Chung, King
2012-01-01
The objectives of this study were: (1) to examine the effect of wide dynamic range compression (WDRC) and modulation-based noise reduction (NR) algorithms on wind noise levels at the hearing aid output; and (2) to derive effective strategies for clinicians and engineers to reduce wind noise in hearing aids. Three digital hearing aids were fitted to KEMAR. The noise output was recorded at flow velocities of 0, 4.5, 9.0, and 13.5 m/s in a wind tunnel as the KEMAR head was turned from 0° to 360°. Flow noise levels were compared between the 1:1 linear and 3:1 WDRC conditions, and between NR-activated and NR-deactivated conditions when the hearing aid was programmed to the directional and omnidirectional modes. The results showed that: (1) WDRC increased low-level noise and reduced high-level noise; and (2) different noise reduction algorithms provided different amounts of wind noise reduction in different microphone modes, frequency regions, flow velocities, and head angles. Wind noise can be reduced by decreasing the gain for low-level inputs, increasing the compression ratio for high-level inputs, and activating modulation-based noise reduction algorithms.
Korhonen, Petri; Kuk, Francis; Seper, Eric; Mørkebjerg, Martin; Roikjer, Majken
2017-01-01
Wind noise is a common problem reported by hearing aid wearers. The MarkeTrak VIII reported that 42% of hearing aid wearers are not satisfied with the performance of their hearing aids in situations where wind is present. The current study investigated the effect of a new wind noise attenuation (WNA) algorithm on subjective annoyance and speech recognition in the presence of wind. A single-blinded, repeated measures design was used. Fifteen experienced hearing aid wearers with bilaterally symmetrical (≤10 dB) mild-to-moderate sensorineural hearing loss participated in the study. Subjective rating for wind noise annoyance was measured for wind presented alone from 0° and 290° at wind speeds of 4, 5, 6, 7, and 10 m/sec. Phoneme identification performance was measured using Widex Office of Clinical Amplification Nonsense Syllable Test presented at 60, 65, 70, and 75 dB SPL from 270° in the presence of wind originating from 0° at a speed of 5 m/sec. The subjective annoyance from wind noise was reduced for wind originating from 0° at wind speeds from 4 to 7 m/sec. The largest improvement in phoneme identification with the WNA algorithm was 48.2% when speech was presented from 270° at 65 dB SPL and the wind originated from 0° azimuth at 5 m/sec. The WNA algorithm used in this study reduced subjective annoyance for wind speeds ranging from 4 to 7 m/sec. The algorithm was effective in improving speech identification in the presence of wind originating from 0° at 5 m/sec. These results suggest that the WNA algorithm used in the current study could expand the range of real-life situations where a hearing-impaired person can use the hearing aid optimally. American Academy of Audiology
Kendrick, Paul; von Hünerbein, Sabine; Cox, Trevor J
2016-07-01
Microphone wind noise can corrupt outdoor recordings even when wind shields are used. When monitoring wind turbine noise, microphone wind noise is almost inevitable because measurements cannot be made in still conditions. The effect of microphone wind noise on two amplitude modulation (AM) metrics is quantified in a simulation, showing that even at low wind speeds of 2.5 m/s errors of over 4 dBA can result. As microphone wind noise is intermittent, a wind noise detection algorithm is used to automatically find uncorrupted sections of the recording, and so recover the true AM metrics to within ±2/±0.5 dBA.
Design of an Acoustic Target Intrusion Detection System Based on Small-Aperture Microphone Array.
Zu, Xingshui; Guo, Feng; Huang, Jingchang; Zhao, Qin; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing
2017-03-04
Automated surveillance of remote locations in a wireless sensor network is dominated by the detection algorithm because actual intrusions in such locations are a rare event. Therefore, a detection method with low power consumption is crucial for persistent surveillance to ensure longevity of the sensor networks. A simple and effective two-stage algorithm composed of energy detector (ED) and delay detector (DD) with all its operations in time-domain using small-aperture microphone array (SAMA) is proposed. The algorithm analyzes the quite different velocities between wind noise and sound waves to improve the detection capability of ED in the surveillance area. Experiments in four different fields with three types of vehicles show that the algorithm is robust to wind noise and the probability of detection and false alarm are 96.67% and 2.857%, respectively.
A Technique for Measuring Rotocraft Dynamic Stability in the 40 by 80 Foot Wind Tunnel
NASA Technical Reports Server (NTRS)
Gupta, N. K.; Bohn, J. G.
1977-01-01
An on-line technique is described for the measurement of tilt rotor aircraft dynamic stability in the Ames 40- by 80-Foot Wind Tunnel. The technique is based on advanced system identification methodology and uses the instrumental variables approach. It is particulary applicable to real time estimation problems with limited amounts of noise-contaminated data. Several simulations are used to evaluate the algorithm. Estimated natural frequencies and damping ratios are compared with simulation values. The algorithm is also applied to wind tunnel data in an off-line mode. The results are used to develop preliminary guidelines for effective use of the algorithm.
NASA Astrophysics Data System (ADS)
Xiao, Zhongxiu
2018-04-01
A Method of Measuring and Correcting Tilt of Anti - vibration Wind Turbines Based on Screening Algorithm is proposed in this paper. First of all, we design a device which the core is the acceleration sensor ADXL203, the inclination is measured by installing it on the tower of the wind turbine as well as the engine room. Next using the Kalman filter algorithm to filter effectively by establishing a state space model for signal and noise. Then we use matlab for simulation. Considering the impact of the tower and nacelle vibration on the collected data, the original data and the filtering data are classified and stored by the Screening algorithm, then filter the filtering data to make the output data more accurate. Finally, we eliminate installation errors by using algorithm to achieve the tilt correction. The device based on this method has high precision, low cost and anti-vibration advantages. It has a wide range of application and promotion value.
Chung, King
2012-06-01
Wind noise reduction is a topic of ongoing research and development for hearing aids and cochlear implants. The purposes of this study were to examine spectral characteristics of wind noise generated by directional (DIR) and omnidirectional (OMNI) microphones on different styles of hearing aids and to derive wind noise reduction strategies. Three digital hearing aids (BTE, ITE, and ITC) were fitted to Knowles Electronic Manikin for Acoustic Research. They were programmed to have linear amplification and matching frequency responses between the DIR and OMNI modes. Flow noise recordings were made from 0° to 360° azimuths at flow velocities of 4.5, 9.0, and 13.5 m/s in a quiet wind tunnel. Noise levels were analyzed in one-third octave bands from 100 to 8000 Hz. Comparison of wind noise revealed that DIR generally produced higher noise levels than OMNI for all hearing aids, but it could result in lower levels than OMNI at some frequencies and head angles. Wind noise reduction algorithms can be designed to detect noise levels of DIR and OMNI outputs in each frequency channel, remove the constraint to switch to OMNI in low-frequency channel(s) only, and adopt the microphone mode with lower noise levels to take advantage of the microphone differences.
Microphone directionality, pre-emphasis filter, and wind noise in cochlear implants.
Chung, King; McKibben, Nicholas
2011-10-01
Wind noise can be a nuisance or a debilitating masker for cochlear implant users in outdoor environments. Previous studies indicated that wind noise at the microphone/hearing aid output had high levels of low-frequency energy and the amount of noise generated is related to the microphone directionality. Currently, cochlear implants only offer either directional microphones or omnidirectional microphones for users at-large. As all cochlear implants utilize pre-emphasis filters to reduce low-frequency energy before the signal is encoded, effective wind noise reduction algorithms for hearing aids might not be applicable for cochlear implants. The purposes of this study were to investigate the effect of microphone directionality on speech recognition and perceived sound quality of cochlear implant users in wind noise and to derive effective wind noise reduction strategies for cochlear implants. A repeated-measure design was used to examine the effects of spectral and temporal masking created by wind noise recorded through directional and omnidirectional microphones and the effects of pre-emphasis filters on cochlear implant performance. A digital hearing aid was programmed to have linear amplification and relatively flat in-situ frequency responses for the directional and omnidirectional modes. The hearing aid output was then recorded from 0 to 360° at flow velocities of 4.5 and 13.5 m/sec in a quiet wind tunnel. Sixteen postlingually deafened adult cochlear implant listeners who reported to be able to communicate on the phone with friends and family without text messages participated in the study. Cochlear implant users listened to speech in wind noise recorded at locations that the directional and omnidirectional microphones yielded the lowest noise levels. Cochlear implant listeners repeated the sentences and rated the sound quality of the testing materials. Spectral and temporal characteristics of flow noise, as well as speech and/or noise characteristics before and after the pre-emphasis filter, were analyzed. Correlation coefficients between speech recognition scores and crest factors of wind noise before and after pre-emphasis filtering were also calculated. Listeners obtained higher scores using the omnidirectional than the directional microphone mode at 13.5 m/sec, but they obtained similar speech recognition scores for the two microphone modes at 4.5 m/sec. Higher correlation coefficients were obtained between speech recognition scores and crest factors of wind noise after pre-emphasis filtering rather than before filtering. Cochlear implant users would benefit from both directional and omnidirectional microphones to reduce far-field background noise and near-field wind noise. Automatic microphone switching algorithms can be more effective if the incoming signal were analyzed after pre-emphasis filters for microphone switching decisions. American Academy of Audiology.
Noise normalization and windowing functions for VALIDAR in wind parameter estimation
NASA Astrophysics Data System (ADS)
Beyon, Jeffrey Y.; Koch, Grady J.; Li, Zhiwen
2006-05-01
The wind parameter estimates from a state-of-the-art 2-μm coherent lidar system located at NASA Langley, Virginia, named VALIDAR (validation lidar), were compared after normalizing the noise by its estimated power spectra via the periodogram and the linear predictive coding (LPC) scheme. The power spectra and the Doppler shift estimates were the main parameter estimates for comparison. Different types of windowing functions were implemented in VALIDAR data processing algorithm and their impact on the wind parameter estimates was observed. Time and frequency independent windowing functions such as Rectangular, Hanning, and Kaiser-Bessel and time and frequency dependent apodized windowing function were compared. The briefing of current nonlinear algorithm development for Doppler shift correction subsequently follows.
Design of Small MEMS Microphone Array Systems for Direction Finding of Outdoors Moving Vehicles
Zhang, Xin; Huang, Jingchang; Song, Enliang; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing
2014-01-01
In this paper, a MEMS microphone array system scheme is proposed which implements real-time direction of arrival (DOA) estimation for moving vehicles. Wind noise is the primary source of unwanted noise on microphones outdoors. A multiple signal classification (MUSIC) algorithm is used in this paper for direction finding associated with spatial coherence to discriminate between the wind noise and the acoustic signals of a vehicle. The method is implemented in a SHARC DSP processor and the real-time estimated DOA is uploaded through Bluetooth or a UART module. Experimental results in different places show the validity of the system and the deviation is no bigger than 6° in the presence of wind noise. PMID:24603636
Design of small MEMS microphone array systems for direction finding of outdoors moving vehicles.
Zhang, Xin; Huang, Jingchang; Song, Enliang; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing
2014-03-05
In this paper, a MEMS microphone array system scheme is proposed which implements real-time direction of arrival (DOA) estimation for moving vehicles. Wind noise is the primary source of unwanted noise on microphones outdoors. A multiple signal classification (MUSIC) algorithm is used in this paper for direction finding associated with spatial coherence to discriminate between the wind noise and the acoustic signals of a vehicle. The method is implemented in a SHARC DSP processor and the real-time estimated DOA is uploaded through Bluetooth or a UART module. Experimental results in different places show the validity of the system and the deviation is no bigger than 6° in the presence of wind noise.
NASA Astrophysics Data System (ADS)
Martinović, M.
2017-12-01
Quasi-thermal noise (QTN) spectroscopy is an accurate technique for in situ measurements of electron density and temperature in space plasmas. The QTN spectrum has a characteristic noise peak just above the plasma frequency produced by electron quasi-thermal fluctuations, which allows a very accurate measurement of the electron density. The size and shape of the peak are determined by suprathermal electrons. Since this nonthermal electron population is well described by a generalized Lorentzian - Kappa velocity distribution, it is possible to determinate the distribution properties in the solar wind from a measured spectrum. In this work, we discuss some basic properties of the QTN spectrum dependence of the Kappa distribution parameters - total electron density, temperature and the Kappa index, giving an overview on how instrument characteristics and environment conditions affect quality of the measurements. Further on, we aim to apply the method to Wind Thermal Noise Receiver (TNR) measurements. However, the spectra observed by this instrument usually contain contributions from nonthermal phenomena, like ion acoustic waves below, or galactic noise above the plasma frequency. This is why, besides comparison of the theory with observations, work with Wind data requires development of a sophisticated algorithm that distinguish parts of the spectra that are dominated by the QTN, and therefore can be used in our study. Postulates of this algorithm, as well as major results of its implementation, are also presented.
The MIGHTI Wind Retrieval Algorithm: Description and Verification
NASA Astrophysics Data System (ADS)
Harding, Brian J.; Makela, Jonathan J.; Englert, Christoph R.; Marr, Kenneth D.; Harlander, John M.; England, Scott L.; Immel, Thomas J.
2017-10-01
We present an algorithm to retrieve thermospheric wind profiles from measurements by the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument on NASA's Ionospheric Connection Explorer (ICON) mission. MIGHTI measures interferometric limb images of the green and red atomic oxygen emissions at 557.7 nm and 630.0 nm, spanning 90-300 km. The Doppler shift of these emissions represents a remote measurement of the wind at the tangent point of the line of sight. Here we describe the algorithm which uses these images to retrieve altitude profiles of the line-of-sight wind. By combining the measurements from two MIGHTI sensors with perpendicular lines of sight, both components of the vector horizontal wind are retrieved. A comprehensive truth model simulation that is based on TIME-GCM winds and various airglow models is used to determine the accuracy and precision of the MIGHTI data product. Accuracy is limited primarily by spherical asymmetry of the atmosphere over the spatial scale of the limb observation, a fundamental limitation of space-based wind measurements. For 80% of the retrieved wind samples, the accuracy is found to be better than 5.8 m/s (green) and 3.5 m/s (red). As expected, significant errors are found near the day/night boundary and occasionally near the equatorial ionization anomaly, due to significant variations of wind and emission rate along the line of sight. The precision calculation includes pointing uncertainty and shot, read, and dark noise. For average solar minimum conditions, the expected precision meets requirements, ranging from 1.2 to 4.7 m/s.
Wind noise under a pine tree canopy.
Raspet, Richard; Webster, Jeremy
2015-02-01
It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.
Active Control of Wind Tunnel Noise
NASA Technical Reports Server (NTRS)
Hollis, Patrick (Principal Investigator)
1991-01-01
The need for an adaptive active control system was realized, since a wind tunnel is subjected to variations in air velocity, temperature, air turbulence, and some other factors such as nonlinearity. Among many adaptive algorithms, the Least Mean Squares (LMS) algorithm, which is the simplest one, has been used in an Active Noise Control (ANC) system by some researchers. However, Eriksson's results, Eriksson (1985), showed instability in the ANC system with an ER filter for random noise input. The Restricted Least Squares (RLS) algorithm, although computationally more complex than the LMS algorithm, has better convergence and stability properties. The ANC system in the present work was simulated by using an FIR filter with an RLS algorithm for different inputs and for a number of plant models. Simulation results for the ANC system with acoustic feedback showed better robustness when used with the RLS algorithm than with the LMS algorithm for all types of inputs. Overall attenuation in the frequency domain was better in the case of the RLS adaptive algorithm. Simulation results with a more realistic plant model and an RLS adaptive algorithm showed a slower convergence rate than the case with an acoustic plant as a delay plant. However, the attenuation properties were satisfactory for the simulated system with the modified plant. The effect of filter length on the rate of convergence and attenuation was studied. It was found that the rate of convergence decreases with increase in filter length, whereas the attenuation increases with increase in filter length. The final design of the ANC system was simulated and found to have a reasonable convergence rate and good attenuation properties for an input containing discrete frequencies and random noise.
Pomareda, Víctor; Magrans, Rudys; Jiménez-Soto, Juan M; Martínez, Dani; Tresánchez, Marcel; Burgués, Javier; Palacín, Jordi; Marco, Santiago
2017-04-20
We present the estimation of a likelihood map for the location of the source of a chemical plume dispersed under atmospheric turbulence under uniform wind conditions. The main contribution of this work is to extend previous proposals based on Bayesian inference with binary detections to the use of concentration information while at the same time being robust against the presence of background chemical noise. For that, the algorithm builds a background model with robust statistics measurements to assess the posterior probability that a given chemical concentration reading comes from the background or from a source emitting at a distance with a specific release rate. In addition, our algorithm allows multiple mobile gas sensors to be used. Ten realistic simulations and ten real data experiments are used for evaluation purposes. For the simulations, we have supposed that sensors are mounted on cars which do not have among its main tasks navigating toward the source. To collect the real dataset, a special arena with induced wind is built, and an autonomous vehicle equipped with several sensors, including a photo ionization detector (PID) for sensing chemical concentration, is used. Simulation results show that our algorithm, provides a better estimation of the source location even for a low background level that benefits the performance of binary version. The improvement is clear for the synthetic data while for real data the estimation is only slightly better, probably because our exploration arena is not able to provide uniform wind conditions. Finally, an estimation of the computational cost of the algorithmic proposal is presented.
Effects of venting on wind noise levels measured at the eardrum.
Chung, King
2013-01-01
Wind noise can be a nuisance to hearing aid users. With the advent of sophisticated feedback reduction algorithms, people with higher degrees of hearing loss are fit with larger vents than previously allowed, and more people with lesser degrees of hearing loss are fit with open hearing aids. The purpose of this study was to examine the effects of venting on wind noise levels in the ear canal for hearing aids with omnidirectional and directional microphones. Two behind-the-ear hearing aids were programmed when they were worn on a Knowles Electronics Manikin for Acoustic Research. The hearing aid worn on the right ear was programmed to the omnidirectional microphone mode and the one on the left to the directional microphone mode. The hearing aids were adjusted to linear amplification with flat frequency response in an anechoic chamber. Gains below 10 dB were used to avoid output limiting of wind noise levels at low input levels. Wind noise samples were recorded at the eardrum location in a wind tunnel at wind velocities ranging from a gentle to a strong breeze. The hearing aids were coupled to #13 tubings (i.e., open vent), or conventional skeleton earmolds with no vent, pressure vents, or 3mm vents. Polar and spectral characteristics of wind noise were analyzed off-line using MatLab programs. Wind noise levels in the ear canals were mostly predicted by vent-induced frequency response changes in the conventional earmold conditions for both omnidirectional and directional hearing aids. The open vent condition, however, yielded the lowest levels, which could not be entirely predicted by the frequency response changes of the hearing aids. This indicated that a wind-related vent effect permitted an additional amount of sound reduction in the ear canal, which could not be explained by known vent effects. For the microphone location, form factor, and gain settings tested, open fit hearing aids yielded lower noise levels at the eardrum location than conventional behind-the-ear hearing aids.
Wind dependence of ambient noise in a biologically rich coastal area.
Mathias, Delphine; Gervaise, Cédric; Di Iorio, Lucia
2016-02-01
The wind dependence of acoustic spectrum between 100 Hz and 16 kHz is investigated for coastal biologically rich areas. The analysis of 5 months of continuous measurements run in a 10 m deep shallow water environment off Brittany (France) showed that wind dependence of spectral levels is subject to masking by biological sounds. When dealing with raw data, the wind dependence of spectral levels was not significant for frequencies where biological sounds were present (2 to 10 kHz). An algorithm developed by Kinda, Simard, Gervaise, Mars, and Fortier [J. Acoust. Soc. Am. 134(1), 77-87 (2013)] was used to automatically filter out the loud distinctive biological contribution and estimated the ambient noise spectrum. The wind dependence of ambient noise spectrum was always significant after application of this filter. A mixture model for ambient noise spectrum which accounts for the richness of the soundscape is proposed. This model revealed that wind dependence holds once the wind speed was strong enough to produce sounds higher in amplitude than the biological chorus (9 kn at 3 kHz, 11 kn at 8 kHz). For these higher wind speeds, a logarithmic affine law was adequate and its estimated parameters were compatible with previous studies (average slope 27.1 dB per decade of wind speed increase).
A satellite-based radar wind sensor
NASA Technical Reports Server (NTRS)
Xin, Weizhuang
1991-01-01
The objective is to investigate the application of Doppler radar systems for global wind measurement. A model of the satellite-based radar wind sounder (RAWS) is discussed, and many critical problems in the designing process, such as the antenna scan pattern, tracking the Doppler shift caused by satellite motion, and backscattering of radar signals from different types of clouds, are discussed along with their computer simulations. In addition, algorithms for measuring mean frequency of radar echoes, such as the Fast Fourier Transform (FFT) estimator, the covariance estimator, and the estimators based on autoregressive models, are discussed. Monte Carlo computer simulations were used to compare the performance of these algorithms. Anti-alias methods are discussed for the FFT and the autoregressive methods. Several algorithms for reducing radar ambiguity were studied, such as random phase coding methods and staggered pulse repitition frequncy (PRF) methods. Computer simulations showed that these methods are not applicable to the RAWS because of the broad spectral widths of the radar echoes from clouds. A waveform modulation method using the concept of spread spectrum and correlation detection was developed to solve the radar ambiguity. Radar ambiguity functions were used to analyze the effective signal-to-noise ratios for the waveform modulation method. The results showed that, with suitable bandwidth product and modulation of the waveform, this method can achieve the desired maximum range and maximum frequency of the radar system.
Guide to the evaluation of human exposure to noise from large wind turbines
NASA Technical Reports Server (NTRS)
Stephens, D. G.; Shepherd, K. P.; Hubbard, H. H.; Grosveld, F.
1982-01-01
Guidance for evaluating human exposure to wind turbine noise is provided and includes consideration of the source characteristics, the propagation to the receiver location, and the exposure of the receiver to the noise. The criteria for evaluation of human exposure are based on comparisons of the noise at the receiver location with the human perception thresholds for wind turbine noise and noise-induced building vibrations in the presence of background noise.
NASA Technical Reports Server (NTRS)
Hubbard, Harvey H.; Shepherd, Kevin P.
1990-01-01
Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.
Optimum Parameters of a Tuned Liquid Column Damper in a Wind Turbine Subject to Stochastic Load
NASA Astrophysics Data System (ADS)
Alkmim, M. H.; de Morais, M. V. G.; Fabro, A. T.
2017-12-01
Parameter optimization for tuned liquid column dampers (TLCD), a class of passive structural control, have been previously proposed in the literature for reducing vibration in wind turbines, and several other applications. However, most of the available work consider the wind excitation as either a deterministic harmonic load or random load with white noise spectra. In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of undamped primary system under white noise excitation by comparing with result from the literature. Finally, it is shown that different wind profiles can significantly affect the optimum TLCD parameters.
Seismic noise attenuation using an online subspace tracking algorithm
NASA Astrophysics Data System (ADS)
Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang
2018-02-01
We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.
Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli
2018-01-23
Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones.
Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli
2018-01-01
Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones. PMID:29360793
Berger, Robert G.; Ashtiani, Payam; Ollson, Christopher A.; Whitfield Aslund, Melissa; McCallum, Lindsay C.; Leventhall, Geoff; Knopper, Loren D.
2015-01-01
Setbacks for wind turbines have been established in many jurisdictions to address potential health concerns associated with audible noise. However, in recent years, it has been suggested that infrasound (IS) and low-frequency noise (LFN) could be responsible for the onset of adverse health effects self-reported by some individuals living in proximity to wind turbines, even when audible noise limits are met. The purpose of this paper was to investigate whether current audible noise-based guidelines for wind turbines account for the protection of human health, given the levels of IS and LFN typically produced by wind turbines. New field measurements of indoor IS and outdoor LFN at locations between 400 and 900 m from the nearest turbine, which were previously underrepresented in the scientific literature, are reported and put into context with existing published works. Our analysis showed that indoor IS levels were below auditory threshold levels while LFN levels at distances >500 m were similar to background LFN levels. A clear contribution to LFN due to wind turbine operation (i.e., measured with turbines on in comparison to with turbines off) was noted at a distance of 480 m. However, this corresponded to an increase in overall audible sound measures as reported in dB(A), supporting the hypothesis that controlling audible sound produced by normally operating wind turbines will also control for LFN. Overall, the available data from this and other studies suggest that health-based audible noise wind turbine siting guidelines provide an effective means to evaluate, monitor, and protect potential receptors from audible noise as well as IS and LFN. PMID:25759808
Berger, Robert G; Ashtiani, Payam; Ollson, Christopher A; Whitfield Aslund, Melissa; McCallum, Lindsay C; Leventhall, Geoff; Knopper, Loren D
2015-01-01
Setbacks for wind turbines have been established in many jurisdictions to address potential health concerns associated with audible noise. However, in recent years, it has been suggested that infrasound (IS) and low-frequency noise (LFN) could be responsible for the onset of adverse health effects self-reported by some individuals living in proximity to wind turbines, even when audible noise limits are met. The purpose of this paper was to investigate whether current audible noise-based guidelines for wind turbines account for the protection of human health, given the levels of IS and LFN typically produced by wind turbines. New field measurements of indoor IS and outdoor LFN at locations between 400 and 900 m from the nearest turbine, which were previously underrepresented in the scientific literature, are reported and put into context with existing published works. Our analysis showed that indoor IS levels were below auditory threshold levels while LFN levels at distances >500 m were similar to background LFN levels. A clear contribution to LFN due to wind turbine operation (i.e., measured with turbines on in comparison to with turbines off) was noted at a distance of 480 m. However, this corresponded to an increase in overall audible sound measures as reported in dB(A), supporting the hypothesis that controlling audible sound produced by normally operating wind turbines will also control for LFN. Overall, the available data from this and other studies suggest that health-based audible noise wind turbine siting guidelines provide an effective means to evaluate, monitor, and protect potential receptors from audible noise as well as IS and LFN.
A Background Noise Reduction Technique Using Adaptive Noise Cancellation for Microphone Arrays
NASA Technical Reports Server (NTRS)
Spalt, Taylor B.; Fuller, Christopher R.; Brooks, Thomas F.; Humphreys, William M., Jr.; Brooks, Thomas F.
2011-01-01
Background noise in wind tunnel environments poses a challenge to acoustic measurements due to possible low or negative Signal to Noise Ratios (SNRs) present in the testing environment. This paper overviews the application of time domain Adaptive Noise Cancellation (ANC) to microphone array signals with an intended application of background noise reduction in wind tunnels. An experiment was conducted to simulate background noise from a wind tunnel circuit measured by an out-of-flow microphone array in the tunnel test section. A reference microphone was used to acquire a background noise signal which interfered with the desired primary noise source signal at the array. The technique s efficacy was investigated using frequency spectra from the array microphones, array beamforming of the point source region, and subsequent deconvolution using the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm. Comparisons were made with the conventional techniques for improving SNR of spectral and Cross-Spectral Matrix subtraction. The method was seen to recover the primary signal level in SNRs as low as -29 dB and outperform the conventional methods. A second processing approach using the center array microphone as the noise reference was investigated for more general applicability of the ANC technique. It outperformed the conventional methods at the -29 dB SNR but yielded less accurate results when coherence over the array dropped. This approach could possibly improve conventional testing methodology but must be investigated further under more realistic testing conditions.
The Problems with "Noise Numbers" for Wind Farm Noise Assessment
ERIC Educational Resources Information Center
Thorne, Bob
2011-01-01
Human perception responds primarily to sound character rather than sound level. Wind farms are unique sound sources and exhibit special audible and inaudible characteristics that can be described as modulating sound or as a tonal complex. Wind farm compliance measures based on a specified noise number alone will fail to address problems with noise…
'Wind turbine syndrome': fact or fiction?
Farboud, A; Crunkhorn, R; Trinidade, A
2013-03-01
Symptoms, including tinnitus, ear pain and vertigo, have been reported following exposure to wind turbine noise. This review addresses the effects of infrasound and low frequency noise and questions the existence of 'wind turbine syndrome'. This review is based on a search for articles published within the last 10 years, conducted using the PubMed database and Google Scholar search engine, which included in their title or abstract the terms 'wind turbine', 'infrasound' or 'low frequency noise'. There is evidence that infrasound has a physiological effect on the ear. Until this effect is fully understood, it is impossible to conclude that wind turbine noise does not cause any of the symptoms described. However, many believe that these symptoms are related largely to the stress caused by unwanted noise exposure. There is some evidence of symptoms in patients exposed to wind turbine noise. The effects of infrasound require further investigation.
NASA Astrophysics Data System (ADS)
Hsiao, Y. R.; Tsai, C.
2017-12-01
As the WHO Air Quality Guideline indicates, ambient air pollution exposes world populations under threat of fatal symptoms (e.g. heart disease, lung cancer, asthma etc.), raising concerns of air pollution sources and relative factors. This study presents a novel approach to investigating the multiscale variations of PM2.5 in southern Taiwan over the past decade, with four meteorological influencing factors (Temperature, relative humidity, precipitation and wind speed),based on Noise-assisted Multivariate Empirical Mode Decomposition(NAMEMD) algorithm, Hilbert Spectral Analysis(HSA) and Time-dependent Intrinsic Correlation(TDIC) method. NAMEMD algorithm is a fully data-driven approach designed for nonlinear and nonstationary multivariate signals, and is performed to decompose multivariate signals into a collection of channels of Intrinsic Mode Functions (IMFs). TDIC method is an EMD-based method using a set of sliding window sizes to quantify localized correlation coefficients for multiscale signals. With the alignment property and quasi-dyadic filter bank of NAMEMD algorithm, one is able to produce same number of IMFs for all variables and estimates the cross correlation in a more accurate way. The performance of spectral representation of NAMEMD-HSA method is compared with Complementary Empirical Mode Decomposition/ Hilbert Spectral Analysis (CEEMD-HSA) and Wavelet Analysis. The nature of NAMAMD-based TDICC analysis is then compared with CEEMD-based TDIC analysis and the traditional correlation analysis.
NASA Astrophysics Data System (ADS)
Guo, Jun; Lu, Siliang; Zhai, Chao; He, Qingbo
2018-02-01
An automatic bearing fault diagnosis method is proposed for permanent magnet synchronous generators (PMSGs), which are widely installed in wind turbines subjected to low rotating speeds, speed fluctuations, and electrical device noise interferences. The mechanical rotating angle curve is first extracted from the phase current of a PMSG by sequentially applying a series of algorithms. The synchronous sampled vibration signal of the fault bearing is then resampled in the angular domain according to the obtained rotating phase information. Considering that the resampled vibration signal is still overwhelmed by heavy background noise, an adaptive stochastic resonance filter is applied to the resampled signal to enhance the fault indicator and facilitate bearing fault identification. Two types of fault bearings with different fault sizes in a PMSG test rig are subjected to experiments to test the effectiveness of the proposed method. The proposed method is fully automated and thus shows potential for convenient, highly efficient and in situ bearing fault diagnosis for wind turbines subjected to harsh environments.
A microcomputer based frequency-domain processor for laser Doppler anemometry
NASA Technical Reports Server (NTRS)
Horne, W. Clifton; Adair, Desmond
1988-01-01
A prototype multi-channel laser Doppler anemometry (LDA) processor was assembled using a wideband transient recorder and a microcomputer with an array processor for fast Fourier transform (FFT) computations. The prototype instrument was used to acquire, process, and record signals from a three-component wind tunnel LDA system subject to various conditions of noise and flow turbulence. The recorded data was used to evaluate the effectiveness of burst acceptance criteria, processing algorithms, and selection of processing parameters such as record length. The recorded signals were also used to obtain comparative estimates of signal-to-noise ratio between time-domain and frequency-domain signal detection schemes. These comparisons show that the FFT processing scheme allows accurate processing of signals for which the signal-to-noise ratio is 10 to 15 dB less than is practical using counter processors.
Noise-enhanced clustering and competitive learning algorithms.
Osoba, Osonde; Kosko, Bart
2013-01-01
Noise can provably speed up convergence in many centroid-based clustering algorithms. This includes the popular k-means clustering algorithm. The clustering noise benefit follows from the general noise benefit for the expectation-maximization algorithm because many clustering algorithms are special cases of the expectation-maximization algorithm. Simulations show that noise also speeds up convergence in stochastic unsupervised competitive learning, supervised competitive learning, and differential competitive learning. Copyright © 2012 Elsevier Ltd. All rights reserved.
Infrasonic wind noise under a deciduous tree canopy.
Webster, Jeremy; Raspet, Richard
2015-05-01
In a recent paper, the infrasonic wind noise measured at the floor of a pine forest was predicted from the measured wind velocity spectrum and profile within and above the trees [Raspet and Webster, J. Acoust. Soc. Am. 137, 651-659 (2015)]. This research studies the measured and predicted wind noise under a deciduous forest with and without leaves. A calculation of the turbulence-shear interaction pressures above the canopy predicts the low frequency peak in the wind noise spectrum. The calculated turbulence-turbulence interaction pressure due to the turbulence field near the ground predicts the measured wind noise spectrum in the higher frequency region. The low frequency peak displays little dependence on whether the trees have leaves or not. The high frequency contribution with leaves is approximately an order of magnitude smaller than the contribution without leaves. Wind noise levels with leaves are very similar to the wind noise levels in the pine forest. The calculated turbulence-shear contribution from the wind within the canopy is shown to be negligible in comparison to the turbulence-turbulence contribution in both cases. In addition, the effect of taller forests and smaller roughness lengths than those of the test forest on the turbulence-shear interaction is simulated based on measured meteorological parameters.
Measurement of Model Noise in a Hard-Wall Wind Tunnel
NASA Technical Reports Server (NTRS)
Soderman, Paul T.
2006-01-01
Identification, analysis, and control of fluid-mechanically-generated sound from models of aircraft and automobiles in special low-noise, semi-anechoic wind tunnels are an important research endeavor. Such studies can also be done in aerodynamic wind tunnels that have hard walls if phased microphone arrays are used to focus on the noise-source regions and reject unwanted reflections or background noise. Although it may be difficult to simulate the total flyover or drive-by noise in a closed wind tunnel, individual noise sources can be isolated and analyzed. An acoustic and aerodynamic study was made of a 7-percent-scale aircraft model in a NASA Ames 7-by-10-ft (about 2-by-3-m) wind tunnel for the purpose of identifying and attenuating airframe noise sources. Simulated landing, takeoff, and approach configurations were evaluated at Mach 0.26. Using a phased microphone array mounted in the ceiling over the inverted model, various noise sources in the high-lift system, landing gear, fins, and miscellaneous other components were located and compared for sound level and frequency at one flyover location. Numerous noise-alleviation devices and modifications of the model were evaluated. Simultaneously with acoustic measurements, aerodynamic forces were recorded to document aircraft conditions and any performance changes caused by geometric modifications. Most modern microphone-array systems function in the frequency domain in the sense that spectra of the microphone outputs are computed, then operations are performed on the matrices of microphone-signal cross-spectra. The entire acoustic field at one station in such a system is acquired quickly and interrogated during postprocessing. Beam-forming algorithms are employed to scan a plane near the model surface and locate noise sources while rejecting most background noise and spurious reflections. In the case of the system used in this study, previous studies in the wind tunnel have identified noise sources up to 19 dB below the normal background noise of the wind tunnel. Theoretical predictions of array performance are used to minimize the width and the side lobes of the beam pattern of the microphone array for a given test arrangement. To capture flyover noise of the inverted model, a 104-element microphone array in a 622-mm-diameter cluster was installed in a 19-mm-thick poly(methyl methacrylate) plate in the ceiling of the test section of the wind tunnel above the aircraft model (see Figure 1). The microphones were of the condenser type, and their diaphragms were mounted flush in the array plate, which was recessed 12.7 mm into the ceiling and covered by a porous aromatic polyamide cloth (not shown in the figure) to minimize boundary-layer noise. This design caused the level of flow noise to be much less than that of flush-mount designs. The drawback of this design was that the cloth attenuated sound somewhat and created acoustic resonances that could grow to several dB at a frequency of 10 kHz.
NASA Technical Reports Server (NTRS)
Pierson, W. J., Jr.
1984-01-01
Backscatter measurements at upwind and crosswind are simulated for five incidence angles by means of the SASS-1 model function. The effects of communication noise and attitude errors are simulated by Monte Carlo methods, and the winds are recovered by both the Sum of Square (SOS) algorithm and a Maximum Likelihood Estimater (MLE). The SOS algorithm is shown to fail for light enough winds at all incidence angles and to fail to show areas of calm because backscatter estimates that were negative or that produced incorrect values of K sub p greater than one were discarded. The MLE performs well for all input backscatter estimates and returns calm when both are negative. The use of the SOS algorithm is shown to have introduced errors in the SASS-1 model function that, in part, cancel out the errors that result from using it, but that also cause disagreement with other data sources such as the AAFE circle flight data at light winds. Implications for future scatterometer systems are given.
Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission
NASA Astrophysics Data System (ADS)
Foti, Giuseppe; Gommenginger, Christine; Jales, Philip; Unwin, Martin; Shaw, Andrew; Robertson, Colette; Roselló, Josep
2015-07-01
First results are presented for ocean surface wind speed retrieval from reflected GPS signals measured by the low Earth orbiting UK TechDemoSat-1 satellite (TDS-1). Launched in July 2014, TDS-1 provides the first new spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data since the pioneering UK-Disaster Monitoring Mission (UK-DMC) experiment in 2003. Examples of onboard-processed delay-Doppler maps reveal excellent data quality for winds up to 27.9 m/s. Collocated Advanced Scatterometer (ASCAT) winds are used to develop and evaluate a wind speed algorithm based on signal-to-noise ratio (SNR) and the bistatic radar equation. For SNRs greater than 3 dB, wind speed is retrieved without bias and a precision around 2.2 m/s between 3 and 18 m/s even without calibration. Exploiting lower SNR signals, however, requires good knowledge of the antenna beam, platform attitude, and instrument gain setting. This study demonstrates the capabilities of low-cost, low-mass, and low-power GNSS-R receivers ahead of their launch on the NASA Cyclone GNSS (CYGNSS) constellation in 2016.
Development of the One-Sided Nonlinear Adaptive Doppler Shift Estimation
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey Y.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.; Serror, Judith A.
2009-01-01
The new development of a one-sided nonlinear adaptive shift estimation technique (NADSET) is introduced. The background of the algorithm and a brief overview of NADSET are presented. The new technique is applied to the wind parameter estimates from a 2-micron wavelength coherent Doppler lidar system called VALIDAR located in NASA Langley Research Center in Virginia. The new technique enhances wind parameters such as Doppler shift and power estimates in low Signal-To-Noise-Ratio (SNR) regimes using the estimates in high SNR regimes as the algorithm scans the range bins from low to high altitude. The original NADSET utilizes the statistics in both the lower and the higher range bins to refine the wind parameter estimates in between. The results of the two different approaches of NADSET are compared.
Calibration of Passive Microwave Polarimeters that Use Hybrid Coupler-Based Correlators
NASA Technical Reports Server (NTRS)
Piepmeier, J. R.
2003-01-01
Four calibration algorithms are studied for microwave polarimeters that use hybrid coupler-based correlators: 1) conventional two-look of hot and cold sources, 2) three looks of hot and cold source combinations, 3) two-look with correlated source, and 4) four-look combining methods 2 and 3. The systematic errors are found to depend on the polarimeter component parameters and accuracy of calibration noise temperatures. A case study radiometer in four different remote sensing scenarios was considered in light of these results. Applications for Ocean surface salinity, Ocean surface winds, and soil moisture were found to be sensitive to different systematic errors. Finally, a standard uncertainty analysis was performed on the four-look calibration algorithm, which was found to be most sensitive to the correlated calibration source.
Active impulsive noise control using maximum correntropy with adaptive kernel size
NASA Astrophysics Data System (ADS)
Lu, Lu; Zhao, Haiquan
2017-03-01
The active noise control (ANC) based on the principle of superposition is an attractive method to attenuate the noise signals. However, the impulsive noise in the ANC systems will degrade the performance of the controller. In this paper, a filtered-x recursive maximum correntropy (FxRMC) algorithm is proposed based on the maximum correntropy criterion (MCC) to reduce the effect of outliers. The proposed FxRMC algorithm does not requires any priori information of the noise characteristics and outperforms the filtered-x least mean square (FxLMS) algorithm for impulsive noise. Meanwhile, in order to adjust the kernel size of FxRMC algorithm online, a recursive approach is proposed through taking into account the past estimates of error signals over a sliding window. Simulation and experimental results in the context of active impulsive noise control demonstrate that the proposed algorithms achieve much better performance than the existing algorithms in various noise environments.
Planetary Seismology : Lander- and Wind-Induced Seismic Signals
NASA Astrophysics Data System (ADS)
Lorenz, Ralph
2016-10-01
Seismic measurements are of interest for future geophysical exploration of ocean worlds such as Europa or Titan, as well as Venus, Mars and the Moon. Even when a seismometer is deployed away from a lander (as in the case of Apollo) lander-generated disturbances are apparent. Such signatures may be usefully diagnostic of lander operations (at least for outreach), and may serve as seismic excitation for near-field propagation studies. The introduction of these 'spurious' events may also influence the performance of event detection and data compression algorithms.Examples of signatures in the Viking 2 seismometer record of lander mechanism operations are presented. The coherence of Viking seismometer noise levels and wind forcing is well-established : some detailed examples are examined. Wind noise is likely to be significant on future Mars missions such as InSight, as well as on Titan and Venus.
Harlander, Niklas; Rosenkranz, Tobias; Hohmann, Volker
2012-08-01
Single channel noise reduction has been well investigated and seems to have reached its limits in terms of speech intelligibility improvement, however, the quality of such schemes can still be advanced. This study tests to what extent novel model-based processing schemes might improve performance in particular for non-stationary noise conditions. Two prototype model-based algorithms, a speech-model-based, and a auditory-model-based algorithm were compared to a state-of-the-art non-parametric minimum statistics algorithm. A speech intelligibility test, preference rating, and listening effort scaling were performed. Additionally, three objective quality measures for the signal, background, and overall distortions were applied. For a better comparison of all algorithms, particular attention was given to the usage of the similar Wiener-based gain rule. The perceptual investigation was performed with fourteen hearing-impaired subjects. The results revealed that the non-parametric algorithm and the auditory model-based algorithm did not affect speech intelligibility, whereas the speech-model-based algorithm slightly decreased intelligibility. In terms of subjective quality, both model-based algorithms perform better than the unprocessed condition and the reference in particular for highly non-stationary noise environments. Data support the hypothesis that model-based algorithms are promising for improving performance in non-stationary noise conditions.
NASA Technical Reports Server (NTRS)
Horne, William C.
2011-01-01
Measurements of background noise were recently obtained with a 24-element phased microphone array in the test section of the Arnold Engineering Development Center 80- by120-Foot Wind Tunnel at speeds of 50 to 100 knots (27.5 to 51.4 m/s). The array was mounted in an aerodynamic fairing positioned with array center 1.2m from the floor and 16 m from the tunnel centerline, The array plate was mounted flush with the fairing surface as well as recessed in. (1.27 cm) behind a porous Kevlar screen. Wind-off speaker measurements were also acquired every 15 on a 10 m semicircular arc to assess directional resolution of the array with various processing algorithms, and to estimate minimum detectable source strengths for future wind tunnel aeroacoustic studies. The dominant background noise of the facility is from the six drive fans downstream of the test section and first set of turning vanes. Directional array response and processing methods such as background-noise cross-spectral-matrix subtraction suggest that sources 10-15 dB weaker than the background can be detected.
NASA Technical Reports Server (NTRS)
Shaffer, Scott; Dunbar, R. Scott; Hsiao, S. Vincent; Long, David G.
1989-01-01
The NASA Scatterometer, NSCAT, is an active spaceborne radar designed to measure the normalized radar backscatter coefficient (sigma0) of the ocean surface. These measurements can, in turn, be used to infer the surface vector wind over the ocean using a geophysical model function. Several ambiguous wind vectors result because of the nature of the model function. A median-filter-based ambiguity removal algorithm will be used by the NSCAT ground data processor to select the best wind vector from the set of ambiguous wind vectors. This process is commonly known as dealiasing or ambiguity removal. The baseline NSCAT ambiguity removal algorithm and the method used to select the set of optimum parameter values are described. An extensive simulation of the NSCAT instrument and ground data processor provides a means of testing the resulting tuned algorithm. This simulation generates the ambiguous wind-field vectors expected from the instrument as it orbits over a set of realistic meoscale wind fields. The ambiguous wind field is then dealiased using the median-based ambiguity removal algorithm. Performance is measured by comparison of the unambiguous wind fields with the true wind fields. Results have shown that the median-filter-based ambiguity removal algorithm satisfies NSCAT mission requirements.
NASA Technical Reports Server (NTRS)
Atencio, A., Jr.; Soderman, P. T.
1973-01-01
A method to determine free-field aircraft noise spectra from wind-tunnel measurements has been developed. The crux of the method is the correction for reverberations. Calibrated loud speakers are used to simulate model sound sources in the wind tunnel. Corrections based on the difference between the direct and reverberant field levels are applied to wind-tunnel data for a wide range of aircraft noise sources. To establish the validity of the correction method, two research aircraft - one propeller-driven (YOV-10A) and one turbojet-powered (XV-5B) - were flown in free field and then tested in the wind tunnel. Corrected noise spectra from the two environments agree closely.
NASA Astrophysics Data System (ADS)
Shen, Yan; Ge, Jin-ming; Zhang, Guo-qing; Yu, Wen-bin; Liu, Rui-tong; Fan, Wei; Yang, Ying-xuan
2018-01-01
This paper explores the problem of signal processing in optical current transformers (OCTs). Based on the noise characteristics of OCTs, such as overlapping signals, noise frequency bands, low signal-to-noise ratios, and difficulties in acquiring statistical features of noise power, an improved standard Kalman filtering algorithm was proposed for direct current (DC) signal processing. The state-space model of the OCT DC measurement system is first established, and then mixed noise can be processed by adding mixed noise into measurement and state parameters. According to the minimum mean squared error criterion, state predictions and update equations of the improved Kalman algorithm could be deduced based on the established model. An improved central difference Kalman filter was proposed for alternating current (AC) signal processing, which improved the sampling strategy and noise processing of colored noise. Real-time estimation and correction of noise were achieved by designing AC and DC noise recursive filters. Experimental results show that the improved signal processing algorithms had a good filtering effect on the AC and DC signals with mixed noise of OCT. Furthermore, the proposed algorithm was able to achieve real-time correction of noise during the OCT filtering process.
Effect of atmospherics on beamforming accuracy
NASA Technical Reports Server (NTRS)
Alexander, Richard M.
1990-01-01
Two mathematical representations of noise due to atmospheric turbulence are presented. These representations are derived and used in computer simulations of the Bartlett Estimate implementation of beamforming. Beamforming is an array processing technique employing an array of acoustic sensors used to determine the bearing of an acoustic source. Atmospheric wind conditions introduce noise into the beamformer output. Consequently, the accuracy of the process is degraded and the bearing of the acoustic source is falsely indicated or impossible to determine. The two representations of noise presented here are intended to quantify the effects of mean wind passing over the array of sensors and to correct for these effects. The first noise model is an idealized case. The effect of the mean wind is incorporated as a change in the propagation velocity of the acoustic wave. This yields an effective phase shift applied to each term of the spatial correlation matrix in the Bartlett Estimate. The resultant error caused by this model can be corrected in closed form in the beamforming algorithm. The second noise model acts to change the true direction of propagation at the beginning of the beamforming process. A closed form correction for this model is not available. Efforts to derive effective means to reduce the contributions of the noise have not been successful. In either case, the maximum error introduced by the wind is a beam shift of approximately three degrees. That is, the bearing of the acoustic source is indicated at a point a few degrees from the true bearing location. These effects are not quite as pronounced as those seen in experimental results. Sidelobes are false indications of acoustic sources in the beamformer output away from the true bearing angle. The sidelobes that are observed in experimental results are not caused by these noise models. The effects of mean wind passing over the sensor array as modeled here do not alter the beamformer output as significantly as expected.
Ho, Kevin I-J; Leung, Chi-Sing; Sum, John
2010-06-01
In the last two decades, many online fault/noise injection algorithms have been developed to attain a fault tolerant neural network. However, not much theoretical works related to their convergence and objective functions have been reported. This paper studies six common fault/noise-injection-based online learning algorithms for radial basis function (RBF) networks, namely 1) injecting additive input noise, 2) injecting additive/multiplicative weight noise, 3) injecting multiplicative node noise, 4) injecting multiweight fault (random disconnection of weights), 5) injecting multinode fault during training, and 6) weight decay with injecting multinode fault. Based on the Gladyshev theorem, we show that the convergence of these six online algorithms is almost sure. Moreover, their true objective functions being minimized are derived. For injecting additive input noise during training, the objective function is identical to that of the Tikhonov regularizer approach. For injecting additive/multiplicative weight noise during training, the objective function is the simple mean square training error. Thus, injecting additive/multiplicative weight noise during training cannot improve the fault tolerance of an RBF network. Similar to injective additive input noise, the objective functions of other fault/noise-injection-based online algorithms contain a mean square error term and a specialized regularization term.
Cartes, David A; Ray, Laura R; Collier, Robert D
2002-04-01
An adaptive leaky normalized least-mean-square (NLMS) algorithm has been developed to optimize stability and performance of active noise cancellation systems. The research addresses LMS filter performance issues related to insufficient excitation, nonstationary noise fields, and time-varying signal-to-noise ratio. The adaptive leaky NLMS algorithm is based on a Lyapunov tuning approach in which three candidate algorithms, each of which is a function of the instantaneous measured reference input, measurement noise variance, and filter length, are shown to provide varying degrees of tradeoff between stability and noise reduction performance. Each algorithm is evaluated experimentally for reduction of low frequency noise in communication headsets, and stability and noise reduction performance are compared with that of traditional NLMS and fixed-leakage NLMS algorithms. Acoustic measurements are made in a specially designed acoustic test cell which is based on the original work of Ryan et al. ["Enclosure for low frequency assessment of active noise reducing circumaural headsets and hearing protection," Can. Acoust. 21, 19-20 (1993)] and which provides a highly controlled and uniform acoustic environment. The stability and performance of the active noise reduction system, including a prototype communication headset, are investigated for a variety of noise sources ranging from stationary tonal noise to highly nonstationary measured F-16 aircraft noise over a 20 dB dynamic range. Results demonstrate significant improvements in stability of Lyapunov-tuned LMS algorithms over traditional leaky or nonleaky normalized algorithms, while providing noise reduction performance equivalent to that of the NLMS algorithm for idealized noise fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, S; Farr, J; Merchant, T
Purpose: To study the effect of total-variation based noise reduction algorithms to improve the image registration of low-dose CBCT for patient positioning in radiation therapy. Methods: In low-dose CBCT, the reconstructed image is degraded by excessive quantum noise. In this study, we developed a total-variation based noise reduction algorithm and studied the effect of the algorithm on noise reduction and image registration accuracy. To study the effect of noise reduction, we have calculated the peak signal-to-noise ratio (PSNR). To study the improvement of image registration, we performed image registration between volumetric CT and MV- CBCT images of different head-and-neck patientsmore » and calculated the mutual information (MI) and Pearson correlation coefficient (PCC) as a similarity metric. The PSNR, MI and PCC were calculated for both the noisy and noise-reduced CBCT images. Results: The algorithms were shown to be effective in reducing the noise level and improving the MI and PCC for the low-dose CBCT images tested. For the different head-and-neck patients, a maximum improvement of PSNR of 10 dB with respect to the noisy image was calculated. The improvement of MI and PCC was 9% and 2% respectively. Conclusion: Total-variation based noise reduction algorithm was studied to improve the image registration between CT and low-dose CBCT. The algorithm had shown promising results in reducing the noise from low-dose CBCT images and improving the similarity metric in terms of MI and PCC.« less
Design of low noise wind turbine blades using Betz and Joukowski concepts
NASA Astrophysics Data System (ADS)
Shen, W. Z.; Hrgovan, I.; Okulov, V.; Zhu, W. J.; Madsen, J.
2014-06-01
This paper presents the aerodynamic design of low noise wind turbine blades using Betz and Joukowski concepts. The aerodynamic model is based on Blade Element Momentum theory whereas the aeroacoustic prediction model is based on the BPM model. The investigation is started with a 3MW baseline/reference turbine rotor with a diameter of 80 m. To reduce the noise emission from the baseline rotor, the rotor is reconstructed with the low noise CQU-DTU-LN1 series of airfoils which has been tested in the acoustic wind tunnel located at Virginia Tech. Finally, 3MW low noise turbine rotors are designed using the concepts of Betz and Joukowski, and the CQU-DTU-LN1 series of airfoils. Performance analysis shows that the newly designed turbine rotors can achieve an overall noise reduction of 6 dB and 1.5 dB(A) with a similar power output as compared to the reference rotor.
2012-07-03
of white noise vectors with square sumable coefficients and components with finite fourth order moments (Shumway et al., 1999). Here, the infrasonic...center in a star -like configuration for reducing the background noise from wind activity along the boundary layer. Sensor data is recorded by 24-bit...the PMCC Algorithm In Figure 19, under the assumption that the source (red star ) is far from the arrays, PMCC starts coherence processing using
NASA Astrophysics Data System (ADS)
Cotté, B.
2018-05-01
This study proposes to couple a source model based on Amiet's theory and a parabolic equation code in order to model wind turbine noise emission and propagation in an inhomogeneous atmosphere. Two broadband noise generation mechanisms are considered, namely trailing edge noise and turbulent inflow noise. The effects of wind shear and atmospheric turbulence are taken into account using the Monin-Obukhov similarity theory. The coupling approach, based on the backpropagation method to preserve the directivity of the aeroacoustic sources, is validated by comparison with an analytical solution for the propagation over a finite impedance ground in a homogeneous atmosphere. The influence of refraction effects is then analyzed for different directions of propagation. The spectrum modification related to the ground effect and the presence of a shadow zone for upwind receivers are emphasized. The validity of the point source approximation that is often used in wind turbine noise propagation models is finally assessed. This approximation exaggerates the interference dips in the spectra, and is not able to correctly predict the amplitude modulation.
Banakh, V A; Marakasov, D A
2007-08-01
Reconstruction of a wind profile based on the statistics of plane-wave intensity fluctuations in a turbulent atmosphere is considered. The algorithm for wind profile retrieval from the spatiotemporal spectrum of plane-wave weak intensity fluctuations is described, and the results of end-to-end computer experiments on wind profiling based on the developed algorithm are presented. It is shown that the reconstructing algorithm allows retrieval of a wind profile from turbulent plane-wave intensity fluctuations with acceptable accuracy.
NASA Astrophysics Data System (ADS)
Velazquez, Antonio; Swartz, R. Andrew
2013-04-01
Wind energy is becoming increasingly important worldwide as an alternative renewable energy source. Economical, maintenance and operation are critical issues for large slender dynamic structures, especially for remote offshore wind farms. Health monitoring systems are very promising instruments to assure reliability and good performance of the structure. These sensing and control technologies are typically informed by models based on mechanics or data-driven identification techniques in the time and/or frequency domain. Frequency response functions are popular but are difficult to realize autonomously for structures of higher order and having overlapping frequency content. Instead, time-domain techniques have shown powerful advantages from a practical point of view (e.g. embedded algorithms in wireless-sensor networks), being more suitable to differentiate closely-related modes. Customarily, time-varying effects are often neglected or dismissed to simplify the analysis, but such is not the case for wind loaded structures with spinning multibodies. A more complex scenario is constituted when dealing with both periodic mechanisms responsible for the vibration shaft of the rotor-blade system, and the wind tower substructure interaction. Transformations of the cyclic effects on the vibration data can be applied to isolate inertia quantities different from rotating-generated forces that are typically non-stationary in nature. After applying these transformations, structural identification can be carried out by stationary techniques via data-correlated Eigensystem realizations. In this paper an exploration of a periodic stationary or cyclo-stationary subspace identification technique is presented here by means of a modified Eigensystem Realization Algorithm (ERA) via Stochastic Subspace Identification (SSI) and Linear Parameter Time-Varying (LPTV) techniques. Structural response is assumed under stationary ambient excitation produced by a Gaussian (white) noise assembled in the operative range bandwidth of horizontal-axis wind turbines. ERA-OKID analysis is driven by correlation-function matrices from the stationary ambient response aiming to reduce noise effects. Singular value decomposition (SVD) and eigenvalue analysis are computed in a last stage to get frequencies and mode shapes. Proposed assumptions are carefully weighted to account for the uncertainty of the environment the wind turbines are subjected to. A numerical example is presented based on data acquisition carried out in a BWC XL.1 low power wind turbine device installed in University of California at Davis. Finally, comments and observations are provided on how this subspace realization technique can be extended for modal-parameter identification using exclusively ambient vibration data.
Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.
Xia, Youshen; Wang, Jun
2015-07-01
This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Potential of neuro-fuzzy methodology to estimate noise level of wind turbines
NASA Astrophysics Data System (ADS)
Nikolić, Vlastimir; Petković, Dalibor; Por, Lip Yee; Shamshirband, Shahaboddin; Zamani, Mazdak; Ćojbašić, Žarko; Motamedi, Shervin
2016-01-01
Wind turbines noise effect became large problem because of increasing of wind farms numbers since renewable energy becomes the most influential energy sources. However, wind turbine noise generation and propagation is not understandable in all aspects. Mechanical noise of wind turbines can be ignored since aerodynamic noise of wind turbine blades is the main source of the noise generation. Numerical simulations of the noise effects of the wind turbine can be very challenging task. Therefore in this article soft computing method is used to evaluate noise level of wind turbines. The main goal of the study is to estimate wind turbine noise in regard of wind speed at different heights and for different sound frequency. Adaptive neuro-fuzzy inference system (ANFIS) is used to estimate the wind turbine noise levels.
A Laplacian based image filtering using switching noise detector.
Ranjbaran, Ali; Hassan, Anwar Hasni Abu; Jafarpour, Mahboobe; Ranjbaran, Bahar
2015-01-01
This paper presents a Laplacian-based image filtering method. Using a local noise estimator function in an energy functional minimizing scheme we show that Laplacian that has been known as an edge detection function can be used for noise removal applications. The algorithm can be implemented on a 3x3 window and easily tuned by number of iterations. Image denoising is simplified to the reduction of the pixels value with their related Laplacian value weighted by local noise estimator. The only parameter which controls smoothness is the number of iterations. Noise reduction quality of the introduced method is evaluated and compared with some classic algorithms like Wiener and Total Variation based filters for Gaussian noise. And also the method compared with the state-of-the-art method BM3D for some images. The algorithm appears to be easy, fast and comparable with many classic denoising algorithms for Gaussian noise.
2015-09-01
seen in Fig. 9, were placed at the rear of the vehicle to minimize the noise and vibration from the engine and its intake and exhaust from the...Specific/unique algorithm approaches attempted and results 4) Observations related to wind noise rejection and/or effects 5) Limitations of technology 6...After a certain time, the muzzle blast is detected, which results from the exit of the munition at the muzzle. Figure 6 shows an example of a single
Goehring, Tobias; Bolner, Federico; Monaghan, Jessica J M; van Dijk, Bas; Zarowski, Andrzej; Bleeck, Stefan
2017-02-01
Speech understanding in noisy environments is still one of the major challenges for cochlear implant (CI) users in everyday life. We evaluated a speech enhancement algorithm based on neural networks (NNSE) for improving speech intelligibility in noise for CI users. The algorithm decomposes the noisy speech signal into time-frequency units, extracts a set of auditory-inspired features and feeds them to the neural network to produce an estimation of which frequency channels contain more perceptually important information (higher signal-to-noise ratio, SNR). This estimate is used to attenuate noise-dominated and retain speech-dominated CI channels for electrical stimulation, as in traditional n-of-m CI coding strategies. The proposed algorithm was evaluated by measuring the speech-in-noise performance of 14 CI users using three types of background noise. Two NNSE algorithms were compared: a speaker-dependent algorithm, that was trained on the target speaker used for testing, and a speaker-independent algorithm, that was trained on different speakers. Significant improvements in the intelligibility of speech in stationary and fluctuating noises were found relative to the unprocessed condition for the speaker-dependent algorithm in all noise types and for the speaker-independent algorithm in 2 out of 3 noise types. The NNSE algorithms used noise-specific neural networks that generalized to novel segments of the same noise type and worked over a range of SNRs. The proposed algorithm has the potential to improve the intelligibility of speech in noise for CI users while meeting the requirements of low computational complexity and processing delay for application in CI devices. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fisher, Aileen
The term infrasound describes atmospheric sound waves with frequencies below 20 Hz, while acoustics are classified within the audible range of 20 Hz to 20 kHz. Infrasound and acoustic monitoring in the scientific community is hampered by low signal-to-noise ratios and a limited number of studies on regional and short-range noise and source characterization. The JASON Report (2005) suggests the infrasound community focus on more broad-frequency, observational studies within a tactical distance of 10 km. In keeping with that recommendation, this paper presents a study of regional and short-range atmospheric acoustic and infrasonic noise characterization, at a desert site in West Texas, covering a broad frequency range of 0.2 to 100 Hz. To spatially sample the band, a large number of infrasound gauges was needed. A laboratory instrument analysis is presented of the set of low-cost infrasound sensors used in this study, manufactured by Inter-Mountain Laboratories (IML). Analysis includes spectra, transfer functions and coherences to assess the stability and range of the gauges, and complements additional instrument testing by Sandia National Laboratories. The IMLs documented here have been found reliably coherent from 0.1 to 7 Hz without instrument correction. Corrections were built using corresponding time series from the commercially available and more expensive Chaparral infrasound gauge, so that the corrected IML outputs were able to closely mimic the Chaparral output. Arrays of gauges are needed for atmospheric sound signal processing. Our West Texas experiment consisted of a 1.5 km aperture, 23-gauge infrasound/acoustic array of IMLs, with a compact, 12 m diameter grid-array of rented IMLs at the center. To optimize signal recording, signal-to-noise ratio needs to be quantified with respect to both frequency band and coherence length. The higher-frequency grid array consisted of 25 microphones arranged in a five by five pattern with 3 meter spacing, without spatial wind noise filtering hoses or pipes. The grid was within the distance limits of a single gauge's normal hose array, and data were used to perform a spatial noise correlation study. The highest correlation values were not found in the lower frequencies as anticipated, owing to a lack of sources in the lower range and the uncorrelated nature of wind noise. The highest values, with cross-correlation averages between 0.4 and 0.7 from 3 to 17 m between gauges, were found at night from 10 and 20 Hz due to a continuous local noise source and low wind. Data from the larger array were used to identify continuous and impulsive signals in the area that comprise the ambient noise field. Ground truth infrasound and acoustic, time and location data were taken for a highway site, a wind farm, and a natural gas compressor. Close-range sound data were taken with a single IML "traveler" gauge. Spectrograms and spectrum peaks were used to identify their source signatures. Two regional location techniques were also tested with data from the large array by using a propane cannon as a controlled, impulsive source. A comparison is presented of the Multiple Signal Classification Algorithm (MUSIC) to a simple, quadratic, circular wavefront algorithm. MUSIC was unable to effectively separate noise and source eignenvalues and eigenvectors due to spatial aliasing of the propane cannon signal and a lack of incoherent noise. Only 33 out of 80 usable shots were located by MUSIC within 100 m. Future work with the algorithm should focus on location of impulsive and continuous signals with development of methods for accurate separation of signal and noise eigenvectors in the presence of coherent noise and possible spatial aliasing. The circular wavefront algorithm performed better with our specific dataset and successfully located 70 out of 80 propane cannon shots within 100 m of the original location, 66 of which were within 20 m. This method has low computation requirements, making it well suited for real-time automated processing and smaller computers. Future research could focus on development of the method for an automated system and statistical impulsive noise filtering for higher accuracy.
Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV
NASA Technical Reports Server (NTRS)
Kavaya, Michael J. (Inventor); Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor)
2015-01-01
Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.
NASA Astrophysics Data System (ADS)
Xu, Shaoping; Zeng, Xiaoxia; Jiang, Yinnan; Tang, Yiling
2018-01-01
We proposed a noniterative principal component analysis (PCA)-based noise level estimation (NLE) algorithm that addresses the problem of estimating the noise level with a two-step scheme. First, we randomly extracted a number of raw patches from a given noisy image and took the smallest eigenvalue of the covariance matrix of the raw patches as the preliminary estimation of the noise level. Next, the final estimation was directly obtained with a nonlinear mapping (rectification) function that was trained on some representative noisy images corrupted with different known noise levels. Compared with the state-of-art NLE algorithms, the experiment results show that the proposed NLE algorithm can reliably infer the noise level and has robust performance over a wide range of image contents and noise levels, showing a good compromise between speed and accuracy in general.
Study on Underwater Image Denoising Algorithm Based on Wavelet Transform
NASA Astrophysics Data System (ADS)
Jian, Sun; Wen, Wang
2017-02-01
This paper analyzes the application of MATLAB in underwater image processing, the transmission characteristics of the underwater laser light signal and the kinds of underwater noise has been described, the common noise suppression algorithm: Wiener filter, median filter, average filter algorithm is brought out. Then the advantages and disadvantages of each algorithm in image sharpness and edge protection areas have been compared. A hybrid filter algorithm based on wavelet transform has been proposed which can be used for Color Image Denoising. At last the PSNR and NMSE of each algorithm has been given out, which compares the ability to de-noising
Wind turbines and human health.
Knopper, Loren D; Ollson, Christopher A; McCallum, Lindsay C; Whitfield Aslund, Melissa L; Berger, Robert G; Souweine, Kathleen; McDaniel, Mary
2014-01-01
The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health.
Wind Turbines and Human Health
Knopper, Loren D.; Ollson, Christopher A.; McCallum, Lindsay C.; Whitfield Aslund, Melissa L.; Berger, Robert G.; Souweine, Kathleen; McDaniel, Mary
2014-01-01
The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health. PMID:24995266
Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.
Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin
2014-01-01
Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.
Adaptive Neuro-Fuzzy Methodology for Noise Assessment of Wind Turbine
Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin
2014-01-01
Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621
Li, Junfeng; Yang, Lin; Zhang, Jianping; Yan, Yonghong; Hu, Yi; Akagi, Masato; Loizou, Philipos C
2011-05-01
A large number of single-channel noise-reduction algorithms have been proposed based largely on mathematical principles. Most of these algorithms, however, have been evaluated with English speech. Given the different perceptual cues used by native listeners of different languages including tonal languages, it is of interest to examine whether there are any language effects when the same noise-reduction algorithm is used to process noisy speech in different languages. A comparative evaluation and investigation is taken in this study of various single-channel noise-reduction algorithms applied to noisy speech taken from three languages: Chinese, Japanese, and English. Clean speech signals (Chinese words and Japanese words) were first corrupted by three types of noise at two signal-to-noise ratios and then processed by five single-channel noise-reduction algorithms. The processed signals were finally presented to normal-hearing listeners for recognition. Intelligibility evaluation showed that the majority of noise-reduction algorithms did not improve speech intelligibility. Consistent with a previous study with the English language, the Wiener filtering algorithm produced small, but statistically significant, improvements in intelligibility for car and white noise conditions. Significant differences between the performances of noise-reduction algorithms across the three languages were observed.
Delakis, Ioannis; Hammad, Omer; Kitney, Richard I
2007-07-07
Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting.
NASA Technical Reports Server (NTRS)
Barbely, Natasha L.; Sim, Ben W.; Kitaplioglu, Cahit; Goulding, Pat, II
2010-01-01
Difficulties in obtaining full-scale rotor low frequency noise measurements in wind tunnels are addressed via residual sound reflections due to non-ideal anechoic wall treatments. Examples illustrated with the Boeing-SMART rotor test in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel facility demonstrated that these reflections introduced distortions in the measured acoustic time histories that are not representative of free-field rotor noise radiation. A simplified reflection analysis, based on the method of images, is used to examine the sound measurement quality in such "less-than-anechoic" environment. Predictions of reflection-adjusted acoustic time histories are qualitatively shown to account for some of the spurious fluctuations observed in wind tunnel noise measurements
Denoising of polychromatic CT images based on their own noise properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji Hye; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr
Purpose: Because of high diagnostic accuracy and fast scan time, computed tomography (CT) has been widely used in various clinical applications. Since the CT scan introduces radiation exposure to patients, however, dose reduction has recently been recognized as an important issue in CT imaging. However, low-dose CT causes an increase of noise in the image and thereby deteriorates the accuracy of diagnosis. In this paper, the authors develop an efficient denoising algorithm for low-dose CT images obtained using a polychromatic x-ray source. The algorithm is based on two steps: (i) estimation of space variant noise statistics, which are uniquely determinedmore » according to the system geometry and scanned object, and (ii) subsequent novel conversion of the estimated noise to Gaussian noise so that an existing high performance Gaussian noise filtering algorithm can be directly applied to CT images with non-Gaussian noise. Methods: For efficient polychromatic CT image denoising, the authors first reconstruct an image with the iterative maximum-likelihood polychromatic algorithm for CT to alleviate the beam-hardening problem. We then estimate the space-variant noise variance distribution on the image domain. Since there are many high performance denoising algorithms available for the Gaussian noise, image denoising can become much more efficient if they can be used. Hence, the authors propose a novel conversion scheme to transform the estimated space-variant noise to near Gaussian noise. In the suggested scheme, the authors first convert the image so that its mean and variance can have a linear relationship, and then produce a Gaussian image via variance stabilizing transform. The authors then apply a block matching 4D algorithm that is optimized for noise reduction of the Gaussian image, and reconvert the result to obtain a final denoised image. To examine the performance of the proposed method, an XCAT phantom simulation and a physical phantom experiment were conducted. Results: Both simulation and experimental results show that, unlike the existing denoising algorithms, the proposed algorithm can effectively reduce the noise over the whole region of CT images while preventing degradation of image resolution. Conclusions: To effectively denoise polychromatic low-dose CT images, a novel denoising algorithm is proposed. Because this algorithm is based on the noise statistics of a reconstructed polychromatic CT image, the spatially varying noise on the image is effectively reduced so that the denoised image will have homogeneous quality over the image domain. Through a simulation and a real experiment, it is verified that the proposed algorithm can deliver considerably better performance compared to the existing denoising algorithms.« less
Anechoic wind tunnel study of turbulence effects on wind turbine broadband noise
NASA Technical Reports Server (NTRS)
Loyd, B.; Harris, W. L.
1995-01-01
This paper describes recent results obtained at MIT on the experimental and theoretical modelling of aerodynamic broadband noise generated by a downwind rotor horizontal axis wind turbine. The aerodynamic broadband noise generated by the wind turbine rotor is attributed to the interaction of ingested turbulence with the rotor blades. The turbulence was generated in the MIT anechoic wind tunnel facility with the aid of biplanar grids of various sizes. The spectra and the intensity of the aerodynamic broadband noise have been studied as a function of parameters which characterize the turbulence and of wind turbine performance parameters. Specifically, the longitudinal integral scale of turbulence, the size scale of turbulence, the number of turbine blades, and free stream velocity were varied. Simultaneous measurements of acoustic and turbulence signals were made. The sound pressure level was found to vary directly with the integral scale of the ingested turbulence but not with its intensity level. A theoretical model based on unsteady aerodynamics is proposed.
Zhang, Liguo; Sun, Jianguo; Yin, Guisheng; Zhao, Jing; Han, Qilong
2015-01-01
In non-destructive testing (NDT) of metal welds, weld line tracking is usually performed outdoors, where the structured light sources are always disturbed by various noises, such as sunlight, shadows, and reflections from the weld line surface. In this paper, we design a cross structured light (CSL) to detect the weld line and propose a robust laser stripe segmentation algorithm to overcome the noises in structured light images. An adaptive monochromatic space is applied to preprocess the image with ambient noises. In the monochromatic image, the laser stripe obtained is recovered as a multichannel signal by minimum entropy deconvolution. Lastly, the stripe centre points are extracted from the image. In experiments, the CSL sensor and the proposed algorithm are applied to guide a wall climbing robot inspecting the weld line of a wind power tower. The experimental results show that the CSL sensor can capture the 3D information of the welds with high accuracy, and the proposed algorithm contributes to the weld line inspection and the robot navigation. PMID:26110403
NASA Astrophysics Data System (ADS)
Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun
2016-05-01
The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.
NASA Astrophysics Data System (ADS)
Zhou, Yali; Zhang, Qizhi; Yin, Yixin
2015-05-01
In this paper, active control of impulsive noise with symmetric α-stable (SαS) distribution is studied. A general step-size normalized filtered-x Least Mean Square (FxLMS) algorithm is developed based on the analysis of existing algorithms, and the Gaussian distribution function is used to normalize the step size. Compared with existing algorithms, the proposed algorithm needs neither the parameter selection and thresholds estimation nor the process of cost function selection and complex gradient computation. Computer simulations have been carried out to suggest that the proposed algorithm is effective for attenuating SαS impulsive noise, and then the proposed algorithm has been implemented in an experimental ANC system. Experimental results show that the proposed scheme has good performance for SαS impulsive noise attenuation.
CONEDEP: COnvolutional Neural network based Earthquake DEtection and Phase Picking
NASA Astrophysics Data System (ADS)
Zhou, Y.; Huang, Y.; Yue, H.; Zhou, S.; An, S.; Yun, N.
2017-12-01
We developed an automatic local earthquake detection and phase picking algorithm based on Fully Convolutional Neural network (FCN). The FCN algorithm detects and segments certain features (phases) in 3 component seismograms to realize efficient picking. We use STA/LTA algorithm and template matching algorithm to construct the training set from seismograms recorded 1 month before and after the Wenchuan earthquake. Precise P and S phases are identified and labeled to construct the training set. Noise data are produced by combining back-ground noise and artificial synthetic noise to form the equivalent scale of noise set as the signal set. Training is performed on GPUs to achieve efficient convergence. Our algorithm has significantly improved performance in terms of the detection rate and precision in comparison with STA/LTA and template matching algorithms.
Towards an Optimal Noise Versus Resolution Trade-Off in Wind Scatterometry
NASA Technical Reports Server (NTRS)
Williams, Brent A.
2011-01-01
A scatterometer is a radar that measures the normalized radar cross section sigma(sup 0) of the Earth's surface. Over the ocean this signal is related to the wind via the geophysical model function (GMF). The objective of wind scatterometry is to estimate the wind vector field from sigma(sup 0) measurements; however, there are many subtleties that complicate this problem-making it difficult to obtain a unique wind field estimate. Conventionally, wind estimation is split into two stages: a wind retrieval stage in which several ambiguous solutions are obtained, and an ambiguity removal stage in which ambiguities are chosen to produce an appropriate wind vector field estimate. The most common approach to wind field estimation is to grid the scatterometer swath into wind vector cells and estimate wind vector ambiguities independently for each cell. Then, field wise structure is imposed on the solution by an ambiguity selection routine. Although this approach is simple and practical, it neglects field wise structure in the retrieval step and does not account for the spatial correlation imposed by the sampling. This makes it difficult to develop a theoretically appropriate noise versus resolution trade-off using pointwise retrieval. Fieldwise structure may be imposed in the retrieval step using a model-based approach. However, this approach is generally only practical if a low order wind field model is applied, which may discard more information than is desired. Furthermore, model-based approaches do not account for the structure imposed by the sampling. A more general fieldwise approach is to estimate all the wind vectors for all the WVCs simultaneously from all the measurements. This approach can account for structure of the wind field as well as structure imposed by the sampling in the wind retrieval step. Williams and Long in 2010 developed a fieldwise retrieval method based on maximum a posteriori estimation (MAP). This MAP approach can be extended to perform a noise versus resolution trade-off, and deal with ambiguity selection. This paper extends the fieldwise MAP estimation approach and investigates both the noise versus resolution trade-off as well as ambiguity removal in the fieldwise wind retrieval step. The method is then applied to the Sea Winds scatterometer and the results are analyzed. This paper extends the fieldwise MAP estimation approach and investigates both the noise versus resolution trade-off as well as ambiguity removal in the fieldwise wind retrieval step. The method is then applied to the Sea Winds scatterometer and the results are analyzed.
Speech enhancement based on modified phase-opponency detectors
NASA Astrophysics Data System (ADS)
Deshmukh, Om D.; Espy-Wilson, Carol Y.
2005-09-01
A speech enhancement algorithm based on a neural model was presented by Deshmukh et al., [149th meeting of the Acoustical Society America, 2005]. The algorithm consists of a bank of Modified Phase Opponency (MPO) filter pairs tuned to different center frequencies. This algorithm is able to enhance salient spectral features in speech signals even at low signal-to-noise ratios. However, the algorithm introduces musical noise and sometimes misses a spectral peak that is close in frequency to a stronger spectral peak. Refinement in the design of the MPO filters was recently made that takes advantage of the falling spectrum of the speech signal in sonorant regions. The modified set of filters leads to better separation of the noise and speech signals, and more accurate enhancement of spectral peaks. The improvements also lead to a significant reduction in musical noise. Continuity algorithms based on the properties of speech signals are used to further reduce the musical noise effect. The efficiency of the proposed method in enhancing the speech signal when the level of the background noise is fluctuating will be demonstrated. The performance of the improved speech enhancement method will be compared with various spectral subtraction-based methods. [Work supported by NSF BCS0236707.
Comparing Binaural Pre-processing Strategies I: Instrumental Evaluation.
Baumgärtel, Regina M; Krawczyk-Becker, Martin; Marquardt, Daniel; Völker, Christoph; Hu, Hongmei; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Ernst, Stephan M A; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias
2015-12-30
In a collaborative research project, several monaural and binaural noise reduction algorithms have been comprehensively evaluated. In this article, eight selected noise reduction algorithms were assessed using instrumental measures, with a focus on the instrumental evaluation of speech intelligibility. Four distinct, reverberant scenarios were created to reflect everyday listening situations: a stationary speech-shaped noise, a multitalker babble noise, a single interfering talker, and a realistic cafeteria noise. Three instrumental measures were employed to assess predicted speech intelligibility and predicted sound quality: the intelligibility-weighted signal-to-noise ratio, the short-time objective intelligibility measure, and the perceptual evaluation of speech quality. The results show substantial improvements in predicted speech intelligibility as well as sound quality for the proposed algorithms. The evaluated coherence-based noise reduction algorithm was able to provide improvements in predicted audio signal quality. For the tested single-channel noise reduction algorithm, improvements in intelligibility-weighted signal-to-noise ratio were observed in all but the nonstationary cafeteria ambient noise scenario. Binaural minimum variance distortionless response beamforming algorithms performed particularly well in all noise scenarios. © The Author(s) 2015.
Comparing Binaural Pre-processing Strategies I
Krawczyk-Becker, Martin; Marquardt, Daniel; Völker, Christoph; Hu, Hongmei; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Ernst, Stephan M. A.; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias
2015-01-01
In a collaborative research project, several monaural and binaural noise reduction algorithms have been comprehensively evaluated. In this article, eight selected noise reduction algorithms were assessed using instrumental measures, with a focus on the instrumental evaluation of speech intelligibility. Four distinct, reverberant scenarios were created to reflect everyday listening situations: a stationary speech-shaped noise, a multitalker babble noise, a single interfering talker, and a realistic cafeteria noise. Three instrumental measures were employed to assess predicted speech intelligibility and predicted sound quality: the intelligibility-weighted signal-to-noise ratio, the short-time objective intelligibility measure, and the perceptual evaluation of speech quality. The results show substantial improvements in predicted speech intelligibility as well as sound quality for the proposed algorithms. The evaluated coherence-based noise reduction algorithm was able to provide improvements in predicted audio signal quality. For the tested single-channel noise reduction algorithm, improvements in intelligibility-weighted signal-to-noise ratio were observed in all but the nonstationary cafeteria ambient noise scenario. Binaural minimum variance distortionless response beamforming algorithms performed particularly well in all noise scenarios. PMID:26721920
Calculated wind noise for an infrasonic wind noise enclosure.
Abbott, JohnPaul; Raspet, Richard
2015-07-01
A simple calculation of the wind noise measured at the center of a large porous wind fence enclosure is developed. The calculation provides a good model of the measured wind noise, with a good agreement within ±5 dB, and is derived by combining the wind noise contributions from (a) the turbulence-turbulence and turbulence-shear interactions inside the enclosure, (b) the turbulence interactions on the surface of the enclosure, and (c) the turbulence-shear interactions outside of the enclosure. Each wind noise contribution is calculated from the appropriate measured turbulence spectra, velocity profiles, correlation lengths, and the mean velocity at the center, surface, and outside of the enclosure. The model is verified by comparisons of the measured wind noise to the calculated estimates of the differing noise contributions and their sum.
Image denoising based on noise detection
NASA Astrophysics Data System (ADS)
Jiang, Yuanxiang; Yuan, Rui; Sun, Yuqiu; Tian, Jinwen
2018-03-01
Because of the noise points in the images, any operation of denoising would change the original information of non-noise pixel. A noise detection algorithm based on fractional calculus was proposed to denoise in this paper. Convolution of the image was made to gain direction gradient masks firstly. Then, the mean gray was calculated to obtain the gradient detection maps. Logical product was made to acquire noise position image next. Comparisons in the visual effect and evaluation parameters after processing, the results of experiment showed that the denoising algorithms based on noise were better than that of traditional methods in both subjective and objective aspects.
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
2002-06-01
Effective suppression of speckle noise content in interferometric data images can help in improving accuracy and resolution of the results obtained with interferometric optical metrology techniques. In this paper, novel speckle noise reduction algorithms based on the discrete wavelet transformation are presented. The algorithms proceed by: (a) estimating the noise level contained in the interferograms of interest, (b) selecting wavelet families, (c) applying the wavelet transformation using the selected families, (d) wavelet thresholding, and (e) applying the inverse wavelet transformation, producing denoised interferograms. The algorithms are applied to the different stages of the processing procedures utilized for generation of quantitative speckle correlation interferometry data of fiber-optic based opto-electronic holography (FOBOEH) techniques, allowing identification of optimal processing conditions. It is shown that wavelet algorithms are effective for speckle noise reduction while preserving image features otherwise faded with other algorithms.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
... resulting from construction, operation, and maintenance of land-based wind energy facilities. DATES: These...) established the Wind Turbine Guidelines Advisory Committee (Committee) under the Federal Advisory Committee... concern over certain issues such as the effects of wind turbine noise on wildlife, these issues have not...
A wavelet and least square filter based spatial-spectral denoising approach of hyperspectral imagery
NASA Astrophysics Data System (ADS)
Li, Ting; Chen, Xiao-Mei; Chen, Gang; Xue, Bo; Ni, Guo-Qiang
2009-11-01
Noise reduction is a crucial step in hyperspectral imagery pre-processing. Based on sensor characteristics, the noise of hyperspectral imagery represents in both spatial and spectral domain. However, most prevailing denosing techniques process the imagery in only one specific domain, which have not utilized multi-domain nature of hyperspectral imagery. In this paper, a new spatial-spectral noise reduction algorithm is proposed, which is based on wavelet analysis and least squares filtering techniques. First, in the spatial domain, a new stationary wavelet shrinking algorithm with improved threshold function is utilized to adjust the noise level band-by-band. This new algorithm uses BayesShrink for threshold estimation, and amends the traditional soft-threshold function by adding shape tuning parameters. Comparing with soft or hard threshold function, the improved one, which is first-order derivable and has a smooth transitional region between noise and signal, could save more details of image edge and weaken Pseudo-Gibbs. Then, in the spectral domain, cubic Savitzky-Golay filter based on least squares method is used to remove spectral noise and artificial noise that may have been introduced in during the spatial denoising. Appropriately selecting the filter window width according to prior knowledge, this algorithm has effective performance in smoothing the spectral curve. The performance of the new algorithm is experimented on a set of Hyperion imageries acquired in 2007. The result shows that the new spatial-spectral denoising algorithm provides more significant signal-to-noise-ratio improvement than traditional spatial or spectral method, while saves the local spectral absorption features better.
a Universal De-Noising Algorithm for Ground-Based LIDAR Signal
NASA Astrophysics Data System (ADS)
Ma, Xin; Xiang, Chengzhi; Gong, Wei
2016-06-01
Ground-based lidar, working as an effective remote sensing tool, plays an irreplaceable role in the study of atmosphere, since it has the ability to provide the atmospheric vertical profile. However, the appearance of noise in a lidar signal is unavoidable, which leads to difficulties and complexities when searching for more information. Every de-noising method has its own characteristic but with a certain limitation, since the lidar signal will vary with the atmosphere changes. In this paper, a universal de-noising algorithm is proposed to enhance the SNR of a ground-based lidar signal, which is based on signal segmentation and reconstruction. The signal segmentation serving as the keystone of the algorithm, segments the lidar signal into three different parts, which are processed by different de-noising method according to their own characteristics. The signal reconstruction is a relatively simple procedure that is to splice the signal sections end to end. Finally, a series of simulation signal tests and real dual field-of-view lidar signal shows the feasibility of the universal de-noising algorithm.
NASA Astrophysics Data System (ADS)
Wu, Lifu; Qiu, Xiaojun; Guo, Yecai
2018-06-01
To tune the noise amplification in the feedback system caused by the waterbed effect effectively, an adaptive algorithm is proposed in this paper by replacing the scalar leaky factor of the leaky FxLMS algorithm with a real symmetric Toeplitz matrix. The elements in the matrix are calculated explicitly according to the noise amplification constraints, which are defined based on a simple but efficient method. Simulations in an ANC headphone application demonstrate that the proposed algorithm can adjust the frequency band of noise amplification more effectively than the FxLMS algorithm and the leaky FxLMS algorithm.
Monitoring and Quantifying Particles Emissions around Industrial Sites with Scanning Doppler Lidar
NASA Astrophysics Data System (ADS)
Thobois, L.; Royer, P.; Parmentier, R.; Brooks, M.; Knoepfle, A.; Alexander, J.; Stidwell, P.; Kumar, R.
2018-04-01
Scanning Coherent Doppler Lidars have been used over the last decade for measuring wind for applications in wind energy [1], meteorology [2] and aviation [3]. They allow for accurate measurements of wind speeds up to a distance of 10 km based on the Doppler shift effect of aerosols. The signal reflectivity (CNR or Carrier-to-Noise Ratio) profiles can also be retrieved from the strength of the Lidar signal. In this study, we will present the developments of algorithm for retrieving aerosol optical properties like the relative attenuated backscatter coefficient and the mass concentration of particles. The use of these algorithms during one operational trial in Point Samson, Western Australia to monitor fugitive emissions over a mine will be presented. This project has been initiated by the Australian Department of Environment Regulations to better determine the impact of the Port on the neighboring town. During the trial in Summer, the strong impact of turbulence refractive index on Lidar performances has been observed. Multiple methodologies have been applied to reduce this impact with more or less success. At the end, a dedicated setup and configuration have been established that allow to properly observe the plumes of the mine with the scanning Lidar. The Lidar data has also been coupled to beta attenuation in-situ sensors for retrieving mass concentration maps. A few case of dispersion of plumes will be presented showing the necessity to combine both the wind and aerosol data.
"Dispersion modeling approaches for near road | Science ...
Roadway design and roadside barriers can have significant effects on the dispersion of traffic-generated pollutants, especially in the near-road environment. Dispersion models that can accurately simulate these effects are needed to fully assess these impacts for a variety of applications. For example, such models can be useful for evaluating the mitigation potential of roadside barriers in reducing near-road exposures and their associated adverse health effects. Two databases, a tracer field study and a wind tunnel study, provide measurements used in the development and/or validation of algorithms to simulate dispersion in the presence of noise barriers. The tracer field study was performed in Idaho Falls, ID, USA with a 6-m noise barrier and a finite line source in a variety of atmospheric conditions. The second study was performed in the meteorological wind tunnel at the US EPA and simulated line sources at different distances from a model noise barrier to capture the effect on emissions from individual lanes of traffic. In both cases, velocity and concentration measurements characterized the effect of the barrier on dispersion.This paper presents comparisons with the two datasets of the barrier algorithms implemented in two different dispersion models: US EPA’s R-LINE (a research dispersion modelling tool under development by the US EPA’s Office of Research and Development) and CERC’s ADMS model (ADMS-Urban). In R-LINE the physical features reveal
Linear-time general decoding algorithm for the surface code
NASA Astrophysics Data System (ADS)
Darmawan, Andrew S.; Poulin, David
2018-05-01
A quantum error correcting protocol can be substantially improved by taking into account features of the physical noise process. We present an efficient decoder for the surface code which can account for general noise features, including coherences and correlations. We demonstrate that the decoder significantly outperforms the conventional matching algorithm on a variety of noise models, including non-Pauli noise and spatially correlated noise. The algorithm is based on an approximate calculation of the logical channel using a tensor-network description of the noisy state.
Liang, Zhiqiang; Wei, Jianming; Zhao, Junyu; Liu, Haitao; Li, Baoqing; Shen, Jie; Zheng, Chunlei
2008-01-01
This paper presents a new algorithm making use of kurtosis, which is a statistical parameter, to distinguish the seismic signal generated by a person's footsteps from other signals. It is adaptive to any environment and needs no machine study or training. As persons or other targets moving on the ground generate continuous signals in the form of seismic waves, we can separate different targets based on the seismic waves they generate. The parameter of kurtosis is sensitive to impulsive signals, so it's much more sensitive to the signal generated by person footsteps than other signals generated by vehicles, winds, noise, etc. The parameter of kurtosis is usually employed in the financial analysis, but rarely used in other fields. In this paper, we make use of kurtosis to distinguish person from other targets based on its different sensitivity to different signals. Simulation and application results show that this algorithm is very effective in distinguishing person from other targets. PMID:27873804
Guo, Yanjie; Chen, Xuefeng; Wang, Shibin; Sun, Ruobin; Zhao, Zhibin
2017-05-18
The gearbox is one of the key components in wind turbines. Gearbox fault signals are usually nonstationary and highly contaminated with noise. The presence of amplitude-modulated and frequency-modulated (AM-FM) characteristics compound the difficulty of precise fault diagnosis of wind turbines, therefore, it is crucial to develop an effective fault diagnosis method for such equipment. This paper presents an improved diagnosis method for wind turbines via the combination of synchrosqueezing transform and local mean decomposition. Compared to the conventional time-frequency analysis techniques, the improved method which is performed in non-real-time can effectively reduce the noise pollution of the signals and preserve the signal characteristics, and hence is suitable for the analysis of nonstationary signals with high noise. This method is further validated by simulated signals and practical vibration data measured from a 1.5 MW wind turbine. The results confirm that the proposed method can simultaneously control the noise and increase the accuracy of time-frequency representation.
Guo, Yanjie; Chen, Xuefeng; Wang, Shibin; Sun, Ruobin; Zhao, Zhibin
2017-01-01
The gearbox is one of the key components in wind turbines. Gearbox fault signals are usually nonstationary and highly contaminated with noise. The presence of amplitude-modulated and frequency-modulated (AM-FM) characteristics compound the difficulty of precise fault diagnosis of wind turbines, therefore, it is crucial to develop an effective fault diagnosis method for such equipment. This paper presents an improved diagnosis method for wind turbines via the combination of synchrosqueezing transform and local mean decomposition. Compared to the conventional time-frequency analysis techniques, the improved method which is performed in non-real-time can effectively reduce the noise pollution of the signals and preserve the signal characteristics, and hence is suitable for the analysis of nonstationary signals with high noise. This method is further validated by simulated signals and practical vibration data measured from a 1.5 MW wind turbine. The results confirm that the proposed method can simultaneously control the noise and increase the accuracy of time-frequency representation. PMID:28524090
A voting-based star identification algorithm utilizing local and global distribution
NASA Astrophysics Data System (ADS)
Fan, Qiaoyun; Zhong, Xuyang; Sun, Junhua
2018-03-01
A novel star identification algorithm based on voting scheme is presented in this paper. In the proposed algorithm, the global distribution and local distribution of sensor stars are fully utilized, and the stratified voting scheme is adopted to obtain the candidates for sensor stars. The database optimization is employed to reduce its memory requirement and improve the robustness of the proposed algorithm. The simulation shows that the proposed algorithm exhibits 99.81% identification rate with 2-pixel standard deviations of positional noises and 0.322-Mv magnitude noises. Compared with two similar algorithms, the proposed algorithm is more robust towards noise, and the average identification time and required memory is less. Furthermore, the real sky test shows that the proposed algorithm performs well on the real star images.
Annoyance, detection and recognition of wind turbine noise.
Van Renterghem, Timothy; Bockstael, Annelies; De Weirt, Valentine; Botteldooren, Dick
2013-07-01
Annoyance, recognition and detection of noise from a single wind turbine were studied by means of a two-stage listening experiment with 50 participants with normal hearing abilities. In-situ recordings made at close distance from a 1.8-MW wind turbine operating at 22 rpm were mixed with road traffic noise, and processed to simulate indoor sound pressure levels at LAeq 40 dBA. In a first part, where people were unaware of the true purpose of the experiment, samples were played during a quiet leisure activity. Under these conditions, pure wind turbine noise gave very similar annoyance ratings as unmixed highway noise at the same equivalent level, while annoyance by local road traffic noise was significantly higher. In a second experiment, listeners were asked to identify the sample containing wind turbine noise in a paired comparison test. The detection limit of wind turbine noise in presence of highway noise was estimated to be as low as a signal-to-noise ratio of -23 dBA. When mixed with local road traffic, such a detection limit could not be determined. These findings support that noticing the sound could be an important aspect of wind turbine noise annoyance at the low equivalent levels typically observed indoors in practice. Participants that easily recognized wind-turbine(-like) sounds could detect wind turbine noise better when submersed in road traffic noise. Recognition of wind turbine sounds is also linked to higher annoyance. Awareness of the source is therefore a relevant aspect of wind turbine noise perception which is consistent with previous research. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Feng, Ju; Shen, Wen Zhong; Xu, Chang
2016-09-01
A new algorithm for multi-objective wind farm layout optimization is presented. It formulates the wind turbine locations as continuous variables and is capable of optimizing the number of turbines and their locations in the wind farm simultaneously. Two objectives are considered. One is to maximize the total power production, which is calculated by considering the wake effects using the Jensen wake model combined with the local wind distribution. The other is to minimize the total electrical cable length. This length is assumed to be the total length of the minimal spanning tree that connects all turbines and is calculated by using Prim's algorithm. Constraints on wind farm boundary and wind turbine proximity are also considered. An ideal test case shows the proposed algorithm largely outperforms a famous multi-objective genetic algorithm (NSGA-II). In the real test case based on the Horn Rev 1 wind farm, the algorithm also obtains useful Pareto frontiers and provides a wide range of Pareto optimal layouts with different numbers of turbines for a real-life wind farm developer.
Wind profiling based on the optical beam intensity statistics in a turbulent atmosphere.
Banakh, Victor A; Marakasov, Dimitrii A
2007-10-01
Reconstruction of the wind profile from the statistics of intensity fluctuations of an optical beam propagating in a turbulent atmosphere is considered. The equations for the spatiotemporal correlation function and the spectrum of weak intensity fluctuations of a Gaussian beam are obtained. The algorithms of wind profile retrieval from the spatiotemporal intensity spectrum are described and the results of end-to-end computer experiments on wind profiling based on the developed algorithms are presented. It is shown that the developed algorithms allow retrieval of the wind profile from the turbulent optical beam intensity fluctuations with acceptable accuracy in many practically feasible laser measurements set up in the atmosphere.
NASA Astrophysics Data System (ADS)
Zhong, Ke; Lei, Xia; Li, Shaoqian
2013-12-01
Statistics-based intercarrier interference (ICI) mitigation algorithm is proposed for orthogonal frequency division multiplexing systems in presence of both nonstationary and stationary phase noises. By utilizing the statistics of phase noise, which can be obtained from measurements or data sheets, a Wiener filter preprocessing algorithm for ICI mitigation is proposed. The proposed algorithm can be regarded as a performance-improving technique for the previous researches on phase noise cancelation. Simulation results show that the proposed algorithm can effectively mitigate ICI and lower the error floor, and therefore significantly improve the performances of previous researches on phase noise cancelation, especially in the presence of severe phase noise.
V/STOL Rotary Propulsor Noise Prediction Model Update and Evaluation.
1979-12-01
Noise as Observed on and Jacques the Bertin Aerotrain July 1976 JSV 54(2) 3) Hoch, Berthelot Use of the Bertin Aerotrain for the Investigation July 1976...Atencio G.E. X376-B Jots 2 Drevet, et al Aerotrain - G.E. J85 9 Jaeck Wind Tunnel - G.E. J85 Nozzles 13 Pacbian, et al Wind Tunnel Model Jet 23 Brooks...Calculat6d Full-Scale Jet Noise Data Base Item 2. - This paper presents measurements made of the noise from a J85 engine installed on the Aerotrain . Data
Measurement and prediction of broadband noise from large horizontal axis wind turbine generators
NASA Technical Reports Server (NTRS)
Grosveld, F. W.; Shepherd, K. P.; Hubbard, H. H.
1995-01-01
A method is presented for predicting the broadband noise spectra of large wind turbine generators. It includes contributions from such noise sources as the inflow turbulence to the rotor, the interactions between the turbulent boundary layers on the blade surfaces with their trailing edges and the wake due to a blunt trailing edge. The method is partly empirical and is based on acoustic measurements of large wind turbines and airfoil models. Spectra are predicted for several large machines including the proposed MOD-5B. Measured data are presented for the MOD-2, the WTS-4, the MOD-OA, and the U.S. Windpower Inc. machines. Good agreement is shown between the predicted and measured far field noise spectra.
Research on wind field algorithm of wind lidar based on BP neural network and grey prediction
NASA Astrophysics Data System (ADS)
Chen, Yong; Chen, Chun-Li; Luo, Xiong; Zhang, Yan; Yang, Ze-hou; Zhou, Jie; Shi, Xiao-ding; Wang, Lei
2018-01-01
This paper uses the BP neural network and grey algorithm to forecast and study radar wind field. In order to reduce the residual error in the wind field prediction which uses BP neural network and grey algorithm, calculating the minimum value of residual error function, adopting the residuals of the gray algorithm trained by BP neural network, using the trained network model to forecast the residual sequence, using the predicted residual error sequence to modify the forecast sequence of the grey algorithm. The test data show that using the grey algorithm modified by BP neural network can effectively reduce the residual value and improve the prediction precision.
Wind Noise Reduction in a Non-Porous Subsurface Windscreen
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J.; Shams, Qamar A.; Knight, H. Keith
2012-01-01
Measurements of wind noise reduction were conducted on a box-shaped, subsurface windscreen made of closed cell polyurethane foam. The windscreen was installed in the ground with the lid flush with the ground surface. The wind was generated by means of a fan, situated on the ground, and the wind speed was measured at the center of the windscreen lid with an ultrasonic anemometer. The wind speed was controlled by moving the fan to selected distances from the windscreen. The wind noise was measured on a PCB Piezotronics 3†electret microphone. Wind noise spectra were measured with the microphone exposed directly to the wind (atop the windscreen lid) and with the microphone installed inside the windscreen. The difference between the two spectra comprises the wind noise reduction. At wind speeds of 3, 5, and 7 m/s, the wind noise reduction is typically 15 dB over the frequency range of 0.1-20 Hz.
LAWS simulation: Sampling strategies and wind computation algorithms
NASA Technical Reports Server (NTRS)
Emmitt, G. D. A.; Wood, S. A.; Houston, S. H.
1989-01-01
In general, work has continued on developing and evaluating algorithms designed to manage the Laser Atmospheric Wind Sounder (LAWS) lidar pulses and to compute the horizontal wind vectors from the line-of-sight (LOS) measurements. These efforts fall into three categories: Improvements to the shot management and multi-pair algorithms (SMA/MPA); observing system simulation experiments; and ground-based simulations of LAWS.
Health Effects Related to Wind Turbine Noise Exposure: A Systematic Review
Schmidt, Jesper Hvass; Klokker, Mads
2014-01-01
Background Wind turbine noise exposure and suspected health-related effects thereof have attracted substantial attention. Various symptoms such as sleep-related problems, headache, tinnitus and vertigo have been described by subjects suspected of having been exposed to wind turbine noise. Objective This review was conducted systematically with the purpose of identifying any reported associations between wind turbine noise exposure and suspected health-related effects. Data Sources A search of the scientific literature concerning the health-related effects of wind turbine noise was conducted on PubMed, Web of Science, Google Scholar and various other Internet sources. Study Eligibility Criteria All studies investigating suspected health-related outcomes associated with wind turbine noise exposure were included. Results Wind turbines emit noise, including low-frequency noise, which decreases incrementally with increases in distance from the wind turbines. Likewise, evidence of a dose-response relationship between wind turbine noise linked to noise annoyance, sleep disturbance and possibly even psychological distress was present in the literature. Currently, there is no further existing statistically-significant evidence indicating any association between wind turbine noise exposure and tinnitus, hearing loss, vertigo or headache. Limitations Selection bias and information bias of differing magnitudes were found to be present in all current studies investigating wind turbine noise exposure and adverse health effects. Only articles published in English, German or Scandinavian languages were reviewed. Conclusions Exposure to wind turbines does seem to increase the risk of annoyance and self-reported sleep disturbance in a dose-response relationship. There appears, though, to be a tolerable level of around LAeq of 35 dB. Of the many other claimed health effects of wind turbine noise exposure reported in the literature, however, no conclusive evidence could be found. Future studies should focus on investigations aimed at objectively demonstrating whether or not measureable health-related outcomes can be proven to fluctuate depending on exposure to wind turbines. PMID:25474326
Health effects related to wind turbine noise exposure: a systematic review.
Schmidt, Jesper Hvass; Klokker, Mads
2014-01-01
Wind turbine noise exposure and suspected health-related effects thereof have attracted substantial attention. Various symptoms such as sleep-related problems, headache, tinnitus and vertigo have been described by subjects suspected of having been exposed to wind turbine noise. This review was conducted systematically with the purpose of identifying any reported associations between wind turbine noise exposure and suspected health-related effects. A search of the scientific literature concerning the health-related effects of wind turbine noise was conducted on PubMed, Web of Science, Google Scholar and various other Internet sources. All studies investigating suspected health-related outcomes associated with wind turbine noise exposure were included. Wind turbines emit noise, including low-frequency noise, which decreases incrementally with increases in distance from the wind turbines. Likewise, evidence of a dose-response relationship between wind turbine noise linked to noise annoyance, sleep disturbance and possibly even psychological distress was present in the literature. Currently, there is no further existing statistically-significant evidence indicating any association between wind turbine noise exposure and tinnitus, hearing loss, vertigo or headache. Selection bias and information bias of differing magnitudes were found to be present in all current studies investigating wind turbine noise exposure and adverse health effects. Only articles published in English, German or Scandinavian languages were reviewed. Exposure to wind turbines does seem to increase the risk of annoyance and self-reported sleep disturbance in a dose-response relationship. There appears, though, to be a tolerable level of around LAeq of 35 dB. Of the many other claimed health effects of wind turbine noise exposure reported in the literature, however, no conclusive evidence could be found. Future studies should focus on investigations aimed at objectively demonstrating whether or not measureable health-related outcomes can be proven to fluctuate depending on exposure to wind turbines.
Robust local search for spacecraft operations using adaptive noise
NASA Technical Reports Server (NTRS)
Fukunaga, Alex S.; Rabideau, Gregg; Chien, Steve
2004-01-01
Randomization is a standard technique for improving the performance of local search algorithms for constraint satisfaction. However, it is well-known that local search algorithms are constraints satisfaction. However, it is well-known that local search algorithms are to the noise values selected. We investigate the use of an adaptive noise mechanism in an iterative repair-based planner/scheduler for spacecraft operations. Preliminary results indicate that adaptive noise makes the use of randomized repair moves safe and robust; that is, using adaptive noise makes it possible to consistently achieve, performance comparable with the best tuned noise setting without the need for manually tuning the noise parameter.
NASA Astrophysics Data System (ADS)
Azarpour, Masoumeh; Enzner, Gerald
2017-12-01
Binaural noise reduction, with applications for instance in hearing aids, has been a very significant challenge. This task relates to the optimal utilization of the available microphone signals for the estimation of the ambient noise characteristics and for the optimal filtering algorithm to separate the desired speech from the noise. The additional requirements of low computational complexity and low latency further complicate the design. A particular challenge results from the desired reconstruction of binaural speech input with spatial cue preservation. The latter essentially diminishes the utility of multiple-input/single-output filter-and-sum techniques such as beamforming. In this paper, we propose a comprehensive and effective signal processing configuration with which most of the aforementioned criteria can be met suitably. This relates especially to the requirement of efficient online adaptive processing for noise estimation and optimal filtering while preserving the binaural cues. Regarding noise estimation, we consider three different architectures: interaural (ITF), cross-relation (CR), and principal-component (PCA) target blocking. An objective comparison with two other noise PSD estimation algorithms demonstrates the superiority of the blocking-based noise estimators, especially the CR-based and ITF-based blocking architectures. Moreover, we present a new noise reduction filter based on minimum mean-square error (MMSE), which belongs to the class of common gain filters, hence being rigorous in terms of spatial cue preservation but also efficient and competitive for the acoustic noise reduction task. A formal real-time subjective listening test procedure is also developed in this paper. The proposed listening test enables a real-time assessment of the proposed computationally efficient noise reduction algorithms in a realistic acoustic environment, e.g., considering time-varying room impulse responses and the Lombard effect. The listening test outcome reveals that the signals processed by the blocking-based algorithms are significantly preferred over the noisy signal in terms of instantaneous noise attenuation. Furthermore, the listening test data analysis confirms the conclusions drawn based on the objective evaluation.
Wavelet-based edge correlation incorporated iterative reconstruction for undersampled MRI.
Hu, Changwei; Qu, Xiaobo; Guo, Di; Bao, Lijun; Chen, Zhong
2011-09-01
Undersampling k-space is an effective way to decrease acquisition time for MRI. However, aliasing artifacts introduced by undersampling may blur the edges of magnetic resonance images, which often contain important information for clinical diagnosis. Moreover, k-space data is often contaminated by the noise signals of unknown intensity. To better preserve the edge features while suppressing the aliasing artifacts and noises, we present a new wavelet-based algorithm for undersampled MRI reconstruction. The algorithm solves the image reconstruction as a standard optimization problem including a ℓ(2) data fidelity term and ℓ(1) sparsity regularization term. Rather than manually setting the regularization parameter for the ℓ(1) term, which is directly related to the threshold, an automatic estimated threshold adaptive to noise intensity is introduced in our proposed algorithm. In addition, a prior matrix based on edge correlation in wavelet domain is incorporated into the regularization term. Compared with nonlinear conjugate gradient descent algorithm, iterative shrinkage/thresholding algorithm, fast iterative soft-thresholding algorithm and the iterative thresholding algorithm using exponentially decreasing threshold, the proposed algorithm yields reconstructions with better edge recovery and noise suppression. Copyright © 2011 Elsevier Inc. All rights reserved.
Real-time spectrum estimation–based dual-channel speech-enhancement algorithm for cochlear implant
2012-01-01
Background Improvement of the cochlear implant (CI) front-end signal acquisition is needed to increase speech recognition in noisy environments. To suppress the directional noise, we introduce a speech-enhancement algorithm based on microphone array beamforming and spectral estimation. The experimental results indicate that this method is robust to directional mobile noise and strongly enhances the desired speech, thereby improving the performance of CI devices in a noisy environment. Methods The spectrum estimation and the array beamforming methods were combined to suppress the ambient noise. The directivity coefficient was estimated in the noise-only intervals, and was updated to fit for the mobile noise. Results The proposed algorithm was realized in the CI speech strategy. For actual parameters, we use Maxflat filter to obtain fractional sampling points and cepstrum method to differentiate the desired speech frame and the noise frame. The broadband adjustment coefficients were added to compensate the energy loss in the low frequency band. Discussions The approximation of the directivity coefficient is tested and the errors are discussed. We also analyze the algorithm constraint for noise estimation and distortion in CI processing. The performance of the proposed algorithm is analyzed and further be compared with other prevalent methods. Conclusions The hardware platform was constructed for the experiments. The speech-enhancement results showed that our algorithm can suppresses the non-stationary noise with high SNR. Excellent performance of the proposed algorithm was obtained in the speech enhancement experiments and mobile testing. And signal distortion results indicate that this algorithm is robust with high SNR improvement and low speech distortion. PMID:23006896
The wind power prediction research based on mind evolutionary algorithm
NASA Astrophysics Data System (ADS)
Zhuang, Ling; Zhao, Xinjian; Ji, Tianming; Miao, Jingwen; Cui, Haina
2018-04-01
When the wind power is connected to the power grid, its characteristics of fluctuation, intermittent and randomness will affect the stability of the power system. The wind power prediction can guarantee the power quality and reduce the operating cost of power system. There were some limitations in several traditional wind power prediction methods. On the basis, the wind power prediction method based on Mind Evolutionary Algorithm (MEA) is put forward and a prediction model is provided. The experimental results demonstrate that MEA performs efficiently in term of the wind power prediction. The MEA method has broad prospect of engineering application.
Wind fence enclosures for infrasonic wind noise reduction.
Abbott, JohnPaul; Raspet, Richard; Webster, Jeremy
2015-03-01
A large porous wind fence enclosure has been built and tested to optimize wind noise reduction at infrasonic frequencies between 0.01 and 10 Hz to develop a technology that is simple and cost effective and improves upon the limitations of spatial filter arrays for detecting nuclear explosions, wind turbine infrasound, and other sources of infrasound. Wind noise is reduced by minimizing the sum of the wind noise generated by the turbulence and velocity gradients inside the fence and by the area-averaging the decorrelated pressure fluctuations generated at the surface of the fence. The effects of varying the enclosure porosity, top condition, bottom gap, height, and diameter and adding a secondary windscreen were investigated. The wind fence enclosure achieved best reductions when the surface porosity was between 40% and 55% and was supplemented by a secondary windscreen. The most effective wind fence enclosure tested in this study achieved wind noise reductions of 20-27 dB over the 2-4 Hz frequency band, a minimum of 5 dB noise reduction for frequencies from 0.1 to 20 Hz, constant 3-6 dB noise reduction for frequencies with turbulence wavelengths larger than the fence, and sufficient wind noise reduction at high wind speeds (3-6 m/s) to detect microbaroms.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Schween, Jan H.
2016-06-01
Measurements carried out by the Raman lidar system BASIL and the University of Cologne wind lidar are reported to demonstrate the capability of these instruments to characterize water vapour fluxes within the Convective Boundary Layer (CBL). In order to determine the water vapour flux vertical profiles, high resolution water vapour and vertical wind speed measurements, with a temporal resolution of 1 sec and a vertical resolution of 15-90, are considered. Measurements of water vapour flux profiles are based on the application of covariance approach to the water vapour mixing ratio and vertical wind speed time series. The algorithms are applied to a case study (IOP 11, 04 May 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. For this case study, the water vapour flux profile is characterized by increasing values throughout the CBL with lager values (around 0.1 g/kg m/s) in the entrainment region. The noise errors are demonstrated to be small enough to allow the derivation of water vapour flux profiles with sufficient accuracy.
NASA Astrophysics Data System (ADS)
Xu, Jingjiang; Song, Shaozhen; Li, Yuandong; Wang, Ruikang K.
2018-01-01
Optical coherence tomography angiography (OCTA) is increasingly becoming a popular inspection tool for biomedical imaging applications. By exploring the amplitude, phase and complex information available in OCT signals, numerous algorithms have been proposed that contrast functional vessel networks within microcirculatory tissue beds. However, it is not clear which algorithm delivers optimal imaging performance. Here, we investigate systematically how amplitude and phase information have an impact on the OCTA imaging performance, to establish the relationship of amplitude and phase stability with OCT signal-to-noise ratio (SNR), time interval and particle dynamics. With either repeated A-scan or repeated B-scan imaging protocols, the amplitude noise increases with the increase of OCT SNR; however, the phase noise does the opposite, i.e. it increases with the decrease of OCT SNR. Coupled with experimental measurements, we utilize a simple Monte Carlo (MC) model to simulate the performance of amplitude-, phase- and complex-based algorithms for OCTA imaging, the results of which suggest that complex-based algorithms deliver the best performance when the phase noise is < ~40 mrad. We also conduct a series of in vivo vascular imaging in animal models and human retina to verify the findings from the MC model through assessing the OCTA performance metrics of vessel connectivity, image SNR and contrast-to-noise ratio. We show that for all the metrics assessed, the complex-based algorithm delivers better performance than either the amplitude- or phase-based algorithms for both the repeated A-scan and the B-scan imaging protocols, which agrees well with the conclusion drawn from the MC simulations.
Xu, Jingjiang; Song, Shaozhen; Li, Yuandong; Wang, Ruikang K
2017-12-19
Optical coherence tomography angiography (OCTA) is increasingly becoming a popular inspection tool for biomedical imaging applications. By exploring the amplitude, phase and complex information available in OCT signals, numerous algorithms have been proposed that contrast functional vessel networks within microcirculatory tissue beds. However, it is not clear which algorithm delivers optimal imaging performance. Here, we investigate systematically how amplitude and phase information have an impact on the OCTA imaging performance, to establish the relationship of amplitude and phase stability with OCT signal-to-noise ratio (SNR), time interval and particle dynamics. With either repeated A-scan or repeated B-scan imaging protocols, the amplitude noise increases with the increase of OCT SNR; however, the phase noise does the opposite, i.e. it increases with the decrease of OCT SNR. Coupled with experimental measurements, we utilize a simple Monte Carlo (MC) model to simulate the performance of amplitude-, phase- and complex-based algorithms for OCTA imaging, the results of which suggest that complex-based algorithms deliver the best performance when the phase noise is < ~40 mrad. We also conduct a series of in vivo vascular imaging in animal models and human retina to verify the findings from the MC model through assessing the OCTA performance metrics of vessel connectivity, image SNR and contrast-to-noise ratio. We show that for all the metrics assessed, the complex-based algorithm delivers better performance than either the amplitude- or phase-based algorithms for both the repeated A-scan and the B-scan imaging protocols, which agrees well with the conclusion drawn from the MC simulations.
Impulsive noise removal from color video with morphological filtering
NASA Astrophysics Data System (ADS)
Ruchay, Alexey; Kober, Vitaly
2017-09-01
This paper deals with impulse noise removal from color video. The proposed noise removal algorithm employs a switching filtering for denoising of color video; that is, detection of corrupted pixels by means of a novel morphological filtering followed by removal of the detected pixels on the base of estimation of uncorrupted pixels in the previous scenes. With the help of computer simulation we show that the proposed algorithm is able to well remove impulse noise in color video. The performance of the proposed algorithm is compared in terms of image restoration metrics with that of common successful algorithms.
Markel, D; Naqa, I El; Freeman, C; Vallières, M
2012-06-01
To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. It was found that JR divergence when used for segmentation has an improved robustness to noise compared to using mutual information, or other entropy-based metrics. The MI metric failed at around 2/3 the noise power than the JR divergence. The JR divergence metric is useful for the task of joint segmentation/registration of multimodality images and shows improved results compared entropy based metric. The algorithm can be easily modified to incorporate non-intensity based images, which would allow applications into multi-modality and texture analysis. © 2012 American Association of Physicists in Medicine.
Badenhorst, Werner; Hanekom, Tania; Hanekom, Johan J
2016-12-01
This study presents the development of an alternative noise current term and novel voltage-dependent current noise algorithm for conductance-based stochastic auditory nerve fibre (ANF) models. ANFs are known to have significant variance in threshold stimulus which affects temporal characteristics such as latency. This variance is primarily caused by the stochastic behaviour or microscopic fluctuations of the node of Ranvier's voltage-dependent sodium channels of which the intensity is a function of membrane voltage. Though easy to implement and low in computational cost, existing current noise models have two deficiencies: it is independent of membrane voltage, and it is unable to inherently determine the noise intensity required to produce in vivo measured discharge probability functions. The proposed algorithm overcomes these deficiencies while maintaining its low computational cost and ease of implementation compared to other conductance and Markovian-based stochastic models. The algorithm is applied to a Hodgkin-Huxley-based compartmental cat ANF model and validated via comparison of the threshold probability and latency distributions to measured cat ANF data. Simulation results show the algorithm's adherence to in vivo stochastic fibre characteristics such as an exponential relationship between the membrane noise and transmembrane voltage, a negative linear relationship between the log of the relative spread of the discharge probability and the log of the fibre diameter and a decrease in latency with an increase in stimulus intensity.
Surgical motion characterization in simulated needle insertion procedures
NASA Astrophysics Data System (ADS)
Holden, Matthew S.; Ungi, Tamas; Sargent, Derek; McGraw, Robert C.; Fichtinger, Gabor
2012-02-01
PURPOSE: Evaluation of surgical performance in image-guided needle insertions is of emerging interest, to both promote patient safety and improve the efficiency and effectiveness of training. The purpose of this study was to determine if a Markov model-based algorithm can more accurately segment a needle-based surgical procedure into its five constituent tasks than a simple threshold-based algorithm. METHODS: Simulated needle trajectories were generated with known ground truth segmentation by a synthetic procedural data generator, with random noise added to each degree of freedom of motion. The respective learning algorithms were trained, and then tested on different procedures to determine task segmentation accuracy. In the threshold-based algorithm, a change in tasks was detected when the needle crossed a position/velocity threshold. In the Markov model-based algorithm, task segmentation was performed by identifying the sequence of Markov models most likely to have produced the series of observations. RESULTS: For amplitudes of translational noise greater than 0.01mm, the Markov model-based algorithm was significantly more accurate in task segmentation than the threshold-based algorithm (82.3% vs. 49.9%, p<0.001 for amplitude 10.0mm). For amplitudes less than 0.01mm, the two algorithms produced insignificantly different results. CONCLUSION: Task segmentation of simulated needle insertion procedures was improved by using a Markov model-based algorithm as opposed to a threshold-based algorithm for procedures involving translational noise.
Cross-wind profiling based on the scattered wave scintillation in a telescope focus.
Banakh, V A; Marakasov, D A; Vorontsov, M A
2007-11-20
The problem of wind profile reconstruction from scintillation of an optical wave scattered off a rough surface in a telescope focus plane is considered. Both the expression for the spatiotemporal correlation function and the algorithm of cross-wind velocity and direction profiles reconstruction based on the spatiotemporal spectrum of intensity of an optical wave scattered by a diffuse target in a turbulent atmosphere are presented. Computer simulations performed under conditions of weak optical turbulence show wind profiles reconstruction by the developed algorithm.
The Aquarius Salinity Retrieval Algorithm: Early Results
NASA Technical Reports Server (NTRS)
Meissner, Thomas; Wentz, Frank J.; Lagerloef, Gary; LeVine, David
2012-01-01
The Aquarius L-band radiometer/scatterometer system is designed to provide monthly salinity maps at 150 km spatial scale to a 0.2 psu accuracy. The sensor was launched on June 10, 2011, aboard the Argentine CONAE SAC-D spacecraft. The L-band radiometers and the scatterometer have been taking science data observations since August 25, 2011. The first part of this presentation gives an overview over the Aquarius salinity retrieval algorithm. The instrument calibration converts Aquarius radiometer counts into antenna temperatures (TA). The salinity retrieval algorithm converts those TA into brightness temperatures (TB) at a flat ocean surface. As a first step, contributions arising from the intrusion of solar, lunar and galactic radiation are subtracted. The antenna pattern correction (APC) removes the effects of cross-polarization contamination and spillover. The Aquarius radiometer measures the 3rd Stokes parameter in addition to vertical (v) and horizontal (h) polarizations, which allows for an easy removal of ionospheric Faraday rotation. The atmospheric absorption at L-band is almost entirely due to O2, which can be calculated based on auxiliary input fields from numerical weather prediction models and then successively removed from the TB. The final step in the TA to TB conversion is the correction for the roughness of the sea surface due to wind. This is based on the radar backscatter measurements by the scatterometer. The TB of the flat ocean surface can now be matched to a salinity value using a surface emission model that is based on a model for the dielectric constant of sea water and an auxiliary field for the sea surface temperature. In the current processing (as of writing this abstract) only v-pol TB are used for this last process and NCEP winds are used for the roughness correction. Before the salinity algorithm can be operationally implemented and its accuracy assessed by comparing versus in situ measurements, an extensive calibration and validation (cal/val) activity needs to be completed. This is necessary in order to tune the inputs to the algorithm and remove biases that arise due to the instrument calibration, foremost the values of the noise diode injection temperatures and the losses that occur in the feedhorns. This is the subject of the second part of our presentation. The basic tool is to analyze the observed difference between the Aquarius measured TA and an expected TA that is computed from a reference salinity field. It is also necessary to derive a relation between the scatterometer backscatter measurements and the radiometer emissivity that is induced by surface winds. In order to do this we collocate Aquarius radiometer and scatterometer measurements with wind speed retrievals from the WindSat and SSMIS F17 microwave radiometers. Both of these satellites fly in orbits that have the same equatorial ascending crossing time (6 pm) as the Aquarius/SAC-D observatory. Rain retrievals from WindSat and SSMIS F 17 can be used to remove Aquarius observations that are rain contaminated. A byproduct of this analysis is a prediction for the wind-induced sea surface emissivity at L-band.
Coherent Doppler Wind Lidar Technology for Space Based Wind Measurements Including SPARCLE
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Singh, Upendra N.
1999-01-01
It has been over 30 years since coherent lidar systems first measured wind velocity, and over 20 years since the "ultimate application" of measuring Earth's winds from space was conceived. Coherent or heterodyne optical detection involves the combination (or mixing) of the returned optical field with a local oscillator (LO) laser's optical field on the optical detector. This detection technique yields the benefits of dramatically improved signal-to-noise ratios; insensitivity to detector noise, background light and multiply scattered light; reduction of the returned signal's dynamic range; and preservation of the optical signal spectrum for electronic and computer processing. (Note that lidar systems are also referred to as optical radar, laser radar, and LADAR systems.) Many individuals, agencies, and countries have pursued the goal of space-based wind measurements through technology development, experiments, field campaigns and studies.
Evolutionary Fuzzy Block-Matching-Based Camera Raw Image Denoising.
Yang, Chin-Chang; Guo, Shu-Mei; Tsai, Jason Sheng-Hong
2017-09-01
An evolutionary fuzzy block-matching-based image denoising algorithm is proposed to remove noise from a camera raw image. Recently, a variance stabilization transform is widely used to stabilize the noise variance, so that a Gaussian denoising algorithm can be used to remove the signal-dependent noise in camera sensors. However, in the stabilized domain, the existed denoising algorithm may blur too much detail. To provide a better estimate of the noise-free signal, a new block-matching approach is proposed to find similar blocks by the use of a type-2 fuzzy logic system (FLS). Then, these similar blocks are averaged with the weightings which are determined by the FLS. Finally, an efficient differential evolution is used to further improve the performance of the proposed denoising algorithm. The experimental results show that the proposed denoising algorithm effectively improves the performance of image denoising. Furthermore, the average performance of the proposed method is better than those of two state-of-the-art image denoising algorithms in subjective and objective measures.
A median filter approach for correcting errors in a vector field
NASA Technical Reports Server (NTRS)
Schultz, H.
1985-01-01
Techniques are presented for detecting and correcting errors in a vector field. These methods employ median filters which are frequently used in image processing to enhance edges and remove noise. A detailed example is given for wind field maps produced by a spaceborne scatterometer. The error detection and replacement algorithm was tested with simulation data from the NASA Scatterometer (NSCAT) project.
Numerical modeling of wind turbine aerodynamic noise in the time domain.
Lee, Seunghoon; Lee, Seungmin; Lee, Soogab
2013-02-01
Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.
Spectrum sensing algorithm based on autocorrelation energy in cognitive radio networks
NASA Astrophysics Data System (ADS)
Ren, Shengwei; Zhang, Li; Zhang, Shibing
2016-10-01
Cognitive radio networks have wide applications in the smart home, personal communications and other wireless communication. Spectrum sensing is the main challenge in cognitive radios. This paper proposes a new spectrum sensing algorithm which is based on the autocorrelation energy of signal received. By taking the autocorrelation energy of the received signal as the statistics of spectrum sensing, the effect of the channel noise on the detection performance is reduced. Simulation results show that the algorithm is effective and performs well in low signal-to-noise ratio. Compared with the maximum generalized eigenvalue detection (MGED) algorithm, function of covariance matrix based detection (FMD) algorithm and autocorrelation-based detection (AD) algorithm, the proposed algorithm has 2 11 dB advantage.
Characterization and Impact of Low Frequency Wind Turbine Noise Emissions
NASA Astrophysics Data System (ADS)
Finch, James
Wind turbine noise is a complex issue that requires due diligence to minimize any potential impact on quality of life. This study enhances existing knowledge of wind turbine noise through focused analyses of downwind sound propagation, directionality, and the low frequency component of the noise. Measurements were conducted at four wind speeds according to a design of experiments at incremental distances and angles. Wind turbine noise is shown to be highly directional, while downwind sound propagation is spherical with limited ground absorption. The noise is found to have a significant low frequency component that is largely independent of wind speed over the 20-250 Hz range. The generated low frequency noise is shown to be audible above 40 Hz at the MOE setback distance of 550 m. Infrasound levels exhibit higher dependency on wind speed, but remain below audible levels up to 15 m/s.
Analysis of image thresholding segmentation algorithms based on swarm intelligence
NASA Astrophysics Data System (ADS)
Zhang, Yi; Lu, Kai; Gao, Yinghui; Yang, Bo
2013-03-01
Swarm intelligence-based image thresholding segmentation algorithms are playing an important role in the research field of image segmentation. In this paper, we briefly introduce the theories of four existing image segmentation algorithms based on swarm intelligence including fish swarm algorithm, artificial bee colony, bacteria foraging algorithm and particle swarm optimization. Then some image benchmarks are tested in order to show the differences of the segmentation accuracy, time consumption, convergence and robustness for Salt & Pepper noise and Gaussian noise of these four algorithms. Through these comparisons, this paper gives qualitative analyses for the performance variance of the four algorithms. The conclusions in this paper would give a significant guide for the actual image segmentation.
NASA Astrophysics Data System (ADS)
Peña, M.
2016-10-01
Achieving acceptable signal-to-noise ratio (SNR) can be difficult when working in sparsely populated waters and/or when species have low scattering such as fluid filled animals. The increasing use of higher frequencies and the study of deeper depths in fisheries acoustics, as well as the use of commercial vessels, is raising the need to employ good denoising algorithms. The use of a lower Sv threshold to remove noise or unwanted targets is not suitable in many cases and increases the relative background noise component in the echogram, demanding more effectiveness from denoising algorithms. The Adaptive Wiener Filter (AWF) denoising algorithm is presented in this study. The technique is based on the AWF commonly used in digital photography and video enhancement. The algorithm firstly increments the quality of the data with a variance-dependent smoothing, before estimating the noise level as the envelope of the Sv minima. The AWF denoising algorithm outperforms existing algorithms in the presence of gaussian, speckle and salt & pepper noise, although impulse noise needs to be previously removed. Cleaned echograms present homogenous echotraces with outlined edges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gwang-Se; Cheong, Cheolung, E-mail: ccheong@pusan.ac.kr
Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs), few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF) wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF) noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade ofmore » the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.« less
Abbasi, Milad; Monazzam, Mohammad Reza; Akbarzadeh, Arash; Zakerian, Seyyed Abolfazl; Ebrahimi, Mohammad Hossein
2015-01-01
The wind turbine's sound seems to have a proportional effect on health of people living near to wind farms. This study aimed to investigate the effect of noise emitted from wind turbines on general health, sleep and annoyance among workers of manjil wind farm, Iran. A total number of 53 workers took part in this study. Based on the type of job, they were categorized into three groups of maintenance, security and office staff. The persons' exposure at each job-related group was measured by eight-hour equivalent sound level (LAeq, 8 h). A Noise annoyance scale, Epworth sleepiness scale and 28-item general health questionnaire was used for gathering data from workers. The data were analyzed through Multivariate Analysis of variance (MANOVA) test, Pillai's Trace test, Paired comparisons analysis and Multivariate regression test were used in the R software. The results showed that, response variables (annoyance, sleep disturbance and health) were significantly different between job groups. The results also indicated that sleep disturbance as well as noise exposure had a significant effect on general health. Noise annoyance and distance from wind turbines could significantly explain about 44.5 and 34.2 % of the variance in sleep disturbance and worker's general health, respectively. General health was significantly different in different age groups while age had no significant impact on sleep disturbance. The results were reverse for distance because it had no significant impact on health, but sleep disturbance was significantly affected. We came to this conclusion that wind turbines noise can directly impact on annoyance, sleep and health. This type of energy generation can have potential health risks for wind farm workers. However, further research is needed to confirm the results of this study.
Noise-enhanced convolutional neural networks.
Audhkhasi, Kartik; Osoba, Osonde; Kosko, Bart
2016-06-01
Injecting carefully chosen noise can speed convergence in the backpropagation training of a convolutional neural network (CNN). The Noisy CNN algorithm speeds training on average because the backpropagation algorithm is a special case of the generalized expectation-maximization (EM) algorithm and because such carefully chosen noise always speeds up the EM algorithm on average. The CNN framework gives a practical way to learn and recognize images because backpropagation scales with training data. It has only linear time complexity in the number of training samples. The Noisy CNN algorithm finds a special separating hyperplane in the network's noise space. The hyperplane arises from the likelihood-based positivity condition that noise-boosts the EM algorithm. The hyperplane cuts through a uniform-noise hypercube or Gaussian ball in the noise space depending on the type of noise used. Noise chosen from above the hyperplane speeds training on average. Noise chosen from below slows it on average. The algorithm can inject noise anywhere in the multilayered network. Adding noise to the output neurons reduced the average per-iteration training-set cross entropy by 39% on a standard MNIST image test set of handwritten digits. It also reduced the average per-iteration training-set classification error by 47%. Adding noise to the hidden layers can also reduce these performance measures. The noise benefit is most pronounced for smaller data sets because the largest EM hill-climbing gains tend to occur in the first few iterations. This noise effect can assist random sampling from large data sets because it allows a smaller random sample to give the same or better performance than a noiseless sample gives. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Jaeck, C. L.
1977-01-01
A test program was conducted in the Boeing large anechoic test chamber and the NASA-Ames 40- by 80-foot wind tunnel to study the near- and far-field jet noise characteristics of six baseline and suppressor nozzles. Static and wind-on noise source locations were determined. A technique for extrapolating near field jet noise measurements into the far field was established. It was determined if flight effects measured in the near field are the same as those in the far field. The flight effects on the jet noise levels of the baseline and suppressor nozzles were determined. Test models included a 15.24-cm round convergent nozzle, an annular nozzle with and without ejector, a 20-lobe nozzle with and without ejector, and a 57-tube nozzle with lined ejector. The static free-field test in the anechoic chamber covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K. The wind tunnel flight effects test repeated these nozzle test conditions with ambient velocities of 0 to 92 m/s.
Effect of Wind Farm Noise on Local Residents' Decision to Adopt Mitigation Measures.
Botelho, Anabela; Arezes, Pedro; Bernardo, Carlos; Dias, Hernâni; Pinto, Lígia M Costa
2017-07-11
Wind turbines' noise is frequently pointed out as the reason for local communities' objection to the installation of wind farms. The literature suggests that local residents feel annoyed by such noise and that, in many instances, this is significant enough to make them adopt noise-abatement interventions on their homes. Aiming at characterizing the relationship between wind turbine noise, annoyance, and mitigating actions, we propose a novel conceptual framework. The proposed framework posits that actual sound pressure levels of wind turbines determine individual homes' noise-abatement decisions; in addition, the framework analyzes the role that self-reported annoyance, and perception of noise levels, plays on the relationship between actual noise pressure levels and those decisions. The application of this framework to a particular case study shows that noise perception and annoyance constitutes a link between the two. Importantly, however, noise also directly affects people's decision to adopt mitigating measures, independently of the reported annoyance.
Convergence analyses on on-line weight noise injection-based training algorithms for MLPs.
Sum, John; Leung, Chi-Sing; Ho, Kevin
2012-11-01
Injecting weight noise during training is a simple technique that has been proposed for almost two decades. However, little is known about its convergence behavior. This paper studies the convergence of two weight noise injection-based training algorithms, multiplicative weight noise injection with weight decay and additive weight noise injection with weight decay. We consider that they are applied to multilayer perceptrons either with linear or sigmoid output nodes. Let w(t) be the weight vector, let V(w) be the corresponding objective function of the training algorithm, let α >; 0 be the weight decay constant, and let μ(t) be the step size. We show that if μ(t)→ 0, then with probability one E[||w(t)||2(2)] is bound and lim(t) → ∞ ||w(t)||2 exists. Based on these two properties, we show that if μ(t)→ 0, Σtμ(t)=∞, and Σtμ(t)(2) <; ∞, then with probability one these algorithms converge. Moreover, w(t) converges with probability one to a point where ∇wV(w)=0.
A comparative intelligibility study of single-microphone noise reduction algorithms.
Hu, Yi; Loizou, Philipos C
2007-09-01
The evaluation of intelligibility of noise reduction algorithms is reported. IEEE sentences and consonants were corrupted by four types of noise including babble, car, street and train at two signal-to-noise ratio levels (0 and 5 dB), and then processed by eight speech enhancement methods encompassing four classes of algorithms: spectral subtractive, sub-space, statistical model based and Wiener-type algorithms. The enhanced speech was presented to normal-hearing listeners for identification. With the exception of a single noise condition, no algorithm produced significant improvements in speech intelligibility. Information transmission analysis of the consonant confusion matrices indicated that no algorithm improved significantly the place feature score, significantly, which is critically important for speech recognition. The algorithms which were found in previous studies to perform the best in terms of overall quality, were not the same algorithms that performed the best in terms of speech intelligibility. The subspace algorithm, for instance, was previously found to perform the worst in terms of overall quality, but performed well in the present study in terms of preserving speech intelligibility. Overall, the analysis of consonant confusion matrices suggests that in order for noise reduction algorithms to improve speech intelligibility, they need to improve the place and manner feature scores.
Maximum likelihood estimation of signal-to-noise ratio and combiner weight
NASA Technical Reports Server (NTRS)
Kalson, S.; Dolinar, S. J.
1986-01-01
An algorithm for estimating signal to noise ratio and combiner weight parameters for a discrete time series is presented. The algorithm is based upon the joint maximum likelihood estimate of the signal and noise power. The discrete-time series are the sufficient statistics obtained after matched filtering of a biphase modulated signal in additive white Gaussian noise, before maximum likelihood decoding is performed.
Guski, Rainer; Schreckenberg, Dirk; Schuemer, Rudolf
2017-12-08
Background : This paper describes a systematic review and meta-analyses on effects of environmental noise on annoyance. The noise sources include aircraft, road, and rail transportation noise as well as wind turbines and noise source combinations. Objectives: Update knowledge about effects of environmental noise on people living in the vicinity of noise sources. Methods: Eligible were published studies (2000-2014) providing comparable acoustical and social survey data including exposure-response functions between standard indicators of noise exposure and standard annoyance responses. The systematic literature search in 20 data bases resulted in 62 studies, of which 57 were used for quantitative meta-analyses. By means of questionnaires sent to the study authors, additional study data were obtained. Risk of bias was assessed by means of study characteristics for individual studies and by funnel plots to assess the risk of publication bias. Main Results: Tentative exposure-response relations for percent highly annoyed residents (%HA) in relation to noise levels for aircraft, road, rail, wind turbine and noise source combinations are presented as well as meta-analyses of correlations between noise levels and annoyance raw scores, and the OR for increase of %HA with increasing noise levels. Quality of evidence was assessed using the GRADE terminology. The evidence of exposure-response relations between noise levels and %HA is moderate (aircraft and railway) or low (road traffic and wind turbines). The evidence of correlations between noise levels and annoyance raw scores is high (aircraft and railway) or moderate (road traffic and wind turbines). The evidence of ORs representing the %HA increase by a certain noise level increase is moderate (aircraft noise), moderate/high (road and railway traffic), and low (wind turbines). Strengths and Limitations: The strength of the evidence is seen in the large total sample size encompassing the included studies (e.g., 18,947 participants in aircraft noise studies). Main limitations are due to the variance in the definition of noise levels and %HA. Interpretation: The increase of %HA in newer studies of aircraft, road and railway noise at comparable L den levels of earlier studies point to the necessity of adjusting noise limit recommendations. Funding: The review was funded by WHO Europe.
Guski, Rainer; Schreckenberg, Dirk; Schuemer, Rudolf
2017-01-01
Background: This paper describes a systematic review and meta-analyses on effects of environmental noise on annoyance. The noise sources include aircraft, road, and rail transportation noise as well as wind turbines and noise source combinations. Objectives: Update knowledge about effects of environmental noise on people living in the vicinity of noise sources. Methods: Eligible were published studies (2000–2014) providing comparable acoustical and social survey data including exposure-response functions between standard indicators of noise exposure and standard annoyance responses. The systematic literature search in 20 data bases resulted in 62 studies, of which 57 were used for quantitative meta-analyses. By means of questionnaires sent to the study authors, additional study data were obtained. Risk of bias was assessed by means of study characteristics for individual studies and by funnel plots to assess the risk of publication bias. Main Results: Tentative exposure-response relations for percent highly annoyed residents (%HA) in relation to noise levels for aircraft, road, rail, wind turbine and noise source combinations are presented as well as meta-analyses of correlations between noise levels and annoyance raw scores, and the OR for increase of %HA with increasing noise levels. Quality of evidence was assessed using the GRADE terminology. The evidence of exposure-response relations between noise levels and %HA is moderate (aircraft and railway) or low (road traffic and wind turbines). The evidence of correlations between noise levels and annoyance raw scores is high (aircraft and railway) or moderate (road traffic and wind turbines). The evidence of ORs representing the %HA increase by a certain noise level increase is moderate (aircraft noise), moderate/high (road and railway traffic), and low (wind turbines). Strengths and Limitations: The strength of the evidence is seen in the large total sample size encompassing the included studies (e.g., 18,947 participants in aircraft noise studies). Main limitations are due to the variance in the definition of noise levels and %HA. Interpretation: The increase of %HA in newer studies of aircraft, road and railway noise at comparable Lden levels of earlier studies point to the necessity of adjusting noise limit recommendations. Funding: The review was funded by WHO Europe. PMID:29292769
Robust radio interferometric calibration using the t-distribution
NASA Astrophysics Data System (ADS)
Kazemi, S.; Yatawatta, S.
2013-10-01
A major stage of radio interferometric data processing is calibration or the estimation of systematic errors in the data and the correction for such errors. A stochastic error (noise) model is assumed, and in most cases, this underlying model is assumed to be Gaussian. However, outliers in the data due to interference or due to errors in the sky model would have adverse effects on processing based on a Gaussian noise model. Most of the shortcomings of calibration such as the loss in flux or coherence, and the appearance of spurious sources, could be attributed to the deviations of the underlying noise model. In this paper, we propose to improve the robustness of calibration by using a noise model based on Student's t-distribution. Student's t-noise is a special case of Gaussian noise when the variance is unknown. Unlike Gaussian-noise-model-based calibration, traditional least-squares minimization would not directly extend to a case when we have a Student's t-noise model. Therefore, we use a variant of the expectation-maximization algorithm, called the expectation-conditional maximization either algorithm, when we have a Student's t-noise model and use the Levenberg-Marquardt algorithm in the maximization step. We give simulation results to show the robustness of the proposed calibration method as opposed to traditional Gaussian-noise-model-based calibration, especially in preserving the flux of weaker sources that are not included in the calibration model.
NASA Technical Reports Server (NTRS)
Swift, C. T.; Goodberlet, M. A.; Wilkerson, J. C.
1990-01-01
The Defence Meteorological Space Program's (DMSP) Special Sensor Microwave/Imager (SSM/I), an operational wind speed algorithm was developed. The algorithm is based on the D-matrix approach which seeks a linear relationship between measured SSM/I brightness temperatures and environmental parameters. D-matrix performance was validated by comparing algorithm derived wind speeds with near-simultaneous and co-located measurements made by off-shore ocean buoys. Other topics include error budget modeling, alternate wind speed algorithms, and D-matrix performance with one or more inoperative SSM/I channels.
Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy
NASA Astrophysics Data System (ADS)
Tang, Jing; Rahmim, Arman
2015-01-01
A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE-MAP algorithm resulted in comparable regional mean values to those from the maximum likelihood algorithm while reducing noise. Achieving robust performance in various noise-level simulation and patient studies, the WJE-MAP algorithm demonstrates its potential in clinical quantitative PET imaging.
Seismic random noise attenuation method based on empirical mode decomposition of Hausdorff dimension
NASA Astrophysics Data System (ADS)
Yan, Z.; Luan, X.
2017-12-01
Introduction Empirical mode decomposition (EMD) is a noise suppression algorithm by using wave field separation, which is based on the scale differences between effective signal and noise. However, since the complexity of the real seismic wave field results in serious aliasing modes, it is not ideal and effective to denoise with this method alone. Based on the multi-scale decomposition characteristics of the signal EMD algorithm, combining with Hausdorff dimension constraints, we propose a new method for seismic random noise attenuation. First of all, We apply EMD algorithm adaptive decomposition of seismic data and obtain a series of intrinsic mode function (IMF)with different scales. Based on the difference of Hausdorff dimension between effectively signals and random noise, we identify IMF component mixed with random noise. Then we use threshold correlation filtering process to separate the valid signal and random noise effectively. Compared with traditional EMD method, the results show that the new method of seismic random noise attenuation has a better suppression effect. The implementation process The EMD algorithm is used to decompose seismic signals into IMF sets and analyze its spectrum. Since most of the random noise is high frequency noise, the IMF sets can be divided into three categories: the first category is the effective wave composition of the larger scale; the second category is the noise part of the smaller scale; the third category is the IMF component containing random noise. Then, the third kind of IMF component is processed by the Hausdorff dimension algorithm, and the appropriate time window size, initial step and increment amount are selected to calculate the Hausdorff instantaneous dimension of each component. The dimension of the random noise is between 1.0 and 1.05, while the dimension of the effective wave is between 1.05 and 2.0. On the basis of the previous steps, according to the dimension difference between the random noise and effective signal, we extracted the sample points, whose fractal dimension value is less than or equal to 1.05 for the each IMF components, to separate the residual noise. Using the IMF components after dimension filtering processing and the effective wave IMF components after the first selection for reconstruction, we can obtained the results of de-noising.
Impact of wind turbine noise in the Netherlands.
Verheijen, Edwin; Jabben, Jan; Schreurs, Eric; Smith, Kevin B
2011-01-01
The Dutch government aims at an increase of wind energy up to 6 000 MW in 2020 by placing new wind turbines on land or offshore. At the same time, the existing noise legislation for wind turbines is being reconsidered. For the purpose of establishing a new noise reception limit value expressed in L den , the impact of wind turbine noise under the given policy targets needs to be explored. For this purpose, the consequences of different reception limit values for the new Dutch noise legislation have been studied, both in terms of effects on the population and regarding sustainable energy policy targets. On the basis of a nation-wide noise map containing all wind turbines in The Netherlands, it is calculated that 3% of the inhabitants of The Netherlands are currently exposed to noise from wind turbines above 28 dB(A) at the faηade. Newly established dose-response relationships indicate that about 1500 of these inhabitants are likely to be severely annoyed inside their dwellings. The available space for new wind turbines strongly depends on the noise limit value that will be chosen. This study suggests an outdoor A-weighted reception limit of L den = 45 dB as a trade-off between the need for protection against noise annoyance and the feasibility of national targets for renewable energy.
Reduction of Background Noise in the NASA Ames 40- by 80-Foot Wind Tunnel
NASA Technical Reports Server (NTRS)
Jaeger, Stephen M.; Allen, Christopher S.; Soderman, Paul T.; Olson, Larry E. (Technical Monitor)
1995-01-01
Background noise in both open-jet and closed wind tunnels adversely affects the signal-to-noise ratio of acoustic measurements. To measure the noise of increasingly quieter aircraft models, the background noise will have to be reduced by physical means or through signal processing. In a closed wind tunnel, such as the NASA Ames 40- by 80- Foot Wind Tunnel, the principle background noise sources can be classified as: (1) fan drive noise; (2) microphone self-noise; (3) aerodynamically induced noise from test-dependent hardware such as model struts and junctions; and (4) noise from the test section walls and vane set. This paper describes the steps taken to minimize the influence of each of these background noise sources in the 40 x 80.
3-D CSEM data inversion algorithm based on simultaneously active multiple transmitters concept
NASA Astrophysics Data System (ADS)
Dehiya, Rahul; Singh, Arun; Gupta, Pravin Kumar; Israil, Mohammad
2017-05-01
We present an algorithm for efficient 3-D inversion of marine controlled-source electromagnetic data. The efficiency is achieved by exploiting the redundancy in data. The data redundancy is reduced by compressing the data through stacking of the response of transmitters which are in close proximity. This stacking is equivalent to synthesizing the data as if the multiple transmitters are simultaneously active. The redundancy in data, arising due to close transmitter spacing, has been studied through singular value analysis of the Jacobian formed in 1-D inversion. This study reveals that the transmitter spacing of 100 m, typically used in marine data acquisition, does result in redundancy in the data. In the proposed algorithm, the data are compressed through stacking which leads to both computational advantage and reduction in noise. The performance of the algorithm for noisy data is demonstrated through the studies on two types of noise, viz., uncorrelated additive noise and correlated non-additive noise. It is observed that in case of uncorrelated additive noise, up to a moderately high (10 percent) noise level the algorithm addresses the noise as effectively as the traditional full data inversion. However, when the noise level in the data is high (20 percent), the algorithm outperforms the traditional full data inversion in terms of data misfit. Similar results are obtained in case of correlated non-additive noise and the algorithm performs better if the level of noise is high. The inversion results of a real field data set are also presented to demonstrate the robustness of the algorithm. The significant computational advantage in all cases presented makes this algorithm a better choice.
Rotor Broadband Noise Prediction with Comparison to Model Data
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Burley, Casey L.
2001-01-01
This paper reports an analysis and prediction development of rotor broadband noise. The two primary components of this noise are Blade-Wake Interaction (BWI) noise, due to the blades' interaction with the turbulent wakes of the preceding blades, and "Self" noise, due to the development and shedding of turbulence within the blades' boundary layers. Emphasized in this report is the new code development for Self noise. The analysis and validation employs data from the HART program, a model BO-105 rotor wind tunnel test conducted in the German-Dutch Wind Tunnel (DNW). The BWI noise predictions are based on measured pressure response coherence functions using cross-spectral methods. The Self noise predictions are based on previously reported semiempirical modeling of Self noise obtained from isolated airfoil sections and the use of CAMRAD.Modl to define rotor performance and local blade segment flow conditions. Both BWI and Self noise from individual blade segments are Doppler shifted and summed at the observer positions. Prediction comparisons with measurements show good agreement for a range of rotor operating conditions from climb to steep descent. The broadband noise predictions, along with those of harmonic and impulsive Blade-Vortex Interaction (BVI) noise predictions, demonstrate a significant advance in predictive capability for main rotor noise.
Evaluation of a Tethered Kite Anemometer.
1981-02-01
Solar Eclipse , Part I - Atmospheric Sciences Laboratory Field Program Summary," ASL-TR-0059, May 1980 131. Miller, Walter B., "User’s Guide for Passive...the smaller kite and 500 m with the larger version. Therefore, the kite has been evaluated with reference to methods of obtaining winds to equivalent...advantage over remote sensors where noise can be mistakenly identified as signal , and complex mathematical algorithms are often required to obtain
Voicescu, Sonia A; Michaud, David S; Feder, Katya; Marro, Leonora; Than, John; Guay, Mireille; Denning, Allison; Bower, Tara; van den Berg, Frits; Broner, Norm; Lavigne, Eric
2016-03-01
The Community Noise and Health Study conducted by Health Canada included randomly selected participants aged 18-79 yrs (606 males, 632 females, response rate 78.9%), living between 0.25 and 11.22 km from operational wind turbines. Annoyance to wind turbine noise (WTN) and other features, including shadow flicker (SF) was assessed. The current analysis reports on the degree to which estimating high annoyance to wind turbine shadow flicker (HAWTSF) was improved when variables known to be related to WTN exposure were also considered. As SF exposure increased [calculated as maximum minutes per day (SFm)], HAWTSF increased from 3.8% at 0 ≤ SFm < 10 to 21.1% at SFm ≥ 30, p < 0.0001. For each unit increase in SFm the odds ratio was 2.02 [95% confidence interval: (1.68,2.43)]. Stepwise regression models for HAWTSF had a predictive strength of up to 53% with 10% attributed to SFm. Variables associated with HAWTSF included, but were not limited to, annoyance to other wind turbine-related features, concern for physical safety, and noise sensitivity. Reported dizziness was also retained in the final model at p = 0.0581. Study findings add to the growing science base in this area and may be helpful in identifying factors associated with community reactions to SF exposure from wind turbines.
Rolling scheduling of electric power system with wind power based on improved NNIA algorithm
NASA Astrophysics Data System (ADS)
Xu, Q. S.; Luo, C. J.; Yang, D. J.; Fan, Y. H.; Sang, Z. X.; Lei, H.
2017-11-01
This paper puts forth a rolling modification strategy for day-ahead scheduling of electric power system with wind power, which takes the operation cost increment of unit and curtailed wind power of power grid as double modification functions. Additionally, an improved Nondominated Neighbor Immune Algorithm (NNIA) is proposed for solution. The proposed rolling scheduling model has further improved the operation cost of system in the intra-day generation process, enhanced the system’s accommodation capacity of wind power, and modified the key transmission section power flow in a rolling manner to satisfy the security constraint of power grid. The improved NNIA algorithm has defined an antibody preference relation model based on equal incremental rate, regulation deviation constraints and maximum & minimum technical outputs of units. The model can noticeably guide the direction of antibody evolution, and significantly speed up the process of algorithm convergence to final solution, and enhance the local search capability.
NASA Technical Reports Server (NTRS)
Lee, A.; Mosher, M.
1978-01-01
Acoustic measurements were taken of a modern helicopter rotor with four blade tip shapes in the NASA Ames 40-by-80-Foot Wind Tunnel. The four tip shapes are: rectangular, swept, trapezoidal, and swept tapered in platform. Acoustic effects due to tip shape changes were studied based on the dBA level, peak noise pressure, and subjective rating. The swept tapered blade was found to be the quietest above an advancing tip Mach number of about 0.9, and the swept blade was the quietest at low speed. The measured high speed impulsive noise was compared with theoretical predictions based on thickness effects; good agreement was found.
Wavelet denoising of multiframe optical coherence tomography data
Mayer, Markus A.; Borsdorf, Anja; Wagner, Martin; Hornegger, Joachim; Mardin, Christian Y.; Tornow, Ralf P.
2012-01-01
We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise. PMID:22435103
Wavelet denoising of multiframe optical coherence tomography data.
Mayer, Markus A; Borsdorf, Anja; Wagner, Martin; Hornegger, Joachim; Mardin, Christian Y; Tornow, Ralf P
2012-03-01
We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise.
An algorithm to improve speech recognition in noise for hearing-impaired listeners
Healy, Eric W.; Yoho, Sarah E.; Wang, Yuxuan; Wang, DeLiang
2013-01-01
Despite considerable effort, monaural (single-microphone) algorithms capable of increasing the intelligibility of speech in noise have remained elusive. Successful development of such an algorithm is especially important for hearing-impaired (HI) listeners, given their particular difficulty in noisy backgrounds. In the current study, an algorithm based on binary masking was developed to separate speech from noise. Unlike the ideal binary mask, which requires prior knowledge of the premixed signals, the masks used to segregate speech from noise in the current study were estimated by training the algorithm on speech not used during testing. Sentences were mixed with speech-shaped noise and with babble at various signal-to-noise ratios (SNRs). Testing using normal-hearing and HI listeners indicated that intelligibility increased following processing in all conditions. These increases were larger for HI listeners, for the modulated background, and for the least-favorable SNRs. They were also often substantial, allowing several HI listeners to improve intelligibility from scores near zero to values above 70%. PMID:24116438
NASA Technical Reports Server (NTRS)
Hayden, R. E.; Wilby, J. F.
1984-01-01
NASA is investigating the feasibility of modifying the 4x7m Wind Tunnel at the Langley Research Center to make it suitable for a variety of aeroacoustic testing applications, most notably model helicopter rotors. The amount of noise reduction required to meet NASA's goal for test section background noise was determined, the predominant sources and paths causing the background noise were quantified, and trade-off studies between schemes to reduce fan noise at the source and those to attenuate the sound generated in the circuit between the sources and the test section were carried out. An extensive data base is also presented on circuit sources and paths.
Improved liver R2* mapping by pixel-wise curve fitting with adaptive neighborhood regularization.
Wang, Changqing; Zhang, Xinyuan; Liu, Xiaoyun; He, Taigang; Chen, Wufan; Feng, Qianjin; Feng, Yanqiu
2018-08-01
To improve liver R2* mapping by incorporating adaptive neighborhood regularization into pixel-wise curve fitting. Magnetic resonance imaging R2* mapping remains challenging because of the serial images with low signal-to-noise ratio. In this study, we proposed to exploit the neighboring pixels as regularization terms and adaptively determine the regularization parameters according to the interpixel signal similarity. The proposed algorithm, called the pixel-wise curve fitting with adaptive neighborhood regularization (PCANR), was compared with the conventional nonlinear least squares (NLS) and nonlocal means filter-based NLS algorithms on simulated, phantom, and in vivo data. Visually, the PCANR algorithm generates R2* maps with significantly reduced noise and well-preserved tiny structures. Quantitatively, the PCANR algorithm produces R2* maps with lower root mean square errors at varying R2* values and signal-to-noise-ratio levels compared with the NLS and nonlocal means filter-based NLS algorithms. For the high R2* values under low signal-to-noise-ratio levels, the PCANR algorithm outperforms the NLS and nonlocal means filter-based NLS algorithms in the accuracy and precision, in terms of mean and standard deviation of R2* measurements in selected region of interests, respectively. The PCANR algorithm can reduce the effect of noise on liver R2* mapping, and the improved measurement precision will benefit the assessment of hepatic iron in clinical practice. Magn Reson Med 80:792-801, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
Wavelet tree structure based speckle noise removal for optical coherence tomography
NASA Astrophysics Data System (ADS)
Yuan, Xin; Liu, Xuan; Liu, Yang
2018-02-01
We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.
Noise-cancellation-based nonuniformity correction algorithm for infrared focal-plane arrays.
Godoy, Sebastián E; Pezoa, Jorge E; Torres, Sergio N
2008-10-10
The spatial fixed-pattern noise (FPN) inherently generated in infrared (IR) imaging systems compromises severely the quality of the acquired imagery, even making such images inappropriate for some applications. The FPN refers to the inability of the photodetectors in the focal-plane array to render a uniform output image when a uniform-intensity scene is being imaged. We present a noise-cancellation-based algorithm that compensates for the additive component of the FPN. The proposed method relies on the assumption that a source of noise correlated to the additive FPN is available to the IR camera. An important feature of the algorithm is that all the calculations are reduced to a simple equation, which allows for the bias compensation of the raw imagery. The algorithm performance is tested using real IR image sequences and is compared to some classical methodologies. (c) 2008 Optical Society of America
Coherent ambient infrasound recorded by the International Monitoring System
NASA Astrophysics Data System (ADS)
Matoza, Robin S.; LandèS, Matthieu; Le Pichon, Alexis; Ceranna, Lars; Brown, David
2013-01-01
The ability of the International Monitoring System (IMS) infrasound network to detect atmospheric nuclear explosions and other signals of interest is strongly dependent on station-specific ambient noise. This ambient noise includes both incoherent wind noise and real coherent infrasonic waves. Previous ambient infrasound noise models have not distinguished between incoherent and coherent components. We present a first attempt at statistically and systematically characterizing coherent infrasound recorded by the IMS. We perform broadband (0.01-5 Hz) array processing with the IMS continuous waveform archive (39 stations from 1 April 2005 to 31 December 2010) using an implementation of the Progressive Multi-Channel Correlation algorithm in log-frequency space. From these results, we estimate multi-year 5th, 50th, and 95th percentiles of the RMS pressure of coherent signals in 15 frequency bands for each station. We compare the resulting coherent infrasound models with raw power spectral density noise models, which inherently include both incoherent and coherent components. Our results indicate that IMS arrays consistently record coherent ambient infrasound across the broad frequency range from 0.01 to 5 Hz when wind noise levels permit. The multi-year averaging emphasizes continuous signals such as oceanic microbaroms, as well as persistent transient signals such as repetitive volcanic, surf, thunder, or anthropogenic activity. Systematic characterization of coherent infrasound detection is important for quantifying a station's recording environment, signal-to-noise ratio as a function of frequency and direction, and overall performance, which all influence the detection probability of specific signals of interest.
Kubo, Tatsuhiko; Hasunuma, Hideki; Morimatsu, Yoshitaka; Fujino, Yoshihisa; Hara, Kunio; Ishitake, Tatsuya
2017-01-01
Objectives Due to its' environment-friendly and clean energy characteristics, wind power has been increasingly used globally, particularly in advanced countries. However, concerns about health hazards, especially due to low-frequency and other noises generated from wind turbines, have been reported repeatedly. In order to manage adverse health effects appropriately, regulatory standards or guidelines that consider the health of residents need to be developed. To provide a scientific basis for the development of such regulatory standards and guidelines, this paper conducted a literature review to analyze epidemiological studies involving residents living in the vicinity of wind farms.Methods Using the PubMED database, epidemiological papers that examined the health effects of noises produced by wind turbines were searched and collected. Additional papers were collected from the abstracts presented at relevant international academic conferences such as the Inter-Noise 2013 and Wind Turbine Noise 2015. An evidence table comprising the study design, subjects, exposure assessment, outcomes, confounders, and research results of each selected study was created.Results A total of 11 papers were collected (2 of which were abstracts from the international academic conferences). These studies reported outcomes such as perception of noises, annoyance caused by the noises, and the association of the noises with stress and sleeplessness. Significant associations between the noises or annoyance produced by wind turbines and subjective adverse health effects were reported repeatedly. Two studies reported an odds ratio of 1.1 for an increase of 1 dB in the A-weighted sound pressure level as a factor representing the influence level. For other factors, it was not possible to compare the magnitude of the impact among the collected studies. Individual attitudes toward wind power and landscapes, economic benefits of wind farms, visibility of wind turbines, sensitivity to sounds, and concerns over health hazards were reported as confounders.Conclusion Significant associations between the noises or annoyance produced by wind turbines and subjective adverse health effects were reported repeatedly. However, there was insufficient evidence to conclude whether the annoyance was caused by the psychological response to the construction of wind farms or by the actual exposure to noises generated by wind farms.
NASA Technical Reports Server (NTRS)
Beckwith, I. E.; Spokowski, A. J.; Harvey, W. D.; Stainback, P. C.
1975-01-01
The basic theory and sound attenuation mechanisms, the design procedures, and preliminary experimental results are presented for a small axisymmetric sound shield for supersonic wind tunnels. The shield consists of an array of small diameter rods aligned nearly parallel to the entrance flow with small gaps between the rods for boundary layer suction. Results show that at the lowest test Reynolds number (based on rod diameter) of 52,000 the noise shield reduced the test section noise by about 60 percent ( or 8 db attenuation) but no attenuation was measured for the higher range of test reynolds numbers from 73,000 to 190,000. These results are below expectations based on data reported elsewhere on a flat sound shield model. The smaller attenuation from the present tests is attributed to insufficient suction at the gaps to prevent feedback of vacuum manifold noise into the shielded test flow and to insufficient suction to prevent transition of the rod boundary layers to turbulent flow at the higher Reynolds numbers. Schlieren photographs of the flow are shown.
Effect of Wind Farm Noise on Local Residents’ Decision to Adopt Mitigation Measures
Botelho, Anabela; Bernardo, Carlos; Dias, Hernâni; Pinto, Lígia M. Costa
2017-01-01
Wind turbines’ noise is frequently pointed out as the reason for local communities’ objection to the installation of wind farms. The literature suggests that local residents feel annoyed by such noise and that, in many instances, this is significant enough to make them adopt noise-abatement interventions on their homes. Aiming at characterizing the relationship between wind turbine noise, annoyance, and mitigating actions, we propose a novel conceptual framework. The proposed framework posits that actual sound pressure levels of wind turbines determine individual homes’ noise-abatement decisions; in addition, the framework analyzes the role that self-reported annoyance, and perception of noise levels, plays on the relationship between actual noise pressure levels and those decisions. The application of this framework to a particular case study shows that noise perception and annoyance constitutes a link between the two. Importantly, however, noise also directly affects people’s decision to adopt mitigating measures, independently of the reported annoyance. PMID:28696404
NASA Astrophysics Data System (ADS)
Ramos, António L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald
2013-06-01
Acoustical sniper positioning is based on the detection and direction-of-arrival estimation of the shockwave and the muzzle blast acoustical signals. In real-life situations, the detection and direction-of-arrival estimation processes is usually performed under the influence of background noise sources, e.g., vehicles noise, and might result in non-negligible inaccuracies than can affect the system performance and reliability negatively, specially when detecting the muzzle sound under long range distance and absorbing terrains. This paper introduces a multi-band spectral subtraction based algorithm for real-time noise reduction, applied to gunshot acoustical signals. The ballistic shockwave and the muzzle blast signals exhibit distinct frequency contents that are affected differently by additive noise. In most real situations, the noise component is colored and a multi-band spectral subtraction approach for noise reduction contributes to reducing the presence of artifacts in denoised signals. The proposed algorithm is tested using a dataset generated by combining signals from real gunshots and real vehicle noise. The noise component was generated using a steel tracked military tank running on asphalt and includes, therefore, the sound from the vehicle engine, which varies slightly in frequency over time according to the engine's rpm, and the sound from the steel tracks as the vehicle moves.
Application of based on improved wavelet algorithm in fiber temperature sensor
NASA Astrophysics Data System (ADS)
Qi, Hui; Tang, Wenjuan
2018-03-01
It is crucial point that accurate temperature in distributed optical fiber temperature sensor. In order to solve the problem of temperature measurement error due to weak Raman scattering signal and strong noise in system, a new based on improved wavelet algorithm is presented. On the basis of the traditional modulus maxima wavelet algorithm, signal correlation is considered to improve the ability to capture signals and noise, meanwhile, combined with wavelet decomposition scale adaptive method to eliminate signal loss or noise not filtered due to mismatch scale. Superiority of algorithm filtering is compared with others by Matlab. At last, the 3km distributed optical fiber temperature sensing system is used for verification. Experimental results show that accuracy of temperature generally increased by 0.5233.
Dai, Erpeng; Zhang, Zhe; Ma, Xiaodong; Dong, Zijing; Li, Xuesong; Xiong, Yuhui; Yuan, Chun; Guo, Hua
2018-03-23
To study the effects of 2D navigator distortion and noise level on interleaved EPI (iEPI) DWI reconstruction, using either the image- or k-space-based method. The 2D navigator acquisition was adjusted by reducing its echo spacing in the readout direction and undersampling in the phase encoding direction. A POCS-based reconstruction using image-space sampling function (IRIS) algorithm (POCSIRIS) was developed to reduce the impact of navigator distortion. POCSIRIS was then compared with the original IRIS algorithm and a SPIRiT-based k-space algorithm, under different navigator distortion and noise levels. Reducing the navigator distortion can improve the reconstruction of iEPI DWI. The proposed POCSIRIS and SPIRiT-based algorithms are more tolerable to different navigator distortion levels, compared to the original IRIS algorithm. SPIRiT may be hindered by low SNR of the navigator. Multi-shot iEPI DWI reconstruction can be improved by reducing the 2D navigator distortion. Different reconstruction methods show variable sensitivity to navigator distortion or noise levels. Furthermore, the findings can be valuable in applications such as simultaneous multi-slice accelerated iEPI DWI and multi-slab diffusion imaging. © 2018 International Society for Magnetic Resonance in Medicine.
Framing sound: Using expectations to reduce environmental noise annoyance.
Crichton, Fiona; Dodd, George; Schmid, Gian; Petrie, Keith J
2015-10-01
Annoyance reactions to environmental noise, such as wind turbine sound, have public health implications given associations between annoyance and symptoms related to psychological distress. In the case of wind farms, factors contributing to noise annoyance have been theorised to include wind turbine sound characteristics, the noise sensitivity of residents, and contextual aspects, such as receiving information creating negative expectations about sound exposure. The experimental aim was to assess whether receiving positive or negative expectations about wind farm sound would differentially influence annoyance reactions during exposure to wind farm sound, and also influence associations between perceived noise sensitivity and noise annoyance. Sixty volunteers were randomly assigned to receive either negative or positive expectations about wind farm sound. Participants in the negative expectation group viewed a presentation which incorporated internet material indicating that exposure to wind turbine sound, particularly infrasound, might present a health risk. Positive expectation participants viewed a DVD which framed wind farm sound positively and included internet information about the health benefits of infrasound exposure. Participants were then simultaneously exposed to sub-audible infrasound and audible wind farm sound during two 7 min exposure sessions, during which they assessed their experience of annoyance. Positive expectation participants were significantly less annoyed than negative expectation participants, while noise sensitivity only predicted annoyance in the negative group. Findings suggest accessing negative information about sound is likely to trigger annoyance, particularly in noise sensitive people and, importantly, portraying sound positively may reduce annoyance reactions, even in noise sensitive individuals. Copyright © 2015 Elsevier Inc. All rights reserved.
Test-section noise of the Ames 7 by 10-foot wind tunnel no. 1
NASA Technical Reports Server (NTRS)
Soderman, P. T.
1976-01-01
An investigation was made of the test-section noise levels at various wind speeds in the Ames 7- by 10-Foot Wind Tunnel No. 1. No model was in the test section. Results showed that aerodynamic noise from various struts used to monitor flow conditions in the test section dominated the wind-tunnel background noise over much of the frequency spectrum. A tapered microphone stand with a thin trailing edge generated less noise than did a constant-chord strut with a blunt trailing edge. Noise from small holes in the test-section walls was insignificant.
A semi-learning algorithm for noise rejection: an fNIRS study on ADHD children
NASA Astrophysics Data System (ADS)
Sutoko, Stephanie; Funane, Tsukasa; Katura, Takusige; Sato, Hiroki; Kiguchi, Masashi; Maki, Atsushi; Monden, Yukifumi; Nagashima, Masako; Yamagata, Takanori; Dan, Ippeita
2017-02-01
In pediatrics studies, the quality of functional near infrared spectroscopy (fNIRS) signals is often reduced by motion artifacts. These artifacts likely mislead brain functionality analysis, causing false discoveries. While noise correction methods and their performance have been investigated, these methods require several parameter assumptions that apparently result in noise overfitting. In contrast, the rejection of noisy signals serves as a preferable method because it maintains the originality of the signal waveform. Here, we describe a semi-learning algorithm to detect and eliminate noisy signals. The algorithm dynamically adjusts noise detection according to the predetermined noise criteria, which are spikes, unusual activation values (averaged amplitude signals within the brain activation period), and high activation variances (among trials). Criteria were sequentially organized in the algorithm and orderly assessed signals based on each criterion. By initially setting an acceptable rejection rate, particular criteria causing excessive data rejections are neglected, whereas others with tolerable rejections practically eliminate noises. fNIRS data measured during the attention response paradigm (oddball task) in children with attention deficit/hyperactivity disorder (ADHD) were utilized to evaluate and optimize the algorithm's performance. This algorithm successfully substituted the visual noise identification done in the previous studies and consistently found significantly lower activation of the right prefrontal and parietal cortices in ADHD patients than in typical developing children. Thus, we conclude that the semi-learning algorithm confers more objective and standardized judgment for noise rejection and presents a promising alternative to visual noise rejection
Predicting Noise From Wind Turbines
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
1990-01-01
Computer program WINDY predicts broadband noise spectra of horizontal-axis wind-turbine generators. Enables adequate assessment of impact of broadband wind-turbine noise. Effects of turbulence, trailing-edge wakes, and bluntness taken into account. Program has practical application in design and siting of wind-turbine machines acceptable to community. Written in GW-Basic.
Wind farm optimization using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Ituarte-Villarreal, Carlos M.
In recent years, the wind power industry has focused its efforts on solving the Wind Farm Layout Optimization (WFLO) problem. Wind resource assessment is a pivotal step in optimizing the wind-farm design and siting and, in determining whether a project is economically feasible or not. In the present work, three (3) different optimization methods are proposed for the solution of the WFLO: (i) A modified Viral System Algorithm applied to the optimization of the proper location of the components in a wind-farm to maximize the energy output given a stated wind environment of the site. The optimization problem is formulated as the minimization of energy cost per unit produced and applies a penalization for the lack of system reliability. The viral system algorithm utilized in this research solves three (3) well-known problems in the wind-energy literature; (ii) a new multiple objective evolutionary algorithm to obtain optimal placement of wind turbines while considering the power output, cost, and reliability of the system. The algorithm presented is based on evolutionary computation and the objective functions considered are the maximization of power output, the minimization of wind farm cost and the maximization of system reliability. The final solution to this multiple objective problem is presented as a set of Pareto solutions and, (iii) A hybrid viral-based optimization algorithm adapted to find the proper component configuration for a wind farm with the introduction of the universal generating function (UGF) analytical approach to discretize the different operating or mechanical levels of the wind turbines in addition to the various wind speed states. The proposed methodology considers the specific probability functions of the wind resource to describe their proper behaviors to account for the stochastic comportment of the renewable energy components, aiming to increase their power output and the reliability of these systems. The developed heuristic considers a variable number of system components and wind turbines with different operating characteristics and sizes, to have a more heterogeneous model that can deal with changes in the layout and in the power generation requirements over the time. Moreover, the approach evaluates the impact of the wind-wake effect of the wind turbines upon one another to describe and evaluate the power production capacity reduction of the system depending on the layout distribution of the wind turbines.
Wind Noise Suppression for Infrasound Sensors
2014-03-01
Wind Noise Suppression for Infrasound Sensors by John M. Noble, W.C. Kirkpatrick Alberts, II, Sandra L. Collier, Richard Raspet, and Mark A...Laboratory Adelphi, MD 20783-1197 ARL-TR-6873 March 2014 Wind Noise Suppression for Infrasound Sensors John M. Noble, Sandra L. Collier, and...DATES COVERED (From - To) October 2012 to September 2013 4. TITLE AND SUBTITLE Wind Noise Suppression for Infrasound Sensors 5a. CONTRACT NUMBER 5b
Bahaz, Mohamed; Benzid, Redha
2018-03-01
Electrocardiogram (ECG) signals are often contaminated with artefacts and noises which can lead to incorrect diagnosis when they are visually inspected by cardiologists. In this paper, the well-known discrete Fourier series (DFS) is re-explored and an efficient DFS-based method is proposed to reduce contribution of both baseline wander (BW) and powerline interference (PLI) noises in ECG records. In the first step, the determination of the exact number of low frequency harmonics contributing in BW is achieved. Next, the baseline drift is estimated by the sum of all associated Fourier sinusoids components. Then, the baseline shift is discarded efficiently by a subtraction of its approximated version from the original biased ECG signal. Concerning the PLI, the subtraction of the contributing harmonics calculated in the same manner reduces efficiently such type of noise. In addition of visual quality results, the proposed algorithm shows superior performance in terms of higher signal-to-noise ratio and smaller mean square error when faced to the DCT-based algorithm.
Restoration for Noise Removal in Quantum Images
NASA Astrophysics Data System (ADS)
Liu, Kai; Zhang, Yi; Lu, Kai; Wang, Xiaoping
2017-09-01
Quantum computation has become increasingly attractive in the past few decades due to its extraordinary performance. As a result, some studies focusing on image representation and processing via quantum mechanics have been done. However, few of them have considered the quantum operations for images restoration. To address this problem, three noise removal algorithms are proposed in this paper based on the novel enhanced quantum representation model, oriented to two kinds of noise pollution (Salt-and-Pepper noise and Gaussian noise). For the first algorithm Q-Mean, it is designed to remove the Salt-and-Pepper noise. The noise points are extracted through comparisons with the adjacent pixel values, after which the restoration operation is finished by mean filtering. As for the second method Q-Gauss, a special mask is applied to weaken the Gaussian noise pollution. The third algorithm Q-Adapt is effective for the source image containing unknown noise. The type of noise can be judged through the quantum statistic operations for the color value of the whole image, and then different noise removal algorithms are used to conduct image restoration respectively. Performance analysis reveals that our methods can offer high restoration quality and achieve significant speedup through inherent parallelism of quantum computation.
NASA Astrophysics Data System (ADS)
Dempsey, M. J.; Booth, J.; Arend, M.; Melecio-Vazquez, D.
2016-12-01
The radar wind profiler (RWP) located on the Liberty Science Center in Jersey City, NJ is a part of the New York City Meteorological Network (NYCMetNet). An automatic algorithm based on those by Angevine [1] and Molod [2] is expanded upon and implemented to take RWP signal to noise ratio data and create an urban boundary layer (UBL) height product. Time series of the RWP UBL heights from clear and cloudy days are examined and compared to UBL height time series calculated from thermal data obtained from a NYCMetNet radiometer located on the roof of the Grove School of Engineering at The City College of New York. UBL data from the RWP are also compared to the MERRA (Modern Era Retrospective Analysis for Research and Applications) planetary boundary layer height time series product. A limited seasonal climatology is created from the available RWP data for clear and cloudy days and then compared to a limited seasonal climatology produced from boundary layer data obtained from MERRA and boundary layer data calculated from the CCNY radiometer. As with wind profilers in the NOAA wind profiler network, the signal return to the lowest range gates is not always the result of turbulent scattering, but from scattering from other targets such as the building itself, birds and insects. The algorithm attempts to address this during the daytime, when strong signal returns at the lowest range gates mask the SNR maxima above which are representative of the actual UBL height. Detecting the collapse and fall of the boundary layer meets with limited success, also, from the hours of 2:30pm to 5:00pm. Upper and lower range gates from the wind profiler limit observation of the nighttime boundary layer for heights falling below the lowest range gate and daytime convective boundary layer maxima rising above the highest. Due to the constraints of the instrument and the algorithm it is recommended that the boundary layer height product be constrained to the hours of 8am to 7pm.
Digital watermarking algorithm research of color images based on quaternion Fourier transform
NASA Astrophysics Data System (ADS)
An, Mali; Wang, Weijiang; Zhao, Zhen
2013-10-01
A watermarking algorithm of color images based on the quaternion Fourier Transform (QFFT) and improved quantization index algorithm (QIM) is proposed in this paper. The original image is transformed by QFFT, the watermark image is processed by compression and quantization coding, and then the processed watermark image is embedded into the components of the transformed original image. It achieves embedding and blind extraction of the watermark image. The experimental results show that the watermarking algorithm based on the improved QIM algorithm with distortion compensation achieves a good tradeoff between invisibility and robustness, and better robustness for the attacks of Gaussian noises, salt and pepper noises, JPEG compression, cropping, filtering and image enhancement than the traditional QIM algorithm.
Total variation optimization for imaging through turbid media with transmission matrix
NASA Astrophysics Data System (ADS)
Gong, Changmei; Shao, Xiaopeng; Wu, Tengfei; Liu, Jietao; Zhang, Jianqi
2016-12-01
With the transmission matrix (TM) of the whole optical system measured, the image of the object behind a turbid medium can be recovered from its speckle field by means of an image reconstruction algorithm. Instead of Tikhonov regularization algorithm (TRA), the total variation minimization by augmented Lagrangian and alternating direction algorithms (TVAL3) is introduced to recover object images. As a total variation (TV)-based approach, TVAL3 allows to effectively damp more noise and preserve more edges compared with TRA, thus providing more outstanding image quality. Different levels of detector noise and TM-measurement noise are successively added to analyze the antinoise performance of these two algorithms. Simulation results show that TVAL3 is able to recover more details and suppress more noise than TRA under different noise levels, thus providing much more excellent image quality. Furthermore, whether it be detector noise or TM-measurement noise, the reconstruction images obtained by TVAL3 at SNR=15 dB are far superior to those by TRA at SNR=50 dB.
NASA Astrophysics Data System (ADS)
Tang, Xiangyang
2003-05-01
In multi-slice helical CT, the single-tilted-plane-based reconstruction algorithm has been proposed to combat helical and cone beam artifacts by tilting a reconstruction plane to fit a helical source trajectory optimally. Furthermore, to improve the noise characteristics or dose efficiency of the single-tilted-plane-based reconstruction algorithm, the multi-tilted-plane-based reconstruction algorithm has been proposed, in which the reconstruction plane deviates from the pose globally optimized due to an extra rotation along the 3rd axis. As a result, the capability of suppressing helical and cone beam artifacts in the multi-tilted-plane-based reconstruction algorithm is compromised. An optomized tilted-plane-based reconstruction algorithm is proposed in this paper, in which a matched view weighting strategy is proposed to optimize the capability of suppressing helical and cone beam artifacts and noise characteristics. A helical body phantom is employed to quantitatively evaluate the imaging performance of the matched view weighting approach by tabulating artifact index and noise characteristics, showing that the matched view weighting improves both the helical artifact suppression and noise characteristics or dose efficiency significantly in comparison to the case in which non-matched view weighting is applied. Finally, it is believed that the matched view weighting approach is of practical importance in the development of multi-slive helical CT, because it maintains the computational structure of fan beam filtered backprojection and demands no extra computational services.
NASA Technical Reports Server (NTRS)
Dittmar, James H.
1989-01-01
The noise of advanced high speed propeller models measured in the NASA 8- by 6-foot wind tunnel has been compared with model propeller noise measured in another tunnel and with full-scale propeller noise measured in flight. Good agreement was obtained for the noise of a model counterrotation propeller tested in the 8- by 6-foot wind tunnel and in the acoustically treated test section of the Boeing Transonic Wind Tunnel. This good agreement indicates the relative validity of taking cruise noise data on a plate in the 8- by 6-foot wind tunnel compared with the free-field method in the Boeing tunnel. Good agreement was also obtained for both single rotation and counter-rotation model noise comparisons with full-scale propeller noise in flight. The good scale model to full-scale comparisons indicate both the validity of the 8- by 6-foot wind tunnel data and the ability to scale to full size. Boundary layer refraction on the plate provides a limitation to the measurement of forward arc noise in the 8- by 6-foot wind tunnel at the higher harmonics of the blade passing tone. The use of a validated boundary layer refraction model to adjust the data could remove this limitation.
NASA Technical Reports Server (NTRS)
Dittmar, James
1989-01-01
The noise of advanced high speed propeller models measured in the NASA 8- by 6-foot wind tunnel has been compared with model propeller noise measured in another tunnel and with full-scale propeller noise measured in flight. Good agreement was obtained for the noise of a model counterrotation propeller tested in the 8- by 6-foot wind tunnel and in the acoustically treated test section of the Boeing Transonic Wind Tunnel. This good agreement indicates the relative validity of taking cruise noise data on a plate in the 8- by 6-foot wind tunnel compared with the free-field method in the Boeing tunnel. Good agreement was also obtained for both single rotation and counter-rotation model noise comparisons with full-scale propeller noise in flight. The good scale model to full-scale comparisons indicate both the validity of the 8- by 6-foot wind tunnel data and the ability to scale to full size. Boundary layer refraction on the plate provides a limitation to the measurement of forward arc noise in the 8- by 6-foot wind tunnel at the higher harmonics of the blade passing tone. The sue of a validated boundary layer refraction model to adjust the data could remove this limitation.
Estimating Planetary Boundary Layer Heights from NOAA Profiler Network Wind Profiler Data
NASA Technical Reports Server (NTRS)
Molod, Andrea M.; Salmun, H.; Dempsey, M
2015-01-01
An algorithm was developed to estimate planetary boundary layer (PBL) heights from hourly archived wind profiler data from the NOAA Profiler Network (NPN) sites located throughout the central United States. Unlike previous studies, the present algorithm has been applied to a long record of publicly available wind profiler signal backscatter data. Under clear conditions, summertime averaged hourly time series of PBL heights compare well with Richardson-number based estimates at the few NPN stations with hourly temperature measurements. Comparisons with clear sky reanalysis based estimates show that the wind profiler PBL heights are lower by approximately 250-500 m. The geographical distribution of daily maximum PBL heights corresponds well with the expected distribution based on patterns of surface temperature and soil moisture. Wind profiler PBL heights were also estimated under mostly cloudy conditions, and are generally higher than both the Richardson number based and reanalysis PBL heights, resulting in a smaller clear-cloudy condition difference. The algorithm presented here was shown to provide a reliable summertime climatology of daytime hourly PBL heights throughout the central United States.
A curvature-based weighted fuzzy c-means algorithm for point clouds de-noising
NASA Astrophysics Data System (ADS)
Cui, Xin; Li, Shipeng; Yan, Xiutian; He, Xinhua
2018-04-01
In order to remove the noise of three-dimensional scattered point cloud and smooth the data without damnify the sharp geometric feature simultaneity, a novel algorithm is proposed in this paper. The feature-preserving weight is added to fuzzy c-means algorithm which invented a curvature weighted fuzzy c-means clustering algorithm. Firstly, the large-scale outliers are removed by the statistics of r radius neighboring points. Then, the algorithm estimates the curvature of the point cloud data by using conicoid parabolic fitting method and calculates the curvature feature value. Finally, the proposed clustering algorithm is adapted to calculate the weighted cluster centers. The cluster centers are regarded as the new points. The experimental results show that this approach is efficient to different scale and intensities of noise in point cloud with a high precision, and perform a feature-preserving nature at the same time. Also it is robust enough to different noise model.
Noise levels from a model turbofan engine with simulated noise control measures applied
NASA Technical Reports Server (NTRS)
Hall, David G.; Woodward, Richard P.
1993-01-01
A study of estimated full-scale noise levels based on measured levels from the Advanced Ducted Propeller (ADP) sub-scale model is presented. Testing of this model was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. Effective Perceived Noise Level (EPNL) estimates for the baseline configuration are documented, and also used as the control case in a study of the potential benefits of two categories of noise control. The effect of active noise control is evaluated by artificially removing various rotor-stator interaction tones. Passive noise control is simulated by applying a notch filter to the wind tunnel data. Cases with both techniques are included to evaluate hybrid active-passive noise control. The results for EPNL values are approximate because the original source data was limited in bandwidth and in sideline angular coverage. The main emphasis is on comparisons between the baseline and configurations with simulated noise control measures.
Auditory recognition of familiar and unfamiliar subjects with wind turbine noise.
Maffei, Luigi; Masullo, Massimiliano; Gabriele, Maria Di; Votsi, Nefta-Eleftheria P; Pantis, John D; Senese, Vincenzo Paolo
2015-04-17
Considering the wide growth of the wind turbine market over the last decade as well as their increasing power size, more and more potential conflicts have arisen in society due to the noise radiated by these plants. Our goal was to determine whether the annoyance caused by wind farms is related to aspects other than noise. To accomplish this, an auditory experiment on the recognition of wind turbine noise was conducted to people with long experience of wind turbine noise exposure and to people with no previous experience to this type of noise source. Our findings demonstrated that the trend of the auditory recognition is the same for the two examined groups, as far as the increase of the distance and the decrease of the values of sound equivalent levels and loudness are concerned. Significant differences between the two groups were observed as the distance increases. People with wind turbine noise experience showed a higher tendency to report false alarms than people without experience.
Auditory recognition of familiar and unfamiliar subjects with wind turbine noise
Maffei, Luigi; Masullo, Massimiliano; Di Gabriele, Maria; Votsi, Nefta-Eleftheria P.; Pantis, John D.; Senese, Vincenzo Paolo
2015-01-01
Considering the wide growth of the wind turbine market over the last decade as well as their increasing power size, more and more potential conflicts have arisen in society due to the noise radiated by these plants. Our goal was to determine whether the annoyance caused by wind farms is related to aspects other than noise. To accomplish this, an auditory experiment on the recognition of wind turbine noise was conducted to people with long experience of wind turbine noise exposure and to people with no previous experience to this type of noise source. Our findings demonstrated that the trend of the auditory recognition is the same for the two examined groups, as far as the increase of the distance and the decrease of the values of sound equivalent levels and loudness are concerned. Significant differences between the two groups were observed as the distance increases. People with wind turbine noise experience showed a higher tendency to report false alarms than people without experience. PMID:25898408
Response to noise from modern wind farms in The Netherlands.
Pedersen, Eja; van den Berg, Frits; Bakker, Roel; Bouma, Jelte
2009-08-01
The increasing number and size of wind farms call for more data on human response to wind turbine noise, so that a generalized dose-response relationship can be modeled and possible adverse health effects avoided. This paper reports the results of a 2007 field study in The Netherlands with 725 respondents. A dose-response relationship between calculated A-weighted sound pressure levels and reported perception and annoyance was found. Wind turbine noise was more annoying than transportation noise or industrial noise at comparable levels, possibly due to specific sound properties such as a "swishing" quality, temporal variability, and lack of nighttime abatement. High turbine visibility enhances negative response, and having wind turbines visible from the dwelling significantly increased the risk of annoyance. Annoyance was strongly correlated with a negative attitude toward the visual impact of wind turbines on the landscape. The study further demonstrates that people who benefit economically from wind turbines have a significantly decreased risk of annoyance, despite exposure to similar sound levels. Response to wind turbine noise was similar to that found in Sweden so the dose-response relationship should be generalizable.
NASA Astrophysics Data System (ADS)
Brekhna, Brekhna; Mahmood, Arif; Zhou, Yuanfeng; Zhang, Caiming
2017-11-01
Superpixels have gradually become popular in computer vision and image processing applications. However, no comprehensive study has been performed to evaluate the robustness of superpixel algorithms in regard to common forms of noise in natural images. We evaluated the robustness of 11 recently proposed algorithms to different types of noise. The images were corrupted with various degrees of Gaussian blur, additive white Gaussian noise, and impulse noise that either made the object boundaries weak or added extra information to it. We performed a robustness analysis of simple linear iterative clustering (SLIC), Voronoi Cells (VCells), flooding-based superpixel generation (FCCS), bilateral geodesic distance (Bilateral-G), superpixel via geodesic distance (SSS-G), manifold SLIC (M-SLIC), Turbopixels, superpixels extracted via energy-driven sampling (SEEDS), lazy random walk (LRW), real-time superpixel segmentation by DBSCAN clustering, and video supervoxels using partially absorbing random walks (PARW) algorithms. The evaluation process was carried out both qualitatively and quantitatively. For quantitative performance comparison, we used achievable segmentation accuracy (ASA), compactness, under-segmentation error (USE), and boundary recall (BR) on the Berkeley image database. The results demonstrated that all algorithms suffered performance degradation due to noise. For Gaussian blur, Bilateral-G exhibited optimal results for ASA and USE measures, SLIC yielded optimal compactness, whereas FCCS and DBSCAN remained optimal for BR. For the case of additive Gaussian and impulse noises, FCCS exhibited optimal results for ASA, USE, and BR, whereas Bilateral-G remained a close competitor in ASA and USE for Gaussian noise only. Additionally, Turbopixel demonstrated optimal performance for compactness for both types of noise. Thus, no single algorithm was able to yield optimal results for all three types of noise across all performance measures. Conclusively, to solve real-world problems effectively, more robust superpixel algorithms must be developed.
Onakpoya, Igho J; O'Sullivan, Jack; Thompson, Matthew J; Heneghan, Carl J
2015-09-01
Noise generated by wind turbines has been reported to affect sleep and quality of life (QOL), but the relationship is unclear. Our objective was to explore the association between wind turbine noise, sleep disturbance and quality of life, using data from published observational studies. We searched Medline, Embase, Global Health and Google Scholar databases. No language restrictions were imposed. Hand searches of bibliography of retrieved full texts were also conducted. The reporting quality of included studies was assessed using the STROBE guidelines. Two reviewers independently determined the eligibility of studies, assessed the quality of included studies, and extracted the data. We included eight studies with a total of 2433 participants. All studies were cross-sectional, and the overall reporting quality was moderate. Meta-analysis of six studies (n=2364) revealed that the odds of being annoyed is significantly increased by wind turbine noise (OR: 4.08; 95% CI: 2.37 to 7.04; p<0.00001). The odds of sleep disturbance was also significantly increased with greater exposure to wind turbine noise (OR: 2.94; 95% CI: 1.98 to 4.37; p<0.00001). Four studies reported that wind turbine noise significantly interfered with QOL. Further, visual perception of wind turbine generators was associated with greater frequency of reported negative health effects. In conclusion, there is some evidence that exposure to wind turbine noise is associated with increased odds of annoyance and sleep problems. Individual attitudes could influence the type of response to noise from wind turbines. Experimental and observational studies investigating the relationship between wind turbine noise and health are warranted. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Zhao; Zheng, Chaorong; Wu, Yue
2017-09-01
Wind profilers have been widely adopted to observe the wind field information in the atmosphere for different purposes. But accuracy of its observation has limitations due to various noises or disturbances and hence need to be further improved. In this paper, the data measured under strong wind conditions, using a 1290-MHz boundary layer profiler (BLP), are quality controlled via a composite quality control (QC) procedure proposed by the authors. Then, through the comparison with the data measured by radiosonde flights (balloon observations), the critical thresholds in the composite QC procedure, including consensus average threshold T 1 and vertical shear threshold T 3 , are systematically discussed. And the performance of the BLP operated under precipitation is also evaluated. It is found that to ensure the high accuracy and high data collectable rate, the optimal range of subsets is determined to be 4 m/s. Although the number of data rejected by the combined algorithm of vertical shear examination and small median test is quite limited, it is proved that the algorithm is quite useful to recognize the outlier with a large discrepancy. And the optimal wind shear threshold T 3 can be recommended as 5 ms -1 /100m. During patchy precipitation, the quality of data measured by the four oblique beams (using the DBS measuring technique) can still be ensured. After the BLP data are quality controlled by the composite QC procedure, the output can show good agreement with the balloon observation.
Data depth based clustering analysis
Jeong, Myeong -Hun; Cai, Yaping; Sullivan, Clair J.; ...
2016-01-01
Here, this paper proposes a new algorithm for identifying patterns within data, based on data depth. Such a clustering analysis has an enormous potential to discover previously unknown insights from existing data sets. Many clustering algorithms already exist for this purpose. However, most algorithms are not affine invariant. Therefore, they must operate with different parameters after the data sets are rotated, scaled, or translated. Further, most clustering algorithms, based on Euclidean distance, can be sensitive to noises because they have no global perspective. Parameter selection also significantly affects the clustering results of each algorithm. Unlike many existing clustering algorithms, themore » proposed algorithm, called data depth based clustering analysis (DBCA), is able to detect coherent clusters after the data sets are affine transformed without changing a parameter. It is also robust to noises because using data depth can measure centrality and outlyingness of the underlying data. Further, it can generate relatively stable clusters by varying the parameter. The experimental comparison with the leading state-of-the-art alternatives demonstrates that the proposed algorithm outperforms DBSCAN and HDBSCAN in terms of affine invariance, and exceeds or matches the ro-bustness to noises of DBSCAN or HDBSCAN. The robust-ness to parameter selection is also demonstrated through the case study of clustering twitter data.« less
Maximum wind energy extraction strategies using power electronic converters
NASA Astrophysics Data System (ADS)
Wang, Quincy Qing
2003-10-01
This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through continuously improving the performance of wind power generation systems. This algorithm is independent of wind power generation system characteristics, and does not need wind speed and turbine speed measurements. Therefore, it can be easily implemented into various wind energy generation systems with different turbine inertia and diverse system hardware environments. In addition to the detailed description of the proposed algorithm, computer simulation results are presented in the thesis to demonstrate the advantage of this algorithm. As a final confirmation of the algorithm feasibility, the algorithm has been implemented inside a single-phase IGBT inverter, and tested with a wind simulator system in research laboratory. Test results were found consistent with the simulation results. (Abstract shortened by UMI.)
Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter
2017-10-01
A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.
How wind turbines affect the performance of seismic monitoring stations and networks
NASA Astrophysics Data System (ADS)
Neuffer, Tobias; Kremers, Simon
2017-12-01
In recent years, several minor seismic events were observed in the apparently aseismic region of the natural gas fields in Northern Germany. A seismic network was installed in the region consisting of borehole stations with sensor depths up to 200 m and surface stations to monitor induced seismicity. After installation of the network in 2012, an increasing number of wind turbines was established in proximity (<5 km) to several stations, thereby influencing the local noise conditions. This study demonstrates the impact of wind turbines on seismic noise level in a frequency range of 1-10 Hz at the monitoring sites with correlation to wind speed, based on the calculation of power spectral density functions and I95 values of waveforms over a time period of 4 yr. It could be shown that higher wind speeds increase the power spectral density amplitudes at distinct frequencies in the considered frequency band, depending on height as well as number and type of influencing wind turbines. The azimuthal direction of incoming Rayleigh waves at a surface station was determined to identify the noise sources. The analysis of the perturbed wave field showed that Rayleigh waves with backazimuths pointing to wind turbines in operation are dominating the wave field in a frequency band of 3-4 Hz. Additional peaks in a frequency range of 1-4 Hz could be attributed to turbine tower eigenfrequencies of various turbine manufactures with the hub height as defining parameter. Moreover, the influence of varying noise levels at a station on the ability to automatically detect seismic events was investigated. The increased noise level in correlation to higher wind speeds at the monitoring sites deteriorates the station's recording quality inhibiting the automatic detection of small seismic events. As a result, functionality and task fulfilment of the seismic monitoring network is more and more limited by the increasing number of nearby wind turbines.
Makita, Shuichi; Kurokawa, Kazuhiro; Hong, Young-Joo; Miura, Masahiro; Yasuno, Yoshiaki
2016-01-01
This paper describes a complex correlation mapping algorithm for optical coherence angiography (cmOCA). The proposed algorithm avoids the signal-to-noise ratio dependence and exhibits low noise in vasculature imaging. The complex correlation coefficient of the signals, rather than that of the measured data are estimated, and two-step averaging is introduced. Algorithms of motion artifact removal based on non perfusing tissue detection using correlation are developed. The algorithms are implemented with Jones-matrix OCT. Simultaneous imaging of pigmented tissue and vasculature is also achieved using degree of polarization uniformity imaging with cmOCA. An application of cmOCA to in vivo posterior human eyes is presented to demonstrate that high-contrast images of patients’ eyes can be obtained. PMID:27446673
Mariano-Goulart, D; Fourcade, M; Bernon, J L; Rossi, M; Zanca, M
2003-01-01
Thanks to an experimental study based on simulated and physical phantoms, the propagation of the stochastic noise in slices reconstructed using the conjugate gradient algorithm has been analysed versus iterations. After a first increase corresponding to the reconstruction of the signal, the noise stabilises before increasing linearly with iterations. The level of the plateau as well as the slope of the subsequent linear increase depends on the noise in the projection data.
Janssen, Sabine A; Vos, Henk; Eisses, Arno R; Pedersen, Eja
2011-12-01
Surveys have shown that noise from wind turbines is perceived as annoying by a proportion of residents living in their vicinity, apparently at much lower noise levels than those inducing annoyance due to other environmental sources. The aim of the present study was to derive the exposure-response relationship between wind turbine noise exposure in L(den) and the expected percentage annoyed residents and to compare it to previously established relationships for industrial noise and transportation noise. In addition, the influence of several individual and situational factors was assessed. On the basis of available data from two surveys in Sweden (N=341, N=754) and one survey in the Netherlands (N=725), a relationship was derived for annoyance indoors and for annoyance outdoors at the dwelling. In comparison to other sources of environmental noise, annoyance due to wind turbine noise was found at relatively low noise exposure levels. Furthermore, annoyance was lower among residents who received economical benefit from wind turbines and higher among residents for whom the wind turbine was visible from the dwelling. Age and noise sensitivity had similar effects on annoyance to those found in research on annoyance by other sources. © 2011 Acoustical Society of America
Fernández-Camacho, R; Brito Cabeza, I; Aroba, J; Gómez-Bravo, F; Rodríguez, S; de la Rosa, J
2015-04-15
This study focuses on correlations between total number concentrations, road traffic emissions and noise levels in an urban area in the southwest of Spain during the winter and summer of 2009. The high temporal correlation between sound pressure levels, traffic intensity, particle number concentrations related to traffic, black carbon and NOx concentrations suggests that noise is linked to traffic emissions as a main source of pollution in urban areas. First, the association of these different variables was studied using PreFuRGe, a computational tool based on data mining and fuzzy logic. The results showed a clear association between noise levels and road-traffic intensity for non-extremely high wind speed levels. This behaviour points, therefore, to vehicular emissions being the main source of urban noise. An analysis for estimating the total number concentration from noise levels is also proposed in the study. The high linearity observed between particle number concentrations linked to traffic and noise levels with road traffic intensity can be used to calculate traffic related particle number concentrations experimentally. At low wind speeds, there are increases in noise levels of 1 dB for every 100 vehicles in circulation. This is equivalent to 2000 cm(-3) per vehicle in winter and 500 cm(-3) in summer. At high wind speeds, wind speed could be taken into account. This methodology allows low cost sensors to be used as a proxy for total number concentration monitoring in urban air quality networks. Copyright © 2015 Elsevier B.V. All rights reserved.
Correction of WindScat Scatterometric Measurements by Combining with AMSR Radiometric Data
NASA Technical Reports Server (NTRS)
Song, S.; Moore, R. K.
1996-01-01
The Seawinds scatterometer on the advanced Earth observing satellite-2 (ADEOS-2) will determine surface wind vectors by measuring the radar cross section. Multiple measurements will be made at different points in a wind-vector cell. When dense clouds and rain are present, the signal will be attenuated, thereby giving erroneous results for the wind. This report describes algorithms to use with the advanced mechanically scanned radiometer (AMSR) scanning radiometer on ADEOS-2 to correct for the attenuation. One can determine attenuation from a radiometer measurement based on the excess brightness temperature measured. This is the difference between the total measured brightness temperature and the contribution from surface emission. A major problem that the algorithm must address is determining the surface contribution. Two basic approaches were developed for this, one using the scattering coefficient measured along with the brightness temperature, and the other using the brightness temperature alone. For both methods, best results will occur if the wind from the preceding wind-vector cell can be used as an input to the algorithm. In the method based on the scattering coefficient, we need the wind direction from the preceding cell. In the method using brightness temperature alone, we need the wind speed from the preceding cell. If neither is available, the algorithm can work, but the corrections will be less accurate. Both correction methods require iterative solutions. Simulations show that the algorithms make significant improvements in the measured scattering coefficient and thus is the retrieved wind vector. For stratiform rains, the errors without correction can be quite large, so the correction makes a major improvement. For systems of separated convective cells, the initial error is smaller and the correction, although about the same percentage, has a smaller effect.
Multisensor satellite data integration for sea surface wind speed and direction determination
NASA Technical Reports Server (NTRS)
Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.
1984-01-01
Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.
Duan, Yuping; Bouslimi, Dalel; Yang, Guanyu; Shu, Huazhong; Coatrieux, Gouenou
2017-07-01
In this paper, we focus on the "blind" identification of the computed tomography (CT) scanner that has produced a CT image. To do so, we propose a set of noise features derived from the image chain acquisition and which can be used as CT-scanner footprint. Basically, we propose two approaches. The first one aims at identifying a CT scanner based on an original sensor pattern noise (OSPN) that is intrinsic to the X-ray detectors. The second one identifies an acquisition system based on the way this noise is modified by its three-dimensional (3-D) image reconstruction algorithm. As these reconstruction algorithms are manufacturer dependent and kept secret, our features are used as input to train a support vector machine (SVM) based classifier to discriminate acquisition systems. Experiments conducted on images issued from 15 different CT-scanner models of 4 distinct manufacturers demonstrate that our system identifies the origin of one CT image with a detection rate of at least 94% and that it achieves better performance than sensor pattern noise (SPN) based strategy proposed for general public camera devices.
Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.
2014-01-01
The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.
Validating precision estimates in horizontal wind measurements from a Doppler lidar
Newsom, Rob K.; Brewer, W. Alan; Wilczak, James M.; ...
2017-03-30
Results from a recent field campaign are used to assess the accuracy of wind speed and direction precision estimates produced by a Doppler lidar wind retrieval algorithm. The algorithm, which is based on the traditional velocity-azimuth-display (VAD) technique, estimates the wind speed and direction measurement precision using standard error propagation techniques, assuming the input data (i.e., radial velocities) to be contaminated by random, zero-mean, errors. For this study, the lidar was configured to execute an 8-beam plan-position-indicator (PPI) scan once every 12 min during the 6-week deployment period. Several wind retrieval trials were conducted using different schemes for estimating themore » precision in the radial velocity measurements. Here, the resulting wind speed and direction precision estimates were compared to differences in wind speed and direction between the VAD algorithm and sonic anemometer measurements taken on a nearby 300 m tower.« less
Offshore wind measurements using Doppler aerosol wind lidar (DAWN) at NASA Langley Research Center
NASA Astrophysics Data System (ADS)
Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.
2014-06-01
The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.
Positioning performance analysis of the time sum of arrival algorithm with error features
NASA Astrophysics Data System (ADS)
Gong, Feng-xun; Ma, Yan-qiu
2018-03-01
The theoretical positioning accuracy of multilateration (MLAT) with the time difference of arrival (TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival (TSOA) algorithm from the root mean square error ( RMSE) and geometric dilution of precision (GDOP) in additive white Gaussian noise (AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems.
Location of aerodynamic noise sources from a 200 kW vertical-axis wind turbine
NASA Astrophysics Data System (ADS)
Ottermo, Fredric; Möllerström, Erik; Nordborg, Anders; Hylander, Jonny; Bernhoff, Hans
2017-07-01
Noise levels emitted from a 200 kW H-rotor vertical-axis wind turbine have been measured using a microphone array at four different positions, each at a hub-height distance from the tower. The microphone array, comprising 48 microphones in a spiral pattern, allows for directional mapping of the noise sources in the range of 500 Hz to 4 kHz. The produced images indicate that most of the noise is generated in a narrow azimuth-angle range, compatible with the location where increased turbulence is known to be present in the flow, as a result of the previous passage of a blade and its support arms. It is also shown that a semi-empirical model for inflow-turbulence noise seems to produce noise levels of the correct order of magnitude, based on the amount of turbulence that could be expected from power extraction considerations.
Automatic systems and the low-level wind hazard
NASA Technical Reports Server (NTRS)
Schaeffer, Dwight R.
1987-01-01
Automatic flight control systems provide means for significantly enhancing survivability in severe wind hazards. The technology required to produce the necessary control algorithms is available and has been made technically feasible by the advent of digital flight control systems and accurate, low-noise sensors, especially strap-down inertial sensors. The application of this technology and these means has not generally been enabled except for automatic landing systems, and even then the potential has not been fully exploited. To fully exploit the potential of automatic systems for enhancing safety in wind hazards requires providing incentives, creating demand, inspiring competition, education, and eliminating prejudicial disincentitives to overcome the economic penalties associated with the extensive and riskly development and certification of these systems. If these changes will come about at all, it will likely be through changes in the regulations provided by the certifying agencies.
Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting.
Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M
2014-06-01
Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind "noise," which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical "downscaling" of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations.
A noise resistant symmetric key cryptosystem based on S8 S-boxes and chaotic maps
NASA Astrophysics Data System (ADS)
Hussain, Iqtadar; Anees, Amir; Aslam, Muhammad; Ahmed, Rehan; Siddiqui, Nasir
2018-04-01
In this manuscript, we have proposed an encryption algorithm to encrypt any digital data. The proposed algorithm is primarily based on the substitution-permutation in which the substitution process is performed by the S 8 Substitution boxes. The proposed algorithm incorporates three different chaotic maps. We have analysed the behaviour of chaos by secure communication in great length, and accordingly, we have applied those chaotic sequences in the proposed encryption algorithm. The simulation and statistical results revealed that the proposed encryption scheme is secure against different attacks. Moreover, the encryption scheme can tolerate the channel noise as well; if the encrypted data is corrupted by the unauthenticated user or by the channel noise, the decryption can still be successfully done with some distortion. The overall results confirmed that the presented work has good cryptographic features, low computational complexity and resistant to the channel noise which makes it suitable for low profile mobile applications.
Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method
NASA Astrophysics Data System (ADS)
Shi, Xiaohui; Huang, Xianwei; Nan, Suqin; Li, Hengxing; Bai, Yanfeng; Fu, Xiquan
2018-04-01
Detector noise has a significantly negative impact on ghost imaging at low light levels, especially for existing recovery algorithm. Based on the characteristics of the additive detector noise, a method named modified compressive sensing ghost imaging is proposed to reduce the background imposed by the randomly distributed detector noise at signal path. Experimental results show that, with an appropriate choice of threshold value, modified compressive sensing ghost imaging algorithm can dramatically enhance the contrast-to-noise ratio of the object reconstruction significantly compared with traditional ghost imaging and compressive sensing ghost imaging methods. The relationship between the contrast-to-noise ratio of the reconstruction image and the intensity ratio (namely, the average signal intensity to average noise intensity ratio) for the three reconstruction algorithms are also discussed. This noise suppression imaging technique will have great applications in remote-sensing and security areas.
Novel Signal Noise Reduction Method through Cluster Analysis, Applied to Photoplethysmography.
Waugh, William; Allen, John; Wightman, James; Sims, Andrew J; Beale, Thomas A W
2018-01-01
Physiological signals can often become contaminated by noise from a variety of origins. In this paper, an algorithm is described for the reduction of sporadic noise from a continuous periodic signal. The design can be used where a sample of a periodic signal is required, for example, when an average pulse is needed for pulse wave analysis and characterization. The algorithm is based on cluster analysis for selecting similar repetitions or pulses from a periodic single. This method selects individual pulses without noise, returns a clean pulse signal, and terminates when a sufficiently clean and representative signal is received. The algorithm is designed to be sufficiently compact to be implemented on a microcontroller embedded within a medical device. It has been validated through the removal of noise from an exemplar photoplethysmography (PPG) signal, showing increasing benefit as the noise contamination of the signal increases. The algorithm design is generalised to be applicable for a wide range of physiological (physical) signals.
Global examination of the wind-dependence of very low frequency underwater ambient noise.
Nichols, Stephen M; Bradley, David L
2016-03-01
Ocean surface winds play a key role in underwater ambient noise generation. One particular frequency band of interest is the infrasonic or very low frequency (VLF) band from 1 to 20 Hz. In this spectral band, wind generated ocean surface waves interact non-linearly to produce acoustic waves, which couple into the seafloor to generate microseisms, as explained by the theory developed by Longuet-Higgins. This study examines long term data sets in the VLF portion of the ambient noise spectrum, collected by the hydroacoustic systems of the Comprehensive Nuclear-Test Ban Treaty Organization in the Atlantic, Pacific, and Indian Oceans. Three properties of the noise field were examined: (a) the behavior of the acoustic spectrum slope from 1 to 5 Hz, (b) correlation of noise levels and wind speeds, and (c) the autocorrelation behavior of both the noise field and the wind. Analysis results indicate the spectrum slope is site dependent, and for both correlation methods, a high correlation between wind and the noise field in the 1-5 Hz band.
Numerical noise analysis for insulator of overhead transmission line
NASA Astrophysics Data System (ADS)
Zhang, Yulin; Chen, Yuwen; Huang, Yu
2018-04-01
As an important and complex issue in aero acoustic field, a lot of explorations have been devoted to the wind-induced noise. However, there is still lack of intensive investigations for aerodynamic noise in high-voltage transmission. The overhead transmission line system leads to serious occupational noise exposure in high wind-speed environment, and the noise can even injure the electricians in charge of insulator. By using computational fluid dynamics (CFD) which combined with computational aero acoustics (CAA), this paper predicts the noise generated by insulator of high voltage electricity transmission line which explores in wind environment. The simulation results indicate that the wind velocity, the assembly angle of the insulator and its ribs' distribution are the main contributory factors for the aerodynamic noise. Specifically, when wind velocity is greater than 15m/s, the alteration of noise is not sensitive to the wind velocity; furthermore, when the assembly angle increases from 0°to 60°, the noise decreases gradually, however, if the angle is happening to be 75°or 90°, it would be even greater than that at 0°. In order to inhibit the aerodynamic noise, it is necessary to control the flow blowing across the boundary of the insulator. Consequently, the result indicates that if the outermost rib is shorter than the second one, the noise reduced evidently. This information expects to provide useful help for the extremely suppression of aerodynamic noise, and also supply practical reference material for the design and application of overhead transmission line system.
Study of image matching algorithm and sub-pixel fitting algorithm in target tracking
NASA Astrophysics Data System (ADS)
Yang, Ming-dong; Jia, Jianjun; Qiang, Jia; Wang, Jian-yu
2015-03-01
Image correlation matching is a tracking method that searched a region most approximate to the target template based on the correlation measure between two images. Because there is no need to segment the image, and the computation of this method is little. Image correlation matching is a basic method of target tracking. This paper mainly studies the image matching algorithm of gray scale image, which precision is at sub-pixel level. The matching algorithm used in this paper is SAD (Sum of Absolute Difference) method. This method excels in real-time systems because of its low computation complexity. The SAD method is introduced firstly and the most frequently used sub-pixel fitting algorithms are introduced at the meantime. These fitting algorithms can't be used in real-time systems because they are too complex. However, target tracking often requires high real-time performance, we put forward a fitting algorithm named paraboloidal fitting algorithm based on the consideration above, this algorithm is simple and realized easily in real-time system. The result of this algorithm is compared with that of surface fitting algorithm through image matching simulation. By comparison, the precision difference between these two algorithms is little, it's less than 0.01pixel. In order to research the influence of target rotation on precision of image matching, the experiment of camera rotation was carried on. The detector used in the camera is a CMOS detector. It is fixed to an arc pendulum table, take pictures when the camera rotated different angles. Choose a subarea in the original picture as the template, and search the best matching spot using image matching algorithm mentioned above. The result shows that the matching error is bigger when the target rotation angle is larger. It's an approximate linear relation. Finally, the influence of noise on matching precision was researched. Gaussian noise and pepper and salt noise were added in the image respectively, and the image was processed by mean filter and median filter, then image matching was processed. The result show that when the noise is little, mean filter and median filter can achieve a good result. But when the noise density of salt and pepper noise is bigger than 0.4, or the variance of Gaussian noise is bigger than 0.0015, the result of image matching will be wrong.
Alcoverro, Benoit; Le Pichon, Alexis
2005-04-01
The implementation of the infrasound network of the International Monitoring System (IMS) for the enforcement of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) increases the effort in the design of suitable noise reducer systems. In this paper we present a new design consisting of low impedance elements. The dimensioning and the optimization of this discrete mechanical system are based on numerical simulations, including a complete electroacoustical modeling and a realistic wind-noise model. The frequency response and the noise reduction obtained for a given wind speed are compared to statistical noise measurements in the [0.02-4] Hz frequency band. The effects of the constructive parameters-the length of the pipes, inner diameters, summing volume, and number of air inlets-are investigated through a parametric study. The studied system consists of 32 air inlets distributed along an overall diameter of 16 m. Its frequency response is flat up to 4 Hz. For a 2 m/s wind speed, the maximal noise reduction obtained is 15 dB between 0.5 and 4 Hz. At lower frequencies, the noise reduction is improved by the use of a system of larger diameter. The main drawback is the high-frequency limitation introduced by acoustical resonances inside the pipes.
Enhancements to AERMOD’s Building Downwash Algorithms based on Wind Tunnel and Embedded-LES Modeling
This presentation presents three modifications to the building downwash algorithm in AERMOD that improve the physical basis and internal consistency of the model, and one modification to AERMOD’s building pre-processor to better represent elongated buildings in oblique wind...
Efficient method of image edge detection based on FSVM
NASA Astrophysics Data System (ADS)
Cai, Aiping; Xiong, Xiaomei
2013-07-01
For efficient object cover edge detection in digital images, this paper studied traditional methods and algorithm based on SVM. It analyzed Canny edge detection algorithm existed some pseudo-edge and poor anti-noise capability. In order to provide a reliable edge extraction method, propose a new detection algorithm based on FSVM. Which contains several steps: first, trains classify sample and gives the different membership function to different samples. Then, a new training sample is formed by increase the punishment some wrong sub-sample, and use the new FSVM classification model for train and test them. Finally the edges are extracted of the object image by using the model. Experimental result shows that good edge detection image will be obtained and adding noise experiments results show that this method has good anti-noise.
Electron density measurements from the shot noise collected on the STEREO/WAVES antennas
NASA Astrophysics Data System (ADS)
Zouganelis, Ioannis; Bale, Stuart; Bougeret, J.-L.; Maksimovic, Milan
One of the most reliable techniques for in situ measuring the electron density and temperature in space plasmas is the quasi-thermal noise spectroscopy. When a passive electric antenna is immersed in a stable plasma, the thermal motion of the ambient particles produces electrostatic fluctuations, which can be adequately measured with a sensitive wave receiver connected to a wire dipole antenna. Unfortunately, on STEREO, the S/WAVES design does not let us use this high accuracy technique because the antennas have a large surface area and the resulting shot noise spectrum in the solar wind dominates the power at lower frequencies. We can use, instead, the electron shot noise to infer the plasma density. For this, we use well calibrated Wind particle data to deduce the base capacitance of the S/WAVES instrument in a special configuration when the STEREO-B spacecraft was just downstream of Wind. The electron plasma density deduced is then compared to the S/PLASTIC ion density and its accuracy is estimated of up to 10
Noise adaptive wavelet thresholding for speckle noise removal in optical coherence tomography.
Zaki, Farzana; Wang, Yahui; Su, Hao; Yuan, Xin; Liu, Xuan
2017-05-01
Optical coherence tomography (OCT) is based on coherence detection of interferometric signals and hence inevitably suffers from speckle noise. To remove speckle noise in OCT images, wavelet domain thresholding has demonstrated significant advantages in suppressing noise magnitude while preserving image sharpness. However, speckle noise in OCT images has different characteristics in different spatial scales, which has not been considered in previous applications of wavelet domain thresholding. In this study, we demonstrate a noise adaptive wavelet thresholding (NAWT) algorithm that exploits the difference of noise characteristics in different wavelet sub-bands. The algorithm is simple, fast, effective and is closely related to the physical origin of speckle noise in OCT image. Our results demonstrate that NAWT outperforms conventional wavelet thresholding.
NASA Astrophysics Data System (ADS)
Liu, Yahui; Fan, Xiaoqian; Lv, Chen; Wu, Jian; Li, Liang; Ding, Dawei
2018-02-01
Information fusion method of INS/GPS navigation system based on filtering technology is a research focus at present. In order to improve the precision of navigation information, a navigation technology based on Adaptive Kalman Filter with attenuation factor is proposed to restrain noise in this paper. The algorithm continuously updates the measurement noise variance and processes noise variance of the system by collecting the estimated and measured values, and this method can suppress white noise. Because a measured value closer to the current time would more accurately reflect the characteristics of the noise, an attenuation factor is introduced to increase the weight of the current value, in order to deal with the noise variance caused by environment disturbance. To validate the effectiveness of the proposed algorithm, a series of road tests are carried out in urban environment. The GPS and IMU data of the experiments were collected and processed by dSPACE and MATLAB/Simulink. Based on the test results, the accuracy of the proposed algorithm is 20% higher than that of a traditional Adaptive Kalman Filter. It also shows that the precision of the integrated navigation can be improved due to the reduction of the influence of environment noise.
Survey of techniques for reduction of wind turbine blade trailing edge noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barone, Matthew Franklin
2011-08-01
Aerodynamic noise from wind turbine rotors leads to constraints in both rotor design and turbine siting. The primary source of aerodynamic noise on wind turbine rotors is the interaction of turbulent boundary layers on the blades with the blade trailing edges. This report surveys concepts that have been proposed for trailing edge noise reduction, with emphasis on concepts that have been tested at either sub-scale or full-scale. These concepts include trailing edge serrations, low-noise airfoil designs, trailing edge brushes, and porous trailing edges. The demonstrated noise reductions of these concepts are cited, along with their impacts on aerodynamic performance. Anmore » assessment is made of future research opportunities in trailing edge noise reduction for wind turbine rotors.« less
On-road and wind-tunnel measurement of motorcycle helmet noise.
Kennedy, J; Carley, M; Walker, I; Holt, N
2013-09-01
The noise source mechanisms involved in motorcycling include various aerodynamic sources and engine noise. The problem of noise source identification requires extensive data acquisition of a type and level that have not previously been applied. Data acquisition on track and on road are problematic due to rider safety constraints and the portability of appropriate instrumentation. One way to address this problem is the use of data from wind tunnel tests. The validity of these measurements for noise source identification must first be demonstrated. In order to achieve this extensive wind tunnel tests have been conducted and compared with the results from on-track measurements. Sound pressure levels as a function of speed were compared between on track and wind tunnel tests and were found to be comparable. Spectral conditioning techniques were applied to separate engine and wind tunnel noise from aerodynamic noise and showed that the aerodynamic components were equivalent in both cases. The spectral conditioning of on-track data showed that the contribution of engine noise to the overall noise is a function of speed and is more significant than had previously been thought. These procedures form a basis for accurate experimental measurements of motorcycle noise.
Wind turbines acoustic measurements
NASA Astrophysics Data System (ADS)
Trematerra, Amelia; Iannace, Gino
2017-07-01
The importance of wind turbines has increased over the last few years throughout the European Community. The European energy policy guidelines state that for the year 2020 20% of all energy must be produced by alternative energy sources. Wind turbines are an important type of energy production without petrol. A wind speed in a range from 2.5 m/s to 25.0 m/s is needed. One of the obstacles to the widespread diffusion of wind turbine is noise generation. This work presents some noise measurements of wind turbines in the South of Italy, and discusses the noise problems for the people living near wind farms.
NASA Technical Reports Server (NTRS)
Greenwood, Eric, II; Schmitz, Fredric H.
2010-01-01
A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.
Single image super resolution algorithm based on edge interpolation in NSCT domain
NASA Astrophysics Data System (ADS)
Zhang, Mengqun; Zhang, Wei; He, Xinyu
2017-11-01
In order to preserve the texture and edge information and to improve the space resolution of single frame, a superresolution algorithm based on Contourlet (NSCT) is proposed. The original low resolution image is transformed by NSCT, and the directional sub-band coefficients of the transform domain are obtained. According to the scale factor, the high frequency sub-band coefficients are amplified by the interpolation method based on the edge direction to the desired resolution. For high frequency sub-band coefficients with noise and weak targets, Bayesian shrinkage is used to calculate the threshold value. The coefficients below the threshold are determined by the correlation among the sub-bands of the same scale to determine whether it is noise and de-noising. The anisotropic diffusion filter is used to effectively enhance the weak target in the low contrast region of the target and background. Finally, the high-frequency sub-band is amplified by the bilinear interpolation method to the desired resolution, and then combined with the high-frequency subband coefficients after de-noising and small target enhancement, the NSCT inverse transform is used to obtain the desired resolution image. In order to verify the effectiveness of the proposed algorithm, the proposed algorithm and several common image reconstruction methods are used to test the synthetic image, motion blurred image and hyperspectral image, the experimental results show that compared with the traditional single resolution algorithm, the proposed algorithm can obtain smooth edges and good texture features, and the reconstructed image structure is well preserved and the noise is suppressed to some extent.
A procedure for predicting internal and external noise fields of blowdown wind tunnels
NASA Technical Reports Server (NTRS)
Hosier, R. N.; Mayes, W. H.
1972-01-01
The noise generated during the operation of large blowdown wind tunnels is considered. Noise calculation procedures are given to predict the test-section overall and spectrum level noise caused by both the tunnel burner and turbulent boundary layer. External tunnel noise levels due to the tunnel burner and circular jet exhaust flow are also calculated along with their respective cut-off frequency and spectrum peaks. The predicted values are compared with measured data, and the ability of the prediction procedure to estimate blowdown-wind-tunnel noise levels is shown.
Choi, Hyun Ho; Lee, Ju Hwan; Kim, Sung Min; Park, Sung Yun
2015-01-01
Here, the speckle noise in ultrasonic images is removed using an image fusion-based denoising method. To optimize the denoising performance, each discrete wavelet transform (DWT) and filtering technique was analyzed and compared. In addition, the performances were compared in order to derive the optimal input conditions. To evaluate the speckle noise removal performance, an image fusion algorithm was applied to the ultrasound images, and comparatively analyzed with the original image without the algorithm. As a result, applying DWT and filtering techniques caused information loss and noise characteristics, and did not represent the most significant noise reduction performance. Conversely, an image fusion method applying SRAD-original conditions preserved the key information in the original image, and the speckle noise was removed. Based on such characteristics, the input conditions of SRAD-original had the best denoising performance with the ultrasound images. From this study, the best denoising technique proposed based on the results was confirmed to have a high potential for clinical application.
Evaluation of Laser Based Alignment Algorithms Under Additive Random and Diffraction Noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClay, W A; Awwal, A; Wilhelmsen, K
2004-09-30
The purpose of the automatic alignment algorithm at the National Ignition Facility (NIF) is to determine the position of a laser beam based on the position of beam features from video images. The position information obtained is used to command motors and attenuators to adjust the beam lines to the desired position, which facilitates the alignment of all 192 beams. One of the goals of the algorithm development effort is to ascertain the performance, reliability, and uncertainty of the position measurement. This paper describes a method of evaluating the performance of algorithms using Monte Carlo simulation. In particular we showmore » the application of this technique to the LM1{_}LM3 algorithm, which determines the position of a series of two beam light sources. The performance of the algorithm was evaluated for an ensemble of over 900 simulated images with varying image intensities and noise counts, as well as varying diffraction noise amplitude and frequency. The performance of the algorithm on the image data set had a tolerance well beneath the 0.5-pixel system requirement.« less
Wind power prediction based on genetic neural network
NASA Astrophysics Data System (ADS)
Zhang, Suhan
2017-04-01
The scale of grid connected wind farms keeps increasing. To ensure the stability of power system operation, make a reasonable scheduling scheme and improve the competitiveness of wind farm in the electricity generation market, it's important to accurately forecast the short-term wind power. To reduce the influence of the nonlinear relationship between the disturbance factor and the wind power, the improved prediction model based on genetic algorithm and neural network method is established. To overcome the shortcomings of long training time of BP neural network and easy to fall into local minimum and improve the accuracy of the neural network, genetic algorithm is adopted to optimize the parameters and topology of neural network. The historical data is used as input to predict short-term wind power. The effectiveness and feasibility of the method is verified by the actual data of a certain wind farm as an example.
Airborne Wind Profiling Algorithm for Doppler Wind LIDAR
NASA Technical Reports Server (NTRS)
Kavaya, Michael J. (Inventor); Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor)
2015-01-01
Systems, methods, and devices of the present invention enable airborne Doppler Wind LIDAR system measurements and INS/GPS measurements to be combined to estimate wind parameters and compensate for instrument misalignment. In a further embodiment, the wind speed and wind direction may be computed based on two orthogonal line-of-sight LIDAR returns.
NASA Astrophysics Data System (ADS)
Befort, Daniel J.; Kruschke, Tim; Leckebusch, Gregor C.
2017-04-01
Tropical Cyclones over East Asia have huge socio-economic impacts due to their strong wind fields and large rainfall amounts. Especially, the most severe events are associated with huge economic losses, e.g. Typhoon Herb in 1996 is related to overall losses exceeding 5 billion US (Munich Re, 2016). In this study, an objective tracking algorithm is applied to JRA55 reanalysis data from 1979 to 2014 over the Western North Pacific. For this purpose, a purely wind based algorithm, formerly used to identify extra-tropical wind storms, has been further developed. The algorithm is based on the exceedance of the local 98th percentile to define strong wind fields in gridded climate data. To be detected as a tropical cyclone candidate, the following criteria must be fulfilled: 1) the wind storm must exist for at least eight 6-hourly time steps and 2) the wind field must exceed a minimum size of 130.000km2 for each time step. The usage of wind information is motivated to focus on damage related events, however, a pre-selection based on the affected region is necessary to remove events of extra-tropical nature. Using IBTrACS Best Tracks for validation, it is found that about 62% of all detected tropical cyclone events in JRA55 reanalysis can be matched to an observed best track. As expected the relative amount of matched tracks increases with the wind intensity of the event, with a hit rate of about 98% for Violent Typhoons, above 90% for Very Strong Typhoons and about 75% for Typhoons. Overall these results are encouraging as the parameters used to detect tropical cyclones in JRA55, e.g. minimum area, are also suitable to detect TCs in most CMIP5 simulations and will thus allow estimates of potential future changes.
Wave equation datuming applied to S-wave reflection seismic data
NASA Astrophysics Data System (ADS)
Tinivella, U.; Giustiniani, M.; Nicolich, R.
2018-05-01
S-wave high-resolution reflection seismic data was processed using Wave Equation Datuming technique in order to improve signal/noise ratio, attenuating coherent noise, and seismic resolution and to solve static corrections problems. The application of this algorithm allowed obtaining a good image of the shallow subsurface geological features. Wave Equation Datuming moves shots and receivers from a surface to another datum (the datum plane), removing time shifts originated by elevation variation and/or velocity changes in the shallow subsoil. This algorithm has been developed and currently applied to P wave, but it reveals the capacity to highlight S-waves images when used to resolve thin layers in high-resolution prospecting. A good S-wave image facilitates correlation with well stratigraphies, optimizing cost/benefit ratio of any drilling. The application of Wave Equation Datuming requires a reliable velocity field, so refraction tomography was adopted. The new seismic image highlights the details of the subsoil reflectors and allows an easier integration with borehole information and geological surveys than the seismic section obtained by conventional CMP reflection processing. In conclusion, the analysis of S-wave let to characterize the shallow subsurface recognizing levels with limited thickness once we have clearly attenuated ground roll, wind and environmental noise.
Review and analysis of the DNW/Model 360 rotor acoustic data base
NASA Technical Reports Server (NTRS)
Zinner, R. A.; Boxwell, D. A.; Spencer, R. H.
1989-01-01
A comprehensive model rotor aeroacoustic data base was collected in a large anechoic wind tunnel in 1986. Twenty-six microphones were positioned around the azimuth to collect acoustic data for approximately 150 different test conditions. A dynamically scaled, blade-pressure-instrumented model of the forward rotor of the BH360 helicopter simultaneously provided blade pressures for correlation with the acoustic data. High-speed impulsive noise, blade-vortex interaction noise, low-frequency noise, and broadband noise were all captured in this extensive data base. Trends are presentes for each noise source, with important parametric variations. The purpose of this paper is to introduce this data base and illustrate its potential for predictive code validation.
Cui, Lingli; Wu, Na; Wang, Wenjing; Kang, Chenhui
2014-01-01
This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP) algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP) is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and reconstruction algorithm is feasible and effective. PMID:25207870
Cui, Lingli; Wu, Na; Wang, Wenjing; Kang, Chenhui
2014-09-09
This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP) algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP) is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and reconstruction algorithm is feasible and effective.
2017-09-14
Application to Wind Turbines . Aviation 2015. Dallas. TX. 18. Glegg, S., A. Buono, J. Grant, F. Lachowski, W. Devenport and N. Alexander (2015). Sound...complicate the interaction. The over-arching goal of this work is to tackle the turbulence ingestion noise (TIN) problem in a carefully controlled... Wind tunnel tests were performed to study the sound generated by the ingestion of the wake, as well as the unsteady upwash correlations on the blades
Edge enhancement and noise suppression for infrared image based on feature analysis
NASA Astrophysics Data System (ADS)
Jiang, Meng
2018-06-01
Infrared images are often suffering from background noise, blurred edges, few details and low signal-to-noise ratios. To improve infrared image quality, it is essential to suppress noise and enhance edges simultaneously. To realize it in this paper, we propose a novel algorithm based on feature analysis in shearlet domain. Firstly, as one of multi-scale geometric analysis (MGA), we introduce the theory and superiority of shearlet transform. Secondly, after analyzing the defects of traditional thresholding technique to suppress noise, we propose a novel feature extraction distinguishing image structures from noise well and use it to improve the traditional thresholding technique. Thirdly, with computing the correlations between neighboring shearlet coefficients, the feature attribute maps identifying the weak detail and strong edges are completed to improve the generalized unsharped masking (GUM). At last, experiment results with infrared images captured in different scenes demonstrate that the proposed algorithm suppresses noise efficiently and enhances image edges adaptively.
Objective performance assessment of five computed tomography iterative reconstruction algorithms.
Omotayo, Azeez; Elbakri, Idris
2016-11-22
Iterative algorithms are gaining clinical acceptance in CT. We performed objective phantom-based image quality evaluation of five commercial iterative reconstruction algorithms available on four different multi-detector CT (MDCT) scanners at different dose levels as well as the conventional filtered back-projection (FBP) reconstruction. Using the Catphan500 phantom, we evaluated image noise, contrast-to-noise ratio (CNR), modulation transfer function (MTF) and noise-power spectrum (NPS). The algorithms were evaluated over a CTDIvol range of 0.75-18.7 mGy on four major MDCT scanners: GE DiscoveryCT750HD (algorithms: ASIR™ and VEO™); Siemens Somatom Definition AS+ (algorithm: SAFIRE™); Toshiba Aquilion64 (algorithm: AIDR3D™); and Philips Ingenuity iCT256 (algorithm: iDose4™). Images were reconstructed using FBP and the respective iterative algorithms on the four scanners. Use of iterative algorithms decreased image noise and increased CNR, relative to FBP. In the dose range of 1.3-1.5 mGy, noise reduction using iterative algorithms was in the range of 11%-51% on GE DiscoveryCT750HD, 10%-52% on Siemens Somatom Definition AS+, 49%-62% on Toshiba Aquilion64, and 13%-44% on Philips Ingenuity iCT256. The corresponding CNR increase was in the range 11%-105% on GE, 11%-106% on Siemens, 85%-145% on Toshiba and 13%-77% on Philips respectively. Most algorithms did not affect the MTF, except for VEO™ which produced an increase in the limiting resolution of up to 30%. A shift in the peak of the NPS curve towards lower frequencies and a decrease in NPS amplitude were obtained with all iterative algorithms. VEO™ required long reconstruction times, while all other algorithms produced reconstructions in real time. Compared to FBP, iterative algorithms reduced image noise and increased CNR. The iterative algorithms available on different scanners achieved different levels of noise reduction and CNR increase while spatial resolution improvements were obtained only with VEO™. This study is useful in that it provides performance assessment of the iterative algorithms available from several mainstream CT manufacturers.
Tang, Yunqing; Dai, Luru; Zhang, Xiaoming; Li, Junbai; Hendriks, Johnny; Fan, Xiaoming; Gruteser, Nadine; Meisenberg, Annika; Baumann, Arnd; Katranidis, Alexandros; Gensch, Thomas
2015-01-01
Single molecule localization based super-resolution fluorescence microscopy offers significantly higher spatial resolution than predicted by Abbe’s resolution limit for far field optical microscopy. Such super-resolution images are reconstructed from wide-field or total internal reflection single molecule fluorescence recordings. Discrimination between emission of single fluorescent molecules and background noise fluctuations remains a great challenge in current data analysis. Here we present a real-time, and robust single molecule identification and localization algorithm, SNSMIL (Shot Noise based Single Molecule Identification and Localization). This algorithm is based on the intrinsic nature of noise, i.e., its Poisson or shot noise characteristics and a new identification criterion, QSNSMIL, is defined. SNSMIL improves the identification accuracy of single fluorescent molecules in experimental or simulated datasets with high and inhomogeneous background. The implementation of SNSMIL relies on a graphics processing unit (GPU), making real-time analysis feasible as shown for real experimental and simulated datasets. PMID:26098742
Before-after field study of effects of wind turbine noise on polysomnographic sleep parameters.
Jalali, Leila; Bigelow, Philip; Nezhad-Ahmadi, Mohammad-Reza; Gohari, Mahmood; Williams, Diane; McColl, Steve
2016-01-01
Wind is considered one of the most advantageous alternatives to fossil energy because of its low operating cost and extensive availability. However, alleged health-related effects of exposure to wind turbine (WT) noise have attracted much public attention and various symptoms, such as sleep disturbance, have been reported by residents living close to wind developments. Prospective cohort study with synchronous measurement of noise and sleep physiologic signals was conducted to explore the possibility of sleep disturbance in people hosting new industrial WTs in Ontario, Canada, using a pre and post-exposure design. Objective and subjective sleep data were collected through polysomnography (PSG), the gold standard diagnostic test, and sleep diary. Sixteen participants were studied before and after WT installation during two consecutive nights in their own bedrooms. Both audible and infrasound noises were also concurrently measured inside the bedroom of each participant. Different noise exposure parameters were calculated (LAeq, LZeq) and analyzed in relation to whole-night sleep parameters. Results obtained from PSG show that sleep parameters were not significantly changed after exposure. However, reported sleep qualities were significantly (P = 0.008) worsened after exposure. Average noise levels during the exposure period were low to moderate and the mean of inside noise levels did not significantly change after exposure. The result of this study based on advanced sleep recording methodology together with extensive noise measurements in an ecologically valid setting cautiously suggests that there are no major changes in the sleep of participants who host new industrial WTs in their community. Further studies with a larger sample size and including comprehensive single-event analyses are warranted.
Before–After Field Study of Effects of Wind Turbine Noise on Polysomnographic Sleep Parameters
Jalali, Leila; Bigelow, Philip; Nezhad-Ahmadi, Mohammad-Reza; Gohari, Mahmood; Williams, Diane; McColl, Steve
2016-01-01
Wind is considered one of the most advantageous alternatives to fossil energy because of its low operating cost and extensive availability. However, alleged health-related effects of exposure to wind turbine (WT) noise have attracted much public attention and various symptoms, such as sleep disturbance, have been reported by residents living close to wind developments. Prospective cohort study with synchronous measurement of noise and sleep physiologic signals was conducted to explore the possibility of sleep disturbance in people hosting new industrial WTs in Ontario, Canada, using a pre and post-exposure design. Objective and subjective sleep data were collected through polysomnography (PSG), the gold standard diagnostic test, and sleep diary. Sixteen participants were studied before and after WT installation during two consecutive nights in their own bedrooms. Both audible and infrasound noises were also concurrently measured inside the bedroom of each participant. Different noise exposure parameters were calculated (LAeq, LZeq) and analyzed in relation to whole-night sleep parameters. Results obtained from PSG show that sleep parameters were not significantly changed after exposure. However, reported sleep qualities were significantly (P=0.008) worsened after exposure. Average noise levels during the exposure period were low to moderate and the mean of inside noise levels did not significantly change after exposure. The result of this study based on advanced sleep recording methodology together with extensive noise measurements in an ecologically valid setting cautiously suggests that there are no major changes in the sleep of participants who host new industrial WTs in their community. Further studies with a larger sample size and including comprehensive single-event analyses are warranted. PMID:27569407
A new edge detection algorithm based on Canny idea
NASA Astrophysics Data System (ADS)
Feng, Yingke; Zhang, Jinmin; Wang, Siming
2017-10-01
The traditional Canny algorithm has poor self-adaptability threshold, and it is more sensitive to noise. In order to overcome these drawbacks, this paper proposed a new edge detection method based on Canny algorithm. Firstly, the media filtering and filtering based on the method of Euclidean distance are adopted to process it; secondly using the Frei-chen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. Experiment results show that this new method can effectively suppress noise disturbance, keep the edge information, and also improve the edge detection accuracy.
A Novel Fast and Secure Approach for Voice Encryption Based on DNA Computing
NASA Astrophysics Data System (ADS)
Kakaei Kate, Hamidreza; Razmara, Jafar; Isazadeh, Ayaz
2018-06-01
Today, in the world of information communication, voice information has a particular importance. One way to preserve voice data from attacks is voice encryption. The encryption algorithms use various techniques such as hashing, chaotic, mixing, and many others. In this paper, an algorithm is proposed for voice encryption based on three different schemes to increase flexibility and strength of the algorithm. The proposed algorithm uses an innovative encoding scheme, the DNA encryption technique and a permutation function to provide a secure and fast solution for voice encryption. The algorithm is evaluated based on various measures including signal to noise ratio, peak signal to noise ratio, correlation coefficient, signal similarity and signal frequency content. The results demonstrate applicability of the proposed method in secure and fast encryption of voice files
Kinda, G Bazile; Simard, Yvan; Gervaise, Cédric; Mars, Jérome I; Fortier, Louis
2013-07-01
This paper analyzes an 8-month time series (November 2005 to June 2006) of underwater noise recorded at the mouth of the Amundsen Gulf in the marginal ice zone of the western Canadian Arctic when the area was >90% ice covered. The time-series of the ambient noise component was computed using an algorithm that filtered out transient acoustic events from 7-min hourly recordings of total ocean noise over a [0-4.1] kHz frequency band. Under-ice ambient noise did not respond to thermal changes, but showed consistent correlations with large-scale regional ice drift, wind speed, and measured currents in upper water column. The correlation of ambient noise with ice drift peaked for locations at ranges of ~300 km off the mouth of the Amundsen Gulf. These locations are within the multi-year ice plume that extends westerly along the coast in the Eastern Beaufort Sea due to the large Beaufort Gyre circulation. These results reveal that ambient noise in Eastern Beaufort Sea in winter is mainly controlled by the same meteorological and oceanographic forcing processes that drive the ice drift and the large-scale circulation in this part of the Arctic Ocean.
The Effects of Crosswind Flight on Rotor Harmonic Noise Radiation
NASA Technical Reports Server (NTRS)
Greenwood, Eric; Sim, Ben W.
2013-01-01
In order to develop recommendations for procedures for helicopter source noise characterization, the effects of crosswinds on main rotor harmonic noise radiation are assessed using a model of the Bell 430 helicopter. Crosswinds are found to have a significant effect on Blade-Vortex Interaction (BVI) noise radiation when the helicopter is trimmed with the fuselage oriented along the inertial flight path. However, the magnitude of BVI noise remains unchanged when the pilot orients the fuselage along the aerodynamic velocity vector, crabbing for zero aerodynamic sideslip. The effects of wind gradients on BVI noise are also investigated and found to be smaller in the crosswind direction than in the headwind direction. The effects of crosswinds on lower harmonic noise sources at higher flight speeds are also assessed. In all cases, the directivity of radiated noise is somewhat changed by the crosswind. The model predictions agree well with flight test data for the Bell 430 helicopter captured under various wind conditions. The results of this investigation would suggest that flight paths for future acoustic flight testing are best aligned across the prevailing wind direction to minimize the effects of winds on noise measurements when wind cannot otherwise be avoided.
Hu, Yi; Loizou, Philipos C
2010-06-01
Attempts to develop noise-suppression algorithms that can significantly improve speech intelligibility in noise by cochlear implant (CI) users have met with limited success. This is partly because algorithms were sought that would work equally well in all listening situations. Accomplishing this has been quite challenging given the variability in the temporal/spectral characteristics of real-world maskers. A different approach is taken in the present study focused on the development of environment-specific noise suppression algorithms. The proposed algorithm selects a subset of the envelope amplitudes for stimulation based on the signal-to-noise ratio (SNR) of each channel. Binary classifiers, trained using data collected from a particular noisy environment, are first used to classify the mixture envelopes of each channel as either target-dominated (SNR>or=0 dB) or masker-dominated (SNR<0 dB). Only target-dominated channels are subsequently selected for stimulation. Results with CI listeners indicated substantial improvements (by nearly 44 percentage points at 5 dB SNR) in intelligibility with the proposed algorithm when tested with sentences embedded in three real-world maskers. The present study demonstrated that the environment-specific approach to noise reduction has the potential to restore speech intelligibility in noise to a level near to that attained in quiet.
Code of Federal Regulations, 2012 CFR
2012-01-01
... aircraft noise when the wind speed is in excess of 5 knots (9 km/hr). Sec. G36.107Noise Measurement... OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Pt. 36, App..., inclusively; (4) Wind speed may not exceed 10 knots (19 km/h) and cross wind may not exceed 5 knots (9 km/h...
Code of Federal Regulations, 2013 CFR
2013-01-01
... aircraft noise when the wind speed is in excess of 5 knots (9 km/hr). Sec. G36.107Noise Measurement... OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Pt. 36, App..., inclusively; (4) Wind speed may not exceed 10 knots (19 km/h) and cross wind may not exceed 5 knots (9 km/h...
Wu, Yanwei; Guo, Pan; Chen, Siying; Chen, He; Zhang, Yinchao
2017-04-01
Auto-adaptive background subtraction (AABS) is proposed as a denoising method for data processing of the coherent Doppler lidar (CDL). The method is proposed specifically for a low-signal-to-noise-ratio regime, in which the drifting power spectral density of CDL data occurs. Unlike the periodogram maximum (PM) and adaptive iteratively reweighted penalized least squares (airPLS), the proposed method presents reliable peaks and is thus advantageous in identifying peak locations. According to the analysis results of simulated and actually measured data, the proposed method outperforms the airPLS method and the PM algorithm in the furthest detectable range. The proposed method improves the detection range approximately up to 16.7% and 40% when compared to the airPLS method and the PM method, respectively. It also has smaller mean wind velocity and standard error values than the airPLS and PM methods. The AABS approach improves the quality of Doppler shift estimates and can be applied to obtain the whole wind profiling by the CDL.
An Error-Reduction Algorithm to Improve Lidar Turbulence Estimates for Wind Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew
2016-08-01
Currently, cup anemometers on meteorological (met) towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability. However, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install met towers at potential sites. As a result, remote sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. While lidars can accurately estimate mean wind speeds and wind directions, there is still a largemore » amount of uncertainty surrounding the measurement of turbulence with lidars. This uncertainty in lidar turbulence measurements is one of the key roadblocks that must be overcome in order to replace met towers with lidars for wind energy applications. In this talk, a model for reducing errors in lidar turbulence estimates is presented. Techniques for reducing errors from instrument noise, volume averaging, and variance contamination are combined in the model to produce a corrected value of the turbulence intensity (TI), a commonly used parameter in wind energy. In the next step of the model, machine learning techniques are used to further decrease the error in lidar TI estimates.« less
Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting
Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M
2014-01-01
Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Key Points Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations PMID:26213518
Pedersen, Eja
2007-01-01
Objectives To evaluate the prevalence of perception and annoyance due to wind turbine noise among people living near the turbines, and to study relations between noise and perception/annoyance, with focus on differences between living environments. Methods A cross‐sectional study was carried out in seven areas in Sweden across dissimilar terrain and different degrees of urbanisation. A postal questionnaire regarding living conditions including response to wind turbine noise was completed by 754 subjects. Outdoor A‐weighted sound pressure levels (SPLs) were calculated for each respondent. Perception and annoyance due to wind turbine noise in relation to SPLs was analysed with regard to dissimilarities between the areas. Results The odds of perceiving wind turbine noise increased with increasing SPL (OR 1.3; 95% CI 1.25 to 1.40). The odds of being annoyed by wind turbine noise also increased with increasing SPLs (OR 1.1; 95% CI 1.01 to 1.25). Perception and annoyance were associated with terrain and urbanisation: (1) a rural area increased the risk of perception and annoyance in comparison with a suburban area; and (2) in a rural setting, complex ground (hilly or rocky terrain) increased the risk compared with flat ground. Annoyance was associated with both objective and subjective factors of wind turbine visibility, and was further associated with lowered sleep quality and negative emotions. Conclusion There is a need to take the unique environment into account when planning a new wind farm so that adverse health effects are avoided. The influence of area‐related factors should also be considered in future community noise research. PMID:17332136
Pedersen, Eja; Persson Waye, Kerstin
2007-07-01
To evaluate the prevalence of perception and annoyance due to wind turbine noise among people living near the turbines, and to study relations between noise and perception/annoyance, with focus on differences between living environments. A cross-sectional study was carried out in seven areas in Sweden across dissimilar terrain and different degrees of urbanisation. A postal questionnaire regarding living conditions including response to wind turbine noise was completed by 754 subjects. Outdoor A-weighted sound pressure levels (SPLs) were calculated for each respondent. Perception and annoyance due to wind turbine noise in relation to SPLs was analysed with regard to dissimilarities between the areas. The odds of perceiving wind turbine noise increased with increasing SPL (OR 1.3; 95% CI 1.25 to 1.40). The odds of being annoyed by wind turbine noise also increased with increasing SPLs (OR 1.1; 95% CI 1.01 to 1.25). Perception and annoyance were associated with terrain and urbanisation: (1) a rural area increased the risk of perception and annoyance in comparison with a suburban area; and (2) in a rural setting, complex ground (hilly or rocky terrain) increased the risk compared with flat ground. Annoyance was associated with both objective and subjective factors of wind turbine visibility, and was further associated with lowered sleep quality and negative emotions. There is a need to take the unique environment into account when planning a new wind farm so that adverse health effects are avoided. The influence of area-related factors should also be considered in future community noise research.
Chakrabartty, Shantanu; Shaga, Ravi K; Aono, Kenji
2013-04-01
Analog circuits that are calibrated using digital-to-analog converters (DACs) use a digital signal processor-based algorithm for real-time adaptation and programming of system parameters. In this paper, we first show that this conventional framework for adaptation yields suboptimal calibration properties because of artifacts introduced by quantization noise. We then propose a novel online stochastic optimization algorithm called noise-shaping or ΣΔ gradient descent, which can shape the quantization noise out of the frequency regions spanning the parameter adaptation trajectories. As a result, the proposed algorithms demonstrate superior parameter search properties compared to floating-point gradient methods and better convergence properties than conventional quantized gradient-methods. In the second part of this paper, we apply the ΣΔ gradient descent algorithm to two examples of real-time digital calibration: 1) balancing and tracking of bias currents, and 2) frequency calibration of a band-pass Gm-C biquad filter biased in weak inversion. For each of these examples, the circuits have been prototyped in a 0.5-μm complementary metal-oxide-semiconductor process, and we demonstrate that the proposed algorithm is able to find the optimal solution even in the presence of spurious local minima, which are introduced by the nonlinear and non-monotonic response of calibration DACs.
Noisy image magnification with total variation regularization and order-changed dictionary learning
NASA Astrophysics Data System (ADS)
Xu, Jian; Chang, Zhiguo; Fan, Jiulun; Zhao, Xiaoqiang; Wu, Xiaomin; Wang, Yanzi
2015-12-01
Noisy low resolution (LR) images are always obtained in real applications, but many existing image magnification algorithms can not get good result from a noisy LR image. We propose a two-step image magnification algorithm to solve this problem. The proposed algorithm takes the advantages of both regularization-based method and learning-based method. The first step is based on total variation (TV) regularization and the second step is based on sparse representation. In the first step, we add a constraint on the TV regularization model to magnify the LR image and at the same time to suppress the noise in it. In the second step, we propose an order-changed dictionary training algorithm to train the dictionaries which is dominated by texture details. Experimental results demonstrate that the proposed algorithm performs better than many other algorithms when the noise is not serious. The proposed algorithm can also provide better visual quality on natural LR images.
Robust optical flow using adaptive Lorentzian filter for image reconstruction under noisy condition
NASA Astrophysics Data System (ADS)
Kesrarat, Darun; Patanavijit, Vorapoj
2017-02-01
In optical flow for motion allocation, the efficient result in Motion Vector (MV) is an important issue. Several noisy conditions may cause the unreliable result in optical flow algorithms. We discover that many classical optical flows algorithms perform better result under noisy condition when combined with modern optimized model. This paper introduces effective robust models of optical flow by using Robust high reliability spatial based optical flow algorithms using the adaptive Lorentzian norm influence function in computation on simple spatial temporal optical flows algorithm. Experiment on our proposed models confirm better noise tolerance in optical flow's MV under noisy condition when they are applied over simple spatial temporal optical flow algorithms as a filtering model in simple frame-to-frame correlation technique. We illustrate the performance of our models by performing an experiment on several typical sequences with differences in movement speed of foreground and background where the experiment sequences are contaminated by the additive white Gaussian noise (AWGN) at different noise decibels (dB). This paper shows very high effectiveness of noise tolerance models that they are indicated by peak signal to noise ratio (PSNR).
Sparsity-constrained PET image reconstruction with learned dictionaries
NASA Astrophysics Data System (ADS)
Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie
2016-09-01
PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.
NASA Astrophysics Data System (ADS)
Tegtmeier Pedersen, A.; Abari, C. F.; Mann, J.; Mikkelsen, T.
2014-06-01
A new direction sensing continuous-wave Doppler lidar based on an image-reject homodyne receiver has recently been demonstrated at DTU Wind Energy, Technical University of Denmark. In this contribution we analyse the signal-to-noise ratio resulting from two different data processing methods both leading to the direction sensing capability. It is found that using the auto spectrum of the complex signal to determine the wind speed leads to a signal-to-noise ratio equivalent to that of a standard self-heterodyne receiver. Using the imaginary part of the cross spectrum to estimate the Doppler shift has the benefit of a zero-mean background spectrum, but comes at the expense of a decrease in the signal-to noise ratio by a factor of √2.
Research on Collection System Optimal Design of Wind Farm with Obstacles
NASA Astrophysics Data System (ADS)
Huang, W.; Yan, B. Y.; Tan, R. S.; Liu, L. F.
2017-05-01
To the collection system optimal design of offshore wind farm, the factors considered are not only the reasonable configuration of the cable and switch, but also the influence of the obstacles on the topology design of the offshore wind farm. This paper presents a concrete topology optimization algorithm with obstacles. The minimal area rectangle encasing box of the obstacle is obtained by using the method of minimal area encasing box. Then the optimization algorithm combining the advantages of Dijkstra algorithm and Prim algorithm is used to gain the scheme of avoidance obstacle path planning. Finally a fuzzy comprehensive evaluation model based on the analytic hierarchy process is constructed to compare the performance of the different topologies. Case studies demonstrate the feasibility of the proposed algorithm and model.
GRC-11-02-17-WindTunnel-9x15-001
2017-11-02
The Aerosciences Evaluation and Test Capabilities (AETC) Portfolio implemented the Capability Challenge to “Reduce Background Noise Levels for Engine Efficiency Measurements at the NASA Glenn 9x15 Low Speed Wind Tunnel”. The 9x15 Low Speed Wind Tunnel Acoustic Improvements animation documents the acoustic modifications being made to the 9x15 leg of the wind tunnel to reduce background noise levels. A brief history of the 9x15, research testing performed in the wind tunnel, the need to reduce background noise, and the five state of the art acoustic design modifications are documented in the animation. The expected noise reduction is presented audibly and the resulting benefit to NASA is also defined.
Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines.
Ma, Ping; Lien, Fue-Sang; Yee, Eugene
2017-01-01
This paper develops a computational acoustic beamforming (CAB) methodology for identification of sources of small wind turbine noise. This methodology is validated using the case of the NACA 0012 airfoil trailing edge noise. For this validation case, the predicted acoustic maps were in excellent conformance with the results of the measurements obtained from the acoustic beamforming experiment. Following this validation study, the CAB methodology was applied to the identification of noise sources generated by a commercial small wind turbine. The simulated acoustic maps revealed that the blade tower interaction and the wind turbine nacelle were the two primary mechanisms for sound generation for this small wind turbine at frequencies between 100 and 630 Hz.
Effect of blade flutter and electrical loading on small wind turbine noise
USDA-ARS?s Scientific Manuscript database
The effect of blade flutter and electrical loading on the noise level of two different size wind turbines was investigated at the Conservation and Production Research Laboratory (CPRL) near Bushland, TX. Noise and performance data were collected on two blade designs tested on a wind turbine rated a...
An error reduction algorithm to improve lidar turbulence estimates for wind energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew
Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidarsmore » in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine-learning methods in L-TERRA was highly dependent on the input variables and training dataset used, suggesting that machine learning may not be the best technique for reducing lidar turbulence intensity (TI) error. Future work will include the use of a lidar simulator to better understand how different factors affect lidar turbulence error and to determine how these errors can be reduced using information from a stand-alone lidar.« less
An error reduction algorithm to improve lidar turbulence estimates for wind energy
Newman, Jennifer F.; Clifton, Andrew
2017-02-10
Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidarsmore » in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine-learning methods in L-TERRA was highly dependent on the input variables and training dataset used, suggesting that machine learning may not be the best technique for reducing lidar turbulence intensity (TI) error. Future work will include the use of a lidar simulator to better understand how different factors affect lidar turbulence error and to determine how these errors can be reduced using information from a stand-alone lidar.« less
Ciaccio, Edward J; Micheli-Tzanakou, Evangelia
2007-07-01
Common-mode noise degrades cardiovascular signal quality and diminishes measurement accuracy. Filtering to remove noise components in the frequency domain often distorts the signal. Two adaptive noise canceling (ANC) algorithms were tested to adjust weighted reference signals for optimal subtraction from a primary signal. Update of weight w was based upon the gradient term of the steepest descent equation: [see text], where the error epsilon is the difference between primary and weighted reference signals. nabla was estimated from Deltaepsilon(2) and Deltaw without using a variable Deltaw in the denominator which can cause instability. The Parallel Comparison (PC) algorithm computed Deltaepsilon(2) using fixed finite differences +/- Deltaw in parallel during each discrete time k. The ALOPEX algorithm computed Deltaepsilon(2)x Deltaw from time k to k + 1 to estimate nabla, with a random number added to account for Deltaepsilon(2) . Deltaw--> 0 near the optimal weighting. Using simulated data, both algorithms stably converged to the optimal weighting within 50-2000 discrete sample points k even with a SNR = 1:8 and weights which were initialized far from the optimal. Using a sharply pulsatile cardiac electrogram signal with added noise so that the SNR = 1:5, both algorithms exhibited stable convergence within 100 ms (100 sample points). Fourier spectral analysis revealed minimal distortion when comparing the signal without added noise to the ANC restored signal. ANC algorithms based upon difference calculations can rapidly and stably converge to the optimal weighting in simulated and real cardiovascular data. Signal quality is restored with minimal distortion, increasing the accuracy of biophysical measurement.
[Evoked Potential Blind Extraction Based on Fractional Lower Order Spatial Time-Frequency Matrix].
Long, Junbo; Wang, Haibin; Zha, Daifeng
2015-04-01
The impulsive electroencephalograph (EEG) noises in evoked potential (EP) signals is very strong, usually with a heavy tail and infinite variance characteristics like the acceleration noise impact, hypoxia and etc., as shown in other special tests. The noises can be described by a stable distribution model. In this paper, Wigner-Ville distribution (WVD) and pseudo Wigner-Ville distribution (PWVD) time-frequency distribution based on the fractional lower order moment are presented to be improved. We got fractional lower order WVD (FLO-WVD) and fractional lower order PWVD (FLO-PWVD) time-frequency distribution which could be suitable for a stable distribution process. We also proposed the fractional lower order spatial time-frequency distribution matrix (FLO-STFM) concept. Therefore, combining with time-frequency underdetermined blind source separation (TF-UBSS), we proposed a new fractional lower order spatial time-frequency underdetermined blind source separation (FLO-TF-UBSS) which can work in a stable distribution environment. We used the FLO-TF-UBSS algorithm to extract EPs. Simulations showed that the proposed method could effectively extract EPs in EEG noises, and the separated EPs and EEG signals based on FLO-TF-UBSS were almost the same as the original signal, but blind separation based on TF-UBSS had certain deviation. The correlation coefficient of the FLO-TF-UBSS algorithm was higher than the TF-UBSS algorithm when generalized signal-to-noise ratio (GSNR) changed from 10 dB to 30 dB and a varied from 1. 06 to 1. 94, and was approximately e- qual to 1. Hence, the proposed FLO-TF-UBSS method might be better than the TF-UBSS algorithm based on second order for extracting EP signal under an EEG noise environment.
Evaluation of the NASA Ames no. 1 7 by 10 foot wind tunnel as an acoustic test facility
NASA Technical Reports Server (NTRS)
Wilby, J. F.; Scharton, T. D.
1975-01-01
Measurements were made in the no. 1 7'x10' wind tunnel at NASA Ames Research Center, with the objectives of defining the acoustic characteristics and recommending minimum cost treatments so that the tunnel can be converted into an acoustic research facility. The results indicate that the noise levels in the test section are due to (a) noise generation in the test section, associated with the presence of solid bodies such as the pitot tube, and (b) propagation of acoustic energy from the fan. A criterion for noise levels in the test section is recommended, based on low-noise microphone support systems. Noise control methods required to meet the criterion include removal of hardware items for the test section and diffuser, improved design of microphone supports, and installation of acoustic treatment in the settling chamber and diffuser.
Infrasonic wind-noise reduction by barriers and spatial filters.
Hedlin, Michael A H; Raspet, Richard
2003-09-01
This paper reports experimental observations of wind speed and infrasonic noise reduction inside a wind barrier. The barrier is compared with "rosette" spatial filters and with a reference site that uses no noise reduction system. The barrier is investigated for use at International Monitoring System (IMS) infrasound array sites where spatially extensive noise-reducing systems cannot be used because of a shortage of suitable land. Wind speed inside a 2-m-high 50%-porous hexagonal barrier coated with a fine wire mesh is reduced from ambient levels by 90%. If the infrasound wind-noise level reductions are all plotted versus the reduced frequency given by f*L/v, where L is the characteristic size of the array or barrier, f is the frequency, and v is the wind speed, the reductions at different wind speeds are observed to collapse into a single curve for each wind-noise reduction method. The reductions are minimal below a reduced frequency of 0.3 to 1, depending on the device, then spatial averaging over the turbulence structure leads to increased reduction. Above the reduced corner frequency, the barrier reduces infrasonic noise by up to 20 to 25 dB. Below the corner frequency the barrier displays a small reduction of about 4 dB. The rosettes display no reduction below the corner frequency. One other advantage of the wind barrier over rosette spatial filters is that the signal recorded inside the barrier enters the microbarometer from free air and is not integrated, possibly out of phase, after propagation through a system of narrow pipes.
Evaluation of Noise Exposure Secondary to Wind Noise in Cyclists.
Seidman, Michael D; Wertz, Anna G; Smith, Matthew M; Jacob, Steve; Ahsan, Syed F
2017-11-01
Objective Determine if the noise levels of wind exposure experienced by cyclists reach levels that could contribute to noise-induced hearing loss. Study Design Industrial lab research. Setting Industrial wind tunnel. Subjects and Methods A commercial-grade electric wind tunnel was used to simulate different speeds encountered by a cyclist. A single cyclist was used during the simulation for audiometric measurements. Microphones attached near the ears of the cyclist were used to measure the sound (dB sound pressure level) experienced by the cyclist. Loudness levels were measured with the head positioned at 15-degree increments from 0 degrees to 180 degrees relative to the oncoming wind at different speeds (10-60 mph). Results Wind noise ranged from 84.9 dB at 10 mph and increased proportionally with speed to a maximum of 120.3 dB at 60 mph. The maximum of 120.3 dB was measured at the downwind ear when the ear was 90 degrees away from the wind. Conclusions Wind noise experienced by a cyclist is proportional to the speed and the directionality of the wind current. Turbulent air flow patterns are observed that contribute to increased sound exposure in the downwind ear. Consideration of ear deflection equipment without compromising sound awareness for cyclists during prolonged rides is advised to avoid potential noise trauma. Future research is warranted and can include long-term studies including dosimetry measures of the sound and yearly pre- and postexposure audiograms of cyclists to detect if any hearing loss occurs with long-term cycling.
Experimental characterization of turbulent inflow noise on a full-scale wind turbine
NASA Astrophysics Data System (ADS)
Buck, Steven; Oerlemans, Stefan; Palo, Scott
2016-12-01
An extensive experimental campaign was conducted on a 108-m diameter 2.3-MW wind turbine in order to assess the effect of inflow turbulence conditions on wind turbine acoustics. Over 50 h of continuous acoustic data was acquired at power-generating wind speeds. Twelve precision microphones were used, arranged in a one rotor radius ring about the turbine tower in order to assess the directivity of the noise emission. Turbine operational and atmospheric conditions were gathered simultaneously with acoustics measurements. The testing and analysis constitute perhaps the most thorough experimental characterization of turbulent inflow noise from a wind turbine to date. Turbulence intensities typically varied between 10 percent and 35 percent, and wind speeds covered most of the operational range of the wind turbine, from cut-on to well above its rated power. A method was developed for using blade-mounted accelerometers for determining the turbulence conditions in the immediate vicinity of the blades, which are the primary turbulence noise generating bodies. The method uses the blades' vibrational energy within a specified frequency range to estimate the overall turbulence conditions by assuming a von Kármán turbulence spectrum. Using this method, a clear positive correlation is shown between turbulence intensity and noise levels. The turbulence noise is dominant at low frequencies and is primarily observed in the upwind and downwind directions. Low frequency noise increases by as much as 6 dB for the range of turbulence conditions measured. Comparisons are made between the measured turbine noise directivity and theory using a simple acoustic model of the turbine as three point-sources. Strong agreement is found between the theoretical leading edge noise directivity model and the measured low frequency noise directivity.
Multi-scale graph-cut algorithm for efficient water-fat separation.
Berglund, Johan; Skorpil, Mikael
2017-09-01
To improve the accuracy and robustness to noise in water-fat separation by unifying the multiscale and graph cut based approaches to B 0 -correction. A previously proposed water-fat separation algorithm that corrects for B 0 field inhomogeneity in 3D by a single quadratic pseudo-Boolean optimization (QPBO) graph cut was incorporated into a multi-scale framework, where field map solutions are propagated from coarse to fine scales for voxels that are not resolved by the graph cut. The accuracy of the single-scale and multi-scale QPBO algorithms was evaluated against benchmark reference datasets. The robustness to noise was evaluated by adding noise to the input data prior to water-fat separation. Both algorithms achieved the highest accuracy when compared with seven previously published methods, while computation times were acceptable for implementation in clinical routine. The multi-scale algorithm was more robust to noise than the single-scale algorithm, while causing only a small increase (+10%) of the reconstruction time. The proposed 3D multi-scale QPBO algorithm offers accurate water-fat separation, robustness to noise, and fast reconstruction. The software implementation is freely available to the research community. Magn Reson Med 78:941-949, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Keshta, H. E.; Ali, A. A.; Saied, E. M.; Bendary, F. M.
2016-10-01
Large-scale integration of wind turbine generators (WTGs) may have significant impacts on power system operation with respect to system frequency and bus voltages. This paper studies the effect of Static Var Compensator (SVC) connected to wind energy conversion system (WECS) on voltage profile and the power generated from the induction generator (IG) in wind farm. Also paper presents, a dynamic reactive power compensation using Static Var Compensator (SVC) at the a point of interconnection of wind farm while static compensation (Fixed Capacitor Bank) is unable to prevent voltage collapse. Moreover, this paper shows that using advanced optimization techniques based on artificial intelligence (AI) such as Harmony Search Algorithm (HS) and Self-Adaptive Global Harmony Search Algorithm (SGHS) instead of a Conventional Control Method to tune the parameters of PI controller for SVC and pitch angle. Also paper illustrates that the performance of the system with controllers based on AI is improved under different operating conditions. MATLAB/Simulink based simulation is utilized to demonstrate the application of SVC in wind farm integration. It is also carried out to investigate the enhancement in performance of the WECS achieved with a PI Controller tuned by Harmony Search Algorithm as compared to a Conventional Control Method.
Improving the FLORIS wind plant model for compatibility with gradient-based optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Jared J.; Gebraad, Pieter MO; Ning, Andrew
The FLORIS (FLOw Redirection and Induction in Steady-state) model, a parametric wind turbine wake model that predicts steady-state wake characteristics based on wind turbine position and yaw angle, was developed for optimization of control settings and turbine locations. This article provides details on changes made to the FLORIS model to make the model more suitable for gradient-based optimization. Changes to the FLORIS model were made to remove discontinuities and add curvature to regions of non-physical zero gradient. Exact gradients for the FLORIS model were obtained using algorithmic differentiation. A set of three case studies demonstrate that using exact gradients withmore » gradient-based optimization reduces the number of function calls by several orders of magnitude. The case studies also show that adding curvature improves convergence behavior, allowing gradient-based optimization algorithms used with the FLORIS model to more reliably find better solutions to wind farm optimization problems.« less
Coherent ambient infrasound recorded by the global IMS network
NASA Astrophysics Data System (ADS)
Matoza, R. S.; Landes, M.; Le Pichon, A.; Ceranna, L.; Brown, D.
2011-12-01
The International Monitoring System (IMS) includes a global network of infrasound arrays, which is designed to detect atmospheric nuclear explosions anywhere on the planet. The infrasound network also has potential application in detection of natural hazards such as large volcanic explosions and severe weather. Ambient noise recorded by the network includes incoherent wind noise and coherent infrasound. We present a statistical analysis of coherent infrasound recorded by the IMS network. We have applied broadband (0.01 to 5 Hz) array processing systematically to the multi-year IMS historical dataset (2005-present) using an implementation of the Progressive Multi-Channel Correlation (PMCC) algorithm in log-frequency space. We show that IMS arrays consistently record coherent ambient infrasound across the broad frequency range from 0.01 to 5 Hz when wind-noise levels permit. Multi-year averaging of PMCC detection bulletins emphasizes continuous signals such as oceanic microbaroms, as well as persistent transient signals such as repetitive volcanic, surf, or anthropogenic activity (e.g., mining or industrial activity). While many of these continuous or repetitive signals are of interest in their own right, they may dominate IMS array detection bulletins and obscure or complicate detection of specific signals of interest. The new PMCC detection bulletins have numerous further applications, including in volcano and microbarom studies, and in IMS data quality assessment.
A triangle voting algorithm based on double feature constraints for star sensors
NASA Astrophysics Data System (ADS)
Fan, Qiaoyun; Zhong, Xuyang
2018-02-01
A novel autonomous star identification algorithm is presented in this study. In the proposed algorithm, each sensor star constructs multi-triangle with its bright neighbor stars and obtains its candidates by triangle voting process, in which the triangle is considered as the basic voting element. In order to accelerate the speed of this algorithm and reduce the required memory for star database, feature extraction is carried out to reduce the dimension of triangles and each triangle is described by its base and height. During the identification period, the voting scheme based on double feature constraints is proposed to implement triangle voting. This scheme guarantees that only the catalog star satisfying two features can vote for the sensor star, which improves the robustness towards false stars. The simulation and real star image test demonstrate that compared with the other two algorithms, the proposed algorithm is more robust towards position noise, magnitude noise and false stars.
Devarajan, Karthik; Cheung, Vincent C.K.
2017-01-01
Non-negative matrix factorization (NMF) by the multiplicative updates algorithm is a powerful machine learning method for decomposing a high-dimensional nonnegative matrix V into two nonnegative matrices, W and H where V ~ WH. It has been successfully applied in the analysis and interpretation of large-scale data arising in neuroscience, computational biology and natural language processing, among other areas. A distinctive feature of NMF is its nonnegativity constraints that allow only additive linear combinations of the data, thus enabling it to learn parts that have distinct physical representations in reality. In this paper, we describe an information-theoretic approach to NMF for signal-dependent noise based on the generalized inverse Gaussian model. Specifically, we propose three novel algorithms in this setting, each based on multiplicative updates and prove monotonicity of updates using the EM algorithm. In addition, we develop algorithm-specific measures to evaluate their goodness-of-fit on data. Our methods are demonstrated using experimental data from electromyography studies as well as simulated data in the extraction of muscle synergies, and compared with existing algorithms for signal-dependent noise. PMID:24684448
Chen, Yung-Yue
2018-05-08
Mobile devices are often used in our daily lives for the purposes of speech and communication. The speech quality of mobile devices is always degraded due to the environmental noises surrounding mobile device users. Regretfully, an effective background noise reduction solution cannot easily be developed for this speech enhancement problem. Due to these depicted reasons, a methodology is systematically proposed to eliminate the effects of background noises for the speech communication of mobile devices. This methodology integrates a dual microphone array with a background noise elimination algorithm. The proposed background noise elimination algorithm includes a whitening process, a speech modelling method and an H ₂ estimator. Due to the adoption of the dual microphone array, a low-cost design can be obtained for the speech enhancement of mobile devices. Practical tests have proven that this proposed method is immune to random background noises, and noiseless speech can be obtained after executing this denoise process.
Method for Determination of the Wind Velocity and Direction
NASA Technical Reports Server (NTRS)
Dahlin, Goesta Johan
1988-01-01
Accurate determination of the position of an artillery piece, for example, using sound measurement systems through measurement of the muzzle noise requires access to wind data that is representative of the portion of the air from where the sound wave is propagated up the microphone base of the system. The invention provides a system for determining such representative wind data.
Wind-tunnel measurement of noise emitted by helicopter rotors at high speed
NASA Astrophysics Data System (ADS)
Prieur, J.
Measurements of high-speed impulsive helicopter rotor noise in a wind-tunnel are presented. High-speed impulsive noise measurements have been performed in 1988 in the ONERA S2ch wind-tunnel, fitted with an acoustic lining, on two types of rotors. They show that substantial noise reduction is obtained with sweptback tips, initially designed for aerodynamic purposes, which lower transonic effects on the advancing blade tip. Emphasis is placed on the necessity of taking into account the acoustic annoyance problem, using noise prediction tools, when designing new helicopter blades.
Wind noise within and across behind-the-ear and miniature behind-the-ear hearing aids.
Zakis, Justin A; Hawkins, Daniel J
2015-10-01
Previous studies investigated wind noise with Behind-The-Ear (BTE) hearing aids, but not the more common mini-BTE style of device, which typically has a smaller shell and microphones located more deeply behind the pinna. The current study investigated wind-noise levels across one BTE and two mini-BTE devices, and between the front and rear omni-directional microphones within devices. Levels were measured at two wind speeds (3 and 6 m/s) and 36 wind azimuths (10° increments). The pattern of wind-noise level versus azimuth was similar across mini-BTE devices, and differed for the BTE device. However, mean levels were markedly different across mini-BTE devices, and could be higher, lower, or similar to those of the BTE device. For within-device level differences, the pattern and mean across azimuth were similar across mini-BTE devices, and differed for the BTE device. Wind noise had the potential to slightly or severely reduce speech intelligibility at 3 or 6 m/s, respectively, across all devices.
Modeling the impact of solid noise barriers on near road air quality
Studies based on field measurements, wind tunnel experiments, and controlled tracer gas releases indicate that solid, roadside noise barriers can lead to reductions in downwind near-road air pollutant concentrations. A tracer gas study showed that a solid barrier reduced pollutan...
Du, Pan; Kibbe, Warren A; Lin, Simon M
2006-09-01
A major problem for current peak detection algorithms is that noise in mass spectrometry (MS) spectra gives rise to a high rate of false positives. The false positive rate is especially problematic in detecting peaks with low amplitudes. Usually, various baseline correction algorithms and smoothing methods are applied before attempting peak detection. This approach is very sensitive to the amount of smoothing and aggressiveness of the baseline correction, which contribute to making peak detection results inconsistent between runs, instrumentation and analysis methods. Most peak detection algorithms simply identify peaks based on amplitude, ignoring the additional information present in the shape of the peaks in a spectrum. In our experience, 'true' peaks have characteristic shapes, and providing a shape-matching function that provides a 'goodness of fit' coefficient should provide a more robust peak identification method. Based on these observations, a continuous wavelet transform (CWT)-based peak detection algorithm has been devised that identifies peaks with different scales and amplitudes. By transforming the spectrum into wavelet space, the pattern-matching problem is simplified and in addition provides a powerful technique for identifying and separating the signal from the spike noise and colored noise. This transformation, with the additional information provided by the 2D CWT coefficients can greatly enhance the effective signal-to-noise ratio. Furthermore, with this technique no baseline removal or peak smoothing preprocessing steps are required before peak detection, and this improves the robustness of peak detection under a variety of conditions. The algorithm was evaluated with SELDI-TOF spectra with known polypeptide positions. Comparisons with two other popular algorithms were performed. The results show the CWT-based algorithm can identify both strong and weak peaks while keeping false positive rate low. The algorithm is implemented in R and will be included as an open source module in the Bioconductor project.
Tsunami Detection by High-Frequency Radar Beyond the Continental Shelf
NASA Astrophysics Data System (ADS)
Grilli, Stéphan T.; Grosdidier, Samuel; Guérin, Charles-Antoine
2016-12-01
Where coastal tsunami hazard is governed by near-field sources, such as submarine mass failures or meteo-tsunamis, tsunami propagation times may be too small for a detection based on deep or shallow water buoys. To offer sufficient warning time, it has been proposed to implement early warning systems relying on high-frequency (HF) radar remote sensing, that can provide a dense spatial coverage as far offshore as 200-300 km (e.g., for Diginext Ltd.'s Stradivarius radar). Shore-based HF radars have been used to measure nearshore currents (e.g., CODAR SeaSonde® system; http://www.codar.com/), by inverting the Doppler spectral shifts, these cause on ocean waves at the Bragg frequency. Both modeling work and an analysis of radar data following the Tohoku 2011 tsunami, have shown that, given proper detection algorithms, such radars could be used to detect tsunami-induced currents and issue a warning. However, long wave physics is such that tsunami currents will only rise above noise and background currents (i.e., be at least 10-15 cm/s), and become detectable, in fairly shallow water which would limit the direct detection of tsunami currents by HF radar to nearshore areas, unless there is a very wide shallow shelf. Here, we use numerical simulations of both HF radar remote sensing and tsunami propagation to develop and validate a new type of tsunami detection algorithm that does not have these limitations. To simulate the radar backscattered signal, we develop a numerical model including second-order effects in both wind waves and radar signal, with the wave angular frequency being modulated by a time-varying surface current, combining tsunami and background currents. In each "radar cell", the model represents wind waves with random phases and amplitudes extracted from a specified (wind speed dependent) energy density frequency spectrum, and includes effects of random environmental noise and background current; phases, noise, and background current are extracted from independent Gaussian distributions. The principle of the new algorithm is to compute correlations of HF radar signals measured/simulated in many pairs of distant "cells" located along the same tsunami wave ray, shifted in time by the tsunami propagation time between these cell locations; both rays and travel time are easily obtained as a function of long wave phase speed and local bathymetry. It is expected that, in the presence of a tsunami current, correlations computed as a function of range and an additional time lag will show a narrow elevated peak near the zero time lag, whereas no pattern in correlation will be observed in the absence of a tsunami current; this is because surface waves and background current are uncorrelated between pair of cells, particularly when time-shifted by the long-wave propagation time. This change in correlation pattern can be used as a threshold for tsunami detection. To validate the algorithm, we first identify key features of tsunami propagation in the Western Mediterranean Basin, where Stradivarius is deployed, by way of direct numerical simulations with a long wave model. Then, for the purpose of validating the algorithm we only model HF radar detection for idealized tsunami wave trains and bathymetry, but verify that such idealized case studies capture well the salient tsunami wave physics. Results show that, in the presence of strong background currents, the proposed method still allows detecting a tsunami with currents as low as 0.05 m/s, whereas a standard direct inversion based on radar signal Doppler spectra fails to reproduce tsunami currents weaker than 0.15-0.2 m/s. Hence, the new algorithm allows detecting tsunami arrival in deeper water, beyond the shelf and further away from the coast, and providing an early warning. Because the standard detection of tsunami currents works well at short range, we envision that, in a field situation, the new algorithm could complement the standard approach of direct near-field detection by providing a warning that a tsunami is approaching, at larger range and in greater depth. This warning would then be confirmed at shorter range by a direct inversion of tsunami currents, from which the magnitude of the tsunami would also estimated. Hence, both algorithms would be complementary. In future work, the algorithm will be applied to actual tsunami case studies performed using a state-of-the-art long wave model, such as briefly presented here in the Mediterranean Basin.
Shi, Junwei; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing
2013-09-15
For the ill-posed fluorescent molecular tomography (FMT) inverse problem, the L1 regularization can protect the high-frequency information like edges while effectively reduce the image noise. However, the state-of-the-art L1 regularization-based algorithms for FMT reconstruction are expensive in memory, especially for large-scale problems. An efficient L1 regularization-based reconstruction algorithm based on nonlinear conjugate gradient with restarted strategy is proposed to increase the computational speed with low memory consumption. The reconstruction results from phantom experiments demonstrate that the proposed algorithm can obtain high spatial resolution and high signal-to-noise ratio, as well as high localization accuracy for fluorescence targets.
Bakker, R H; Pedersen, E; van den Berg, G P; Stewart, R E; Lok, W; Bouma, J
2012-05-15
The present government in the Netherlands intends to realize a substantial growth of wind energy before 2020, both onshore and offshore. Wind turbines, when positioned in the neighborhood of residents may cause visual annoyance and noise annoyance. Studies on other environmental sound sources, such as railway, road traffic, industry and aircraft noise show that (long-term) exposure to sound can have negative effects other than annoyance from noise. This study aims to elucidate the relation between exposure to the sound of wind turbines and annoyance, self-reported sleep disturbance and psychological distress of people that live in their vicinity. Data were gathered by questionnaire that was sent by mail to a representative sample of residents of the Netherlands living in the vicinity of wind turbines A dose-response relationship was found between immission levels of wind turbine sound and selfreported noise annoyance. Sound exposure was also related to sleep disturbance and psychological distress among those who reported that they could hear the sound, however not directly but with noise annoyance acting as a mediator. Respondents living in areas with other background sounds were less affected than respondents in quiet areas. People living in the vicinity of wind turbines are at risk of being annoyed by the noise, an adverse effect in itself. Noise annoyance in turn could lead to sleep disturbance and psychological distress. No direct effects of wind turbine noise on sleep disturbance or psychological stress has been demonstrated, which means that residents, who do not hear the sound, or do not feel disturbed, are not adversely affected. Copyright © 2012 Elsevier B.V. All rights reserved.
Validation of ERS-1 environmental data products
NASA Technical Reports Server (NTRS)
Goodberlet, Mark A.; Swift, Calvin T.; Wilkerson, John C.
1994-01-01
Evaluation of the launch-version algorithms used by the European Space Agency (ESA) to derive wind field and ocean wave estimates from measurements of sensors aboard the European Remote Sensing satellite, ERS-1, has been accomplished through comparison of the derived parameters with coincident measurements made by 24 open ocean buoys maintained by the National Oceanic and Atmospheric Administration). During the period from November 1, 1991 through February 28, 1992, data bases with 577 and 485 pairs of coincident sensor/buoy wind and wave measurements were collected for the Active Microwave Instrument (AMI) and Radar Altimeter (RA) respectively. Based on these data, algorithm retrieval accuracy is estimated to be plus or minus 4 m/s for AMI wind speed, plus or minus 3 m/s for RA wind speed and plus or minus 0.6 m for RA wave height. After removing 180 degree ambiguity errors, the AMI wind direction retrieval accuracy was estimated at plus or minus 28 degrees. All of the ERS-1 wind and wave retrievals are relatively unbiased. These results should be viewed as interim since improved algorithms are under development. As final versions are implemented, additional assessments should be conducted to complete the validation.
The Research on Denoising of SAR Image Based on Improved K-SVD Algorithm
NASA Astrophysics Data System (ADS)
Tan, Linglong; Li, Changkai; Wang, Yueqin
2018-04-01
SAR images often receive noise interference in the process of acquisition and transmission, which can greatly reduce the quality of images and cause great difficulties for image processing. The existing complete DCT dictionary algorithm is fast in processing speed, but its denoising effect is poor. In this paper, the problem of poor denoising, proposed K-SVD (K-means and singular value decomposition) algorithm is applied to the image noise suppression. Firstly, the sparse dictionary structure is introduced in detail. The dictionary has a compact representation and can effectively train the image signal. Then, the sparse dictionary is trained by K-SVD algorithm according to the sparse representation of the dictionary. The algorithm has more advantages in high dimensional data processing. Experimental results show that the proposed algorithm can remove the speckle noise more effectively than the complete DCT dictionary and retain the edge details better.
Mera, David; Cotos, José M; Varela-Pet, José; Garcia-Pineda, Oscar
2012-10-01
Satellite Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillage on the ocean's surface. Several surveillance applications have been developed based on this technology. Environmental variables such as wind speed should be taken into account for better SAR image segmentation. This paper presents an adaptive thresholding algorithm for detecting oil spills based on SAR data and a wind field estimation as well as its implementation as a part of a functional prototype. The algorithm was adapted to an important shipping route off the Galician coast (northwest Iberian Peninsula) and was developed on the basis of confirmed oil spills. Image testing revealed 99.93% pixel labelling accuracy. By taking advantage of multi-core processor architecture, the prototype was optimized to get a nearly 30% improvement in processing time. Copyright © 2012 Elsevier Ltd. All rights reserved.
Detecting blast-induced infrasound in wind noise.
Howard, Wheeler B; Dillion, Kevin L; Shields, F Douglas
2010-03-01
Current efforts seek to monitor and investigate such naturally occurring events as volcanic eruptions, hurricanes, bolides entering the atmosphere, earthquakes, and tsunamis by the infrasound they generate. Often, detection of the infrasound signal is limited by the masking effect of wind noise. This paper describes the use of a distributed array to detect infrasound signals from four atmospheric detonations at White Sands Missile Range in New Mexico, USA in 2006. Three of the blasts occurred during times of low wind noise and were easily observed with array processing techniques. One blast was obscured by high wind conditions. The results of signal processing are presented that allowed localization of the blast-induced signals in the presence of wind noise in the array response.
Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines
Lien, Fue-Sang
2017-01-01
This paper develops a computational acoustic beamforming (CAB) methodology for identification of sources of small wind turbine noise. This methodology is validated using the case of the NACA 0012 airfoil trailing edge noise. For this validation case, the predicted acoustic maps were in excellent conformance with the results of the measurements obtained from the acoustic beamforming experiment. Following this validation study, the CAB methodology was applied to the identification of noise sources generated by a commercial small wind turbine. The simulated acoustic maps revealed that the blade tower interaction and the wind turbine nacelle were the two primary mechanisms for sound generation for this small wind turbine at frequencies between 100 and 630 Hz. PMID:28378012
Automatic arrival time detection for earthquakes based on Modified Laplacian of Gaussian filter
NASA Astrophysics Data System (ADS)
Saad, Omar M.; Shalaby, Ahmed; Samy, Lotfy; Sayed, Mohammed S.
2018-04-01
Precise identification of onset time for an earthquake is imperative in the right figuring of earthquake's location and different parameters that are utilized for building seismic catalogues. P-wave arrival detection of weak events or micro-earthquakes cannot be precisely determined due to background noise. In this paper, we propose a novel approach based on Modified Laplacian of Gaussian (MLoG) filter to detect the onset time even in the presence of very weak signal-to-noise ratios (SNRs). The proposed algorithm utilizes a denoising-filter algorithm to smooth the background noise. In the proposed algorithm, we employ the MLoG mask to filter the seismic data. Afterward, we apply a Dual-threshold comparator to detect the onset time of the event. The results show that the proposed algorithm can detect the onset time for micro-earthquakes accurately, with SNR of -12 dB. The proposed algorithm achieves an onset time picking accuracy of 93% with a standard deviation error of 0.10 s for 407 field seismic waveforms. Also, we compare the results with short and long time average algorithm (STA/LTA) and the Akaike Information Criterion (AIC), and the proposed algorithm outperforms them.
Schäffer, Beat; Schlittmeier, Sabine J; Pieren, Reto; Heutschi, Kurt; Brink, Mark; Graf, Ralf; Hellbrück, Jürgen
2016-05-01
Current literature suggests that wind turbine noise is more annoying than transportation noise. To date, however, it is not known which acoustic characteristics of wind turbines alone, i.e., without effect modifiers such as visibility, are associated with annoyance. The objective of this study was therefore to investigate and compare the short-term noise annoyance reactions to wind turbines and road traffic in controlled laboratory listening tests. A set of acoustic scenarios was created which, combined with the factorial design of the listening tests, allowed separating the individual associations of three acoustic characteristics with annoyance, namely, source type (wind turbine, road traffic), A-weighted sound pressure level, and amplitude modulation (without, periodic, random). Sixty participants rated their annoyance to the sounds. At the same A-weighted sound pressure level, wind turbine noise was found to be associated with higher annoyance than road traffic noise, particularly with amplitude modulation. The increased annoyance to amplitude modulation of wind turbines is not related to its periodicity, but seems to depend on the modulation frequency range. The study discloses a direct link of different acoustic characteristics to annoyance, yet the generalizability to long-term exposure in the field still needs to be verified.
Sources and levels of background noise in the NASA Ames 40- by 80-foot wind tunnel
NASA Technical Reports Server (NTRS)
Soderman, Paul T.
1988-01-01
Background noise levels are measured in the NASA Ames Research Center 40- by 80-Foot Wind Tunnel following installation of a sound-absorbent lining on the test-section walls. Results show that the fan-drive noise dominated the empty test-section background noise at airspeeds below 120 knots. Above 120 knots, the test-section broadband background noise was dominated by wind-induced dipole noise (except at lower harmonics of fan blade-passage tones) most likely generated at the microphone or microphone support strut. Third-octave band and narrow-band spectra are presented for several fan operating conditions and test-section airspeeds. The background noise levels can be reduced by making improvements to the microphone wind screen or support strut. Empirical equations are presented relating variations of fan noise with fan speed or blade-pitch angle. An empirical expression for typical fan noise spectra is also presented. Fan motor electric power consumption is related to the noise generation. Preliminary measurements of sound absorption by the test-section lining indicate that the 152 mm thick lining will adequately absorb test-section model noise at frequencies above 300 Hz.
NASA Astrophysics Data System (ADS)
Yousefzadeh, Hoorvash Camilia; Lecomte, Roger; Fontaine, Réjean
2012-06-01
A fast Wiener filter-based crystal identification (WFCI) algorithm was recently developed to discriminate crystals with close scintillation decay times in phoswich detectors. Despite the promising performance of WFCI, the influence of various physical factors and electrical noise sources of the data acquisition chain (DAQ) on the crystal identification process was not fully investigated. This paper examines the effect of different noise sources, such as photon statistics, avalanche photodiode (APD) excess multiplication noise, and front-end electronic noise, as well as the influence of different shaping filters on the performance of the WFCI algorithm. To this end, a PET-like signal simulator based on a model of the LabPET DAQ, a small animal APD-based digital PET scanner, was developed. Simulated signals were generated under various noise conditions with CR-RC shapers of order 1, 3, and 5 having different time constants (τ). Applying the WFCI algorithm to these simulated signals showed that the non-stationary Poisson photon statistics is the main contributor to the identification error of WFCI algorithm. A shaping filter of order 1 with τ = 50 ns yielded the best WFCI performance (error 1%), while a longer shaping time of τ = 100 ns slightly degraded the WFCI performance (error 3%). Filters of higher orders with fast shaping time constants (10-33 ns) also produced good WFCI results (error 1.4% to 1.6%). This study shows the advantage of the pulse simulator in evaluating various DAQ conditions and confirms the influence of the detection chain on the WFCI performance.
Detecting and mitigating wind turbine clutter for airspace radar systems.
Wang, Wen-Qin
2013-01-01
It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.
Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems
2013-01-01
It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880
Development and comparisons of wind retrieval algorithms for small unmanned aerial systems
NASA Astrophysics Data System (ADS)
Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.
2012-12-01
Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.
Comparison and application of wind retrieval algorithms for small unmanned aerial systems
NASA Astrophysics Data System (ADS)
Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.
2013-07-01
Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well-aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.
NASA Astrophysics Data System (ADS)
Zimoń, M. J.; Prosser, R.; Emerson, D. R.; Borg, M. K.; Bray, D. J.; Grinberg, L.; Reese, J. M.
2016-11-01
Filtering of particle-based simulation data can lead to reduced computational costs and enable more efficient information transfer in multi-scale modelling. This paper compares the effectiveness of various signal processing methods to reduce numerical noise and capture the structures of nano-flow systems. In addition, a novel combination of these algorithms is introduced, showing the potential of hybrid strategies to improve further the de-noising performance for time-dependent measurements. The methods were tested on velocity and density fields, obtained from simulations performed with molecular dynamics and dissipative particle dynamics. Comparisons between the algorithms are given in terms of performance, quality of the results and sensitivity to the choice of input parameters. The results provide useful insights on strategies for the analysis of particle-based data and the reduction of computational costs in obtaining ensemble solutions.
Noise reduction in digital holography based on a filtering algorithm
NASA Astrophysics Data System (ADS)
Zhang, Wenhui; Cao, Liangcai; Zhang, Hua; Jin, Guofan; Brady, David
2018-02-01
Holography is a tool to record the object wavefront by interference. Complex amplitude of the object wave is coded into a two dimensional hologram. Unfortunately, the conjugate wave and background wave would also appear at the object plane during reconstruction, as noise, which blurs the reconstructed object. From the perspective of wave, we propose a filtering algorithm to get a noise-reduced reconstruction. Due to the fact that the hologram is a kind of amplitude grating, three waves would appear when reconstruction, which are object wave, conjugate wave and background wave. The background is easy to eliminate by frequency domain filtering. The object wave and conjugate wave are signals to be dealt with. These two waves, as a whole, propagate in the space. However, when detected at the original object plane, the object wave would diffract into a sparse pattern while the conjugate wave would diffract into a diffused pattern forming the noise. Hence, the noise can be reduced based on these difference with a filtering algorithm. Both amplitude and phase distributions are truthfully retrieved in our simulation and experimental demonstration.
An l1-TV algorithm for deconvolution with salt and pepper noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohlberg, Brendt; Rodriguez, Paul
2008-01-01
There has recently been considerable interest in applying Total Variation with an {ell}{sup 1} data fidelity term to the denoising of images subject to salt and pepper noise, but the extension of this formulation to more general problems, such as deconvolution, has received little attention, most probably because most efficient algorithms for {ell}{sup 1}-TV denoising can not handle more general inverse problems. We apply the Iteratively Reweighted Norm algorithm to this problem, and compare performance with an alternative algorithm based on the Mumford-Shah functional.
Traffic Noise Ground Attenuation Algorithm Evaluation
NASA Astrophysics Data System (ADS)
Herman, Lloyd Allen
The Federal Highway Administration traffic noise prediction program, STAMINA 2.0, was evaluated for its accuracy. In addition, the ground attenuation algorithm used in the Ontario ORNAMENT method was evaluated to determine its potential to improve these predictions. Field measurements of sound levels were made at 41 sites on I-440 in Nashville, Tennessee in order to both study noise barrier effectiveness and to evaluate STAMINA 2.0 and the performance of the ORNAMENT ground attenuation algorithm. The measurement sites, which contain large variations in terrain, included several cross sections. Further, all sites contain some type of barrier, natural or constructed, which could more fully expose the strength and weaknesses of the ground attenuation algorithms. The noise barrier evaluation was accomplished in accordance with American National Standard Methods for Determination of Insertion Loss of Outdoor Noise Barriers which resulted in an evaluation of this standard. The entire 7.2 mile length of I-440 was modeled using STAMINA 2.0. A multiple run procedure was developed to emulate the results that would be obtained if the ORNAMENT algorithm was incorporated into STAMINA 2.0. Finally, the predicted noise levels based on STAMINA 2.0 and STAMINA with the ORNAMENT ground attenuation algorithm were compared with each other and with the field measurements. It was found that STAMINA 2.0 overpredicted noise levels by an average of over 2 dB for the receivers on I-440, whereas, the STAMINA with ORNAMENT ground attenuation algorithm overpredicted noise levels by an average of less than 0.5 dB. The mean errors for the two predictions were found to be statistically different from each other, and the mean error for the prediction with the ORNAMENT ground attenuation algorithm was not found to be statistically different from zero. The STAMINA 2.0 program predicts little, if any, ground attenuation for receivers at typical first-row distances from highways where noise barriers are used. The ORNAMENT ground attenuation algorithm, which recognizes and better compensates for the presence of obstacles in the propagation path of a sound wave, predicted significant amounts of ground attenuation for most sites.
2014-01-01
This study evaluates a spatial-filtering algorithm as a method to improve speech reception for cochlear-implant (CI) users in reverberant environments with multiple noise sources. The algorithm was designed to filter sounds using phase differences between two microphones situated 1 cm apart in a behind-the-ear hearing-aid capsule. Speech reception thresholds (SRTs) were measured using a Coordinate Response Measure for six CI users in 27 listening conditions including each combination of reverberation level (T60 = 0, 270, and 540 ms), number of noise sources (1, 4, and 11), and signal-processing algorithm (omnidirectional response, dipole-directional response, and spatial-filtering algorithm). Noise sources were time-reversed speech segments randomly drawn from the Institute of Electrical and Electronics Engineers sentence recordings. Target speech and noise sources were processed using a room simulation method allowing precise control over reverberation times and sound-source locations. The spatial-filtering algorithm was found to provide improvements in SRTs on the order of 6.5 to 11.0 dB across listening conditions compared with the omnidirectional response. This result indicates that such phase-based spatial filtering can improve speech reception for CI users even in highly reverberant conditions with multiple noise sources. PMID:25330772
FPGA implementation of ICA algorithm for blind signal separation and adaptive noise canceling.
Kim, Chang-Min; Park, Hyung-Min; Kim, Taesu; Choi, Yoon-Kyung; Lee, Soo-Young
2003-01-01
An field programmable gate array (FPGA) implementation of independent component analysis (ICA) algorithm is reported for blind signal separation (BSS) and adaptive noise canceling (ANC) in real time. In order to provide enormous computing power for ICA-based algorithms with multipath reverberation, a special digital processor is designed and implemented in FPGA. The chip design fully utilizes modular concept and several chips may be put together for complex applications with a large number of noise sources. Experimental results with a fabricated test board are reported for ANC only, BSS only, and simultaneous ANC/BSS, which demonstrates successful speech enhancement in real environments in real time.
Allner, S; Koehler, T; Fehringer, A; Birnbacher, L; Willner, M; Pfeiffer, F; Noël, P B
2016-05-21
The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields.
Li, Xiang; Yang, Zhibo; Chen, Xuefeng
2014-01-01
The active structural health monitoring (SHM) approach for the complex composite laminate structures of wind turbine blades (WTBs), addresses the important and complicated problem of signal noise. After illustrating the wind energy industry's development perspectives and its crucial requirement for SHM, an improved redundant second generation wavelet transform (IRSGWT) pre-processing algorithm based on neighboring coefficients is introduced for feeble signal denoising. The method can avoid the drawbacks of conventional wavelet methods that lose information in transforms and the shortcomings of redundant second generation wavelet (RSGWT) denoising that can lead to error propagation. For large scale WTB composites, how to minimize the number of sensors while ensuring accuracy is also a key issue. A sparse sensor array optimization of composites for WTB applications is proposed that can reduce the number of transducers that must be used. Compared to a full sixteen transducer array, the optimized eight transducer configuration displays better accuracy in identifying the correct position of simulated damage (mass of load) on composite laminates with anisotropic characteristics than a non-optimized array. It can help to guarantee more flexible and qualified monitoring of the areas that more frequently suffer damage. The proposed methods are verified experimentally on specimens of carbon fiber reinforced resin composite laminates. PMID:24763210
A real-time MTFC algorithm of space remote-sensing camera based on FPGA
NASA Astrophysics Data System (ADS)
Zhao, Liting; Huang, Gang; Lin, Zhe
2018-01-01
A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.
Lieb, Florian; Stark, Hans-Georg; Thielemann, Christiane
2017-06-01
Spike detection from extracellular recordings is a crucial preprocessing step when analyzing neuronal activity. The decision whether a specific part of the signal is a spike or not is important for any kind of other subsequent preprocessing steps, like spike sorting or burst detection in order to reduce the classification of erroneously identified spikes. Many spike detection algorithms have already been suggested, all working reasonably well whenever the signal-to-noise ratio is large enough. When the noise level is high, however, these algorithms have a poor performance. In this paper we present two new spike detection algorithms. The first is based on a stationary wavelet energy operator and the second is based on the time-frequency representation of spikes. Both algorithms are more reliable than all of the most commonly used methods. The performance of the algorithms is confirmed by using simulated data, resembling original data recorded from cortical neurons with multielectrode arrays. In order to demonstrate that the performance of the algorithms is not restricted to only one specific set of data, we also verify the performance using a simulated publicly available data set. We show that both proposed algorithms have the best performance under all tested methods, regardless of the signal-to-noise ratio in both data sets. This contribution will redound to the benefit of electrophysiological investigations of human cells. Especially the spatial and temporal analysis of neural network communications is improved by using the proposed spike detection algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Justin, E-mail: justin.solomon@duke.edu; Samei, Ehsan
2014-09-15
Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based onmore » a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was reduced by an average of 60% in SAFIRE images compared to FBP. However, for edge pixels, noise magnitude ranged from 20% higher to 40% lower in SAFIRE images compared to FBP. SAFIRE images of the lung phantom exhibited distinct regions with varying noise texture (i.e., noise autocorrelation/power spectra). Conclusions: Quantum noise properties observed in uniform phantoms may not be representative of those in actual patients for nonlinear reconstruction algorithms. Anatomical texture should be considered when evaluating the performance of CT systems that use such nonlinear algorithms.« less
SLMRACE: a noise-free RACE implementation with reduced computational time
NASA Astrophysics Data System (ADS)
Chauvin, Juliet; Provenzi, Edoardo
2017-05-01
We present a faster and noise-free implementation of the RACE algorithm. RACE has mixed characteristics between the famous Retinex model of Land and McCann and the automatic color equalization (ACE) color-correction algorithm. The original random spray-based RACE implementation suffers from two main problems: its computational time and the presence of noise. Here, we will show that it is possible to adapt two techniques recently proposed by Banić et al. to the RACE framework in order to drastically decrease the computational time and noise generation. The implementation will be called smart-light-memory-RACE (SLMRACE).
Computationally-Efficient Minimum-Time Aircraft Routes in the Presence of Winds
NASA Technical Reports Server (NTRS)
Jardin, Matthew R.
2004-01-01
A computationally efficient algorithm for minimizing the flight time of an aircraft in a variable wind field has been invented. The algorithm, referred to as Neighboring Optimal Wind Routing (NOWR), is based upon neighboring-optimal-control (NOC) concepts and achieves minimum-time paths by adjusting aircraft heading according to wind conditions at an arbitrary number of wind measurement points along the flight route. The NOWR algorithm may either be used in a fast-time mode to compute minimum- time routes prior to flight, or may be used in a feedback mode to adjust aircraft heading in real-time. By traveling minimum-time routes instead of direct great-circle (direct) routes, flights across the United States can save an average of about 7 minutes, and as much as one hour of flight time during periods of strong jet-stream winds. The neighboring optimal routes computed via the NOWR technique have been shown to be within 1.5 percent of the absolute minimum-time routes for flights across the continental United States. On a typical 450-MHz Sun Ultra workstation, the NOWR algorithm produces complete minimum-time routes in less than 40 milliseconds. This corresponds to a rate of 25 optimal routes per second. The closest comparable optimization technique runs approximately 10 times slower. Airlines currently use various trial-and-error search techniques to determine which of a set of commonly traveled routes will minimize flight time. These algorithms are too computationally expensive for use in real-time systems, or in systems where many optimal routes need to be computed in a short amount of time. Instead of operating in real-time, airlines will typically plan a trajectory several hours in advance using wind forecasts. If winds change significantly from forecasts, the resulting flights will no longer be minimum-time. The need for a computationally efficient wind-optimal routing algorithm is even greater in the case of new air-traffic-control automation concepts. For air-traffic-control automation, thousands of wind-optimal routes may need to be computed and checked for conflicts in just a few minutes. These factors motivated the need for a more efficient wind-optimal routing algorithm.
Hesar, Hamed Danandeh; Mohebbi, Maryam
2017-05-01
In this paper, a model-based Bayesian filtering framework called the "marginalized particle-extended Kalman filter (MP-EKF) algorithm" is proposed for electrocardiogram (ECG) denoising. This algorithm does not have the extended Kalman filter (EKF) shortcoming in handling non-Gaussian nonstationary situations because of its nonlinear framework. In addition, it has less computational complexity compared with particle filter. This filter improves ECG denoising performance by implementing marginalized particle filter framework while reducing its computational complexity using EKF framework. An automatic particle weighting strategy is also proposed here that controls the reliance of our framework to the acquired measurements. We evaluated the proposed filter on several normal ECGs selected from MIT-BIH normal sinus rhythm database. To do so, artificial white Gaussian and colored noises as well as nonstationary real muscle artifact (MA) noise over a range of low SNRs from 10 to -5 dB were added to these normal ECG segments. The benchmark methods were the EKF and extended Kalman smoother (EKS) algorithms which are the first model-based Bayesian algorithms introduced in the field of ECG denoising. From SNR viewpoint, the experiments showed that in the presence of Gaussian white noise, the proposed framework outperforms the EKF and EKS algorithms in lower input SNRs where the measurements and state model are not reliable. Owing to its nonlinear framework and particle weighting strategy, the proposed algorithm attained better results at all input SNRs in non-Gaussian nonstationary situations (such as presence of pink noise, brown noise, and real MA). In addition, the impact of the proposed filtering method on the distortion of diagnostic features of the ECG was investigated and compared with EKF/EKS methods using an ECG diagnostic distortion measure called the "Multi-Scale Entropy Based Weighted Distortion Measure" or MSEWPRD. The results revealed that our proposed algorithm had the lowest MSEPWRD for all noise types at low input SNRs. Therefore, the morphology and diagnostic information of ECG signals were much better conserved compared with EKF/EKS frameworks, especially in non-Gaussian nonstationary situations.
Image contrast enhancement using adjacent-blocks-based modification for local histogram equalization
NASA Astrophysics Data System (ADS)
Wang, Yang; Pan, Zhibin
2017-11-01
Infrared images usually have some non-ideal characteristics such as weak target-to-background contrast and strong noise. Because of these characteristics, it is necessary to apply the contrast enhancement algorithm to improve the visual quality of infrared images. Histogram equalization (HE) algorithm is a widely used contrast enhancement algorithm due to its effectiveness and simple implementation. But a drawback of HE algorithm is that the local contrast of an image cannot be equally enhanced. Local histogram equalization algorithms are proved to be the effective techniques for local image contrast enhancement. However, over-enhancement of noise and artifacts can be easily found in the local histogram equalization enhanced images. In this paper, a new contrast enhancement technique based on local histogram equalization algorithm is proposed to overcome the drawbacks mentioned above. The input images are segmented into three kinds of overlapped sub-blocks using the gradients of them. To overcome the over-enhancement effect, the histograms of these sub-blocks are then modified by adjacent sub-blocks. We pay more attention to improve the contrast of detail information while the brightness of the flat region in these sub-blocks is well preserved. It will be shown that the proposed algorithm outperforms other related algorithms by enhancing the local contrast without introducing over-enhancement effects and additional noise.
Design and aero-acoustic analysis of a counter-rotating wind turbine
NASA Astrophysics Data System (ADS)
Agrawal, Vineesh V.
Wind turbines have become an integral part of the energy business because they are one of the most economical and reliable sources of renewable energy. Conventional wind turbines are capable of capturing less than half of the energy present in the wind. Hence, to make the wind turbines more efficient, it is important to increase their performance. A horizontal axis wind turbine with multiple rotors is one concept that can achieve a higher power conversion rate. Also, a concern for wind energy is the noise generated by wind turbines. Hence, an investigation into the acoustic behavior of a multi-rotor horizontal axis wind turbine is required. In response to the need of a wind turbine design with higher power coefficient, a unique design of a counter-rotating horizontal axis wind turbine (CR-HAWT) is proposed. The Blade Element Momentum (BEM) theory is used to aerodynamically design the blades of the two rotors. Modifications are made to the BEM theory to accommodate the interaction of the two rotors. The tower effect on the noise generation of the downwind rotor is investigated. Predictions are made for the total noise generated by the wind turbine at its design operating conditions. A total power coefficient of 65.2% is predicted for the proposed CR-HAWT design. A low tip speed ratio is chosen to minimize the noise generation. The aeroacoustic analysis of the CR-HAWT shows that the noise generated at its design operating conditions is within an acceptable range. Thus, the CR-HAWT is predicted to be a quiet wind turbine with a high power coefficient, making it highly desirable for small wind turbine applications.
Filtered-x generalized mixed norm (FXGMN) algorithm for active noise control
NASA Astrophysics Data System (ADS)
Song, Pucha; Zhao, Haiquan
2018-07-01
The standard adaptive filtering algorithm with a single error norm exhibits slow convergence rate and poor noise reduction performance under specific environments. To overcome this drawback, a filtered-x generalized mixed norm (FXGMN) algorithm for active noise control (ANC) system is proposed. The FXGMN algorithm is developed by using a convex mixture of lp and lq norms as the cost function that it can be viewed as a generalized version of the most existing adaptive filtering algorithms, and it will reduce to a specific algorithm by choosing certain parameters. Especially, it can be used to solve the ANC under Gaussian and non-Gaussian noise environments (including impulsive noise with symmetric α -stable (SαS) distribution). To further enhance the algorithm performance, namely convergence speed and noise reduction performance, a convex combination of the FXGMN algorithm (C-FXGMN) is presented. Moreover, the computational complexity of the proposed algorithms is analyzed, and a stability condition for the proposed algorithms is provided. Simulation results show that the proposed FXGMN and C-FXGMN algorithms can achieve better convergence speed and higher noise reduction as compared to other existing algorithms under various noise input conditions, and the C-FXGMN algorithm outperforms the FXGMN.
NASA Astrophysics Data System (ADS)
Chen, Jiaoxuan; Zhang, Maomao; Liu, Yinyan; Chen, Jiaoliao; Li, Yi
2017-03-01
Electrical capacitance tomography (ECT) is a promising technique applied in many fields. However, the solutions for ECT are not unique and highly sensitive to the measurement noise. To remain a good shape of reconstructed object and endure a noisy data, a Rudin-Osher-Fatemi (ROF) model with total variation regularization is applied to image reconstruction in ECT. Two numerical methods, which are simplified augmented Lagrangian (SAL) and accelerated alternating direction method of multipliers (AADMM), are innovatively introduced to try to solve the above mentioned problems in ECT. The effect of the parameters and the number of iterations for different algorithms, and the noise level in capacitance data are discussed. Both simulation and experimental tests were carried out to validate the feasibility of the proposed algorithms, compared to the Landweber iteration (LI) algorithm. The results show that the SAL and AADMM algorithms can handle a high level of noise and the AADMM algorithm outperforms other algorithms in identifying the object from its background.
Shen, Chongfei; Liu, Hongtao; Xie, Xb; Luk, Keith Dk; Hu, Yong
2007-01-01
Adaptive noise canceller (ANC) has been used to improve signal to noise ratio (SNR) of somsatosensory evoked potential (SEP). In order to efficiently apply the ANC in hardware system, fixed-point algorithm based ANC can achieve fast, cost-efficient construction, and low-power consumption in FPGA design. However, it is still questionable whether the SNR improvement performance by fixed-point algorithm is as good as that by floating-point algorithm. This study is to compare the outputs of ANC by floating-point and fixed-point algorithm ANC when it was applied to SEP signals. The selection of step-size parameter (micro) was found different in fixed-point algorithm from floating-point algorithm. In this simulation study, the outputs of fixed-point ANC showed higher distortion from real SEP signals than that of floating-point ANC. However, the difference would be decreased with increasing micro value. In the optimal selection of micro, fixed-point ANC can get as good results as floating-point algorithm.
NASA Technical Reports Server (NTRS)
Hubbard, Harvey H.; Shepherd, Kevin P.
2009-01-01
Wind turbine generators, ranging in size from a few kilowatts to several megawatts, are producing electricity both singly and in wind power stations that encompass hundreds of machines. Many installations are in uninhabited areas far from established residences, and therefore there are no apparent environmental impacts in terms of noise. There is, however, the potential for situations in which the radiated noise can be heard by residents of adjacent neighborhoods, particularly those neighborhoods with low ambient noise levels. A widely publicized incident of this nature occurred with the operation of the experimental Mod-1 2-MW wind turbine, which is described in detail elsewhere. Pioneering studies which were conducted at the Mod-1 site on the causes and remedies of noise from wind turbines form the foundation of much of the technology described in this chapter.
Long term estimations of low frequency noise levels over water from an off-shore wind farm.
Bolin, Karl; Almgren, Martin; Ohlsson, Esbjörn; Karasalo, Ilkka
2014-03-01
This article focuses on computations of low frequency sound propagation from an off-shore wind farm. Two different methods for sound propagation calculations are combined with meteorological data for every 3 hours in the year 2010 to examine the varying noise levels at a reception point at 13 km distance. It is shown that sound propagation conditions play a vital role in the noise impact from the off-shore wind farm and ordinary assessment methods can become inaccurate at longer propagation distances over water. Therefore, this paper suggests that methodologies to calculate noise immission with realistic sound speed profiles need to be combined with meteorological data over extended time periods to evaluate the impact of low frequency noise from modern off-shore wind farms.
Infrasound and low frequency noise from wind turbines: exposure and health effects
NASA Astrophysics Data System (ADS)
Bolin, Karl; Bluhm, Gösta; Eriksson, Gabriella; Nilsson, Mats E.
2011-07-01
Wind turbines emit low frequency noise (LFN) and large turbines generally generate more LFN than small turbines. The dominant source of LFN is the interaction between incoming turbulence and the blades. Measurements suggest that indoor levels of LFN in dwellings typically are within recommended guideline values, provided that the outdoor level does not exceed corresponding guidelines for facade exposure. Three cross-sectional questionnaire studies show that annoyance from wind turbine noise is related to the immission level, but several explanations other than low frequency noise are probable. A statistically significant association between noise levels and self-reported sleep disturbance was found in two of the three studies. It has been suggested that LFN from wind turbines causes other, and more serious, health problems, but empirical support for these claims is lacking.
Feasibility study on a strain based deflection monitoring system for wind turbine blades
NASA Astrophysics Data System (ADS)
Lee, Kyunghyun; Aihara, Aya; Puntsagdash, Ganbayar; Kawaguchi, Takayuki; Sakamoto, Hiraku; Okuma, Masaaki
2017-01-01
The bending stiffness of the wind turbine blades has decreased due to the trend of wind turbine upsizing. Consequently, the risk of blades breakage by hitting the tower has increased. In order to prevent such incidents, this study proposes a deflection monitoring system that can be installed to already operating wind turbine's blades. The monitoring system is composed of an estimation algorithm to detect blade deflection and a wireless sensor network as a hardware equipment. As for the estimation method for blade deflection, a strain-based estimation algorithm and an objective function for optimal sensor arrangement are proposed. Strain-based estimation algorithm is using a linear correlation between strain and deflections, which can be expressed in a form of a transformation matrix. The objective function includes the terms of strain sensitivity and condition number of the transformation matrix between strain and deflection. In order to calculate the objective function, a simplified experimental model of the blade is constructed by interpolating the mode shape of a blade from modal testing. The interpolation method is effective considering a practical use to operating wind turbines' blades since it is not necessary to establish a finite element model of a blade. On the other hand, a sensor network with wireless connection with an open source hardware is developed. It is installed to a 300 W scale wind turbine and vibration of the blade on operation is investigated.
Seismic Noise Characterization in the Northern Mississippi Embayment
NASA Astrophysics Data System (ADS)
Wiley, S.; Deshon, H. R.; Boyd, O. S.
2009-12-01
We present a study of seismic noise sources present within the northern Mississippi embayment near the New Madrid Seismic Zone (NMSZ). The northern embayment contains up to 1 km of unconsolidated coastal plain sediments overlying bedrock, making it an inherently noisy environment for seismic stations. The area is known to display high levels of cultural noise caused by agricultural activity, passing cars, trains, etc. We characterize continuous broadband seismic noise data recorded for the months of March through June 2009 at six stations operated by the Cooperative New Madrid Seismic Network. We looked at a single horizontal component of data during nighttime hours, defined as 6:15PM to 5:45AM Central Standard Time, which we determined to be the lowest amplitude period of noise for the region. Hourly median amplitudes were compared to daily average wind speeds downloaded from the National Oceanic and Atmospheric Administration. We find a correlation between time periods of increased noise and days with high wind speeds, suggesting that wind is likely a prevalent source of seismic noise in the area. The effects of wind on seismic recordings may result from wind induced tree root movement which causes ground motion to be recorded at the vaults located ~3m below ground. Automated studies utilizing the local network or the EarthScope Transportable Array, scheduled to arrive in the area in 2010-11, should expect to encounter wind induced noise fluctuations and must account for this in their analysis.
The silent base flow and the sound sources in a laminar jet.
Sinayoko, Samuel; Agarwal, Anurag
2012-03-01
An algorithm to compute the silent base flow sources of sound in a jet is introduced. The algorithm is based on spatiotemporal filtering of the flow field and is applicable to multifrequency sources. It is applied to an axisymmetric laminar jet and the resulting sources are validated successfully. The sources are compared to those obtained from two classical acoustic analogies, based on quiescent and time-averaged base flows. The comparison demonstrates how the silent base flow sources shed light on the sound generation process. It is shown that the dominant source mechanism in the axisymmetric laminar jet is "shear-noise," which is a linear mechanism. The algorithm presented here could be applied to fully turbulent flows to understand the aerodynamic noise-generation mechanism. © 2012 Acoustical Society of America
NASA Astrophysics Data System (ADS)
Abbasi, Milad; Monnazzam, Mohammad Reza; Zakerian, Sayedabbolfazl; Yousefzadeh, Arsalan
2015-04-01
Noise from wind turbines is one of the most important factors affecting the health, welfare, and human sleep. This research was carried out to study the effect of wind turbine noise on workers' sleep disorder. For this, Manjil Wind Farm, because of the greater number of staff and turbines than other wind farms in Iran, was chosen as case study. A total number of 53 participants took part in this survey. They were classified into three groups of mechanics, security, and official. In this study, daytime sleepiness data of workers were gathered using Epworth Sleepiness Scales (ESS) was used to determine the level of daytime sleepiness among the workers. The 8-h equivalent sound level (LAeq,8h) was measured to determine the individuals' exposure at each occupational group. Finally, the effect of sound, age, and workers' experience on individuals' sleep disorder was analyzed through multiple regression analysis in the R software. The results showed that there was a positive and significant relationship between age, workers' experience, equivalent sound level, and the level of sleep disorder. When age is constant, sleep disorder will increase by 26% as per each 1 dB increase in equivalent sound level. In situations where equivalent sound level is constant, an increase of 17% in sleep disorder is occurred as per each year of work experience. Because of the difference in sound exposure in different occupational groups. The effect of noise in repairing group was about 6.5 times of official group and also 3.4 times of the security group. Sleep disorder effect caused by wind turbine noise in the security group is almost two times more than the official group. Unlike most studies on wind turbine noise that address the sleep disorder among inhabitants nearby wind farms, this study, for the first time in the world, examines the impact of wind turbine noise on sleep disorder of workers who are more closer to wind turbines and exposed to higher levels of noise. So despite all the good benefits of wind turbines, it can be stated that this technology has health risks for all those exposed to its sound. However, further research is needed to confirm the results of this study.
Na, Sung Dae; Wei, Qun; Seong, Ki Woong; Cho, Jin Ho; Kim, Myoung Nam
2018-01-01
The conventional methods of speech enhancement, noise reduction, and voice activity detection are based on the suppression of noise or non-speech components of the target air-conduction signals. However, air-conduced speech is hard to differentiate from babble or white noise signals. To overcome this problem, the proposed algorithm uses the bone-conduction speech signals and soft thresholding based on the Shannon entropy principle and cross-correlation of air- and bone-conduction signals. A new algorithm for speech detection and noise reduction is proposed, which makes use of the Shannon entropy principle and cross-correlation with the bone-conduction speech signals to threshold the wavelet packet coefficients of the noisy speech. The proposed method can be get efficient result by objective quality measure that are PESQ, RMSE, Correlation, SNR. Each threshold is generated by the entropy and cross-correlation approaches in the decomposed bands using the wavelet packet decomposition. As a result, the noise is reduced by the proposed method using the MATLAB simulation. To verify the method feasibility, we compared the air- and bone-conduction speech signals and their spectra by the proposed method. As a result, high performance of the proposed method is confirmed, which makes it quite instrumental to future applications in communication devices, noisy environment, construction, and military operations.
Effects of quantum noise in 4D-CT on deformable image registration and derived ventilation data
NASA Astrophysics Data System (ADS)
Latifi, Kujtim; Huang, Tzung-Chi; Feygelman, Vladimir; Budzevich, Mikalai M.; Moros, Eduardo G.; Dilling, Thomas J.; Stevens, Craig W.; van Elmpt, Wouter; Dekker, Andre; Zhang, Geoffrey G.
2013-11-01
Quantum noise is common in CT images and is a persistent problem in accurate ventilation imaging using 4D-CT and deformable image registration (DIR). This study focuses on the effects of noise in 4D-CT on DIR and thereby derived ventilation data. A total of six sets of 4D-CT data with landmarks delineated in different phases, called point-validated pixel-based breathing thorax models (POPI), were used in this study. The DIR algorithms, including diffeomorphic morphons (DM), diffeomorphic demons (DD), optical flow and B-spline, were used to register the inspiration phase to the expiration phase. The DIR deformation matrices (DIRDM) were used to map the landmarks. Target registration errors (TRE) were calculated as the distance errors between the delineated and the mapped landmarks. Noise of Gaussian distribution with different standard deviations (SD), from 0 to 200 Hounsfield Units (HU) in amplitude, was added to the POPI models to simulate different levels of quantum noise. Ventilation data were calculated using the ΔV algorithm which calculates the volume change geometrically based on the DIRDM. The ventilation images with different added noise levels were compared using Dice similarity coefficient (DSC). The root mean square (RMS) values of the landmark TRE over the six POPI models for the four DIR algorithms were stable when the noise level was low (SD <150 HU) and increased with added noise when the level is higher. The most accurate DIR was DD with a mean RMS of 1.5 ± 0.5 mm with no added noise and 1.8 ± 0.5 mm with noise (SD = 200 HU). The DSC values between the ventilation images with and without added noise decreased with the noise level, even when the noise level was relatively low. The DIR algorithm most robust with respect to noise was DM, with mean DSC = 0.89 ± 0.01 and 0.66 ± 0.02 for the top 50% ventilation volumes, as compared between 0 added noise and SD = 30 and 200 HU, respectively. Although the landmark TRE were stable with low noise, the differences between ventilation images increased with noise level, even when the noise was low, indicating ventilation imaging from 4D-CT was sensitive to image noise. Therefore, high quality 4D-CT is essential for accurate ventilation images.
The SARS algorithm: detrending CoRoT light curves with Sysrem using simultaneous external parameters
NASA Astrophysics Data System (ADS)
Ofir, Aviv; Alonso, Roi; Bonomo, Aldo Stefano; Carone, Ludmila; Carpano, Stefania; Samuel, Benjamin; Weingrill, Jörg; Aigrain, Suzanne; Auvergne, Michel; Baglin, Annie; Barge, Pierre; Borde, Pascal; Bouchy, Francois; Deeg, Hans J.; Deleuil, Magali; Dvorak, Rudolf; Erikson, Anders; Mello, Sylvio Ferraz; Fridlund, Malcolm; Gillon, Michel; Guillot, Tristan; Hatzes, Artie; Jorda, Laurent; Lammer, Helmut; Leger, Alain; Llebaria, Antoine; Moutou, Claire; Ollivier, Marc; Päetzold, Martin; Queloz, Didier; Rauer, Heike; Rouan, Daniel; Schneider, Jean; Wuchterl, Guenther
2010-05-01
Surveys for exoplanetary transits are usually limited not by photon noise but rather by the amount of red noise in their data. In particular, although the CoRoT space-based survey data are being carefully scrutinized, significant new sources of systematic noises are still being discovered. Recently, a magnitude-dependant systematic effect was discovered in the CoRoT data by Mazeh et al. and a phenomenological correction was proposed. Here we tie the observed effect to a particular type of effect, and in the process generalize the popular Sysrem algorithm to include external parameters in a simultaneous solution with the unknown effects. We show that a post-processing scheme based on this algorithm performs well and indeed allows for the detection of new transit-like signals that were not previously detected.
NASA Astrophysics Data System (ADS)
Lee, Donghoon; Choi, Sunghoon; Kim, Hee-Joung
2018-03-01
When processing medical images, image denoising is an important pre-processing step. Various image denoising algorithms have been developed in the past few decades. Recently, image denoising using the deep learning method has shown excellent performance compared to conventional image denoising algorithms. In this study, we introduce an image denoising technique based on a convolutional denoising autoencoder (CDAE) and evaluate clinical applications by comparing existing image denoising algorithms. We train the proposed CDAE model using 3000 chest radiograms training data. To evaluate the performance of the developed CDAE model, we compare it with conventional denoising algorithms including median filter, total variation (TV) minimization, and non-local mean (NLM) algorithms. Furthermore, to verify the clinical effectiveness of the developed denoising model with CDAE, we investigate the performance of the developed denoising algorithm on chest radiograms acquired from real patients. The results demonstrate that the proposed denoising algorithm developed using CDAE achieves a superior noise-reduction effect in chest radiograms compared to TV minimization and NLM algorithms, which are state-of-the-art algorithms for image noise reduction. For example, the peak signal-to-noise ratio and structure similarity index measure of CDAE were at least 10% higher compared to conventional denoising algorithms. In conclusion, the image denoising algorithm developed using CDAE effectively eliminated noise without loss of information on anatomical structures in chest radiograms. It is expected that the proposed denoising algorithm developed using CDAE will be effective for medical images with microscopic anatomical structures, such as terminal bronchioles.
Noise Power Spectrum Measurements in Digital Imaging With Gain Nonuniformity Correction.
Kim, Dong Sik
2016-08-01
The noise power spectrum (NPS) of an image sensor provides the spectral noise properties needed to evaluate sensor performance. Hence, measuring an accurate NPS is important. However, the fixed pattern noise from the sensor's nonuniform gain inflates the NPS, which is measured from images acquired by the sensor. Detrending the low-frequency fixed pattern is traditionally used to accurately measure NPS. However, detrending methods cannot remove high-frequency fixed patterns. In order to efficiently correct the fixed pattern noise, a gain-correction technique based on the gain map can be used. The gain map is generated using the average of uniformly illuminated images without any objects. Increasing the number of images n for averaging can reduce the remaining photon noise in the gain map and yield accurate NPS values. However, for practical finite n , the photon noise also significantly inflates NPS. In this paper, a nonuniform-gain image formation model is proposed and the performance of the gain correction is theoretically analyzed in terms of the signal-to-noise ratio (SNR). It is shown that the SNR is O(√n) . An NPS measurement algorithm based on the gain map is then proposed for any given n . Under a weak nonuniform gain assumption, another measurement algorithm based on the image difference is also proposed. For real radiography image detectors, the proposed algorithms are compared with traditional detrending and subtraction methods, and it is shown that as few as two images ( n=1 ) can provide an accurate NPS because of the compensation constant (1+1/n) .
NASA Astrophysics Data System (ADS)
Ma, Xunjun; Lu, Yang; Wang, Fengjiao
2017-09-01
This paper presents the recent advances in reduction of multifrequency noise inside helicopter cabin using an active structural acoustic control system, which is based on active gearbox struts technical approach. To attenuate the multifrequency gearbox vibrations and resulting noise, a new scheme of discrete model predictive sliding mode control has been proposed based on controlled auto-regressive moving average model. Its implementation only needs input/output data, hence a broader frequency range of controlled system is modelled and the burden on the state observer design is released. Furthermore, a new iteration form of the algorithm is designed, improving the developing efficiency and run speed. To verify the algorithm's effectiveness and self-adaptability, experiments of real-time active control are performed on a newly developed helicopter model system. The helicopter model can generate gear meshing vibration/noise similar to a real helicopter with specially designed gearbox and active struts. The algorithm's control abilities are sufficiently checked by single-input single-output and multiple-input multiple-output experiments via different feedback strategies progressively: (1) control gear meshing noise through attenuating vibrations at the key points on the transmission path, (2) directly control the gear meshing noise in the cabin using the actuators. Results confirm that the active control system is practical for cancelling multifrequency helicopter interior noise, which also weakens the frequency-modulation of the tones. For many cases, the attenuations of the measured noise exceed the level of 15 dB, with maximum reduction reaching 31 dB. Also, the control process is demonstrated to be smoother and faster.
NASA Astrophysics Data System (ADS)
Hu, Bingbing; Li, Bing
2016-02-01
It is very difficult to detect weak fault signatures due to the large amount of noise in a wind turbine system. Multiscale noise tuning stochastic resonance (MSTSR) has proved to be an effective way to extract weak signals buried in strong noise. However, the MSTSR method originally based on discrete wavelet transform (DWT) has disadvantages such as shift variance and the aliasing effects in engineering application. In this paper, the dual-tree complex wavelet transform (DTCWT) is introduced into the MSTSR method, which makes it possible to further improve the system output signal-to-noise ratio and the accuracy of fault diagnosis by the merits of DTCWT (nearly shift invariant and reduced aliasing effects). Moreover, this method utilizes the relationship between the two dual-tree wavelet basis functions, instead of matching the single wavelet basis function to the signal being analyzed, which may speed up the signal processing and be employed in on-line engineering monitoring. The proposed method is applied to the analysis of bearing outer ring and shaft coupling vibration signals carrying fault information. The results confirm that the method performs better in extracting the fault features than the original DWT-based MSTSR, the wavelet transform with post spectral analysis, and EMD-based spectral analysis methods.
Simulation for noise cancellation using LMS adaptive filter
NASA Astrophysics Data System (ADS)
Lee, Jia-Haw; Ooi, Lu-Ean; Ko, Ying-Hao; Teoh, Choe-Yung
2017-06-01
In this paper, the fundamental algorithm of noise cancellation, Least Mean Square (LMS) algorithm is studied and enhanced with adaptive filter. The simulation of the noise cancellation using LMS adaptive filter algorithm is developed. The noise corrupted speech signal and the engine noise signal are used as inputs for LMS adaptive filter algorithm. The filtered signal is compared to the original noise-free speech signal in order to highlight the level of attenuation of the noise signal. The result shows that the noise signal is successfully canceled by the developed adaptive filter. The difference of the noise-free speech signal and filtered signal are calculated and the outcome implies that the filtered signal is approaching the noise-free speech signal upon the adaptive filtering. The frequency range of the successfully canceled noise by the LMS adaptive filter algorithm is determined by performing Fast Fourier Transform (FFT) on the signals. The LMS adaptive filter algorithm shows significant noise cancellation at lower frequency range.
Phase retrieval using regularization method in intensity correlation imaging
NASA Astrophysics Data System (ADS)
Li, Xiyu; Gao, Xin; Tang, Jia; Lu, Changming; Wang, Jianli; Wang, Bin
2014-11-01
Intensity correlation imaging(ICI) method can obtain high resolution image with ground-based low precision mirrors, in the imaging process, phase retrieval algorithm should be used to reconstituted the object's image. But the algorithm now used(such as hybrid input-output algorithm) is sensitive to noise and easy to stagnate. However the signal-to-noise ratio of intensity interferometry is low especially in imaging astronomical objects. In this paper, we build the mathematical model of phase retrieval and simplified it into a constrained optimization problem of a multi-dimensional function. New error function was designed by noise distribution and prior information using regularization method. The simulation results show that the regularization method can improve the performance of phase retrieval algorithm and get better image especially in low SNR condition
A clustering algorithm for determining community structure in complex networks
NASA Astrophysics Data System (ADS)
Jin, Hong; Yu, Wei; Li, ShiJun
2018-02-01
Clustering algorithms are attractive for the task of community detection in complex networks. DENCLUE is a representative density based clustering algorithm which has a firm mathematical basis and good clustering properties allowing for arbitrarily shaped clusters in high dimensional datasets. However, this method cannot be directly applied to community discovering due to its inability to deal with network data. Moreover, it requires a careful selection of the density parameter and the noise threshold. To solve these issues, a new community detection method is proposed in this paper. First, we use a spectral analysis technique to map the network data into a low dimensional Euclidean Space which can preserve node structural characteristics. Then, DENCLUE is applied to detect the communities in the network. A mathematical method named Sheather-Jones plug-in is chosen to select the density parameter which can describe the intrinsic clustering structure accurately. Moreover, every node on the network is meaningful so there were no noise nodes as a result the noise threshold can be ignored. We test our algorithm on both benchmark and real-life networks, and the results demonstrate the effectiveness of our algorithm over other popularity density based clustering algorithms adopted to community detection.
Evaluation of annoyance from the wind turbine noise: a pilot study.
Pawlaczyk-Łuszczyńska, Małgorzata; Dudarewicz, Adam; Zaborowski, Kamil; Zamojska-Daniszewska, Małgorzata; Waszkowska, Małgorzata
2014-06-01
The overall aim of this study was to evaluate the perception of and annoyance due to the noise from wind turbines in populated areas of Poland. The study group comprised 156 subjects. All subjects were asked to fill in a questionnaire developed to enable evaluation of their living conditions, including prevalence of annoyance due to the noise from wind turbines and the self-assessment of physical health and well-being. In addition, current mental health status of the respondents was assessed using Goldberg General Health Questionnaire GHQ-12. For areas where the respondents lived, A-weighted sound pressure levels (SPLs) were calculated as the sum of the contributions from the wind power plants in the specific area. It has been shown that the wind turbine noise at the calculated A-weighted SPL of 30-48 dB was noticed outdoors by 60.3% of the respondents. This noise was perceived as annoying outdoors by 33.3% of the respondents, while indoors by 20.5% of them. The odds ratio of being annoyed outdoors by the wind turbine noise increased along with increasing SPLs (OR = 2.1; 95% CI: 1.22-3.62). The subjects' attitude to wind turbines in general and sensitivity to landscape littering was found to have significant impact on the perceived annoyance. About 63% of variance in outdoors annoyance assessment might be explained by the noise level, general attitude to wind turbines and sensitivity to landscape littering. Before firm conclusions can be drawn further studies are needed, including a larger number of respondents with different living environments (i.e., dissimilar terrain, different urbanization and road traffic intensity).
2006-01-01
information of the robot (Figure 1) acquired via laser-based localization techniques. The results are maps of the global soundscape . The algorithmic...environments than noise maps. Furthermore, provided the acoustic localization algorithm can detect the sources, the soundscape can be mapped with many...gathering information about the auditory soundscape in which it is working. In addition to robustness in the presence of noise, it has also been
An algorithm that improves speech intelligibility in noise for normal-hearing listeners.
Kim, Gibak; Lu, Yang; Hu, Yi; Loizou, Philipos C
2009-09-01
Traditional noise-suppression algorithms have been shown to improve speech quality, but not speech intelligibility. Motivated by prior intelligibility studies of speech synthesized using the ideal binary mask, an algorithm is proposed that decomposes the input signal into time-frequency (T-F) units and makes binary decisions, based on a Bayesian classifier, as to whether each T-F unit is dominated by the target or the masker. Speech corrupted at low signal-to-noise ratio (SNR) levels (-5 and 0 dB) using different types of maskers is synthesized by this algorithm and presented to normal-hearing listeners for identification. Results indicated substantial improvements in intelligibility (over 60% points in -5 dB babble) over that attained by human listeners with unprocessed stimuli. The findings from this study suggest that algorithms that can estimate reliably the SNR in each T-F unit can improve speech intelligibility.
Chung, King; Nelson, Lance; Teske, Melissa
2012-09-01
The purpose of this study was to investigate whether a multichannel adaptive directional microphone and a modulation-based noise reduction algorithm could enhance cochlear implant performance in reverberant noise fields. A hearing aid was modified to output electrical signals (ePreprocessor) and a cochlear implant speech processor was modified to receive electrical signals (eProcessor). The ePreprocessor was programmed to flat frequency response and linear amplification. Cochlear implant listeners wore the ePreprocessor-eProcessor system in three reverberant noise fields: 1) one noise source with variable locations; 2) three noise sources with variable locations; and 3) eight evenly spaced noise sources from 0° to 360°. Listeners' speech recognition scores were tested when the ePreprocessor was programmed to omnidirectional microphone (OMNI), omnidirectional microphone plus noise reduction algorithm (OMNI + NR), and adaptive directional microphone plus noise reduction algorithm (ADM + NR). They were also tested with their own cochlear implant speech processor (CI_OMNI) in the three noise fields. Additionally, listeners rated overall sound quality preferences on recordings made in the noise fields. Results indicated that ADM+NR produced the highest speech recognition scores and the most preferable rating in all noise fields. Factors requiring attention in the hearing aid-cochlear implant integration process are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Wind reconstruction algorithm for Viking Lander 1
NASA Astrophysics Data System (ADS)
Kynkäänniemi, Tuomas; Kemppinen, Osku; Harri, Ari-Matti; Schmidt, Walter
2017-06-01
The wind measurement sensors of Viking Lander 1 (VL1) were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.
NASA Technical Reports Server (NTRS)
Camp, D. W.
1977-01-01
The derivation of simulated Jimsphere wind profiles from low-frequency rawinsonde data and a generated set of white noise data are presented. A computer program is developed to model high-resolution wind profiles based on the statistical properties of data from the Kennedy Space Center, Florida. Comparison of the measured Jimsphere data, rawinsonde data, and the simulated profiles shows excellent agreement.
Experimental characterization of vertical-axis wind turbine noise.
Pearson, C E; Graham, W R
2015-01-01
Vertical-axis wind turbines are wind-energy generators suitable for use in urban environments. Their associated noise thus needs to be characterized and understood. As a first step, this work investigates the relative importance of harmonic and broadband contributions via model-scale wind-tunnel experiments. Cross-spectra from a pair of flush-mounted wall microphones exhibit both components, but further analysis shows that the broadband dominates at frequencies corresponding to the audible range in full-scale operation. This observation has detrimental implications for noise-prediction reliability and hence also for acoustic design optimization.
Spectral Discrete Probability Density Function of Measured Wind Turbine Noise in the Far Field
Ashtiani, Payam; Denison, Adelaide
2015-01-01
Of interest is the spectral character of wind turbine noise at typical residential set-back distances. In this paper, a spectral statistical analysis has been applied to immission measurements conducted at three locations. This method provides discrete probability density functions for the Turbine ONLY component of the measured noise. This analysis is completed for one-third octave sound levels, at integer wind speeds, and is compared to existing metrics for measuring acoustic comfort as well as previous discussions on low-frequency noise sources. PMID:25905097
NASA Technical Reports Server (NTRS)
Holm, R. G.; Langenbrunner, L. E.; Mccann, E. O.
1981-01-01
The inlet radiated noise of a turbofan engine was studied. The principal research objectives were to characterize or suppress such noise with particular regard to its tonal characteristics. The major portion of this research was conducted by using ground-based static testing without simulation of aircraft forward speed or aircraft installation-related aeroacoustic effects.
Effects of wind-tunnel noise on swept-cylinder transition at Mach 3.5
NASA Technical Reports Server (NTRS)
Creel, T. R., Jr.; Beckwith, I. E.; Chen, F.-J.
1986-01-01
Transition data are reported for circular cylinders at swept angles of 45 and 60 degrees in the Mach 3.5 pilot-low-disturbance tunnel where free-stream noise levels are varied from approximately .05-0.5 percent in terms of the rms fluctuating pressure normalized by the mean static pressure. Results indicate that end plate or boundary layer trip disturbances at the upstream end of the cylinders cause turbulent flow along the entire test Reynolds number range of 10-170 thousand per inch. With all end plate and trip disturbances removed, transition at the attachment lines occurred at free-stream Reynolds numbers based on diameters of about 70-80 thousand, independent of stream noise levels. The installation of small trips on the attachement lines caused transition at lower Reynolds numbers, depending on both the roughness height and the wind tunnel noise level.
Comparison of two head-up displays in simulated standard and noise abatement night visual approaches
NASA Technical Reports Server (NTRS)
Cronn, F.; Palmer, E. A., III
1975-01-01
Situation and command head-up displays were evaluated for both standard and two segment noise abatement night visual approaches in a fixed base simulation of a DC-8 transport aircraft. The situation display provided glide slope and pitch attitude information. The command display provided glide slope information and flight path commands to capture a 3 deg glide slope. Landing approaches were flown in both zero wind and wind shear conditions. For both standard and noise abatement approaches, the situation display provided greater glidepath accuracy in the initial phase of the landing approaches, whereas the command display was more effective in the final approach phase. Glidepath accuracy was greater for the standard approaches than for the noise abatement approaches in all phases of the landing approach. Most of the pilots preferred the command display and the standard approach. Substantial agreement was found between each pilot's judgment of his performance and his actual performance.
NASA Astrophysics Data System (ADS)
Zarifi, Keyvan; Gershman, Alex B.
2006-12-01
We analyze the performance of two popular blind subspace-based signature waveform estimation techniques proposed by Wang and Poor and Buzzi and Poor for direct-sequence code division multiple-access (DS-CDMA) systems with unknown correlated noise. Using the first-order perturbation theory, analytical expressions for the mean-square error (MSE) of these algorithms are derived. We also obtain simple high SNR approximations of the MSE expressions which explicitly clarify how the performance of these techniques depends on the environmental parameters and how it is related to that of the conventional techniques that are based on the standard white noise assumption. Numerical examples further verify the consistency of the obtained analytical results with simulation results.
Giant-FOG: A new player in ground motion instrumentation
NASA Astrophysics Data System (ADS)
Guattari, F.; de Toldi, E.; Bigueur, A.; Decitre, J. B.; Ponceau, D.; Sèbe, O.; Frenois, A.; Schindelé, F.; Moluçon, C.; Gaffet, S.; Ducloux, E.; Lefèvre, H.
2017-12-01
Based on recent experiences developing very low noise fiber-optic gyroscopes (FOG), first performance results on very large fiber-optic coils of up to 1m diameter are presented. The goal for constructing large FOGs is to evaluate experimentally the physical limits of this kind of technology and to reach the lowest possible noise. While these experiments are probing the fundamental limits of the FOG technology, they also serves as a first step for a cost effective very low noise laboratory rotational seismometer, which could be a game changer in instrumentation of ground motion. Build a Giant-FOG has several difficulties: The first is winding of the coil, the second concerns the mechanical substrate, and third is related to the measurement. - To our knowledge, a winding machine, large enough to wind coil of a 1 meter diameter, does not exist, but thanks to the iXblue expertise in the manufacturing of winding machines and calibration tables, a hydride system has been designed, merging these two technology to fulfill the requirement of winding a large coil on an adequate rotational platform. The characterization of the wobbles of the system will be presented, since this is a critical parameter for the winding and ultimately the performance. - To achieve the highest attainable measurement sensitivity to the real ground rotation, the design of the mechanical substrate of the coil is critical to reduce as much as possible the sensor sensitivities to environmental noises. A preliminary assessment of the global noise performance of the 1m diameter FOG sensor will be presented. - To demonstrate the on-site performance, the low noise inter-disciplinary underground laboratory (LSBB, Rustrel, France), with a dense array of precisely oriented broad-band seismometers, provides the possibility to compare Large FOG rotation records with Array Derivated Rotation measurement method. Results of different prototypes during the development process will be presented to underline the applicability of each technological response to the Large-FOG requirements. Finally we conclude with presentation of the achieved results with a 1m scale diameter FOG having more than 10km of fiber length.
Bai, Mingsian R; Hsieh, Ping-Ju; Hur, Kur-Nan
2009-02-01
The performance of the minimum mean-square error noise reduction (MMSE-NR) algorithm in conjunction with time-recursive averaging (TRA) for noise estimation is found to be very sensitive to the choice of two recursion parameters. To address this problem in a more systematic manner, this paper proposes an optimization method to efficiently search the optimal parameters of the MMSE-TRA-NR algorithms. The objective function is based on a regression model, whereas the optimization process is carried out with the simulated annealing algorithm that is well suited for problems with many local optima. Another NR algorithm proposed in the paper employs linear prediction coding as a preprocessor for extracting the correlated portion of human speech. Objective and subjective tests were undertaken to compare the optimized MMSE-TRA-NR algorithm with several conventional NR algorithms. The results of subjective tests were processed by using analysis of variance to justify the statistic significance. A post hoc test, Tukey's Honestly Significant Difference, was conducted to further assess the pairwise difference between the NR algorithms.
Parameter estimates in binary black hole collisions using neural networks
NASA Astrophysics Data System (ADS)
Carrillo, M.; Gracia-Linares, M.; González, J. A.; Guzmán, F. S.
2016-10-01
We present an algorithm based on artificial neural networks (ANNs), that estimates the mass ratio in a binary black hole collision out of given gravitational wave (GW) strains. In this analysis, the ANN is trained with a sample of GW signals generated with numerical simulations. The effectiveness of the algorithm is evaluated with GWs generated also with simulations for given mass ratios unknown to the ANN. We measure the accuracy of the algorithm in the interpolation and extrapolation regimes. We present the results for noise free signals and signals contaminated with Gaussian noise, in order to foresee the dependence of the method accuracy in terms of the signal to noise ratio.
A Novel Speed Compensation Method for ISAR Imaging with Low SNR
Liu, Yongxiang; Zhang, Shuanghui; Zhu, Dekang; Li, Xiang
2015-01-01
In this paper, two novel speed compensation algorithms for ISAR imaging under a low signal-to-noise ratio (SNR) condition have been proposed, which are based on the cubic phase function (CPF) and the integrated cubic phase function (ICPF), respectively. These two algorithms can estimate the speed of the target from the wideband radar echo directly, which breaks the limitation of speed measuring in a radar system. With the utilization of non-coherent accumulation, the ICPF-based speed compensation algorithm is robust to noise and can meet the requirement of speed compensation for ISAR imaging under a low SNR condition. Moreover, a fast searching implementation strategy, which consists of coarse search and precise search, has been introduced to decrease the computational burden of speed compensation based on CPF and ICPF. Experimental results based on radar data validate the effectiveness of the proposed algorithms. PMID:26225980
Damage identification of a TLP floating wind turbine by meta-heuristic algorithms
NASA Astrophysics Data System (ADS)
Ettefagh, M. M.
2015-12-01
Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring (SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP (Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms (GA), Artificial Immune System (AIS), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine (TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine.
A directional microphone array for acoustic studies of wind tunnel models
NASA Technical Reports Server (NTRS)
Soderman, P. T.; Noble, S. C.
1974-01-01
An end-fire microphone array that utilizes a digital time delay system has been designed and evaluated for measuring noise in wind tunnels. The directional response of both a four- and eight-element linear array of microphones has enabled substantial rejection of background noise and reverberations in the NASA Ames 40- by 80-foot wind tunnel. In addition, it is estimated that four- and eight-element arrays reject 6 and 9 dB, respectively, of microphone wind noise, as compared with a conventional omnidirectional microphone with nose cone. Array response to two types of jet engine models in the wind tunnel is presented. Comparisons of array response to loudspeakers in the wind tunnel and in free field are made.
Incorporating signal-dependent noise for hyperspectral target detection
NASA Astrophysics Data System (ADS)
Morman, Christopher J.; Meola, Joseph
2015-05-01
The majority of hyperspectral target detection algorithms are developed from statistical data models employing stationary background statistics or white Gaussian noise models. Stationary background models are inaccurate as a result of two separate physical processes. First, varying background classes often exist in the imagery that possess different clutter statistics. Many algorithms can account for this variability through the use of subspaces or clustering techniques. The second physical process, which is often ignored, is a signal-dependent sensor noise term. For photon counting sensors that are often used in hyperspectral imaging systems, sensor noise increases as the measured signal level increases as a result of Poisson random processes. This work investigates the impact of this sensor noise on target detection performance. A linear noise model is developed describing sensor noise variance as a linear function of signal level. The linear noise model is then incorporated for detection of targets using data collected at Wright Patterson Air Force Base.
NASA Astrophysics Data System (ADS)
Acernese, F.; Barone, F.; de Rosa, M.; De Rosa, R.; Eleuteri, A.; Milano, L.; Tagliaferri, R.
2002-06-01
In this paper, a neural network-based approach is presented for the real time noise identification of a GW laser interferometric antenna. The 40 m Caltech laser interferometer output data provide a realistic test bed for noise identification algorithms because of the presence of many relevant effects: violin resonances in the suspensions, main power harmonics, ring-down noise from servo control systems, electronic noises, glitches and so on. These effects can be assumed to be present in all the first interferometric long baseline GW antennas such as VIRGO, LIGO, GEO and TAMA. For noise identification, we used the Caltech-40 m laser interferometer data. The results we obtained are pretty good notwithstanding the high initial computational cost. The algorithm we propose is general and robust, taking into account that it does not require a priori information on the data, nor a precise model, and it constitutes a powerful tool for time series data analysis.
On the Analysis of Wind-Induced Noise in Seismological Recordings
NASA Astrophysics Data System (ADS)
Lott, Friederike F.; Ritter, Joachim R. R.; Al-Qaryouti, Mahmoud; Corsmeier, Ulrich
2017-03-01
Atmospheric processes, ranging from microscale turbulence to severe storms on the synoptic scale, impact the continuous ground motion of the earth and have the potential to induce strong broad-band noise in seismological recordings. We designed a target-oriented experiment to quantify the influence of wind on ground motion velocity in the Dead Sea valley. For the period from March 2014 to February 2015, a seismological array, consisting of 15 three-component short-period and broad-band stations, was operated near Madaba, Jordan, complemented by one meteorological tower providing synchronized, continuous three-component measurements of wind speed. Results reveal a pronounced, predominantly linear increase of the logarithmic power of ground motion velocity with rising mean horizontal wind speed at all recording stations. Measurements in rough, mountainous terrain further identify a strong dependency of wind-induced noise on surface characteristics, such as topography and, therefore, demonstrate the necessity to consider wind direction as well. To assess the noise level of seismological recordings with respect to a dynamically changing wind field, we develop a methodology to account for the dependency of power spectral density of ground motion velocity on wind speed and wind direction for long, statistically significant periods. We further introduce the quantitative measure of the ground motion susceptibility to estimate the vulnerability of seismological recordings to the presence of wind.
NASA Technical Reports Server (NTRS)
Molusis, J. A.
1982-01-01
An on line technique is presented for the identification of rotor blade modal damping and frequency from rotorcraft random response test data. The identification technique is based upon a recursive maximum likelihood (RML) algorithm, which is demonstrated to have excellent convergence characteristics in the presence of random measurement noise and random excitation. The RML technique requires virtually no user interaction, provides accurate confidence bands on the parameter estimates, and can be used for continuous monitoring of modal damping during wind tunnel or flight testing. Results are presented from simulation random response data which quantify the identified parameter convergence behavior for various levels of random excitation. The data length required for acceptable parameter accuracy is shown to depend upon the amplitude of random response and the modal damping level. Random response amplitudes of 1.25 degrees to .05 degrees are investigated. The RML technique is applied to hingeless rotor test data. The inplane lag regressing mode is identified at different rotor speeds. The identification from the test data is compared with the simulation results and with other available estimates of frequency and damping.
Prediction of internal and external noise fields for blowdown wind tunnels.
NASA Technical Reports Server (NTRS)
Hosier, R. N.; Mayes, W. H.
1972-01-01
Empirical methods have been developed to estimate the test section noise levels and the outside noise radiation patterns of blowdown wind tunnels. Included are considerations of noise generation by control valves, burners, turbulent boundary layers, and exhaust jets as appropriate. Sample test section and radiation field noise estimates are presented. The external estimates are noted to be in good agreement with the limited amount of available measurements.
Adaptive noise correction of dual-energy computed tomography images.
Maia, Rafael Simon; Jacob, Christian; Hara, Amy K; Silva, Alvin C; Pavlicek, William; Mitchell, J Ross
2016-04-01
Noise reduction in material density images is a necessary preprocessing step for the correct interpretation of dual-energy computed tomography (DECT) images. In this paper we describe a new method based on a local adaptive processing to reduce noise in DECT images An adaptive neighborhood Wiener (ANW) filter was implemented and customized to use local characteristics of material density images. The ANW filter employs a three-level wavelet approach, combined with the application of an anisotropic diffusion filter. Material density images and virtual monochromatic images are noise corrected with two resulting noise maps. The algorithm was applied and quantitatively evaluated in a set of 36 images. From that set of images, three are shown here, and nine more are shown in the online supplementary material. Processed images had higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than the raw material density images. The average improvements in SNR and CNR for the material density images were 56.5 and 54.75%, respectively. We developed a new DECT noise reduction algorithm. We demonstrate throughout a series of quantitative analyses that the algorithm improves the quality of material density images and virtual monochromatic images.
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.; Ray, Taylor J.
2013-01-01
Two versions of airborne wind profiling algorithms for the pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. Each algorithm utilizes different number of line-of-sight (LOS) lidar returns while compensating the adverse effects of different coordinate systems between the aircraft and the Earth. One of the two algorithms APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) estimates wind products using two LOSs. The other algorithm utilizes five LOSs. The airborne lidar data were acquired during the NASA's Genesis and Rapid Intensification Processes (GRIP) campaign in 2010. The wind profile products from the two algorithms are compared with the dropsonde data to validate their results.
NASA Astrophysics Data System (ADS)
Lieb, Florian; Stark, Hans-Georg; Thielemann, Christiane
2017-06-01
Objective. Spike detection from extracellular recordings is a crucial preprocessing step when analyzing neuronal activity. The decision whether a specific part of the signal is a spike or not is important for any kind of other subsequent preprocessing steps, like spike sorting or burst detection in order to reduce the classification of erroneously identified spikes. Many spike detection algorithms have already been suggested, all working reasonably well whenever the signal-to-noise ratio is large enough. When the noise level is high, however, these algorithms have a poor performance. Approach. In this paper we present two new spike detection algorithms. The first is based on a stationary wavelet energy operator and the second is based on the time-frequency representation of spikes. Both algorithms are more reliable than all of the most commonly used methods. Main results. The performance of the algorithms is confirmed by using simulated data, resembling original data recorded from cortical neurons with multielectrode arrays. In order to demonstrate that the performance of the algorithms is not restricted to only one specific set of data, we also verify the performance using a simulated publicly available data set. We show that both proposed algorithms have the best performance under all tested methods, regardless of the signal-to-noise ratio in both data sets. Significance. This contribution will redound to the benefit of electrophysiological investigations of human cells. Especially the spatial and temporal analysis of neural network communications is improved by using the proposed spike detection algorithms.
Reduction of Air Pollution Levels Downwind of a Road with an Upwind Noise Barrier
We propose a dispersion model to characterize the impact of an upwind solid noise barrier next to a highway on air pollution concentrations downwind of the road. The model is based on data from wind tunnel experiments conducted by Heist et al. (2009). The model assumes that the...
Removal of impulse noise clusters from color images with local order statistics
NASA Astrophysics Data System (ADS)
Ruchay, Alexey; Kober, Vitaly
2017-09-01
This paper proposes a novel algorithm for restoring images corrupted with clusters of impulse noise. The noise clusters often occur when the probability of impulse noise is very high. The proposed noise removal algorithm consists of detection of bulky impulse noise in three color channels with local order statistics followed by removal of the detected clusters by means of vector median filtering. With the help of computer simulation we show that the proposed algorithm is able to effectively remove clustered impulse noise. The performance of the proposed algorithm is compared in terms of image restoration metrics with that of common successful algorithms.
The Effects of Vision-Related Aspects on Noise Perception of Wind Turbines in Quiet Areas
Maffei, Luigi; Iachini, Tina; Masullo, Massimiliano; Aletta, Francesco; Sorrentino, Francesco; Senese, Vincenzo Paolo; Ruotolo, Francesco
2013-01-01
Preserving the soundscape and geographic extension of quiet areas is a great challenge against the wide-spreading of environmental noise. The E.U. Environmental Noise Directive underlines the need to preserve quiet areas as a new aim for the management of noise in European countries. At the same time, due to their low population density, rural areas characterized by suitable wind are considered appropriate locations for installing wind farms. However, despite the fact that wind farms are represented as environmentally friendly projects, these plants are often viewed as visual and audible intruders, that spoil the landscape and generate noise. Even though the correlations are still unclear, it is obvious that visual impacts of wind farms could increase due to their size and coherence with respect to the rural/quiet environment. In this paper, by using the Immersive Virtual Reality technique, some visual and acoustical aspects of the impact of a wind farm on a sample of subjects were assessed and analyzed. The subjects were immersed in a virtual scenario that represented a situation of a typical rural outdoor scenario that they experienced at different distances from the wind turbines. The influence of the number and the colour of wind turbines on global, visual and auditory judgment were investigated. The main results showed that, regarding the number of wind turbines, the visual component has a weak effect on individual reactions, while the colour influences both visual and auditory individual reactions, although in a different way. PMID:23624578
The effects of vision-related aspects on noise perception of wind turbines in quiet areas.
Maffei, Luigi; Iachini, Tina; Masullo, Massimiliano; Aletta, Francesco; Sorrentino, Francesco; Senese, Vincenzo Paolo; Ruotolo, Francesco
2013-04-26
Preserving the soundscape and geographic extension of quiet areas is a great challenge against the wide-spreading of environmental noise. The E.U. Environmental Noise Directive underlines the need to preserve quiet areas as a new aim for the management of noise in European countries. At the same time, due to their low population density, rural areas characterized by suitable wind are considered appropriate locations for installing wind farms. However, despite the fact that wind farms are represented as environmentally friendly projects, these plants are often viewed as visual and audible intruders, that spoil the landscape and generate noise. Even though the correlations are still unclear, it is obvious that visual impacts of wind farms could increase due to their size and coherence with respect to the rural/quiet environment. In this paper, by using the Immersive Virtual Reality technique, some visual and acoustical aspects of the impact of a wind farm on a sample of subjects were assessed and analyzed. The subjects were immersed in a virtual scenario that represented a situation of a typical rural outdoor scenario that they experienced at different distances from the wind turbines. The influence of the number and the colour of wind turbines on global, visual and auditory judgment were investigated. The main results showed that, regarding the number of wind turbines, the visual component has a weak effect on individual reactions, while the colour influences both visual and auditory individual reactions, although in a different way.
Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour
2012-09-01
In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Industrial wind turbines and adverse health effects.
Jeffery, Roy D; Krogh, Carmen M E; Horner, Brett
2014-01-01
Some people living in the environs of industrial wind turbines (IWTs) report experiencing adverse health and socioeconomic effects. This review considers the hypothesis that annoyance from audible IWTs is the cause of these adverse health effects. We searched PubMed and Google Scholar for articles published since 2000 that included the terms "wind turbine health," "wind turbine infrasound," "wind turbine annoyance," "noise annoyance" or "low frequency noise" in the title or abstract. Industrial wind turbines produce sound that is perceived to be more annoying than other sources of sound. Reported effects from exposure to IWTs are consistent with well-known stress effects from persistent unwanted sound. If placed too close to residents, IWTs can negatively affect the physical, mental and social well-being of people. There is sufficient evidence to support the conclusion that noise from audible IWTs is a potential cause of health effects. Inaudible low-frequency noise and infrasound from IWTs cannot be ruled out as plausible causes of health effects.
Low-frequency outdoor-indoor noise level difference for wind turbine assessment.
Thorsson, Pontus; Persson Waye, Kerstin; Smith, Michael; Ögren, Mikael; Pedersen, Eja; Forssén, Jens
2018-03-01
To increase the understanding of wind turbine noise on sleep, human physiological reactions need to be studied in a controlled laboratory setting. The paper presents an outdoor-indoor noise level difference as a function of frequency, applicable to creating wind turbine indoor sounds with the outdoor sounds as input. For this, a combination of measurement data and modeling results has been used. The suggested data are provided in a table.
NASA Astrophysics Data System (ADS)
Issautier, Karine; Ongala-Edoumou, Samuel; Moncuquet, Michel
2016-04-01
The quasi-thermal noise (QTN) method consists in measuring the electrostatic fluctuations produced by the thermal motion of the ambient particles. This noise is detected with a sensitive wave receiver and measured at the terminal of a passive electric antenna, which is immersed in a stable plasma. The analysis of the so-called QTN provides in situ measurements, mainly the total electron density, with a good accuracy, and thermal temperature in a large number of space media. We create a preliminary electron database to analyse the anti-correlation between electron density and temperature deduced from WIND perigees in the Earth's plasmasphere. We analyse the radio power spectra measured by the Thermal Noise Receiver (TNR), using the 100-m long dipole antenna, onboard WIND spacecraft. We develop a systematic routine to determine the electron density, core and halo temperature and the magnitude of the magnetic field based on QTN in Bernstein modes. Indeed, the spectra are weakly banded between gyroharmonics below the upper hybrid frequency, from which we derive the local electron density. From the gyrofrequency determination, we obtain an independent measure of the magnetic field magnitude, which is in close agreement with the onboard magnetometer.
Wang, Haibin; Zha, Daifeng; Li, Peng; Xie, Huicheng; Mao, Lili
2017-01-01
Stockwell transform(ST) time-frequency representation(ST-TFR) is a time frequency analysis method which combines short time Fourier transform with wavelet transform, and ST time frequency filtering(ST-TFF) method which takes advantage of time-frequency localized spectra can separate the signals from Gaussian noise. The ST-TFR and ST-TFF methods are used to analyze the fault signals, which is reasonable and effective in general Gaussian noise cases. However, it is proved that the mechanical bearing fault signal belongs to Alpha(α) stable distribution process(1 < α < 2) in this paper, even the noise also is α stable distribution in some special cases. The performance of ST-TFR method will degrade under α stable distribution noise environment, following the ST-TFF method fail. Hence, a new fractional lower order ST time frequency representation(FLOST-TFR) method employing fractional lower order moment and ST and inverse FLOST(IFLOST) are proposed in this paper. A new FLOST time frequency filtering(FLOST-TFF) algorithm based on FLOST-TFR method and IFLOST is also proposed, whose simplified method is presented in this paper. The discrete implementation of FLOST-TFF algorithm is deduced, and relevant steps are summarized. Simulation results demonstrate that FLOST-TFR algorithm is obviously better than the existing ST-TFR algorithm under α stable distribution noise, which can work better under Gaussian noise environment, and is robust. The FLOST-TFF method can effectively filter out α stable distribution noise, and restore the original signal. The performance of FLOST-TFF algorithm is better than the ST-TFF method, employing which mixed MSEs are smaller when α and generalized signal noise ratio(GSNR) change. Finally, the FLOST-TFR and FLOST-TFF methods are applied to analyze the outer race fault signal and extract their fault features under α stable distribution noise, where excellent performances can be shown. PMID:28406916
Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution
NASA Astrophysics Data System (ADS)
Guo, Ying; Xie, Cailang; Huang, Peng; Li, Jiawei; Zhang, Ling; Huang, Duan; Zeng, Guihua
2018-05-01
This paper deals with a channel-parameter estimation for continuous-variable quantum key distribution (CV-QKD) over a satellite-to-submarine link. In particular, we focus on the channel transmittances and the excess noise which are affected by atmospheric turbulence, surface roughness, zenith angle of the satellite, wind speed, submarine depth, etc. The estimation method is based on proposed algorithms and is applied to low-Earth orbits using the Monte Carlo approach. For light at 550 nm with a repetition frequency of 1 MHz, the effects of the estimated parameters on the performance of the CV-QKD system are assessed by a simulation by comparing the secret key bit rate in the daytime and at night. Our results show the feasibility of satellite-to-submarine CV-QKD, providing an unconditionally secure approach to achieve global networks for underwater communications.
An effective non-rigid registration approach for ultrasound image based on "demons" algorithm.
Liu, Yan; Cheng, H D; Huang, Jianhua; Zhang, Yingtao; Tang, Xianglong; Tian, Jiawei
2013-06-01
Medical image registration is an important component of computer-aided diagnosis system in diagnostics, therapy planning, and guidance of surgery. Because of its low signal/noise ratio (SNR), ultrasound (US) image registration is a difficult task. In this paper, a fully automatic non-rigid image registration algorithm based on demons algorithm is proposed for registration of ultrasound images. In the proposed method, an "inertia force" derived from the local motion trend of pixels in a Moore neighborhood system is produced and integrated into optical flow equation to estimate the demons force, which is helpful to handle the speckle noise and preserve the geometric continuity of US images. In the experiment, a series of US images and several similarity measure metrics are utilized for evaluating the performance. The experimental results demonstrate that the proposed method can register ultrasound images efficiently, robust to noise, quickly and automatically.
A Matrix Pencil Algorithm Based Multiband Iterative Fusion Imaging Method
NASA Astrophysics Data System (ADS)
Zou, Yong Qiang; Gao, Xun Zhang; Li, Xiang; Liu, Yong Xiang
2016-01-01
Multiband signal fusion technique is a practicable and efficient way to improve the range resolution of ISAR image. The classical fusion method estimates the poles of each subband signal by the root-MUSIC method, and some good results were get in several experiments. However, this method is fragile in noise for the proper poles could not easy to get in low signal to noise ratio (SNR). In order to eliminate the influence of noise, this paper propose a matrix pencil algorithm based method to estimate the multiband signal poles. And to deal with mutual incoherent between subband signals, the incoherent parameters (ICP) are predicted through the relation of corresponding poles of each subband. Then, an iterative algorithm which aimed to minimize the 2-norm of signal difference is introduced to reduce signal fusion error. Applications to simulate dada verify that the proposed method get better fusion results at low SNR.
A Matrix Pencil Algorithm Based Multiband Iterative Fusion Imaging Method
Zou, Yong Qiang; Gao, Xun Zhang; Li, Xiang; Liu, Yong Xiang
2016-01-01
Multiband signal fusion technique is a practicable and efficient way to improve the range resolution of ISAR image. The classical fusion method estimates the poles of each subband signal by the root-MUSIC method, and some good results were get in several experiments. However, this method is fragile in noise for the proper poles could not easy to get in low signal to noise ratio (SNR). In order to eliminate the influence of noise, this paper propose a matrix pencil algorithm based method to estimate the multiband signal poles. And to deal with mutual incoherent between subband signals, the incoherent parameters (ICP) are predicted through the relation of corresponding poles of each subband. Then, an iterative algorithm which aimed to minimize the 2-norm of signal difference is introduced to reduce signal fusion error. Applications to simulate dada verify that the proposed method get better fusion results at low SNR. PMID:26781194
Hearing through the noise: Biologically inspired noise reduction
NASA Astrophysics Data System (ADS)
Lee, Tyler Paul
Vocal communication in the natural world demands that a listener perform a remarkably complicated task in real-time. Vocalizations mix with all other sounds in the environment as they travel to the listener, arriving as a jumbled low-dimensional signal. A listener must then use this signal to extract the structure corresponding to individual sound sources. How this computation is implemented in the brain remains poorly understood, yet an accurate description of such mechanisms would impact a variety of medical and technological applications of sound processing. In this thesis, I describe initial work on how neurons in the secondary auditory cortex of the Zebra Finch extract song from naturalistic background noise. I then build on our understanding of the function of these neurons by creating an algorithm that extracts speech from natural background noise using spectrotemporal modulations. The algorithm, implemented as an artificial neural network, can be flexibly applied to any class of signal or noise and performs better than an optimal frequency-based noise reduction algorithm for a variety of background noises and signal-to-noise ratios. One potential drawback to using spectrotemporal modulations for noise reduction, though, is that analyzing the modulations present in an ongoing sound requires a latency set by the slowest temporal modulation computed. The algorithm avoids this problem by reducing noise predictively, taking advantage of the large amount of temporal structure present in natural sounds. This predictive denoising has ties to recent work suggesting that the auditory system uses attention to focus on predicted regions of spectrotemporal space when performing auditory scene analysis.
El B'charri, Oussama; Latif, Rachid; Elmansouri, Khalifa; Abenaou, Abdenbi; Jenkal, Wissam
2017-02-07
Since the electrocardiogram (ECG) signal has a low frequency and a weak amplitude, it is sensitive to miscellaneous mixed noises, which may reduce the diagnostic accuracy and hinder the physician's correct decision on patients. The dual tree wavelet transform (DT-WT) is one of the most recent enhanced versions of discrete wavelet transform. However, threshold tuning on this method for noise removal from ECG signal has not been investigated yet. In this work, we shall provide a comprehensive study on the impact of the choice of threshold algorithm, threshold value, and the appropriate wavelet decomposition level to evaluate the ECG signal de-noising performance. A set of simulations is performed on both synthetic and real ECG signals to achieve the promised results. First, the synthetic ECG signal is used to observe the algorithm response. The evaluation results of synthetic ECG signal corrupted by various types of noise has showed that the modified unified threshold and wavelet hyperbolic threshold de-noising method is better in realistic and colored noises. The tuned threshold is then used on real ECG signals from the MIT-BIH database. The results has shown that the proposed method achieves higher performance than the ordinary dual tree wavelet transform into all kinds of noise removal from ECG signal. The simulation results indicate that the algorithm is robust for all kinds of noises with varying degrees of input noise, providing a high quality clean signal. Moreover, the algorithm is quite simple and can be used in real time ECG monitoring.
Trackside acoustic diagnosis of axle box bearing based on kurtosis-optimization wavelet denoising
NASA Astrophysics Data System (ADS)
Peng, Chaoyong; Gao, Xiaorong; Peng, Jianping; Wang, Ai
2018-04-01
As one of the key components of railway vehicles, the operation condition of the axle box bearing has a significant effect on traffic safety. The acoustic diagnosis is more suitable than vibration diagnosis for trackside monitoring. The acoustic signal generated by the train axle box bearing is an amplitude modulation and frequency modulation signal with complex train running noise. Although empirical mode decomposition (EMD) and some improved time-frequency algorithms have proved to be useful in bearing vibration signal processing, it is hard to extract the bearing fault signal from serious trackside acoustic background noises by using those algorithms. Therefore, a kurtosis-optimization-based wavelet packet (KWP) denoising algorithm is proposed, as the kurtosis is the key indicator of bearing fault signal in time domain. Firstly, the geometry based Doppler correction is applied to signals of each sensor, and with the signal superposition of multiple sensors, random noises and impulse noises, which are the interference of the kurtosis indicator, are suppressed. Then, the KWP is conducted. At last, the EMD and Hilbert transform is applied to extract the fault feature. Experiment results indicate that the proposed method consisting of KWP and EMD is superior to the EMD.
Passive Porous Treatment for Reducing Flap Side-Edge Noise
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Khorrami, Mehdi R.
2008-01-01
A passive porous treatment has been proposed as a means of suppressing noise generated by the airflow around the side edges of partial-span flaps on airplane wings when the flaps are extended in a high-lift configuration. The treatment proposed here does not incur any aerodynamic penalties and could easily be retrofit to existing airplanes. The treatment could also be applied to reduce noise generated by turbomachinery, including wind turbines. Innovative aspects of the proposed treatment include a minimum treatment area and physics-based procedure for treatment design. The efficacy of the treatment was confirmed during wind-tunnel experiments at NASA Ames, wherein the porous treatment was applied to a minute surface area in the vicinity of a flap edge on a 26-percent model of Boeing 777-200 wing.
Airfoil family design for large offshore wind turbine blades
NASA Astrophysics Data System (ADS)
Méndez, B.; Munduate, X.; San Miguel, U.
2014-06-01
Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design, compatibility for the different airfoil family members, etc.) and with the ultimate objective that the airfoils will reduce the blade loads. In this paper the whole airfoil design process and the main characteristics of the airfoil family are described. Some force coefficients for the design Reynolds number are also presented. The new designed airfoils have been studied with computational calculations (panel method code and CFD) and also in a wind tunnel experimental campaign. Some of these results will be also presented in this paper.
Harvesting wind energy to detect weak signals using mechanical stochastic resonance.
Breen, Barbara J; Rix, Jillian G; Ross, Samuel J; Yu, Yue; Lindner, John F; Mathewson, Nathan; Wainwright, Elliot R; Wilson, Ian
2016-12-01
Wind is free and ubiquitous and can be harnessed in multiple ways. We demonstrate mechanical stochastic resonance in a tabletop experiment in which wind energy is harvested to amplify weak periodic signals detected via the movement of an inverted pendulum. Unlike earlier mechanical stochastic resonance experiments, where noise was added via electrically driven vibrations, our broad-spectrum noise source is a single flapping flag. The regime of the experiment is readily accessible, with wind speeds ∼20 m/s and signal frequencies ∼1 Hz. We readily obtain signal-to-noise ratios on the order of 10 dB.
The Speech multi features fusion perceptual hash algorithm based on tensor decomposition
NASA Astrophysics Data System (ADS)
Huang, Y. B.; Fan, M. H.; Zhang, Q. Y.
2018-03-01
With constant progress in modern speech communication technologies, the speech data is prone to be attacked by the noise or maliciously tampered. In order to make the speech perception hash algorithm has strong robustness and high efficiency, this paper put forward a speech perception hash algorithm based on the tensor decomposition and multi features is proposed. This algorithm analyses the speech perception feature acquires each speech component wavelet packet decomposition. LPCC, LSP and ISP feature of each speech component are extracted to constitute the speech feature tensor. Speech authentication is done by generating the hash values through feature matrix quantification which use mid-value. Experimental results showing that the proposed algorithm is robust for content to maintain operations compared with similar algorithms. It is able to resist the attack of the common background noise. Also, the algorithm is highly efficiency in terms of arithmetic, and is able to meet the real-time requirements of speech communication and complete the speech authentication quickly.
NASA Astrophysics Data System (ADS)
Yousefian Jazi, Nima
Spatial filtering and directional discrimination has been shown to be an effective pre-processing approach for noise reduction in microphone array systems. In dual-microphone hearing aids, fixed and adaptive beamforming techniques are the most common solutions for enhancing the desired speech and rejecting unwanted signals captured by the microphones. In fact, beamformers are widely utilized in systems where spatial properties of target source (usually in front of the listener) is assumed to be known. In this dissertation, some dual-microphone coherence-based speech enhancement techniques applicable to hearing aids are proposed. All proposed algorithms operate in the frequency domain and (like traditional beamforming techniques) are purely based on the spatial properties of the desired speech source and does not require any knowledge of noise statistics for calculating the noise reduction filter. This benefit gives our algorithms the ability to address adverse noise conditions, such as situations where interfering talker(s) speaks simultaneously with the target speaker. In such cases, the (adaptive) beamformers lose their effectiveness in suppressing interference, since the noise channel (reference) cannot be built and updated accordingly. This difference is the main advantage of the proposed techniques in the dissertation over traditional adaptive beamformers. Furthermore, since the suggested algorithms are independent of noise estimation, they offer significant improvement in scenarios that the power level of interfering sources are much more than that of target speech. The dissertation also shows the premise behind the proposed algorithms can be extended and employed to binaural hearing aids. The main purpose of the investigated techniques is to enhance the intelligibility level of speech, measured through subjective listening tests with normal hearing and cochlear implant listeners. However, the improvement in quality of the output speech achieved by the algorithms are also presented to show that the proposed methods can be potential candidates for future use in commercial hearing aids and cochlear implant devices.
NASA Astrophysics Data System (ADS)
Wei, Jun; Jiang, Guo-Qing; Liu, Xin
2017-09-01
This study proposed three algorithms that can potentially be used to provide sea surface temperature (SST) conditions for typhoon prediction models. Different from traditional data assimilation approaches, which provide prescribed initial/boundary conditions, our proposed algorithms aim to resolve a flow-dependent SST feedback between growing typhoons and oceans in the future time. Two of these algorithms are based on linear temperature equations (TE-based), and the other is based on an innovative technique involving machine learning (ML-based). The algorithms are then implemented into a Weather Research and Forecasting model for the simulation of typhoon to assess their effectiveness, and the results show significant improvement in simulated storm intensities by including ocean cooling feedback. The TE-based algorithm I considers wind-induced ocean vertical mixing and upwelling processes only, and thus obtained a synoptic and relatively smooth sea surface temperature cooling. The TE-based algorithm II incorporates not only typhoon winds but also ocean information, and thus resolves more cooling features. The ML-based algorithm is based on a neural network, consisting of multiple layers of input variables and neurons, and produces the best estimate of the cooling structure, in terms of its amplitude and position. Sensitivity analysis indicated that the typhoon-induced ocean cooling is a nonlinear process involving interactions of multiple atmospheric and oceanic variables. Therefore, with an appropriate selection of input variables and neuron sizes, the ML-based algorithm appears to be more efficient in prognosing the typhoon-induced ocean cooling and in predicting typhoon intensity than those algorithms based on linear regression methods.
A hybrid algorithm for speckle noise reduction of ultrasound images.
Singh, Karamjeet; Ranade, Sukhjeet Kaur; Singh, Chandan
2017-09-01
Medical images are contaminated by multiplicative speckle noise which significantly reduce the contrast of ultrasound images and creates a negative effect on various image interpretation tasks. In this paper, we proposed a hybrid denoising approach which collaborate the both local and nonlocal information in an efficient manner. The proposed hybrid algorithm consist of three stages in which at first stage the use of local statistics in the form of guided filter is used to reduce the effect of speckle noise initially. Then, an improved speckle reducing bilateral filter (SRBF) is developed to further reduce the speckle noise from the medical images. Finally, to reconstruct the diffused edges we have used the efficient post-processing technique which jointly considered the advantages of both bilateral and nonlocal mean (NLM) filter for the attenuation of speckle noise efficiently. The performance of proposed hybrid algorithm is evaluated on synthetic, simulated and real ultrasound images. The experiments conducted on various test images demonstrate that our proposed hybrid approach outperforms the various traditional speckle reduction approaches included recently proposed NLM and optimized Bayesian-based NLM. The results of various quantitative, qualitative measures and by visual inspection of denoise synthetic and real ultrasound images demonstrate that the proposed hybrid algorithm have strong denoising capability and able to preserve the fine image details such as edge of a lesion better than previously developed methods for speckle noise reduction. The denoising and edge preserving capability of hybrid algorithm is far better than existing traditional and recently proposed speckle reduction (SR) filters. The success of proposed algorithm would help in building the lay foundation for inventing the hybrid algorithms for denoising of ultrasound images. Copyright © 2017 Elsevier B.V. All rights reserved.
Temporal flicker reduction and denoising in video using sparse directional transforms
NASA Astrophysics Data System (ADS)
Kanumuri, Sandeep; Guleryuz, Onur G.; Civanlar, M. Reha; Fujibayashi, Akira; Boon, Choong S.
2008-08-01
The bulk of the video content available today over the Internet and over mobile networks suffers from many imperfections caused during acquisition and transmission. In the case of user-generated content, which is typically produced with inexpensive equipment, these imperfections manifest in various ways through noise, temporal flicker and blurring, just to name a few. Imperfections caused by compression noise and temporal flicker are present in both studio-produced and user-generated video content transmitted at low bit-rates. In this paper, we introduce an algorithm designed to reduce temporal flicker and noise in video sequences. The algorithm takes advantage of the sparse nature of video signals in an appropriate transform domain that is chosen adaptively based on local signal statistics. When the signal corresponds to a sparse representation in this transform domain, flicker and noise, which are spread over the entire domain, can be reduced easily by enforcing sparsity. Our results show that the proposed algorithm reduces flicker and noise significantly and enables better presentation of compressed videos.
Bjorgan, Asgeir; Randeberg, Lise Lyngsnes
2015-01-01
Processing line-by-line and in real-time can be convenient for some applications of line-scanning hyperspectral imaging technology. Some types of processing, like inverse modeling and spectral analysis, can be sensitive to noise. The MNF (minimum noise fraction) transform provides suitable denoising performance, but requires full image availability for the estimation of image and noise statistics. In this work, a modified algorithm is proposed. Incrementally-updated statistics enables the algorithm to denoise the image line-by-line. The denoising performance has been compared to conventional MNF and found to be equal. With a satisfying denoising performance and real-time implementation, the developed algorithm can denoise line-scanned hyperspectral images in real-time. The elimination of waiting time before denoised data are available is an important step towards real-time visualization of processed hyperspectral data. The source code can be found at http://www.github.com/ntnu-bioopt/mnf. This includes an implementation of conventional MNF denoising. PMID:25654717
Ground effects in FAA's Integrated Noise Model
DOT National Transportation Integrated Search
2000-01-01
The lateral attenuation algorithm in the Federal Aviation Administration's (FAA) Integrated Noise Model (INM) has historically been based on the two regression equations described in the Society of Automotive Engineers' (SAE) Aerospace Information Re...
The Effects of Digital Noise Reduction on the Acceptance of Background Noise
Mueller, H. Gustav; Weber, Jennifer; Hornsby, Benjamin W. Y.
2006-01-01
Modern hearing aids commonly employ digital noise reduction (DNR) algorithms. The potential benefit of these algorithms is to provide improved speech understanding in noise or, at the least, to provide relaxed listening or increased ease of listening. In this study, 22 adults were fitted with 16-channel wide-dynamic-range compression hearing aids containing DNR processing. The DNR includes both modulation-based and Wiener-filter-type algorithms working simultaneously. Both speech intelligibility and acceptable noise level (ANL) were assessed using the Hearing in Noise Test (HINT) with DNR on and DNR off. The ANL was also assessed without hearing aids. The results showed a significant mean improvement for the ANL (4.2 dB) for the DNR-on condition when compared to DNR-off condition. Moreover, there was a significant correlation between the magnitude of ANL improvement (relative to DNR on) and the DNR-off ANL. There was no significant mean improvement for the HINT for the DNR-on condition, and on an individual basis, the HINT score did not significantly correlate with either aided ANL (DNR on or DNR off). These findings suggest that at least within the constraints of the DNR algorithms and test conditions employed in this study, DNR can significantly improve the clinically measured ANL, which may result in improved ease of listening for speech-in-noise situations. PMID:16959732
Sekihara, K; Poeppel, D; Marantz, A; Koizumi, H; Miyashita, Y
1997-09-01
This paper proposes a method of localizing multiple current dipoles from spatio-temporal biomagnetic data. The method is based on the multiple signal classification (MUSIC) algorithm and is tolerant of the influence of background brain activity. In this method, the noise covariance matrix is estimated using a portion of the data that contains noise, but does not contain any signal information. Then, a modified noise subspace projector is formed using the generalized eigenvectors of the noise and measured-data covariance matrices. The MUSIC localizer is calculated using this noise subspace projector and the noise covariance matrix. The results from a computer simulation have verified the effectiveness of the method. The method was then applied to source estimation for auditory-evoked fields elicited by syllable speech sounds. The results strongly suggest the method's effectiveness in removing the influence of background activity.
An algorithm for minimum-cost set-point ordering in a cryogenic wind tunnel
NASA Technical Reports Server (NTRS)
Tripp, J. S.
1981-01-01
An algorithm for minimum cost ordering of set points in a cryogenic wind tunnel is developed. The procedure generates a matrix of dynamic state transition costs, which is evaluated by means of a single-volume lumped model of the cryogenic wind tunnel and the use of some idealized minimum-costs, which is evaluated by means of a single-volume lumped model of the cryogenic wind tunnel and the use of some idealized minimum-cost state-transition control strategies. A branch and bound algorithm is employed to determine the least costly sequence of state transitions from the transition-cost matrix. Some numerical results based on data for the National Transonic Facility are presented which show a strong preference for state transitions that consume to coolant. Results also show that the choice of the terminal set point in an open odering can produce a wide variation in total cost.
NASA Technical Reports Server (NTRS)
Emmitt, G. D.; Wood, S. A.; Morris, M.
1990-01-01
Lidar Atmospheric Wind Sounder (LAWS) Simulation Models (LSM) were developed to evaluate the potential impact of global wind observations on the basic understanding of the Earth's atmosphere and on the predictive skills of current forecast models (GCM and regional scale). Fully integrated top to bottom LAWS Simulation Models for global and regional scale simulations were developed. The algorithm development incorporated the effects of aerosols, water vapor, clouds, terrain, and atmospheric turbulence into the models. Other additions include a new satellite orbiter, signal processor, line of sight uncertainty model, new Multi-Paired Algorithm and wind error analysis code. An atmospheric wind field library containing control fields, meteorological fields, phenomena fields, and new European Center for Medium Range Weather Forecasting (ECMWF) data was also added. The LSM was used to address some key LAWS issues and trades such as accuracy and interpretation of LAWS information, data density, signal strength, cloud obscuration, and temporal data resolution.
Jafari, Masoumeh; Salimifard, Maryam; Dehghani, Maryam
2014-07-01
This paper presents an efficient method for identification of nonlinear Multi-Input Multi-Output (MIMO) systems in the presence of colored noises. The method studies the multivariable nonlinear Hammerstein and Wiener models, in which, the nonlinear memory-less block is approximated based on arbitrary vector-based basis functions. The linear time-invariant (LTI) block is modeled by an autoregressive moving average with exogenous (ARMAX) model which can effectively describe the moving average noises as well as the autoregressive and the exogenous dynamics. According to the multivariable nature of the system, a pseudo-linear-in-the-parameter model is obtained which includes two different kinds of unknown parameters, a vector and a matrix. Therefore, the standard least squares algorithm cannot be applied directly. To overcome this problem, a Hierarchical Least Squares Iterative (HLSI) algorithm is used to simultaneously estimate the vector and the matrix of unknown parameters as well as the noises. The efficiency of the proposed identification approaches are investigated through three nonlinear MIMO case studies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Jayender, Jagadaeesan; Chikarmane, Sona; Jolesz, Ferenc A; Gombos, Eva
2014-08-01
To accurately segment invasive ductal carcinomas (IDCs) from dynamic contrast-enhanced MRI (DCE-MRI) using time series analysis based on linear dynamic system (LDS) modeling. Quantitative segmentation methods based on black-box modeling and pharmacokinetic modeling are highly dependent on imaging pulse sequence, timing of bolus injection, arterial input function, imaging noise, and fitting algorithms. We modeled the underlying dynamics of the tumor by an LDS and used the system parameters to segment the carcinoma on the DCE-MRI. Twenty-four patients with biopsy-proven IDCs were analyzed. The lesions segmented by the algorithm were compared with an expert radiologist's segmentation and the output of a commercial software, CADstream. The results are quantified in terms of the accuracy and sensitivity of detecting the lesion and the amount of overlap, measured in terms of the Dice similarity coefficient (DSC). The segmentation algorithm detected the tumor with 90% accuracy and 100% sensitivity when compared with the radiologist's segmentation and 82.1% accuracy and 100% sensitivity when compared with the CADstream output. The overlap of the algorithm output with the radiologist's segmentation and CADstream output, computed in terms of the DSC was 0.77 and 0.72, respectively. The algorithm also shows robust stability to imaging noise. Simulated imaging noise with zero mean and standard deviation equal to 25% of the base signal intensity was added to the DCE-MRI series. The amount of overlap between the tumor maps generated by the LDS-based algorithm from the noisy and original DCE-MRI was DSC = 0.95. The time-series analysis based segmentation algorithm provides high accuracy and sensitivity in delineating the regions of enhanced perfusion corresponding to tumor from DCE-MRI. © 2013 Wiley Periodicals, Inc.
Automatic Segmentation of Invasive Breast Carcinomas from DCE-MRI using Time Series Analysis
Jayender, Jagadaeesan; Chikarmane, Sona; Jolesz, Ferenc A.; Gombos, Eva
2013-01-01
Purpose Quantitative segmentation methods based on black-box modeling and pharmacokinetic modeling are highly dependent on imaging pulse sequence, timing of bolus injection, arterial input function, imaging noise and fitting algorithms. To accurately segment invasive ductal carcinomas (IDCs) from dynamic contrast enhanced MRI (DCE-MRI) using time series analysis based on linear dynamic system (LDS) modeling. Methods We modeled the underlying dynamics of the tumor by a LDS and use the system parameters to segment the carcinoma on the DCE-MRI. Twenty-four patients with biopsy-proven IDCs were analyzed. The lesions segmented by the algorithm were compared with an expert radiologist’s segmentation and the output of a commercial software, CADstream. The results are quantified in terms of the accuracy and sensitivity of detecting the lesion and the amount of overlap, measured in terms of the Dice similarity coefficient (DSC). Results The segmentation algorithm detected the tumor with 90% accuracy and 100% sensitivity when compared to the radiologist’s segmentation and 82.1% accuracy and 100% sensitivity when compared to the CADstream output. The overlap of the algorithm output with the radiologist’s segmentation and CADstream output, computed in terms of the DSC was 0.77 and 0.72 respectively. The algorithm also shows robust stability to imaging noise. Simulated imaging noise with zero mean and standard deviation equal to 25% of the base signal intensity was added to the DCE-MRI series. The amount of overlap between the tumor maps generated by the LDS-based algorithm from the noisy and original DCE-MRI was DSC=0.95. Conclusion The time-series analysis based segmentation algorithm provides high accuracy and sensitivity in delineating the regions of enhanced perfusion corresponding to tumor from DCE-MRI. PMID:24115175
Adaptive nonlocal means filtering based on local noise level for CT denoising
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.
2014-01-15
Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analyticalmore » noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the shape and peak frequency of the noise power spectrum better than commercial smoothing kernels, and indicate that the spatial resolution at low contrast levels is not significantly degraded. Both the subjective evaluation using the ACR phantom and the objective evaluation on a low-contrast detection task using a CHO model observer demonstrate an improvement on low-contrast performance. The GPU implementation can process and transfer 300 slice images within 5 min. On patient data, the adaptive NLM algorithm provides more effective denoising of CT data throughout a volume than standard NLM, and may allow significant lowering of radiation dose. After a two week pilot study of lower dose CT urography and CT enterography exams, both GI and GU radiology groups elected to proceed with permanent implementation of adaptive NLM in their GI and GU CT practices. Conclusions: This work describes and validates a computationally efficient technique for noise map estimation directly from CT images, and an adaptive NLM filtering based on this noise map, on phantom and patient data. Both the noise map calculation and the adaptive NLM filtering can be performed in times that allow integration with clinical workflow. The adaptive NLM algorithm provides effective denoising of CT data throughout a volume, and may allow significant lowering of radiation dose.« less
NASA Astrophysics Data System (ADS)
Ma, Ming; Wang, Huafeng; Liu, Yan; Zhang, Hao; Gu, Xianfeng; Liang, Zhengrong
2014-03-01
Cone-beam computed tomography (CBCT) has attracted growing interest of researchers in image reconstruction. The mAs level of the X-ray tube current, in practical application of CBCT, is mitigated in order to reduce the CBCT dose. The lowering of the X-ray tube current, however, results in the degradation of image quality. Thus, low-dose CBCT image reconstruction is in effect a noise problem. To acquire clinically acceptable quality of image, and keep the X-ray tube current as low as achievable in the meanwhile, some penalized weighted least-squares (PWLS)-based image reconstruction algorithms have been developed. One representative strategy in previous work is to model the prior information for solution regularization using an anisotropic penalty term. To enhance the edge preserving and noise suppressing in a finer scale, a novel algorithm combining the local binary pattern (LBP) with penalized weighted leastsquares (PWLS), called LBP-PWLS-based image reconstruction algorithm, is proposed in this work. The proposed LBP-PWLS-based algorithm adaptively encourages strong diffusion on the local spot/flat region around a voxel and less diffusion on edge/corner ones by adjusting the penalty for cost function, after the LBP is utilized to detect the region around the voxel as spot, flat and edge ones. The LBP-PWLS-based reconstruction algorithm was evaluated using the sinogram data acquired by a clinical CT scanner from the CatPhan® 600 phantom. Experimental results on the noiseresolution tradeoff measurement and other quantitative measurements demonstrated its feasibility and effectiveness in edge preserving and noise suppressing in comparison with a previous PWLS reconstruction algorithm.
Calculations of Wall Effects on Propeller Noise
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Eversman, Walter
1987-01-01
Reverberations affect sound levels in wind tunnels. Report describes calculations of acoustic field of propeller in wind tunnel having walls of various degrees of softness. Understanding provided by this and related studies necessary for correct interpretation of wind-tunnel measurements of noise generated by high speed, highly loaded, multiple-blade turbopropellers.
Consistent modelling of wind turbine noise propagation from source to receiver.
Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong; Dag, Kaya O; Moriarty, Patrick
2017-11-01
The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound generation and propagation. The local blade relative velocity, angle of attack, and turbulence characteristics are input to the sound generation model. Time-dependent blade locations and the velocity between the noise source and receiver are considered within a quasi-3D propagation model. Long-range noise propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine.
Consistent modelling of wind turbine noise propagation from source to receiver
Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong; ...
2017-11-28
The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound generation and propagation. Themore » local blade relative velocity, angle of attack, and turbulence characteristics are input to the sound generation model. Time-dependent blade locations and the velocity between the noise source and receiver are considered within a quasi-3D propagation model. Long-range noise propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine.« less
Consistent modelling of wind turbine noise propagation from source to receiver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong
The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound generation and propagation. Themore » local blade relative velocity, angle of attack, and turbulence characteristics are input to the sound generation model. Time-dependent blade locations and the velocity between the noise source and receiver are considered within a quasi-3D propagation model. Long-range noise propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine.« less
NASA Astrophysics Data System (ADS)
Cao, Bochao
Slender structures representing civil, mechanical and aerospace systems such as long-span bridges, high-rise buildings, stay cables, power-line cables, high light mast poles, crane-booms and aircraft wings could experience vortex-induced and buffeting excitations below their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical wind speed because these are flexible. Traditional linear aerodynamic theories that are routinely applied for their response prediction are not valid in the galloping, or near-flutter regime, where large-amplitude vibrations could occur and during non-stationary and transient wind excitations that occur, for example, during hurricanes, thunderstorms and gust fronts. The linear aerodynamic load formulation for lift, drag and moment are expressed in terms of aerodynamic functions in frequency domain that are valid for straight-line winds which are stationary or weakly-stationary. Application of the frequency domain formulation is restricted from use in the nonlinear and transient domain because these are valid for linear models and stationary wind. The time-domain aerodynamic force formulations are suitable for finite element modeling, feedback-dependent structural control mechanism, fatigue-life prediction, and above all modeling of transient structural behavior during non-stationary wind phenomena. This has motivated the developing of time-domain models of aerodynamic loads that are in parallel to the existing frequency-dependent models. Parameters defining these time-domain models can be now extracted from wind tunnel tests, for example, the Rational Function Coefficients defining the self-excited wind loads can be extracted using section model tests using the free vibration technique. However, the free vibration method has some limitations because it is difficult to apply at high wind speeds, in turbulent wind environment, or on unstable cross sections with negative aerodynamic damping. In the current research, new algorithms were developed based on forced vibration technique for direct extraction of the Rational Functions. The first of the two algorithms developed uses the two angular phase lag values between the measured vertical or torsional displacement and the measured aerodynamic lift and moment produced on the section model subject to forced vibration to identify the Rational Functions. This algorithm uses two separate one-degree-of-freedom tests (vertical or torsional) to identify all the four Rational Functions or corresponding Rational Function Coefficients for a two degrees-of-freedom (DOF) vertical-torsional vibration model. It was applied to a streamlined section model and the results compared well with those obtained from earlier free vibration experiment. The second algorithm that was developed is based on direct least squares method. It uses all the data points of displacements and aerodynamic lift and moment instead of phase lag values for more accurate estimates. This algorithm can be used for one-, two- and three-degree-of-freedom motions. A two-degree-of-freedom forced vibration system was developed and the algorithm was shown to work well for both streamlined and bluff section models. The uniqueness of the second algorithms lies in the fact that it requires testing the model at only two wind speeds for extraction of all four Rational Functions. The Rational Function Coefficients that were extracted for a streamlined section model using the two-DOF Least Squares algorithm were validated in a separate wind tunnel by testing a larger scaled model subject to straight-line, gusty and boundary-layer wind.
Denoising imaging polarimetry by adapted BM3D method.
Tibbs, Alexander B; Daly, Ilse M; Roberts, Nicholas W; Bull, David R
2018-04-01
In addition to the visual information contained in intensity and color, imaging polarimetry allows visual information to be extracted from the polarization of light. However, a major challenge of imaging polarimetry is image degradation due to noise. This paper investigates the mitigation of noise through denoising algorithms and compares existing denoising algorithms with a new method, based on BM3D (Block Matching 3D). This algorithm, Polarization-BM3D (PBM3D), gives visual quality superior to the state of the art across all images and noise standard deviations tested. We show that denoising polarization images using PBM3D allows the degree of polarization to be more accurately calculated by comparing it with spectral polarimetry measurements.
Fast principal component analysis for stacking seismic data
NASA Astrophysics Data System (ADS)
Wu, Juan; Bai, Min
2018-04-01
Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.
Joint Smoothed l₀-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar.
Liu, Jing; Zhou, Weidong; Juwono, Filbert H
2017-05-08
Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l 0 -norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l 1 -norm minimization based methods, such as l 1 -SVD (singular value decomposition), RV (real-valued) l 1 -SVD and RV l 1 -SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance.
A Novel Method to Predict Circulation Control Noise
2016-03-17
Semi-empirical aeracoustic prediction code for wind turbines . In NREL/ TP-500-34478, National Wind Technology Center. MOSHER, M. 1983 Acoustics of...velocimetry, unsteady pressure and phased-acoustic- array data are acquired simultaneously in an aeroacoustic wind -tunnel facility. The velocity field...her open-jet wind tunnels or flight testing which makes noise prediction for underwater vehicles especially difficult . 1 In this document , a
An electric noise component with density 1/f identified on ISEE 3
NASA Technical Reports Server (NTRS)
Hoang, S.; Steinberg, J. L.; Couturier, P.; Feldman, W. C.
1982-01-01
The properties of the 1/f noise detected at the terminals of ISEE 3 antennas are described and related to the solar wind parameters. The 1/f noise was observed with the radio receivers of the three-dimensional radio mapping experiment using the S and Z dipole antennas. The noise spectra contained a negative spectral index component at frequencies lower than 0.7 of the plasma frequency, and 5-10 times the predicted thermal noise for the Z antenna. S-antenna measurements of the 1/f component revealed it to be deeply spin modulated with a minimum electric field in the direction of the solar wind. Modulation increases with increasing frequency, becomes negligible when the 1/f intensity is negligible with respect to the thermal noise, and increases with solar wind velocity. The possibilities that the noise is due either to waves or currents are discussed.
Towards an Optimal Noise Versus Resolution Trade-Off in Wind Scatterometry
NASA Technical Reports Server (NTRS)
Williams, Brent A.
2011-01-01
This paper approaches the noise versus resolution trade-off in wind scatterometry from a field-wise retrieval perspective. Theoretical considerations are discussed and practical implementation using a MAP estimator is applied to the Sea-Winds scatterometer. The approach is compared to conventional approaches as well as numerical weather predictions. The new approach incorporates knowledge of the wind spectrum to reduce the impact of components of the wind signal that are expected to be noisy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gongzhang, R.; Xiao, B.; Lardner, T.
2014-02-18
This paper presents a robust frequency diversity based algorithm for clutter reduction in ultrasonic A-scan waveforms. The performance of conventional spectral-temporal techniques like Split Spectrum Processing (SSP) is highly dependent on the parameter selection, especially when the signal to noise ratio (SNR) is low. Although spatial beamforming offers noise reduction with less sensitivity to parameter variation, phased array techniques are not always available. The proposed algorithm first selects an ascending series of frequency bands. A signal is reconstructed for each selected band in which a defect is present when all frequency components are in uniform sign. Combining all reconstructed signalsmore » through averaging gives a probability profile of potential defect position. To facilitate data collection and validate the proposed algorithm, Full Matrix Capture is applied on the austenitic steel and high nickel alloy (HNA) samples with 5MHz transducer arrays. When processing A-scan signals with unrefined parameters, the proposed algorithm enhances SNR by 20dB for both samples and consequently, defects are more visible in B-scan images created from the large amount of A-scan traces. Importantly, the proposed algorithm is considered robust, while SSP is shown to fail on the austenitic steel data and achieves less SNR enhancement on the HNA data.« less
Research on Bayes matting algorithm based on Gaussian mixture model
NASA Astrophysics Data System (ADS)
Quan, Wei; Jiang, Shan; Han, Cheng; Zhang, Chao; Jiang, Zhengang
2015-12-01
The digital matting problem is a classical problem of imaging. It aims at separating non-rectangular foreground objects from a background image, and compositing with a new background image. Accurate matting determines the quality of the compositing image. A Bayesian matting Algorithm Based on Gaussian Mixture Model is proposed to solve this matting problem. Firstly, the traditional Bayesian framework is improved by introducing Gaussian mixture model. Then, a weighting factor is added in order to suppress the noises of the compositing images. Finally, the effect is further improved by regulating the user's input. This algorithm is applied to matting jobs of classical images. The results are compared to the traditional Bayesian method. It is shown that our algorithm has better performance in detail such as hair. Our algorithm eliminates the noise well. And it is very effectively in dealing with the kind of work, such as interested objects with intricate boundaries.
Robust generative asymmetric GMM for brain MR image segmentation.
Ji, Zexuan; Xia, Yong; Zheng, Yuhui
2017-11-01
Accurate segmentation of brain tissues from magnetic resonance (MR) images based on the unsupervised statistical models such as Gaussian mixture model (GMM) has been widely studied during last decades. However, most GMM based segmentation methods suffer from limited accuracy due to the influences of noise and intensity inhomogeneity in brain MR images. To further improve the accuracy for brain MR image segmentation, this paper presents a Robust Generative Asymmetric GMM (RGAGMM) for simultaneous brain MR image segmentation and intensity inhomogeneity correction. First, we develop an asymmetric distribution to fit the data shapes, and thus construct a spatial constrained asymmetric model. Then, we incorporate two pseudo-likelihood quantities and bias field estimation into the model's log-likelihood, aiming to exploit the neighboring priors of within-cluster and between-cluster and to alleviate the impact of intensity inhomogeneity, respectively. Finally, an expectation maximization algorithm is derived to iteratively maximize the approximation of the data log-likelihood function to overcome the intensity inhomogeneity in the image and segment the brain MR images simultaneously. To demonstrate the performances of the proposed algorithm, we first applied the proposed algorithm to a synthetic brain MR image to show the intermediate illustrations and the estimated distribution of the proposed algorithm. The next group of experiments is carried out in clinical 3T-weighted brain MR images which contain quite serious intensity inhomogeneity and noise. Then we quantitatively compare our algorithm to state-of-the-art segmentation approaches by using Dice coefficient (DC) on benchmark images obtained from IBSR and BrainWeb with different level of noise and intensity inhomogeneity. The comparison results on various brain MR images demonstrate the superior performances of the proposed algorithm in dealing with the noise and intensity inhomogeneity. In this paper, the RGAGMM algorithm is proposed which can simply and efficiently incorporate spatial constraints into an EM framework to simultaneously segment brain MR images and estimate the intensity inhomogeneity. The proposed algorithm is flexible to fit the data shapes, and can simultaneously overcome the influence of noise and intensity inhomogeneity, and hence is capable of improving over 5% segmentation accuracy comparing with several state-of-the-art algorithms. Copyright © 2017 Elsevier B.V. All rights reserved.
Updated lateral attenuation in FAA's Integrated Noise Model
DOT National Transportation Integrated Search
2000-08-27
The lateral attenuation algorithm in the Federal Aviation Administration's (FAA) Integrated Noise Model (INM) has historically been based on the two regression equations described in the Society of Automotive Engineers' (SAE) Aerospace Information Re...
NASA Technical Reports Server (NTRS)
Barbre, Robert E., Jr.
2012-01-01
This paper presents the process used by the Marshall Space Flight Center Natural Environments Branch (EV44) to quality control (QC) data from the Kennedy Space Center's 50-MHz Doppler Radar Wind Profiler for use in vehicle wind loads and steering commands. The database has been built to mitigate limitations of using the currently archived databases from weather balloons. The DRWP database contains wind measurements from approximately 2.7-18.6 km altitude at roughly five minute intervals for the August 1997 to December 2009 period of record, and the extensive QC process was designed to remove spurious data from various forms of atmospheric and non-atmospheric artifacts. The QC process is largely based on DRWP literature, but two new algorithms have been developed to remove data contaminated by convection and excessive first guess propagations from the Median Filter First Guess Algorithm. In addition to describing the automated and manual QC process in detail, this paper describes the extent of the data retained. Roughly 58% of all possible wind observations exist in the database, with approximately 100 times as many complete profile sets existing relative to the EV44 balloon databases. This increased sample of near-continuous wind profile measurements may help increase launch availability by reducing the uncertainty of wind changes during launch countdown
Esmaeili, Mahdad; Dehnavi, Alireza Mehri; Rabbani, Hossein; Hajizadeh, Fedra
2017-01-01
The process of interpretation of high-speed optical coherence tomography (OCT) images is restricted due to the large speckle noise. To address this problem, this paper proposes a new method using two-dimensional (2D) curvelet-based K-SVD algorithm for speckle noise reduction and contrast enhancement of intra-retinal layers of 2D spectral-domain OCT images. For this purpose, we take curvelet transform of the noisy image. In the next step, noisy sub-bands of different scales and rotations are separately thresholded with an adaptive data-driven thresholding method, then, each thresholded sub-band is denoised based on K-SVD dictionary learning with a variable size initial dictionary dependent on the size of curvelet coefficients' matrix in each sub-band. We also modify each coefficient matrix to enhance intra-retinal layers, with noise suppression at the same time. We demonstrate the ability of the proposed algorithm in speckle noise reduction of 100 publically available OCT B-scans with and without non-neovascular age-related macular degeneration (AMD), and improvement of contrast-to-noise ratio from 1.27 to 5.12 and mean-to-standard deviation ratio from 3.20 to 14.41 are obtained.
Noise models for low counting rate coherent diffraction imaging.
Godard, Pierre; Allain, Marc; Chamard, Virginie; Rodenburg, John
2012-11-05
Coherent diffraction imaging (CDI) is a lens-less microscopy method that extracts the complex-valued exit field from intensity measurements alone. It is of particular importance for microscopy imaging with diffraction set-ups where high quality lenses are not available. The inversion scheme allowing the phase retrieval is based on the use of an iterative algorithm. In this work, we address the question of the choice of the iterative process in the case of data corrupted by photon or electron shot noise. Several noise models are presented and further used within two inversion strategies, the ordered subset and the scaled gradient. Based on analytical and numerical analysis together with Monte-Carlo studies, we show that any physical interpretations drawn from a CDI iterative technique require a detailed understanding of the relationship between the noise model and the used inversion method. We observe that iterative algorithms often assume implicitly a noise model. For low counting rates, each noise model behaves differently. Moreover, the used optimization strategy introduces its own artefacts. Based on this analysis, we develop a hybrid strategy which works efficiently in the absence of an informed initial guess. Our work emphasises issues which should be considered carefully when inverting experimental data.
Entropy-guided switching trimmed mean deviation-boosted anisotropic diffusion filter
NASA Astrophysics Data System (ADS)
Nnolim, Uche A.
2016-07-01
An effective anisotropic diffusion (AD) mean filter variant is proposed for filtering of salt-and-pepper impulse noise. The implemented filter is robust to impulse noise ranging from low to high density levels. The algorithm involves a switching scheme in addition to utilizing the unsymmetric trimmed mean/median deviation to filter image noise while greatly preserving image edges, regardless of impulse noise density (ND). It operates with threshold parameters selected manually or adaptively estimated from the image statistics. It is further combined with the partial differential equations (PDE)-based AD for edge preservation at high NDs to enhance the properties of the trimmed mean filter. Based on experimental results, the proposed filter easily and consistently outperforms the median filter and its other variants ranging from simple to complex filter structures, especially the known PDE-based variants. In addition, the switching scheme and threshold calculation enables the filter to avoid smoothing an uncorrupted image, and filtering is activated only when impulse noise is present. Ultimately, the particular properties of the filter make its combination with the AD algorithm a unique and powerful edge-preservation smoothing filter at high-impulse NDs.
A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.
2013-07-25
This paper presents four algorithms to generate random forecast error time series. The performance of four algorithms is compared. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets used in power grid operation to study the net load balancing need in variable generation integration studies. The four algorithms are truncated-normal distribution models, state-space based Markov models, seasonal autoregressive moving average (ARMA) models, and a stochastic-optimization based approach. The comparison is made using historical DA load forecast and actual load valuesmore » to generate new sets of DA forecasts with similar stoical forecast error characteristics (i.e., mean, standard deviation, autocorrelation, and cross-correlation). The results show that all methods generate satisfactory results. One method may preserve one or two required statistical characteristics better the other methods, but may not preserve other statistical characteristics as well compared with the other methods. Because the wind and load forecast error generators are used in wind integration studies to produce wind and load forecasts time series for stochastic planning processes, it is sometimes critical to use multiple methods to generate the error time series to obtain a statistically robust result. Therefore, this paper discusses and compares the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.« less
Application of composite dictionary multi-atom matching in gear fault diagnosis.
Cui, Lingli; Kang, Chenhui; Wang, Huaqing; Chen, Peng
2011-01-01
The sparse decomposition based on matching pursuit is an adaptive sparse expression method for signals. This paper proposes an idea concerning a composite dictionary multi-atom matching decomposition and reconstruction algorithm, and the introduction of threshold de-noising in the reconstruction algorithm. Based on the structural characteristics of gear fault signals, a composite dictionary combining the impulse time-frequency dictionary and the Fourier dictionary was constituted, and a genetic algorithm was applied to search for the best matching atom. The analysis results of gear fault simulation signals indicated the effectiveness of the hard threshold, and the impulse or harmonic characteristic components could be separately extracted. Meanwhile, the robustness of the composite dictionary multi-atom matching algorithm at different noise levels was investigated. Aiming at the effects of data lengths on the calculation efficiency of the algorithm, an improved segmented decomposition and reconstruction algorithm was proposed, and the calculation efficiency of the decomposition algorithm was significantly enhanced. In addition it is shown that the multi-atom matching algorithm was superior to the single-atom matching algorithm in both calculation efficiency and algorithm robustness. Finally, the above algorithm was applied to gear fault engineering signals, and achieved good results.
Robust Kalman filter design for predictive wind shear detection
NASA Technical Reports Server (NTRS)
Stratton, Alexander D.; Stengel, Robert F.
1991-01-01
Severe, low-altitude wind shear is a threat to aviation safety. Airborne sensors under development measure the radial component of wind along a line directly in front of an aircraft. In this paper, optimal estimation theory is used to define a detection algorithm to warn of hazardous wind shear from these sensors. To achieve robustness, a wind shear detection algorithm must distinguish threatening wind shear from less hazardous gustiness, despite variations in wind shear structure. This paper presents statistical analysis methods to refine wind shear detection algorithm robustness. Computational methods predict the ability to warn of severe wind shear and avoid false warning. Comparative capability of the detection algorithm as a function of its design parameters is determined, identifying designs that provide robust detection of severe wind shear.
Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems
NASA Astrophysics Data System (ADS)
Ghaffari, Azad
Power map and Maximum Power Point (MPP) of Photovoltaic (PV) and Wind Energy Conversion Systems (WECS) highly depend on system dynamics and environmental parameters, e.g., solar irradiance, temperature, and wind speed. Power optimization algorithms for PV systems and WECS are collectively known as Maximum Power Point Tracking (MPPT) algorithm. Gradient-based Extremum Seeking (ES), as a non-model-based MPPT algorithm, governs the system to its peak point on the steepest descent curve regardless of changes of the system dynamics and variations of the environmental parameters. Since the power map shape defines the gradient vector, then a close estimate of the power map shape is needed to create user assignable transients in the MPPT algorithm. The Hessian gives a precise estimate of the power map in a neighborhood around the MPP. The estimate of the inverse of the Hessian in combination with the estimate of the gradient vector are the key parts to implement the Newton-based ES algorithm. Hence, we generate an estimate of the Hessian using our proposed perturbation matrix. Also, we introduce a dynamic estimator to calculate the inverse of the Hessian which is an essential part of our algorithm. We present various simulations and experiments on the micro-converter PV systems to verify the validity of our proposed algorithm. The ES scheme can also be used in combination with other control algorithms to achieve desired closed-loop performance. The WECS dynamics is slow which causes even slower response time for the MPPT based on the ES. Hence, we present a control scheme, extended from Field-Oriented Control (FOC), in combination with feedback linearization to reduce the convergence time of the closed-loop system. Furthermore, the nonlinear control prevents magnetic saturation of the stator of the Induction Generator (IG). The proposed control algorithm in combination with the ES guarantees the closed-loop system robustness with respect to high level parameter uncertainty in the IG dynamics. The simulation results verify the effectiveness of the proposed algorithm.
Robust Speech Enhancement Using Two-Stage Filtered Minima Controlled Recursive Averaging
NASA Astrophysics Data System (ADS)
Ghourchian, Negar; Selouani, Sid-Ahmed; O'Shaughnessy, Douglas
In this paper we propose an algorithm for estimating noise in highly non-stationary noisy environments, which is a challenging problem in speech enhancement. This method is based on minima-controlled recursive averaging (MCRA) whereby an accurate, robust and efficient noise power spectrum estimation is demonstrated. We propose a two-stage technique to prevent the appearance of musical noise after enhancement. This algorithm filters the noisy speech to achieve a robust signal with minimum distortion in the first stage. Subsequently, it estimates the residual noise using MCRA and removes it with spectral subtraction. The proposed Filtered MCRA (FMCRA) performance is evaluated using objective tests on the Aurora database under various noisy environments. These measures indicate the higher output SNR and lower output residual noise and distortion.
Numerical Algorithms for Acoustic Integrals - The Devil is in the Details
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.
1996-01-01
The accurate prediction of the aeroacoustic field generated by aerospace vehicles or nonaerospace machinery is necessary for designers to control and reduce source noise. Powerful computational aeroacoustic methods, based on various acoustic analogies (primarily the Lighthill acoustic analogy) and Kirchhoff methods, have been developed for prediction of noise from complicated sources, such as rotating blades. Both methods ultimately predict the noise through a numerical evaluation of an integral formulation. In this paper, we consider three generic acoustic formulations and several numerical algorithms that have been used to compute the solutions to these formulations. Algorithms for retarded-time formulations are the most efficient and robust, but they are difficult to implement for supersonic-source motion. Collapsing-sphere and emission-surface formulations are good alternatives when supersonic-source motion is present, but the numerical implementations of these formulations are more computationally demanding. New algorithms - which utilize solution adaptation to provide a specified error level - are needed.
NASA Astrophysics Data System (ADS)
Zhang, Lijuan; Li, Yang; Wang, Junnan; Liu, Ying
2018-03-01
In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio ( PSNR) and Laplacian sum ( LS) value than the others. The research results have a certain application values for actual AO image restoration.
Research on Chinese life cycle-based wind power plant environmental influence prevention measures.
Wang, Hanxi; Xu, Jianling; Liu, Yuanyuan; Zhang, Tian
2014-08-19
The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development.
Effects of Offshore Wind Farms on the Early Life Stages of Dicentrarchus labrax.
Debusschere, Elisabeth; De Coensel, Bert; Vandendriessche, Sofie; Botteldooren, Dick; Hostens, Kris; Vincx, Magda; Degraer, Steven
2016-01-01
Anthropogenically generated underwater noise in the marine environment is ubiquitous, comprising both intense impulse and continuous noise. The installation of offshore wind farms across the North Sea has triggered a range of ecological questions regarding the impact of anthropogenically produced underwater noise on marine wildlife. Our interest is on the impact on the "passive drifters," i.e., the early life stages of fish that form the basis of fish populations and are an important prey for pelagic predators. This study deals with the impact of pile driving and operational noise generated at offshore wind farms on Dicentrarchus labrax (sea bass) larvae.
Motion artifact removal algorithm by ICA for e-bra: a women ECG measurement system
NASA Astrophysics Data System (ADS)
Kwon, Hyeokjun; Oh, Sechang; Varadan, Vijay K.
2013-04-01
Wearable ECG(ElectroCardioGram) measurement systems have increasingly been developing for people who suffer from CVD(CardioVascular Disease) and have very active lifestyles. Especially, in the case of female CVD patients, several abnormal CVD symptoms are accompanied with CVDs. Therefore, monitoring women's ECG signal is a significant diagnostic method to prevent from sudden heart attack. The E-bra ECG measurement system from our previous work provides more convenient option for women than Holter monitor system. The e-bra system was developed with a motion artifact removal algorithm by using an adaptive filter with LMS(least mean square) and a wandering noise baseline detection algorithm. In this paper, ICA(independent component analysis) algorithms are suggested to remove motion artifact factor for the e-bra system. Firstly, the ICA algorithms are developed with two kinds of statistical theories: Kurtosis, Endropy and evaluated by performing simulations with a ECG signal created by sgolayfilt function of MATLAB, a noise signal including 0.4Hz, 1.1Hz and 1.9Hz, and a weighed vector W estimated by kurtosis or entropy. A correlation value is shown as the degree of similarity between the created ECG signal and the estimated new ECG signal. In the real time E-Bra system, two pseudo signals are extracted by multiplying with a random weighted vector W, the measured ECG signal from E-bra system, and the noise component signal by noise extraction algorithm from our previous work. The suggested ICA algorithm basing on kurtosis or entropy is used to estimate the new ECG signal Y without noise component.
Wind Turbine Acoustic Investigation: Infrasound and Low-Frequency Noise--A Case Study
ERIC Educational Resources Information Center
Ambrose, Stephen E.; Rand, Robert W.; Krogh, Carmen M. E.
2012-01-01
Wind turbines produce sound that is capable of disturbing local residents and is reported to cause annoyance, sleep disturbance, and other health-related impacts. An acoustical study was conducted to investigate the presence of infrasonic and low-frequency noise emissions from wind turbines located in Falmouth, Massachusetts, USA. During the…
Yoon, Sung Hoon; Nam, Kyoung Won; Yook, Sunhyun; Cho, Baek Hwan; Jang, Dong Pyo; Hong, Sung Hwa; Kim, In Young
2017-03-01
In an effort to improve hearing aid users' satisfaction, recent studies on trainable hearing aids have attempted to implement one or two environmental factors into training. However, it would be more beneficial to train the device based on the owner's personal preferences in a more expanded environmental acoustic conditions. Our study aimed at developing a trainable hearing aid algorithm that can reflect the user's individual preferences in a more extensive environmental acoustic conditions (ambient sound level, listening situation, and degree of noise suppression) and evaluated the perceptual benefit of the proposed algorithm. Ten normal hearing subjects participated in this study. Each subjects trained the algorithm to their personal preference and the trained data was used to record test sounds in three different settings to be utilized to evaluate the perceptual benefit of the proposed algorithm by performing the Comparison Mean Opinion Score test. Statistical analysis revealed that of the 10 subjects, four showed significant differences in amplification constant settings between the noise-only and speech-in-noise situation ( P <0.05) and one subject also showed significant difference between the speech-only and speech-in-noise situation ( P <0.05). Additionally, every subject preferred different β settings for beamforming in all different input sound levels. The positive findings from this study suggested that the proposed algorithm has potential to improve hearing aid users' personal satisfaction under various ambient situations.
Non-stationary least-squares complex decomposition for microseismic noise attenuation
NASA Astrophysics Data System (ADS)
Chen, Yangkang
2018-06-01
Microseismic data processing and imaging are crucial for subsurface real-time monitoring during hydraulic fracturing process. Unlike the active-source seismic events or large-scale earthquake events, the microseismic event is usually of very small magnitude, which makes its detection challenging. The biggest trouble of microseismic data is the low signal-to-noise ratio issue. Because of the small energy difference between effective microseismic signal and ambient noise, the effective signals are usually buried in strong random noise. I propose a useful microseismic denoising algorithm that is based on decomposing a microseismic trace into an ensemble of components using least-squares inversion. Based on the predictive property of useful microseismic event along the time direction, the random noise can be filtered out via least-squares fitting of multiple damping exponential components. The method is flexible and almost automated since the only parameter needed to be defined is a decomposition number. I use some synthetic and real data examples to demonstrate the potential of the algorithm in processing complicated microseismic data sets.
Ship detection from high-resolution imagery based on land masking and cloud filtering
NASA Astrophysics Data System (ADS)
Jin, Tianming; Zhang, Junping
2015-12-01
High resolution satellite images play an important role in target detection application presently. This article focuses on the ship target detection from the high resolution panchromatic images. Taking advantage of geographic information such as the coastline vector data provided by NOAA Medium Resolution Coastline program, the land region is masked which is a main noise source in ship detection process. After that, the algorithm tries to deal with the cloud noise which appears frequently in the ocean satellite images, which is another reason for false alarm. Based on the analysis of cloud noise's feature in frequency domain, we introduce a windowed noise filter to get rid of the cloud noise. With the help of morphological processing algorithms adapted to target detection, we are able to acquire ship targets in fine shapes. In addition, we display the extracted information such as length and width of ship targets in a user-friendly way i.e. a KML file interpreted by Google Earth.
Wind noise spectra in small Reynolds number turbulent flows.
Zhao, Sipei; Cheng, Eva; Qiu, Xiaojun; Burnett, Ian; Liu, Jacob Chia-Chun
2017-11-01
Wind noise spectra caused by wind from fans in indoor environments have been found to be different from those measured in outdoor atmospheric conditions. Although many models have been developed to predict outdoor wind noise spectra under the assumption of large Reynolds number [Zhao, Cheng, Qiu, Burnett, and Liu (2016). J. Acoust. Soc. Am. 140, 4178-4182, and the references therein], they cannot be applied directly to the indoor situations because the Reynolds number of wind from fans in indoor environments is usually much smaller than that experienced in atmospheric turbulence. This paper proposes a pressure structure function model that combines the energy-containing and dissipation ranges so that the pressure spectrum for small Reynolds number turbulent flows can be calculated. The proposed pressure structure function model is validated with the experimental results in the literature, and then the obtained pressure spectrum is verified with the numerical simulation and experiment results. It is demonstrated that the pressure spectrum obtained from the proposed pressure structure function model can be utilized to estimate wind noise spectra caused by turbulent flows with small Reynolds numbers.
NASA Technical Reports Server (NTRS)
Strout, F. G.
1976-01-01
A JT8D-17 turbofan engine was tested in the NASA-Ames 40- by 80-foot wind tunnel to determine flight effects on jet and fan noise. Baseline, quiet nacelle with 20-lobe ejector/suppressor, and internal mixer configurations were tested over a range of engine power settings and tunnel velocities. Flight effects derived from the 40- by 80-foot wind tunnel test are compared with 727/JT8D flight test data and with model data obtained in a smaller wind tunnel. Procedures are defined for measuring noise data in a wind tunnel relatively near the sources and analyzing the results to obtain far-field flight effects. Wind tunnel and 727 flight test noise results compare favorably for both the baseline and quiet nacelle configurations. Two reports are provided, including a comprehensive version with extensive test results and analysis and the subject summary version that emphasizes data analysis and program finding.
Chen, Jie; Li, Jiahong; Yang, Shuanghua; Deng, Fang
2017-11-01
The identification of the nonlinearity and coupling is crucial in nonlinear target tracking problem in collaborative sensor networks. According to the adaptive Kalman filtering (KF) method, the nonlinearity and coupling can be regarded as the model noise covariance, and estimated by minimizing the innovation or residual errors of the states. However, the method requires large time window of data to achieve reliable covariance measurement, making it impractical for nonlinear systems which are rapidly changing. To deal with the problem, a weighted optimization-based distributed KF algorithm (WODKF) is proposed in this paper. The algorithm enlarges the data size of each sensor by the received measurements and state estimates from its connected sensors instead of the time window. A new cost function is set as the weighted sum of the bias and oscillation of the state to estimate the "best" estimate of the model noise covariance. The bias and oscillation of the state of each sensor are estimated by polynomial fitting a time window of state estimates and measurements of the sensor and its neighbors weighted by the measurement noise covariance. The best estimate of the model noise covariance is computed by minimizing the weighted cost function using the exhaustive method. The sensor selection method is in addition to the algorithm to decrease the computation load of the filter and increase the scalability of the sensor network. The existence, suboptimality and stability analysis of the algorithm are given. The local probability data association method is used in the proposed algorithm for the multitarget tracking case. The algorithm is demonstrated in simulations on tracking examples for a random signal, one nonlinear target, and four nonlinear targets. Results show the feasibility and superiority of WODKF against other filtering algorithms for a large class of systems.
Blind restoration method of three-dimensional microscope image based on RL algorithm
NASA Astrophysics Data System (ADS)
Yao, Jin-li; Tian, Si; Wang, Xiang-rong; Wang, Jing-li
2013-08-01
Thin specimens of biological tissue appear three dimensional transparent under a microscope. The optic slice images can be captured by moving the focal planes at the different locations of the specimen. The captured image has low resolution due to the influence of the out-of-focus information comes from the planes adjacent to the local plane. Using traditional methods can remove the blur in the images at a certain degree, but it needs to know the point spread function (PSF) of the imaging system accurately. The accuracy degree of PSF influences the restoration result greatly. In fact, it is difficult to obtain the accurate PSF of the imaging system. In order to restore the original appearance of the specimen under the conditions of the imaging system parameters are unknown or there is noise and spherical aberration in the system, a blind restoration methods of three-dimensional microscope based on the R-L algorithm is proposed in this paper. On the basis of the exhaustive study of the two-dimension R-L algorithm, according to the theory of the microscopy imaging and the wavelet transform denoising pretreatment, we expand the R-L algorithm to three-dimension space. It is a nonlinear restoration method with the maximum entropy constraint. The method doesn't need to know the PSF of the microscopy imaging system precisely to recover the blur image. The image and PSF converge to the optimum solutions by many alterative iterations and corrections. The matlab simulation and experiments results show that the expansion algorithm is better in visual indicators, peak signal to noise ratio and improved signal to noise ratio when compared with the PML algorithm, and the proposed algorithm can suppress noise, restore more details of target, increase image resolution.
NASA Technical Reports Server (NTRS)
Pennock, A. P.; Swift, G.; Marbert, J. A.
1975-01-01
Externally blown flap models were tested for noise and performance at one-fifth scale in a static facility and at one-tenth scale in a large acoustically-treated wind tunnel. The static tests covered two flap designs, conical and ejector nozzles, third-flap noise-reduction treatments, internal blowing, and flap/nozzle geometry variations. The wind tunnel variables were triple-slotted or single-slotted flaps, sweep angle, and solid or perforated third flap. The static test program showed the following noise reductions at takeoff: 1.5 PNdB due to treating the third flap; 0.5 PNdB due to blowing from the third flap; 6 PNdB at flyover and 4.5 PNdB in the critical sideline plane (30 deg elevation) due to installation of the ejector nozzle. The wind tunnel program showed a reduction of 2 PNdB in the sideline plane due to a forward speed of 43.8 m/s (85 kn). The best combination of noise reduction concepts reduced the sideline noise of the reference aircraft at constant field length by 4 PNdB.
Improvement and implementation for Canny edge detection algorithm
NASA Astrophysics Data System (ADS)
Yang, Tao; Qiu, Yue-hong
2015-07-01
Edge detection is necessary for image segmentation and pattern recognition. In this paper, an improved Canny edge detection approach is proposed due to the defect of traditional algorithm. A modified bilateral filter with a compensation function based on pixel intensity similarity judgment was used to smooth image instead of Gaussian filter, which could preserve edge feature and remove noise effectively. In order to solve the problems of sensitivity to the noise in gradient calculating, the algorithm used 4 directions gradient templates. Finally, Otsu algorithm adaptively obtain the dual-threshold. All of the algorithm simulated with OpenCV 2.4.0 library in the environments of vs2010, and through the experimental analysis, the improved algorithm has been proved to detect edge details more effectively and with more adaptability.
Spectrum sensing based on cumulative power spectral density
NASA Astrophysics Data System (ADS)
Nasser, A.; Mansour, A.; Yao, K. C.; Abdallah, H.; Charara, H.
2017-12-01
This paper presents new spectrum sensing algorithms based on the cumulative power spectral density (CPSD). The proposed detectors examine the CPSD of the received signal to make a decision on the absence/presence of the primary user (PU) signal. Those detectors require the whiteness of the noise in the band of interest. The false alarm and detection probabilities are derived analytically and simulated under Gaussian and Rayleigh fading channels. Our proposed detectors present better performance than the energy (ED) or the cyclostationary detectors (CSD). Moreover, in the presence of noise uncertainty (NU), they are shown to provide more robustness than ED, with less performance loss. In order to neglect the NU, we modified our algorithms to be independent from the noise variance.
Digital image processing using parallel computing based on CUDA technology
NASA Astrophysics Data System (ADS)
Skirnevskiy, I. P.; Pustovit, A. V.; Abdrashitova, M. O.
2017-01-01
This article describes expediency of using a graphics processing unit (GPU) in big data processing in the context of digital images processing. It provides a short description of a parallel computing technology and its usage in different areas, definition of the image noise and a brief overview of some noise removal algorithms. It also describes some basic requirements that should be met by certain noise removal algorithm in the projection to computer tomography. It provides comparison of the performance with and without using GPU as well as with different percentage of using CPU and GPU.
Adaptive Feedback in Local Coordinates for Real-time Vision-Based Motion Control Over Long Distances
NASA Astrophysics Data System (ADS)
Aref, M. M.; Astola, P.; Vihonen, J.; Tabus, I.; Ghabcheloo, R.; Mattila, J.
2018-03-01
We studied the differences in noise-effects, depth-correlated behavior of sensors, and errors caused by mapping between coordinate systems in robotic applications of machine vision. In particular, the highly range-dependent noise densities for semi-unknown object detection were considered. An equation is proposed to adapt estimation rules to dramatic changes of noise over longer distances. This algorithm also benefits the smooth feedback of wheels to overcome variable latencies of visual perception feedback. Experimental evaluation of the integrated system is presented with/without the algorithm to highlight its effectiveness.
NASA Astrophysics Data System (ADS)
Wei, B. G.; Wu, X. Y.; Yao, Z. F.; Huang, H.
2017-11-01
Transformers are essential devices of the power system. The accurate computation of the highest temperature (HST) of a transformer’s windings is very significant, as for the HST is a fundamental parameter in controlling the load operation mode and influencing the life time of the insulation. Based on the analysis of the heat transfer processes and the thermal characteristics inside transformers, there is taken into consideration the influence of factors like the sunshine, external wind speed etc. on the oil-immersed transformers. Experimental data and the neural network are used for modeling and protesting of the HST, and furthermore, investigations are conducted on the optimization of the structure and algorithms of neutral network are conducted. Comparison is made between the measured values and calculated values by using the recommended algorithm of IEC60076 and by using the neural network algorithm proposed by the authors; comparison that shows that the value computed with the neural network algorithm approximates better the measured value than the value computed with the algorithm proposed by IEC60076.
A level 2 wind speed retrieval algorithm for the CYGNSS mission
NASA Astrophysics Data System (ADS)
Clarizia, Maria Paola; Ruf, Christopher; O'Brien, Andrew; Gleason, Scott
2014-05-01
The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) is a spaceborne mission focused on tropical cyclone (TC) inner core process studies. CYGNSS consists of a constellation of 8 microsatellites, which will measure ocean surface wind speed in all precipitating conditions, including those experienced in the TC eyewall, and with sufficient frequency to resolve genesis and rapid intensification. It does so through the use of an innovative remote sensing technique, known as Global Navigation Satellite System-Reflectometry, or GNSS-R. GNSS-R uses signals of opportunity from navigation constellations (e.g. GPS, GLONASS, Galileo), scattered by the surface of the ocean, to retrieve the surface wind speed. The dense space-time sampling capabilities, the ability of L-band signals to penetrate well through rain, and the possibility of simple, low-cost/low-power GNSS receivers, make GNSS-R ideal for the CYGNSS goals. Here we present an overview of a Level 2 (L2) wind speed retrieval algorithm, which would be particularly suitable for CYGNSS, and could be used to estimate winds from GNSS-R in general. The approach makes use of two different observables computed from 1-second Level 2a (L2a) delay-Doppler Maps (DDMs) of radar cross section. The first observable is called Delay-Doppler Map Average (DDMA), and it's the averaged radar cross section over a delay-Doppler window around the DDM peak (i.e. the specular reflection point coordinate in delay and Doppler). The second is called the Leading Edge Slope (LES), and it's the leading edge of the Integrated Delay Waveform (IDW), obtained by integrating the DDM along the Doppler dimension. The observables are calculated over a limited range of delays and Doppler frequencies, to comply with baseline spatial resolution requirements for the retrieved winds, which in the case of CYGNSS is 25 km x 25 km. If the observable from the 1-second DDM corresponds to a resolution higher than the specified one, time-averaging between consecutive observables is also applied, to reduce further the noise in the observables. The observables are correlated with wind speed, allowing one to develop an empirical Geophysical Model Function (GMF) that relates the observable value to the ground truth matchup winds, using a training dataset. The empirical GMF can then be used to estimate the winds from a generic dataset of observables, independent from the training one. In addition to that, the degree of decorrelation existing between winds retrieved from DDMA and from LES leads to the development of a Minimum Variance (MV) estimator, which provides improved wind estimates compared to those from DDMA or LES alone. The retrieval algorithm is applied in this study to GNSS-R synthetic data simulated using an End-to-End Simulator (E2ES) developed for CYGNSS, and using the true wind speeds that constitute the input to the simulations, as the ground-truth matchups. The performances of the retrieval algorithm will be presented in the form of Root Mean Square (RMS) error between the true and retrieved winds, highlighting that, for those specular points acquired with high enough gain of the receiver antenna, the RMS error meets the CYGNSS requirements on the wind speed uncertainty, which must be the greatest between 2 m/s or 10% of the measured wind.
Secure Automated Microgrid Energy System (SAMES)
2016-12-01
with embedded algorithm to share power between each other; • Wind Turbine (WT) Simulator, max 80 kW (4×20 kW), 480 V, Running Wind Generation...Temp, Rain, Wind ........................ 39 Figure 22. Point Loma, Box and Whisker Plot, Hourly Sum of Consumption ............................ 40...Figure 27. Coronado, Consumption vs Average Daily SD Temp, Rainfall, Wind ....................... 44 Figure 28. Naval Base Point Loma, One Line, Solar
Chapman, Simon
2014-01-01
Anti-wind farm activists repeatedly claim that families said to be adversely affected by noise from wind turbines "abandon" their homes. In Australia, a claim of "more than 40 families" has been made by a prominent anti-wind farm activist. Six sources (parliamentary submissions, media reports, an anti-wind farm website, wind industry sources, correspondence with known anti-wind farm activists and with three politicians opposed to wind farms) were used to find evidence of home "abandonments." Claims about 12 Australian households permanently (n = 10) or periodically (n = 2) leaving their homes were found. However, no house appears to have been permanently "abandoned" without sale, as the expression implies. These 12 cases need contextualizing against considerations that several of those involved were either dedicated activists against wind farms from times sometimes pre-dating their construction, were engaged in protracted negotiations for home purchase with wind companies, had pre-existing health problems, grievances with the wind company over employment or had left the area for unrelated reasons of employment elsewhere. The statement that "more than 40" houses have been "abandoned" because of wind turbines in Australia is a factoid promoted by wind farm opponents for dramatic, rhetorical impact. Other considerations are often involved in abandonment unrelated to the claims made about wind farm noise.
Windmill Noise Annoyance, Visual Aesthetics, and Attitudes towards Renewable Energy Sources.
Klæboe, Ronny; Sundfør, Hanne Beate
2016-07-23
A small focused socio-acoustic after-study of annoyance from a windmill park was undertaken after local health officials demanded a health impact study to look into neighborhood complaints. The windmill park consists of 31 turbines and is located in the South of Norway where it affects 179 dwellings. Simple exposure-effect relationships indicate stronger reactions to windmills and wind turbine noise than shown internationally, with the caveat that the sample size is small (n = 90) and responses are colored by the existing local conflict. Pulsating swishing sounds and turbine engine hum are the main causes of noise annoyance. About 60 per cent of those who participated in the survey were of the opinion that windmills degrade the landscape aesthetically, and were far from convinced that land-based windmills are desirable as a renewable energy source (hydropower is an important alternative source of renewables in Norway). Attitudes play an important role in addition to visual aesthetics in determining the acceptance of windmills and the resulting noise annoyance. To compare results from different wind turbine noise studies it seems necessary to assess the impact of important modifying factors.
A piloted simulator evaluation of a ground-based 4-D descent advisor algorithm
NASA Technical Reports Server (NTRS)
Davis, Thomas J.; Green, Steven M.; Erzberger, Heinz
1990-01-01
A ground-based, four dimensional (4D) descent-advisor algorithm is under development at NASA-Ames. The algorithm combines detailed aerodynamic, propulsive, and atmospheric models with an efficient numerical integration scheme to generate 4D descent advisories. The ability is investigated of the 4D descent advisor algorithm to provide adequate control of arrival time for aircraft not equipped with on-board 4D guidance systems. A piloted simulation was conducted to determine the precision with which the descent advisor could predict the 4D trajectories of typical straight-in descents flown by airline pilots under different wind conditions. The effects of errors in the estimation of wind and initial aircraft weight were also studied. A description of the descent advisor as well as the result of the simulation studies are presented.
An efficient randomized algorithm for contact-based NMR backbone resonance assignment.
Kamisetty, Hetunandan; Bailey-Kellogg, Chris; Pandurangan, Gopal
2006-01-15
Backbone resonance assignment is a critical bottleneck in studies of protein structure, dynamics and interactions by nuclear magnetic resonance (NMR) spectroscopy. A minimalist approach to assignment, which we call 'contact-based', seeks to dramatically reduce experimental time and expense by replacing the standard suite of through-bond experiments with the through-space (nuclear Overhauser enhancement spectroscopy, NOESY) experiment. In the contact-based approach, spectral data are represented in a graph with vertices for putative residues (of unknown relation to the primary sequence) and edges for hypothesized NOESY interactions, such that observed spectral peaks could be explained if the residues were 'close enough'. Due to experimental ambiguity, several incorrect edges can be hypothesized for each spectral peak. An assignment is derived by identifying consistent patterns of edges (e.g. for alpha-helices and beta-sheets) within a graph and by mapping the vertices to the primary sequence. The key algorithmic challenge is to be able to uncover these patterns even when they are obscured by significant noise. This paper develops, analyzes and applies a novel algorithm for the identification of polytopes representing consistent patterns of edges in a corrupted NOESY graph. Our randomized algorithm aggregates simplices into polytopes and fixes inconsistencies with simple local modifications, called rotations, that maintain most of the structure already uncovered. In characterizing the effects of experimental noise, we employ an NMR-specific random graph model in proving that our algorithm gives optimal performance in expected polynomial time, even when the input graph is significantly corrupted. We confirm this analysis in simulation studies with graphs corrupted by up to 500% noise. Finally, we demonstrate the practical application of the algorithm on several experimental beta-sheet datasets. Our approach is able to eliminate a large majority of noise edges and to uncover large consistent sets of interactions. Our algorithm has been implemented in the platform-independent Python code. The software can be freely obtained for academic use by request from the authors.
Noise Reduction with Microphone Arrays for Speaker Identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Z
Reducing acoustic noise in audio recordings is an ongoing problem that plagues many applications. This noise is hard to reduce because of interfering sources and non-stationary behavior of the overall background noise. Many single channel noise reduction algorithms exist but are limited in that the more the noise is reduced; the more the signal of interest is distorted due to the fact that the signal and noise overlap in frequency. Specifically acoustic background noise causes problems in the area of speaker identification. Recording a speaker in the presence of acoustic noise ultimately limits the performance and confidence of speaker identificationmore » algorithms. In situations where it is impossible to control the environment where the speech sample is taken, noise reduction filtering algorithms need to be developed to clean the recorded speech of background noise. Because single channel noise reduction algorithms would distort the speech signal, the overall challenge of this project was to see if spatial information provided by microphone arrays could be exploited to aid in speaker identification. The goals are: (1) Test the feasibility of using microphone arrays to reduce background noise in speech recordings; (2) Characterize and compare different multichannel noise reduction algorithms; (3) Provide recommendations for using these multichannel algorithms; and (4) Ultimately answer the question - Can the use of microphone arrays aid in speaker identification?« less
Park, Chunjae; Kwon, Ohin; Woo, Eung Je; Seo, Jin Keun
2004-03-01
In magnetic resonance electrical impedance tomography (MREIT), we try to visualize cross-sectional conductivity (or resistivity) images of a subject. We inject electrical currents into the subject through surface electrodes and measure the z component Bz of the induced internal magnetic flux density using an MRI scanner. Here, z is the direction of the main magnetic field of the MRI scanner. We formulate the conductivity image reconstruction problem in MREIT from a careful analysis of the relationship between the injection current and the induced magnetic flux density Bz. Based on the novel mathematical formulation, we propose the gradient Bz decomposition algorithm to reconstruct conductivity images. This new algorithm needs to differentiate Bz only once in contrast to the previously developed harmonic Bz algorithm where the numerical computation of (inverted delta)2Bz is required. The new algorithm, therefore, has the important advantage of much improved noise tolerance. Numerical simulations with added random noise of realistic amounts show the feasibility of the algorithm in practical applications and also its robustness against measurement noise.
NASA Astrophysics Data System (ADS)
Nishimaru, Eiji; Ichikawa, Katsuhiro; Okita, Izumi; Ninomiya, Yuuji; Tomoshige, Yukihiro; Kurokawa, Takehiro; Ono, Yutaka; Nakamura, Yuko; Suzuki, Masayuki
2008-03-01
Recently, several kinds of post-processing image filters which reduce the noise of computed tomography (CT) images have been proposed. However, these image filters are mostly for adults. Because these are not very effective in small (< 20 cm) display fields of view (FOV), we cannot use them for pediatric body images (e.g., premature babies and infant children). We have developed a new noise reduction filter algorithm for pediatric body CT images. This algorithm is based on a 3D post-processing in which the output pixel values are calculated by nonlinear interpolation in z-directions on original volumetric-data-sets. This algorithm does not need the in-plane (axial plane) processing, so the spatial resolution does not change. From the phantom studies, our algorithm could reduce SD up to 40% without affecting the spatial resolution of x-y plane and z-axis, and improved the CNR up to 30%. This newly developed filter algorithm will be useful for the diagnosis and radiation dose reduction of the pediatric body CT images.
Noise estimation for hyperspectral imagery using spectral unmixing and synthesis
NASA Astrophysics Data System (ADS)
Demirkesen, C.; Leloglu, Ugur M.
2014-10-01
Most hyperspectral image (HSI) processing algorithms assume a signal to noise ratio model in their formulation which makes them dependent on accurate noise estimation. Many techniques have been proposed to estimate the noise. A very comprehensive comparative study on the subject is done by Gao et al. [1]. In a nut-shell, most techniques are based on the idea of calculating standard deviation from assumed-to-be homogenous regions in the image. Some of these algorithms work on a regular grid parameterized with a window size w, while others make use of image segmentation in order to obtain homogenous regions. This study focuses not only to the statistics of the noise but to the estimation of the noise itself. A noise estimation technique motivated from a recent HSI de-noising approach [2] is proposed in this study. The denoising algorithm is based on estimation of the end-members and their fractional abundances using non-negative least squares method. The end-members are extracted using the well-known simplex volume optimization technique called NFINDR after manual selection of number of end-members and the image is reconstructed using the estimated endmembers and abundances. Actually, image de-noising and noise estimation are two sides of the same coin: Once we denoise an image, we can estimate the noise by calculating the difference of the de-noised image and the original noisy image. In this study, the noise is estimated as described above. To assess the accuracy of this method, the methodology in [1] is followed, i.e., synthetic images are created by mixing end-member spectra and noise. Since best performing method for noise estimation was spectral and spatial de-correlation (SSDC) originally proposed in [3], the proposed method is compared to SSDC. The results of the experiments conducted with synthetic HSIs suggest that the proposed noise estimation strategy outperforms the existing techniques in terms of mean and standard deviation of absolute error of the estimated noise. Finally, it is shown that the proposed technique demonstrated a robust behavior to the change of its single parameter, namely the number of end-members.
Ripple FPN reduced algorithm based on temporal high-pass filter and hardware implementation
NASA Astrophysics Data System (ADS)
Li, Yiyang; Li, Shuo; Zhang, Zhipeng; Jin, Weiqi; Wu, Lei; Jin, Minglei
2016-11-01
Cooled infrared detector arrays always suffer from undesired Ripple Fixed-Pattern Noise (FPN) when observe the scene of sky. The Ripple Fixed-Pattern Noise seriously affect the imaging quality of thermal imager, especially for small target detection and tracking. It is hard to eliminate the FPN by the Calibration based techniques and the current scene-based nonuniformity algorithms. In this paper, we present a modified space low-pass and temporal high-pass nonuniformity correction algorithm using adaptive time domain threshold (THP&GM). The threshold is designed to significantly reduce ghosting artifacts. We test the algorithm on real infrared in comparison to several previously published methods. This algorithm not only can effectively correct common FPN such as Stripe, but also has obviously advantage compared with the current methods in terms of detail protection and convergence speed, especially for Ripple FPN correction. Furthermore, we display our architecture with a prototype built on a Xilinx Virtex-5 XC5VLX50T field-programmable gate array (FPGA). The hardware implementation of the algorithm based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay (less than 20 lines). The hardware has been successfully applied in actual system.
Risk formulation for the sonic effects of offshore wind farms on fish in the EU region.
Kikuchi, Ryunosuke
2010-02-01
In 2007, European leaders agreed to source 20% of their energy needs from renewable energy; since that time, offshore wind farms have been receiving attention in the European Union (EU). In 2008, the European Community submitted a proposal to the United Nations Environment Program (UNEP) in order to combat marine noise pollution. In consideration of these facts, the present paper aims to deduce a preliminary hypothesis and its formulation for the effect of offshore wind farm noise on fish. The following general picture is drawn: the short-term potential impact during pre-construction; the short-term intensive impact during construction; and the physiological and/or masking effects that may occur over a long period while the wind farm is in operation. The EU's proposal to UNEP includes noise databases that list the origins of man-made sounds; it is advisable that offshore wind farms should be listed in the noise databases in order to promote rational environment management. Copyright 2009 Elsevier Ltd. All rights reserved.
Evaluating the impact of wind turbine noise on health-related quality of life.
Shepherd, Daniel; McBride, David; Welch, David; Dirks, Kim N; Hill, Erin M
2011-01-01
We report a cross-sectional study comparing the health-related quality of life (HRQOL) of individuals residing in the proximity of a wind farm to those residing in a demographically matched area sufficiently displaced from wind turbines. The study employed a nonequivalent comparison group posttest-only design. Self-administered questionnaires, which included the brief version of the World Health Organization quality of life scale, were delivered to residents in two adjacent areas in semirural New Zealand. Participants were also asked to identify annoying noises, indicate their degree of noise sensitivity, and rate amenity. Statistically significant differences were noted in some HRQOL domain scores, with residents living within 2 km of a turbine installation reporting lower overall quality of life, physical quality of life, and environmental quality of life. Those exposed to turbine noise also reported significantly lower sleep quality, and rated their environment as less restful. Our data suggest that wind farm noise can negatively impact facets of HRQOL.
Canales-Rodríguez, Erick J.; Caruyer, Emmanuel; Aja-Fernández, Santiago; Radua, Joaquim; Yurramendi Mendizabal, Jesús M.; Iturria-Medina, Yasser; Melie-García, Lester; Alemán-Gómez, Yasser; Thiran, Jean-Philippe; Sarró, Salvador; Pomarol-Clotet, Edith; Salvador, Raymond
2015-01-01
Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on many factors such as the number of coils and the methodology used to combine multichannel MRI signals. Indeed, the two prevailing methods for multichannel signal combination lead to noise patterns better described by Rician and noncentral Chi distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in human brain data. PMID:26470024
Electric Field Measurements At The Magnetopause
NASA Astrophysics Data System (ADS)
Lindqvist, P.-A.; Dunlop, M.
The quasi-thermal noise (QTN) is due to the thermal motions of the particles, which produce electrostatic fluctuations. This noise is detected by any sensitive receiver at the ports of an electric antenna immersed in a plasma and can be used to measure in-situ the plasma density, temperature and bulk velocity. The basic reason is that this noise can be formally calculated as a function of both the particle velocity distribu- tions and the antenna geometry. So, conversely, the "spectroscopy" of this noise re- veals the local plasma properties. This method is routinely used on various spacecraft (Ulysses, Wind) in the solar wind or in planetary magnetospheres/ionospheres (Image at Earth, Cassini at Venus, Earth and soon at Saturn). This method has the advantage of being relatively immune to spacecraft potential and photoelectrons pertubations, since it senses a large plasma volume. It provides an accurate measurement of the electron density (a few %) because it is based on the detection of the strong signal peak near the local plasma frequency (which is close to a resonance for electrostatic waves). We will show that QTN may be as well adapted to measure 1) magnetized (anisotropic) plasmas (and deduce the magnetic field strength), 2) suprathermal or non-thermal component (as for example a kappa distribution), and 3) a wide range of core temperature, i.e from ~10 eV, as in the solar wind, to rather low temperatures (<0.1 eV), as encountered in planetary ionospheres, with a single instrument. We will finally focus on the thermal noise analysis we might perform using an electric dipole on the bepiColombo/MMO probe, with the aim to get accurate measurements of elec- tron density and temperature for comparison with our models of Mercury/solar wind interaction.
Noise Prediction of NASA SR2 Propeller in Transonic Conditions
NASA Astrophysics Data System (ADS)
Gennaro, Michele De; Caridi, Domenico; Nicola, Carlo De
2010-09-01
In this paper we propose a numerical approach for noise prediction of high-speed propellers for Turboprop applications. It is based on a RANS approach for aerodynamic simulation coupled with Ffowcs Williams-Hawkings (FW-H) Acoustic Analogy for propeller noise prediction. The test-case geometry adopted for this study is the 8-bladed NASA SR2 transonic cruise propeller, and simulated Sound Pressure Levels (SPL) have been compared with experimental data available from Wind Tunnel and Flight Tests for different microphone locations in a range of Mach numbers between 0.78 and 0.85 and rotational velocities between 7000 and 9000 rpm. Results show the ability of this approach to predict noise to within a few dB of experimental data. Moreover corrections are provided to be applied to acoustic numerical results in order for them to be compared with Wind Tunnel and Flight Test experimental data, as well computational grid requirements and guidelines in order to perform complete aerodynamic and aeroacoustic calculations with highly competitive computational cost.
Hyperspectral imaging simulation of object under sea-sky background
NASA Astrophysics Data System (ADS)
Wang, Biao; Lin, Jia-xuan; Gao, Wei; Yue, Hui
2016-10-01
Remote sensing image simulation plays an important role in spaceborne/airborne load demonstration and algorithm development. Hyperspectral imaging is valuable in marine monitoring, search and rescue. On the demand of spectral imaging of objects under the complex sea scene, physics based simulation method of spectral image of object under sea scene is proposed. On the development of an imaging simulation model considering object, background, atmosphere conditions, sensor, it is able to examine the influence of wind speed, atmosphere conditions and other environment factors change on spectral image quality under complex sea scene. Firstly, the sea scattering model is established based on the Philips sea spectral model, the rough surface scattering theory and the water volume scattering characteristics. The measured bi directional reflectance distribution function (BRDF) data of objects is fit to the statistical model. MODTRAN software is used to obtain solar illumination on the sea, sky brightness, the atmosphere transmittance from sea to sensor and atmosphere backscattered radiance, and Monte Carlo ray tracing method is used to calculate the sea surface object composite scattering and spectral image. Finally, the object spectrum is acquired by the space transformation, radiation degradation and adding the noise. The model connects the spectrum image with the environmental parameters, the object parameters, and the sensor parameters, which provide a tool for the load demonstration and algorithm development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.
2010-11-23
Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.
Reconstruction of elasticity: a stochastic model-based approach in ultrasound elastography
2013-01-01
Background The convectional strain-based algorithm has been widely utilized in clinical practice. It can only provide the information of relative information of tissue stiffness. However, the exact information of tissue stiffness should be valuable for clinical diagnosis and treatment. Methods In this study we propose a reconstruction strategy to recover the mechanical properties of the tissue. After the discrepancies between the biomechanical model and data are modeled as the process noise, and the biomechanical model constraint is transformed into a state space representation the reconstruction of elasticity can be accomplished through one filtering identification process, which is to recursively estimate the material properties and kinematic functions from ultrasound data according to the minimum mean square error (MMSE) criteria. In the implementation of this model-based algorithm, the linear isotropic elasticity is adopted as the biomechanical constraint. The estimation of kinematic functions (i.e., the full displacement and velocity field), and the distribution of Young’s modulus are computed simultaneously through an extended Kalman filter (EKF). Results In the following experiments the accuracy and robustness of this filtering framework is first evaluated on synthetic data in controlled conditions, and the performance of this framework is then evaluated in the real data collected from elastography phantom and patients using the ultrasound system. Quantitative analysis verifies that strain fields estimated by our filtering strategy are more closer to the ground truth. The distribution of Young’s modulus is also well estimated. Further, the effects of measurement noise and process noise have been investigated as well. Conclusions The advantage of this model-based algorithm over the conventional strain-based algorithm is its potential of providing the distribution of elasticity under a proper biomechanical model constraint. We address the model-data discrepancy and measurement noise by introducing process noise and measurement noise in our framework, and then the absolute values of Young’s modulus are estimated through the EFK in the MMSE sense. However, the initial conditions, and the mesh strategy will affect the performance, i.e., the convergence rate, and computational cost, etc. PMID:23937814
Reconstruction of elasticity: a stochastic model-based approach in ultrasound elastography.
Lu, Minhua; Zhang, Heye; Wang, Jun; Yuan, Jinwei; Hu, Zhenghui; Liu, Huafeng
2013-08-10
The convectional strain-based algorithm has been widely utilized in clinical practice. It can only provide the information of relative information of tissue stiffness. However, the exact information of tissue stiffness should be valuable for clinical diagnosis and treatment. In this study we propose a reconstruction strategy to recover the mechanical properties of the tissue. After the discrepancies between the biomechanical model and data are modeled as the process noise, and the biomechanical model constraint is transformed into a state space representation the reconstruction of elasticity can be accomplished through one filtering identification process, which is to recursively estimate the material properties and kinematic functions from ultrasound data according to the minimum mean square error (MMSE) criteria. In the implementation of this model-based algorithm, the linear isotropic elasticity is adopted as the biomechanical constraint. The estimation of kinematic functions (i.e., the full displacement and velocity field), and the distribution of Young's modulus are computed simultaneously through an extended Kalman filter (EKF). In the following experiments the accuracy and robustness of this filtering framework is first evaluated on synthetic data in controlled conditions, and the performance of this framework is then evaluated in the real data collected from elastography phantom and patients using the ultrasound system. Quantitative analysis verifies that strain fields estimated by our filtering strategy are more closer to the ground truth. The distribution of Young's modulus is also well estimated. Further, the effects of measurement noise and process noise have been investigated as well. The advantage of this model-based algorithm over the conventional strain-based algorithm is its potential of providing the distribution of elasticity under a proper biomechanical model constraint. We address the model-data discrepancy and measurement noise by introducing process noise and measurement noise in our framework, and then the absolute values of Young's modulus are estimated through the EFK in the MMSE sense. However, the initial conditions, and the mesh strategy will affect the performance, i.e., the convergence rate, and computational cost, etc.
Enhancements to AERMOD's building downwash algorithms based on wind-tunnel and Embedded-LES modeling
NASA Astrophysics Data System (ADS)
Monbureau, E. M.; Heist, D. K.; Perry, S. G.; Brouwer, L. H.; Foroutan, H.; Tang, W.
2018-04-01
Knowing the fate of effluent from an industrial stack is important for assessing its impact on human health. AERMOD is one of several Gaussian plume models containing algorithms to evaluate the effect of buildings on the movement of the effluent from a stack. The goal of this study is to improve AERMOD's ability to accurately model important and complex building downwash scenarios by incorporating knowledge gained from a recently completed series of wind tunnel studies and complementary large eddy simulations of flow and dispersion around simple structures for a variety of building dimensions, stack locations, stack heights, and wind angles. This study presents three modifications to the building downwash algorithm in AERMOD that improve the physical basis and internal consistency of the model, and one modification to AERMOD's building pre-processor to better represent elongated buildings in oblique winds. These modifications are demonstrated to improve the ability of AERMOD to model observed ground-level concentrations in the vicinity of a building for the variety of conditions examined in the wind tunnel and numerical studies.
A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.
Kang, Eunhee; Min, Junhong; Ye, Jong Chul
2017-10-01
Due to the potential risk of inducing cancer, radiation exposure by X-ray CT devices should be reduced for routine patient scanning. However, in low-dose X-ray CT, severe artifacts typically occur due to photon starvation, beam hardening, and other causes, all of which decrease the reliability of the diagnosis. Thus, a high-quality reconstruction method from low-dose X-ray CT data has become a major research topic in the CT community. Conventional model-based de-noising approaches are, however, computationally very expensive, and image-domain de-noising approaches cannot readily remove CT-specific noise patterns. To tackle these problems, we want to develop a new low-dose X-ray CT algorithm based on a deep-learning approach. We propose an algorithm which uses a deep convolutional neural network (CNN) which is applied to the wavelet transform coefficients of low-dose CT images. More specifically, using a directional wavelet transform to extract the directional component of artifacts and exploit the intra- and inter- band correlations, our deep network can effectively suppress CT-specific noise. In addition, our CNN is designed with a residual learning architecture for faster network training and better performance. Experimental results confirm that the proposed algorithm effectively removes complex noise patterns from CT images derived from a reduced X-ray dose. In addition, we show that the wavelet-domain CNN is efficient when used to remove noise from low-dose CT compared to existing approaches. Our results were rigorously evaluated by several radiologists at the Mayo Clinic and won second place at the 2016 "Low-Dose CT Grand Challenge." To the best of our knowledge, this work is the first deep-learning architecture for low-dose CT reconstruction which has been rigorously evaluated and proven to be effective. In addition, the proposed algorithm, in contrast to existing model-based iterative reconstruction (MBIR) methods, has considerable potential to benefit from large data sets. Therefore, we believe that the proposed algorithm opens a new direction in the area of low-dose CT research. © 2017 American Association of Physicists in Medicine.
Guidance law simulation studies for complex approaches using the Microwave Landing System (MLS)
NASA Technical Reports Server (NTRS)
Feather, J. B.
1986-01-01
This report documents results for MLS guidance algorithm development conducted by DAC for NASA under the Advance Transport Operating Systems (ATOPS) Technology Studies program (NAS1-18028). The study consisted of evaluating guidance laws for vertical and lateral path control, as well as speed control, by simulating an MLS approach for the Washington National Airport. This work is an extension and generalization of a previous ATOPS contract (NAS1-16202) completed by DAC in 1985. The Washington river approach was simulated by six waypoints and one glideslope change and consisted of an eleven nautical mile approach path. Tracking performance was generated for 10 cases representing several different conditions, which included MLS noise, steady wind, turbulence, and windshear. Results of this simulation phase are suitable for use in future fixed-base simulator evaluations employing actual hardware (autopilot and a performance management system), as well as crew procedures and information requirements for MLS.
Biologically inspired binaural hearing aid algorithms: Design principles and effectiveness
NASA Astrophysics Data System (ADS)
Feng, Albert
2002-05-01
Despite rapid advances in the sophistication of hearing aid technology and microelectronics, listening in noise remains problematic for people with hearing impairment. To solve this problem two algorithms were designed for use in binaural hearing aid systems. The signal processing strategies are based on principles in auditory physiology and psychophysics: (a) the location/extraction (L/E) binaural computational scheme determines the directions of source locations and cancels noise by applying a simple subtraction method over every frequency band; and (b) the frequency-domain minimum-variance (FMV) scheme extracts a target sound from a known direction amidst multiple interfering sound sources. Both algorithms were evaluated using standard metrics such as signal-to-noise-ratio gain and articulation index. Results were compared with those from conventional adaptive beam-forming algorithms. In free-field tests with multiple interfering sound sources our algorithms performed better than conventional algorithms. Preliminary intelligibility and speech reception results in multitalker environments showed gains for every listener with normal or impaired hearing when the signals were processed in real time with the FMV binaural hearing aid algorithm. [Work supported by NIH-NIDCD Grant No. R21DC04840 and the Beckman Institute.
Research on correction algorithm of laser positioning system based on four quadrant detector
NASA Astrophysics Data System (ADS)
Gao, Qingsong; Meng, Xiangyong; Qian, Weixian; Cai, Guixia
2018-02-01
This paper first introduces the basic principle of the four quadrant detector, and a set of laser positioning experiment system is built based on the four quadrant detector. Four quadrant laser positioning system in the actual application, not only exist interference of background light and detector dark current noise, and the influence of random noise, system stability, spot equivalent error can't be ignored, so it is very important to system calibration and correction. This paper analyzes the various factors of system positioning error, and then propose an algorithm for correcting the system error, the results of simulation and experiment show that the modified algorithm can improve the effect of system error on positioning and improve the positioning accuracy.
Signal Analysis of Helicopter Blade-Vortex-Interaction Acoustic Noise Data
NASA Technical Reports Server (NTRS)
Rogers, James C.; Dai, Renshou
1998-01-01
Blade-Vortex-Interaction (BVI) produces annoying high-intensity impulsive noise. NASA Ames collected several sets of BVI noise data during in-flight and wind tunnel tests. The goal of this work is to extract the essential features of the BVI signals from the in-flight data and examine the feasibility of extracting those features from BVI noise recorded inside a large wind tunnel. BVI noise generating mechanisms and BVI radiation patterns an are considered and a simple mathematical-physical model is presented. It allows the construction of simple synthetic BVI events that are comparable to free flight data. The boundary effects of the wind tunnel floor and ceiling are identified and more complex synthetic BVI events are constructed to account for features observed in the wind tunnel data. It is demonstrated that improved recording of BVI events can be attained by changing the geometry of the rotor hub, floor, ceiling and microphone. The Euclidean distance measure is used to align BVI events from each blade and improved BVI signals are obtained by time-domain averaging the aligned data. The differences between BVI events for individual blades are then apparent. Removal of wind tunnel background noise by optimal Wiener-filtering is shown to be effective provided representative noise-only data have been recorded. Elimination of wind tunnel reflections by cepstral and optimal filtering deconvolution is examined. It is seen that the cepstral method is not applicable but that a pragmatic optimal filtering approach gives encouraging results. Recommendations for further work include: altering measurement geometry, real-time data observation and evaluation, examining reflection signals (particularly those from the ceiling) and performing further analysis of expected BVI signals for flight conditions of interest so that microphone placement can be optimized for each condition.
Terrain mapping and control of unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Kang, Yeonsik
In this thesis, methods for terrain mapping and control of unmanned aerial vehicles (UAVs) are proposed. First, robust obstacle detection and tracking algorithm are introduced to eliminate the clutter noise uncorrelated with the real obstacle. This is an important problem since most types of sensor measurements are vulnerable to noise. In order to eliminate such noise, a Kalman filter-based interacting multiple model (IMM) algorithm is employed to effectively detect obstacles and estimate their positions precisely. Using the outcome of the IMM-based obstacle detection algorithm, a new method of building a probabilistic occupancy grid map is proposed based on Bayes rule in probability theory. Since the proposed map update law uses the outputs of the IMM-based obstacle detection algorithm, simultaneous tracking of moving targets and mapping of stationary obstacles are possible. This can be helpful especially in a noisy outdoor environment where different types of obstacles exist. Another feature of the algorithm is its capability to eliminate clutter noise as well as measurement noise. The proposed algorithm is simulated in Matlab using realistic sensor models. The results show close agreement with the layout of real obstacles. An efficient method called "quadtree" is used to process massive geographical information in a convenient manner. The algorithm is evaluated in a realistic simulation environment called RIPTIDE, which the NASA Ames Research Center developed to access the performance of complicated software for UAVs. Supposing that a UAV is equipped with abovementioned obstacle detection and mapping algorithm, the control problem of a small fixed-wing UAV is studied. A Nonlinear Model Predictive Control (NMPC is designed as a high level controller for the fixed-wing UAV using a kinematic model of the UAV. The kinematic model is employed because of the assumption that there exist low level controls on the UAV. The UAV dynamics are nonlinear with input constraints which is the main challenge explored in this thesis. The control objective of the NMPC is determined to track a desired line, and the analysis of the designed NMPC's stability is followed to find the conditions that can assure stability. Then, the control objective is extended to track adjoined multiple line segments with obstacle avoidance capability. In simulation, the performance of the NMPC is superb with fast convergence and small overshoot. The computation time is not a burden for a fixed-wing UAV controller with a Pentium level on-board computer that provides a reasonable control update rate.
Notched audiograms and noise exposure history in older adults.
Nondahl, David M; Shi, Xiaoyu; Cruickshanks, Karen J; Dalton, Dayna S; Tweed, Ted S; Wiley, Terry L; Carmichael, Lakeesha L
2009-12-01
Using data from a population-based cohort study, we compared four published algorithms for identifying notched audiograms and compared their resulting classifications with noise exposure history. Four algorithms: (1) , (2) , (3) , and (4) were used to identify notched audiograms. Audiometric evaluations were collected as a part of the 10-yr follow-up examinations of the Epidemiology of Hearing Loss Study, in Beaver Dam, WI (2003-2005, N = 2395). Detailed noise exposure histories were collected by interview at the baseline examination (1993-1995) and updated at subsequent visits. An extensive history of occupational noise exposure, participation in noisy hobbies, and firearm usage was used to evaluate consistency of the notch classifications with the history of noise exposure. The prevalence of notched audiograms varied greatly by definition (31.7, 25.9, 47.2, and 11.7% for methods 1, 2, 3, and 4, respectively). In this cohort, a history of noise exposure was common (56.2% for occupational noise, 71.7% for noisy hobbies, 13.4% for firearms, and 81.2% for any of these three sources). Among participants with a notched audiogram, almost one-third did not have a history of occupational noise exposure (31.4, 33.0, 32.5, and 28.1% for methods 1, 2, 3, and 4, respectively), and approximately 11% did not have a history of exposure to any of the three sources of noise (11.5, 13.6, 10.3, and 7.6%). Discordance was greater in women than in men. These results suggest that there is a poor agreement across existing algorithms for audiometric notches. In addition, notches can occur in the absence of a positive noise history. In the absence of an objective consensus definition of a notched audiogram and in light of the degree of discordance in women between noise history and notches by each of these algorithms, researchers should be cautious about classifying noise-induced hearing loss by notched audiograms.
Adaptive nonlinear L2 and L3 filters for speckled image processing
NASA Astrophysics Data System (ADS)
Lukin, Vladimir V.; Melnik, Vladimir P.; Chemerovsky, Victor I.; Astola, Jaakko T.
1997-04-01
Here we propose adaptive nonlinear filters based on calculation and analysis of two or three order statistics in a scanning window. They are designed for processing images corrupted by severe speckle noise with non-symmetrical. (Rayleigh or one-side exponential) distribution laws; impulsive noise can be also present. The proposed filtering algorithms provide trade-off between impulsive noise can be also present. The proposed filtering algorithms provide trade-off between efficient speckle noise suppression, robustness, good edge/detail preservation, low computational complexity, preservation of average level for homogeneous regions of images. Quantitative evaluations of the characteristics of the proposed filter are presented as well as the results of the application to real synthetic aperture radar and ultrasound medical images.
Wind farm topology-finding algorithm considering performance, costs, and environmental impacts.
Tazi, Nacef; Chatelet, Eric; Bouzidi, Youcef; Meziane, Rachid
2017-06-05
Optimal power in wind farms turns to be a modern problem for investors and decision makers; onshore wind farms are subject to performance and economic and environmental constraints. The aim of this work is to define the best installed capacity (best topology) with maximum performance and profits and consider environmental impacts as well. In this article, we continue the work recently done on wind farm topology-finding algorithm. The proposed resolution technique is based on finding the best topology of the system that maximizes the wind farm performance (availability) under the constraints of costs and capital investments. Global warming potential of wind farm is calculated and taken into account in the results. A case study is done using data and constraints similar to those collected from wind farm constructors, managers, and maintainers. Multi-state systems (MSS), universal generating function (UGF), wind, and load charge functions are applied. An economic study was conducted to assess the wind farm investment. Net present value (NPV) and levelized cost of energy (LCOE) were calculated for best topologies found.
Selecting algorithms, sensors, and linear bases for optimum spectral recovery of skylight.
López-Alvarez, Miguel A; Hernández-Andrés, Javier; Valero, Eva M; Romero, Javier
2007-04-01
In a previous work [Appl. Opt.44, 5688 (2005)] we found the optimum sensors for a planned multispectral system for measuring skylight in the presence of noise by adapting a linear spectral recovery algorithm proposed by Maloney and Wandell [J. Opt. Soc. Am. A3, 29 (1986)]. Here we continue along these lines by simulating the responses of three to five Gaussian sensors and recovering spectral information from noise-affected sensor data by trying out four different estimation algorithms, three different sizes for the training set of spectra, and various linear bases. We attempt to find the optimum combination of sensors, recovery method, linear basis, and matrix size to recover the best skylight spectral power distributions from colorimetric and spectral (in the visible range) points of view. We show how all these parameters play an important role in the practical design of a real multispectral system and how to obtain several relevant conclusions from simulating the behavior of sensors in the presence of noise.
Modifications to the 4x7 meter tunnel for acoustic research: Engineering feasibility study
NASA Technical Reports Server (NTRS)
1986-01-01
The NASA-Langley Research Center 4 x 7 Meter Low Speed Wind Tunnel is currently being used for low speed aerodynamics, V/STOL aerodynamics and, to a limited extent, rotorcraft noise research. The deficiencies of this wind tunnel for both aerodynamics and aeroacoustics research have been recognized for some time. Modifications to the wind tunnel are being made to improve the test section flow quality and to update the model cart systems. A further modification of the 4 x 7 Meter Wind Tunnel to permit rotorcraft model acoustics research has been proposed. As a precursor to the design of the proposed modifications, NASA is conducted both in-house and contracted studies to define the acoustic environment within the wind tunnel and to provide recommendations or the reduction of the wind tunnel background noise to a level acceptable to acoustics researchers. One of these studies by an acoustics consultant, has produced the primary reference documents that define the wind tunnel noise sources and outline recommended solutions.
A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data.
Gregoire, John M; Dale, Darren; van Dover, R Bruce
2011-01-01
Peak detection is ubiquitous in the analysis of spectral data. While many noise-filtering algorithms and peak identification algorithms have been developed, recent work [P. Du, W. Kibbe, and S. Lin, Bioinformatics 22, 2059 (2006); A. Wee, D. Grayden, Y. Zhu, K. Petkovic-Duran, and D. Smith, Electrophoresis 29, 4215 (2008)] has demonstrated that both of these tasks are efficiently performed through analysis of the wavelet transform of the data. In this paper, we present a wavelet-based peak detection algorithm with user-defined parameters that can be readily applied to the application of any spectral data. Particular attention is given to the algorithm's resolution of overlapping peaks. The algorithm is implemented for the analysis of powder diffraction data, and successful detection of Bragg peaks is demonstrated for both low signal-to-noise data from theta-theta diffraction of nanoparticles and combinatorial x-ray diffraction data from a composition spread thin film. These datasets have different types of background signals which are effectively removed in the wavelet-based method, and the results demonstrate that the algorithm provides a robust method for automated peak detection.
Self-recovery fragile watermarking algorithm based on SPHIT
NASA Astrophysics Data System (ADS)
Xin, Li Ping
2015-12-01
A fragile watermark algorithm is proposed, based on SPIHT coding, which can recover the primary image itself. The novelty of the algorithm is that it can tamper location and Self-restoration. The recovery has been very good effect. The first, utilizing the zero-tree structure, the algorithm compresses and encodes the image itself, and then gained self correlative watermark data, so as to greatly reduce the quantity of embedding watermark. Then the watermark data is encoded by error correcting code, and the check bits and watermark bits are scrambled and embedded to enhance the recovery ability. At the same time, by embedding watermark into the latter two bit place of gray level image's bit-plane code, the image after embedded watermark can gain nicer visual effect. The experiment results show that the proposed algorithm may not only detect various processing such as noise adding, cropping, and filtering, but also recover tampered image and realize blind-detection. Peak signal-to-noise ratios of the watermark image were higher than other similar algorithm. The attack capability of the algorithm was enhanced.
Xu, Z N
2014-12-01
In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop images with different hydrophobicity values and volumes.
Background Noise Reduction Using Adaptive Noise Cancellation Determined by the Cross-Correlation
NASA Technical Reports Server (NTRS)
Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.
2012-01-01
Background noise due to flow in wind tunnels contaminates desired data by decreasing the Signal-to-Noise Ratio. The use of Adaptive Noise Cancellation to remove background noise at measurement microphones is compromised when the reference sensor measures both background and desired noise. The technique proposed modifies the classical processing configuration based on the cross-correlation between the reference and primary microphone. Background noise attenuation is achieved using a cross-correlation sample width that encompasses only the background noise and a matched delay for the adaptive processing. A present limitation of the method is that a minimum time delay between the background noise and desired signal must exist in order for the correlated parts of the desired signal to be separated from the background noise in the crosscorrelation. A simulation yields primary signal recovery which can be predicted from the coherence of the background noise between the channels. Results are compared with two existing methods.
Environmental aspects of large-scale wind-power systems in the UK
NASA Astrophysics Data System (ADS)
Robson, A.
1984-11-01
Environmental issues relating to the introduction of large, MW-scale wind turbines at land-based sites in the UK are discussed. Noise, television interference, hazards to bird life, and visual effects are considered. Areas of uncertainty are identified, but enough is known from experience elsewhere in the world to enable the first UK machines to be introduced in a safe and environementally acceptable manner. Research to establish siting criteria more clearly, and significantly increase the potential wind-energy resource is mentioned. Studies of the comparative risk of energy systems are shown to be overpessimistic for UK wind turbines.
Wind turbine acoustics research bibliography with selected annotation
NASA Technical Reports Server (NTRS)
Hubbard, Harvey H.; Shepherd, Kevin P.
1988-01-01
Citations of documents are included, which represent the state-of-the-art of technology in each of the following acoustics subject areas: Prediction of Wind Turbine Noise; Acoustic Measurements for Wind Tunnels; Effect of Wind Turbine Noise on Building Structures, People and Communities; Atmospheric Propagation; and Measurement Technology Including Wind Screens. Documents are listed in chronological order in each section of the paper, with key documents and associated annotation listed first. The sources are given along with acquisition numbers, when available, to expedite the acquisition of copies of the documents.
Lee, Ki Baek
2018-01-01
Objective To describe the quantitative image quality and histogram-based evaluation of an iterative reconstruction (IR) algorithm in chest computed tomography (CT) scans at low-to-ultralow CT radiation dose levels. Materials and Methods In an adult anthropomorphic phantom, chest CT scans were performed with 128-section dual-source CT at 70, 80, 100, 120, and 140 kVp, and the reference (3.4 mGy in volume CT Dose Index [CTDIvol]), 30%-, 60%-, and 90%-reduced radiation dose levels (2.4, 1.4, and 0.3 mGy). The CT images were reconstructed by using filtered back projection (FBP) algorithms and IR algorithm with strengths 1, 3, and 5. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were statistically compared between different dose levels, tube voltages, and reconstruction algorithms. Moreover, histograms of subtraction images before and after standardization in x- and y-axes were visually compared. Results Compared with FBP images, IR images with strengths 1, 3, and 5 demonstrated image noise reduction up to 49.1%, SNR increase up to 100.7%, and CNR increase up to 67.3%. Noteworthy image quality degradations on IR images including a 184.9% increase in image noise, 63.0% decrease in SNR, and 51.3% decrease in CNR, and were shown between 60% and 90% reduced levels of radiation dose (p < 0.0001). Subtraction histograms between FBP and IR images showed progressively increased dispersion with increased IR strength and increased dose reduction. After standardization, the histograms appeared deviated and ragged between FBP images and IR images with strength 3 or 5, but almost normally-distributed between FBP images and IR images with strength 1. Conclusion The IR algorithm may be used to save radiation doses without substantial image quality degradation in chest CT scanning of the adult anthropomorphic phantom, down to approximately 1.4 mGy in CTDIvol (60% reduced dose). PMID:29354008
The Acoustic Environment of the NASA Glenn 9- by 15-foot Low-Speed Wind Tunnel
NASA Technical Reports Server (NTRS)
Stephens, David B.
2015-01-01
The 9- by 15-Foot Low Speed Wind Tunnel is an acoustic testing facility with a long history of aircraft propulsion noise research. Due to interest in renovating the facility to support future testing of advanced quiet engine designs, a study was conducted to document the background noise level in the facility and investigate the sources of contaminating noise. The anechoic quality of the facility was also investigated using an interrupted noise method. The present report discusses these aspects of the noise environment in this facility.
Li, Zheng; Zhang, Hai; Zhou, Qifan; Che, Huan
2017-09-05
The main objective of the introduced study is to design an adaptive Inertial Navigation System/Global Navigation Satellite System (INS/GNSS) tightly-coupled integration system that can provide more reliable navigation solutions by making full use of an adaptive Kalman filter (AKF) and satellite selection algorithm. To achieve this goal, we develop a novel redundant measurement noise covariance estimation (RMNCE) theorem, which adaptively estimates measurement noise properties by analyzing the difference sequences of system measurements. The proposed RMNCE approach is then applied to design both a modified weighted satellite selection algorithm and a type of adaptive unscented Kalman filter (UKF) to improve the performance of the tightly-coupled integration system. In addition, an adaptive measurement noise covariance expanding algorithm is developed to mitigate outliers when facing heavy multipath and other harsh situations. Both semi-physical simulation and field experiments were conducted to evaluate the performance of the proposed architecture and were compared with state-of-the-art algorithms. The results validate that the RMNCE provides a significant improvement in the measurement noise covariance estimation and the proposed architecture can improve the accuracy and reliability of the INS/GNSS tightly-coupled systems. The proposed architecture can effectively limit positioning errors under conditions of poor GNSS measurement quality and outperforms all the compared schemes.
Li, Zheng; Zhang, Hai; Zhou, Qifan; Che, Huan
2017-01-01
The main objective of the introduced study is to design an adaptive Inertial Navigation System/Global Navigation Satellite System (INS/GNSS) tightly-coupled integration system that can provide more reliable navigation solutions by making full use of an adaptive Kalman filter (AKF) and satellite selection algorithm. To achieve this goal, we develop a novel redundant measurement noise covariance estimation (RMNCE) theorem, which adaptively estimates measurement noise properties by analyzing the difference sequences of system measurements. The proposed RMNCE approach is then applied to design both a modified weighted satellite selection algorithm and a type of adaptive unscented Kalman filter (UKF) to improve the performance of the tightly-coupled integration system. In addition, an adaptive measurement noise covariance expanding algorithm is developed to mitigate outliers when facing heavy multipath and other harsh situations. Both semi-physical simulation and field experiments were conducted to evaluate the performance of the proposed architecture and were compared with state-of-the-art algorithms. The results validate that the RMNCE provides a significant improvement in the measurement noise covariance estimation and the proposed architecture can improve the accuracy and reliability of the INS/GNSS tightly-coupled systems. The proposed architecture can effectively limit positioning errors under conditions of poor GNSS measurement quality and outperforms all the compared schemes. PMID:28872629
Aerodynamic and aeroacoustic for wind turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Maizi; Rabah, Dizene
2015-03-10
This paper describes a hybrid approach forpredicting noise radiated from the rotating Wind Turbine (HAWT) blades, where the sources are extracted from an unsteady Reynolds-Averaged-Navier Stocks (URANS) simulation, ANSYS CFX 11.0, was used to calculate The near-field flow parameters around the blade surface that are necessary for FW-H codes. Comparisons with NREL Phase II experimental results are presented with respect to the pressure distributions for validating a capacity of the solver to calculate the near-field flow on and around the wind turbine blades, The results show that numerical data have a good agreement with experimental. The acoustic pressure, presented asmore » a sum of thickness and loading noise components, is analyzed by means of a discrete fast Fourier transformation for the presentation of the time acoustic time histories in the frequency domain. The results convincingly show that dipole source noise is the dominant noise source for this wind turbine.« less
NASA Technical Reports Server (NTRS)
Hall, G. F.
1975-01-01
A numerical analysis was developed to determine the airloads on helicopter rotors operating under near-hovering flight conditions capable of producing impulsive noise. A computer program was written in which the solutions for the rotor tip vortex geometry, inflow, aeroelastic response, and airloads are solved in a coupled manner at sequential time steps, with or without the influence of an imposed steady ambient wind or transient gust. The program was developed for future applications in which predicted airloads would be incorporated in an acoustics analysis to attempt to predict and analyze impulsive noise (blade slap). The analysis was applied to a hovering full-scale rotor for which impulsive noise was recorded in the presence of ambient wind. The predicted tip vortex coordinates are in reasonable agreement with the test data, and the blade airload solutions converged to a periodic behavior for an imposed steady ambient wind conditions.
NASA Astrophysics Data System (ADS)
Yang, Fuqiang; Zhang, Dinghua; Huang, Kuidong; Gao, Zongzhao; Yang, YaFei
2018-02-01
Based on the discrete algebraic reconstruction technique (DART), this study aims to address and test a new improved algorithm applied to incomplete projection data to generate a high quality reconstruction image by reducing the artifacts and noise in computed tomography. For the incomplete projections, an augmented Lagrangian based on compressed sensing is first used in the initial reconstruction for segmentation of the DART to get higher contrast graphics for boundary and non-boundary pixels. Then, the block matching 3D filtering operator was used to suppress the noise and to improve the gray distribution of the reconstructed image. Finally, simulation studies on the polychromatic spectrum were performed to test the performance of the new algorithm. Study results show a significant improvement in the signal-to-noise ratios (SNRs) and average gradients (AGs) of the images reconstructed from incomplete data. The SNRs and AGs of the new images reconstructed by DART-ALBM were on average 30%-40% and 10% higher than the images reconstructed by DART algorithms. Since the improved DART-ALBM algorithm has a better robustness to limited-view reconstruction, which not only makes the edge of the image clear but also makes the gray distribution of non-boundary pixels better, it has the potential to improve image quality from incomplete projections or sparse projections.
The influence of periodic wind turbine noise on infrasound array measurements
NASA Astrophysics Data System (ADS)
Pilger, Christoph; Ceranna, Lars
2017-02-01
Aerodynamic noise emissions from the continuously growing number of wind turbines in Germany are creating increasing problems for infrasound recording systems. These systems are equipped with highly sensitive micro pressure sensors accurately measuring acoustic signals in a frequency range inaudible to the human ear. Ten years of data (2006-2015) from the infrasound array IGADE in Northern Germany are analysed to quantify the influence of wind turbine noise on infrasound recordings. Furthermore, a theoretical model is derived and validated by a field experiment with mobile micro-barometer stations. Fieldwork was carried out 2004 to measure the infrasonic pressure level of a single horizontal-axis wind turbine and to extrapolate the sound effect for a larger number of nearby wind turbines. The model estimates the generated sound pressure level of wind turbines and thus enables for specifying the minimum allowable distance between wind turbines and infrasound stations for undisturbed recording. This aspect is particularly important to guarantee the monitoring performance of the German infrasound stations I26DE in the Bavarian Forest and I27DE in Antarctica. These stations are part of the International Monitoring System (IMS) verifying compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), and thus have to meet stringent specifications with respect to infrasonic background noise.
Chung, King
2004-01-01
This review discusses the challenges in hearing aid design and fitting and the recent developments in advanced signal processing technologies to meet these challenges. The first part of the review discusses the basic concepts and the building blocks of digital signal processing algorithms, namely, the signal detection and analysis unit, the decision rules, and the time constants involved in the execution of the decision. In addition, mechanisms and the differences in the implementation of various strategies used to reduce the negative effects of noise are discussed. These technologies include the microphone technologies that take advantage of the spatial differences between speech and noise and the noise reduction algorithms that take advantage of the spectral difference and temporal separation between speech and noise. The specific technologies discussed in this paper include first-order directional microphones, adaptive directional microphones, second-order directional microphones, microphone matching algorithms, array microphones, multichannel adaptive noise reduction algorithms, and synchrony detection noise reduction algorithms. Verification data for these technologies, if available, are also summarized. PMID:15678225
Ahirwal, M K; Kumar, Anil; Singh, G K
2013-01-01
This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively.
Subjective comparison and evaluation of speech enhancement algorithms
Hu, Yi; Loizou, Philipos C.
2007-01-01
Making meaningful comparisons between the performance of the various speech enhancement algorithms proposed over the years, has been elusive due to lack of a common speech database, differences in the types of noise used and differences in the testing methodology. To facilitate such comparisons, we report on the development of a noisy speech corpus suitable for evaluation of speech enhancement algorithms. This corpus is subsequently used for the subjective evaluation of 13 speech enhancement methods encompassing four classes of algorithms: spectral subtractive, subspace, statistical-model based and Wiener-type algorithms. The subjective evaluation was performed by Dynastat, Inc. using the ITU-T P.835 methodology designed to evaluate the speech quality along three dimensions: signal distortion, noise distortion and overall quality. This paper reports the results of the subjective tests. PMID:18046463
Optical Fiber Infrasound Sensor Arrays: An Improved Alternative to Arrays of Rosette Wind Filters
NASA Astrophysics Data System (ADS)
Walker, Kristoffer; Zumberge, Mark; Dewolf, Scott; Berger, Jon; Hedlin, Michael
2010-05-01
A key difficulty in infrasound signal detection is the noise created by spatially incoherent turbulence that is usually present in wind. Increasing wind speeds correlate with increasing noise levels across the entire infrasound band. Optical fiber infrasound sensors (OFIS) are line microphones that instantaneously integrate pressure along their lengths with laser interferometry. Although the sensor has a very low noise floor, the promise of the sensor is in its effectiveness at reducing wind noise without the need for a network of interconnected pipes. We have previously shown that a single 90 m OFIS (spanning a line) is just as effective at reducing wind noise as a 70 m diameter rosette (covering a circular area). We have also empirically measured the infrasound response of the OFIS as a function of back azimuth, showing that it is well predicted by an analytical solution; the response is flat for broadside signals and similar to the rosette response for endfire signals. Using that analytical solution, we have developed beamforming techniques that permit the estimation of back azimuth using an array of OFIS arms as well as an array deconvolution technique that accurately stacks weighted versions of the recordings to obtain the original infrasound signal. We show how a slight modification to traditional array processing techniques can also be used with OFIS arrays to determine back azimuth, even for signal-to-noise ratios much less than 1. Recently several improvements to the OFIS instrumentation have been achieved. We have made an important modification to our interferometric technique that makes the interferometer insensitive to ambient temperature fluctuation. We are also developing a continuous real-time calibration system, which may eliminate the need for periodic array calibration efforts. We also report progress in comparing a newly installed 270 m long OFIS at Piñon Flat Observatory (PFO) to a collocated 70 m rosette of the I57US array. Specifically, we compare hundreds of wind noise spectra and two Vandenberg rocket launch infrasound signals that were recorded by both systems. The 70-m diameter rosette (L2) was connected to a Chaparral Physics Model 50 microphone, which is usually more sensitive than the MB2000 microbarometer in the 1-10 Hz band. The data show that in low wind, the noise floor of the OFIS is the same as the Chaparral. However, in moderate wind (5 m/s) the OFIS attenuates wind noise at 1 Hz by 10 dB better than L2. Similarly, the two rocket launch signals that were recorded in the presence of 3-4 m/s wind confirm that the signal-to-noise ratio improvement is 10 dB at 1 Hz. This confirms that at each signal frequency and direction, there exists an OFIS length threshold above which an OFIS wind filter will always outperform a rosette in terms recorded signal-to-noise ratio. The OFIS technology is proven and mature for observatory installations. Work is underway to make the technology more portable for remote, DC-powered deployments. A DC-powered, ruggedized OFIS array will be installed for microbarom research in Northern California during the spring of 2010. We seek collaborations with other researchers that are interested in evaluating or assisting in the further development of the OFIS technology.
Component-based model to predict aerodynamic noise from high-speed train pantographs
NASA Astrophysics Data System (ADS)
Latorre Iglesias, E.; Thompson, D. J.; Smith, M. G.
2017-04-01
At typical speeds of modern high-speed trains the aerodynamic noise produced by the airflow over the pantograph is a significant source of noise. Although numerical models can be used to predict this they are still very computationally intensive. A semi-empirical component-based prediction model is proposed to predict the aerodynamic noise from train pantographs. The pantograph is approximated as an assembly of cylinders and bars with particular cross-sections. An empirical database is used to obtain the coefficients of the model to account for various factors: incident flow speed, diameter, cross-sectional shape, yaw angle, rounded edges, length-to-width ratio, incoming turbulence and directivity. The overall noise from the pantograph is obtained as the incoherent sum of the predicted noise from the different pantograph struts. The model is validated using available wind tunnel noise measurements of two full-size pantographs. The results show the potential of the semi-empirical model to be used as a rapid tool to predict aerodynamic noise from train pantographs.
Tang, Jie; Nett, Brian E; Chen, Guang-Hong
2009-10-07
Of all available reconstruction methods, statistical iterative reconstruction algorithms appear particularly promising since they enable accurate physical noise modeling. The newly developed compressive sampling/compressed sensing (CS) algorithm has shown the potential to accurately reconstruct images from highly undersampled data. The CS algorithm can be implemented in the statistical reconstruction framework as well. In this study, we compared the performance of two standard statistical reconstruction algorithms (penalized weighted least squares and q-GGMRF) to the CS algorithm. In assessing the image quality using these iterative reconstructions, it is critical to utilize realistic background anatomy as the reconstruction results are object dependent. A cadaver head was scanned on a Varian Trilogy system at different dose levels. Several figures of merit including the relative root mean square error and a quality factor which accounts for the noise performance and the spatial resolution were introduced to objectively evaluate reconstruction performance. A comparison is presented between the three algorithms for a constant undersampling factor comparing different algorithms at several dose levels. To facilitate this comparison, the original CS method was formulated in the framework of the statistical image reconstruction algorithms. Important conclusions of the measurements from our studies are that (1) for realistic neuro-anatomy, over 100 projections are required to avoid streak artifacts in the reconstructed images even with CS reconstruction, (2) regardless of the algorithm employed, it is beneficial to distribute the total dose to more views as long as each view remains quantum noise limited and (3) the total variation-based CS method is not appropriate for very low dose levels because while it can mitigate streaking artifacts, the images exhibit patchy behavior, which is potentially harmful for medical diagnosis.
Manninen, Antti J.; O'Connor, Ewan J.; Vakkari, Ville; ...
2016-03-03
Current commercially available Doppler lidars provide an economical and robust solution for measuring vertical and horizontal wind velocities, together with the ability to provide co- and cross-polarised backscatter profiles. The high temporal resolution of these instruments allows turbulent properties to be obtained from studying the variation in radial velocities. However, the instrument specifications mean that certain characteristics, especially the background noise behaviour, become a limiting factor for the instrument sensitivity in regions where the aerosol load is low. Turbulent calculations require an accurate estimate of the contribution from velocity uncertainty estimates, which are directly related to the signal-to-noise ratio. Anymore » bias in the signal-to-noise ratio will propagate through as a bias in turbulent properties. In this paper we present a method to correct for artefacts in the background noise behaviour of commercially available Doppler lidars and reduce the signal-to-noise ratio threshold used to discriminate between noise, and cloud or aerosol signals. We show that, for Doppler lidars operating continuously at a number of locations in Finland, the data availability can be increased by as much as 50 % after performing this background correction and subsequent reduction in the threshold. Furthermore the reduction in bias also greatly improves subsequent calculations of turbulent properties in weak signal regimes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manninen, Antti J.; O'Connor, Ewan J.; Vakkari, Ville
Current commercially available Doppler lidars provide an economical and robust solution for measuring vertical and horizontal wind velocities, together with the ability to provide co- and cross-polarised backscatter profiles. The high temporal resolution of these instruments allows turbulent properties to be obtained from studying the variation in radial velocities. However, the instrument specifications mean that certain characteristics, especially the background noise behaviour, become a limiting factor for the instrument sensitivity in regions where the aerosol load is low. Turbulent calculations require an accurate estimate of the contribution from velocity uncertainty estimates, which are directly related to the signal-to-noise ratio. Anymore » bias in the signal-to-noise ratio will propagate through as a bias in turbulent properties. In this paper we present a method to correct for artefacts in the background noise behaviour of commercially available Doppler lidars and reduce the signal-to-noise ratio threshold used to discriminate between noise, and cloud or aerosol signals. We show that, for Doppler lidars operating continuously at a number of locations in Finland, the data availability can be increased by as much as 50 % after performing this background correction and subsequent reduction in the threshold. Furthermore the reduction in bias also greatly improves subsequent calculations of turbulent properties in weak signal regimes.« less
Gated Sensor Fusion: A way to Improve the Precision of Ambulatory Human Body Motion Estimation.
Olivares, Alberto; Górriz, J M; Ramírez, J; Olivares, Gonzalo
2014-01-01
Human body motion is usually variable in terms of intensity and, therefore, any Inertial Measurement Unit attached to a subject will measure both low and high angular rate and accelerations. This can be a problem for the accuracy of orientation estimation algorithms based on adaptive filters such as the Kalman filter, since both the variances of the process noise and the measurement noise are set at the beginning of the algorithm and remain constant during its execution. Setting fixed noise parameters burdens the adaptation capability of the filter if the intensity of the motion changes rapidly. In this work we present a conjoint novel algorithm which uses a motion intensity detector to dynamically vary the noise statistical parameters of different approaches of the Kalman filter. Results show that the precision of the estimated orientation in terms of the RMSE can be improved up to 29% with respect to the standard fixed-parameters approaches.
Improving wavelet denoising based on an in-depth analysis of the camera color processing
NASA Astrophysics Data System (ADS)
Seybold, Tamara; Plichta, Mathias; Stechele, Walter
2015-02-01
While Denoising is an extensively studied task in signal processing research, most denoising methods are designed and evaluated using readily processed image data, e.g. the well-known Kodak data set. The noise model is usually additive white Gaussian noise (AWGN). This kind of test data does not correspond to nowadays real-world image data taken with a digital camera. Using such unrealistic data to test, optimize and compare denoising algorithms may lead to incorrect parameter tuning or suboptimal choices in research on real-time camera denoising algorithms. In this paper we derive a precise analysis of the noise characteristics for the different steps in the color processing. Based on real camera noise measurements and simulation of the processing steps, we obtain a good approximation for the noise characteristics. We further show how this approximation can be used in standard wavelet denoising methods. We improve the wavelet hard thresholding and bivariate thresholding based on our noise analysis results. Both the visual quality and objective quality metrics show the advantage of the proposed method. As the method is implemented using look-up-tables that are calculated before the denoising step, our method can be implemented with very low computational complexity and can process HD video sequences real-time in an FPGA.
Rabbani, Hossein; Sonka, Milan; Abramoff, Michael D
2013-01-01
In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR.
Kim, Ye-seul; Park, Hye-suk; Lee, Haeng-Hwa; Choi, Young-Wook; Choi, Jae-Gu; Kim, Hak Hee; Kim, Hee-Joung
2016-02-01
Digital breast tomosynthesis (DBT) is a recently developed system for three-dimensional imaging that offers the potential to reduce the false positives of mammography by preventing tissue overlap. Many qualitative evaluations of digital breast tomosynthesis were previously performed by using a phantom with an unrealistic model and with heterogeneous background and noise, which is not representative of real breasts. The purpose of the present work was to compare reconstruction algorithms for DBT by using various breast phantoms; validation was also performed by using patient images. DBT was performed by using a prototype unit that was optimized for very low exposures and rapid readout. Three algorithms were compared: a back-projection (BP) algorithm, a filtered BP (FBP) algorithm, and an iterative expectation maximization (EM) algorithm. To compare the algorithms, three types of breast phantoms (homogeneous background phantom, heterogeneous background phantom, and anthropomorphic breast phantom) were evaluated, and clinical images were also reconstructed by using the different reconstruction algorithms. The in-plane image quality was evaluated based on the line profile and the contrast-to-noise ratio (CNR), and out-of-plane artifacts were evaluated by means of the artifact spread function (ASF). Parenchymal texture features of contrast and homogeneity were computed based on reconstructed images of an anthropomorphic breast phantom. The clinical images were studied to validate the effect of reconstruction algorithms. The results showed that the CNRs of masses reconstructed by using the EM algorithm were slightly higher than those obtained by using the BP algorithm, whereas the FBP algorithm yielded much lower CNR due to its high fluctuations of background noise. The FBP algorithm provides the best conspicuity for larger calcifications by enhancing their contrast and sharpness more than the other algorithms; however, in the case of small-size and low-contrast microcalcifications, the FBP reduced detectability due to its increased noise. The EM algorithm yielded high conspicuity for both microcalcifications and masses and yielded better ASFs in terms of the full width at half maximum. The higher contrast and lower homogeneity in terms of texture analysis were shown in FBP algorithm than in other algorithms. The patient images using the EM algorithm resulted in high visibility of low-contrast mass with clear border. In this study, we compared three reconstruction algorithms by using various kinds of breast phantoms and patient cases. Future work using these algorithms and considering the type of the breast and the acquisition techniques used (e.g., angular range, dose distribution) should include the use of actual patients or patient-like phantoms to increase the potential for practical applications.
Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization
NASA Astrophysics Data System (ADS)
Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li
2018-04-01
Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.
Research on Chinese Life Cycle-Based Wind Power Plant Environmental Influence Prevention Measures
Wang, Hanxi; Xu, Jianling; Liu, Yuanyuan; Zhang, Tian
2014-01-01
The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development. PMID:25153474
High-precision buffer circuit for suppression of regenerative oscillation
NASA Technical Reports Server (NTRS)
Tripp, John S.; Hare, David A.; Tcheng, Ping
1995-01-01
Precision analog signal conditioning electronics have been developed for wind tunnel model attitude inertial sensors. This application requires low-noise, stable, microvolt-level DC performance and a high-precision buffered output. Capacitive loading of the operational amplifier output stages due to the wind tunnel analog signal distribution facilities caused regenerative oscillation and consequent rectification bias errors. Oscillation suppression techniques commonly used in audio applications were inadequate to maintain the performance requirements for the measurement of attitude for wind tunnel models. Feedback control theory is applied to develop a suppression technique based on a known compensation (snubber) circuit, which provides superior oscillation suppression with high output isolation and preserves the low-noise low-offset performance of the signal conditioning electronics. A practical design technique is developed to select the parameters for the compensation circuit to suppress regenerative oscillation occurring when typical shielded cable loads are driven.
Preliminary noise tradeoff study of a Mach 2.7 cruise aircraft
NASA Technical Reports Server (NTRS)
Mascitti, V. R.; Maglieri, D. J. (Editor); Raney, J. P. (Editor)
1979-01-01
NASA computer codes in the areas of preliminary sizing and enroute performance, takeoff and landing performance, aircraft noise prediction, and economics were used in a preliminary noise tradeoff study for a Mach 2.7 design supersonic cruise concept. Aerodynamic configuration data were based on wind-tunnel model tests and related analyses. Aircraft structural characteristics and weight were based on advanced structural design methodologies, assuming conventional titanium technology. The most advanced noise prediction techniques available were used, and aircraft operating costs were estimated using accepted industry methods. The 4-engines cycles included in the study were based on assumed 1985 technology levels. Propulsion data was provided by aircraft manufacturers. Additional empirical data is needed to define both noise reduction features and other operating characteristics of all engine cycles under study. Data on VCE design parameters, coannular nozzle inverted flow noise reduction and advanced mechanical suppressors are urgently needed to reduce the present uncertainties in studies of this type.
Chung, King; Mongeau, Luc; McKibben, Nicholas
2009-04-01
Wind noise can be a significant problem for hearing instrument users. This study examined the polar characteristics of flow noise at outputs of two behind-the-ear digital hearing aids, and a microphone mounted on the surface of a cylinder at flow velocities ranging from a gentle breeze (4.5 m/s) to a strong gale (22.5 m/s) . The hearing aids were programed in an anechoic chamber, and tested in a quiet wind tunnel for flow noise recordings. Flow noise levels were estimated by normalizing the overall gain of the hearing aids to 0 dB. The results indicated that the two hearing aids had similar flow noise characteristics: The noise level was generally the lowest when the microphone faced upstream, higher when the microphone faced downstream, and the highest for frontal and rearward incidence angles. Directional microphones often generated higher flow noise level than omnidirectional microphones but they could reduce far-field background noise, resulting in a lower ambient noise level than omnidirectional microphones. Data for the academic microphone- on-cylinder configuration suggested that both turbulence and flow impingement might have contributed to the generation of flow noise in the hearing aids. Clinical and engineering design applications are discussed.