This learned mapping is shown to be an approximate estimate of the Jacobian in global space. In the testing phase, the desired Jacobian is arrived at using a robust KF to improve the ENN learning result so as to achieve robotic precise convergence of the desired pose. Meanwhile, the ENN weights are updated (re-trained) using a new input-output data pair vector (obtained from the KF cycle) to ensure robot global stability manipulation. Thus, our method, without requiring either camera or model parameters, avoids the corrupted performances caused by camera calibration and modeling errors. To demonstrate the proposed scheme's performance, various simulation and experimental results have been presented using a six-degree-of-freedom robotic manipulator with eye-in-hand configurations.

  19. Predictive IP controller for robust position control of linear servo system.

    PubMed

    Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi

    2016-07-01

    Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Development of an interface for an ultrareliable fault-tolerant control system and an electronic servo-control unit

    NASA Technical Reports Server (NTRS)

    Shaver, Charles; Williamson, Michael

    1986-01-01

    The NASA Ames Research Center sponsors a research program for the investigation of Intelligent Flight Control Actuation systems. The use of artificial intelligence techniques in conjunction with algorithmic techniques for autonomous, decentralized fault management of flight-control actuation systems is explored under this program. The design, development, and operation of the interface for laboratory investigation of this program is documented. The interface, architecturally based on the Intel 8751 microcontroller, is an interrupt-driven system designed to receive a digital message from an ultrareliable fault-tolerant control system (UFTCS). The interface links the UFTCS to an electronic servo-control unit, which controls a set of hydraulic actuators. It was necessary to build a UFTCS emulator (also based on the Intel 8751) to provide signal sources for testing the equipment.

  1. Identification and real-time position control of a servo-hydraulic rotary actuator by means of a neurobiologically motivated algorithm.

    PubMed

    Sadeghieh, Ali; Sazgar, Hadi; Goodarzi, Kamyar; Lucas, Caro

    2012-01-01

    This paper presents a new intelligent approach for adaptive control of a nonlinear dynamic system. A modified version of the brain emotional learning based intelligent controller (BELBIC), a bio-inspired algorithm based upon a computational model of emotional learning which occurs in the amygdala, is utilized for position controlling a real laboratorial rotary electro-hydraulic servo (EHS) system. EHS systems are known to be nonlinear and non-smooth due to many factors such as leakage, friction, hysteresis, null shift, saturation, dead zone, and especially fluid flow expression through the servo valve. The large value of these factors can easily influence the control performance in the presence of a poor design. In this paper, a mathematical model of the EHS system is derived, and then the parameters of the model are identified using the recursive least squares method. In the next step, a BELBIC is designed based on this dynamic model and utilized to control the real laboratorial EHS system. To prove the effectiveness of the modified BELBIC's online learning ability in reducing the overall tracking error, results have been compared to those obtained from an optimal PID controller, an auto-tuned fuzzy PI controller (ATFPIC), and a neural network predictive controller (NNPC) under similar circumstances. The results demonstrate not only excellent improvement in control action, but also less energy consumption. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  2. High Torque-to-Inertia Servo System for Stabilizing Sensor Systems. Candidate Systems Include Missile Guidance, Surveillance, and Tracking

    DTIC Science & Technology

    1980-04-01

    specifications ... 3-10 25. Typical isolation curve ... 3-12 26. Servo amp/motor/load frequency response (inner gimbal) ... 4-3 27. Slave loop ( open loop...slave loop ( open loop) frequency response (inner gimbal) . . . 4-4 30. Slave loop (closed loop) frequency response (inner gimbal) ... 4-5 3 . Slave...loop inner gimbal time response ... 4-5 32. Servo amp/motor/load frequency response (outer gimbal) ... 4-6 33. Slave loop ( open loop) uncompensated

  3. The application of Halbach cylinders to brushless ac servo motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atallah, K.; Howe, D.

    1998-07-01

    Halbach cylinders are applied to brushless ac servo motors. It is shown that a sinusoidal back-emf waveform and a low cogging torque can be achieved without recourse to conventional design features such as distributed windings and/or stator/rotor skew. A technique for imparting a multipole Halbach magnetization distribution on an isotropic permanent magnet cylinder is described, and it is shown that the torque capability of a Halbach ac servo motor can be up to 33% higher than conventional brushless permanent magnet ac motors.

  4. Vision servo of industrial robot: A review

    NASA Astrophysics Data System (ADS)

    Zhang, Yujin

    2018-04-01

    Robot technology has been implemented to various areas of production and life. With the continuous development of robot applications, requirements of the robot are also getting higher and higher. In order to get better perception of the robots, vision sensors have been widely used in industrial robots. In this paper, application directions of industrial robots are reviewed. The development, classification and application of robot vision servo technology are discussed, and the development prospect of industrial robot vision servo technology is proposed.

  5. Ultra-Compact Transputer-Based Controller for High-Level, Multi-Axis Coordination

    NASA Technical Reports Server (NTRS)

    Zenowich, Brian; Crowell, Adam; Townsend, William T.

    2013-01-01

    The design of machines that rely on arrays of servomotors such as robotic arms, orbital platforms, and combinations of both, imposes a heavy computational burden to coordinate their actions to perform coherent tasks. For example, the robotic equivalent of a person tracing a straight line in space requires enormously complex kinematics calculations, and complexity increases with the number of servo nodes. A new high-level architecture for coordinated servo-machine control enables a practical, distributed transputer alternative to conventional central processor electronics. The solution is inherently scalable, dramatically reduces bulkiness and number of conductor runs throughout the machine, requires only a fraction of the power, and is designed for cooling in a vacuum.

  6. Tension is servo controlled in film advance system

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Servocontrol device feeds film into a roller system. Two linear potentiometers connected to spring loaded tension rollers furnish servo input signal. Can be used in any continuous material transport system.

  7. Preterm infant thermal responses to caregiving differ by incubator control mode.

    PubMed

    Thomas, Karen A

    2003-12-01

    To determine the influence of caregiving on preterm infant and incubator temperature and to investigate incubator control mode in thermal responses to caregiving. The intensive within-subject design involved continuous recording of infant and incubator temperature and videotaping throughout a 24-hour period in 40 hospitalized preterm infants. Temperature at care onset was compared with care offset, and 5, 10, 15, and 20 minutes following care offset using ANOVA-RM. Following caregiving, infant and incubator temperature differed significantly over time by incubator control mode. In air servo-control, infant temperature tended to decrease after caregiving, while in skin servo-control infant temperature remained relatively stable. With caregiving, incubator temperature remained consistent in air servo-control and increased in skin servo-control. The temperature effects of caregiving should be considered relative to maintenance of thermoneutrality and unintentional thermal stimulation.

  8. Minimalistic optic flow sensors applied to indoor and outdoor visual guidance and odometry on a car-like robot.

    PubMed

    Mafrica, Stefano; Servel, Alain; Ruffier, Franck

    2016-11-10

    Here we present a novel bio-inspired optic flow (OF) sensor and its application to visual  guidance and odometry on a low-cost car-like robot called BioCarBot. The minimalistic OF sensor was robust to high-dynamic-range lighting conditions and to various visual patterns encountered thanks to its M 2 APIX auto-adaptive pixels and the new cross-correlation OF algorithm implemented. The low-cost car-like robot estimated its velocity and steering angle, and therefore its position and orientation, via an extended Kalman filter (EKF) using only two downward-facing OF sensors and the Ackerman steering model. Indoor and outdoor experiments were carried out in which the robot was driven in the closed-loop mode based on the velocity and steering angle estimates. The experimental results obtained show that our novel OF sensor can deliver high-frequency measurements ([Formula: see text]) in a wide OF range (1.5-[Formula: see text]) and in a 7-decade high-dynamic light level range. The OF resolution was constant and could be adjusted as required (up to [Formula: see text]), and the OF precision obtained was relatively high (standard deviation of [Formula: see text] with an average OF of [Formula: see text], under the most demanding lighting conditions). An EKF-based algorithm gave the robot's position and orientation with a relatively high accuracy (maximum errors outdoors at a very low light level: [Formula: see text] and [Formula: see text] over about [Formula: see text] and [Formula: see text]) despite the low-resolution control systems of the steering servo and the DC motor, as well as a simplified model identification and calibration. Finally, the minimalistic OF-based odometry results were compared to those obtained using measurements based on an inertial measurement unit (IMU) and a motor's speed sensor.

  9. Reduced-order model based active disturbance rejection control of hydraulic servo system with singular value perturbation theory.

    PubMed

    Wang, Chengwen; Quan, Long; Zhang, Shijie; Meng, Hongjun; Lan, Yuan

    2017-03-01

    Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Investigation of the low flux servo-controlled limit of a co-phased interferometer

    NASA Astrophysics Data System (ADS)

    Damé, Luc; Derrien, Marc; Kozlowski, Mathias; Merdjane, Mohamed

    2018-04-01

    This paper, "Investigation of the low flux servo-controlled limit of a co-phased interferometer," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  11. Simulation of proportional control of hydraulic actuator using digital hydraulic valves

    NASA Astrophysics Data System (ADS)

    Raghuraman, D. R. S.; Senthil Kumar, S.; Kalaiarasan, G.

    2017-11-01

    Fluid power systems using oil hydraulics in earth moving and construction equipment have been using proportional and servo control valves for a long time to achieve precise and accurate position control backed by system performance. Such valves are having feedback control in them and exhibit good response, sensitivity and fine control of the actuators. Servo valves and proportional valves are possessing less hysteresis when compared to on-off type valves, but when the servo valve spools get stuck in one position, a high frequency called as jitter is employed to bring the spool back, whereas in on-off type valves it requires lesser technology to retract the spool. Hence on-off type valves are used in a technology known as digital valve technology, which caters to precise control on slow moving loads with fast switching times and with good flow and pressure control mimicking the performance of an equivalent “proportional valve” or “servo valve”.

  12. Servo control booster system for minimizing following error

    DOEpatents

    Wise, William L.

    1985-01-01

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  13. The study on servo-control system in the large aperture telescope

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Zhenchao, Zhang; Daxing, Wang

    2008-08-01

    Large astronomical telescope or extremely enormous astronomical telescope servo tracking technique will be one of crucial technology that must be solved in researching and manufacturing. To control technique feature of large astronomical telescope or extremely enormous astronomical telescope, this paper design a sort of large astronomical telescope servo tracking control system. This system composes a principal and subordinate distributed control system, host computer sends steering instruction and receive slave computer functional mode, slave computer accomplish control algorithm and execute real-time control. Large astronomical telescope servo control use direct drive machine, and adopt DSP technology to complete direct torque control algorithm, Such design can not only increase control system performance, but also greatly reduced volume and costs of control system, which has a significant occurrence. The system design scheme can be proved reasonably by calculating and simulating. This system can be applied to large astronomical telescope.

  14. A Kinect-Based Real-Time Compressive Tracking Prototype System for Amphibious Spherical Robots

    PubMed Central

    Pan, Shaowu; Shi, Liwei; Guo, Shuxiang

    2015-01-01

    A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system. PMID:25856331

  15. A Kinect-based real-time compressive tracking prototype system for amphibious spherical robots.

    PubMed

    Pan, Shaowu; Shi, Liwei; Guo, Shuxiang

    2015-04-08

    A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.

  16. Nonlinear control for a class of hydraulic servo system.

    PubMed

    Yu, Hong; Feng, Zheng-jin; Wang, Xu-yong

    2004-11-01

    The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.

  17. Simple and robust phase-locking of optical cavities with > 200 KHz servo-bandwidth using a piezo-actuated mirror mounted in soft materials.

    PubMed

    Goldovsky, David; Jouravsky, Valery; Pe'er, Avi

    2016-12-12

    We present an approach to locking of optical cavities with piezoelectric actuated mirrors based on a simple and effective mechanical decoupling of the mirror and actuator from the surrounding mount. Using simple elastic materials (e.g. rubber or soft silicone gel pads) as mechanical dampers between the piezo-mirror compound and the surrounding mount, a firm and stable mounting of a relatively large mirror (8mm diameter) can be maintained that is isolated from external mechanical resonances, and is limited only by the internal piezo-mirror resonance of > 330 KHz. Our piezo lock showed positive servo gain up to 208 KHz, and a temporal response to a step interference within < 3 μs.

  18. Adaptive identification of vessel's added moments of inertia with program motion

    NASA Astrophysics Data System (ADS)

    Alyshev, A. S.; Melnikov, V. G.

    2018-05-01

    In this paper, we propose a new experimental method for determining the moments of inertia of the ship model. The paper gives a brief review of existing methods, a description of the proposed method and experimental stand, test procedures and calculation formulas and experimental results. The proposed method is based on the energy approach with special program motions. The ship model is fixed in a special rack consisting of a torsion element and a set of additional servo drives with flywheels (reactive wheels), which correct the motion. The servo drives with an adaptive controller provide the symmetry of the motion, which is necessary for the proposed identification procedure. The effectiveness of the proposed approach is confirmed by experimental results.

  19. Parallel robot for micro assembly with integrated innovative optical 3D-sensor

    NASA Astrophysics Data System (ADS)

    Hesselbach, Juergen; Ispas, Diana; Pokar, Gero; Soetebier, Sven; Tutsch, Rainer

    2002-10-01

    Recent advances in the fields of MEMS and MOEMS often require precise assembly of very small parts with an accuracy of a few microns. In order to meet this demand, a new approach using a robot based on parallel mechanisms in combination with a novel 3D-vision system has been chosen. The planar parallel robot structure with 2 DOF provides a high resolution in the XY-plane. It carries two additional serial axes for linear and rotational movement in/about z direction. In order to achieve high precision as well as good dynamic capabilities, the drive concept for the parallel (main) axes incorporates air bearings in combination with a linear electric servo motors. High accuracy position feedback is provided by optical encoders with a resolution of 0.1 μm. To allow for visualization and visual control of assembly processes, a camera module fits into the hollow tool head. It consists of a miniature CCD camera and a light source. In addition a modular gripper support is integrated into the tool head. To increase the accuracy a control loop based on an optoelectronic sensor will be implemented. As a result of an in-depth analysis of different approaches a photogrammetric system using one single camera and special beam-splitting optics was chosen. A pattern of elliptical marks is applied to the surfaces of workpiece and gripper. Using a model-based recognition algorithm the image processing software identifies the gripper and the workpiece and determines their relative position. A deviation vector is calculated and fed into the robot control to guide the gripper.

  20. Robotic goalie with 3 ms reaction time at 4% CPU load using event-based dynamic vision sensor

    PubMed Central

    Delbruck, Tobi; Lang, Manuel

    2013-01-01

    Conventional vision-based robotic systems that must operate quickly require high video frame rates and consequently high computational costs. Visual response latencies are lower-bound by the frame period, e.g., 20 ms for 50 Hz frame rate. This paper shows how an asynchronous neuromorphic dynamic vision sensor (DVS) silicon retina is used to build a fast self-calibrating robotic goalie, which offers high update rates and low latency at low CPU load. Independent and asynchronous per pixel illumination change events from the DVS signify moving objects and are used in software to track multiple balls. Motor actions to block the most “threatening” ball are based on measured ball positions and velocities. The goalie also sees its single-axis goalie arm and calibrates the motor output map during idle periods so that it can plan open-loop arm movements to desired visual locations. Blocking capability is about 80% for balls shot from 1 m from the goal even with the fastest-shots, and approaches 100% accuracy when the ball does not beat the limits of the servo motor to move the arm to the necessary position in time. Running with standard USB buses under a standard preemptive multitasking operating system (Windows), the goalie robot achieves median update rates of 550 Hz, with latencies of 2.2 ± 2 ms from ball movement to motor command at a peak CPU load of less than 4%. Practical observations and measurements of USB device latency are provided1. PMID:24311999

  1. Kinect4FOG: monitoring and improving mobility in people with Parkinson's using a novel system incorporating the Microsoft Kinect v2.

    PubMed

    Amini, Amin; Banitsas, Konstantinos; Young, William R

    2018-05-23

    Parkinson's is a neurodegenerative condition associated with several motor symptoms including tremors and slowness of movement. Freezing of gait (FOG); the sensation of one's feet being "glued" to the floor, is one of the most debilitating symptoms associated with advanced Parkinson's. FOG not only contributes to falls and related injuries, but also compromises quality of life as people often avoid engaging in functional daily activities both inside and outside the home. In the current study, we describe a novel system designed to detect FOG and falling in people with Parkinson's (PwP) as well as monitoring and improving their mobility using laser-based visual cues cast by an automated laser system. The system utilizes a RGB-D sensor based on Microsoft Kinect v2 and a laser casting system consisting of two servo motors and an Arduino microcontroller. This system was evaluated by 15 PwP with FOG. Here, we present details of the system along with a summary of feedback provided by PwP. Despite limitations regarding its outdoor use, feedback was very positive in terms of domestic usability and convenience, where 12/15 PwP showed interest in installing and using the system at their homes. Implications for Rehabilitation Providing an automatic and remotely manageable monitoring system for PwP gait analysis and fall detection. Providing an automatic, unobtrusive and dynamic visual cue system for PwP based on laser line projection. Gathering feedback from PwP about the practical usage of the implemented system through focus group events.

  2. Quality of life improves in patients with chronic heart failure and Cheyne-Stokes respiration treated with adaptive servo-ventilation in a nurse-led heart failure clinic.

    PubMed

    Olseng, Margareth W; Olsen, Brita F; Hetland, Arild; Fagermoen, May S; Jacobsen, Morten

    2017-05-01

    The aim of this study was to investigate if quality of life improved in chronic heart failure patients with Cheyne-Stokes respiration treated with adaptive servo-ventilation in nurse-led heart failure clinic. Cheyne-Stokes respiration is associated with decreased quality of life in patients with chronic heart failure. Adaptive servo-ventilation is introduced to treat this sleep-disordered breathing. Randomised, controlled design. Fifty-one patients (ranging from 53-84 years), New York Heart Association III-IV and/or left ventricular ejection fraction ≤40% and Cheyne-Stokes respiration were randomised to an intervention group who received adaptive servo-ventilation or a control group. Minnesota Living with Heart Failure Questionnaire was used to assess quality of life at randomisation and after three months. Both groups were followed in the nurse-led heart failure clinic. Adaptive servo ventilation improved quality of life-scores both in a per protocol analysis and in an intention to treat analysis. Twenty-one patients dropped out of the study, nine in the control and 12 in the intervention group. Use of adaptive servo-ventilation improved quality of life in chronic heart failure patients with Cheyne-Stokes respiration. However, the drop-out rate was high. Chronic heart failure patients come regularly to the nurse-led heart failure clinic. The heart failure nurses' competency has to include knowledge of equipment to provide support and continuity of care to the patients. © 2016 John Wiley & Sons Ltd.

  3. Fuzzy self-learning control for magnetic servo system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  4. Analysis of Hydraulic Servo Equations for WRDRF Prototype Control System : Volume I

    DOT National Transportation Integrated Search

    1971-10-01

    A set of dynamic performance equations derived by Wylie Labs., Huntsville, Alabama, were independently rederived and checked. These equations describe the perfromance of the prototype electro hydraulic servo actuator system selected by Wylie as repre...

  5. Field evaluations of "ShapeAccelArray" in-place MEMS inclinometer strings for subsurface deformation monitoring.

    DOT National Transportation Integrated Search

    2012-03-01

    Continuous monitoring of subsurface ground movements is accomplished with in-place instruments utilizing automated data acquisition methods. These typically include TDR (Time Domain Reflectometry) or assemblies of several servo-accelerometer-based, e...

  6. Control and acquisition systems for new scanning transmission x-ray microscopes at Advanced Light Source (abstract)

    NASA Astrophysics Data System (ADS)

    Tyliszczak, T.; Hitchcock, P.; Kilcoyne, A. L. D.; Ade, H.; Hitchcock, A. P.; Fakra, S.; Steele, W. F.; Warwick, T.

    2002-03-01

    Two new scanning x-ray transmission microscopes are being built at beamline 5.3.2 and beamline 7.0 of the Advanced Light Source that have novel aspects in their control and acquisition systems. Both microscopes use multiaxis laser interferometry to improve the precision of pixel location during imaging and energy scans as well as to remove image distortions. Beam line 5.3.2 is a new beam line where the new microscope will be dedicated to studies of polymers in the 250-600 eV energy range. Since this is a bending magnet beam line with lower x-ray brightness than undulator beam lines, special attention is given to the design not only to minimize distortions and vibrations but also to optimize the controls and acquisition to improve data collection efficiency. 5.3.2 microscope control and acquisition is based on a PC computer running WINDOWS 2000. All mechanical stages are moved by stepper motors with rack mounted controllers. A dedicated counter board is used for counting and timing and a multi-input/output board is used for analog acquisition and control of the focusing mirror. A three axis differential laser interferometer is being used to improve stability and precision by careful tracking of the relative positions of the sample and zone plate. Each axis measures the relative distance between a mirror placed on the sample stage and a mirror attached to the zone plate holder. Agilent Technologies HP 10889A servo-axis interferometer boards are used. While they were designed to control servo motors, our tests show that they can be used to directly control the piezo stage. The use of the interferometer servo-axis boards provides excellent point stability for spectral measurements. The interferometric feedback also provides active vibration isolation which reduces deleterious impact of mechanical vibrations up to 20-30 Hz. It also can improve the speed and precision of image scans. Custom C++ software has been written to provide user friendly control of the microscope and integration with visual light microscopy indexing of the samples. The beam line 7.0 microscope upgrade is a new design which will replace the existing microscope. The design is similar to that of beam line 5.3.2, including interferometric position encoding. However the acquisition and control is based on VXI systems, a Sun computer, and LABVIEW™ software. The main objective of the BL 7.0 microscope upgrade is to achieve precise image scans at very high speed (pixel dwells as short as 10 μs) to take full advantage of the high brightness of the 7.0 undulator beamline. Results of tests and a discussion of the benefits of our scanning microscope designs will be presented.

  7. Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control.

    PubMed

    Gorju, G; Jucha, A; Jain, A; Crozatier, V; Lorgeré, I; Le Gouët, J-L; Bretenaker, F; Colice, M

    2007-03-01

    We propose and demonstrate a novel active stabilization scheme for wide and fast frequency chirps. The system measures the laser instantaneous frequency deviation from a perfectly linear chirp, thanks to a digital phase detection process, and provides an error signal that is used to servo-loop control the chirped laser. This way, the frequency errors affecting a laser scan over 10 GHz on the millisecond timescale are drastically reduced below 100 kHz. This active optoelectronic digital servo-loop control opens new and interesting perspectives in fields where rapidly chirped lasers are crucial.

  8. Use of a novel drainage flow servo-controlled CPB for mitral valve replacement in a Jehovah's Witness.

    PubMed

    Niimi, Yoshinari; Murata, Seiichiro; Mitou, Yumi; Ohno, Yusuke

    2018-03-01

    We developed a novel open cardiopulmonary bypass (CPB) system, a drainage flow servo-controlled CPB system (DS-CPB), in which rotational speed of the main roller pump is servo-controlled to generate the same amount of flow as the systemic venous drainage. It was designed to safely decrease the priming volume while maintaining a constant reservoir level, even during fluctuations of the drainage flow. We report a successful use of a novel DS-CPB system in an elderly Jehovah's Witness patient with dehydration who underwent mitral valve replacement.

  9. Velocity servo for continuous scan Fourier interference spectrometer

    NASA Technical Reports Server (NTRS)

    Schindler, R. A. (Inventor)

    1980-01-01

    A velocity servo for continuous scan Fourier interference spectrometer of the double pass retroreflector type having two cat's eye retroreflectors is described. The servo uses an open loop, lead screw drive system for one retroreflector with compensation for any variations in speed of drive of the lead screw provided by sensing any variation in the rate of reference laser fringes, and producing an error signal from such variation used to compensate by energizing a moving coil actuator for the other retroreflector optical path, and energizing (through a highpass filter) piezoelectric actuators for the secondary mirrors of the retroreflectors.

  10. Theoretical and experimental research on machine tool servo system for ultra-precision position compensation on CNC lathe

    NASA Astrophysics Data System (ADS)

    Ma, Zhichao; Hu, Leilei; Zhao, Hongwei; Wu, Boda; Peng, Zhenxing; Zhou, Xiaoqin; Zhang, Hongguo; Zhu, Shuai; Xing, Lifeng; Hu, Huang

    2010-08-01

    The theories and techniques for improving machining accuracy via position control of diamond tool's tip and raising resolution of cutting depth on precise CNC lathes have been extremely focused on. A new piezo-driven ultra-precision machine tool servo system is designed and tested to improve manufacturing accuracy of workpiece. The mathematical model of machine tool servo system is established and the finite element analysis is carried out on parallel plate flexure hinges. The output position of diamond tool's tip driven by the machine tool servo system is tested via a contact capacitive displacement sensor. Proportional, integral, derivative (PID) feedback is also implemented to accommodate and compensate dynamical change owing cutting forces as well as the inherent non-linearity factors of the piezoelectric stack during cutting process. By closed loop feedback controlling strategy, the tracking error is limited to 0.8 μm. Experimental results have shown the proposed machine tool servo system could provide a tool positioning resolution of 12 nm, which is much accurate than the inherent CNC resolution magnitude. The stepped shaft of aluminum specimen with a step increment of cutting depth of 1 μm is tested, and the obtained contour illustrates the displacement command output from controller is accurately and real-time reflected on the machined part.

  11. Feature Visibility Limits in the Non-Linear Enhancement of Turbid Images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.

    2003-01-01

    The advancement of non-linear processing methods for generic automatic clarification of turbid imagery has led us from extensions of entirely passive multiscale Retinex processing to a new framework of active measurement and control of the enhancement process called the Visual Servo. In the process of testing this new non-linear computational scheme, we have identified that feature visibility limits in the post-enhancement image now simplify to a single signal-to-noise figure of merit: a feature is visible if the feature-background signal difference is greater than the RMS noise level. In other words, a signal-to-noise limit of approximately unity constitutes a lower limit on feature visibility.

  12. Evaluating the Performance of the NASA LaRC CMF Motion Base Safety Devices

    NASA Technical Reports Server (NTRS)

    Gupton, Lawrence E.; Bryant, Richard B., Jr.; Carrelli, David J.

    2006-01-01

    This paper describes the initial measured performance results of the previously documented NASA Langley Research Center (LaRC) Cockpit Motion Facility (CMF) motion base hardware safety devices. These safety systems are required to prevent excessive accelerations that could injure personnel and damage simulator cockpits or the motion base structure. Excessive accelerations may be caused by erroneous commands or hardware failures driving an actuator to the end of its travel at high velocity, stepping a servo valve, or instantly reversing servo direction. Such commands may result from single order failures of electrical or hydraulic components within the control system itself, or from aggressive or improper cueing commands from the host simulation computer. The safety systems must mitigate these high acceleration events while minimizing the negative performance impacts. The system accomplishes this by controlling the rate of change of valve signals to limit excessive commanded accelerations. It also aids hydraulic cushion performance by limiting valve command authority as the actuator approaches its end of travel. The design takes advantage of inherent motion base hydraulic characteristics to implement all safety features using hardware only solutions.

  13. Methods of and system for swing damping movement of suspended objects

    DOEpatents

    Jones, J.F.; Petterson, B.J.; Strip, D.R.

    1991-03-05

    A payload suspended from a gantry is swing damped in accordance with a control algorithm based on the periodic motion of the suspended mass or by servoing on the forces induced by the suspended mass. 13 figures.

  14. New method to improve dynamic stiffness of electro-hydraulic servo systems

    NASA Astrophysics Data System (ADS)

    Bai, Yanhong; Quan, Long

    2013-09-01

    Most current researches working on improving stiffness focus on the application of control theories. But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated, so the control action is lagged. Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms. In this paper, the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed. On this basis, the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward. And a scheme using double servo valves to realize flow feedforward compensation is presented, in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time. The two valves are arranged in parallel to control the cylinder jointly. Furthermore, the model of flow compensation is derived, by which the product of the amplitude and width of the valve’s pulse command signal can be calculated. And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations. Using the proposed scheme, simulations and experiments at different positions with different force changes are conducted. The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time. That is, system dynamic load stiffness is evidently raised. This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.

  15. Provision of servo-controlled cooling during neonatal transport.

    PubMed

    Johnston, Ewen D; Becher, Julie-Clare; Mitchell, Anne P; Stenson, Benjamin J

    2012-09-01

    Therapeutic hypothermia is a time critical intervention for infants who have experienced a hypoxic-ischaemic event. Previously reported methods of cooling during transport do not demonstrate the same stability achieved in the neonatal unit. The authors developed a system which allowed provision of servo-controlled cooling throughout transport, and present their first year's experience. Retrospective review of routinely collected patient data. 14 out-born infants were referred for cooling during a 12-month period. Nine infants were managed with the servo-controlled system during transport. Cooling was commenced in all infants before 6 h of life. Median time from team arrival to the infant having a temperature in the target range (33-34°C) was 45 min. Median temperature during transfer was 33.5°C (range 33-34°C). Temperature on arrival at the cooling centre ranged from 33.4°C to 33.8°C. Servo-controlled cooling during transport is feasible and provides an optimal level of thermal control.

  16. Improving dynamic performances of PWM-driven servo-pneumatic systems via a novel pneumatic circuit.

    PubMed

    Taghizadeh, Mostafa; Ghaffari, Ali; Najafi, Farid

    2009-10-01

    In this paper, the effect of pneumatic circuit design on the input-output behavior of PWM-driven servo-pneumatic systems is investigated and their control performances are improved using linear controllers instead of complex and costly nonlinear ones. Generally, servo-pneumatic systems are well known for their nonlinear behavior. However, PWM-driven servo-pneumatic systems have the advantage of flexibility in the design of pneumatic circuits which affects the input-output linearity of the whole system. A simple pneumatic circuit with only one fast switching valve is designed which leads to a quasi-linear input-output relation. The quasi-linear behavior of the proposed circuit is verified both experimentally and by simulations. Closed loop position control experiments are then carried out using linear P- and PD-controllers. Since the output position is noisy and cannot be directly differentiated, a Kalman filter is designed to estimate the velocity of the cylinder. Highly improved tracking performances are obtained using these linear controllers, compared to previous works with nonlinear controllers.

  17. Self-Contained Avionics Sensing and Flight Control System for Small Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Ingham, John C. (Inventor); Shams, Qamar A. (Inventor); Logan, Michael J. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Melanie L. (Inventor); Kuhn, III, Theodore R. (Inventor); Babel, III, Walter C. (Inventor); Fox, legal representative, Christopher L. (Inventor); Adams, James K. (Inventor); Laughter, Sean A. (Inventor)

    2011-01-01

    A self-contained avionics sensing and flight control system is provided for an unmanned aerial vehicle (UAV). The system includes sensors for sensing flight control parameters and surveillance parameters, and a Global Positioning System (GPS) receiver. Flight control parameters and location signals are processed to generate flight control signals. A Field Programmable Gate Array (FPGA) is configured to provide a look-up table storing sets of values with each set being associated with a servo mechanism mounted on the UAV and with each value in each set indicating a unique duty cycle for the servo mechanism associated therewith. Each value in each set is further indexed to a bit position indicative of a unique percentage of a maximum duty cycle for the servo mechanism associated therewith. The FPGA is further configured to provide a plurality of pulse width modulation (PWM) generators coupled to the look-up table. Each PWM generator is associated with and adapted to be coupled to one of the servo mechanisms.

  18. Servo control booster system for minimizing following error

    DOEpatents

    Wise, W.L.

    1979-07-26

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, ..delta..S/sub R/, on a continuous real-time basis, for all operational times of consequence and for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error greater than or equal to ..delta..S/sub R/, to produce precise position correction signals. When the command-to-response error is less than ..delta..S/sub R/, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  19. Velocity control of servo systems using an integral retarded algorithm.

    PubMed

    Ramírez, Adrián; Garrido, Rubén; Mondié, Sabine

    2015-09-01

    This paper presents a design technique for the delay-based controller called Integral Retarded (IR), and its applications to velocity control of servo systems. Using spectral analysis, the technique yields a tuning strategy for the IR by assigning a triple real dominant root for the closed-loop system. This result ultimately guarantees a desired exponential decay rate σ(d) while achieving the IR tuning as explicit function of σ(d) and system parameters. The intentional introduction of delay allows using noisy velocity measurements without additional filtering. The structure of the controller is also able to avoid velocity measurements by using instead position information. The IR is compared to a classical PI, both tested in a laboratory prototype. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth.

    PubMed

    Briles, Travis C; Yost, Dylan C; Cingöz, Arman; Ye, Jun; Schibli, Thomas R

    2010-05-10

    We present a high bandwidth piezoelectric-actuated mirror for length stabilization of an optical cavity. The actuator displays a transfer function with a flat amplitude response and greater than 135 masculine phase margin up to 200 kHz, allowing a 180 kHz unity gain frequency to be achieved in a closed servo loop. To the best of our knowledge, this actuator has achieved the largest servo bandwidth for a piezoelectric transducer (PZT). The actuator should be very useful in a wide variety of applications requiring precision control of optical lengths, including laser frequency stabilization, optical interferometers, and optical communications. (c) 2010 Optical Society of America.

  1. Design of Servo Scheme and Drive Electronics for the Integrated Electrohydraulic Actuation System of RLV-TD

    NASA Astrophysics Data System (ADS)

    Kurian, Priya C.; Gopinath, Anish; Shinoy, K. S.; Santhi, P.; Sundaramoorthy, K.; Sebastian, Baby; Jaya, B.; Namboodiripad, M. N.; Mookiah, T.

    2017-12-01

    Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) is a system which has the ability to carry a payload from the earth's surface to the outer space more than once. The control actuation forms the major component of the control system and it actuates the control surfaces of the RLV-TD based on the control commands. Eight electro hydraulic actuators were used in RLV-TD for vectoring the control surfaces about their axes. A centralised Hydraulic Power Generating Unit (HPU) was used for powering the eight actuators located in two stages. The actuation system had to work for the longest ever duration of about 850 s for an Indian launch vehicle. High bandwidth requirement from autopilot was met by the servo design using the nonlinear mathematical model. Single Control Electronics which drive four electrohydraulic actuators was developed for each stage. High power electronics with soft start scheme was realized for driving the BLDC motor which is the prime mover for hydraulic pump. Many challenges arose due to single HPU for two stages, uncertainty of aero load, higher bandwidth requirements etc. and provisions were incorporated in the design to successfully overcome them. This paper describes the servo design and control electronics architecture of control actuation system.

  2. Light-controlled resistors provide quadrature signal rejection for high-gain servo systems

    NASA Technical Reports Server (NTRS)

    Mc Cauley, D. D.

    1967-01-01

    Servo amplifier feedback system, in which the phase sensitive detection, low pass filtering, and multiplication functions required for quadrature rejection, are preformed by light-controlled photoresistors, eliminates complex circuitry. System increases gain, improves signal-to-noise ratio, and eliminates the necessity for compensation.

  3. Adaptive servo-ventilation: How does it fit into the treatment of central sleep apnoea syndrome? Expert opinions.

    PubMed

    Priou, P; d'Ortho, M-P; Damy, T; Davy, J-M; Gagnadoux, F; Gentina, T; Meurice, J-C; Pepin, J-L; Tamisier, R; Philippe, C

    2015-12-01

    The preliminary results of the SERVE-HF study have led to the release of safety information with subsequent contraindication to the use of adaptive servo-ventilation (ASV) for the treatment of central sleep apnoeas in patients with chronic symptomatic systolic heart failure with left ventricular ejection fraction (LVEF) ≤ 45%. The aim of this article is to review these results, and to provide more detailed arguments based on data from the literature advocating the continued use of ASV in different indications, including heart failure with preserved LVEF, complex sleep apnoea syndrome, opioid-induced central sleep apnea syndrome, idiopathic central SAS, and central SAS due to a stroke. Based on these findings, we propose to set up registers dedicated to patients in whom ASV has been stopped and in the context of the next setting up of ASV in these specific indications to ensure patient safety and allow reasoned decisions on the use of ASV. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  4. Analysis of an electrohydraulic aircraft control surface servo and comparison with test results

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1972-01-01

    An analysis of an electrohydraulic aircraft control-surface system is made in which the system is modeled as a lumped, two-mass, spring-coupled system controlled by a servo valve. Both linear and nonlinear models are developed, and the effects of hinge-moment loading are included. Transfer functions of the system and approximate literal factors of the transfer functions for several cases are presented. The damping action of dynamic pressure feedback is analyzed. Comparisons of the model responses with results from tests made on a highly resonant rudder control-surface servo indicate the adequacy of the model. The effects of variations in hinge-moment loading are illustrated.

  5. Adaptive GSA-based optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness.

    PubMed

    Precup, Radu-Emil; David, Radu-Codrut; Petriu, Emil M; Radac, Mircea-Bogdan; Preitl, Stefan

    2014-11-01

    This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices. An original back-calculation and tracking anti-windup scheme is proposed in order to prevent the integrator wind-up and to compensate for the dead zone nonlinearity of the process. The minimization of the objective functions is carried out in the framework of optimization problems with inequality constraints which guarantee the robust stability with respect to the process parametric variations and the controller robustness. An adaptive gravitational search algorithm (GSA) solves the optimization problems focused on the optimal tuning of the design parameter specific to the ESO method and of the anti-windup tracking gain. A tuning method for PI controllers is proposed as an efficient approach to the design of resilient control systems. The tuning method and the PI controllers are experimentally validated by the adaptive GSA-based tuning of PI controllers for the angular position control of a laboratory servo system.

  6. Door Security using Face Detection and Raspberry Pi

    NASA Astrophysics Data System (ADS)

    Bhutra, Venkatesh; Kumar, Harshav; Jangid, Santosh; Solanki, L.

    2018-03-01

    With the world moving towards advanced technologies, security forms a crucial part in daily life. Among the many techniques used for this purpose, Face Recognition stands as effective means of authentication and security. This paper deals with the user of principal component and security. PCA is a statistical approach used to simplify a data set. The minimum Euclidean distance found from the PCA technique is used to recognize the face. Raspberry Pi a low cost ARM based computer on a small circuit board, controls the servo motor and other sensors. The servo-motor is in turn attached to the doors of home and opens up when the face is recognized. The proposed work has been done using a self-made training database of students from B.K. Birla Institute of Engineering and Technology, Pilani, Rajasthan, India.

  7. Development of a hemispherical rotational modulation collimator system for imaging spatial distribution of radiation sources

    NASA Astrophysics Data System (ADS)

    Na, M.; Lee, S.; Kim, G.; Kim, H. S.; Rho, J.; Ok, J. G.

    2017-12-01

    Detecting and mapping the spatial distribution of radioactive materials is of great importance for environmental and security issues. We design and present a novel hemispherical rotational modulation collimator (H-RMC) system which can visualize the location of the radiation source by collecting signals from incident rays that go through collimator masks. The H-RMC system comprises a servo motor-controlled rotating module and a hollow heavy-metallic hemisphere with slits/slats equally spaced with the same angle subtended from the main axis. In addition, we also designed an auxiliary instrument to test the imaging performance of the H-RMC system, comprising a high-precision x- and y-axis staging station on which one can mount radiation sources of various shapes. We fabricated the H-RMC system which can be operated in a fully-automated fashion through the computer-based controller, and verify the accuracy and reproducibility of the system by measuring the rotational and linear positions with respect to the programmed values. Our H-RMC system may provide a pivotal tool for spatial radiation imaging with high reliability and accuracy.

  8. Center for Neural Engineering at Tennessee State University, ASSERT Annual Progress Report.

    DTIC Science & Technology

    1995-07-01

    neural networks . Their research topics are: (1) developing frequency dependent oscillatory neural networks ; (2) long term pontentiation learning rules...as applied to spatial navigation; (3) design and build a servo joint robotic arm and (4) neural network based prothesis control. One graduate student

  9. Self-Adaptive Correction of Heading Direction in Stair Climbing for Tracked Mobile Robots Using Visual Servoing Approach

    NASA Astrophysics Data System (ADS)

    Ji, Peng; Song, Aiguo; Song, Zimo; Liu, Yuqing; Jiang, Guohua; Zhao, Guopu

    2017-02-01

    In this paper, we describe a heading direction correction algorithm for a tracked mobile robot. To save hardware resources as far as possible, the mobile robot’s wrist camera is used as the only sensor, which is rotated to face stairs. An ensemble heading deviation detector is proposed to help the mobile robot correct its heading direction. To improve the generalization ability, a multi-scale Gabor filter is used to process the input image previously. Final deviation result is acquired by applying the majority vote strategy on all the classifiers’ results. The experimental results show that our detector is able to enable the mobile robot to correct its heading direction adaptively while it is climbing the stairs.

  10. 76 FR 45655 - Airworthiness Directives; Superior Air Parts and Lycoming Engines (Formerly Textron Lycoming...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... holidays. For service information identified in this AD, contact AVStar Fuel Systems, Inc., 1365 Park Lane... a faulty fuel servo, Bendix model RSA-10ED1. AVStar Fuel Systems (AFS) had overhauled the fuel servo...) since new due to suspected manufacturing defects. AVStar Fuel Systems produces diaphragms, P/Ns...

  11. Antenna servo control system characterization: Rate loop analysis for 34-m antenna at DSS 15

    NASA Technical Reports Server (NTRS)

    Nickerson, J. A.; Cox, D. G.; Smith, H. K.; Engel, J. H.; Ahlstrom, H. G.

    1986-01-01

    The elevation and azimuth servo rate loops at the 34-m High Efficiency Deep Space Station 15 (DSS 15) are described. Time and frequency response performance criteria were measured. The results are compared to theoretically deduced performance criteria. Unexpected anomalies in the frequency response are observed and identified.

  12. 76 FR 66609 - Airworthiness Directives; Bell Helicopter Textron Canada (Bell) Model 407 and 427 Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ... surface. The AD also requires reidentifying the servo by metal-impression stamping or by vibro- etching... surface. The AD also requires reidentifying the servo by metal-impression stamping or by vibro-etching... metal-impression stamping or by vibro-etching ``67.01'' onto the modification plate. Before installing a...

  13. Hydraulic servo control spool valve

    DOEpatents

    Miller, Donald M.

    1983-01-01

    A servo operated spool valve having a fixed sleeve and axially movable spool. The sleeve is machined in two halves to form a long, narrow tapered orifice slot across which a transverse wall of the spool is positioned. The axial position of the spool wall along the slot regulates the open orifice area with extreme precision.

  14. Dynamic Response of Control Servo System Installed in NAES-Equipped SB2C-5 Airplane (BuAer No. 83135)

    NASA Technical Reports Server (NTRS)

    Smaus, Louis H.; Stewart, Elwood C.

    1950-01-01

    Dynamic--response measurements for various conditions of displacement and rate signal input, sensitivity setting, and simulated hinge moment were made of the three control-surface servo systems of an NAES-equipped remote-controlled airplane while on the ground. The basic components of the servo systems are those of the General Electric Company type G-1 autopilot using electrical signal. sources, solenoid-operated valves, and hydraulic pistons. The test procedures and difficulties are discussed, Both frequency and transient-response data, are presented and comparisons are made. The constants describing the servo system, the undamped natural frequency, and the damping ratio, are determined by several methods. The response of the system with the addition of airframe rate signal is calculated. The transfer function of the elevator surface, linkage, and cable system is obtained. The agreement between various methods of measurement and calculation is considered very good. The data are complete enough and in such form that they may be used directly with the frequency-response data of an airplane to predict the stability of the autopilot-airplane combination.

  15. Induced hypothermia for infants with hypoxic- ischemic encephalopathy using a servo-controlled fan: an exploratory pilot study.

    PubMed

    Horn, Alan; Thompson, Clare; Woods, David; Nel, Alida; Bekker, Adrie; Rhoda, Natasha; Pieper, Clarissa

    2009-06-01

    Several trials suggest that hypothermia is beneficial in selected infants with hypoxic-ischemic encephalopathy. However, the cooling methods used required repeated interventions and were either expensive or reported significant temperature variation. The objective of this pilot study was to describe the use, efficacy, and physiologic impact of an inexpensive servo-controlled cooling fan blowing room-temperature air. A servo-controlled fan was manufactured and used to cool 10 infants with hypoxic-ischemic encephalopathy to a rectal temperature of 33 degrees C to 34 degrees C. The infants were sedated with phenobarbital, but clonidine was administered to some infants if shivering or discomfort occurred. A servo-controlled radiant warmer was used simultaneously with the fan to prevent overcooling. The settings used on the fan and radiant warmer differed slightly between some infants as the technique evolved. A rectal temperature of 34 degrees C was achieved in a median time of 58 minutes. Overcooling did not occur, and the mean temperature during cooling was 33.6 degrees C +/- 0.2 degrees C. Inspired oxygen requirements increased in 6 infants, and 5 infants required inotropic support during cooling, but this was progressively reduced after 1 to 2 days. Dehydration did not occur. Five infants shivered when faster fan speeds were used, but 4 of the 5 infants had hypomagnesemia. Shivering was controlled with clonidine in 4 infants, but 1 infant required morphine. Servo-controlled fan cooling with room-temperature air, combined with servo-controlled radiant warming, was an effective, simple, and safe method of inducing and maintaining rectal temperatures of 33 degrees C to 34 degrees C in sedated infants with hypoxic-ischemic encephalopathy. After induction of hypothermia, a low fan speed facilitated accurate temperature control, and warmer-controlled rewarming at 0.2 degrees C increments every 30 minutes resulted in more appropriate rewarming than when 0.5 degrees C increments every hour were used.

  16. Magnetic particle clutch controls servo system

    NASA Technical Reports Server (NTRS)

    Fow, P. B.

    1973-01-01

    Magnetic clutches provide alternative means of driving low-power rate or positioning servo systems. They may be used over wide variety of input speed ranges and weigh comparatively little. Power drain is good with overall motor/clutch efficiency greater than 50 percent, and gain of clutch is close to linear, following hysteresis curve of core and rotor material.

  17. Research on intelligent algorithm of electro - hydraulic servo control system

    NASA Astrophysics Data System (ADS)

    Wang, Yannian; Zhao, Yuhui; Liu, Chengtao

    2017-09-01

    In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.

  18. Chiari malformation and central sleep apnea syndrome: efficacy of treatment with adaptive servo-ventilation*

    PubMed Central

    do Vale, Jorge Marques; Silva, Eloísa; Pereira, Isabel Gil; Marques, Catarina; Sanchez-Serrano, Amparo; Torres, António Simões

    2014-01-01

    The Chiari malformation type I (CM-I) has been associated with sleep-disordered breathing, especially central sleep apnea syndrome. We report the case of a 44-year-old female with CM-I who was referred to our sleep laboratory for suspected sleep apnea. The patient had undergone decompressive surgery 3 years prior. An arterial blood gas analysis showed hypercapnia. Polysomnography showed a respiratory disturbance index of 108 events/h, and all were central apnea events. Treatment with adaptive servo-ventilation was initiated, and central apnea was resolved. This report demonstrates the efficacy of servo-ventilation in the treatment of central sleep apnea syndrome associated with alveolar hypoventilation in a CM-I patient with a history of decompressive surgery. PMID:25410846

  19. Active Vibration Isolation Devices with Inertial Servo Actuators

    NASA Astrophysics Data System (ADS)

    Melik-Shakhnazarov, V. A.; Strelov, V. I.; Sofiyanchuk, D. V.; Tregubenko, A. A.

    2018-03-01

    The use of active vibration isolation devices (AVIDs) in aerospace engineering is subject to the following restrictions. First, the volume for installing additional devices is always limited in instrument racks and compartments. Secondly, in many cases, it is impossible to add supports for servo actuators for fundamental or design considerations. In the paper, it has been shown that this problem can be solved if the inertial servo actuators are used in AVIDs instead of reference actuators. A transfer function has been theoretically calculated for an AVID controlled by inertial actuators. It has been shown that the volume of a six-mode single-housing AVID with inertial actuators can be 2-2.5 times smaller than that of devices with support actuators.

  20. Servo-hydraulic actuator in controllable canonical form: Identification and experimental validation

    NASA Astrophysics Data System (ADS)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-02-01

    Hydraulic actuators have been widely used to experimentally examine structural behavior at multiple scales. Real-time hybrid simulation (RTHS) is one innovative testing method that largely relies on such servo-hydraulic actuators. In RTHS, interface conditions must be enforced in real time, and controllers are often used to achieve tracking of the desired displacements. Thus, neglecting the dynamics of hydraulic transfer system may result either in system instability or sub-optimal performance. Herein, we propose a nonlinear dynamical model for a servo-hydraulic actuator (a.k.a. hydraulic transfer system) coupled with a nonlinear physical specimen. The nonlinear dynamical model is transformed into controllable canonical form for further tracking control design purposes. Through a number of experiments, the controllable canonical model is validated.

  1. Servo-controlled pneumatic pressure oscillator for respiratory impedance measurements and high-frequency ventilation.

    PubMed

    Kaczka, David W; Lutchen, Kenneth R

    2004-04-01

    The ability to provide forced oscillatory excitation of the respiratory system can be useful in mechanical impedance measurements as well as high frequency ventilation (HFV). Experimental systems currently used for generating forced oscillations are limited in their ability to provide high amplitude flows or maintain the respiratory system at a constant mean pressure during excitation. This paper presents the design and implementation of a pneumatic pressure oscillator based on a proportional solenoid valve. The device is capable of providing forced oscillatory excitations to the respiratory system over a bandwidth suitable for mechanical impedance measurements and HVF. It delivers high amplitude flows (> 1.4 l/s) and utilizes a servo-control mechanism to maintain a load at a fixed mean pressure during simultaneous oscillation. Under open-loop conditions, the device exhibited a static hysteresis of approximately 7%, while its dynamic magnitude and phase responses were flat out to 10 Hz. Broad-band measurement of total harmonic distortion was approximately 19%. Under closed-loop conditions, the oscillator was able to maintain a mechanical test load at both positive and negative mean pressures during oscillatory excitations from 0.1 to 10.0 Hz. Impedance of the test load agreed closely with theoretical predictions. We conclude that this servo-controlled oscillator can be a useful tool for respiratory impedance measurements as well as HFV.

  2. Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators

    NASA Astrophysics Data System (ADS)

    Vu, Van Tan; Sename, Olivier; Dugard, Luc; Gaspar, Peter

    2017-09-01

    Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.

  3. Development of an EtherCAT enabled digital servo controller for the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Whiteis, Peter G.; Mello, Melinda J.

    2012-09-01

    EtherCAT (Ethernet for Control Automation Technology) is gaining wide spread popularity in the automation industry as a real time field bus based on low cost, Ethernet hardware. EtherCAT maximizes use of 100Mbps Ethernet hardware by using a collision free ring topology, efficient Ethernet frame utilization (> 95%), and data exchange "on the fly". These characteristics enable EtherCAT to achieve Master to Slave node data exchange rates of > 1000 Hz. The Green Bank Telescope, commissioned in 2000, utilizes an analog control system for motion control of 8 elevation and 16 azimuth motors. This architecture, while sufficient for observations at frequencies up to 50GHz, has significant limitations for the current scientific goals of observing at 115GHz. Accordingly, the Green Bank staff has embarked on a servo upgrade project to develop a digital servo system which accommodates development and implementation of advanced control algorithms. This paper describes how the new control system requirements, use of existing infrastructure and budget constraints led us to define a distributed motion control architecture where EtherCAT real-time Ethernet was selected as the communication bus. Finally, design details are provided that describe how NRAO developed a custom EtherCAT-enabled motor controller interface for the GBT's legacy motor drives in order to provide technical benefits and flexibility not available in commercial products.

  4. Control Oriented Modeling and Validation of Aeroservoelastic Systems

    NASA Technical Reports Server (NTRS)

    Crowder, Marianne; deCallafon, Raymond (Principal Investigator)

    2002-01-01

    Lightweight aircraft design emphasizes the reduction of structural weight to maximize aircraft efficiency and agility at the cost of increasing the likelihood of structural dynamic instabilities. To ensure flight safety, extensive flight testing and active structural servo control strategies are required to explore and expand the boundary of the flight envelope. Aeroservoelastic (ASE) models can provide online flight monitoring of dynamic instabilities to reduce flight time testing and increase flight safety. The success of ASE models is determined by the ability to take into account varying flight conditions and the possibility to perform flight monitoring under the presence of active structural servo control strategies. In this continued study, these aspects are addressed by developing specific methodologies and algorithms for control relevant robust identification and model validation of aeroservoelastic structures. The closed-loop model robust identification and model validation are based on a fractional model approach where the model uncertainties are characterized in a closed-loop relevant way.

  5. Harmony search optimization in dimensional accuracy of die sinking EDM process using SS316L stainless steel

    NASA Astrophysics Data System (ADS)

    Deris, A. M.; Zain, A. M.; Sallehuddin, R.; Sharif, S.

    2017-09-01

    Electric discharge machine (EDM) is one of the widely used nonconventional machining processes for hard and difficult to machine materials. Due to the large number of machining parameters in EDM and its complicated structural, the selection of the optimal solution of machining parameters for obtaining minimum machining performance is remain as a challenging task to the researchers. This paper proposed experimental investigation and optimization of machining parameters for EDM process on stainless steel 316L work piece using Harmony Search (HS) algorithm. The mathematical model was developed based on regression approach with four input parameters which are pulse on time, peak current, servo voltage and servo speed to the output response which is dimensional accuracy (DA). The optimal result of HS approach was compared with regression analysis and it was found HS gave better result y giving the most minimum DA value compared with regression approach.

  6. Efficacy and safety of strategies to preserve stable extracorporeal life support flow during simulated hypovolemia.

    PubMed

    Simons, A P; Lindelauf, A A M A; Ganushchak, Y M; Maessen, J G; Weerwind, P W

    2014-01-01

    Without volume-buffering capacity in extracorporeal life support (ELS) systems, hypovolemia can acutely reduce support flow. This study aims at evaluating efficacy and safety of strategies for preserving stable ELS during hypovolemia. Flow and/or pressure-guided servo pump control, a reserve-driven control strategy and a volume buffer capacity (VBC) device were evaluated with respect to pump flow, venous line pressure and arterial gaseous microemboli (GME) during simulated normovolemia and hypovolemia. Normovolemia resulted in a GME-free pump flow of 3.1 ± 0.0 L/min and a venous line pressure of -10 ± 1 mmHg. Hypovolemia without servo pump control resulted in a GME-loaded flow of 2.3 ± 0.4 L/min with a venous line pressure of -114 ± 52 mmHg. Servo control resulted in an unstable and GME-loaded flow of 1.5 ± 1.2 L/min. With and without servo pump control, the VBC device stabilised flow (SD = 0.2 and 0.0 L/min, respectively) and venous line pressure (SD=51 and 4 mmHg, respectively) with near-absent GME activity. Reserve-driven pump control combined with a VBC device restored a near GME-free flow of 2.7 ± 0.0 L/min with a venous line pressure of -9 ± 0 mmHg. In contrast to a reserve-driven pump control strategy combined with a VBC device, flow and pressure servo control for ELS show evident deficits in preserving stable and safe ELS flow during hypovolemia.

  7. FEED FORWARD EQUATIONS.

    DTIC Science & Technology

    and feed forward stabilization) have been implemented. An on-mount gyro system consists of gyroscopes mounted on the radar antenna which sense...antenna motion and send compensating signals back to the antenna servo mechanism. Feed forward stabilization consists of determining antenna angular rates...caused by ships attitude changes, as measured by a stable platform (such as SINS), and feeding compensating signals back to the antenna servo

  8. Load control system. [for space shuttle external tank ground tests

    NASA Technical Reports Server (NTRS)

    Grosse, J. C.

    1977-01-01

    The load control system developed for the shuttle external structural tests is described. The system consists of a load programming/display module, and a load control module along with the following hydraulic system components: servo valves, dump valves, hydraulic system components, and servo valve manifold blocks. One load programming/display subsystem can support multiple load control subsystem modules.

  9. Adjustable Speed Drive Project for Teaching a Servo Systems Course Laboratory

    ERIC Educational Resources Information Center

    Rodriguez-Resendiz, J.; Herrera-Ruiz, G.; Rivas-Araiza, E. A.

    2011-01-01

    This paper describes an adjustable speed drive for a three-phase motor, which has been implemented as a design for a servo system laboratory course in an engineering curriculum. The platform is controlled and analyzed in a LabVIEW environment and run on a PC. Theory is introduced in order to show the sensorless algorithms. These are computed by…

  10. Temperature control during therapeutic moderate whole-body hypothermia for neonatal encephalopathy.

    PubMed

    Strohm, B; Azzopardi, D

    2010-09-01

    The precision of temperature control achieved in clinical practice during therapeutic hypothermia in neonates has not been described. The hourly rectal temperature recordings from 17 infants treated with servo controlled and an equal number treated with manually adjusted cooling equipment were examined. The target rectal temperature for all infants is 33.5 degrees C for 72 h. During 6 to 72 h after start of cooling, the mean (95% CI, variance) of the averaged rectal temperatures was 33.6 degrees C (95% CI 33.4 degrees C to 33.8 degrees C, 0.1 degrees C) in the manually adjusted group and 33.4 degrees C (95% CI 33.3 degrees C to 33.5 degrees C, 0.04 degrees C) in the servo controlled group (means, p=0.08; equality of variance, p=0.03). The variance was also significantly different between infant groups during 1 to 5 h after start of cooling, p=0.01, but not during rewarming. The rectal temperature can be maintained close to the target temperature with either manually adjusted or servo controlled equipment, but there is less temperature variability with the servo controlled system in use in the UK.

  11. Turbofan Volume Dynamics Model for Investigations of Aero-Propulso-Servo-Elastic Effects in a Supersonic Commercial Transport

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George; Lemon, Kimberly A.

    2010-01-01

    A turbofan simulation has been developed for use in aero-propulso-servo-elastic coupling studies, on supersonic vehicles. A one-dimensional lumped volume approach is used whereby each component (fan, high-pressure compressor, combustor, etc.) is represented as a single volume using characteristic performance maps and conservation equations for continuity, momentum and energy. The simulation is developed in the MATLAB/SIMULINK (The MathWorks, Inc.) environment in order to facilitate controls development, and ease of integration with a future aero-servo-elastic vehicle model being developed at NASA Langley. The complete simulation demonstrated steady state results that closely match a proposed engine suitable for a supersonic business jet at the cruise condition. Preliminary investigation of the transient simulation revealed expected trends for fuel flow disturbances as well as upstream pressure disturbances. A framework for system identification enables development of linear models for controller design. Utilizing this framework, a transfer function modeling an upstream pressure disturbance s impacts on the engine speed is developed as an illustrative case of the system identification. This work will eventually enable an overall vehicle aero-propulso-servo-elastic model

  12. Servo-control of water and sodium homeostasis during renal clearance measurements in conscious rats.

    PubMed

    Thomsen, Klaus; Shirley, David G

    2007-01-01

    Servo-controlled fluid and sodium replacement during clearance studies is used in order to prevent loss of body fluid and sodium following diuretic/natriuretic procedures. However, even under control conditions, the use of this technique is sometimes associated with increases in proximal tubular fluid output (assessed by lithium clearance) and excretion rates. The present study examined the reason for these increases. The first series of experiments showed that one cause is volume overloading. This can occur if the servo system is activated from the start, i.e., during the establishment of a suitably high urine flow rate by constant infusion of hypotonic glucose solution. The second series of experiments showed that replacement of blood samples with donor blood can also lead to increases in fractional lithium excretion and accompanying increases in water and sodium excretion, a problem not seen when blood samples are replaced with the animal's own red blood cells resuspended in isotonic saline. When these pitfalls are avoided, servo-controlled sodium and fluid replacement is a reliable technique that makes it possible to study the effects of natriuretic and/or diuretic stimuli without interference from unwanted changes in extracellular volume. 2007 S. Karger AG, Basel

  13. Modal space three-state feedback control for electro-hydraulic servo plane redundant driving mechanism with eccentric load decoupling.

    PubMed

    Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining

    2018-06-01

    The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Study of parameter identification using hybrid neural-genetic algorithm in electro-hydraulic servo system

    NASA Astrophysics Data System (ADS)

    Moon, Byung-Young

    2005-12-01

    The hybrid neural-genetic multi-model parameter estimation algorithm was demonstrated. This method can be applied to structured system identification of electro-hydraulic servo system. This algorithms consist of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. To evaluate the proposed method, electro-hydraulic servo system was designed and manufactured. The experiment was carried out to figure out the hybrid neural-genetic multi-model parameter estimation algorithm. As a result, the dynamic characteristics were obtained such as the parameters(mass, damping coefficient, bulk modulus, spring coefficient), which minimize total square error. The result of this study can be applied to hydraulic systems in industrial fields.

  15. Reliable Control Using Disturbance Observer and Equivalent Transfer Function for Position Servo System in Current Feedback Loop Failure

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kaoru; Nakamura, Taro; Osumi, Hisashi

    A reliable control method is proposed for multiple loop control system. After a feedback loop failure, such as case of the sensor break down, the control system becomes unstable and has a big fluctuation even if it has a disturbance observer. To cope with this problem, the proposed method uses an equivalent transfer function (ETF) as active redundancy compensation after the loop failure. The ETF is designed so that it does not change the transfer function of the whole system before and after the loop failure. In this paper, the characteristic of reliable control system that uses an ETF and a disturbance observer is examined by the experiment that uses the DC servo motor for the current feedback loop failure in the position servo system.

  16. Scene Context Dependency of Pattern Constancy of Time Series Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn A.; Jobson, Daniel J.; Rahman, Zia-ur

    2008-01-01

    A fundamental element of future generic pattern recognition technology is the ability to extract similar patterns for the same scene despite wide ranging extraneous variables, including lighting, turbidity, sensor exposure variations, and signal noise. In the process of demonstrating pattern constancy of this kind for retinex/visual servo (RVS) image enhancement processing, we found that the pattern constancy performance depended somewhat on scene content. Most notably, the scene topography and, in particular, the scale and extent of the topography in an image, affects the pattern constancy the most. This paper will explore these effects in more depth and present experimental data from several time series tests. These results further quantify the impact of topography on pattern constancy. Despite this residual inconstancy, the results of overall pattern constancy testing support the idea that RVS image processing can be a universal front-end for generic visual pattern recognition. While the effects on pattern constancy were significant, the RVS processing still does achieve a high degree of pattern constancy over a wide spectrum of scene content diversity, and wide ranging extraneousness variations in lighting, turbidity, and sensor exposure.

  17. MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement.

    PubMed

    Fischer, Gregory S; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; Dimaio, Simon P; Tempany, Clare M; Hata, Nobuhiko; Fichtinger, Gabor

    2008-06-01

    Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of prostate and surrounding tissue, thus granting potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. However, the benefits cannot be readily harnessed for interventional procedures due to difficulties that surround the use of high-field (1.5T or greater) MRI. The inability to use conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intraprostatic needle placement inside closed high-field MRI scanners. MRI compatibility of the robot has been evaluated under 3T MRI using standard prostate imaging sequences and average SNR loss is limited to 5%. Needle alignment accuracy of the robot under servo pneumatic control is better than 0.94 mm rms per axis. The complete system workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the robot mechanism and controller design, the system integration, and presents results of preliminary evaluation of the system.

  18. Adaptive two-degree-of-freedom PI for speed control of permanent magnet synchronous motor based on fractional order GPC.

    PubMed

    Qiao, Wenjun; Tang, Xiaoqi; Zheng, Shiqi; Xie, Yuanlong; Song, Bao

    2016-09-01

    In this paper, an adaptive two-degree-of-freedom (2Dof) proportional-integral (PI) controller is proposed for the speed control of permanent magnet synchronous motor (PMSM). Firstly, an enhanced just-in-time learning technique consisting of two novel searching engines is presented to identify the model of the speed control system in a real-time manner. Secondly, a general formula is given to predict the future speed reference which is unavailable at the interval of two bus-communication cycles. Thirdly, the fractional order generalized predictive control (FOGPC) is introduced to improve the control performance of the servo drive system. Based on the identified model parameters and predicted speed reference, the optimal control law of FOGPC is derived. Finally, the designed 2Dof PI controller is auto-tuned by matching with the optimal control law. Simulations and real-time experimental results on the servo drive system of PMSM are provided to illustrate the effectiveness of the proposed strategy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Considerations for human-machine interfaces in tele-operations

    NASA Technical Reports Server (NTRS)

    Newport, Curt

    1991-01-01

    Numerous factors impact on the efficiency of tele-operative manipulative work. Generally, these are related to the physical environment of the tele-operator and how he interfaces with robotic control consoles. The capabilities of the operator can be influenced by considerations such as temperature, eye strain, body fatigue, and boredom created by repetitive work tasks. In addition, the successful combination of man and machine will, in part, be determined by the configuration of the visual and physical interfaces available to the teleoperator. The design and operation of system components such as full-scale and mini-master manipulator controllers, servo joysticks, and video monitors will have a direct impact on operational efficiency. As a result, the local environment and the interaction of the operator with the robotic control console have a substantial effect on mission productivity.

  20. High Bandwidth Rotary Fast Tool Servos and a Hybrid Rotary/Linear Electromagnetic Actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montesanti, Richard Clement

    2005-09-01

    This thesis describes the development of two high bandwidth short-stroke rotary fast tool servos and the hybrid rotary/linear electromagnetic actuator developed for one of them. Design insights, trade-o® methodologies, and analytical tools are developed for precision mechanical systems, power and signal electronic systems, control systems, normal-stress electromagnetic actuators, and the dynamics of the combined systems.

  1. New technique for servo-control of arterial oxygen tension in preterm infants.

    PubMed Central

    Beddis, I R; Collins, P; Levy, N M; Godfrey, S; Silverman, M

    1979-01-01

    Equipment has been developed for the servo-control of arterial oxygen tension in sick, newborn babies. Using an indwelling umbilical arterial oxygen electrode as sensor, the equipment successfully regulated the administration of oxygen to 12 newborn babies with respiratory distress syndrome, significantly improving the stability of arterial oxygen tension and lessening the duration of episodes of hypoxia and hyperoxia. PMID:453911

  2. Opto-mechanical subsystem of a 10 micrometer wavelength receiver terminal. Waveguide laser local oscillator. Servo system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An engineering model opto-mechanical subsystem for a 10.6-micrometer laser heterodyne receiver is developed, and a CO2 waveguide local oscillator and servo electronics are provided for the receiver. Design goals are presented for the subsystems and overall package design is described. Thermal and mechanical distortion loading tests were performed and the results are included.

  3. Servo-control for maintaining abdominal skin temperature at 36C in low birth weight infants.

    PubMed

    Sinclair, J C

    2000-01-01

    Randomized trials have shown that the neonatal mortality rate of low birth-weight babies can be reduced by keeping them warm. For low birth-weight babies nursed in incubators, warm conditions may be achieved either by heating the air to a desired temperature, or by servo-controlling the baby's body temperature at a desired set-point. In low birth weight infants, to determine the effect on death and other important clinical outcomes of targeting body temperature rather than air temperature as the end-point of control of incubator heating. Standard search strategy of the Cochrane Neonatal Collaborative Review Group. Randomized or quasi-randomized trials which test the effects of having the heat output of the incubator servo-controlled from body temperature compared with setting a constant incubator air temperature. Trial methodologic quality was systematically assessed. Outcome measures included death, timing of death, cause of death, and other clinical outcomes. Categorical outcomes were analyzed using relative risk and risk difference. Meta-analysis assumed a fixed effect model. Compared to setting a constant incubator air temperature of 31.8C, servo-control of abdominal skin temperature at 36C reduces the neonatal death rate among low birth weight infants: relative risk 0.72 (95% CI 0.54, 0.97); risk difference -12.7% (95% CI -1.6, -23.9). This effect is even greater among VLBW infants. During at least the first week after birth, low birth weight babies should be provided with a carefully regulated thermal environment that is near the thermoneutral point. For LBW babies in incubators, this can be achieved by adjusting incubator temperature to maintain an anterior abdominal skin temperature of at least 36C, using either servo-control or frequent manual adjustment of incubator air temperature.

  4. Apparatus producing constant cable tension for intermittent demand

    DOEpatents

    Lauritzen, Ted

    1985-01-01

    The disclosed apparatus produces constant tension in superconducting electrical cable, or some other strand, under conditions of intermittent demand, as the cable is unreeled from a reel or reeled thereon. The apparatus comprises a pivotally supported swing frame on which the reel is rotatably supported, a rotary motor, a drive train connected between the motor and the reel and including an electrically controllable variable torque slip clutch, a servo transducer connected to the swing frame for producing servo input signals corresponding to the position thereof, a servo control system connected between the transducer and the clutch for regulating the torque transmitted by the clutch to maintain the swing frame in a predetermined position, at least one air cylinder connected to the swing frame for counteracting the tension in the cable, and pressure regulating means for supplying a constant air pressure to the cylinder to establish the constant tension in the cable, the servo system and the clutch being effective to produce torque on the reel in an amount sufficient to provide tension in the cable corresponding to the constant force exerted by the air cylinder. The drive train also preferably includes a fail-safe brake operable to its released position by electrical power in common with the servo system, for preventing rotation of the reel if there is a power failure. A shock absorber and biasing springs may also be connected to the swing frame, such springs biasing the frame toward its predetermined position. The tension in the cable may be measured by force measuring devices engageable with the bearings for the reel shaft, such bearings being supported for slight lateral movement. The reel shaft is driven by a Shmidt coupler which accommodates such movement.

  5. Spinal Tissue Loading Created by Different Methods of Spinal Manipulative Therapy Application

    PubMed Central

    Funabashi, Martha; Nougarou, François; Descarreaux, Martin; Prasad, Narasimha; Kawchuk, Gregory N.

    2017-01-01

    Study Design. Comparative study using robotic replication of spinal manipulative therapy (SMT) vertebral kinematics together with serial dissection. Objective. The aim of this study was to quantify loads created in cadaveric spinal tissues arising from three different forms of SMT application. Summary of Background Data. There exist many distinct methods by which to apply SMT. It is not known presently whether different forms of SMT application have different effects on spinal tissues. Should the method of SMT application modulate spinal tissue loading, quantifying this relation may help explain the varied outcomes of SMT in terms of effect and safety. Methods. SMT was applied to the third lumbar vertebra in 12 porcine cadavers using three SMT techniques: a clinical device that applies forces through a hand-held instrument (INST), a manual technique of applying SMT clinically (MAN) and a research device that applies parameters of manual SMT through a servo-controlled linear actuator motor (SERVO). The resulting kinematics from each SMT application were tracked optically via indwelling bone pins. The L3/L4 segment was then removed, mounted in a parallel robot and the resulting kinematics from SMT replayed for each SMT application technique. Serial dissection of spinal structures was conducted to quantify loading characteristics of discrete spinal tissues. Results. In terms of load magnitude, SMT application with MAN and SERVO created greater forces than INST in all conditions (P < 0.05). Additionally, MAN and SERVO created comparable posterior forces in the intact specimen, but MAN created greater posterior forces on IVD structures compared to SERVO (P < 0.05). Conclusion. Specific methods of SMT application create unique vertebral loading characteristics, which may help explain the varied outcomes of SMT in terms of effect and safety. Level of Evidence: N/A PMID:28146021

  6. Asymmetric Fuzzy Control of a Positive and Negative Pneumatic Pressure Servo System

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Du, Jing-Min; Fu, Xiao-Yun; Li, Bao-Ren

    2017-11-01

    The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonlinearity of such systems limit its application in the field of pressure tracking control. In order to meet the demand of generating dynamic pressure signal in the application of the hardware-in-the-loop simulation of aerospace engineering, a positive and negative pneumatic pressure servo system is provided to implement dynamic adjustment of sealed chamber pressure. A mathematical model is established with simulation and experiment being implemented afterwards to discuss the characteristics of the system, which shows serious asymmetry in the process of charging and discharging. Based on the analysis of the system dynamics, a fuzzy proportional integral derivative (PID) controller with asymmetric fuzzy compensator is proposed. Different from conventional adjusting mechanisms employing the error and change in error of the controlled variable as input parameters, the current chamber pressure and charging or discharging state are chosen as inputs of the compensator, which improves adaptability. To verify the effectiveness and performance of the proposed controller, the comparison experiments tracking sinusoidal and square wave commands are conducted. Experimental results show that the proposed controller can obtain better dynamic performance and relatively consistent control performance across the scope of work (2-140 kPa). The research proposes a fuzzy control method to overcome asymmetry and enhance adaptability for the positive and negative pneumatic pressure servo system.

  7. HERMES travels by CAN bus

    NASA Astrophysics Data System (ADS)

    Waller, Lewis G.; Shortridge, Keith; Farrell, Tony J.; Vuong, Minh; Muller, Rolf; Sheinis, Andrew I.

    2014-07-01

    The new HERMES spectrograph represents the first foray by AAO into the use of commercial off-the-shelf industrial field bus technology for instrument control, and we regard the final system, with its relatively simple wiring requirements, as a great success. However, both software and hardware teams had to work together to solve a number of problems integrating the chosen CANopen/CAN bus system into our normal observing systems. A Linux system running in an industrial PC chassis ran the HERMES control software, using a PCI CAN bus interface connected to a number of distributed CANopen/CAN bus I/O devices and servo amplifiers. In the main, the servo amplifiers performed impressively, although some experimentation with homing algorithms was required, and we hit a significant hurdle when we discovered that we needed to disable some of the encoders used during observations; we learned a lot about how servo amplifiers respond when their encoders are turned off, and about how encoders react to losing power. The software was based around a commercial CANopen library from Copley Controls. Early worries about how this heavily multithreaded library would work with our standard data acquisition system led to the development of a very low-level CANopen software simulator to verify the design. This also enabled the software group to develop and test almost all the control software well in advance of the construction of the hardware. In the end, the instrument went from initial installation at the telescope to successful commissioning remarkably smoothly.

  8. Measuring the photodetector frequency response for ultrasonic applications by a heterodyne system with difference- frequency servo control.

    PubMed

    Koch, Christian

    2010-05-01

    A technique for the calibration of photodiodes in ultrasonic measurement systems using standard and cost-effective optical and electronic components is presented. A heterodyne system was realized using two commercially available distributed feedback lasers, and the required frequency stability and resolution were ensured by a difference-frequency servo control scheme. The frequency-sensitive element generating the error signal for the servo loop comprised a delay-line discriminator constructed from electronic elements. Measurements were carried out at up to 450 MHz, and the uncertainties of about 5% (k = 2) can be further reduced by improved radio frequency power measurement without losing the feature of using only simple elements. The technique initially dedicated to the determination of the frequency response of photodetectors applied in ultrasonic applications can be transferred to other application fields of optical measurements.

  9. HYDRAULIC SERVO

    DOEpatents

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  10. Pulse Width Modulator Controller Design for a Brushless DC Motor Position Servo.

    DTIC Science & Technology

    1987-06-01

    C. POWER CONDITIONER SIMULATION Accurate modeling of power conditioning and commutation in brushless dc motors requires explicit definition of the...Study of a Brushless DC Motor Power Conditioner for a Cruise Missile Fin Control Actuator, Master’s Thesis, Naval Postgraduate School, Monterey, Ca...DESIGN FOR A BRUSHLESS DC MOTOR POSITION SERVO by Vincent S. Rossitto June 1987 Thesis Advisor: Alex Gerba, Jr. Approved for public release

  11. Solar Collector Control System.

    DTIC Science & Technology

    A system for controlling the movement in azimuth and elevation of a large number of sun following solor energy collectors from a single controller...The system utilizes servo signal generators, a modulator and a demodulator for transmitting the servo signals, and stepping motors for controlling...remotely located solar collectors. The system allows precise tracking of the sun by a series of solar collectors without the necessity or expense of individualized solar trackers. (Author)

  12. Nondestructive Evaluation of Metallized Tape Bonds Formed by Tape Automated Bonding (TAB)

    DTIC Science & Technology

    1989-04-01

    powered by micro-positioning linear actuators. 3) Interchangeable sample-holding fixtures mounted upon top of slide assembly. 4) Coverslip gantry mounted...Controller Unit 1) Motor power supplies 2) Motor output servo driver amplifiers 3) "Macro-language" command Interpreter 4) Two-way cormunications with...adjustments are manual knobs giving approximately one degree of tilt adjustment per turn. The servo controller has self-contained power supplies for

  13. Servo Controlled Variable Pressure Modification to Space Shuttle Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.

    1983-01-01

    Engineering drawings show modifications made to the constant pressure control of the model AP27V-7 hydraulic pump to an electrically controlled variable pressure setting compensator. A hanger position indicator was included for continuously monitoring hanger angle. A simplex servo driver was furnished for controlling the pressure setting servovalve. Calibration of the rotary variable displacement transducer is described as well as pump performance and response characteristics.

  14. Application of optimal control theory to the design of the NASA/JPL 70-meter antenna servos

    NASA Technical Reports Server (NTRS)

    Alvarez, L. S.; Nickerson, J.

    1989-01-01

    The application of Linear Quadratic Gaussian (LQG) techniques to the design of the 70-m axis servos is described. Linear quadratic optimal control and Kalman filter theory are reviewed, and model development and verification are discussed. Families of optimal controller and Kalman filter gain vectors were generated by varying weight parameters. Performance specifications were used to select final gain vectors.

  15. Analysis of High Speed Jets Produced by a Servo Tube Driven Liquid Jet Injector

    NASA Astrophysics Data System (ADS)

    Portaro, Rocco; Ng, Hoi Dick

    2017-11-01

    In today's healthcare environment many types of medication must be administered through the use of hypodermic needles. Although this practice has been in use for many years, drawbacks such as accidental needle stick injuries, transmission of deadly viruses and bio-hazardous waste are still present. This study focuses on improving a needle free technology known as liquid jet injection, through the implementation of a linear servo tube actuator for the construction of a fully closed loop liquid jet injection system. This device has the ability to deliver both micro- and macro- molecules, high viscosity fluids whilst providing real time control of the jet pressure profile for accurate depth and dispersion control. The experiments are conducted using a prototype that consists of a 3 kW servo tube actuator, coupled to a specially designed injection head allowing nozzle size and injection volume to be varied. The device is controlled via a high speed servo amplifier and FPGA. The high speed jets emanating from the injector are assessed via high speed photography and through the use of a force transducer. Preliminary results indicate that the system allows for accurate shaping of the jet pressure profile, making it possible to target different tissue depths/types accurately.

  16. Indirect Measurement of Rotor Dynamic Imbalance for Control Moment Gyroscopes via Gimbal Disturbance Observer.

    PubMed

    Huang, Liya; Wu, Zhong; Wang, Kan

    2018-06-07

    The high-precision speed control of gimbal servo systems is the key to generating high-precision torque for control moment gyroscopes (CMGs) in spacecrafts. However, the control performance of gimbal servo systems may be degraded significantly by disturbances, especially a dynamic imbalance disturbance with the same frequency as the high-speed rotor. For assembled CMGs, it is very difficult to measure the rotor imbalance directly by using a dynamic balancing machine. In this paper, a gimbal disturbance observer is proposed to estimate the dynamic imbalance of the rotor assembled in the CMG. First, a third-order dynamical system is established to describe the disturbance dynamics of the gimbal servo system, in which the rotor dynamic imbalance torque along the gimbal axis and the other disturbances are modeled to be periodic and bounded, respectively. Then, the gimbal disturbance observer is designed for the third-order dynamical system by using the total disturbance as a virtual measurement. Since the virtual measurement is derived from the inverse dynamics of the gimbal servo system, the information of the rotor dynamic imbalance can be obtained indirectly only using the measurements of gimbal speed and three-phase currents. Semi-physical experimental results demonstrate the effectiveness of the observer by using a CMG simulator.

  17. Millimeter Wave-based Fatigue Countermeasure Research for Improving Performance and Prolonging Combat Effectiveness of Warfighters

    DTIC Science & Technology

    2011-04-07

    5 silk suture attached to the arm of an Aurora Scientific model 300 servo-motor to register contractions. The distal end of the muscle is held taut...that use specially designed glass sleeves and Sylgard (184 silicone elastomer, Dow Corning Corp.) sealant to allow for precise positioning of the

  18. Microcontroller-based servo for two-crystal X-ray monochromators.

    PubMed

    Siddons, D P

    1998-05-01

    Microcontrollers have become increasingly easy to incorporate into instruments as the architectures and support tools have developed. The PIC series is particularly easy to use, and this paper describes a controller used to stabilize the output of a two-crystal X-ray monochromator at a given offset from its peak intensity position, as such monochromators are generally used.

  19. 75 FR 71540 - Airworthiness Directives; Bell Helicopter Textron Canada Model 222, 222B, 222U, 230, and 430...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... inspected and does not require rework or repair, removing each servo actuator, performing the inspections... Areas,'' rework the piston rod by removing any surface corrosion that has not penetrated into the base... area, rework the piston rod by applying brush cadmium plating to all bare and reworked areas by...

  20. DServO: A Peer-to-Peer-based Approach to Biomedical Ontology Repositories.

    PubMed

    Mambone, Zakaria; Savadogo, Mahamadi; Some, Borlli Michel Jonas; Diallo, Gayo

    2015-01-01

    We present in this poster an extension of the ServO ontology server system, which adopts a decentralized Peer-To-Peer approach for managing multiple heterogeneous knowledge organization systems. It relies on the use of the JXTA protocol coupled with information retrieval techniques to provide a decentralized infrastructure for managing multiples instances of Ontology Repositories.

  1. Hexapod Robot

    NASA Technical Reports Server (NTRS)

    Begody, Ericka

    2016-01-01

    The project I am working on at NASA-Johnson Space Center in Houston, TX is a hexapod robot. This project was started by various engineers at the Trick Lab. The goal of this project is to have the hexapod track a yellow ball or possibly another object from left to right and up/down. The purpose is to have it track an object like a real creature. The project will consist of using software and hardware. This project started with a hexapod robot which uses a senor bar to track a yellow ball but with a limited field of vision. The sensor bar acts as the robots "head." Two servos will be added to the hexapod to create flexion and extension of the head. The neck and head servos will have to be programmed to be added to the original memory map of the existing servos. I will be using preexisting code. The main programming language that will be used to add to the preexisting code is C++. The trick modeling and simulation software will also be used in the process to improve its tracking and movement. This project will use a trial and error approach, basically seeing what works and what does not. The first step is to initially understand how the hexapod works. To get a general understanding of how the hexapod maneuvers and plan on how to had a neck and head servo which works with the rest of the body. The second step would be configuring the head and neck servos with the leg servos. During this step, limits will be programmed specifically for the each servo. By doing this, the servo is limited to how far it can rotate both clockwise and counterclockwise and this is to prevent hardware damage. The hexapod will have two modes in which it works in. The first mode will be if the sensor bar does not detect an object. If the object it is programmed to look for is not in its view it will automatically scan from left to right 3 times then up and down once. The second mode will be if the sensor bar does detect the object. In this mode the hexapod will track the object from left to right or up and down. The hexapod will eventually be able to track the object moving its head and body in sync with on another and being able to rotate its body at 360 degrees. This is the plans and possible end results for the hexapod robot I will be working on during my summer internship at NASA Johnson Space Center. Since working on the hexapod project I have gained an increase interest in robotics. I enjoy the process of critical thinking. Also will working on this project I was challenged in a way that made more passionate to strive even more to become an engineer. I've learned that asking questions is an important part of the learning process. Also I learn that much more is accomplished when teamwork is applied.

  2. Laser cutting of irregular shape object based on stereo vision laser galvanometric scanning system

    NASA Astrophysics Data System (ADS)

    Qi, Li; Zhang, Yixin; Wang, Shun; Tang, Zhiqiang; Yang, Huan; Zhang, Xuping

    2015-05-01

    Irregular shape objects with different 3-dimensional (3D) appearances are difficult to be shaped into customized uniform pattern by current laser machining approaches. A laser galvanometric scanning system (LGS) could be a potential candidate since it can easily achieve path-adjustable laser shaping. However, without knowing the actual 3D topography of the object, the processing result may still suffer from 3D shape distortion. It is desirable to have a versatile auxiliary tool that is capable of generating 3D-adjusted laser processing path by measuring the 3D geometry of those irregular shape objects. This paper proposed the stereo vision laser galvanometric scanning system (SLGS), which takes the advantages of both the stereo vision solution and conventional LGS system. The 3D geometry of the object obtained by the stereo cameras is used to guide the scanning galvanometers for 3D-shape-adjusted laser processing. In order to achieve precise visual-servoed laser fabrication, these two independent components are integrated through a system calibration method using plastic thin film target. The flexibility of SLGS has been experimentally demonstrated by cutting duck feathers for badminton shuttle manufacture.

  3. PointCom: semi-autonomous UGV control with intuitive interface

    NASA Astrophysics Data System (ADS)

    Rohde, Mitchell M.; Perlin, Victor E.; Iagnemma, Karl D.; Lupa, Robert M.; Rohde, Steven M.; Overholt, James; Fiorani, Graham

    2008-04-01

    Unmanned ground vehicles (UGVs) will play an important role in the nation's next-generation ground force. Advances in sensing, control, and computing have enabled a new generation of technologies that bridge the gap between manual UGV teleoperation and full autonomy. In this paper, we present current research on a unique command and control system for UGVs named PointCom (Point-and-Go Command). PointCom is a semi-autonomous command system for one or multiple UGVs. The system, when complete, will be easy to operate and will enable significant reduction in operator workload by utilizing an intuitive image-based control framework for UGV navigation and allowing a single operator to command multiple UGVs. The project leverages new image processing algorithms for monocular visual servoing and odometry to yield a unique, high-performance fused navigation system. Human Computer Interface (HCI) techniques from the entertainment software industry are being used to develop video-game style interfaces that require little training and build upon the navigation capabilities. By combining an advanced navigation system with an intuitive interface, a semi-autonomous control and navigation system is being created that is robust, user friendly, and less burdensome than many current generation systems. mand).

  4. New mode switching algorithm for the JPL 70-meter antenna servo controller

    NASA Technical Reports Server (NTRS)

    Nickerson, J. A.

    1988-01-01

    The design of control mode switching algorithms and logic for JPL's 70 m antenna servo controller are described. The old control mode switching logic was reviewed and perturbation problems were identified. Design approaches for mode switching are presented and the final design is described. Simulations used to compare old and new mode switching algorithms and logic show that the new mode switching techniques will significantly reduce perturbation problems.

  5. Tensile Deformation and Adiabatic Heating in Post-Yield Response of Polycarbonate

    DTIC Science & Technology

    2015-11-01

    display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) November 2015 2...to investigate the rate-dependent mechanical response from quasi-static to intermediate (~5/s) strain rates using a traditional servo -hydraulic load...less than 7-mm thickness) These specimens were loaded in tension using an Instron servo -hydraulic test frame. Far-field load and stress measurements

  6. Reconfigurable Flight Control Design using a Robust Servo LQR and Radial Basis Function Neural Networks

    NASA Technical Reports Server (NTRS)

    Burken, John J.

    2005-01-01

    This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.

  7. Servo-controlling structure of five-axis CNC system for real-time NURBS interpolating

    NASA Astrophysics Data System (ADS)

    Chen, Liangji; Guo, Guangsong; Li, Huiying

    2017-07-01

    NURBS (Non-Uniform Rational B-Spline) is widely used in CAD/CAM (Computer-Aided Design / Computer-Aided Manufacturing) to represent sculptured curves or surfaces. In this paper, we develop a 5-axis NURBS real-time interpolator and realize it in our developing CNC(Computer Numerical Control) system. At first, we use two NURBS curves to represent tool-tip and tool-axis path respectively. According to feedrate and Taylor series extension, servo-controlling signals of 5 axes are obtained for each interpolating cycle. Then, generation procedure of NC(Numerical Control) code with the presented method is introduced and the method how to integrate the interpolator into our developing CNC system is given. And also, the servo-controlling structure of the CNC system is introduced. Through the illustration, it has been indicated that the proposed method can enhance the machining accuracy and the spline interpolator is feasible for 5-axis CNC system.

  8. Rotary fast tool servo system and methods

    DOEpatents

    Montesanti, Richard C.; Trumper, David L.

    2007-10-02

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  9. Rotary fast tool servo system and methods

    DOEpatents

    Montesanti, Richard C [Cambridge, MA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.

    2009-08-18

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. One or more position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  10. Application of Least Mean Square Algorithms to Spacecraft Vibration Compensation

    NASA Technical Reports Server (NTRS)

    Woodard , Stanley E.; Nagchaudhuri, Abhijit

    1998-01-01

    This paper describes the application of the Least Mean Square (LMS) algorithm in tandem with the Filtered-X Least Mean Square algorithm for controlling a science instrument's line-of-sight pointing. Pointing error is caused by a periodic disturbance and spacecraft vibration. A least mean square algorithm is used on-orbit to produce the transfer function between the instrument's servo-mechanism and error sensor. The result is a set of adaptive transversal filter weights tuned to the transfer function. The Filtered-X LMS algorithm, which is an extension of the LMS, tunes a set of transversal filter weights to the transfer function between the disturbance source and the servo-mechanism's actuation signal. The servo-mechanism's resulting actuation counters the disturbance response and thus maintains accurate science instrumental pointing. A simulation model of the Upper Atmosphere Research Satellite is used to demonstrate the algorithms.

  11. Robot Arm with Tendon Connector Plate and Linear Actuator

    NASA Technical Reports Server (NTRS)

    Bridgwater, Lyndon (Inventor); Millerman, Alexander (Inventor); Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Nguyen, Vienny (Inventor)

    2014-01-01

    A robotic system includes a tendon-driven end effector, a linear actuator, a flexible tendon, and a plate assembly. The linear actuator assembly has a servo motor and a drive mechanism, the latter of which translates linearly with respect to a drive axis of the servo motor in response to output torque from the servo motor. The tendon connects to the end effector and drive mechanism. The plate assembly is disposed between the linear actuator assembly and the tendon-driven end effector and includes first and second plates. The first plate has a first side that defines a boss with a center opening. The second plate defines an accurate through-slot having tendon guide channels. The first plate defines a through passage for the tendon between the center opening and a second side of the first plate. A looped end of the flexible tendon is received within the tendon guide channels.

  12. A Digital Motion Control System for Large Telescopes

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.

    2001-05-01

    We have designed and programmed a digital motion control system for large telescopes, in particular, the 6-meter antennas of the Submillimeter Array on Mauna Kea. The system consists of a single robust, high-reliability microcontroller board which implements a two-axis velocity servo while monitoring and responding to critical safety parameters. Excellent tracking performance has been achieved with this system (0.3 arcsecond RMS at sidereal rate). The 24x24 centimeter four-layer printed circuit board contains a multitude of hardware devices: 40 digital inputs (for limit switches and fault indicators), 32 digital outputs (to enable/disable motor amplifiers and brakes), a quad 22-bit ADC (to read the motor tachometers), four 16-bit DACs (that provide torque signals to the motor amplifiers), a 32-LED status panel, a serial port to the LynxOS PowerPC antenna computer (RS422/460kbps), a serial port to the Palm Vx handpaddle (RS232/115kbps), and serial links to the low-resolution absolute encoders on the azimuth and elevation axes. Each section of the board employs independent ground planes and power supplies, with optical isolation on all I/O channels. The processor is an Intel 80C196KC 16-bit microcontroller running at 20MHz on an 8-bit bus. This processor executes an interrupt-driven, scheduler-based software system written in C and assembled into an EPROM with user-accessible variables stored in NVSRAM. Under normal operation, velocity update requests arrive at 100Hz from the position-loop servo process running independently on the antenna computer. A variety of telescope safety checks are performed at 279Hz including routine servicing of a 6 millisecond watchdog timer. Additional ADCs onboard the microcontroller monitor the winding temperature and current in the brushless three-phase drive motors. The PID servo gains can be dynamically changed in software. Calibration factors and software filters can be applied to the tachometer readings prior to the application of the servo gains in the torque computations. The Palm pilot handpaddle displays the complete status of the telescope and allows full local control of the drives in an intuitive, touchscreen user interface which is especially useful during reconfigurations of the antenna array.

  13. Autonomous Rock Tracking and Acquisition from a Mars Rover

    NASA Technical Reports Server (NTRS)

    Maimone, Mark W.; Nesnas, Issa A.; Das, Hari

    1999-01-01

    Future Mars exploration missions will perform two types of experiments: science instrument placement for close-up measurement, and sample acquisition for return to Earth. In this paper we describe algorithms we developed for these tasks, and demonstrate them in field experiments using a self-contained Mars Rover prototype, the Rocky 7 rover. Our algorithms perform visual servoing on an elevation map instead of image features, because the latter are subject to abrupt scale changes during the approach. 'This allows us to compensate for the poor odometry that results from motion on loose terrain. We demonstrate the successful grasp of a 5 cm long rock over 1m away using 103-degree field-of-view stereo cameras, and placement of a flexible mast on a rock outcropping over 5m away using 43 degree FOV stereo cameras.

  14. Design and motion control of bioinspired humanoid robot head from servo motors toward artificial muscles

    NASA Astrophysics Data System (ADS)

    Almubarak, Yara; Tadesse, Yonas

    2017-04-01

    The potential applications of humanoid robots in social environments, motivates researchers to design, and control biomimetic humanoid robots. Generally, people are more interested to interact with robots that have similar attributes and movements to humans. The head is one of most important part of any social robot. Currently, most humanoid heads use electrical motors, pneumatic actuators, and shape memory alloy (SMA) actuators for actuation. Electrical and pneumatic actuators take most of the space and would cause unsmooth motions. SMAs are expensive to use in humanoids. Recently, in many robotic projects, Twisted and Coiled Polymer (TCP) artificial muscles are used as linear actuators which take up little space compared to the motors. In this paper, we will demonstrate the designing process and motion control of a robotic head with TCP muscles. Servo motors and artificial muscles are used for actuating the head motion, which have been controlled by a cost efficient ARM Cortex-M7 based development board. A complete comparison between the two actuators is presented.

  15. Indirect adaptive fuzzy wavelet neural network with self- recurrent consequent part for AC servo system.

    PubMed

    Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao

    2017-09-01

    This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.

  16. Linear quadratic servo control of a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1991-01-01

    A design method for a servo compensator is developed in the frequency domain using singular values. The method is applied to a reusable rocket engine. An intelligent control system for reusable rocket engines was proposed which includes a diagnostic system, a control system, and an intelligent coordinator which determines engine control strategies based on the identified failure modes. The method provides a means of generating various linear multivariable controllers capable of meeting performance and robustness specifications and accommodating failure modes identified by the diagnostic system. Command following with set point control is necessary for engine operation. A Kalman filter reconstructs the state while loop transfer recovery recovers the required degree of robustness while maintaining satisfactory rejection of sensor noise from the command error. The approach is applied to the design of a controller for a rocket engine satisfying performance constraints in the frequency domain. Simulation results demonstrate the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation.

  17. Design and analysis of a new high frequency double-servo direct drive rotary valve

    NASA Astrophysics Data System (ADS)

    Zhu, Muzhi; Zhao, Shengdun; Li, Jingxiang

    2016-12-01

    Researchers have investigated direct drive valve for many years to solve problems, such as fluid force imbalance and switching frequency. The structure of the rotary valve has received considerable research interest because of its favorable dynamic properties and simple structure. This paper studied the high frequency doubleservo direct drive rotary valve (DDRV), and proposed a novel structure and drive method satisfying high reversing frequency and adequate quantity of flow. Servo motors are integrated into the valve by the innovative structure, which is designed to equilibrate the unbalanced radial fluid force with the symmetric distributed oil ports. Aside from the fast reversing function of the valve, the DDRV presented high performance in linearity of the flow quantity and valve opening as a result of the fan-shaped flow ports. In addition, a computational fluid dynamics (CFD) method based on Fluent was conducted to verify the flux regulation effect of the height change of the adjustable boss.

  18. Optimization design about gimbal structure of high-precision autonomous celestial navigation tracking mirror system

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Yang, Xiao-xu; Han, Jun-feng; Wei, Yu; Zhang, Jing; Xie, Mei-lin; Yue, Peng

    2016-01-01

    High precision tracking platform of celestial navigation with control mirror servo structure form, to solve the disadvantages of big volume and rotational inertia, slow response speed, and so on. It improved the stability and tracking accuracy of platform. Due to optical sensor and mirror are installed on the middle-gimbal, stiffness and resonant frequency requirement for high. Based on the application of finite element modality analysis theory, doing Research on dynamic characteristics of the middle-gimbal, and ANSYS was used for the finite element dynamic emulator analysis. According to the result of the computer to find out the weak links of the structure, and Put forward improvement suggestions and reanalysis. The lowest resonant frequency of optimization middle-gimbal avoid the bandwidth of the platform servo mechanism, and much higher than the disturbance frequency of carrier aircraft, and reduces mechanical resonance of the framework. Reaching provides a theoretical basis for the whole machine structure optimization design of high-precision of autonomous Celestial navigation tracking mirror system.

  19. Accidental overheating of a newborn under an infant radiant warmer: a lesson for future use.

    PubMed

    Molgat-Seon, Y; Daboval, T; Chou, S; Jay, O

    2013-09-01

    A fully functional radiant warmer induced rapid and continuous increases in regional skin temperatures, heart rate, mean arterial blood pressure and respiratory rate in a newborn patient without corrective action. We report this case of passive overheating to create awareness of the risks associated with regulating radiant heat output based upon a single servo-controlled temperature.

  20. A novel diamond micro-/nano-machining process for the generation of hierarchical micro-/nano-structures

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; To, Suet; Ehmann, Kornel F.; Xiao, Gaobo; Zhu, Wule

    2016-03-01

    A new mechanical micro-/nano-machining process that combines rotary spatial vibrations (RSV) of a diamond tool and the servo motions of the workpiece is proposed and applied for the generation of multi-tier hierarchical micro-/nano-structures. In the proposed micro-/nano-machining system, the servo motion, as the primary cutting motion generated by a slow-tool-servo, is adopted for the fine generation of the primary surfaces with complex shapes. The RSV, as the tertiary cutting operation, is superimposed on the secondary fundamental rotary cutting motion to construct secondary nano-structures on the primary surface. Since the RSV system generally works at much higher frequencies and motion resolution than the primary and secondary motions, it leads to an inherent hierarchical cutting architecture. To investigate the machining performance, complex micro-/nano-structures were generated and explored by both numerical simulations and actual cutting tests. Rotary vibrations of the diamond tool at a constant rotational distance offer an inherent constant cutting velocity, leading to the ability for the generation of homogeneous micro-/nano-structures with fixed amplitudes and frequencies of the vibrations, even over large-scale surfaces. Furthermore, by deliberately combining the non-resonant three-axial vibrations and the servo motion, the generation of a variety of micro-/nano-structures with complex shapes and with flexibly tunable feature sizes can be achieved.

  1. Application of simple adaptive control to water hydraulic servo cylinder system

    NASA Astrophysics Data System (ADS)

    Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji

    2012-09-01

    Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.

  2. A new telescope control software for the Mayall 4-meter telescope

    NASA Astrophysics Data System (ADS)

    Abareshi, Behzad; Marshall, Robert; Gott, Shelby; Sprayberry, David; Cantarutti, Rolando; Joyce, Dick; Williams, Doug; Probst, Ronald; Reetz, Kristin; Paat, Anthony; Butler, Karen; Soto, Christian; Dey, Arjun; Summers, David

    2016-07-01

    The Mayall 4-meter telescope recently went through a major modernization of its telescope control system in preparation for DESI. We describe MPK (Mayall Pointing Kernel), our new software for telescope control. MPK outputs a 20Hz position-based trajectory with a velocity component, which feeds into Mayall's new servo system over a socket. We wrote a simple yet realistic servo simulator that let us develop MPK mostly without access to real hardware, and also lets us provide other teams with a Mayall simulator as test bed for development of new instruments. MPK has a small core comprised of prioritized, soft real-time threads. Access to the core's services is via MPK's main thread, a complete, interactive Tcl/Tk shell, which gives us the power and flexibility of a scripting language to add any other features, from GUIs, to modules for interaction with critical subsystems like dome or guider, to an API for networked clients of a new instrument (e.g., DESI). MPK is designed for long term maintainability: it runs on a stock computer and Linux OS, and uses only standard, open source libraries, except for commercial software that comes with source code in ANSI C/C++. We discuss the technical details of how MPK combines the Reflexxes motion library with the TCSpk/TPK pointing library to generically handle any motion requests, from slews to offsets to sidereal or non-sidereal tracking. We show how MPK calculates when the servos have reached a steady state. We also discuss our TPOINT modeling strategy and report performance results.

  3. Servo-control for maintaining abdominal skin temperature at 36C in low birth weight infants.

    PubMed

    Sinclair, J C

    2002-01-01

    Randomized trials have shown that the neonatal mortality rate of low birth-weight babies can be reduced by keeping them warm. For low birth-weight babies nursed in incubators, warm conditions may be achieved either by heating the air to a desired temperature, or by servo-controlling the baby's body temperature at a desired set-point. In low birth weight infants, to determine the effect on death and other important clinical outcomes of targeting body temperature rather than air temperature as the end-point of control of incubator heating. Standard search strategy of the Cochrane Neonatal Review Group. Searches were made of the Cochrane Controlled Trials Register (CCTR) (Cochrane Library, Issue 4, 2001) and MEDLINE, 1966 to November 2001. Randomized or quasi-randomized trials which test the effects of having the heat output of the incubator servo-controlled from body temperature compared with setting a constant incubator air temperature. Trial methodologic quality was systematically assessed. Outcome measures included death, timing of death, cause of death, and other clinical outcomes. Categorical outcomes were analyzed using relative risk and risk difference. Meta-analysis assumed a fixed effect model. Two eligible trials were found. In total, they included 283 babies and 112 deaths. Compared to setting a constant incubator air temperature of 31.8C, servo-control of abdominal skin temperature at 36C reduces the neonatal death rate among low birth weight infants: relative risk 0.72 (95% CI 0.54, 0.97); risk difference -12.7% (95% CI -1.6, -23.9). This effect is even greater among VLBW infants. During at least the first week after birth, low birth weight babies should be provided with a carefully regulated thermal environment that is near the thermoneutral point. For LBW babies in incubators, this can be achieved by adjusting incubator temperature to maintain an anterior abdominal skin temperature of at least 36C, using either servo-control or frequent manual adjustment of incubator air temperature.

  4. MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement

    PubMed Central

    Fischer, Gregory S.; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; DiMaio, Simon P.; Tempany, Clare M.; Hata, Nobuhiko; Fichtinger, Gabor

    2010-01-01

    Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of prostate and surrounding tissue, thus granting potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. However, the benefits cannot be readily harnessed for interventional procedures due to difficulties that surround the use of high-field (1.5T or greater) MRI. The inability to use conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intraprostatic needle placement inside closed high-field MRI scanners. MRI compatibility of the robot has been evaluated under 3T MRI using standard prostate imaging sequences and average SNR loss is limited to 5%. Needle alignment accuracy of the robot under servo pneumatic control is better than 0.94 mm rms per axis. The complete system workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the robot mechanism and controller design, the system integration, and presents results of preliminary evaluation of the system. PMID:21057608

  5. The Digital Motion Control System for the Submillimeter Array Antennas

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.; Patel, N. A.; Blundell, R.; Christensen, R. D.; Diven, A. R.; Maute, J.; Plante, R. J.; Riddle, P.; Young, K. H.

    2013-09-01

    We describe the design and performance of the digital servo and motion control system for the 6-meter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error function. Calibration factors and software filters are applied to the tachometer feedback prior to the application of the servo gains in the torque computations. All of these parameters are remotely adjustable in the software. The three layers of the control system monitor each other and are capable of shutting down the system safely if a failure or anomaly occurs. The Unix system continuously relays the antenna status to the central observatory computer via reflective memory. In each antenna, a Palm Vx hand controller displays the complete system status and allows full local control of the drives in an intuitive touchscreen user interface. The hand controller can also be connected outside the cabin, a major convenience during the frequent reconfigurations of the interferometer. Excellent tracking performance ( 0.3‧‧ rms) is achieved with this system. It has been in reliable operation on 8 antennas for over 10 years and has required minimal maintenance.

  6. A new state space model for the NASA/JPL 70-meter antenna servo controls

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1987-01-01

    A control axis referenced model of the NASA/JPL 70-m antenna structure is combined with the dynamic equations of servo components to produce a comprehansive state variable (matrix) model of the coupled system. An interactive Fortran program for generating the linear system model and computing its salient parameters is described. Results are produced in a state variable, block diagram, and in factored transfer function forms to facilitate design and analysis by classical as well as modern control methods.

  7. Hydrogen maser frequency standard computer model for automatic cavity tuning servo simulations

    NASA Technical Reports Server (NTRS)

    Potter, P. D.; Finnie, C.

    1978-01-01

    A computer model of the JPL hydrogen maser frequency standard was developed. This model allows frequency stability data to be generated, as a function of various maser parameters, many orders of magnitude faster than these data can be obtained by experimental test. In particular, the maser performance as a function of the various automatic tuning servo parameters may be readily determined. Areas of discussion include noise sources, first-order autotuner loop, second-order autotuner loop, and a comparison of the loops.

  8. Pseudo Dynamic Testing and Seismic Rehabilitation of Iraqi Brick, Bearing and Shear Walls

    DTIC Science & Technology

    2008-04-01

    R es ea rc h L ab or at or y Approved for public release; distribution is unlimited. ERDC/CERL TR-08-6 April 2008 Pseudo Dynamic Testing and...Model 307-50 and one Satec 100 kip servo-hydraulic actuator controlled by closed-loop servo controllers and an Instron 8800 multi-axis controller and RS...Plus testing software.* The Satec actuator was operated in displacement control mode, and the 50 kip CGS actuators were operated in modal control

  9. 11. Turbine Pit and Shaft of Unit 1, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Turbine Pit and Shaft of Unit 1, view to the south, with operating ring at base of shaft and servo motor arms in foreground and in left background recess. Turbine monitoring and auxiliary equipment is located in the rightbackground recess. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  10. A large number of stepping motor network construction by PLC

    NASA Astrophysics Data System (ADS)

    Mei, Lin; Zhang, Kai; Hongqiang, Guo

    2017-11-01

    In the flexible automatic line, the equipment is complex, the control mode is flexible, how to realize the large number of step and servo motor information interaction, the orderly control become a difficult control. Based on the existing flexible production line, this paper makes a comparative study of its network strategy. After research, an Ethernet + PROFIBUSE communication configuration based on PROFINET IO and profibus was proposed, which can effectively improve the data interaction efficiency of the equipment and stable data interaction information.

  11. Programmable controller system for wind tunnel diversion vanes

    NASA Technical Reports Server (NTRS)

    King, R. F.

    1982-01-01

    A programmable controller (PC) system automatic sequence control, which acts as a supervisory controller for the servos, selects the proper drives, and automatically sequences the vanes, was developed for use in a subsonic wind tunnel. Tunnel modifications include a new second test section (80 ft x 100 ft with a maximum air speed capability of 110 knots) and an increase in maximum velocity flow from 200 knots to 300 knots. A completely automatic sequence control is necessary in order to allow intricate motion of the 14 triangularly arranged vanes which can be as large as 70 ft high x 35 ft wide and which require precise acceleration and deceleration control. Rate servos on each drive aid in this control, and servo cost was minimized by using four silicon controlled rectifier controllers to control the 20 dc drives. The PC has a programming capacity which facilitated the implementation of extensive logic design. A series of diagrams sequencing the vanes and a block diagram of the system are included.

  12. Consideration of plant behaviour in optimal servo-compensator design

    NASA Astrophysics Data System (ADS)

    Moase, W. H.; Manzie, C.

    2016-07-01

    Where the most prevalent optimal servo-compensator formulations penalise the behaviour of an error system, this paper considers the problem of additionally penalising the actual states and inputs of the plant. Doing so has the advantage of enabling the penalty function to better resemble an economic cost. This is especially true of problems where control effort needs to be sensibly allocated across weakly redundant inputs or where one wishes to use penalties to soft-constrain certain states or inputs. It is shown that, although the resulting cost function grows unbounded as its horizon approaches infinity, it is possible to formulate an equivalent optimisation problem with a bounded cost. The resulting optimisation problem is similar to those in earlier studies but has an additional 'correction term' in the cost function, and a set of equality constraints that arise when there are redundant inputs. A numerical approach to solve the resulting optimisation problem is presented, followed by simulations on a micro-macro positioner that illustrate the benefits of the proposed servo-compensator design approach.

  13. Control-structure interaction in precision pointing servo loops

    NASA Technical Reports Server (NTRS)

    Spanos, John T.

    1989-01-01

    The control-structure interaction problem is addressed via stability analysis of a generic linear servo loop model. With the plant described by the rigid body mode and a single elastic mode, structural flexibility is categorized into one of three types: (1) appendage, (2) in-the-loop minimum phase, and (3) in-the-loop nonminimum phase. Closing the loop with proportional-derivative (PD) control action and introducing sensor roll-off dynamics in the feedback path, stability conditions are obtained. Trade studies are conducted with modal frequency, modal participation, modal damping, loop bandwidth, and sensor bandwidth treated as free parameters. Results indicate that appendage modes are most likely to produce instability if they are near the sensor rolloff, whereas in-the-loop modes are most dangerous near the loop bandwidth. The main goal of this paper is to provide a fundamental understanding of the control-structure interaction problem so that it may benefit the design of complex spacecraft and pointing system servo loops. In this framework, the JPL Pathfinder gimbal pointer is considered as an example.

  14. Helicopter force-feel and stability augmentation system with parallel servo-actuator

    NASA Technical Reports Server (NTRS)

    Hoh, Roger H. (Inventor)

    2006-01-01

    A force-feel system is implemented by mechanically coupling a servo-actuator to and in parallel with a flight control system. The servo-actuator consists of an electric motor, a gearing device, and a clutch. A commanded cockpit-flight-controller position is achieved by pilot actuation of a trim-switch. The position of the cockpit-flight-controller is compared with the commanded position to form a first error which is processed by a shaping function to correlate the first error with a commanded force at the cockpit-flight-controller. The commanded force on the cockpit-flight-controller provides centering forces and improved control feel for the pilot. In an embodiment, the force-feel system is used as the basic element of stability augmentation system (SAS). The SAS provides a stabilization signal that is compared with the commanded position to form a second error signal. The first error is summed with the second error for processing by the shaping function.

  15. Development of Servo Motor Trainer for Basic Control System in Laboratory of Electrical Engineering Control System Faculty of Engineering Universitas Negeri Surabaya

    NASA Astrophysics Data System (ADS)

    Endryansyah; Wanarti Rusimamto, Puput; Ridianto, Adam; Sugiarto, Hariyadi

    2018-04-01

    In the Department of Electrical Engineering FT Unesa, there are 3 majors: S1 Electrical Engineering Education, S1 Electrical Engineering, and D3 Electrical Engineering. Courses the Basic System Settings go to in the curriculum of the three programs. Team lecturer college of basic system settings seek learning innovation, focused on the development of trainer to student practicum at the laboratory of systems control. Trainer developed is a servo motor along with the lab module that contains a wide variety of theories about the servo motor and guide the practicum. This research type is development research using methods Research & development (R & D). In which the steps are applied in this study is as follows: pay attention to the potential and existing problems, gather information and study the literature, design the product, validate the design, revise the design, a limited trial. The results of the validation of learning device in the form of modules and trainer obtained as follows: score validation of learning device is 3,64; score validation lab module Servo Motor is 3,47; and questionnaire responses of students is 3,73. The result of the whole validation value is located in the interval >of 3.25 s/d 4 with the category of “Very Valid”, so it can be concluded that all instruments have a level of validity “Very Valid” and worthy of use for further learning.

  16. Control algorithm implementation for a redundant degree of freedom manipulator

    NASA Technical Reports Server (NTRS)

    Cohan, Steve

    1991-01-01

    This project's purpose is to develop and implement control algorithms for a kinematically redundant robotic manipulator. The manipulator is being developed concurrently by Odetics Inc., under internal research and development funding. This SBIR contract supports algorithm conception, development, and simulation, as well as software implementation and integration with the manipulator hardware. The Odetics Dexterous Manipulator is a lightweight, high strength, modular manipulator being developed for space and commercial applications. It has seven fully active degrees of freedom, is electrically powered, and is fully operational in 1 G. The manipulator consists of five self-contained modules. These modules join via simple quick-disconnect couplings and self-mating connectors which allow rapid assembly/disassembly for reconfiguration, transport, or servicing. Each joint incorporates a unique drive train design which provides zero backlash operation, is insensitive to wear, and is single fault tolerant to motor or servo amplifier failure. The sensing system is also designed to be single fault tolerant. Although the initial prototype is not space qualified, the design is well-suited to meeting space qualification requirements. The control algorithm design approach is to develop a hierarchical system with well defined access and interfaces at each level. The high level endpoint/configuration control algorithm transforms manipulator endpoint position/orientation commands to joint angle commands, providing task space motion. At the same time, the kinematic redundancy is resolved by controlling the configuration (pose) of the manipulator, using several different optimizing criteria. The center level of the hierarchy servos the joints to their commanded trajectories using both linear feedback and model-based nonlinear control techniques. The lowest control level uses sensed joint torque to close torque servo loops, with the goal of improving the manipulator dynamic behavior. The control algorithms are subjected to a dynamic simulation before implementation.

  17. Antenna Controller Replacement Software

    NASA Technical Reports Server (NTRS)

    Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza; hide

    2010-01-01

    The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and monitoring tracking performance.

  18. Powered orthosis and attachable power-assist device with Hydraulic Bilateral Servo System.

    PubMed

    Ohnishi, Kengo; Saito, Yukio; Oshima, Toru; Higashihara, Takanori

    2013-01-01

    This paper discusses the developments and control strategies of exoskeleton-type robot systems for the application of an upper limb powered orthosis and an attachable power-assist device for care-givers. Hydraulic Bilateral Servo System, which consist of a computer controlled motor, parallel connected hydraulic actuators, position sensors, and pressure sensors, are installed in the system to derive the joint motion of the exoskeleton arm. The types of hydraulic component structure and the control strategy are discussed in relation to the design philosophy and target joints motions.

  19. Direct Measurement of Intracellular Pressure

    PubMed Central

    Petrie, Ryan J.; Koo, Hyun

    2014-01-01

    A method to directly measure the intracellular pressure of adherent, migrating cells is described in the Basic Protocol. This approach is based on the servo-null method where a microelectrode is introduced into the cell to directly measure the physical pressure of the cytoplasm. We also describe the initial calibration of the microelectrode as well as the application of the method to cells migrating inside three-dimensional (3D) extracellular matrix (ECM). PMID:24894836

  20. Development of remote crane system for use inside small argon hot-cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jong Kwang; Park, Byung Suk; Yu, Seung-Nam

    2013-07-01

    In this paper, we describe the design of a novel crane system for the use in a small argon hot-cell where only a pair of master-slave manipulators (MSM) is available for the remote maintenance of the crane. To increase the remote maintainability in the space-limited environment, we devised a remote actuation mechanism in which electrical parts consisting of a servo-motor, a position sensor, and two limit switches located inside the workspace of the MSM transmit power to the mechanical parts located in the ceiling. Even though the design concept does not provide thoroughly sufficient solution because the mechanical parts aremore » placed out of the MSM's workspace, the durability of mechanical parts can be easily increased if they have a high safety margin. Therefore, the concept may be one of the best solutions for our special crane system. In addition, we developed a servo-control system based on absolute positioning technology; therefore, it is possible for us to perform the given tasks more safely through an automatic operation. (authors)« less

  1. Fabrication and correction of freeform surface based on Zernike polynomials by slow tool servo

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan-Chieh; Hsu, Ming-Ying; Peng, Wei-Jei; Hsu, Wei-Yao

    2017-10-01

    Recently, freeform surface widely using to the optical system; because it is have advance of optical image and freedom available to improve the optical performance. For freeform optical fabrication by integrating freeform optical design, precision freeform manufacture, metrology freeform optics and freeform compensate method, to modify the form deviation of surface, due to production process of freeform lens ,compared and provides more flexibilities and better performance. This paper focuses on the fabrication and correction of the free-form surface. In this study, optical freeform surface using multi-axis ultra-precision manufacturing could be upgrading the quality of freeform. It is a machine equipped with a positioning C-axis and has the CXZ machining function which is also called slow tool servo (STS) function. The freeform compensate method of Zernike polynomials results successfully verified; it is correction the form deviation of freeform surface. Finally, the freeform surface are measured experimentally by Ultrahigh Accurate 3D Profilometer (UA3P), compensate the freeform form error with Zernike polynomial fitting to improve the form accuracy of freeform.

  2. Bi-level positive pressure ventilation and adaptive servo ventilation in patients with heart failure and Cheyne-Stokes respiration.

    PubMed

    Fietze, Ingo; Blau, Alexander; Glos, Martin; Theres, Heinz; Baumann, Gert; Penzel, Thomas

    2008-08-01

    Nocturnal positive pressure ventilation (PPV) has been shown to be effective in patients with impaired left ventricular ejection fraction (LVEF) and Cheyne-Stokes respiration (CSR). We investigated the effect of a bi-level PPV and adaptive servo ventilation on LVEF, CSR, and quantitative sleep quality. Thirty-seven patients (New York heart association [NYHA] II-III) with LVEF<45% and CSR were investigated by electrocardiography (ECG), echocardiography and polysomnography. The CSR index (CSRI) was 32.3+/-16.2/h. Patients were randomly treated with bi-level PPV using the standard spontaneous/timed (S/T) mode or with adaptive servo ventilation mode (AutoSetCS). After 6 weeks, 30 patients underwent control investigations with ECG, echocardiography, and polysomnography. The CSRI decreased significantly to 13.6+/-13.4/h. LVEF increased significantly after 6 weeks of ventilation (from 25.1+/-8.5 to 28.8+/-9.8%, p<0.01). The number of respiratory-related arousals decreased significantly. Other quantitative sleep parameters did not change. The Epworth sleepiness score improved slightly. Daytime blood pressure and heart rate did not change. There were some differences between bi-level PPV and adaptive servo ventilation: the CSRI decreased more in the AutoSetCS group while the LVEF increased more in the bi-level PPV group. Administration of PPV can successfully attenuate CSA. Reduced CSA may be associated with improved LVEF; however, this may depend on the mode of PPV. Changed LVEF is evident even in the absence of significant changes in blood pressure.

  3. Array servo scanning micro EDM of 3D micro cavities

    NASA Astrophysics Data System (ADS)

    Tong, Hao; Li, Yong; Yi, Futing

    2011-05-01

    Micro electro discharge machining (Micro EDM) is a non-traditional processing technology with the special advantages of low set-up cost and few cutting force in machining any conductive materials regardless of their hardness. As well known, die-sinking EDM is unsuitable for machining the complex 3D micro cavity less than 1mm due to the high-priced fabrication of 3D microelectrode itself and its serous wear during EDM process. In our former study, a servo scanning 3D micro-EDM (3D SSMEDM) method was put forward, and our experiments showed it was available to fabricate complex 3D micro-cavities. In this study, in order to improve machining efficiency and consistency accuracy for array 3D micro-cavities, an array-servo-scanning 3D micro EDM (3D ASSMEDM) method is presented considering the complementary advantages of the 3D SSMEDM and the array micro electrodes with simple cross-section. During 3D ASSMEDM process, the array cavities designed by CAD / CAM system can be batch-manufactured by servo scanning layer by layer using array-rod-like micro tool electrodes, and the axial wear of the array electrodes is compensated in real time by keeping discharge gap. To verify the effectiveness of the 3D ASSMEDM, the array-triangle-micro cavities (side length 630 μm) are batch-manufactured on P-doped silicon by applying the array-micro-electrodes with square-cross-section fabricated by LIGA process. Our exploratory experiment shows that the 3D ASSMEDM provides a feasible approach for the batch-manufacture of 3D array-micro-cavities of conductive materials.

  4. Dynamic parameter identification of robot arms with servo-controlled electrical motors

    NASA Astrophysics Data System (ADS)

    Jiang, Zhao-Hui; Senda, Hiroshi

    2005-12-01

    This paper addresses the issue of dynamic parameter identification of the robot manipulator with servo-controlled electrical motors. An assumption is made that all kinematical parameters, such as link lengths, are known, and only dynamic parameters containing mass, moment of inertia, and their functions need to be identified. First, we derive dynamics of the robot arm with a linear form of the unknown dynamic parameters by taking dynamic characteristics of the motor and servo unit into consideration. Then, we implement the parameter identification approach to identify the unknown parameters with respect to individual link separately. A pseudo-inverse matrix is used for formulation of the parameter identification. The optimal solution is guaranteed in a sense of least-squares of the mean errors. A Direct Drive (DD) SCARA type industrial robot arm AdeptOne is used as an application example of the parameter identification. Simulations and experiments for both open loop and close loop controls are carried out. Comparison of the results confirms the correctness and usefulness of the parameter identification and the derived dynamic model.

  5. Data-driven adaptive fractional order PI control for PMSM servo system with measurement noise and data dropouts.

    PubMed

    Xie, Yuanlong; Tang, Xiaoqi; Song, Bao; Zhou, Xiangdong; Guo, Yixuan

    2018-04-01

    In this paper, data-driven adaptive fractional order proportional integral (AFOPI) control is presented for permanent magnet synchronous motor (PMSM) servo system perturbed by measurement noise and data dropouts. The proposed method directly exploits the closed-loop process data for the AFOPI controller design under unknown noise distribution and data missing probability. Firstly, the proposed method constructs the AFOPI controller tuning problem as a parameter identification problem using the modified l p norm virtual reference feedback tuning (VRFT). Then, iteratively reweighted least squares is integrated into the l p norm VRFT to give a consistent compensation solution for the AFOPI controller. The measurement noise and data dropouts are estimated and eliminated by feedback compensation periodically, so that the AFOPI controller is updated online to accommodate the time-varying operating conditions. Moreover, the convergence and stability are guaranteed by mathematical analysis. Finally, the effectiveness of the proposed method is demonstrated both on simulations and experiments implemented on a practical PMSM servo system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  6. A compound control strategy combining velocity compensation with ADRC of electro-hydraulic position servo control system.

    PubMed

    Gao, Bingwei; Shao, Junpeng; Yang, Xiaodong

    2014-11-01

    In order to enhance the anti-jamming ability of electro-hydraulic position servo control system at the same time improve the control precision of the system, a compound control strategy that combines velocity compensation with Active Disturbance Rejection Controller (ADRC) is proposed, and the working principle of the compound control strategy is given. ADRC controller is designed, and the extended state observer is used for observing internal parameters uncertainties and external disturbances, so that the disturbances of the system are suppressed effectively. Velocity compensation controller is designed and the compensation model is derived to further improve the positioning accuracy of the system and to achieve the velocity compensation without disturbance. The compound control strategy is verified by the simulation and experiment respectively, and the simulation and experimental results show that the electro-hydraulic position servo control system with ADRC controller can effectively inhibit the external disturbances, the precise positioning control is realized after introducing the velocity compensation controller, and verify that the compound control strategy is effective. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining.

    PubMed

    Zhu, Zhiwei; To, Suet; Zhang, Shaojian

    2015-08-10

    Fast/slow tool servo (FTS/STS) diamond turning is a very promising technique for the generation of micro-lens array (MLA). However, it is still a challenge to process MLA in large scale due to certain inherent limitations of this technique. In the present study, a novel ultra-precision diamond cutting method, as the end-fly-cutting-servo (EFCS) system, is adopted and investigated for large-scale generation of MLA. After a detailed discussion of the characteristic advantages for processing MLA, the optimal toolpath generation strategy for the EFCS is developed with consideration of the geometry and installation pose of the diamond tool. A typical aspheric MLA over a large area is experimentally fabricated, and the resulting form accuracy, surface micro-topography and machining efficiency are critically investigated. The result indicates that the MLA with homogeneous quality over the whole area is obtained. Besides, high machining efficiency, extremely small volume of control points for the toolpath, and optimal usage of system dynamics of the machine tool during the whole cutting can be simultaneously achieved.

  8. On-orbit evaluation of the control system/structural mode interactions on OSO-8

    NASA Technical Reports Server (NTRS)

    Slafer, L. I.

    1980-01-01

    The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. This paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments. The test results have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system, and also verified the approach taken to vehicle and servo ground testing.

  9. Influence of Forming Conditions on Springback in V-bending Process Using Servo Press

    NASA Astrophysics Data System (ADS)

    Abe, Shinya; Takahashi, Susumu

    To improve fuel efficiency, aluminum alloys and high tensile steel sheets are increasingly being applied to automotive body parts. However, it is difficult to obtain accurate dimensions of formed parts. Therefore, technologies for reducing springback for the part formed by press are strongly demanded. It is said that the die holding time at the bottom dead center of a servo press slide can affect springback. To clarify the forming mechanisms of this phenomenon, a V bending test with a servo press was performed. Aluminum alloys sheets are applied as specimens. The location of press slide was measured by linear scales. It was found that the movement of the slide in a slide motion program differs from the actual movement of the slide. It is important to confirm if the slide is located in the position specified in the program. In addition, a springback angle measurement system is proposed that uses laser displacement measurement apparatus. Because it avoids human error, the proposed measurement system is more accurate than the image processing method.

  10. Analysis of the position of robotic cell components and its impact on energy consumption by robot

    NASA Astrophysics Data System (ADS)

    Banas, W.; Gwiazda, A.; Monica, Z.; Sekala, A.; Foit, K.

    2016-08-01

    Location elements in the robot cell is very important must provide reasonable access to technological points. This is a basic condition, but it is possible to shift these elements worth considering over other criteria. One of them can be energy consumption. This is an economic parameter and in most cases its improvement make shorten the working time an industrial robot. In most conventional mechanical systems you do not need to consume power in standby mode only for a move. Robot because of its construction, even if it does not move has enabled engines and is ready to move. In this case, the servo speed is zero. During this stop servo squeak. Low-speed motors cause the engine torque is reduced and increases power consumption. In larger robots are installed brakes that when the robot does not move mechanically hold the position. Off the robot has enabled brakes and remembers the position servo drives. Brakes must be released when the robot wants to move and drives hold the position.

  11. Noncontact optical motion sensing for real-time analysis

    NASA Astrophysics Data System (ADS)

    Fetzer, Bradley R.; Imai, Hiromichi

    1990-08-01

    The adaptation of an image dissector tube (IDT) within the OPTFOLLOW system provides high resolution displacement measurement of a light discontinuity. Due to the high speed response of the IDT and the advanced servo loop circuitry, the system is capable of real time analysis of the object under test. The image of the discontinuity may be contoured by direct or reflected light and ranges spectrally within the field of visible light. The image is monitored to 500 kHz through a lens configuration which transposes the optical image upon the photocathode of the IDT. The photoelectric effect accelerates the resultant electrons through a photomultiplier and an enhanced current is emitted from the anode. A servo loop controls the electron beam, continually centering it within the IDT using magnetic focusing of deflection coils. The output analog voltage from the servo amplifier is thereby proportional to the displacement of the target. The system is controlled by a microprocessor with a 32kbyte memory and provides a digital display as well as instructional readout on a color monitor allowing for offset image tracking and automatic system calibration.

  12. Aero-servo-viscoelasticity theory: Lifting surfaces, plates, velocity transients, flutter, and instability

    NASA Astrophysics Data System (ADS)

    Merrett, Craig G.

    Modern flight vehicles are fabricated from composite materials resulting in flexible structures that behave differently from the more traditional elastic metal structures. Composite materials offer a number of advantages compared to metals, such as improved strength to mass ratio, and intentional material property anisotropy. Flexible aircraft structures date from the Wright brothers' first aircraft with fabric covered wooden frames. The flexibility of the structure was used to warp the lifting surface for flight control, a concept that has reappeared as aircraft morphing. These early structures occasionally exhibited undesirable characteristics during flight such as interactions between the empennage and the aft fuselage, or control problems with the elevators. The research to discover the cause and correction of these undesirable characteristics formed the first foray into the field of aeroelasticity. Aeroelasticity is the intersection and interaction between aerodynamics, elasticity, and inertia or dynamics. Aeroelasticity is well suited for metal aircraft, but requires expansion to improve its applicability to composite vehicles. The first is a change from elasticity to viscoelasticity to more accurately capture the solid mechanics of the composite material. The second change is to include control systems. While the inclusion of control systems in aeroelasticity lead to aero-servo-elasticity, more control possibilities exist for a viscoelastic composite material. As an example, during the lay-up of carbon-epoxy plies, piezoelectric control patches are inserted between different plies to give a variety of control options. The expanded field is called aero-servo-viscoelasticity. The phenomena of interest in aero-servo-viscoelasticity are best classified according to the type of structure considered, either a lifting surface or a panel, and the type of dynamic stability present. For both types of structures, the governing equations are integral-partial differential equations. The spatial component of the governing equations is eliminated using a series expansion of basis functions and by applying Galerkin's method. The number of terms in the series expansion affects the convergence of the spatial component, and convergence is best determined by the von Koch rules that previously appeared for column buckling problems. After elimination of the spatial component, an ordinary integral-differential equation in time remains. The dynamic stability of elastic and viscoelastic problems is assessed using the determinant of the governing system of equations and the time component of the solution in the form exp (lambda t). The determinant is in terms of lambda where the values of lambda are the latent roots of the aero-servo-viscoelastic system. The real component of lambda dictates the stability of the system. If all the real components are negative, the system is stable. If at least one real component is zero and all others are negative, the system is neutrally stable. If one or more real components are positive, the system is unstable. In aero-servo-viscoelasticity, the neutrally stable condition is termed flutter. For an aero-servo-viscoelastic lifting surface, the unstable condition is historically termed torsional divergence. The more general aero-servo-viscoelastic theory has produced a number of important results, enumerated in the following list: 1. Subsonic panel flutter can occur before panel instability. This result overturned a long held assumption in aeroelasticity, and was produced by the novel application of the von Koch rules for convergence. Further, experimental results from the 1950s by the Air Force were retrieved to provide additional proof. 2. An expanded definition for flutter of a lifting surface. The legacy definition is that flutter is the first occurrence of simple harmonic motion of a structure, and the flight velocity at which this motion occurs is taken as the flutter speed. The expanded definition indicates that the flutter condition should be taken when simple harmonic motion occurs and certain additional velocity derivatives are satisfied. 3. The viscoelastic material behavior imposes a flutter time indicating that the presence of flutter should be verified for the entire life time of a flight vehicle. 4. An expanded definition for instability of a lifting surface or panel. Traditionally, instability is treated as a static phenomenon. The static case is only a limiting case of dynamic instability for a viscoelastic structure. Instability occurs when a particular combination of flight velocity and time are reached leading to growing displacements of the structure. 5. The inclusion of flight velocity transients that occur during maneuvers. Two- and three-dimensional unsteady incompressible and compressible aerodynamics were reformulated for a time dependent velocity. The inclusion of flight velocity transients does affect the flutter and instability conditions for a lifting surface and a panel. The applications of aero-servo-viscoelasticity are to aircraft design, wind turbine blades, submarine's stealth coatings and hulls, and land transportation to name a few examples. One caveat regarding this field of research is that general predictions for an application are not always possible as the stability of a structure depends on the phase relations between the various parameters such as mass, stiffness, damping, and the aerodynamic loads. The viscoelastic material parameters in particular alter the system parameters in directions that are difficult to predict. The inclusion of servo controls permits an additional design factor and can improve the performance of a structure beyond the native performance; however over-control is possible so a maximum limit to useful control does exist. Lastly, the number of material and control parameters present in aero-servo-viscoelasticity are amenable to optimization protocols to produce the optimal structure for a given mission.

  13. Experiments on the formation and properties of thin vortex rings in water.

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell; Stange, Alex; Julian, Brian

    2001-11-01

    We have been experimenting for some time with a vortex gun 2.54 cm in diameter with a piston powered by a small servo motor . Strokes can be generated up to about 3 cm. The object has been to determine the properties of the rings formed by this gun as if they were thin rings in an inviscid fluid. That is, we are trying to characterize the rings by their radius, core parameter, velocity, and circulation. We are also studying the slowing of these rings as they propagate across the tank. Visualization is by means of an electrochemical (Baker) technique. In general the rings propagate with nearly constant radius and speed. The core size remains apparently unchanged, as would be expected with our visualization technique. We are able to propagate rings with velocities up to about 35 cm/s. Their radius at the exit of the gun grows with the stroke length. The core parameter and circulation appear fairly consistent with the slug model. We are attempting to devise a method of measuring the impulse of the vortex ring in flight, and will report on progress. The ultimate goal of the experiment is to study collisions of rings, and the role of reconnections for thin vortices.

  14. AeroPropulsoServoElasticity: Dynamic Modeling of the Variable Cycle Propulsion System

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2012-01-01

    This presentation was made at the 2012 Fundamental Aeronautics Program Technical Conference and it covers research work for the Dynamic Modeling of the Variable cycle Propulsion System that was done under the Supersonics Project, in the area of AeroPropulsoServoElasticity. The presentation covers the objective for the propulsion system dynamic modeling work, followed by the work that has been done so far to model the variable Cycle Engine, modeling of the inlet, the nozzle, the modeling that has been done to model the affects of flow distortion, and finally presenting some concluding remarks and future plans.

  15. Analog simulation of flux-summing servo-model, phases 1 and 2

    NASA Technical Reports Server (NTRS)

    Hriber, E. J.

    1984-01-01

    The analog simulation was developed for a closed-loop system having an electrohydraulic flux-summing servo valve and actuator with associated inertial load. One-fourth of the system's total forward gain is carried by each of four channels. The present study successfully applied failure mode management techniques to the problem of channel failure. Digital logic circuitry was developed to maintain the overall forward gain of the system at a constant value, in the presence of channel failure. Finally, the stability of the system was verified, and performance characteristics were determined through the use of frequency response methods.

  16. Servo Reduces Friction In Flexure Bearing

    NASA Technical Reports Server (NTRS)

    Clingman, W. Dean

    1991-01-01

    Proposed servocontrol device reduces such resistive torques as stiction, friction, ripple, and cogging in flexure bearing described in LAR-14348, "Flexure Bearing Reduces Startup Friction". Reduces frictional "bump" torque encountered when bearing ball runs into buildup of grease on bearing race. Also used as cable follower to reduce torque caused by cable and hoses when they bend because of motion of bearing. New device includes torquer across ball race. Torquer controlled by servo striving to keep flexure at null, removing torque to outer ring. In effect, device is inner control loop reducing friction, but does not control platforms or any outer-control-loop functions.

  17. A subsumptive, hierarchical, and distributed vision-based architecture for smart robotics.

    PubMed

    DeSouza, Guilherme N; Kak, Avinash C

    2004-10-01

    We present a distributed vision-based architecture for smart robotics that is composed of multiple control loops, each with a specialized level of competence. Our architecture is subsumptive and hierarchical, in the sense that each control loop can add to the competence level of the loops below, and in the sense that the loops can present a coarse-to-fine gradation with respect to vision sensing. At the coarsest level, the processing of sensory information enables a robot to become aware of the approximate location of an object in its field of view. On the other hand, at the finest end, the processing of stereo information enables a robot to determine more precisely the position and orientation of an object in the coordinate frame of the robot. The processing in each module of the control loops is completely independent and it can be performed at its own rate. A control Arbitrator ranks the results of each loop according to certain confidence indices, which are derived solely from the sensory information. This architecture has clear advantages regarding overall performance of the system, which is not affected by the "slowest link," and regarding fault tolerance, since faults in one module does not affect the other modules. At this time we are able to demonstrate the utility of the architecture for stereoscopic visual servoing. The architecture has also been applied to mobile robot navigation and can easily be extended to tasks such as "assembly-on-the-fly."

  18. Gigavision - A weatherproof, multibillion pixel resolution time-lapse camera system for recording and tracking phenology in every plant in a landscape

    NASA Astrophysics Data System (ADS)

    Brown, T.; Borevitz, J. O.; Zimmermann, C.

    2010-12-01

    We have a developed a camera system that can record hourly, gigapixel (multi-billion pixel) scale images of an ecosystem in a 360x90 degree panorama. The “Gigavision” camera system is solar-powered and can wirelessly stream data to a server. Quantitative data collection from multiyear timelapse gigapixel images is facilitated through an innovative web-based toolkit for recording time-series data on developmental stages (phenology) from any plant in the camera’s field of view. Gigapixel images enable time-series recording of entire landscapes with a resolution sufficient to record phenology from a majority of individuals in entire populations of plants. When coupled with next generation sequencing, quantitative population genomics can be performed in a landscape context linking ecology and evolution in situ and in real time. The Gigavision camera system achieves gigapixel image resolution by recording rows and columns of overlapping megapixel images. These images are stitched together into a single gigapixel resolution image using commercially available panorama software. Hardware consists of a 5-18 megapixel resolution DSLR or Network IP camera mounted on a pair of heavy-duty servo motors that provide pan-tilt capabilities. The servos and camera are controlled with a low-power Windows PC. Servo movement, power switching, and system status monitoring are enabled with Phidgets-brand sensor boards. System temperature, humidity, power usage, and battery voltage are all monitored at 5 minute intervals. All sensor data is uploaded via cellular or 802.11 wireless to an interactive online interface for easy remote monitoring of system status. Systems with direct internet connections upload the full sized images directly to our automated stitching server where they are stitched and available online for viewing within an hour of capture. Systems with cellular wireless upload an 80 megapixel “thumbnail” of each larger panorama and full-sized images are manually retrieved at bi-weekly intervals. Our longer-term goal is to make gigapixel time-lapse datasets available online in an interactive interface that layers plant-level phenology data with gigapixel resolution images, genomic sequence data from individual plants with weather and other abitotic sensor data. Co-visualization of all of these data types provides researchers with a powerful new tool for examining complex ecological interactions across scales from the individual to the ecosystem. We will present detailed phenostage data from more than 100 plants of multiple species from our Gigavision timelapse camera at our “Big Blowout East” field site in the Indiana Dunes State Park, IN. This camera has been recording three to four 700 million pixel images a day since February 28, 2010. The camera field of view covers an area of about 7 hectares resulting in an average image resolution of about 1 pixel per centimeter over the entire site. We will also discuss some of the many technological challenges with developing and maintaining these types of hardware systems, collecting quantitative data from gigapixel resolution time-lapse data and effectively managing terabyte-sized datasets of millions of images.

  19. Cine-servo lens technology for 4K broadcast and cinematography

    NASA Astrophysics Data System (ADS)

    Nurishi, Ryuji; Wakazono, Tsuyoshi; Usui, Fumiaki

    2015-09-01

    Central to the rapid evolution of 4K image capture technology in the past few years, deployment of large-format cameras with Super35mm Single Sensors is increasing in TV production for diverse shows such as dramas, documentaries, wildlife, and sports. While large format image capture has been the standard in the cinema world for quite some time, the recent experiences within the broadcast industry have revealed a variety of requirement differences for large format lenses compared to those of the cinema industry. A typical requirement for a broadcast lens is a considerably higher zoom ratio in order to avoid changing lenses in the middle of a live event, which is mostly not the case for traditional cinema productions. Another example is the need for compact size, light weight, and servo operability for a single camera operator shooting in a shoulder-mount ENG style. On the other hand, there are new requirements that are common to both worlds, such as smooth and seamless change in angle of view throughout the long zoom range, which potentially offers new image expression that never existed in the past. This paper will discuss the requirements from the two industries of cinema and broadcast, while at the same time introducing the new technologies and new optical design concepts applied to our latest "CINE-SERVO" lens series which presently consists of two models, CN7x17KAS-S and CN20x50IAS-H. It will further explain how Canon has realized 4K optical performance and fast servo control while simultaneously achieving compact size, light weight and high zoom ratio, by referring to patent-pending technologies such as the optical power layout, lens construction, and glass material combinations.

  20. The performance of two automatic servo-ventilation devices in the treatment of central sleep apnea.

    PubMed

    Javaheri, Shahrokh; Goetting, Mark G; Khayat, Rami; Wylie, Paul E; Goodwin, James L; Parthasarathy, Sairam

    2011-12-01

    This study was conducted to evaluate the therapeutic performance of a new auto Servo Ventilation device (Philips Respironics autoSV Advanced) for the treatment of complex central sleep apnea (CompSA). The features of autoSV Advanced include an automatic expiratory pressure (EPAP) adjustment, an advanced algorithm for distinguishing open versus obstructed airway apnea, a modified auto backup rate which is proportional to subject's baseline breathing rate, and a variable inspiratory support. Our primary aim was to compare the performance of the advanced servo-ventilator (BiPAP autoSV Advanced) with conventional servo-ventilator (BiPAP autoSV) in treating central sleep apnea (CSA). A prospective, multicenter, randomized, controlled trial. Five sleep laboratories in the United States. Thirty-seven participants were included. All subjects had full night polysomnography (PSG) followed by a second night continuous positive airway pressure (CPAP) titration. All had a central apnea index ≥ 5 per hour of sleep on CPAP. Subjects were randomly assigned to 2 full-night PSGs while treated with either the previously marketed autoSV, or the new autoSV Advanced device. The 2 randomized sleep studies were blindly scored centrally. Across the 4 nights (PSG, CPAP, autoSV, and autoSV Advanced), the mean ± 1 SD apnea hypopnea indices were 53 ± 23, 35 ± 20, 10 ± 10, and 6 ± 6, respectively; indices for CSA were 16 ± 19, 19 ± 18, 3 ± 4, and 0.6 ± 1. AutoSV Advanced was more effective than other modes in correcting sleep related breathing disorders. BiPAP autoSV Advanced was more effective than conventional BiPAP autoSV in the treatment of sleep disordered breathing in patients with CSA.

  1. A randomized clinical trial of therapeutic hypothermia mode during transport for neonatal encephalopathy.

    PubMed

    Akula, Vishnu Priya; Joe, Priscilla; Thusu, Kajori; Davis, Alexis S; Tamaresis, John S; Kim, Sunhwa; Shimotake, Thomas K; Butler, Stephen; Honold, Jose; Kuzniewicz, Michael; DeSandre, Glenn; Bennett, Mihoko; Gould, Jeffrey; Wallenstein, Matthew B; Van Meurs, Krisa

    2015-04-01

    To determine if temperature regulation is improved during neonatal transport using a servo-regulated cooling device when compared with standard practice. We performed a multicenter, randomized, nonmasked clinical trial in newborns with neonatal encephalopathy cooled during transport to 9 neonatal intensive care units in California. Newborns who met institutional criteria for therapeutic hypothermia were randomly assigned to receive cooling according to usual center practices vs device servo-regulated cooling. The primary outcome was the percentage of temperatures in target range (33°-34°C) during transport. Secondary outcomes included percentage of newborns reaching target temperature any time during transport, time to target temperature, and percentage of newborns in target range 1 hour after cooling initiation. One hundred newborns were enrolled: 49 to control arm and 51 to device arm. Baseline demographics did not differ with the exception of cord pH. For each subject, the percentage of temperatures in the target range was calculated. Infants cooled using the device had a higher percentage of temperatures in target range compared with control infants (median 73% [IQR 17-88] vs 0% [IQR 0-52], P < .001). More subjects reached target temperature during transport using the servo-regulated device (80% vs 49%, P <.001), and in a shorter time period (44 ± 31 minutes vs 63 ± 37 minutes, P = .04). Device-cooled infants reached target temperature by 1 hour with greater frequency than control infants (71% vs 20%, P < .001). Cooling using a servo-regulated device provides more predictable temperature management during neonatal transport than does usual care for outborn newborns with neonatal encephalopathy. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Analysis of TMT primary mirror control-structure interaction

    NASA Astrophysics Data System (ADS)

    MacMynowski, Douglas G.; Thompson, Peter M.; Sirota, Mark J.

    2008-07-01

    The primary mirror control system (M1CS) keeps the 492 segments of the Thirty Meter Telescope primary mirror aligned in the presence of disturbances. A global position control loop uses feedback from inter-segment edge sensors to three actuators behind each segment that control segment piston, tip and tilt. If soft force actuators are used (e.g. voice-coil), then in addition to the global position loop there will be a local servo loop to provide stiffness. While the M1 control system at Keck compensates only for slow disturbances such as gravity and thermal variations, the M1CS for TMT will need to provide some compensation for higher frequency wind disturbances in order to meet stringent error budget targets. An analysis of expected high-wavenumber wind forces on M1 suggests that a 1Hz control bandwidth is required for the global feedback of segment edge-sensorbased position information in order to minimize high spatial frequency segment response for both seeing-limited and adaptive optics performance. A much higher bandwidth is required from the local servo loop to provide adequate stiffness to wind or acoustic disturbances. A related paper presents the control designs for the local actuator servo loops. The disturbance rejection requirements would not be difficult to achieve for a single segment, but the structural coupling between segments mounted on a flexible mirror cell results in controlstructure interaction (CSI) that limits the achievable bandwidth. Using a combination of simplified modeling to build intuition and the full telescope finite element model for verification, we present designs and analysis for both the local servo loop and global loop demonstrating sufficient bandwidth and resulting wind-disturbance rejection despite the presence of CSI.

  3. An Investigation of the Dynamic Response of a Seismically Stable Platform

    DTIC Science & Technology

    1982-08-01

    PAD. The controls on the -9system are of two types. A low frequency tilt control, with a 10 arc second sensitivity, 2-axis tiltmeter as sensor ...Inertial Sensors Structural Analysis Holloman AFB, NiM. Support to this effort includes structural analyses toward active servo frequency band. This report...controlled to maintain a null position of a sensitive height sensor . The 6-degree-of- freedom high frequency controls are based on seismometers as sensors

  4. Multicyclic Controllable Twist Rotor Data Analysis

    NASA Technical Reports Server (NTRS)

    Wei, F. S.; Weisbrich, A. L.

    1979-01-01

    Rsults provide functional relationship between rotor performance, blade vibratory loads and dual control settings and indicate that multicyclic control produced significant reductions in blade flatwise bending moments and blade root actuator control loads. Higher harmonic terms of servo flap deflection were found to be most pronounced in flatwise bending moment, transmission vertical vibration and pitch link vibratory load equations. The existing test hardware represents a satisfactory configuration for demonstrating MCTR technology and defining a data base for additional wind tunnel testing.

  5. An energy-saving nonlinear position control strategy for electro-hydraulic servo systems.

    PubMed

    Baghestan, Keivan; Rezaei, Seyed Mehdi; Talebi, Heidar Ali; Zareinejad, Mohammad

    2015-11-01

    The electro-hydraulic servo system (EHSS) demonstrates numerous advantages in size and performance compared to other actuation methods. Oftentimes, its utilization in industrial and machinery settings is limited by its inferior efficiency. In this paper, a nonlinear backstepping control algorithm with an energy-saving approach is proposed for position control in the EHSS. To achieve improved efficiency, two control valves including a proportional directional valve (PDV) and a proportional relief valve (PRV) are used to achieve the control objectives. To design the control algorithm, the state space model equations of the system are transformed to their normal form and the control law through the PDV is designed using a backstepping approach for position tracking. Then, another nonlinear set of laws is derived to achieve energy-saving through the PRV input. This control design method, based on the normal form representation, imposes internal dynamics on the closed-loop system. The stability of the internal dynamics is analyzed in special cases of operation. Experimental results verify that both tracking and energy-saving objectives are satisfied for the closed-loop system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Real-time tracking control of electro-hydraulic force servo systems using offline feedback control and adaptive control.

    PubMed

    Shen, Gang; Zhu, Zhencai; Zhao, Jinsong; Zhu, Weidong; Tang, Yu; Li, Xiang

    2017-03-01

    This paper focuses on an application of an electro-hydraulic force tracking controller combined with an offline designed feedback controller (ODFC) and an online adaptive compensator in order to improve force tracking performance of an electro-hydraulic force servo system (EHFS). A proportional-integral controller has been employed and a parameter-based force closed-loop transfer function of the EHFS is identified by a continuous system identification algorithm. By taking the identified system model as a nominal plant model, an H ∞ offline design method is employed to establish an optimized feedback controller with consideration of the performance, control efforts, and robustness of the EHFS. In order to overcome the disadvantage of the offline designed controller and cope with the varying dynamics of the EHFS, an online adaptive compensator with a normalized least-mean-square algorithm is cascaded to the force closed-loop system of the EHFS compensated by the ODFC. Some comparative experiments are carried out on a real-time EHFS using an xPC rapid prototype technology, and the proposed controller yields a better force tracking performance improvement. Copyright © 2016. Published by Elsevier Ltd.

  7. Optimal design of a main driving mechanism for servo punch press based on performance atlases

    NASA Astrophysics Data System (ADS)

    Zhou, Yanhua; Xie, Fugui; Liu, Xinjun

    2013-09-01

    The servomotor drive turret punch press is attracting more attentions and being developed more intensively due to the advantages of high speed, high accuracy, high flexibility, high productivity, low noise, cleaning and energy saving. To effectively improve the performance and lower the cost, it is necessary to develop new mechanisms and establish corresponding optimal design method with uniform performance indices. A new patented main driving mechanism and a new optimal design method are proposed. In the optimal design, the performance indices, i.e., the local motion/force transmission indices ITI, OTI, good transmission workspace good transmission workspace(GTW) and the global transmission indices GTIs are defined. The non-dimensional normalization method is used to get all feasible solutions in dimensional synthesis. Thereafter, the performance atlases, which can present all possible design solutions, are depicted. As a result, the feasible solution of the mechanism with good motion/force transmission performance is obtained. And the solution can be flexibly adjusted by designer according to the practical design requirements. The proposed mechanism is original, and the presented design method provides a feasible solution to the optimal design of the main driving mechanism for servo punch press.

  8. A study of the feasibility of directly applying gas generator systems to space shuttle mechanical functions

    NASA Technical Reports Server (NTRS)

    Lake, E. R.

    1974-01-01

    This study examined the current status and potential application of pyrotechnic gas generators and energy convertors for the space shuttle program. While most pyrotechnic devices utilize some form of linear actuation, only limited use of rotary actuators has been observed. This latter form of energy conversion, using a vane-type actuator as optimum, offers considerable potential in the area of servo, as well as non-servo systems, and capitalizes on a means of providing prolonged operating times. Pyrotechnic devices can often be shown to provide the optimum means of attaining a truly redundant back-up to a primary, non-pyrotechnic system.

  9. Dynamic testing system for hybrid magneto-optical recording

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Xu, Wendong; Fan, Yongtao; Zhu, Qing

    2008-12-01

    Hybrid Magneto-Optical Recording is a potential data storage technology in the future informational society. To construct a research platform for hybrid recording, a dynamic testing system is designed and built in this paper, in which 406.7nm blue laser is used for recording and 655nm red laser for focus servo. With high modularization, the computer serves as the control core for the laser external modulation, focus servo, and sample plate spinning. Each module and its function are discussed in detail in the paper. Experimental results are also given to verify the stable and smooth performance of the system, in which the key obstacle, vibration noise, is successfully surmounted.

  10. A new ultrasonic real-time scanner featuring a servo-controlled transducer displaying a sector image.

    PubMed

    Skolnick, M L; Matzuk, T

    1978-08-01

    This paper describes a new real-time servo-controlled sector scanner that produces high-resolution images similar to phased-array systems, but possesses the simplicity of design and low cost best achievable in a mechanical sector scanner. Its unique feature is the transducer head which contains a single moving part--the transducer. Frame rates vary from 0 to 30 degrees and the sector angle from 0 to 60 degrees. Abdominal applications include: differentiation of vascular structures, detection of small masses, imaging of diagonally oriented organs. Survey scanning, and demonstration of regions difficult to image with contact scanners. Cardiac uses are also described.

  11. A 1 kg Mass Comparator Using Flexure-Strip Suspensions: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Quinn, T. J.; Speake, C. C.; Davis, R. S.

    1986-01-01

    This paper describes the design and construction of a novel form of equal-arm balance. The balance has been designed to study the performance of flexure strips for use as pivots in a 1 kg mass comparator working at the highest accuracy. The beam of the balance is servo controlled using optical detection of angular position and electromagnetic control. Small mass differences are measured in terms of the differences in the servo currents required to reproduce the same position of the beam. Preliminary results using this prototype balance indicate that an accuracy in mass comparison of about 5 parts in 1010 can be achieved.

  12. Strong stabilization servo controller with optimization of performance criteria.

    PubMed

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2011-07-01

    Synthesis of a simple robust controller with a pole placement technique and a H(∞) metrics is the method used for control of a servo mechanism with BLDC and BDC electric motors. The method includes solving a polynomial equation on the basis of the chosen characteristic polynomial using the Manabe standard polynomial form and parametric solutions. Parametric solutions are introduced directly into the structure of the servo controller. On the basis of the chosen parametric solutions the robustness of a closed-loop system is assessed through uncertainty models and assessment of the norm ‖•‖(∞). The design procedure and the optimization are performed with a genetic algorithm differential evolution - DE. The DE optimization method determines a suboptimal solution throughout the optimization on the basis of a spectrally square polynomial and Šiljak's absolute stability test. The stability of the designed controller during the optimization is being checked with Lipatov's stability condition. Both utilized approaches: Šiljak's test and Lipatov's condition, check the robustness and stability characteristics on the basis of the polynomial's coefficients, and are very convenient for automated design of closed-loop control and for application in optimization algorithms such as DE. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Evaluation of electrolytic tilt sensors for measuring model angle of attack in wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    1992-01-01

    The results of a laboratory evaluation of electrolytic tilt sensors as potential candidates for measuring model attitude or angle of attack in wind tunnel tests are presented. The performance of eight electrolytic tilt sensors was compared with that of typical servo accelerometers used for angle-of-attack measurements. The areas evaluated included linearity, hysteresis, repeatability, temperature characteristics, roll-on-pitch interaction, sensitivity to lead-wire resistance, step response time, and rectification. Among the sensors being evaluated, the Spectron model RG-37 electrolytic tilt sensors have the highest overall accuracy in terms of linearity, hysteresis, repeatability, temperature sensitivity, and roll sensitivity. A comparison of the sensors with the servo accelerometers revealed that the accuracy of the RG-37 sensors was on the average about one order of magnitude worse. Even though a comparison indicates that the cost of each tilt sensor is about one-third the cost of each servo accelerometer, the sensors are considered unsuitable for angle-of-attack measurements. However, the potential exists for other applications such as wind tunnel wall-attitude measurements where the errors resulting from roll interaction, vibration, and response time are less and sensor temperature can be controlled.

  14. Forming of AHSS using Servo-Presses

    NASA Astrophysics Data System (ADS)

    Groseclose, Adam Richard

    Stamping of Advanced High Strength Steel (AHSS) alloys poses several challenges due to the material's higher strength and low formability compared to conventional steels and other problems such as (a) inconsistency of incoming material properties, (b) ductile fracture during forming, (c) higher contact pressure and temperature rise during forming, (d) higher die wear leading to reduced tool life, (e) higher forming load/press capacity, and (f) large springback leading to dimensional inaccuracy in the formed part. [Palaniswamy et. al., 2007]. The use of AHSS has been increasing steadily in automotive stamping. New AHSS alloys (TRIP, TWIP) may replace some of the Hot Stamping applications. Stamping of AHSS alloys, especially higher strength materials, 780 MPa and higher, present new challenges in obtaining good part definition (corner and fillet radii), formability (fracture and resulting scrap) and in reducing springback. Servo-drive presses, having the capability to have infinitely variable and adjustable ram speed and dwell at BDC, offer a potential improvement in quality, part definition, and springback reduction especially when the infinitely adjustable slide motion is used in combination with a CNC hydraulic cushion. Thus, it is desirable to establish a scientific/engineering basis for improving the stamping conditions in forming AHSS using a servo-drive press.

  15. Three-link Swimming in Sand

    NASA Astrophysics Data System (ADS)

    Hatton, R. L.; Ding, Yang; Masse, Andrew; Choset, Howie; Goldman, Daniel

    2011-11-01

    Many animals move within in granular media such as desert sand. Recent biological experiments have revealed that the sandfish lizard uses an undulatory gait to swim within sand. Models reveal that swimming occurs in a frictional fluid in which inertial effects are small and kinematics dominate. To understand the fundamental mechanics of swimming in granular media (GM), we examine a model system that has been well-studied in Newtonian fluids: the three-link swimmer. We create a physical model driven by two servo-motors, and a discrete element simulation of the swimmer. To predict optimal gaits we use a recent geometric mechanics theory combined with empirically determined resistive force laws for GM. We develop a kinematic relationship between the swimmer's shape and position velocities and construct connection vector field and constraint curvature function visualizations of the system dynamics. From these we predict optimal gaits for forward, lateral and rotational motion. Experiment and simulation are in accord with the theoretical predictions; thus geometric tools can be used to study locomotion in GM.

  16. Robotic Automation of In Vivo Two-Photon Targeted Whole-Cell Patch-Clamp Electrophysiology.

    PubMed

    Annecchino, Luca A; Morris, Alexander R; Copeland, Caroline S; Agabi, Oshiorenoya E; Chadderton, Paul; Schultz, Simon R

    2017-08-30

    Whole-cell patch-clamp electrophysiological recording is a powerful technique for studying cellular function. While in vivo patch-clamp recording has recently benefited from automation, it is normally performed "blind," meaning that throughput for sampling some genetically or morphologically defined cell types is unacceptably low. One solution to this problem is to use two-photon microscopy to target fluorescently labeled neurons. Combining this with robotic automation is difficult, however, as micropipette penetration induces tissue deformation, moving target cells from their initial location. Here we describe a platform for automated two-photon targeted patch-clamp recording, which solves this problem by making use of a closed loop visual servo algorithm. Our system keeps the target cell in focus while iteratively adjusting the pipette approach trajectory to compensate for tissue motion. We demonstrate platform validation with patch-clamp recordings from a variety of cells in the mouse neocortex and cerebellum. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. The K9 On-Board Rover Architecture

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Bualat, Maria; Fair, Michael; Washington, Richard; Wright, Anne

    2006-01-01

    This paper describes the software architecture of NASA Ames Research Center s K9 rover. The goal of the onboard software architecture team was to develop a modular, flexible framework that would allow both high- and low-level control of the K9 hardware. Examples of low-level control are the simple drive or pan/tilt commands which are handled by the resource managers, and examples of high-level control are the command sequences which are handled by the conditional executive. In between these two control levels are complex behavioral commands which are handled by the pilot, such as drive to goal with obstacle avoidance or visually servo to a target. This paper presents the design of the architecture as of Fall 2000. We describe the state of the architecture implementation as well as its current evolution. An early version of the architecture was used for K9 operations during a dual-rover field experiment conducted by NASA Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) from May 14 to May 16, 2000.

  18. Training Medical Novices in Spinal Microsurgery: Does the Modality Matter? A Pilot Study Comparing Traditional Microscopic Surgery and a Novel Robotic Optoelectronic Visualization Tool

    PubMed Central

    Tubbs, R. Shane; Page, Jeni; Chapman, Alexandra; Burgess, Brittni; Laws, Tyler; Warren, Haylie; Oskouian, Rod J

    2016-01-01

    The operative microscope has been a staple instrument in the neurosurgical operating room over the last 50 years. With advances in optoelectronics, options such as robotically controlled high magnification have become available. Such robotically controlled optoelectronic systems may offer new opportunities in surgical technique and teaching. However, traditionally trained surgeons may find it hard to accept newer technologies due to an inherent bias emerging from their previous background. We, therefore, studied how a medically naïve population in a pilot study would meet set microsurgical goals in a cadaver experiment using either a conventional operative microscope or BrightMatter™ Servo system, ​a robotically controlled optoelectronic system (Synaptive Medical, Toronto, Ontario, Canada). We found that the relative ease in teaching medical novices with a robotically controlled optoelectronic system was more valuable when compared to using a modern-day surgical microscope. PMID:26973804

  19. Vision and Control for UAVs: A Survey of General Methods and of Inexpensive Platforms for Infrastructure Inspection

    PubMed Central

    Máthé, Koppány; Buşoniu, Lucian

    2015-01-01

    Unmanned aerial vehicles (UAVs) have gained significant attention in recent years. Low-cost platforms using inexpensive sensor payloads have been shown to provide satisfactory flight and navigation capabilities. In this report, we survey vision and control methods that can be applied to low-cost UAVs, and we list some popular inexpensive platforms and application fields where they are useful. We also highlight the sensor suites used where this information is available. We overview, among others, feature detection and tracking, optical flow and visual servoing, low-level stabilization and high-level planning methods. We then list popular low-cost UAVs, selecting mainly quadrotors. We discuss applications, restricting our focus to the field of infrastructure inspection. Finally, as an example, we formulate two use-cases for railway inspection, a less explored application field, and illustrate the usage of the vision and control techniques reviewed by selecting appropriate ones to tackle these use-cases. To select vision methods, we run a thorough set of experimental evaluations. PMID:26121608

  20. Australian and New Zealand Perfusion Survey: Equipment and Monitoring

    PubMed Central

    Baker, Robert A.; Willcox, Timothy W.

    2006-01-01

    Abstract: The current practice of perfusion in Australia and New Zealand continues to adopt new techniques and procedures into clinical practice. Our aims were to report current practice in 2003 and to compare and contrast current practice with historic practice. A total of 62 centers (40 perfusion groups) performing procedures using cardiopulmonary bypass (CPB) were identified and were e-mailed a detailed electronic survey. The survey was comprised of an excel worksheet that contained 233 single answer questions (either dropdown lists, yes/no, true/false, or numeric) and 12 questions that allowed the respondent to provide a commentary. Respondents were instructed to answer all questions based on what represented the predominant practice of perfusion in their institutions during 2003. We report an 89% response rate representing a caseload of 20,688 adult cases. These data allowed us to profile the following. A standard adult CPB setup in 2003 consisted of a membrane oxygenator (100% of cases), a roller pump (70%) as the main arterial pump, although a centrifugal pump would be considered for selected procedures (30%), a circuit incorporating a hard-shell venous reservoir (86%), and a mixture of biocompatible and nonbiocompatible circuit components (66%). The circuit would include a pre-bypass filter (88%), an arterial line filter (94%), and would allow monitoring of the following: hard-shell venous reservoir low level (100%) with servo-regulation of the arterial pump (85%), microbubble alarm (94%) with servo-regulation of the arterial pump (79.5%), arterial line pressures (100%) with servo-regulation of the arterial pump (79%), inline venous O2 saturation (100%), and inline hematocrit (58%). Perfusion practice in Australia and New Zealand has adopted changes over the last decade; however, some areas of practice show wide variation. This survey provides a baseline of contemporary practice for Australian and New Zealand perfusionists. PMID:17089508

  1. Efficient dynamic coherence transfer relying on offset locking using optical phase-locked loop

    NASA Astrophysics Data System (ADS)

    Xie, Weilin; Dong, Yi; Bretenaker, Fabien; Shi, Hongxiao; Zhou, Qian; Xia, Zongyang; Qin, Jie; Zhang, Lin; Lin, Xi; Hu, Weisheng

    2018-01-01

    We design and experimentally demonstrate a highly efficient coherence transfer based on composite optical phaselocked loop comprising multiple feedback servo loops. The heterodyne offset-locking is achieved by conducting an acousto-optic frequency shifter in combination with the current tuning and the temperature controlling of the semiconductor laser. The adaptation of the composite optical phase-locked loop enables the tight coherence transfer from a frequency comb to a semiconductor laser in a fully dynamic manner.

  2. Merge Fuzzy Visual Servoing and GPS-Based Planning to Obtain a Proper Navigation Behavior for a Small Crop-Inspection Robot.

    PubMed

    Bengochea-Guevara, José M; Conesa-Muñoz, Jesus; Andújar, Dionisio; Ribeiro, Angela

    2016-02-24

    The concept of precision agriculture, which proposes farming management adapted to crop variability, has emerged in recent years. To effectively implement precision agriculture, data must be gathered from the field in an automated manner at minimal cost. In this study, a small autonomous field inspection vehicle was developed to minimise the impact of the scouting on the crop and soil compaction. The proposed approach integrates a camera with a GPS receiver to obtain a set of basic behaviours required of an autonomous mobile robot to inspect a crop field with full coverage. A path planner considered the field contour and the crop type to determine the best inspection route. An image-processing method capable of extracting the central crop row under uncontrolled lighting conditions in real time from images acquired with a reflex camera positioned on the front of the robot was developed. Two fuzzy controllers were also designed and developed to achieve vision-guided navigation. A method for detecting the end of a crop row using camera-acquired images was developed. In addition, manoeuvres necessary for the robot to change rows were established. These manoeuvres enabled the robot to autonomously cover the entire crop by following a previously established plan and without stepping on the crop row, which is an essential behaviour for covering crops such as maize without damaging them.

  3. Merge Fuzzy Visual Servoing and GPS-Based Planning to Obtain a Proper Navigation Behavior for a Small Crop-Inspection Robot

    PubMed Central

    Bengochea-Guevara, José M.; Conesa-Muñoz, Jesus; Andújar, Dionisio; Ribeiro, Angela

    2016-01-01

    The concept of precision agriculture, which proposes farming management adapted to crop variability, has emerged in recent years. To effectively implement precision agriculture, data must be gathered from the field in an automated manner at minimal cost. In this study, a small autonomous field inspection vehicle was developed to minimise the impact of the scouting on the crop and soil compaction. The proposed approach integrates a camera with a GPS receiver to obtain a set of basic behaviours required of an autonomous mobile robot to inspect a crop field with full coverage. A path planner considered the field contour and the crop type to determine the best inspection route. An image-processing method capable of extracting the central crop row under uncontrolled lighting conditions in real time from images acquired with a reflex camera positioned on the front of the robot was developed. Two fuzzy controllers were also designed and developed to achieve vision-guided navigation. A method for detecting the end of a crop row using camera-acquired images was developed. In addition, manoeuvres necessary for the robot to change rows were established. These manoeuvres enabled the robot to autonomously cover the entire crop by following a previously established plan and without stepping on the crop row, which is an essential behaviour for covering crops such as maize without damaging them. PMID:26927102

  4. What is the Optimal Strategy for Adaptive Servo-Ventilation Therapy?

    PubMed

    Imamura, Teruhiko; Kinugawa, Koichiro

    2018-05-23

    Clinical advantages in the adaptive servo-ventilation (ASV) therapy have been reported in selected heart failure patients with/without sleep-disorder breathing, whereas multicenter randomized control trials could not demonstrate such advantages. Considering this discrepancy, optimal patient selection and device setting may be a key for the successful ASV therapy. Hemodynamic and echocardiographic parameters indicating pulmonary congestion such as elevated pulmonary capillary wedge pressure were reported as predictors of good response to ASV therapy. Recently, parameters indicating right ventricular dysfunction also have been reported as good predictors. Optimal device setting with appropriate pressure setting during appropriate time may also be a key. Large-scale prospective trial with optimal patient selection and optimal device setting is warranted.

  5. A fuzzy-logic antiswing controller for three-dimensional overhead cranes.

    PubMed

    Cho, Sung-Kun; Lee, Ho-Hoon

    2002-04-01

    In this paper, a new fuzzy antiswing control scheme is proposed for a three-dimensional overhead crane. The proposed control consists of a position servo control and a fuzzy-logic control. The position servo control is used to control crane position and rope length, and the fuzzy-logic control is used to suppress load swing. The proposed control guarantees not only prompt suppression of load swing but also accurate control of crane position and rope length for simultaneous travel, traverse, and hoisting motions of the crane. Furthermore, the proposed control provides practical gain tuning criteria for easy application. The effectiveness of the proposed control is shown by experiments with a three-dimensional prototype overhead crane.

  6. A patient transfer apparatus between bed and stretcher.

    PubMed

    Wang, Hongbo; Kasagami, Fumio

    2008-02-01

    This paper presents a patient transfer apparatus between bed and stretcher. This apparatus makes it possible for the nurse to move weak, injured, or paralyzed patient from bed to stretcher, or vice versa, alone. Moreover, the suffering, stress, and uneasy feeling of the patient can be alleviated. This paper describes the specification, mechanical design, control system, and motion control of the apparatus. A special devised mechanism is developed, and a new servo system is used in this control system. The control principle and algorithm of the new servo system are proposed, and the motion-control method and safety function of the apparatus are described. The experimental results and evaluation indicated the effectiveness of this system.

  7. Engineering evaluations and studies. Report for Ku-band studies, exhibit A

    NASA Technical Reports Server (NTRS)

    Dodds, J. G.; Huth, G. K.; Maronde, R. G.; Roberts, D.

    1981-01-01

    System performance aspects of the Ku band radar communication hardware and investigations into the Ku band/payload interfaces are discussed. The communications track problem caused by the excessive signal dynamic range at the servo input was investigated. The management/handover logic is discussed and a simplified description of the transmitter enable logic function is presented. Output noise produced by a voltage-controlled oscillator chip used in the SPA return-link channel 3 mid-bit detector is discussed. The deployed assembly (DA) and EA-2 critical design review data are evaluated. Cross coupling effects on antenna servo stability were examined. A series of meetings on the acceptance test specification for the deployed assembly is summarized.

  8. Investigation of creep by use of closed loop servo-hydraulic test system

    NASA Technical Reports Server (NTRS)

    Wu, H. C.; Yao, J. C.

    1981-01-01

    Creep tests were conducted by means of a closed loop servo-controlled materials test system. These tests are different from the conventional creep tests in that the strain history prior to creep may be carefully monitored. Tests were performed for aluminum alloy 6061-0 at 150 C and monitored by a PDP 11/04 minicomputer at a preset constant plastic-strain rate prehistory. The results show that the plastic-strain rate prior to creep plays a significant role in creep behavior. The endochronic theory of viscoplasticity was applied to describe the observed creep curves. The concepts of intrinsic time and strain rate sensitivity function are employed and modified according to the present observation.

  9. Adaptive servo ventilation improves cardiac dysfunction and prognosis in chronic heart failure patients with Cheyne-Stokes respiration.

    PubMed

    Yoshihisa, Akiomi; Shimizu, Takeshi; Owada, Takashi; Nakamura, Yuichi; Iwaya, Shoji; Yamauchi, Hiroyuki; Miyata, Makiko; Hoshino, Yasuto; Sato, Takamasa; Suzuki, Satoshi; Sugimoto, Koichi; Yamaki, Takayoshi; Kunii, Hiroyuki; Nakazato, Kazuhiko; Suzuki, Hitoshi; Saitoh, Shu-ichi; Takeishi, Yasuchika

    2011-01-01

    Cheyne-Stokes respiration (CSR) is often observed in patients with chronic heart failure (CHF). Although adaptive servo ventilation (ASV) is effective for CSR, it remains unclear whether ASV improves the cardiac function and prognosis of patients with CHF and CSR.Sixty patients with CHF and CSR (mean left ventricular ejection fraction 38.7%, mean apnea hypopnea index 36.8 times/hour, mean central apnea index 19.1 times/hour) were enrolled in this study. Patients were divided into two groups: 23 patients treated with ASV (ASV group) and 37 patients treated without ASV (Non-ASV group). Measurement of plasma B-type natriuretic peptide (BNP) levels and echocardiography were performed before, 3 and 6 months after treatments in each group. Patients were followed-up for cardiac events (cardiac death and re-hospitalization) after discharge. In the ASV group, NYHA functional class, BNP levels, cardiac systolic and diastolic function were significantly improved with ASV treatment for 6 months. In contrast, none of these parameters changed in the Non-ASV group. Importantly, Kaplan-Meier analysis clearly demonstrated that the event-free rate was significantly higher in the ASV group than in the Non-ASV group.Adaptive servo ventilation improves cardiac function and prognosis in patients with chronic heart failure and Cheyne-Stokes respiration.

  10. Servo scanning 3D micro EDM for array micro cavities using on-machine fabricated tool electrodes

    NASA Astrophysics Data System (ADS)

    Tong, Hao; Li, Yong; Zhang, Long

    2018-02-01

    Array micro cavities are useful in many fields including in micro molds, optical devices, biochips and so on. Array servo scanning micro electro discharge machining (EDM), using array micro electrodes with simple cross-sectional shape, has the advantage of machining complex 3D micro cavities in batches. In this paper, the machining errors caused by offline-fabricated array micro electrodes are analyzed in particular, and then a machining process of array servo scanning micro EDM is proposed by using on-machine fabricated array micro electrodes. The array micro electrodes are fabricated on-machine by combined procedures including wire electro discharge grinding, array reverse copying and electrode end trimming. Nine-array tool electrodes with Φ80 µm diameter and 600 µm length are obtained. Furthermore, the proposed process is verified by several machining experiments for achieving nine-array hexagonal micro cavities with top side length of 300 µm, bottom side length of 150 µm, and depth of 112 µm or 120 µm. In the experiments, a chip hump accumulates on the electrode tips like the built-up edge in mechanical machining under the conditions of brass workpieces, copper electrodes and the dielectric of deionized water. The accumulated hump can be avoided by replacing the water dielectric by an oil dielectric.

  11. Design and Development of a High Speed Sorting System Based on Machine Vision Guiding

    NASA Astrophysics Data System (ADS)

    Zhang, Wenchang; Mei, Jiangping; Ding, Yabin

    In this paper, a vision-based control strategy to perform high speed pick-and-place tasks on automation product line is proposed, and relevant control software is develop. Using Delta robot to control a sucker to grasp disordered objects from one moving conveyer and then place them on the other in order. CCD camera gets one picture every time the conveyer moves a distance of ds. Objects position and shape are got after image processing. Target tracking method based on "Servo motor + synchronous conveyer" is used to fulfill the high speed porting operation real time. Experiments conducted on Delta robot sorting system demonstrate the efficiency and validity of the proposed vision-control strategy.

  12. [Cardiac efficiency in patients with Cheyne-Stokes respiration as a result of heart insufficiency during long-term nasal respiratory treatment with adaptive servo ventilation (AutoSet CS)].

    PubMed

    Schädlich, S; Königs, I; Kalbitz, F; Blankenburg, T; Busse, H-J; Schütte, W

    2004-06-01

    Cheyne-Stokes respiration (CSR) is known to be an important negative predictor of outcome in patients with congestive heart failure. The goal of this study was to investigate whether the use of adaptive servo ventilation (AutoSet CS) would permit sufficient suppression of this pathological breathing pattern and improve cardiac function in longterm use over 1 year. Inclusion criteria for the study were congestive heart failure (left ventricular ejection fraction 20-50%), proven CSR with a central apnea-hypopnea index (AHI) > 15/h and stable clinical status with standard medical therapy. Patients with obstructive sleep apnea and COPD were excluded. Twenty consecutive patients (16 male) age 65.5 years (range 48-77) were followed with full blood counts, blood gas analysis, lung function tests and questionnaires for cardiopulmonary capacities (Minnesota, MRC Scale) and sleepiness (Epworth Sleepiness Scale). In addition, we performed 6-min walk distance (6MWD), echocardiography and polysomnography just before and after adjusting to adaptive servo ventilation and 3 and 12 months later. Mean usage of adaptive servo ventilation was sufficient (4.3 +/- 2.1 h/day at 12 months). No significant changes in blood gas analysis, blood counts and pulmonary function were detectable. CSR disappeared almost completely in all patients (AHI pre-study 44.3 +/- 13.4/h vs 3.4 +/- 8.0/h at 12 months; p < 0.0001). Saturation normalized steadily over the course of the study. The desaturation index decreased from 45.3 +/- 17.8/h to 5.2 +/- 11.5/h at 12 months (p < 0.0001). Mean saturation increased with the first night of sleep with adaptive servo ventilation from 92.0 +/- 2.5% to 93.0 +/- 1.6% (p < 0.05) and then to 94.1 +/- 1.9% at 3, and 94.2 +/- 1.9% at 12 months (p < 0.001). Quality of sleep was significantly improved with an increase of slow-wave sleep from 4.5 +/- 4.6% to 13.7 +/- 6.9% at 12 months (p < 0.0001). The arousal index concomitantly decreased from 29.8 +/- 17.9/h pre-study to 12.0 +/- 10.3/h at 12 months (p < 0.01). REM-sleep and sleep efficiency remained unchanged. The Epworth Sleepiness Scale showed only a trend to improvement. Cardiac function improved significantly during the course of the study. The ejection fraction increased from mean 37.1 +/- 12.5% pre-study to 41.7 +/- 8.8% at 12 months (p < 0.05). The 6-min walk distance increased from 192 +/- 110 m to 277 +/- 130 m at 12 months (p < 0.01). The MRC and Minnesota score were not significantly different pre- and post-study. We conclude that long-term respirator therapy with adaptive servo ventilation has sufficiently suppressed CSR and improved cardiac function in patients with congestive heart failure. Thus, safety and feasibility of this respirator therapy could be demonstrated. However, due to methodological reasons (no control group, no randomization) a direct effect on cardiac function could not be confirmed.

  13. Lawrence Livermore National Laboratory ULTRA-350 Test Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, D J; Wulff, T A; Carlisle, K

    2001-04-10

    LLNL has many in-house designed high precision machine tools. Some of these tools include the Large Optics Diamond Turning Machine (LODTM) [1], Diamond Turning Machine No.3 (DTM-3) and two Precision Engineering Research Lathes (PERL-1 and PERL-11). These machines have accuracy in the sub-micron range and in most cases position resolution in the couple of nanometers range. All of these machines are built with similar underlying technologies. The machines use capstan drive technology, laser interferometer position feedback, tachometer velocity feedback, permanent magnet (PM) brush motors and analog velocity and position loop servo compensation [2]. The machine controller does not perform anymore » servo compensation it simply computes the differences between the commanded position and the actual position (the following error) and sends this to a D/A for the analog servo position loop. LLNL is designing a new high precision diamond turning machine. The machine is called the ULTRA 350 [3]. In contrast to many of the proven technologies discussed above, the plan for the new machine is to use brushless linear motors, high precision linear scales, machine controller motor commutation and digital servo compensation for the velocity and position loops. Although none of these technologies are new and have been in use in industry, applications of these technologies to high precision diamond turning is limited. To minimize the risks of these technologies in the new machine design, LLNL has established a test bed to evaluate these technologies for application in high precision diamond turning. The test bed is primarily composed of commercially available components. This includes the slide with opposed hydrostatic bearings, the oil system, the brushless PM linear motor, the two-phase input three-phase output linear motor amplifier and the system controller. The linear scales are not yet commercially available but use a common electronic output format. As of this writing, the final verdict for the use of these technologies is still out but the first part of the work has been completed with promising results. The goal of this part of the work was to close a servo position loop around a slide incorporating these technologies and to measure the performance. This paper discusses the tests that were setup for system evaluation and the results of the measurements made. Some very promising results include; slide positioning to nanometer level and slow speed slide direction reversal at less than 100nm/min with no observed discontinuities. This is very important for machine contouring in diamond turning. As a point of reference, at 100 nm/min it would take the slide almost 7 years to complete the full designed travel of 350 mm. This speed has been demonstrated without the use of a velocity sensor. The velocity is derived from the position sensor. With what has been learned on the test bed, the paper finishes with a brief comparison of the old and new technologies. The emphasis of this comparison will be on the servo performance as illustrated with bode plot diagrams.« less

  14. Lawrence Livermore National Laboratory ULTRA-350 Test Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, D J; Wulff, T A; Carlisle, K

    2001-04-10

    LLNL has many in-house designed high precision machine tools. Some of these tools include the Large Optics Diamond Turning Machine (LODTM) [1], Diamond Turning Machine No.3 (DTM-3) and two Precision Engineering Research Lathes (PERL-I and PERL-II). These machines have accuracy in the sub-micron range and in most cases position resolution in the couple of nanometers range. All of these machines are built with similar underlying technologies. The machines use capstan drive technology, laser interferometer position feedback, tachometer velocity feedback, permanent magnet (PM) brush motors and analog velocity and position loop servo compensation [2]. The machine controller does not perform anymore » servo compensation it simply computes the differences between the commanded position and the actual position (the following error) and sends this to a D/A for the analog servo position loop. LLNL is designing a new high precision diamond turning machine. The machine is called the ULTRA 350 [3]. In contrast to many of the proven technologies discussed above, the plan for the new machine is to use brushless linear motors, high precision linear scales, machine controller motor commutation and digital servo compensation for the velocity and position loops. Although none of these technologies are new and have been in use in industry, applications of these technologies to high precision diamond turning is limited. To minimize the risks of these technologies in the new machine design, LLNL has established a test bed to evaluate these technologies for application in high precision diamond turning. The test bed is primarily composed of commercially available components. This includes the slide with opposed hydrostatic bearings, the oil system, the brushless PM linear motor, the two-phase input three-phase output linear motor amplifier and the system controller. The linear scales are not yet commercially available but use a common electronic output format. As of this writing, the final verdict for the use of these technologies is still out but the first part of the work has been completed with promising results. The goal of this part of the work was to close a servo position loop around a slide incorporating these technologies and to measure the performance. This paper discusses the tests that were setup for system evaluation and the results of the measurements made. Some very promising results include; slide positioning to nanometer level and slow speed slide direction reversal at less than 100nm/min with no observed discontinuities. This is very important for machine contouring in diamond turning. As a point of reference, at 100 nm/min it would take the slide almost 7 years to complete the full designed travel of 350 mm. This speed has been demonstrated without the use of a velocity sensor. The velocity is derived from the position sensor. With what has been learned on the test bed, the paper finishes with a brief comparison of the old and new technologies. The emphasis of this comparison will be on the servo performance as illustrated with bode plot diagrams.« less

  15. Tracking Control of Shape-Memory-Alloy Actuators Based on Self-Sensing Feedback and Inverse Hysteresis Compensation

    PubMed Central

    Liu, Shu-Hung; Huang, Tse-Shih; Yen, Jia-Yush

    2010-01-01

    Shape memory alloys (SMAs) offer a high power-to-weight ratio, large recovery strain, and low driving voltages, and have thus attracted considerable research attention. The difficulty of controlling SMA actuators arises from their highly nonlinear hysteresis and temperature dependence. This paper describes a combination of self-sensing and model-based control, where the model includes both the major and minor hysteresis loops as well as the thermodynamics effects. The self-sensing algorithm uses only the power width modulation (PWM) signal and requires no heavy equipment. The method can achieve high-accuracy servo control and is especially suitable for miniaturized applications. PMID:22315530

  16. Advanced positive airway pressure modes: adaptive servo ventilation and volume assured pressure support.

    PubMed

    Selim, Bernardo; Ramar, Kannan

    2016-09-01

    Volume assured pressure support (VAPS) and adaptive servo ventilation (ASV) are non-invasive positive airway pressure (PAP) modes with sophisticated negative feedback control systems (servomechanism), having the capability to self-adjust in real time its respiratory controlled variables to patient's respiratory fluctuations. However, the widespread use of VAPS and ASV is limited by scant clinical experience, high costs, and the incomplete understanding of propriety algorithmic differences in devices' response to patient's respiratory changes. Hence, we will review and highlight similarities and differences in technical aspects, control algorithms, and settings of each mode, focusing on the literature search published in this area. One hundred twenty relevant articles were identified by Scopus, PubMed, and Embase databases from January 2010 to 2016, using a combination of MeSH terms and keywords. Articles were further supplemented by pearling. Recommendations were based on the literature review and the authors' expertise in this area. Expert commentary: ASV and VAPS differ in their respiratory targets and response to a respiratory fluctuation. The VAPS mode targets a more consistent minute ventilation, being recommended in the treatment of sleep related hypoventilation disorders, while ASV mode attempts to provide a more steady breathing airflow pattern, treating successfully most central sleep apnea syndromes.

  17. Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo.

    PubMed

    Scheiding, Sebastian; Yi, Allen Y; Gebhardt, Andreas; Li, Lei; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas

    2011-11-21

    We report what is to our knowledge the first approach to diamond turn microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo. In recent years ultraprecision machining has been employed to manufacture accurate optical components with 3D structure for beam shaping, imaging and nonimaging applications. As a result, geometries that are difficult or impossible to manufacture using lithographic techniques might be fabricated using small diamond tools with well defined cutting edges. These 3D structures show no rotational symmetry, but rather high frequency asymmetric features thus can be treated as freeform geometries. To transfer the 3D surface data with the high frequency freeform features into a numerical control code for machining, the commonly piecewise differentiable surfaces are represented as a cloud of individual points. Based on this numeric data, the tool radius correction is calculated to account for the cutting-edge geometry. Discontinuities of the cutting tool locations due to abrupt slope changes on the substrate surface are bridged using cubic spline interpolation.When superimposed with the trajectory of the rotationally symmetric substrate the complete microoptical geometry in 3D space is established. Details of the fabrication process and performance evaluation are described. © 2011 Optical Society of America

  18. Visual servoing for a US-guided therapeutic HIFU system by coagulated lesion tracking: a phantom study.

    PubMed

    Seo, Joonho; Koizumi, Norihiro; Funamoto, Takakazu; Sugita, Naohiko; Yoshinaka, Kiyoshi; Nomiya, Akira; Homma, Yukio; Matsumoto, Yoichiro; Mitsuishi, Mamoru

    2011-06-01

    Applying ultrasound (US)-guided high-intensity focused ultrasound (HIFU) therapy for kidney tumours is currently very difficult, due to the unclearly observed tumour area and renal motion induced by human respiration. In this research, we propose new methods by which to track the indistinct tumour area and to compensate the respiratory tumour motion for US-guided HIFU treatment. For tracking indistinct tumour areas, we detect the US speckle change created by HIFU irradiation. In other words, HIFU thermal ablation can coagulate tissue in the tumour area and an intraoperatively created coagulated lesion (CL) is used as a spatial landmark for US visual tracking. Specifically, the condensation algorithm was applied to robust and real-time CL speckle pattern tracking in the sequence of US images. Moreover, biplanar US imaging was used to locate the three-dimensional position of the CL, and a three-actuator system drives the end-effector to compensate for the motion. Finally, we tested the proposed method by using a newly devised phantom model that enables both visual tracking and a thermal response by HIFU irradiation. In the experiment, after generation of the CL in the phantom kidney, the end-effector successfully synchronized with the phantom motion, which was modelled by the captured motion data for the human kidney. The accuracy of the motion compensation was evaluated by the error between the end-effector and the respiratory motion, the RMS error of which was approximately 2 mm. This research shows that a HIFU-induced CL provides a very good landmark for target motion tracking. By using the CL tracking method, target motion compensation can be realized in the US-guided robotic HIFU system. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Matter-wave coherence limit owing to cosmic gravitational wave background

    NASA Astrophysics Data System (ADS)

    Steane, Andrew M.

    2017-12-01

    We study matter-wave interferometry in the presence of a stochastic background of gravitational waves. It is shown that if the background has a scale-invariant spectrum over a wide bandwidth (which is expected in a class of inflationary models of Big Bang cosmology), then separated-path interference cannot be observed for a lump of matter of size above a limit which is very insensitive to the strength and bandwidth of the fluctuations, unless the interferometer is servo-controlled or otherwise protected. For ordinary solid matter this limit is of order 1-10 mm. A servo-controlled or cross-correlated device would also exhibit limits to the observation of macroscopic interference, which we estimate for ordinary matter moving at speeds small compared to c.

  20. Myoelectric hand prosthesis force control through servo motor current feedback.

    PubMed

    Sono, Tálita Saemi Payossim; Menegaldo, Luciano Luporini

    2009-10-01

    This paper presents the prehension force closed-loop control design of a mechanical finger commanded by electromyographic signal (EMG) from a patient's arm. The control scheme was implemented and tested in a mechanical finger prototype with three degrees of freedom and one actuator, driven by arm muscles EMG of normal volunteers. Real-time indirect estimation of prehension force was assessed by measuring the DC servo motor actuator current. A model of the plant comprising finger, motor, and grasped object was proposed. Model parameters were identified experimentally and a classical feedback phase-lead compensator was designed. The controlled mechanical finger was able to provide a more accurate prehension force modulation of a compliant object when compared to open-loop control.

  1. An analysis of a nonlinear instability in the implementation of a VTOL control system

    NASA Technical Reports Server (NTRS)

    Weber, J. M.

    1982-01-01

    The contributions to nonlinear behavior and unstable response of the model following yaw control system of a VTOL aircraft during hover were determined. The system was designed as a state rate feedback implicit model follower that provided yaw rate command/heading hold capability and used combined full authority parallel and limited authority series servo actuators to generate an input to the yaw reaction control system of the aircraft. Both linear and nonlinear system models, as well as describing function linearization techniques were used to determine the influence on the control system instability of input magnitude and bandwidth, series servo authority, and system bandwidth. Results of the analysis describe stability boundaries as a function of these system design characteristics.

  2. Study on friction coefficient of soft soil based on particle flow code

    NASA Astrophysics Data System (ADS)

    Lei, Xiaohong; Zhang, Zhongwei

    2017-04-01

    There has no uniform method for determining the micro parameters in particle flow code, and the corresponding formulas obtained by each scholar can only be applied to similar situations. In this paper, the relationship between the micro parameters friction coefficient and macro parameters friction angle is established by using the two axis servo compression as the calibration experiment, and the corresponding formula is fitted to solve the difficulties of determining the PFC micro parameters which provide a reference for determination of the micro parameters of soft soil.

  3. The Summer Robotic Autonomy Course

    NASA Technical Reports Server (NTRS)

    Nourbakhsh, Illah R.

    2002-01-01

    We offered a first Robotic Autonomy course this summer, located at NASA/Ames' new NASA Research Park, for approximately 30 high school students. In this 7-week course, students worked in ten teams to build then program advanced autonomous robots capable of visual processing and high-speed wireless communication. The course made use of challenge-based curricula, culminating each week with a Wednesday Challenge Day and a Friday Exhibition and Contest Day. Robotic Autonomy provided a comprehensive grounding in elementary robotics, including basic electronics, electronics evaluation, microprocessor programming, real-time control, and robot mechanics and kinematics. Our course then continued the educational process by introducing higher-level perception, action and autonomy topics, including teleoperation, visual servoing, intelligent scheduling and planning and cooperative problem-solving. We were able to deliver such a comprehensive, high-level education in robotic autonomy for two reasons. First, the content resulted from close collaboration between the CMU Robotics Institute and researchers in the Information Sciences and Technology Directorate and various education program/project managers at NASA/Ames. This collaboration produced not only educational content, but will also be focal to the conduct of formative and summative evaluations of the course for further refinement. Second, CMU rapid prototyping skills as well as the PI's low-overhead perception and locomotion research projects enabled design and delivery of affordable robot kits with unprecedented sensory- locomotory capability. Each Trikebot robot was capable of both indoor locomotion and high-speed outdoor motion and was equipped with a high-speed vision system coupled to a low-cost pan/tilt head. As planned, follow the completion of Robotic Autonomy, each student took home an autonomous, competent robot. This robot is the student's to keep, as she explores robotics with an extremely capable tool in the midst of a new community for roboticists. CMU provided undergraduate course credit for this official course, 16-162U, for 13 students, with all other students receiving course credit from National Hispanic University.

  4. Defining and Testing the Influence of Servo System Response on Machine Tool Compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, D J

    2004-03-24

    Compliance can be defined as the measurement of displacement per unit of force applied e.g. nano-meters per Newton (m/N). Compliance is the reciprocal of stiffness. High stiffness means low compliance and visa versa. It is an important factor in machine tool characteristics because it reflects the ability of the machine axis to maintain a desired position as it encounters a force or torque. Static compliance is a measurement made with a constant force applied e.g. the average depth of cut. Dynamic compliance is a measurement made as a function of frequency, e.g. a fast too servo (FTS) that applies amore » varying cutting force or load, interrupted cuts and external disturbances such as ground vibrations or air conditioning induced forces on the machine. Compliance can be defined for both a linear and rotary axis of a machine tool. However, to properly define compliance for a rotary axis, the axis must allow a commanded angular position. Note that this excludes velocity only axes. In this paper, several factors are discussed that affect compliance but emphasis is placed on how the machine servo system plays a key role in compliance at low to mid frequency regions. The paper discusses several techniques for measuring compliance and provides examples of results from these measurements.« less

  5. A PIC microcontroller-based system for real-life interfacing of external peripherals with a mobile robot

    NASA Astrophysics Data System (ADS)

    Singh, N. Nirmal; Chatterjee, Amitava; Rakshit, Anjan

    2010-02-01

    The present article describes the development of a peripheral interface controller (PIC) microcontroller-based system for interfacing external add-on peripherals with a real mobile robot, for real life applications. This system serves as an important building block of a complete integrated vision-based mobile robot system, integrated indigenously in our laboratory. The system is composed of the KOALA mobile robot in conjunction with a personal computer (PC) and a two-camera-based vision system where the PIC microcontroller is used to drive servo motors, in interrupt-driven mode, to control additional degrees of freedom of the vision system. The performance of the developed system is tested by checking it under the control of several user-specified commands, issued from the PC end.

  6. Series Pneumatic Artificial Muscles (sPAMs) and Application to a Soft Continuum Robot.

    PubMed

    Greer, Joseph D; Morimoto, Tania K; Okamura, Allison M; Hawkes, Elliot W

    2017-01-01

    We describe a new series pneumatic artificial muscle (sPAM) and its application as an actuator for a soft continuum robot. The robot consists of three sPAMs arranged radially round a tubular pneumatic backbone. Analogous to tendons, the sPAMs exert a tension force on the robot's pneumatic backbone, causing bending that is approximately constant curvature. Unlike a traditional tendon driven continuum robot, the robot is entirely soft and contains no hard components, making it safer for human interaction. Models of both the sPAM and soft continuum robot kinematics are presented and experimentally verified. We found a mean position accuracy of 5.5 cm for predicting the end-effector position of a 42 cm long robot with the kinematic model. Finally, closed-loop control is demonstrated using an eye-in-hand visual servo control law which provides a simple interface for operation by a human. The soft continuum robot with closed-loop control was found to have a step-response rise time and settling time of less than two seconds.

  7. Series Pneumatic Artificial Muscles (sPAMs) and Application to a Soft Continuum Robot

    PubMed Central

    Greer, Joseph D.; Morimoto, Tania K.; Okamura, Allison M.; Hawkes, Elliot W.

    2017-01-01

    We describe a new series pneumatic artificial muscle (sPAM) and its application as an actuator for a soft continuum robot. The robot consists of three sPAMs arranged radially round a tubular pneumatic backbone. Analogous to tendons, the sPAMs exert a tension force on the robot’s pneumatic backbone, causing bending that is approximately constant curvature. Unlike a traditional tendon driven continuum robot, the robot is entirely soft and contains no hard components, making it safer for human interaction. Models of both the sPAM and soft continuum robot kinematics are presented and experimentally verified. We found a mean position accuracy of 5.5 cm for predicting the end-effector position of a 42 cm long robot with the kinematic model. Finally, closed-loop control is demonstrated using an eye-in-hand visual servo control law which provides a simple interface for operation by a human. The soft continuum robot with closed-loop control was found to have a step-response rise time and settling time of less than two seconds. PMID:29379672

  8. Design and fabrication of a freeform phase plate for high-order ocular aberration correction

    NASA Astrophysics Data System (ADS)

    Yi, Allen Y.; Raasch, Thomas W.

    2005-11-01

    In recent years it has become possible to measure and in some instances to correct the high-order aberrations of human eyes. We have investigated the correction of wavefront error of human eyes by using phase plates designed to compensate for that error. The wavefront aberrations of the four eyes of two subjects were experimentally determined, and compensating phase plates were machined with an ultraprecision diamond-turning machine equipped with four independent axes. A slow-tool servo freeform trajectory was developed for the machine tool path. The machined phase-correction plates were measured and compared with the original design values to validate the process. The position of the phase-plate relative to the pupil is discussed. The practical utility of this mode of aberration correction was investigated with visual acuity testing. The results are consistent with the potential benefit of aberration correction but also underscore the critical positioning requirements of this mode of aberration correction. This process is described in detail from optical measurements, through machining process design and development, to final results.

  9. Adaptive Servo-Ventilation in "Real Life" Conditions : the OTRLASV Study

    ClinicalTrials.gov

    2017-03-27

    Chronic Heart Failure and; Complex Sleep Apnea Syndrome; Obstructive Sleep Apnea Syndrome and; Idiopathic Central Sleep Apnea Syndrome; Idiopathic Induced Periodic Breathing; Central Sleep Apnea Syndrome

  10. Elevation scanning laser/multi-sensor hazard detection system controller and mirror/mast speed control components. [roving vehicle electromechanical devices

    NASA Technical Reports Server (NTRS)

    Craig, J.; Yerazunis, S. W.

    1978-01-01

    The electro-mechanical and electronic systems involved with pointing a laser beam from a roving vehicle along a desired vector are described. A rotating 8 sided mirror, driven by a phase-locked dc motor servo system, and monitored by a precision optical shaft encoder is used. This upper assembly is then rotated about an orthogonal axis to allow scanning into all 360 deg around the vehicle. This axis is also driven by a phase locked dc motor servo-system, and monitored with an optical shaft encoder. The electronics are realized in standard TTL integrated circuits with UV-erasable proms used to store desired coordinates of laser fire. Related topics such as the interface to the existing test vehicle are discussed.

  11. Servo-controlled intravital microscope system

    NASA Technical Reports Server (NTRS)

    Mansour, M. N.; Wayland, H. J.; Chapman, C. P. (Inventor)

    1975-01-01

    A microscope system is described for viewing an area of a living body tissue that is rapidly moving, by maintaining the same area in the field-of-view and in focus. A focus sensing portion of the system includes two video cameras at which the viewed image is projected, one camera being slightly in front of the image plane and the other slightly behind it. A focus sensing circuit for each camera differentiates certain high frequency components of the video signal and then detects them and passes them through a low pass filter, to provide dc focus signal whose magnitudes represent the degree of focus. An error signal equal to the difference between the focus signals, drives a servo that moves the microscope objective so that an in-focus view is delivered to an image viewing/recording camera.

  12. Linear quadratic servo control of a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1991-01-01

    The paper deals with the development of a design method for a servo component in the frequency domain using singular values and its application to a reusable rocket engine. A general methodology used to design a class of linear multivariable controllers for intelligent control systems is presented. Focus is placed on performance and robustness characteristics, and an estimator design performed in the framework of the Kalman-filter formalism with emphasis on using a sensor set different from the commanded values is discussed. It is noted that loop transfer recovery modifies the nominal plant noise intensities in order to obtain the desired degree of robustness to uncertainty reflected at the plant input. Simulation results demonstrating the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation are discussed.

  13. Evaluation of electrolytic tilt sensors for wind tunnel model angle-of-attack (AOA) measurements

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    1991-01-01

    The results of a laboratory evaluation of three types of electrolytic tilt sensors as potential candidates for model attitude or angle of attack (AOA) measurements in wind tunnel tests are presented. Their performance was also compared with that from typical servo accelerometers used for AOA measurements. Model RG-37 electrolytic tilt sensors were found to have the highest overall accuracy among the three types. Compared with the servo accelerometer, their accuracies are about one order of magnitude worse and each of them cost about two-thirds less. Therefore, the sensors are unsuitable for AOA measurements although they are less expensive. However, the potential for other applications exists where the errors resulting from roll interaction, vibration, and response time are less, and sensor temperature can be controlled.

  14. Advanced servo manipulator

    DOEpatents

    Holt, W.E.; Kuban, D.P.; Martin, H.L.

    1988-10-25

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member. 41 figs.

  15. Advanced servo manipulator

    DOEpatents

    Holt, William E.; Kuban, Daniel P.; Martin, H. Lee

    1988-01-01

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member.

  16. Beats produced between a rhythmic applied force and the resting tremor of Parkinsonism.

    PubMed Central

    Walsh, E G

    1979-01-01

    Rhythmic forces have been applied to the wrist of patients with Parkinsonism tremor by means of a printed motor. The tremor rate was not altered to that of the applied force. On the contrary, beats were established, the rate of which depended on the difference in rate between the tremor and the applied rhythm. Most of the observations have been for horizontal motion of the hand but similar phenomena have been seen for vertical movements, and for other parts of the body--for example, foot, elbow, finger joint, and head. The observations are regarded as supporting the view that the tremorgenic mechanism is central. There was no electromyographic evidence of servo driving or servo assistance in the genesis of the tremor. PMID:762588

  17. Control system to reduce the effects of friction in drive trains of continuous-path-positioning systems. [Patent application

    DOEpatents

    Green, W.L.

    1980-12-01

    An improved continuous-path-positioning servo-control system is provided for reducing the effects of friction arising at very low cutting speeds in the drive trains of numerically controlled cutting machines, and the like. The improvement comprises a feed forward network for altering the gain of the servo-control loop at low positioning velocities to prevent stick-slip movement of the cutting tool holder being positioned by the control system. The feed forward network shunts conventional lag-compensators in the control loop, or loops, so that the error signal used for positioning varies linearly when the value is small, but being limited for larger values. Thus, at higher positioning speeds there is little effect of the added component upon the control being achieved.

  18. Optimization of Smart Structure for Improving Servo Performance of Hard Disk Drive

    NASA Astrophysics Data System (ADS)

    Kajiwara, Itsuro; Takahashi, Masafumi; Arisaka, Toshihiro

    Head positioning accuracy of the hard disk drive should be improved to meet today's increasing performance demands. Vibration suppression of the arm in the hard disk drive is very important to enhance the servo bandwidth of the head positioning system. In this study, smart structure technology is introduced into the hard disk drive to suppress the vibration of the head actuator. It has been expected that the smart structure technology will contribute to the development of small and light-weight mechatronics devices with the required performance. First, modeling of the system is conducted with finite element method and modal analysis. Next, the actuator location and the control system are simultaneously optimized using genetic algorithm. Vibration control effect with the proposed vibration control mechanisms has been evaluated by some simulations.

  19. Indirect iterative learning control for a discrete visual servo without a camera-robot model.

    PubMed

    Jiang, Ping; Bamforth, Leon C A; Feng, Zuren; Baruch, John E F; Chen, YangQuan

    2007-08-01

    This paper presents a discrete learning controller for vision-guided robot trajectory imitation with no prior knowledge of the camera-robot model. A teacher demonstrates a desired movement in front of a camera, and then, the robot is tasked to replay it by repetitive tracking. The imitation procedure is considered as a discrete tracking control problem in the image plane, with an unknown and time-varying image Jacobian matrix. Instead of updating the control signal directly, as is usually done in iterative learning control (ILC), a series of neural networks are used to approximate the unknown Jacobian matrix around every sample point in the demonstrated trajectory, and the time-varying weights of local neural networks are identified through repetitive tracking, i.e., indirect ILC. This makes repetitive segmented training possible, and a segmented training strategy is presented to retain the training trajectories solely within the effective region for neural network approximation. However, a singularity problem may occur if an unmodified neural-network-based Jacobian estimation is used to calculate the robot end-effector velocity. A new weight modification algorithm is proposed which ensures invertibility of the estimation, thus circumventing the problem. Stability is further discussed, and the relationship between the approximation capability of the neural network and the tracking accuracy is obtained. Simulations and experiments are carried out to illustrate the validity of the proposed controller for trajectory imitation of robot manipulators with unknown time-varying Jacobian matrices.

  20. An iconic programming language for sensor-based robots

    NASA Technical Reports Server (NTRS)

    Gertz, Matthew; Stewart, David B.; Khosla, Pradeep K.

    1993-01-01

    In this paper we describe an iconic programming language called Onika for sensor-based robotic systems. Onika is both modular and reconfigurable and can be used with any system architecture and real-time operating system. Onika is also a multi-level programming environment wherein tasks are built by connecting a series of icons which, in turn, can be defined in terms of other icons at the lower levels. Expert users are also allowed to use control block form to define servo tasks. The icons in Onika are both shape and color coded, like the pieces of a jigsaw puzzle, thus providing a form of error control in the development of high level applications.

  1. Delayed Monocular SLAM Approach Applied to Unmanned Aerial Vehicles.

    PubMed

    Munguia, Rodrigo; Urzua, Sarquis; Grau, Antoni

    2016-01-01

    In recent years, many researchers have addressed the issue of making Unmanned Aerial Vehicles (UAVs) more and more autonomous. In this context, the state estimation of the vehicle position is a fundamental necessity for any application involving autonomy. However, the problem of position estimation could not be solved in some scenarios, even when a GPS signal is available, for instance, an application requiring performing precision manoeuvres in a complex environment. Therefore, some additional sensory information should be integrated into the system in order to improve accuracy and robustness. In this work, a novel vision-based simultaneous localization and mapping (SLAM) method with application to unmanned aerial vehicles is proposed. One of the contributions of this work is to design and develop a novel technique for estimating features depth which is based on a stochastic technique of triangulation. In the proposed method the camera is mounted over a servo-controlled gimbal that counteracts the changes in attitude of the quadcopter. Due to the above assumption, the overall problem is simplified and it is focused on the position estimation of the aerial vehicle. Also, the tracking process of visual features is made easier due to the stabilized video. Another contribution of this work is to demonstrate that the integration of very noisy GPS measurements into the system for an initial short period of time is enough to initialize the metric scale. The performance of this proposed method is validated by means of experiments with real data carried out in unstructured outdoor environments. A comparative study shows that, when compared with related methods, the proposed approach performs better in terms of accuracy and computational time.

  2. Dynamic analysis of angiogenesis in transgenic zebrafish embryos using a 3D multilayer chip-based technology

    NASA Astrophysics Data System (ADS)

    Akagi, Jin; Zhu, Feng; Hall, Chris J.; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh; Mitchell, Arnan; Crosier, Kathryn E.; Crosier, Philip S.; Wlodkowic, Donald

    2013-03-01

    Transgenic zebrafish (Danio rerio) models of human diseases have recently emerged as innovative experimental systems in drug discovery and molecular pathology. None of the currently available technologies, however, allow for automated immobilization and treatment of large numbers of spatially encoded transgenic embryos during real-time developmental analysis. This work describes the proof-of-concept design and validation of an integrated 3D microfluidic chip-based system fabricated directly in the poly(methyl methacrylate) transparent thermoplastic using infrared laser micromachining. At its core, the device utilizes an array of 3D micro-mechanical traps to actively capture and immobilize single embryos using a low-pressure suction. It also features built-in piezoelectric microdiaphragm pumps, embryo trapping suction manifold, drug delivery manifold and optically transparent indium tin oxide (ITO) heating element to provide optimal temperature during embryo development. Furthermore, we present design of the proof-of-concept off-chip electronic interface equipped with robotic servo actuator driven stage, innovative servomotor-actuated pinch valves and miniaturized fluorescent USB microscope. Our results show that the innovative device has 100% embryo trapping efficiency while supporting normal embryo development for up to 72 hours in a confined microfluidic environment. We also present data that this microfluidic system can be readily applied to kinetic analysis of a panel of investigational anti-angiogenic agents in transgenic zebrafish Tg(fli1a:EGFP) line. The optical transparency and embryo immobilization allow for convenient visualization of developing vasculature patterns in response to drug treatment without the need for specimen re-positioning. The integrated electronic interfaces bring the Lab-on-a-Chip systems a step closer to realization of complete analytical automation.

  3. Integrated chip-based physiometer for automated fish embryo toxicity biotests in pharmaceutical screening and ecotoxicology.

    PubMed

    Akagi, Jin; Zhu, Feng; Hall, Chris J; Crosier, Kathryn E; Crosier, Philip S; Wlodkowic, Donald

    2014-06-01

    Transgenic zebrafish (Danio rerio) models of human diseases have recently emerged as innovative experimental systems in drug discovery and molecular pathology. None of the currently available technologies, however, allow for automated immobilization and treatment of large numbers of spatially encoded transgenic embryos during real-time developmental analysis. This work describes the proof-of-concept design and validation of an integrated 3D microfluidic chip-based system fabricated directly in the poly(methyl methacrylate) transparent thermoplastic using infrared laser micromachining. At its core, the device utilizes an array of 3D micromechanical traps to actively capture and immobilize single embryos using a low-pressure suction. It also features built-in piezoelectric microdiaphragm pumps, embryo-trapping suction manifold, drug delivery manifold, and optically transparent indium tin oxide heating element to provide optimal temperature during embryo development. Furthermore, we present design of the proof-of-concept off-chip electronic interface equipped with robotic servo actuator driven stage, innovative servomotor-actuated pinch valves, and embedded miniaturized fluorescent USB microscope. Our results showed that the innovative device has 100% embryo-trapping efficiency while supporting normal embryo development for up to 72 hr in a confined microfluidic environment. We also showed data that this microfluidic system can be readily applied to kinetic analysis of a panel of investigational antiangiogenic agents in transgenic zebrafish lines. The optical transparency and embryo immobilization allow for convenient visualization of developing vasculature patterns in response to drug treatment without the need for specimen re-positioning. The integrated electronic interfaces bring the lab-on-a-chip systems a step closer to realization of complete analytical automation. © 2014 International Society for Advancement of Cytometry.

  4. Performance of Leak Compensation in All-Age ICU Ventilators During Volume-Targeted Neonatal Ventilation: A Lung Model Study.

    PubMed

    Itagaki, Taiga; Bennett, Desmond J; Chenelle, Christopher T; Fisher, Daniel F; Kacmarek, Robert M

    2017-01-01

    Volume-targeted ventilation is increasingly used in low birthweight infants because of the potential for reducing volutrauma and avoiding hypocapnea. However, it is not known what level of air leak is acceptable during neonatal volume-targeted ventilation when leak compensation is activated concurrently. Four ICU ventilators (Servo-i, PB980, V500, and Avea) were compared in available invasive volume-targeted ventilation modes (pressure control continuous spontaneous ventilation [PC-CSV] and pressure control continuous mandatory ventilation [PC-CMV]). The Servo-i and PB980 were tested with (+) and without (-) their proximal flow sensor. The V500 and Avea were tested with their proximal flow sensor as indicated by their manufacturers. An ASL 5000 lung model was used to simulate 4 neonatal scenarios (body weight 0.5, 1, 2, and 4 kg). The ASL 5000 was ventilated via an endotracheal tube with 3 different leaks. Two minutes of data were collected after each change in leak level, and the asynchrony index was calculated. Tidal volume (V T ) before and after the change in leak was assessed. The differences in delivered V T between before and after the change in leak were within ±5% in all scenarios with the PB980 (-/+) and V500. With the Servo-i (-/+), baseline V T was ≥10% greater than set V T during PC-CSV, and delivered V T markedly changed with leak. The Avea demonstrated persistent high V T in all leak scenarios. Across all ventilators, the median asynchrony index was 1% (interquartile range 0-27%) in PC-CSV and 1.8% (0-45%) in PC-CMV. The median asynchrony index was significantly higher in the Servo-i (-/+) than in the PB980 (-/+) and V500 in 1 and 2 kg scenarios during PC-CSV and PC-CMV. The PB980 and V500 were the only ventilators to acclimate to all leak scenarios and achieve targeted V T . Further clinical investigation is needed to validate the use of leak compensation during neonatal volume-targeted ventilation. Copyright © 2017 by Daedalus Enterprises.

  5. Servo Driven Corotation: Development of AN Inertial Clock.

    NASA Astrophysics Data System (ADS)

    Cheung, Wah-Kwan Stephen

    An inertial clock to test non-metricity of gravity is proposed here. A first, room-temperature, servo corotation -protected, double magnetically suspended precision rotor system is developed for this purpose. The specific goal was to exhibit the properties of such a clock in its entirety at whatever level of precision was achievable. A monolithic system has been completed for these preliminary studies. It includes particular development of individual experimental sub-systems (a hybrid double magnetic suspension; a diffusion pumping system; a microcomputer -controlled eddy-current drive system; and the angular period measuring schemes for the doubly suspended rotors). Double magnetic suspension had been investigated by Beams for other purposes. The upper transducer is optical but parametrized and the lower transducer employs the frequency modulation characteristic of a LC tank circuit. The doubly suspended rotors corotate so that the upper rotor is servoed to rotate at the same angular velocity as that of the lower rotor. This creates a "drag free" environment for the lower rotor and effectively eliminates the gas drag on the lower rotor. Consequently, the decay time constant of the lower rotor increases. With other means of protection, the lower rotor will then, with perfect system operation, suffer no drag and therefore become the inertial time keeper. A commercial microcomputer is introduced to execute the servo-corotation. The tests thus far are, with one exception, run at atmospheric pressure. An idealized analysis for open and closed loop corotation is shown. Such analysis includes only the viscous drag acting on the corotating rotors. The analysis suggests that angular position control be added to the present feedback drive which is of derivative nature only. Open and closed corotation runs show that a strong torsional coupling besides that of the gas drag exists between the rotors. When misalignment of the support pole pieces is deliberately made significant, a stronger coupling between the rotors results. The coupling is suspected to be magnetic in nature. The complicated geometry of the double magnetic suspension scheme makes it difficult to evaluate the known mechanical cranking effect applied to this situation.

  6. Servo-controlled hind-limb electrical stimulation for short-term arterial pressure control.

    PubMed

    Kawada, Toru; Shimizu, Shuji; Yamamoto, Hiromi; Shishido, Toshiaki; Kamiya, Atsunori; Miyamoto, Tadayoshi; Sunagawa, Kenji; Sugimachi, Masaru

    2009-05-01

    Autonomic neural intervention is a promising tool for modulating the circulatory system thereby treating some cardiovascular diseases. In 8 pentobarbital-anesthetized cats, it was examined whether the arterial pressure (AP) could be controlled by acupuncture-like hind-limb electrical stimulation (HES). With a 0.5-ms pulse width, HES monotonically reduced AP as the stimulus current increased from 1 to 5 mA, suggesting that the stimulus current could be a primary control variable. In contrast, the depressor effect of HES showed a nadir approximately 10 Hz in the frequency range between 1 and 100 Hz. Dynamic characteristics of the AP response to HES approximated a second-order low-pass filter with dead time (gain: -10.2 +/- 1.6 mmHg/mA, natural frequency: 0.040 +/- 0.004 Hz, damping ratio 1.80 +/- 0.24, dead time: 1.38 +/- 0.13 s, mean +/- SE). Based on these dynamic characteristics, a servo-controlled HES system was developed. When a target AP value was set at 20 mmHg below the baseline AP, the time required for the AP response to reach 90% of the target level was 38 +/- 10 s. The steady-state error between the measured and target AP values was 1.3 +/- 0.1 mmHg. Autonomic neural intervention by acupuncture-like HES might provide an additional modality to quantitatively control the circulatory system.

  7. Modernization of the Mayall Telescope control system: design, implementation, and performance

    NASA Astrophysics Data System (ADS)

    Sprayberry, David; Dunlop, Patrick; Evatt, Matthew; Reddell, Larry; Gott, Shelby; George, James R.; Donaldson, John; Stupak, Robert J.; Marshall, Robert; Abareshi, Behzad; Stover, Deanna; Warner, Michael; Cantarutti, Rolando E.; Probst, Ronald G.

    2016-08-01

    Motivated by a desire to improve the KPNO Mayall 4m telescope's pointing and tracking performance prior to the start of the DESI installation and by a need to improve the maintainability of its telescope control system (TCS), we recently completed a major modernization of that system based heavily on recent changes made at the CTIO Blanco 4m, as described by Warner et al (2012). We describe here the things we did differently from the Blanco upgrade. We also present results from the as-built performance of the new servo and pointing systems.

  8. Research on Dynamic Torque Measurement of High Speed Rotating Axis Based on Whole Optical Fiber Technique

    NASA Astrophysics Data System (ADS)

    Ma, H. P.; Jin, Y. Q.; Ha, Y. W.; Liu, L. H.

    2006-10-01

    Non-contact torque measurement system of fiber grating is proposed in this paper. It is used for the dynamic torque measurement of the rotating axis in the spaceflight servo system. Optical fiber is used as sensing probe with high sensitivity, anti-electromagnetic interference, resistance to high temperature and corrosion. It is suitable to apply in a bad environment. Signals are processed by digital circuit and Single Chip Microcomputer. This project can realize super speed dynamic measurement and it is the first time to apply the project in the spaceflight system.

  9. RMS massless arm dynamics capability in the SVDS. [equations of motion

    NASA Technical Reports Server (NTRS)

    Flanders, H. A.

    1977-01-01

    The equations of motion for the remote manipulator system, assuming that the masses and inertias of the arm can be neglected, are developed for implementation into the space vehicle dynamics simulation (SVDS) program for the Orbiter payload system. The arm flexibility is incorporated into the equations by the computation of flexibility terms for use in the joint servo model. The approach developed in this report is based on using the Jacobian transformation matrix to transform force and velocity terms between the configuration space and the task space to simplify the form of the equations.

  10. Computational Aeroelastic Analyses of a Low-Boom Supersonic Configuration

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Connolly, Joseph

    2015-01-01

    An overview of NASA's Commercial Supersonic Technology (CST) Aeroservoelasticity (ASE) element is provided with a focus on recent computational aeroelastic analyses of a low-boom supersonic configuration developed by Lockheed-Martin and referred to as the N+2 configuration. The overview includes details of the computational models developed to date including a linear finite element model (FEM), linear unsteady aerodynamic models, unstructured CFD grids, and CFD-based aeroelastic analyses. In addition, a summary of the work involving the development of aeroelastic reduced-order models (ROMs) and the development of an aero-propulso-servo-elastic (APSE) model is provided.

  11. 77 FR 42421 - Airworthiness Directives; Bell Helicopter Textron Canada Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... nut or clevis assembly. The AD also requires reidentifying the servo by metal- impression stamping or... plate. (g) Alternative Methods of Compliance (AMOCs) (1) The Manager, Safety Management Group, FAA, may...

  12. A switched energy saving position controller for variable-pressure electro-hydraulic servo systems.

    PubMed

    Tivay, Ali; Zareinejad, Mohammad; Rezaei, S Mehdi; Baghestan, Keivan

    2014-07-01

    The electro-hydraulic servo system (EHSS) demonstrates a relatively low level of efficiency compared to other available actuation methods. The objective of this paper is to increase this efficiency by introducing a variable supply pressure into the system and controlling this pressure during the task of position tracking. For this purpose, an EHSS structure with controllable supply pressure is proposed and its dynamic model is derived from the basic laws of physics. A switching control structure is then proposed to control both the supply pressure and the cylinder position at the same time, in a way that reduces the overall energy consumption of the system. The stability of the proposed switching control system is guaranteed by proof, and its performance is verified by experimental testing. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Design and control of a high precision drive mechanism

    NASA Astrophysics Data System (ADS)

    Pan, Bo; He, Yongqiang; Wang, Haowei; Zhang, Shuyang; Zhang, Donghua; Wei, Xiaorong; Jiang, Zhihong

    2017-01-01

    This paper summarizes the development of a high precision drive mechanism (HPDM) for space application, such as the directional antenna, the laser communication device, the mobile camera and other pointing mechanisms. In view of the great practical significance of high precision drive system, control technology for permanent magnet synchronous motor (PMSM) servo system is also studied and a PMSM servo controller is designed in this paper. And the software alignment was applied to the controller to eliminate the steady error of the optical encoder, which helps to realize the 1 arcsec (1σ) control precision. To assess its capabilities, the qualification environment testing including the thermal vacuum cycling testing, and the sinusoidal and random vibration were carried out. The testing results show that the performance of the HPDM is almost the same between the former and the end of each testing.

  14. A miniature electronically tunable Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    O'Sullivan, B.; Pietraszewski, K. A. R.

    A miniature electronically tunable, servo controlled Fabry-Perot filter for use in fiber optic sensors, spectroscopy, data and telecommunications, and laser tuning has been developed. The servo control system utilizes capacitance micrometry and piezo technology to maintain stable cavity mirror separations with a noise of less than 0.9nm rms while enabling random access tuning to any wavelength in the design range in less than 0.5ms. Free spectral ranges from 75,000GHz to 300GHz (560nm to 1.5nm at 1500nm wavelength) are typical with finesses between 3 and 300. At present the device has been made commercially available in two formats: fiber optically coupled, with single-mode or multimode fiber, or with a 3mm clear aperture. The design and performance of the instrument are presented along with some typical application examples.

  15. An Apparatus for Varying Effective Dihedral in Flight with Application to a Study of Tolerable Dihedral on a Conventional Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Kauffman, William M; Liddell, Charles J , Jr; Smith, Allan; Van Dyke, Rudolph D , Jr

    1949-01-01

    An apparatus for varying effective dihedral in flight by means of servo actuation of the ailerons in response to sideslip angle is described. The results of brief flight tests of the apparatus on a conventional fighter airplane are presented and discussed. The apparatus is shown to have satisfactory simulated a wide range of effective dihedral under static and dynamic conditions. The effects of a small amount of servo lag are shown to be measurable when the apparatus is simulating small negative values of dihedral. However, these effects were not considered by the pilots to give the airplane an artificial feel. The results of an investigation employing the apparatus to determine the tolerable (safe for normal fighter operation) range of effective dihedral on the test airplane are presented.

  16. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.

    PubMed

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot's end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H(∞) tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to verify the feasibility of the proposed parallel mechanism robot driven by three vertical pneumatic servo actuators, a full-scale test rig of the proposed parallel mechanism pneumatic robot is set up. Thus, simulations and experiments for different complex 3D motion profiles of the robot end-effector can be successfully achieved. The desired, the actual and the calculated 3D position of the end-effector can be compared in the complex 3D motion control.

  17. Development of a 3D Parallel Mechanism Robot Arm with Three Vertical-Axial Pneumatic Actuators Combined with a Stereo Vision System

    PubMed Central

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot’s end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H∞ tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to verify the feasibility of the proposed parallel mechanism robot driven by three vertical pneumatic servo actuators, a full-scale test rig of the proposed parallel mechanism pneumatic robot is set up. Thus, simulations and experiments for different complex 3D motion profiles of the robot end-effector can be successfully achieved. The desired, the actual and the calculated 3D position of the end-effector can be compared in the complex 3D motion control. PMID:22247676

  18. Autonomous Mobile Platform for Research in Cooperative Robotics

    NASA Technical Reports Server (NTRS)

    Daemi, Ali; Pena, Edward; Ferguson, Paul

    1998-01-01

    This paper describes the design and development of a platform for research in cooperative mobile robotics. The structure and mechanics of the vehicles are based on R/C cars. The vehicle is rendered mobile by a DC motor and servo motor. The perception of the robot's environment is achieved using IR sensors and a central vision system. A laptop computer processes images from a CCD camera located above the testing area to determine the position of objects in sight. This information is sent to each robot via RF modem. Each robot is operated by a Motorola 68HC11E micro-controller, and all actions of the robots are realized through the connections of IR sensors, modem, and motors. The intelligent behavior of each robot is based on a hierarchical fuzzy-rule based approach.

  19. Adaptive control of servo system based on LuGre model

    NASA Astrophysics Data System (ADS)

    Jin, Wang; Niancong, Liu; Jianlong, Chen; Weitao, Geng

    2018-03-01

    This paper established a mechanical model of feed system based on LuGre model. In order to solve the influence of nonlinear factors on the system running stability, a nonlinear single observer is designed to estimate the parameter z in the LuGre model and an adaptive friction compensation controller is designed. Simulink simulation results show that the control method can effectively suppress the adverse effects of friction and external disturbances. The simulation show that the adaptive parameter kz is between 0.11-0.13, and the value of gamma1 is between 1.9-2.1. Position tracking error reaches level 10-3 and is stabilized near 0 values within 0.3 seconds, the compensation method has better tracking accuracy and robustness.

  20. Generation of dark hollow beam via coherent combination based on adaptive optics.

    PubMed

    Zheng, Yi; Wang, Xiaohua; Shen, Feng; Li, Xinyang

    2010-12-20

    A novel method for generating a dark hollow beam (DHB) is proposed and studied both theoretically and experimentally. A coherent combination technique for laser arrays is implemented based on adaptive optics (AO). A beam arraying structure and an active segmented mirror are designed and described. Piston errors are extracted by a zero-order interference detection system with the help of a custom-made photo-detectors array. An algorithm called the extremum approach is adopted to calculate feedback control signals. A dynamic piston error is imported by LiNbO3 to test the capability of the AO servo. In a closed loop the stable and clear DHB is obtained. The experimental results confirm the feasibility of the concept.

  1. Improving accuracy of unbound resilient modulus testing

    DOT National Transportation Integrated Search

    1997-07-01

    The P46 Laboratory Startup and Quality Control Procedure was developed to ensure the accuracy and reliability of the resilient modulus data produced while testing soil and aggregate materials using closed-loop servo-hydraulic systems. It was develope...

  2. A method of eliminating hydrogen maser wall shift

    NASA Technical Reports Server (NTRS)

    Levine, M. W.; Vessot, R. F. C.

    1972-01-01

    Maser output frequency shift was prevented by storage bulb kept at temperature at which wall shift is zero and effects of bulb size, shape, and surface texture are eliminated. Servo system is shown, along with bidirectional counter.

  3. Robust H(∞) positional control of 2-DOF robotic arm driven by electro-hydraulic servo system.

    PubMed

    Guo, Qing; Yu, Tian; Jiang, Dan

    2015-11-01

    In this paper an H∞ positional feedback controller is developed to improve the robust performance under structural and parametric uncertainty disturbance in electro-hydraulic servo system (EHSS). The robust control model is described as the linear state-space equation by upper linear fractional transformation. According to the solution of H∞ sub-optimal control problem, the robust controller is designed and simplified to lower order linear model which is easily realized in EHSS. The simulation and experimental results can validate the robustness of this proposed method. The comparison result with PI control shows that the robust controller is suitable for this EHSS under the critical condition where the desired system bandwidth is higher and the external load of the hydraulic actuator is closed to its limited capability. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. A telerobotic digital controller system

    NASA Technical Reports Server (NTRS)

    Brown, Richard J.

    1992-01-01

    This system is a network of joint mounted dual axes digital servo-controllers (DDSC), providing control of various joints and end effectors of different robotic systems. This report provides description of and user required information for the Digital Controller System Network (DSCN) and, in particular, the DDSC, Model DDSC-2, developed to perform the controller functions. The DDSC can control 3 phase brushless or brush type DC motors, requiring up to 8 amps. Only four wires, two for power and 2 for serial communication, are required, except for local sensor and motor connections. This highly capable, very flexible, programmable servo-controller, contained on a single, compact printed circuit board measuring only 4.5 x 5.1 inches, is applicable to control systems of all types from sub-arc second precision pointing to control of robotic joints and end effectors. This document concentrates on the robotic applications for the DDSC.

  5. Actively suspended counter-rotating machine

    NASA Technical Reports Server (NTRS)

    Studer, Philip A. (Inventor)

    1983-01-01

    A counter-rotating machine, such as a positive displacement pump having a pair of meshed, non-contacting helical screws (10,12), subjects its rotating members to axial and radial thrust forces when used for such purposes as compression of liquid or gaseous phase fluids while transporting them through a pump cavity (11,13). Each helical screw (10,12) has a shaft (17,17') which is actively suspended at opposite ends (11a,11b) of the pump cavity by a servo-controlled magnetic bearing assembly (19) and a servo-controlled rotary drive motor (20). Both bearing assemblies and drive motors are mounted on the outside of the pump cavity (11,13). Opto-electric angular position sensors (250) provide synchronization between radial orientation of the drive motors. The bearing assemblies and drive motors conjugately provide axial stabilization and radial centering of the helical screws during volumetric compression of aspirated liquid or gaseous phase fluids.

  6. Grasp Assist Device with Shared Tendon Actuator Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bergelin, Bryan J. (Inventor); Bridgwater, Lyndon (Inventor)

    2015-01-01

    A grasp assist device includes a glove with first and second tendon-driven fingers, a tendon, and a sleeve with a shared tendon actuator assembly. Tendon ends are connected to the respective first and second fingers. The actuator assembly includes a drive assembly having a drive axis and a tendon hook. The tendon hook, which defines an arcuate surface slot, is linearly translatable along the drive axis via the drive assembly, e.g., a servo motor thereof. The flexible tendon is routed through the surface slot such that the surface slot divides the flexible tendon into two portions each terminating in a respective one of the first and second ends. The drive assembly may include a ball screw and nut. An end cap of the actuator assembly may define two channels through which the respective tendon portions pass. The servo motor may be positioned off-axis with respect to the drive axis.

  7. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2010-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  8. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2008-01-01

    Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  9. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2008-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero- Propulso-Servo-Elastic model and for propulsion efficiency studies.

  10. Cover-layer with High Refractive Index for Near-Field Recording Media

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hong; Lee, Jun-Seok

    2007-06-01

    TiO2 nanoparticles are added into UV-curable resin to increase the refractive index of the cover-layer laminated for cover-layer incident near-field recording media. A high refractive index is required for the cover-layer operating with an optical head with a high numerical aperture. The eye pattern from a cover-layer coated 20 GB read-only memory disc in which the refractive index of the cover-layer is 1.75 is achieved, but the gap servo is unstable owing to the rough surface of the cover-layer. Even though the light loss due to the nanoparticles is negligible, a rough microstructure is developed by adding the nanoparticles into an organic binder material. To achieve a smooth surface for a stable gap servo, the solubility of the nanoparticles should be enhanced by the optimization of the surface of the nanoparticles.

  11. Cover-Layer with High Refractive Index for Near-Field Recording Media

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hong; Lee, Jun-Seok

    2007-06-01

    TiO2 nanoparticles are added into UV-curable resin to increase the refractive index of the cover-layer laminated for cover-layer incident near-field recording media. A high refractive index is required for the cover-layer operating with an optical head with a high numerical aperture. The eye pattern from a cover-layer coated 20 GB read-only memory disc in which the refractive index of the cover-layer is 1.75 is achieved, but the gap servo is unstable owing to the rough surface of the cover-layer. Even though the light loss due to the nanoparticles is negligible, a rough microstructure is developed by adding the nanoparticles into an organic binder material. To achieve a smooth surface for a stable gap servo, the solubility of the nanoparticles should be enhanced by the optimization of the surface of the nanoparticles.

  12. Faulting of rocks in three-dimensional strain fields I. Failure of rocks in polyaxial, servo-control experiments

    USGS Publications Warehouse

    Reches, Z.; Dieterich, J.H.

    1983-01-01

    The dependence of the number of sets of faults and their orientation on the intermediate strain axis is investigated through polyaxial tests, reported here, and theoretical analysis, reported in an accompanying paper. In the experiments, cubic samples of Berea sandstone, Sierra-White and Westerly granites, and Candoro and Solnhofen limestones were loaded on their three pairs of faces by three independent, mutually perpendicular presses at room temperature. Two of the presses were servo-controlled and applied constant displacement rates throughout the experiment. Most samples display three or four sets of faults in orthorhombic symmetry. These faults form in several yielding events that follow a stage of elastic deformation. In many experiments, the maximum and the intermediate compressive stresses interchange orientations during the yielding events, where the corresponding strains are constant. The final stage of most experiments is characterized by slip along the faults. ?? 1983.

  13. Modeling and analysis of the DSS-14 antenna control system

    NASA Technical Reports Server (NTRS)

    Gawronski, W.; Bartos, R.

    1996-01-01

    An improvement of pointing precision of the DSS-14 antenna is planned for the near future. In order to analyze the improvement limits and to design new controllers, a precise model of the antenna and the servo is developed, including a finite element model of the antenna structure and detailed models of the hydraulic drives and electronic parts. The DSS-14 antenna control system has two modes of operation: computer mode and precision mode. The principal goal of this investigation is to develop the model of the computer mode and to evaluate its performance. The DSS-14 antenna computer model consists of the antenna structure and drives in azimuth and elevation. For this model, the position servo loop is derived, and simulations of the closed-loop antenna dynamics are presented. The model is significantly different from that for the 34-m beam-waveguide antennas.

  14. Faulting of rocks in three-dimensional strain fields I. Failure of rocks in polyaxial, servo-control experiments

    NASA Astrophysics Data System (ADS)

    Reches, Ze'ev; Dieterich, James H.

    1983-05-01

    The dependence of the number of sets of faults and their orientation on the intermediate strain axis is investigated through polyaxial tests, reported here, and theoretical analysis, reported in an accompanying paper. In the experiments, cubic samples of Berea sandstone, Sierra-White and Westerly granites, and Candoro and Solnhofen limestones were loaded on their three pairs of faces by three independent, mutually perpendicular presses at room temperature. Two of the presses were servo-controlled and applied constant displacement rates throughout the experiment. Most samples display three or four sets of faults in orthorhombic symmetry. These faults form in several yielding events that follow a stage of elastic deformation. In many experiments, the maximum and the intermediate compressive stresses interchange orientations during the yielding events, where the corresponding strains are constant. The final stage of most experiments is characterized by slip along the faults.

  15. FSW of Aluminum Tailor Welded Blanks across Machine Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair

    2015-02-16

    Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearingmore » compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.« less

  16. Math Machines: Using Actuators in Physics Classes

    NASA Astrophysics Data System (ADS)

    Thomas, Frederick J.; Chaney, Robert A.; Gruesbeck, Marta

    2018-01-01

    Probeware (sensors combined with data-analysis software) is a well-established part of physics education. In engineering and technology, sensors are frequently paired with actuators—motors, heaters, buzzers, valves, color displays, medical dosing systems, and other devices that are activated by electrical signals to produce intentional physical change. This article describes how a 20-year project aimed at better integration of the STEM disciplines (science, technology, engineering and mathematics) uses brief actuator activities in physics instruction. Math Machines "actionware" includes software and hardware that convert virtually any free-form, time-dependent algebraic function into the dynamic actions of a stepper motor, servo motor, or RGB (red, green, blue) color mixer. With wheels and a platform, the stepper motor becomes LACI, a programmable vehicle. Adding a low-power laser module turns the servo motor into a programmable Pointer. Adding a gear and platform can transform the Pointer into an earthquake simulator.

  17. Dynamic analysis of a bio-inspired climbing robot using ADAMS-Simulink co-simulation

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Dikshit, H.; Majumder, A.; Ghoshal, S.; Maity, A.

    2018-04-01

    Climbing robot has been an area of interest since the demand of inspection of pipeline, nuclear power plant, and various big structure is growing up rapidly. This paper represents the development of a bio-inspired modular robot which mimics inchworm locomotion during climbing. In the present paper, the climbing motion is achieved only on a flat vertical plane by magnetic adhesion principle. The robot is modelled as a 4-link planar mechanism with three revolute joints actuated by DC servo motors. Sinusoidal gait pattern is used to approximate the motion of an inchworm. The dynamics of the robot is presented by using ADAMS/MATLAB co-simulation methodology. The simulation result gives the maximum value of joint torque during one complete cycle of motion. This torque value is used for the selection of servo motor specifications required to build the prototype.

  18. The analysis of image motion by the rabbit retina

    PubMed Central

    Oyster, C. W.

    1968-01-01

    1. Micro-electrode recordings were made from rabbit retinal ganglion cells or their axons. Of particular interest were direction-selective units; the common on—off type represented 20·6% of the total sample (762 units), and the on-type comprised 5% of the total. 2. From the large sample of direction-selective units, it was found that on—off units were maximally sensitive to only four directions of movement; these directions, in the visual field, were, roughly, anterior, superior, posterior and inferior. The on-type units were maximally sensitive to only three directions: anterior, superior and inferior. 3. The direction-selective unit's responses vary with stimulus velocity; both unit types are more sensitive to velocity change than to absolute speed. On—off units respond to movement at speeds from 6′/sec to 10°/sec; the on-type units responded as slowly as 30″/sec up to about 2°/sec. On-type units are clearly slow-movement detectors. 4. The distribution of direction-selective units depends on the retinal locality. On—off units are more common outside the `visual streak' (area centralis) than within it, while the reverse is true for the on-type units. 5. A stimulus configuration was found which would elicit responses from on-type units when the stimulus was moved in the null direction. This `paradoxical response' was shown to be associated with the silent receptive field surround. 6. The four preferred directions of the on—off units were shown to correspond to the directions of retinal image motion produced by contractions of the four rectus eye muscles. This fact, combined with data on velocity sensitivity and retinal distribution of on—off units, suggests that the on—off units are involved in control of reflex eye movements. 7. The on—off direction-selective units may provide error signals to a visual servo system which minimizes retinal image motion. This hypothesis agrees with the known characteristics of the rabbit's visual following reflexes, specifically, the slow phase of optokinetic nystagmus. PMID:5710424

  19. On the predictive control of foveal eye tracking and slow phases of optokinetic and vestibular nystagmus.

    PubMed Central

    Yasui, S; Young, L R

    1984-01-01

    Smooth pursuit and saccadic components of foveal visual tracking as well as more involuntary ocular movements of optokinetic (o.k.n.) and vestibular nystagmus slow phase components were investigated in man, with particular attention given to their possible input-adaptive or predictive behaviour. Each component in question was isolated from the eye movement records through a computer-aided procedure. The frequency response method was used with sinusoidal (predictable) and pseudo-random (unpredictable) stimuli. When the target motion was pseudo-random, the frequency response of pursuit eye movements revealed a large phase lead (up to about 90 degrees) at low stimulus frequencies. It is possible to interpret this result as a predictive effect, even though the stimulation was pseudo-random and thus 'unpredictable'. The pseudo-random-input frequency response intrinsic to the saccadic system was estimated in an indirect way from the pursuit and composite (pursuit + saccade) frequency response data. The result was fitted well by a servo-mechanism model, which has a simple anticipatory mechanism to compensate for the inherent neuromuscular saccadic delay by utilizing the retinal slip velocity signal. The o.k.n. slow phase also exhibited a predictive effect with sinusoidal inputs; however, pseudo-random stimuli did not produce such phase lead as found in the pursuit case. The vestibular nystagmus slow phase showed no noticeable sign of prediction in the frequency range examined (0 approximately 0.7 Hz), in contrast to the results of the visually driven eye movements (i.e. saccade, pursuit and o.k.n. slow phase) at comparable stimulus frequencies. PMID:6707954

  20. Experimental Research in Boost Driver with EDLCs

    NASA Astrophysics Data System (ADS)

    Matsumoto, Hirokazu

    The supply used in servo systems tends to have a high voltage in order to reduce loss and improve the response of motor drives. We propose a new boost motor driver that comprises EDLCs. The proposed driver has a simple structure, wherein the EDLCs are connected in series to the supply, and comprises a charge circuit to charge the EDLCs. The proposed driver has three advantages over conventional boost drivers. The first advantage is that the driver can easily attain the stable boost voltage. The second advantage is that the driver can reduce input power peaks. In a servo system, the input power peaks become greater than the rated power in order to accelerate the motor rapidly. This implies that the equipments that supply power to servo systems must have sufficient power capacity to satisfy the power peaks. The proposed driver can suppress the increase of the power capacity of supply facilities. The third advantage is that the driver can store almost all of the regenerative energy. Conventional drivers have a braking resistor to suppress the increase in the DC link voltage. This causes a considerable reduction in the efficiency. The proposed driver is more efficient than conventional drivers. In this study, the experimental results confirmed the effectiveness of the proposed driver and showed that the drive performance of the proposed driver is the same as that of a conventional driver. Furthermore, it was confirmed that the results of the simulation of a model of the EDLC module, whose capacitance is dependent on the frequency, correspond well with the experimental results.

  1. Design of a Solar Tracking System Using the Brightest Region in the Sky Image Sensor

    PubMed Central

    Wei, Ching-Chuan; Song, Yu-Chang; Chang, Chia-Chi; Lin, Chuan-Bi

    2016-01-01

    Solar energy is certainly an energy source worth exploring and utilizing because of the environmental protection it offers. However, the conversion efficiency of solar energy is still low. If the photovoltaic panel perpendicularly tracks the sun, the solar energy conversion efficiency will be improved. In this article, we propose an innovative method to track the sun using an image sensor. In our method, it is logical to assume the points of the brightest region in the sky image representing the location of the sun. Then, the center of the brightest region is assumed to be the solar-center, and is mathematically calculated using an embedded processor (Raspberry Pi). Finally, the location information on the sun center is sent to the embedded processor to control two servo motors that are capable of moving both horizontally and vertically to track the sun. In comparison with the existing sun tracking methods using image sensors, such as the Hough transform method, our method based on the brightest region in the sky image remains accurate under conditions such as a sunny day and building shelter. The practical sun tracking system using our method was implemented and tested. The results reveal that the system successfully captured the real sun center in most weather conditions, and the servo motor system was able to direct the photovoltaic panel perpendicularly to the sun center. In addition, our system can be easily and practically integrated, and can operate in real-time. PMID:27898002

  2. Design of a Solar Tracking System Using the Brightest Region in the Sky Image Sensor.

    PubMed

    Wei, Ching-Chuan; Song, Yu-Chang; Chang, Chia-Chi; Lin, Chuan-Bi

    2016-11-25

    Solar energy is certainly an energy source worth exploring and utilizing because of the environmental protection it offers. However, the conversion efficiency of solar energy is still low. If the photovoltaic panel perpendicularly tracks the sun, the solar energy conversion efficiency will be improved. In this article, we propose an innovative method to track the sun using an image sensor. In our method, it is logical to assume the points of the brightest region in the sky image representing the location of the sun. Then, the center of the brightest region is assumed to be the solar-center, and is mathematically calculated using an embedded processor (Raspberry Pi). Finally, the location information on the sun center is sent to the embedded processor to control two servo motors that are capable of moving both horizontally and vertically to track the sun. In comparison with the existing sun tracking methods using image sensors, such as the Hough transform method, our method based on the brightest region in the sky image remains accurate under conditions such as a sunny day and building shelter. The practical sun tracking system using our method was implemented and tested. The results reveal that the system successfully captured the real sun center in most weather conditions, and the servo motor system was able to direct the photovoltaic panel perpendicularly to the sun center. In addition, our system can be easily and practically integrated, and can operate in real-time.

  3. Coordinated Body Bending Improves Performance of a Salamander-like Robot

    NASA Astrophysics Data System (ADS)

    Ozkan Aydin, Yasemin; Chong, Baxi; Gong, Chaohui; Rieser, Jennifer M.; Choset, Howie; Goldman, Daniel I.

    Analyzing body morphology and limb-body coordination in animals that can both swim and walk is important to understand the evolutionary transition from an aquatic to a terrestrial environment. Based on previous salamander experiments (a modern analog to early tetrapods and performed by Hutchinson's group at RVC in the UK) we built a robophysical model of a salamander and tested its performance on yielding granular media (GM) of poppy seeds. Our servo-driven robot (405 g, 38 cm long) has four limbs, a flexible body, and an active tail. Each limb has two servo motors to control up/down and fore/aft positions of limb. A joint in the middle of the body controls horizontal bending. We assessed performance of the robot by changing the body bending limit from 0°to 90°and measured body displacement and power consumption over a few limb cycles at 0°and 10°sandy slope. We fixed the angle of the legs according to body to test the effect of body bending directly. On GM, step length increased from 0 to 9.5 cm at 0° and 0 to 7 cm at 10°slope while the average power consumption increased 50 % . A geometric mechanics model revealed that on level GM body bending was most beneficial when phase offset 180°from leg movements; increasing the maximum body angular bend from 45°to 90° led to step length increases of up to 90 % .

  4. Detail of exciter turbine showing shaft, scroll case, servomotor and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of exciter turbine showing shaft, scroll case, servo-motor and operating ring (left foreground) and hand wheel for butterfly valve (right background) - Morony Hydroelectric Facility, Dam and Powerhouse, Morony Dam Road, Great Falls, Cascade County, MT

  5. Thresholds of cortical activation of muscle spindles and α motoneurones of the baboon's hand

    PubMed Central

    Koeze, T. H.; Phillips, C. G.; Sheridan, J. D.

    1968-01-01

    1. Much current thinking about voluntary movement assumes that the segmental γ loops can function as a servomechanism operated by the brain. However, the α motoneurones of the baboon's hand receive a powerful monosynaptic (CM) projection from the precentral gyrus. If servo-driving from the same cortical area is to be possible, it must project independently to the fusimotor neurones and have sufficient power to increase the afferent signalling from the muscle spindles. The cortical thresholds for contraction of m. extensor digitorum communis and for acceleration of the discharges of its muscle spindles have therefore been compared. 2. Significant results in this context require that the spindles studied be coupled in parallel with the responding extrafusal muscle fibres. Many spindles were not unloaded by the submaximal contractions evoked by cortical stimulation, although all so tested were unloaded by maximal motor nerve twitches. Reasons are given for thinking that such apparent lack of parallel coupling is an artifact of complex intramuscular anatomy and limitation of shortening by `isometric' myography. 3. A brief burst of corticospinal volleys at 500/sec, which is specially effective in exciting α motoneurones over the CM projection, failed to excite spindle afferents at or below the threshold for a cortical `twitch'. 4. In a few epileptiform discharges, bursts of spindle acceleration occurred independently of the clonic contractions. A relatively direct and independent cortico-fusimotor (CF) projection may therefore exist. 5. Prolonged near-threshold stimulation at 50-100/sec, which allows time for temporal summation in the less direct projections (e.g. cortico-interneuronal, cortico-rubro-spinal) and does not cause frequency-potentiation at CM synapses, gives abundant evidence of independent α and fusimotor projections, whose actions hardly outlast the stimulation period. 6. Although independent CF projections would permit servo-driving in natural movements of the hand (given adequate loop gain), there has been no evidence of servo-driving by cortical stimulation or in the spontaneous contractions of light anaesthesia. 7. Independent projections would provide for controlled αγ co-excitation in the servo-governing of natural movements (Matthews, 1964). 8. Evidence is reviewed that the CM projection itself may be part of an important control loop for voluntary movement in primates. A corollary would be a diminished importance of CF projections for segmental loops and an increased importance for maintaining the spindle input to cortical loops. PMID:4231033

  6. A new approach for vibration control in large space structures

    NASA Technical Reports Server (NTRS)

    Kumar, K.; Cochran, J. E., Jr.

    1987-01-01

    An approach for augmenting vibration damping characteristics in space structures with large panels is presented. It is based on generation of bending moments rather than forces. The moments are generated using bimetallic strips, suitably mounted at selected stations on both sides of the large panels, under the influence of differential solar heating, giving rise to thermal gradients and stresses. The collocated angular velocity sensors are utilized in conjunction with mini-servos to regulate the control moments by flipping the bimetallic strips. A simple computation of the rate of dissipation of vibrational energy is undertaken to assess the effectiveness of the proposed approach.

  7. Frequency noise suppression of a single mode laser with an unbalanced fiber interferometer for subnanometer interferometry.

    PubMed

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej

    2015-01-12

    We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency.

  8. Applications of industrial engineering. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yarbrough, Walthea V.

    1992-01-01

    Two separate and distinctly different projects are described within this paper: the stepping motion bearing tester, and the memo search and find project. The objective of the first project was to program the JSI Digital Servo Controller to control the motor using the stepping pattern prescribed by the AMSU-U2 Scan Profile. The objective of the second project was to develop a dBASE 3 Plus program that would allow the user to gain the necessary information to retrieve the memo(s) being sought upon supplying a word or group of words possibly found in the keyword list or upon supplying the author's name.

  9. Toward Automated Intraocular Laser Surgery Using a Handheld Micromanipulator

    PubMed Central

    Yang, Sungwook; MacLachlan, Robert A.; Riviere, Cameron N.

    2014-01-01

    This paper presents a technique for automated intraocular laser surgery using a handheld micromanipulator known as Micron. The novel handheld manipulator enables the automated scanning of a laser probe within a cylinder of 4 mm long and 4 mm in diameter. For the automation, the surface of the retina is reconstructed using a stereomicroscope, and then preplanned targets are placed on the surface. The laser probe is precisely located on the target via visual servoing of the aiming beam, while maintaining a specific distance above the surface. In addition, the system is capable of tracking the surface of the eye in order to compensate for any eye movement introduced during the operation. We compared the performance of the automated scanning using various control thresholds, in order to find the most effective threshold in terms of accuracy and speed. Given the selected threshold, we conducted the handheld operation above a fixed target surface. The average error and execution time are reduced by 63.6% and 28.5%, respectively, compared to the unaided trials. Finally, the automated laser photocoagulation was demonstrated also in an eye phantom, including compensation for the eye movement. PMID:25893135

  10. Engineering education using a remote laboratory through the Internet

    NASA Astrophysics Data System (ADS)

    Axaopoulos, Petros J.; Moutsopoulos, Konstantinos N.; Theodoridis, Michael P.

    2012-03-01

    An experiment using real hardware and under real test conditions can be remotely conducted by engineering students and other interested individuals in the world via the Internet and with the capability of live video streaming from the test site. The presentation of this innovative experiment refers to the determination of the current voltage characteristic curve of a photovoltaic panel installed on the roof of a laboratory, facing south and with the ability to alter its tilt angle, using a closed loop servo motor mounted on the horizontal axis of the panel. The user has the sense of a direct contact with the system since they can intervene and alter the tilt of the panel and get a live visual feedback besides the remote instrumentation panel. The whole procedure takes a few seconds to complete and the characteristic curve is displayed in a chart giving the student and anyone else interested the chance to analyse the results and understand the respective theory; meanwhile, the test data are stored in a file for future use. This type of remote experiment could be used for distance education, training, part-time study and to help students with disabilities to participate in a laboratory environment.

  11. An anthropomorphic master-slave manipulator system.

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.; King, R. F.; Vallotton, W. C.

    1973-01-01

    Review of some of the results of a teleoperator systems technology program devoted to the development of an anthropomorphic unilateral master-slave manipulator system. Following a discussion of the mechanical design details and servo design considerations, the developed system's test results are presented.

  12. A Neural Model for Language and Speech.

    ERIC Educational Resources Information Center

    Buckingham, Hugh W., Jr.; Hollien, Harry

    1978-01-01

    A neural model in the form of a servo-mechanism is developed to account for certain aspects of language and speech in the human nervous system. Emphasis is placed on encoding processes as well as on-going feedback during production. (SW)

  13. Design and control of the precise tracking bed based on complex electromechanical design theory

    NASA Astrophysics Data System (ADS)

    Ren, Changzhi; Liu, Zhao; Wu, Liao; Chen, Ken

    2010-05-01

    The precise tracking technology is wide used in astronomical instruments, satellite tracking and aeronautic test bed. However, the precise ultra low speed tracking drive system is one high integrated electromechanical system, which one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The precise Tracking Bed is one ultra-exact, ultra-low speed, high precision and huge inertial instrument, which some kind of mechanism and environment of the ultra low speed is different from general technology. This paper explores the design process based on complex electromechanical optimizing design theory, one non-PID with a CMAC forward feedback control method is used in the servo system of the precise tracking bed and some simulation results are discussed.

  14. Enhanced Numerical Tools for Computer Simulation of Coupled Physical Phenomena and Design of Components Made of Innovative Materials

    NASA Astrophysics Data System (ADS)

    Cegielski, M.; Hernik, S.; Kula, M.; Oleksy, M.

    This section is based on paper [96], the objective of which is modeling of the unilateral damage effect in the aluminum alloy Al-2024, based on the nonlinear Armstrong-Frederick model Eq. 6.60 enriched by damage [170] with a continuous damage deactivation concept. The simulation is proposed in order to model the phenomenon of nonsymmetric hysteresis loop evolution due to different damage growth under tension and compression observed in the experiment [1]. The specimens used in the experiment were made of aluminum alloy Al-2024 (Table 7.1). The tests were carried out at room temperature on a servo-hydraulic INSTRON machine type 1340, using thin-walled tubes of the dimensions: internal diameter 15 mm and external diameter 18 mm.

  15. Computational design and multiscale modeling of a nanoactuator using DNA actuation.

    PubMed

    Hamdi, Mustapha

    2009-12-02

    Developments in the field of nanobiodevices coupling nanostructures and biological components are of great interest in medical nanorobotics. As the fundamentals of bio/non-bio interaction processes are still poorly understood in the design of these devices, design tools and multiscale dynamics modeling approaches are necessary at the fabrication pre-project stage. This paper proposes a new concept of optimized carbon nanotube based servomotor design for drug delivery and biomolecular transport applications. The design of an encapsulated DNA-multi-walled carbon nanotube actuator is prototyped using multiscale modeling. The system is parametrized by using a quantum level approach and characterized by using a molecular dynamics simulation. Based on the analysis of the simulation results, a servo nanoactuator using ionic current feedback is simulated and analyzed for application as a drug delivery carrier.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian F; Damiani, Rick R

    This poster summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between two modeling approaches (fully coupled and sequentially coupled) through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.

  17. 75 FR 56061 - Notice of Petitions by Firms for Determination of Eligibility To Apply for Trade Adjustment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... Avenue, 8/31/2010 The firm manufactures hydraulic, air over Jackson, MI 49203. oil and pneumatic presses..., cylinders, valves, servo controls, and fittings. Fiber-Line, Inc 3050 Campus Drive 9/7/2010 The firm...

  18. Role of pressure in angiotensin II-induced renal injury: chronic servo-control of renal perfusion pressure in rats.

    PubMed

    Mori, Takefumi; Cowley, Allen W

    2004-04-01

    Renal perfusion pressure was servo-controlled chronically in rats to quantify the relative contribution of elevated arterial pressure versus angiotensin II (Ang II) on the induction of renal injury in Ang II-induced hypertension. Sprague-Dawley rats fed a 4% salt diet were administered Ang II for 14 days (25 ng/kg per minute IV; saline only for sham rats), and the renal perfusion pressure to the left kidney was continuously servo-controlled to maintain a normal pressure in that kidney throughout the period of hypertension. An aortic occluder was implanted around the aorta between the two renal arteries and carotid and femoral arterial pressure were measured continuously throughout the experiment to determine uncontrolled and controlled renal perfusion pressure, respectively. Renal perfusion pressure of uncontrolled, controlled, and sham kidneys over the period of Ang II or saline infusion averaged 152.6+/-7.0, 117.4+/-3.5, and 110.7+/-2.2 mm Hg, respectively. The high-pressure uncontrolled kidneys exhibited tubular necrosis and interstitial fibrosis, especially prominent in the outer medullary region. Regional glomerular sclerosis and interlobular artery injury were also pronounced. Controlled kidneys were significantly protected from interlobular artery injury, juxtamedullary glomeruli injury, tubular necrosis, and interstitial fibrosis as determined by comparing the level of injury. Glomerular injury was not prevented in the outer cortex. Transforming growth factor (TGF)-beta and active NF-kappaB proteins determined by immunohistochemistry were colocalized in the uncontrolled kidney in regions of interstitial fibrosis. We conclude that the preferential juxtamedullary injury found in Ang II hypertension is largely induced by pressure and is probably mediated through the TGF-beta and NF-kappaB pathway.

  19. Interferometer scanning mechanisms and metrology at ABB: recent developments and future perspectives

    NASA Astrophysics Data System (ADS)

    Grandmont, Frédéric; Buijs, Henry; Mandar, Julie

    2017-11-01

    Interferometers are devices meant to create an interference pattern between photons emitted from a given target of interest. In most cases, this interference pattern must be scanned over time or space to reveal useful information about the target (ex.: radiance spectra or a star diameter). This scanning is typically achieved by moving mirrors at a precision a few orders of magnitude smaller than the wavelength under study. This sometimes leads to mechanism requirements of especially high dynamic range equivalent to 30 bits or more (ex. Sub-nanometer precision over stoke of tens of cms for spectroscopy or tens of meters for astronomical spatial interferometry). On top of this mechanical challenge, the servo control of the mirror position involves obtaining relative distance measurement between distant optical elements with similar if not better dynamic range. The feedback information for such servo-control loop is usually the optical path difference (OPD) measured with a metrology laser beam injected in the interferometer. Over the years since the establishement of the Fourier Transform Spectrometers (FTS) in the 60's as a standard spectroscopic tools, many different approaches have been used to accomplish this task. When it comes to space however, not all approaches are successful. The design challenge can be viewed as analogous to that of scene scanning modules with the exception that the sensitivity and precision are much finer. These mechanisms must move freely to allow fine corrections while remaining stiff to reject external perturbations with frequencies outside of the servo control system reach. Space also brings the additional challenges of implementing as much redundancy as possible and offering protection during launch for these sub-systems viewed as critical single point failures of the payloads they serve.

  20. Application of a microcomputer-based system to control and monitor bacterial growth.

    PubMed

    Titus, J A; Luli, G W; Dekleva, M L; Strohl, W R

    1984-02-01

    A modular microcomputer-based system was developed to control and monitor various modes of bacterial growth. The control system was composed of an Apple II Plus microcomputer with 64-kilobyte random-access memory; a Cyborg ISAAC model 91A multichannel analog-to-digital and digital-to-analog converter; paired MRR-1 pH, pO(2), and foam control units; and in-house-designed relay, servo control, and turbidimetry systems. To demonstrate the flexibility of the system, we grew bacteria under various computer-controlled and monitored modes of growth, including batch, turbidostat, and chemostat systems. The Apple-ISAAC system was programmed in Labsoft BASIC (extended Applesoft) with an average control program using ca. 6 to 8 kilobytes of memory and up to 30 kilobytes for datum arrays. This modular microcomputer-based control system was easily coupled to laboratory scale fermentors for a variety of fermentations.

  1. Application of a Microcomputer-Based System to Control and Monitor Bacterial Growth

    PubMed Central

    Titus, Jeffrey A.; Luli, Gregory W.; Dekleva, Michael L.; Strohl, William R.

    1984-01-01

    A modular microcomputer-based system was developed to control and monitor various modes of bacterial growth. The control system was composed of an Apple II Plus microcomputer with 64-kilobyte random-access memory; a Cyborg ISAAC model 91A multichannel analog-to-digital and digital-to-analog converter; paired MRR-1 pH, pO2, and foam control units; and in-house-designed relay, servo control, and turbidimetry systems. To demonstrate the flexibility of the system, we grew bacteria under various computer-controlled and monitored modes of growth, including batch, turbidostat, and chemostat systems. The Apple-ISAAC system was programmed in Labsoft BASIC (extended Applesoft) with an average control program using ca. 6 to 8 kilobytes of memory and up to 30 kilobytes for datum arrays. This modular microcomputer-based control system was easily coupled to laboratory scale fermentors for a variety of fermentations. PMID:16346462

  2. Silhouette-based approach of 3D image reconstruction for automated image acquisition using robotic arm

    NASA Astrophysics Data System (ADS)

    Azhar, N.; Saad, W. H. M.; Manap, N. A.; Saad, N. M.; Syafeeza, A. R.

    2017-06-01

    This study presents the approach of 3D image reconstruction using an autonomous robotic arm for the image acquisition process. A low cost of the automated imaging platform is created using a pair of G15 servo motor connected in series to an Arduino UNO as a main microcontroller. Two sets of sequential images were obtained using different projection angle of the camera. The silhouette-based approach is used in this study for 3D reconstruction from the sequential images captured from several different angles of the object. Other than that, an analysis based on the effect of different number of sequential images on the accuracy of 3D model reconstruction was also carried out with a fixed projection angle of the camera. The effecting elements in the 3D reconstruction are discussed and the overall result of the analysis is concluded according to the prototype of imaging platform.

  3. Improved electromechanical master-slave manipulator

    NASA Technical Reports Server (NTRS)

    Forster, G.; Goertz, R.; Grimson, J.; Mingesz, D.; Potts, C.

    1968-01-01

    Electric master-slave manipulator uses force multiplication and allows the operator to remotely control the slave arm. Both the master and slave arms execute seven distinct motions by a specially designed force-reflecting servo having a one to one correspondence between the motion at the master and slave.

  4. 46 CFR 58.25-5 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tanker's hydraulic steering gear. Auxiliary steering gear means the equipment, other than any part of the...; (2) Receivers; (3) Feedback devices; (4) Hydraulic servo-control pumps, with associated motors and... the hydraulic equipment for applying torque to the rudder stock. It includes, but is not limited to...

  5. 46 CFR 58.25-5 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tanker's hydraulic steering gear. Auxiliary steering gear means the equipment, other than any part of the...; (2) Receivers; (3) Feedback devices; (4) Hydraulic servo-control pumps, with associated motors and... the hydraulic equipment for applying torque to the rudder stock. It includes, but is not limited to...

  6. Disturbance torque rejection properties of the NASA/JPL 70-meter antenna axis servos

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1989-01-01

    Analytic methods for evaluating pointing errors caused by external disturbance torques are developed and applied to determine the effects of representative values of wind and friction torque. The expressions relating pointing errors to disturbance torques are shown to be strongly dependent upon the state estimator parameters, as well as upon the state feedback gain and the flow versus pressure characteristics of the hydraulic system. Under certain conditions, when control is derived from an uncorrected estimate of integral position error, the desired type 2 servo properties are not realized and finite steady-state position errors result. Methods for reducing these errors to negligible proportions through the proper selection of control gain and estimator correction parameters are demonstrated. The steady-state error produced by a disturbance torque is found to be directly proportional to the hydraulic internal leakage. This property can be exploited to provide a convenient method of determining system leakage from field measurements of estimator error, axis rate, and hydraulic differential pressure.

  7. Towards an Aero-Propulso-Servo-Elasticity Analysis of a Commercial Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George; Chwalowski, Pawel; Sanetrik, Mark D.; Carlson, Jan-Renee; Silva, Walt A.; McNamara, Jack

    2016-01-01

    This paper covers the development of an aero-propulso-servo-elastic (APSE) model using computational fluid dynamics (CFD) and linear structural deformations. The APSE model provides the integration of the following two previously developed nonlinear dynamic simulations: a variable cycle turbofan engine and an elastic supersonic commercial transport vehicle. The primary focus of this study is to provide a means to include relevant dynamics of a turbomachinery propulsion system into the aeroelastic studies conducted during a vehicle design, which have historically neglected propulsion effects. A high fidelity CFD tool is used here for the integration platform. The elastic vehicle neglecting the propulsion system serves as a comparison of traditional approaches to the APSE results. An overview of the methodology is presented for integrating the propulsion system and elastic vehicle. Static aeroelastic analysis comparisons between the traditional and developed APSE models for a wing tip detection indicate that the propulsion system impact on the vehicle elastic response could increase the detection by approximately ten percent.

  8. Adaptive integral robust control and application to electromechanical servo systems.

    PubMed

    Deng, Wenxiang; Yao, Jianyong

    2017-03-01

    This paper proposes a continuous adaptive integral robust control with robust integral of the sign of the error (RISE) feedback for a class of uncertain nonlinear systems, in which the RISE feedback gain is adapted online to ensure the robustness against disturbances without the prior bound knowledge of the additive disturbances. In addition, an adaptive compensation integrated with the proposed adaptive RISE feedback term is also constructed to further reduce design conservatism when the system also exists parametric uncertainties. Lyapunov analysis reveals the proposed controllers could guarantee the tracking errors are asymptotically converging to zero with continuous control efforts. To illustrate the high performance nature of the developed controllers, numerical simulations are provided. At the end, an application case of an actual electromechanical servo system driven by motor is also studied, with some specific design consideration, and comparative experimental results are obtained to verify the effectiveness of the proposed controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. State feedback integral control for a rotary direct drive servo valve using a Lyapunov function approach.

    PubMed

    Yu, Jue; Zhuang, Jian; Yu, Dehong

    2015-01-01

    This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  10. In-orbit evaluation of the control system/structural mode interactions of the OSO-8 spacecraft

    NASA Technical Reports Server (NTRS)

    Slafer, L. I.

    1979-01-01

    The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. The paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments, and have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system.

  11. Experiments evaluating compliance and force feedback effect on manipulator performance

    NASA Technical Reports Server (NTRS)

    Kugath, D. A.

    1972-01-01

    The performance capability was assessed of operators performing simulated space tasks using manipulator systems which had compliance and force feedback varied. Two manipulators were used, the E-2 electromechanical man-equivalent (force, reach, etc.) master-slave system and a modified CAM 1400 hydraulic master-slave with 100 lbs force capability at reaches of 24 ft. The CAM 1400 was further modified to operate without its normal force feedback. Several experiments and simulations were performed. The first two involved the E-2 absorbing the energy of a moving mass and secondly, guiding a mass thru a maze. Thus, both work and self paced tasks were studied as servo compliance was varied. Three simulations were run with the E-2 mounted on the CAM 1400 to evaluate the concept of a dexterous manipulator as an end effector of a boom-manipulator. Finally, the CAM 1400 performed a maze test and also simulated the capture of a large mass as the servo compliance was varied and with force feedback included and removed.

  12. Laser Assisted Micro Wire GMAW and Droplet Welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FUERSCHBACH, PHILLIP W.; LUCK, D. L.; BERTRAM, LEE A.

    2002-03-01

    Laser beam welding is the principal welding process for the joining of Sandia weapon components because it can provide a small fusion zone with low overall heating. Improved process robustness is desired since laser energy absorption is extremely sensitive to joint variation and filler metal is seldom added. This project investigated the experimental and theoretical advantages of combining a fiber optic delivered Nd:YAG laser with a miniaturized GMAW system. Consistent gas metal arc droplet transfer employing a 0.25 mm diameter wire was only obtained at high currents in the spray transfer mode. Excessive heating of the workpiece in this modemore » was considered an impractical result for most Sandia micro-welding applications. Several additional droplet detachment approaches were investigated and analyzed including pulsed tungsten arc transfer(droplet welding), servo accelerated transfer, servo dip transfer, and electromechanically braked transfer. Experimental observations and rigorous analysis of these approaches indicate that decoupling droplet detachment from the arc melting process is warranted and may someday be practical.« less

  13. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan

    2016-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report

  14. Propulsion System Dynamic Modeling for the NASA Supersonic Concept Vehicle: AeroPropulsoServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.propulsion system dynamics, the structural dynamics, and aerodynamics.

  15. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the lowboom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.

  16. Linear motor drive system for continuous-path closed-loop position control of an object

    DOEpatents

    Barkman, William E.

    1980-01-01

    A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

  17. Electromagnetic variable degrees of freedom actuator systems and methods

    DOEpatents

    Montesanti, Richard C [Pleasanton, CA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.

    2009-02-17

    The present invention provides a variable reluctance actuator system and method that can be adapted for simultaneous rotation and translation of a moving element by applying a normal-direction magnetic flux on the moving element. In a beneficial example arrangement, the moving element includes a swing arm that carries a cutting tool at a set radius from an axis of rotation so as to produce a rotary fast tool servo that provides a tool motion in a direction substantially parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. An actuator rotates a swing arm such that a cutting tool moves toward and away from a mounted rotating workpiece in a controlled manner in order to machine the workpiece. Position sensors provide rotation and displacement information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in feed slide of a precision lathe.

  18. The Total In-Flight Simulator (TIFS) aerodynamics and systems: Description and analysis. [maneuver control and gust alleviators

    NASA Technical Reports Server (NTRS)

    Andrisani, D., II; Daughaday, H.; Dittenhauser, J.; Rynaski, E.

    1978-01-01

    The aerodynamics, control system, instrumentation complement and recording system of the USAF Total In/Flight Simulator (TIFS) airplane are described. A control system that would allow the ailerons to be operated collectively, as well as, differentially to entrance the ability of the vehicle to perform the dual function of maneuver load control and gust alleviation is emphasized. Mathematical prediction of the rigid body and the flexible equations of longitudinal motion using the level 2.01 FLEXSTAB program are included along with a definition of the vehicle geometry, the mass and stiffness distribution, the calculated mode frequencies and mode shapes, and the resulting aerodynamic equations of motion of the flexible vehicle. A complete description of the control and instrumentation system of the aircraft is presented, including analysis, ground test and flight data comparisons of the performance and bandwidth of the aerodynamic surface servos. Proposed modification for improved performance of the servos are also presented.

  19. Flight investigation of rotor/vehicle state feedback

    NASA Technical Reports Server (NTRS)

    Briczinski, S. J.; Cooper, D. E.

    1975-01-01

    The feasibility of using control feedback or rotor tip-path-plane motion or body state as a means of altering rotor and fuselage response in a prescribed manner was investigated to determine the practical limitations of in-flight utilization of a digital computer which conditions and shapes rotor flapping and fuselage state information as feedback signals, before routing these signals to the differential servo actuators. The analysis and test of various feedback schemes are discussed. Test results show that a Kalman estimator routine which is based on only the first harmonic contributions of blade flapping yields tip-path-plane coefficients which are adequate for use in feedback systems, at speeds up to 150 kts.

  20. Design and simulation of the direct drive servo system

    NASA Astrophysics Data System (ADS)

    Ren, Changzhi; Liu, Zhao; Song, Libin; Yi, Qiang; Chen, Ken; Zhang, Zhenchao

    2010-07-01

    As direct drive technology is finding their way into telescope drive designs for its many advantages, it would push to more reliable and cheaper solutions for future telescope complex motion system. However, the telescope drive system based on the direct drive technology is one high integrated electromechanical system, which one complex electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The telescope is one ultra-exact, ultra-speed, high precision and huge inertial instrument, which the direct torque motor adopted by the telescope drive system is different from traditional motor. This paper explores the design process and some simulation results are discussed.

  1. Optimization of A 2-Micron Laser Frequency Stabilization System for a Double-Pulse CO2 Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Yu, Jirong; Bai, Yingsin; Koch, Grady; Petros, Mulugeta; Trieu, Bo; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey

    2010-01-01

    A carbon dioxide (CO2) Differential Absorption Lidar (DIAL) for accurate CO2 concentration measurement requires a frequency locking system to achieve high frequency locking precision and stability. We describe the frequency locking system utilizing Frequency Modulation (FM), Phase Sensitive Detection (PSD), and Proportional Integration Derivative (PID) feedback servo loop, and report the optimization of the sensitivity of the system for the feed back loop based on the characteristics of a variable path-length CO2 gas cell. The CO2 gas cell is characterized with HITRAN database (2004). The method can be applied for any other frequency locking systems referring to gas absorption line.

  2. Frequency Noise Suppression of a Single Mode Laser with an Unbalanced Fiber Interferometer for Subnanometer Interferometry

    PubMed Central

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej

    2015-01-01

    We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency. PMID:25587980

  3. Embedded Control System for Smart Walking Assistance Device.

    PubMed

    Bosnak, Matevz; Skrjanc, Igor

    2017-03-01

    This paper presents the design and implementation of a unique control system for a smart hoist, a therapeutic device that is used in rehabilitation of walking. The control system features a unique human-machine interface that allows the human to intuitively control the system just by moving or rotating its body. The paper contains an overview of the complete system, including the design and implementation of custom sensors, dc servo motor controllers, communication interfaces and embedded-system based central control system. The prototype of the complete system was tested by conducting a 6-runs experiment on 11 subjects and results are showing that the proposed control system interface is indeed intuitive and simple to adopt by the user.

  4. FPGA implementation of current-sharing strategy for parallel-connected SEPICs

    NASA Astrophysics Data System (ADS)

    Ezhilarasi, A.; Ramaswamy, M.

    2016-01-01

    The attempt echoes to evolve an equal current-sharing algorithm over a number of single-ended primary inductance converters connected in parallel. The methodology involves the development of state-space model to predict the condition for the existence of a stable equilibrium portrait. It acquires the role of a variable structure controller to guide the trajectory, with a view to circumvent the circuit non-linearities and arrive at a stable performance through a preferred operating range. The design elicits an acceptable servo and regulatory characteristics, the desired time response and ensures regulation of the load voltage. The simulation results validated through a field programmable gate array-based prototype serves to illustrate its suitability for present-day applications.

  5. Designing and testing lightweight shoulder prostheses with hybrid actuators for movements involved in typical activities of daily living and impact absorption.

    PubMed

    Sekine, Masashi; Kita, Kahori; Yu, Wenwei

    2015-01-01

    Unlike forearm amputees, transhumeral amputees have residual stumps that are too small to provide a sufficient range of operation for their prosthetic parts to perform usual activities of daily living. Furthermore, it is difficult for small residual stumps to provide sufficient impact absorption for safe manipulation in daily living, as intact arms do. Therefore, substitution of upper limb function in transhumeral amputees requires a sufficient range of motion and sufficient viscoelasticity for shoulder prostheses under critical weight and dimension constraints. We propose the use of two different types of actuators, ie, pneumatic elastic actuators (PEAs) and servo motors. PEAs offer high power-to-weight performance and have intrinsic viscoelasticity in comparison with motors or standard industrial pneumatic cylinder actuators. However, the usefulness of PEAs in large working spaces is limited because of their short strokes. Servo motors, in contrast, can be used to achieve large ranges of motion. In this study, the relationship between the force and stroke of PEAs was investigated. The impact absorption of both types of actuators was measured using a single degree-of-freedom prototype to evaluate actuator compliance for safety purposes. Based on the fundamental properties of the actuators identified, a four degree-of-freedom robotic arm is proposed for prosthetic use. The configuration of the actuators and functional parts was designed to achieve a specified range of motion and torque calculated from the results of a simulation of typical movements performed in usual activities of daily living. Our experimental results showed that the requirements for the shoulder prostheses could be satisfied.

  6. Two-axis gimbal for air-to-air and air-to-ground laser communications

    NASA Astrophysics Data System (ADS)

    Talmor, Amnon G.; Harding, Harvard; Chen, Chien-Chung

    2016-03-01

    For bi-directional links between high-altitude-platforms (HAPs) and ground, and air-to-air communication between such platforms, a hemispherical +30°C field-of-regard and low-drag low-mass two-axis gimbal was designed and prototyped. The gimbal comprises two servo controlled non-orthogonal elevation over azimuth axis, and inner fast steering mirrors for fine field-of-regard adjustment. The design encompasses a 7.5cm diameter aperture refractive telescope in its elevation stage, folded between two flat mirrors with an exit lens leading to a two mirrors miniature Coude-path fixed to the azimuth stage. Multiple gimbal configurations were traded prior to finalizing a selection that met the requirements. The selected design was manifested onboard a carbon fiber and magnesium composite structure, motorized by custom-built servo motors, and commutated by optical encoders. The azimuth stage is electrically connected to the stationary base via slip ring while the elevation stage made of passive optics. Both axes are aligned by custom-built ceramic-on-steel angular contact duplex bearings, and controlled by embedded electronics featuring a rigid-flex PCB architecture. FEA analysis showed that the design is mechanically robust over a temperature range of +60°C to -80°C, and with first mode of natural frequencies above 400Hz. The total mass of the prototyped gimbal is 3.5kg, including the inner optical bench, which contains fast steering mirrors (FSMs) and tracking sensors. Future version of this gimbal, in prototyping stage, shall weigh less than 3.0kg.

  7. Parameter tuning method for dither compensation of a pneumatic proportional valve with friction

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Song, Yang; Huang, Leisheng; Fan, Wei

    2016-05-01

    In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal (using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.

  8. An electrical strain gage for the tensile testing of paper

    Treesearch

    Douglas M. Jewett

    1963-01-01

    A direct-reading strain gage has been developed at the U.S. Forest Products Laboratory that provides rapid and accurate measurement of the stress - strain properties of paper. The gage, which employs a differential transformer, is particularly suited to servo-operated x-y recorders.

  9. Pulse-width-modulated servo valve for autopilot system

    NASA Technical Reports Server (NTRS)

    Garner, H. D.

    1974-01-01

    Valve was developed for autopilot wing-lever system and is to be used in light, single-engine aircraft. Valve is controlled by electronic circuit which feeds pulse-width-modulated correction signals to two solenoids. Valve housing is cast from plastic, making it very economical to fabricate.

  10. The Goddard helical tape recorder

    NASA Technical Reports Server (NTRS)

    Martin, F. T.; Mccarthy, D. K.

    1972-01-01

    A spacecraft recorder was developed with the objective of functioning continuously for 5 years. The resulting design employed a metallic tape wound in a 200-turn helix. A direct drive, brushless dc torquer and servo speed control drove the recorder at 3 rpm for recording and 54 rpm for playback.

  11. Wear rates of artificial denture teeth opposed by natural dentition.

    PubMed

    Douglas, W H; Delong, R; Pintado, M R; Latta, M A

    1993-01-01

    The wear rate of polymeric or composite-based artificial denture teeth on fixed, removable and implant prostheses is important in the maintenance of cuspal form, masticatory efficiency and occlusal stability. A servo-hydraulic based artificial mouth in which an occlusion was established between artificial denture teeth, and the palatal cusp of a human maxillary third molar was established and used to assess the wear resistance of 5 artificial denture tooth materials. Volumetric wear was determined for Dentsply Trublend SLM, Dentsply IPN, Vita Vitapan, Ivoclar Orthotyp and Ivoclar Orthosit denture teeth. Scanning electron microscopy was also done to assess the textural character of the wear facets of each denture tooth sample. The lowest volume loss was observed for Trublend SLM followed by IPN, Orthotyp, Vitapan and Orthosit. Textural assessment of the materials was consistent with the objective wear data.

  12. Aerobot Autonomy Architecture

    NASA Technical Reports Server (NTRS)

    Elfes, Alberto; Hall, Jeffery L.; Kulczycki, Eric A.; Cameron, Jonathan M.; Morfopoulos, Arin C.; Clouse, Daniel S.; Montgomery, James F.; Ansar, Adnan I.; Machuzak, Richard J.

    2009-01-01

    An architecture for autonomous operation of an aerobot (i.e., a robotic blimp) to be used in scientific exploration of planets and moons in the Solar system with an atmosphere (such as Titan and Venus) is undergoing development. This architecture is also applicable to autonomous airships that could be flown in the terrestrial atmosphere for scientific exploration, military reconnaissance and surveillance, and as radio-communication relay stations in disaster areas. The architecture was conceived to satisfy requirements to perform the following functions: a) Vehicle safing, that is, ensuring the integrity of the aerobot during its entire mission, including during extended communication blackouts. b) Accurate and robust autonomous flight control during operation in diverse modes, including launch, deployment of scientific instruments, long traverses, hovering or station-keeping, and maneuvers for touch-and-go surface sampling. c) Mapping and self-localization in the absence of a global positioning system. d) Advanced recognition of hazards and targets in conjunction with tracking of, and visual servoing toward, targets, all to enable the aerobot to detect and avoid atmospheric and topographic hazards and to identify, home in on, and hover over predefined terrain features or other targets of scientific interest. The architecture is an integrated combination of systems for accurate and robust vehicle and flight trajectory control; estimation of the state of the aerobot; perception-based detection and avoidance of hazards; monitoring of the integrity and functionality ("health") of the aerobot; reflexive safing actions; multi-modal localization and mapping; autonomous planning and execution of scientific observations; and long-range planning and monitoring of the mission of the aerobot. The prototype JPL aerobot (see figure) has been tested extensively in various areas in the California Mojave desert.

  13. Definition of the Floating System for Phase IV of OC3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, J.

    Phase IV of the IEA Annex XXIII Offshore Code Comparison Collaboration (OC3) involves the modeling of an offshore floating wind turbine. This report documents the specifications of the floating system, which are needed by the OC3 participants for building aero-hydro-servo-elastic models.

  14. Adaptive proximate time-optimal servomechanisms - Continuous time case

    NASA Technical Reports Server (NTRS)

    Workman, M. L.; Kosut, R. L.; Franklin, G. F.

    1987-01-01

    A Proximate Time-Optimal Servo (PTOS) is developed, along with conditions for its stability. An algorithm is proposed for adapting the PTOS (APTOS) to improve performance in the face of uncertain plant parameters. Under ideal conditions APTOS is shown to be uniformly asymptotically stable. Simulation results demonstrate the predicted performance.

  15. 4. VIEW OF TURBINE PIT AT UNIT 3 SHOWING SERVOMOTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF TURBINE PIT AT UNIT 3 SHOWING SERVO-MOTOR HEADS (BACKGROUND AT CENTER) WITH PISTON RODS BOLTED TO TURBINE GATE OPERATION RING (CENTER AT LEFT AND CENTER AT RIGHT). VIEW TO THE NORTH-NORTHWEST. - Black Eagle Hydroelectric Facility, Powerhouse, Great Falls, Cascade County, MT

  16. 6. View of turbine pit at unit 3 showing servomotor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View of turbine pit at unit 3 showing servo-motor head (left of center) with piston rods bolted to turbine gate operation ring (right foreground). View to southeast. - Holter Hydroelectric Facility, Dam & Power House, End of Holter Dam Road, Wolf Creek, Lewis and Clark County, MT

  17. 78 FR 54792 - Airworthiness Directives; Eurocopter France (Eurocopter) Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 [Docket No. FAA-2013... create oscillations in the main rotor which can transfer dynamic loads to the structure, the main gearbox (MGB), and the main servo-control inputs, which could result in subsequent loss of control of the...

  18. Control of Vibration in Mechanical Systems Using Shaped Reference Inputs

    DTIC Science & Technology

    1988-01-01

    damping with several discrete actuators. Burke and Hubbard 34! generated a distributed control law by applying a piezoelectric film to the beam that...setpoints from successive memory locations. DATA-kYOVE (- starts servoing to setpoints from successive memory locations for mnicro scified by MN while taking

  19. Linear kinematic air bearing

    NASA Technical Reports Server (NTRS)

    Mayall, S. D.

    1974-01-01

    Bearing provides continuous, smooth movement of the cat's-eye mirror, eliminating wear and deterioration of bearing surface and resulting oscillation effects in servo system. Design features self-aligning configuration; single-point, pivotal pad mounting, having air passage through it; and design of pads that allows for precise control of discharge path of air from pads.

  20. 16 CFR 1610.5 - Test apparatus and materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... electronic circuits, in addition to miscellaneous custom made cams and rods, shock absorbing linkages, and... burn time to 0.1 second. An electronic or mechanical timer can be used to record the burn time, and electro-mechanical devices (i.e., servo-motors, solenoids, micro-switches, and electronic circuits, in...

Top