Science.gov

Sample records for based wound dressings

  1. Choosing a Wound Dressing Based on Common Wound Characteristics.

    PubMed

    Dabiri, Ganary; Damstetter, Elizabeth; Phillips, Tania

    2016-01-01

    Significance: Chronic wounds are a major healthcare burden.The practitioner should have an appropriate understanding of both the etiology of the wound as well as the optimal type of dressings to use. Fundamental wound characteristics may be used to guide the practitioner's choice of dressings. The identification of optimal dressings to use for a particular wound type is an important element in facilitating wound healing. Recent Advances: Researchers have sought to design wound dressings that aim to optimize each stage in the healing process. In addition, dressings have been designed to target and kill infection-causing bacteria, with the incorporation of antimicrobial agents. Critical Issues: Chronic wounds are frequently dynamic in presentation, and the numerous wound dressings available make dressing selection challenging for the practitioner. Choosing the correct dressing decreases time to healing, provides cost-effective care, and improves patient quality of life. Future Directions: Research into the mechanisms of wound healing has enhanced our ability to heal chronic wounds at a faster rate through the use of moisture-retentive dressings. Newer dressings are incorporating the use of nanotechnology by incorporating miniature electrical sensors into the dressing. These dressings are engineered to detect changes in a wound environment and alert the patient or practitioner by altering the color of the dressing or sending a message to a smartphone. Additional investigations are underway that incorporate biologic material such as stem cells into dressings.

  2. [Wound dressings].

    PubMed

    Breuninger, H

    1988-01-01

    The wide variety of dermatologic surgical procedures has resulted in a corresponding choice of wound dressings. Considering the chemical and physical properties as well as the function of the dressings, standardized dressing techniques can be performed with relatively few materials. This saves both time and money.

  3. Biomaterials based on chitin and chitosan in wound dressing applications.

    PubMed

    Jayakumar, R; Prabaharan, M; Sudheesh Kumar, P T; Nair, S V; Tamura, H

    2011-01-01

    Wound dressing is one of the most promising medical applications for chitin and chitosan. The adhesive nature of chitin and chitosan, together with their antifungal and bactericidal character, and their permeability to oxygen, is a very important property associated with the treatment of wounds and burns. Different derivatives of chitin and chitosan have been prepared for this purpose in the form of hydrogels, fibers, membranes, scaffolds and sponges. The purpose of this review is to take a closer look on the wound dressing applications of biomaterials based on chitin, chitosan and their derivatives in various forms in detail.

  4. Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings.

    PubMed

    Jin, Sung Giu; Yousaf, Abid Mehmood; Kim, Kyeong Soo; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jin Ki; Yong, Chul Soon; Youn, Yu Seok; Kim, Jong Oh; Choi, Han-Gon

    2016-03-30

    The purpose of this study was to investigate the influence of different hydrophilic polymers on the swelling, bioadhesion and mechanical strength of hydrocolloid wound dressings (HCDs) in order to provide an appropriate composition for a hydrocolloid wound dressing system. In this study, the HCDs were prepared with styrene-isoprene-styrene copolymer (SIS) and polyisobutylene (PIB) as the base using a hot melting method. Additionally, numerous SIS/PIB-based HCDs were prepared with six hydrophilic polymers, and their wound dressing properties were assessed. Finally, the wound healing efficacy of the selected formulations was compared to a commercial wound dressing. The swelling ratio, bioadhesive force and mechanical strengths of HCDs were increased in the order of sodium alginate>sodium CMC=poloxamer=HPMC>PVA=PVP, sodium alginate>sodium CMC=poloxamer>PVA>HPMC=PVP and sodium alginate≥PVA>PVP=HPMC=sodium CMC>poloxamer, respectively. Among the hydrophilic polymers tested, sodium alginate most enhanced the swelling capacity, bioadhesive force and mechanical strengths. Thus, the hydrophilic polymers played great role in the swelling, bioadhesion and mechanical strength of SIS/PIB-based HCDs. The HCD formulation composed of PIB, SIS, liquid paraffin and sodium alginate at the weight ratio of 20/25/12/43 gave better wound dressing properties and more excellent wound healing efficacy than the commercial wound dressing. Therefore, the novel HCD formulation could be a promising hydrocolloid system for wound dressings.

  5. Colloidal silver-based nanogel as nonocclusive dressing for multiple superficial pellet wounds.

    PubMed

    Dharmshaktu, Ganesh Singh; Singhal, Aanshu; Pangtey, Tanuja

    2016-01-01

    A good dressing is mandatory to an uncomplicated wound healing, especially when foreign particles contaminate the wound. Various forms of dressing preparations are available for use and differ in chemical composition and efficacy. Silver has been a known agent with good antimicrobial and healing properties and recent times has seen an upsurge in various silver-based dressing supplements. We describe our report of use and efficacy of a silver nanoparticle- based gel dressing in the healing of multiple superficial firearm pellet wounds.

  6. Chronic Wound Dressings Based on Collagen-Mimetic Proteins

    PubMed Central

    Cereceres, Stacy; Touchet, Tyler; Browning, Mary Beth; Smith, Clayton; Rivera, Jose; Höök, Magnus; Whitfield-Cargile, Canaan; Russell, Brooke; Cosgriff-Hernandez, Elizabeth

    2015-01-01

    Objective: Chronic wounds are projected to reach epidemic proportions due to the aging population and the increasing incidence of diabetes. There is a strong clinical need for an improved wound dressing that can balance wound moisture, promote cell migration and proliferation, and degrade at an appropriate rate to minimize the need for dressing changes. Approach: To this end, we have developed a bioactive, hydrogel microsphere wound dressing that incorporates a collagen-mimetic protein, Scl2GFPGER, to promote active wound healing. A redesigned Scl2GFPGER, engineered collagen (eColGFPGER), was created to reduce steric hindrance of integrin-binding motifs and increase overall stability of the triple helical backbone, thereby resulting in increased cell adhesion to substrates. Results: This study demonstrates the successful modification of the Scl2GFPGER protein to eColGFPGER, which displayed enhanced stability and integrin interactions. Fabrication of hydrogel microspheres provided a matrix with adaptive moisture technology, and degradation rates have potential for use in human wounds. Innovation: This collagen-mimetic wound dressing was designed to permit controlled modulation of cellular interactions and degradation rate without impact on other physical properties. Its fabrication into uniform hydrogel microspheres provides a bioactive dressing that can readily conform to irregular wounds. Conclusion: Overall, this new eColGFPGER shows strong promise in the generation of bioactive hydrogels for wound healing as well as a variety of tissue scaffolds. PMID:26244101

  7. In vivo performance of chitosan/soy-based membranes as wound-dressing devices for acute skin wounds.

    PubMed

    Santos, Tírcia C; Höring, Bernhard; Reise, Kathrin; Marques, Alexandra P; Silva, Simone S; Oliveira, Joaquim M; Mano, João F; Castro, António G; Reis, Rui L; van Griensven, Martijn

    2013-04-01

    Wound management represents a major clinical challenge on what concerns healing enhancement and pain control. The selection of an appropriate dressing plays an important role in both recovery and esthetic appearance of the regenerated tissue. Despite the wide range of available dressings, the progress in the wound care market relies on the increasing interest in using natural-based biomedical products. Herein, a rat wound-dressing model of partial-thickness skin wounds was used to study newly developed chitosan/soy (cht/soy)-based membranes as wound-dressing materials. Healing and repair of nondressed, cht/soy membrane-dressed, and Epigard(®)-dressed wounds were followed macroscopically and histologically for 1 and 2 weeks. cht/soy membranes performed better than the controls, promoting a faster wound repair. Re-epithelialization, observed 1 week after wounding, was followed by cornification of the outermost epidermal layer at the second week of dressing, indicating repair of the wounded tissue. The use of this rodent model, although in impaired healing conditions, may enclose some drawbacks regarding the inevitable wound contraction. Moreover, being the main purpose the evaluation of cht/soy-based membranes' performance in the absence of growth factors, the choice of a clinically relevant positive control was limited to a polymeric mesh, without any growth factor influencing skin healing/repair, Epigard. These new cht/soy membranes possess the desired features regarding healing/repair stimulation, ease of handling, and final esthetic appearance-thus, valuable properties for wound dressings.

  8. In Vivo Performance of Chitosan/Soy-Based Membranes as Wound-Dressing Devices for Acute Skin Wounds

    PubMed Central

    Santos, Tírcia C.; Höring, Bernhard; Reise, Kathrin; Marques, Alexandra P.; Silva, Simone S.; Oliveira, Joaquim M.; Mano, João F.; Castro, António G.; van Griensven, Martijn

    2013-01-01

    Wound management represents a major clinical challenge on what concerns healing enhancement and pain control. The selection of an appropriate dressing plays an important role in both recovery and esthetic appearance of the regenerated tissue. Despite the wide range of available dressings, the progress in the wound care market relies on the increasing interest in using natural-based biomedical products. Herein, a rat wound-dressing model of partial-thickness skin wounds was used to study newly developed chitosan/soy (cht/soy)-based membranes as wound-dressing materials. Healing and repair of nondressed, cht/soy membrane-dressed, and Epigard®-dressed wounds were followed macroscopically and histologically for 1 and 2 weeks. cht/soy membranes performed better than the controls, promoting a faster wound repair. Re-epithelialization, observed 1 week after wounding, was followed by cornification of the outermost epidermal layer at the second week of dressing, indicating repair of the wounded tissue. The use of this rodent model, although in impaired healing conditions, may enclose some drawbacks regarding the inevitable wound contraction. Moreover, being the main purpose the evaluation of cht/soy-based membranes' performance in the absence of growth factors, the choice of a clinically relevant positive control was limited to a polymeric mesh, without any growth factor influencing skin healing/repair, Epigard. These new cht/soy membranes possess the desired features regarding healing/repair stimulation, ease of handling, and final esthetic appearance—thus, valuable properties for wound dressings. PMID:23083058

  9. Peroxide-based oxygen generating topical wound dressing for enhancing healing of dermal wounds.

    PubMed

    Chandra, Prafulla K; Ross, Christina L; Smith, Leona C; Jeong, Seon S; Kim, Jaehyun; Yoo, James J; Harrison, Benjamin S

    2015-01-01

    Oxygen generating biomaterials represent a new trend in regenerative medicine that aims to generate and supply oxygen at the site of requirement, to support tissue healing and regeneration. To enhance the healing of dermal wounds, we have developed a highly portable, in situ oxygen generating wound dressings that uses sodium percarbonate (SPO) and calcium peroxide (CPO) as chemical oxygen sources. The dressing continuously generated oxygen for more than 3 days, after which it was replaced. In the in vivo testing on porcine full-thickness porcine wound model, the SPO/CPO dressing showed enhanced wound healing during the 8 week study period. Quantitative measurements of wound healing related parameters, such as wound closure, reepithelialization, epidermal thickness and collagen content of dermis showed that supplying oxygen topically using the SPO/CPO dressing significantly accelerated the wound healing. An increase in neovascularization, as determined using Von Willebrand factor (vWF) and CD31 staining, was also observed in the presence of SPO/CPO dressing. This novel design for a wound dressing that contains oxygen generating biomaterials (SPO/CPO) for supplying topical oxygen, may find utility in treating various types of acute to chronic wounds.

  10. Development of a novel antimicrobial seaweed extract-based hydrogel wound dressing.

    PubMed

    Tan, Shiau Pin; McLoughlin, Peter; O'Sullivan, Laurie; Prieto, Maria Luz; Gardiner, Gillian E; Lawlor, Peadar G; Hughes, Helen

    2013-11-01

    The objective of this study was to develop a novel antimicrobial seaweed wound dressing. The seaweed extract was active against nine clinically-relevant wound pathogens. A hydrogel formulation was prepared using polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), followed by addition of 1% seaweed extract. The antimicrobial properties of the novel dressing were tested using agar diffusion assays, with release-profiles examined using gel leaching and gel transfer assays. The dressing was found to be effective against the same microbial strains as the seaweed extract, with similar efficacy to the commonly used silver-based dressing, Acticoat(®). Antimicrobial release-profile assays revealed that the dressing was effective in inhibiting 70-90% of the bacterial population within the first 30 min, followed by a long, sustained released up to 97 h, without leaving a residue following five subsequent transfers of the dressing. Antimicrobial activity was stable for up to 6 months of storage at 4 °C, but activity was reduced slightly after 15 weeks. Following autoclave sterilization, the dressing displayed a slower release profile compared to a non-autoclaved counterpart. Hence, the seaweed dressing may have commercial applications, potentially competing with silver-based dressings at a lower cost per-application. This is the first report of development of a seaweed-based antimicrobial dressing.

  11. Novel wound dressing based on nanofibrous PHBV-keratin mats.

    PubMed

    Yuan, Jiang; Geng, Jia; Xing, Zhicai; Shim, Kyoung-Jin; Han, Insook; Kim, Jung-Chul; Kang, Inn-Kyu; Shen, Jian

    2015-09-01

    Keratin is an important protein used for wound healing and tissue recovery. In this study, keratin was first extracted from raw materials and chemically modified to obtain stable keratin (m-keratin). The raw and m-keratin were examined by Raman spectroscopy. The molecular weight of the m-keratin was analysed by SDS-PAGE. The m-keratin was then blended with poly(hydroxybutylate-co-hydroxyvalerate) (PHBV) and electrospun to afford nanofibrous mats. These mats were characterized by field emission scanning electron microscopy (FE-SEM), electron spectroscopy for chemical analysis (ESCA) and atomic force microscopy (AFM). From the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) data, it was found that introduction of keratin enhanced cell proliferation. From wound-healing test and histological examination results, it was shown that the composite mats accelerated wound recovery remarkably as compared to the PHBV control. It was concluded that PHBV-keratin may be a good candidate as a wound dressing.

  12. Honey-based dressings and wound care: an option for care in the United States.

    PubMed

    Pieper, Barbara

    2009-01-01

    Honey-based wound dressings have been used worldwide since ancient times. A honey product received US Federal Drug Administration approval in 2007, making this dressing an option for wound care. Honey has been found to exert anti-inflammatory and antibacterial effects without antibiotic resistance, promote moist wound healing, and facilitate debridement. However, it may cause a stinging pain. As is true of any wound dressing, its use must be carefully selected and monitored. Continued research is needed to add to its evidence base. This article provides a summary of the current evidence base for the use of honey and a review of its therapeutic effects and discusses implications for WOC nursing practice.

  13. Postelectrospinning modifications for alginate nanofiber-based wound dressings.

    PubMed

    Leung, Victor; Hartwell, Ryan; Elizei, Sanam Salimi; Yang, Heejae; Ghahary, Aziz; Ko, Frank

    2014-04-01

    Alginate nanofibers have been attractive for potential tissue regeneration applications due to a combination of their moisture retention ability and large surface area available in a nonwoven nanofiber form. This study aims to address several challenges in alginate nanofiber application, including the lack of structural stability in aqueous environment and limited cell attachment as compared to commercial wound dressings, via examining crosslinking techniques. In addition to the commonly performed divalent ion crosslinking, a glutaraldehyde double-crosslinking step and polylysine addition were applied to an electrospun alginate nanofiber nonwoven mat. With optimization of the electrospinning solution, nanofiber morphology was maintained after the two-stage crosslinking process. Extensibility of the nanofiber mat reduced after the crosslinking process. However, both aqueous stability and cell attachment improved after the postspinning modifications, as shown through degradation tests in phosphate buffered saline solutions and fibroblast cell culture studies, respectively.

  14. Preparation and characterization of antimicrobial wound dressings based on silver, gellan, PVA and borax.

    PubMed

    Cencetti, C; Bellini, D; Pavesio, A; Senigaglia, D; Passariello, C; Virga, A; Matricardi, P

    2012-10-15

    Silver-loaded dressings are designed to provide the same antimicrobial activity of topical silver, with the advantages of a sustained silver release and a reduced number of dressing changes. Moreover, such type of dressing must provide a moist environment, avoiding fiber shedding, dehydration and adherence to the wound site. Here we describe the preparation of a novel silver-loaded dressing based on a Gellan/Hyaff(®) (Ge-H) non woven, treated with a polyvinyl alcohol (PVA)/borax system capable to enhance the entrapment of silver in the dressing and to modulate its release. The new hydrophilic non woven dressings show enhanced water uptake capability and slow dehydration rates. A sustained silver release is also achieved. The antibacterial activity was confirmed on Staphylococcus aureus and Pseudomonas aeruginosa.

  15. Wound Healing and the Dressing*

    PubMed Central

    Scales, John T.

    1963-01-01

    The evolution of surgical dressings is traced from 1600 b.c. to a.d. 1944. The availability of an increasing variety of man-made fibres and films from 1944 onwards has stimulated work on wound dressings, and some of the more important contributions, both clinical and experimental, are discussed. The functions of a wound dressing and the properties which the ideal wound dressing should possess are given. The necessity for both histological and clinical evaluation of wound dressings in animals and in man is stressed. Wound dressings are the most commonly used therapeutic agents, but there is no means whereby their performance can be assessed. An attempt should be made either nationally or internationally to establish a standard method of assessing the performance of wound dressings. For this it is necessary to have an internationally agreed standard dressing which could be used as a reference or control dressing in all animal and human work. The only animal with skin morphologically similar to that of man is the domestic pig. Three types of wounds could be used: (1) partial-thickness wounds; (2) full-thickness excisions; and (3) third-degree burns. The development of standard techniques for the assessment of the efficiency of wound dressings would be of considerable benefit to the research worker, the medical profession, the patient, and the surgical dressings industry. PMID:13976490

  16. An update and review of cell-based wound dressings and their integration into clinical practice

    PubMed Central

    Pourmoussa, Austin; Gardner, Daniel J.; Johnson, Maxwell B.

    2016-01-01

    Chronic wounds affect over 4 million individuals and pose a significant burden to the US healthcare system. Diabetes, venous stasis, radiation or paralysis are common risk factors for chronic wounds. Unfortunately, the current standard of care (SOC) has a high relapse rate and these wounds continue to adversely affect patients’ quality of life. Fortunately, advances in tissue engineering have allowed for the development of cell-based wound dressings that promote wound healing by improving cell migration and differentiation. As the available options continue to increase in quantity and quality, physicians should have a user-friendly guide to reference when deciding which dressing to use. The objective of this review is to identify the currently available biologic dressings, describe their indications, and provide a framework for integration into clinical practice. This review included 53 studies consisting of prospective and retrospective cohorts as well as several randomized control trials. Three general categories of cell-based biologic dressings were identified and nine brands were included. Cell-based biologic dressings have shown efficacy in a broad range of scenarios, and studies examining their efficacy have improved our understanding of the pathophysiology of chronic wounds. Amniotic and placental membranes have the widest scope and can be used to treat all subtypes of chronic wounds. Human skin allografts and bioengineered skin substitutes can be used for chronic ulcers but generally require a vascularized wound bed. Autologous platelet rich plasma (PRP) has shown promise in venous stasis ulcers and decubitus ulcers that have failed conventional treatment. Overall, more research is necessary to determine if these novel therapeutic options will change the current SOC, but current studies demonstrate encouraging results in the treatment of chronic wounds. PMID:28090513

  17. Wound dressings based on silver sulfadiazine solid lipid nanoparticles for tissue repairing.

    PubMed

    Sandri, Giuseppina; Bonferoni, Maria Cristina; D'Autilia, Francesca; Rossi, Silvia; Ferrari, Franca; Grisoli, Pietro; Sorrenti, Milena; Catenacci, Laura; Del Fante, Claudia; Perotti, Cesare; Caramella, Carla

    2013-05-01

    The management of difficult to heal wounds can considerably reduce the time required for tissue repairing and promote the healing process, minimizing the risk of infection. Silver compounds, especially silver sulfadiazine (AgSD), are often used to prevent or to treat wound colonization, also in presence of antibiotic-resistant bacteria. However, AgSD has been shown to be cytotoxic in vitro toward fibroblasts and keratinocytes and consequently to retard wound healing in vivo. Recently, platelet lysate (PL) has been proposed in clinical practice for the healing of persistent lesions. The aim of the present work was the development of wound dressings based on AgSD loaded in solid lipid nanoparticles (SLNs), to be used in association with PL for the treatment for skin lesions. SLN were based on chondroitin sulfate and sodium hyaluronate, bioactive polymers characterized by well-known tissue repairing properties. The encapsulation of AgSD in SLN aimed at preventing the cytotoxic effect of the drug on normal human dermal fibroblasts (NHDFs) and at enabling the association of the drug with PL. SLN were loaded in wound dressings based on hydroxypropylmethyl cellulose (HPMC) or chitosan glutamate (CS glu). These polymers were chosen to obtain a sponge matrix with suitable elasticity and softness and, moreover, with good bioadhesive behavior on skin lesions. Dressings based on chitosan glutamate showed antimicrobial activity with and without PL. Even though further in vivo evaluation could be envisaged, chitosan based dressings demonstrated to be a suitable prototype for the treatment for skin lesions.

  18. In vivo tests of a novel wound dressing based on biomaterials with tissue adhesion controlled through external stimuli.

    PubMed

    Ignacio, C; Barcellos, L; Ferreira, M D; Moura, S A L; Soares, I A; Oréfice, R L

    2011-05-01

    The high incidence of wounds by second intention and the high costs associated with their treatment give rise to the need for the development of wound dressings that protect not only the wounds themselves but that are also able to promote cell proliferation and skin regeneration. Moreover, it is also very important that no damage to the new regenerated tissue is generated while removing the dressing. In this work, a novel wound dressing, which would be able to favor tissue repair and be removed at an appropriate scheduled moment by means of an external stimulus without promoting extensive damage to the new tissue, was produced and tested. Polyurethane membranes were modified by grafting polymers based on poly(n-isopropylacrylamide) (P-N-IPAAm). P-N-IPAAm undergoes a phase transition at approximately 32°C, which changes its behavior from hydrophilic (below 32°C) to hydrophobic. It was hypothesized that, by reducing the temperature near the wound dressing to values lower than 32°C, the detachment of the dressing would become more effective. The wound dressings containing P-N-IPAAm grafts were tested in vivo by covering excisional wounds produced in mice. The produced dressings were placed in direct contact with the lesions for 3 days. Results showed that the hypothermia due to anesthesia required to remove the dressings from mice lowered the local temperature to 28°C and favored the detachment of the wound dressings containing P-N-IPAAm grafts. Histological analyses showed that lesions covered by dressings presented less intense inflammatory events and denser connective tissue than did the wounds without dressings. The wounds covered by polyurethane membranes with P-N-IPAAm grafts showed signs of more intense re-epithelization and angiogenesis than did the lesions covered by polyurethane without grafts.

  19. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing.

    PubMed

    Naseri, Narges; Algan, Constance; Jacobs, Valencia; John, Maya; Oksman, Kristiina; Mathew, Aji P

    2014-08-30

    The aim of this study was to develop electrospun chitosan/polyethylene oxide-based randomly oriented fiber mats reinforced with chitin nanocrystals (ChNC) for wound dressing. Microscopy studies showed porous mats of smooth and beadless fibers with diameters between 223 and 966 nm. The addition of chitin nanocrystals as well as crosslinking had a positive impact on the mechanical properties of the mats, and the crosslinked nanocomposite mats with a tensile strength of 64.9 MPa and modulus of 10.2 GPa were considered the best candidate for wound dressing application. The high surface area of the mats (35 m(2)g(-1)) was also considered beneficial for wound healing. The water vapor transmission rate of the prepared mats was between 1290 and 1,548 gm(-2)day(-1), and was in the range for injured skin or wounds. The electrospun fiber mats showed compatibility toward adipose derived stem cells, further confirming their potential use as wound dressing materials.

  20. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties.

    PubMed

    Ong, Shin-Yeu; Wu, Jian; Moochhala, Shabbir M; Tan, Mui-Hong; Lu, Jia

    2008-11-01

    Hemorrhage remains a leading cause of early death after trauma, and infectious complications in combat wounds continue to challenge caregivers. Although chitosan dressings have been developed to address these problems, they are not always effective in controlling bleeding or killing bacteria. We aimed to refine the chitosan dressing by incorporating a procoagulant (polyphosphate) and an antimicrobial (silver). Chitosan containing different amounts and types of polyphosphate polymers was fabricated, and their hemostatic efficacies evaluated in vitro. The optimal chitosan-polyphosphate formulation (ChiPP) accelerated blood clotting (p = 0.011), increased platelet adhesion (p=0.002), generated thrombin faster (p = 0.002), and absorbed more blood than chitosan (p < 0.001). Silver-loaded ChiPP exhibited significantly greater bactericidal activity than ChiPP in vitro, achieving a complete kill of Pseudomonas aeruginosa and a > 99.99% kill of Staphylococcus aureus consistently. The silver dressing also significantly reduced mortality from 90% to 14.3% in a P. aeruginosa wound infection model in mice. Although the dressing exerted severe cytotoxicity against cultured fibroblasts, wound healing was not inhibited. This study demonstrated for the first time, the application of polyphosphate as a hemostatic adjuvant, and developed a new chitosan-based composite with potent hemostatic and antimicrobial properties.

  1. Dressings and Products in Pediatric Wound Care

    PubMed Central

    King, Alice; Stellar, Judith J.; Blevins, Anne; Shah, Kara Noelle

    2014-01-01

    Significance: The increasing complexity of medical and surgical care provided to pediatric patients has resulted in a population at significant risk for complications such as pressure ulcers, nonhealing surgical wounds, and moisture-associated skin damage. Wound care practices for neonatal and pediatric patients, including the choice of specific dressings or other wound care products, are currently based on a combination of provider experience and preference and a small number of published clinical guidelines based on expert opinion; rigorous evidence-based clinical guidelines for wound management in these populations is lacking. Recent Advances: Advances in the understanding of the pathophysiology of wound healing have contributed to an ever-increasing number of specialized wound care products, most of which are predominantly marketed to adult patients and that have not been evaluated for safety and efficacy in the neonatal and pediatric populations. This review aims to discuss the available data on the use of both more traditional wound care products and newer wound care technologies in these populations, including medical-grade honey, nanocrystalline silver, and soft silicone-based adhesive technology. Critical Issues: Evidence-based wound care practices and demonstration of the safety, efficacy, and appropriate utilization of available wound care dressings and products in the neonatal and pediatric populations should be established to address specific concerns regarding wound management in these populations. Future Directions: The creation and implementation of evidence-based guidelines for the treatment of common wounds in the neonatal and pediatric populations is essential. In addition to an evaluation of currently marketed wound care dressings and products used in the adult population, newer wound care technologies should also be evaluated for use in neonates and children. In addition, further investigation of the specific pathophysiology of wound healing in

  2. Superabsorbent polysaccharide hydrogels based on pullulan derivate as antibacterial release wound dressing.

    PubMed

    Li, Huanan; Yang, Jing; Hu, Xiaona; Liang, Jie; Fan, Yujiang; Zhang, Xingdong

    2011-07-01

    To accomplish ideal wound dressing, hydrogels based on a natural polysaccharide, pullulan were synthesized by chemical cross-linking. The tensile strengths of the hydrogel films (1 mm thick) were determined to range from 0.663 to 1.097 MPa in proportion to cross-linking degrees and water contents. The swelling study of the hydrogels in water showed remarkable water absorption property with swelling ratio up to 4000%, which provided the hydrogel with quick hemostatic ability and prevent the wound bed from accumulation of exudates. The water vapor transmission rate and water retention of the hydrogels were found to be in the range of 2213-3498 g/m²/day and 34.74-45.81% (after 6 days), indicating that the hydrogel can maintain a moist environment over wound bed, which could prevent the dehydration of the wound bed and prevent the scab formation. Biocompatibility test revealed that the hydrogels were not cytotoxic. The hydrogel could load antimicrobial agents and effectively suppress bacterial proliferation to protect the wound from bacterial invasion. These results suggest that the pullulan hydrogels prepared in this study may have high potential as new ideal wound-dressing materials.

  3. A surfactant-based wound dressing can reduce bacterial biofilms in a porcine skin explant model.

    PubMed

    Yang, Qingping; Larose, Christelle; Della Porta, Alessandra C; Schultz, Gregory S; Gibson, Daniel J

    2017-04-01

    Bacterial biofilms have been found in many, if not all, chronic wounds. Their excessive extracellular matrix secretion and the metabolic changes that they undergo render them highly tolerant of many antibiotic and antimicrobial treatments. Physical removal and/or disruption are a common approach to treating wounds suspected of having bacterial biofilms. While many of these techniques use mechanical energy as the primary means of removal, we have begun to investigate if surfactants could facilitate the removal of bacterial biofilms, or if they might sensitise the biofilms to antimicrobial interventions. We tested a new surfactant-based wound gel on an ex vivo porcine skin explant model infected with a functionally tolerant 3-day biofilm. The wounds were dressed with a surfactant-based gel directly on the wound or with moistened gauze. The wounds were then wiped daily with moistened gauze, and the gel or gauze was re-applied. Each day, an explant from each group was harvested and tested for total viable bacteria counts and viable biofilm-protected bacteria counts. The results show that daily wiping with moistened gauze led to an initial decrease of bacteria, but by day 3, the biofilm had been fully re-established to the same level prior to the beginning of treatment. For the surfactant-based treatment, there was no detectable functional biofilm after the first treatment. The gauze control, which was also subjected to daily wiping, still contained functional biofilms, indicating that this result was not due to wiping alone. The total bacteria in the surfactant-treated explants steadily decreased through day 3, when there were no detectable bacteria, while the wiping-only control bacteria counts remained steady. The use of a moist gauze to wipe the visually apparent slime off of a wound appears to be insufficient to reduce biofilm over a 3-day period. Daily application of the surfactant gel dressing and wiping reduced the biofilm to undetectable levels within 3 days in

  4. [Wound healing and wound dressing].

    PubMed

    Eitel, F; Sklarek, J

    1988-01-01

    This review article intends to discuss the clinical management of wounds in respect to a pathophysiological background. Recent results of research in the field of wound healing are demonstrated. Wound healing can be seen as aseptic inflammatory response to a traumatic stimulus. The activation of the clotting cascade by the trauma induces a sequence of humoral and cellular reactions. Platelets, granulocytes and macrophages are activated stepwisely. In the first phase of wound healing the wounded tissue area will be prepared for phagocytosis by enzymatic degradation of ground substance and depolymerisation of protein macromolecules (wound edema). Following the phagocytic microdebridement mesenchymal cells proliferate and produce matrix substance. Microcirculation within the traumatized area will be restored by angiogenesis, macroscopically observed as new formed granulation tissue. This leads to the wound healing phase of scar tissue formation. In this complexity of reactions naturally many possibilities of impairment are given. The most common complication during wound healing is the infection. It can be seen as self reinforcing process. The therapy of the impairment of wound healing consists in the disruption of the specific vicious circle, in the case of an osseus infection that would be a macrodebridement (that is necrectomy) and biomechanical stabilization. The surgical management of wounds principally consists in ensuring an undisturbed sequence of the healing process. This can be done by the wound excision that supports the phagocytic microdebridement. A further possibility is to avoid overwhelming formation of edema by eliminating the traumatic stimulus, by immobilization of the injured region and by ensuring a physiological microenvironment with a primary suture if possible. There are up to the present no drugs available to enhance cell proliferation and to regulate wound healing but it seems that experimental research is successful in characterizing

  5. Wound dressings: selecting the most appropriate type.

    PubMed

    Broussard, Karen C; Powers, Jennifer Gloeckner

    2013-12-01

    Appropriate wound dressing selection is guided by an understanding of wound dressing properties and an ability to match the level of drainage and depth of a wound. Wounds should be assessed for necrosis and infection, which need to be addressed prior to selecting an ideal dressing. Moisture-retentive dressings include films, hydrogels, hydrocolloids, foams, alginates, and hydrofibers and are useful in a variety of clinical settings. Antimicrobial-impregnated dressings can be useful in wounds that are superficially infected or are at higher risk for infection. For refractory wounds that need more growth stimulation, tissue-engineered dressings have become a viable option in the past few decades, especially those that have been approved for burns, venous ulcers, and diabetic ulcers. As wounds heal, the ideal dressing type may change, depending on the amount of exudate and depth of the wound; thus success in wound dressing selection hinges on recognition of the changing healing environment.

  6. Preparation of SMART wound dressings based on colloidal microgels and textile fibres

    NASA Astrophysics Data System (ADS)

    Cornelius, Victoria J.; Majcen, Natasa; Snowden, Martin J.; Mitchell, John C.; Voncina, Bojana

    2007-01-01

    Wound dressings and other types of wound healing technologies are experiencing fast-paced development and rapid growth. As the population ages, demand will continue to rise for advanced dressings used to treat chronic wounds, such as pressure ulcers, venous stasis ulcers, and diabetic ulcers. Moist wound dressings, which facilitate natural wound healing in a cost-effective manner, will be increasingly important. In commercially available hydrogel / gauze wound dressings the gel swells to adsorb wound excreta and provide an efficient non adhesive particle barrier. An alternative to hydrogels are microgels. Essentially discrete colloidal gel particles, as a result of their very high surface area to volume ratio compared to bulk gels, they have a much faster response to external stimuli such as temperature or pH. In response to either an increase or decrease in solvent quality these porous networks shrink and swell reversibly. When swollen the interstitial regions within the polymer matrix are available for further chemistry; such as the incorporation of small molecules. The reversible shrinking and swelling as a function of external stimuli provides a novel drug release system. As the environmental conditions of a wound change over its lifetime, tending to increase in pH if there is an infection combining these discrete polymeric particles with a substrate such as cotton, results in a smart wound dressing.

  7. Wound dressings for a proteolytic-rich environment.

    PubMed

    Vasconcelos, Andreia; Cavaco-Paulo, Artur

    2011-04-01

    Wound dressings have experienced continuous and significant changes over the years based on the knowledge of the biochemical events associated with chronic wounds. The development goes from natural materials used to just cover and conceal the wound to interactive materials that can facilitate the healing process, addressing specific issues in non-healing wounds. These new types of dressings often relate with the proteolytic wound environment and the bacteria load to enhance the healing. Recently, the wound dressing research is focusing on the replacement of synthetic polymers by natural protein materials to delivery bioactive agents to the wounds. This article provides an overview on the novel protein-based wound dressings such as silk fibroin keratin and elastin. The improved properties of these dressings, like the release of antibiotics and growth factors, are discussed. The different types of wounds and the effective parameters of healing process will be reviewed.

  8. Wound dressing based on chitosan/hyaluronan/nonwoven fabrics: Preparation, characterization and medical applications.

    PubMed

    Abdel-Rahman, Rasha M; Abdel-Mohsen, A M; Hrdina, R; Burgert, L; Fohlerova, Z; Pavliňák, D; Sayed, O N; Jancar, J

    2016-08-01

    Thin layers of chitosan (positively charged)/sodium hyaluronate (negatively charged)/nonwoven fabrics were constructed by polyelectrolyte multilayer pad-dry-cure technique. Pure chitosan (CS) was isolated from shrimp shell and immobilized onto nonwoven fabrics (NWFs) using citric acid (CTA) as cross linker and solvent agents through a pad-dry-cure method. The prepared thin layer of chitosan citrate/nonwoven fabrics (CSCTA/NWFs) were consequently impregnated with hyaluronan (CSCTA/HA/NWFs) in the second path through a pad-dry-cure method. Chitosan/hyaluronan/nonwoven fabrics wound dressing was characterized by different techniques such as FTIR-ATR, TGA and SEM. The antibacterial activity and the cytotoxicity of the dressing sheets were evaluated against Escherichia coli (E. coli) and Streptococcus aureus (S. aureus), mouse fibroblast (NIH-3T3) and keratinocytes (HaCaT) cell lines, respectively. The cell-fabrics interaction was also investigated using fluorescence microscope, based on live/dead staining assay of 3T3 cells. The healing properties of the new wound dressing were evaluated and compared with the control sample.

  9. Honey: A Biologic Wound Dressing.

    PubMed

    Molan, Peter; Rhodes, Tanya

    2015-06-01

    Honey has been used as a wound dressing for thousands of years, but only in more recent times has a scientific explanation become available for its effectiveness. It is now realized that honey is a biologic wound dressing with multiple bioactivities that work in concert to expedite the healing process. The physical properties of honey also expedite the healing process: its acidity increases the release of oxygen from hemoglobin thereby making the wound environment less favorable for the activity of destructive proteases, and the high osmolarity of honey draws fluid out of the wound bed to create an outflow of lymph as occurs with negative pressure wound therapy. Honey has a broad-spectrum antibacterial activity, but there is much variation in potency between different honeys. There are 2 types of antibacterial activity. In most honeys the activity is due to hydrogen peroxide, but much of this is inactivated by the enzyme catalase that is present in blood, serum, and wound tissues. In manuka honey, the activity is due to methylglyoxal which is not inactivated. The manuka honey used in wound-care products can withstand dilution with substantial amounts of wound exudate and still maintain enough activity to inhibit the growth of bacteria. There is good evidence for honey also having bioactivities that stimulate the immune response (thus promoting the growth of tissues for wound repair), suppress inflammation, and bring about rapid autolytic debridement. There is clinical evidence for these actions, and research is providing scientific explanations for them.

  10. An innovative bi-layered wound dressing made of silk and gelatin for accelerated wound healing.

    PubMed

    Kanokpanont, Sorada; Damrongsakkul, Siriporn; Ratanavaraporn, Juthamas; Aramwit, Pornanong

    2012-10-15

    In this study, the novel silk fibroin-based bi-layered wound dressing was developed. Wax-coated silk fibroin woven fabric was introduced as a non-adhesive layer while the sponge made of sericin and glutaraldehyde-crosslinked silk fibroin/gelatin was fabricated as a bioactive layer. Wax-coated silk fibroin fabrics showed improved mechanical properties compared with the non-coated fabrics, but less adhesive than the commercial wound dressing mesh. This confirmed by results of peel test on both the partial- and full-thickness wounds. The sericin-silk fibroin/gelatin spongy bioactive layers showed homogeneous porous structure and controllable biodegradation depending on the degree of crosslinking. The bi-layered wound dressings supported the attachment and proliferation of L929 mouse fibroblasts, particularly for the silk fibroin/gelatin ratio of 20/80 and 0.02% GA crosslinked. Furthermore, we proved that the bi-layered wound dressings promoted wound healing in full-thickness wounds, comparing with the clinically used wound dressing. The wounds treated with the bi-layered wound dressings showed the greater extent of wound size reduction, epithelialization, and collagen formation. The superior properties of the silk fibroin-based bi-layered wound dressings compared with those of the clinically used wound dressings were less adhesive and had improved biological functions to promote cell activities and wound healing. This novel bi-layered wound dressing should be a good candidate for the healing of full-thickness wounds.

  11. Preparation and characterization of novel antibacterial castor oil-based polyurethane membranes for wound dressing application.

    PubMed

    Yari, Abbas; Yeganeh, Hamid; Bakhshi, Hadi; Gharibi, Reza

    2014-01-01

    Preparation of novel antibacterial and cytocompatible polyurethane membranes as occlusive dressing, which can provide moist and sterile environment over mild exudative wounds is considered in this work. In this regard, an epoxy-terminated polyurethane (EPU) prepolymer based on castor oil and glycidyltriethylammonium chloride (GTEAC) as a reactive bactericidal agent were synthesized. Polyurethane membranes were prepared through cocuring of EPU and different content of GTEAC with 1,4-butane diamine. The physical and mechanical properties, as well as cytocompatibility and antibacterial performance of prepared membranes were studied. Depending on their chemical formulations, the equilibrium water absorption and water vapor transmission rate values of the membranes were in ranges of 3-85% and 53-154g m(-2) day(-1), respectively. Therefore, these transparent membranes can maintain for a long period the moist environment over the wounds with low exudates. Detailed cytotoxicity analysis of samples against mouse L929 fibroblast and MCA-3D keratinocyte cells showed good level of cytocompatibility of membranes after purification via extraction of residual unreacted GTEAC moieties. The antibacterial activity of the membranes against Escherichia coli and Staphylococcus aureus bacteria was also studied. The membrane containing 50% GTEAC exhibited an effective antibacterial activity, while showed acceptable cytocompatibility and therefore, can be applied as an antibacterial occlusive wound dressing.

  12. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine.

    PubMed

    Moritz, Sebastian; Wiegand, Cornelia; Wesarg, Falko; Hessler, Nadine; Müller, Frank A; Kralisch, Dana; Hipler, Uta-Christina; Fischer, Dagmar

    2014-08-25

    Although bacterial nanocellulose (BNC) may serve as an ideal wound dressing, it exhibits no antibacterial properties by itself. Therefore, in the present study BNC was functionalized with the antiseptic drug octenidine. Drug loading and release, mechanical characteristics, biocompatibility, and antimicrobial efficacy were investigated. Octenidine release was based on diffusion and swelling according to the Ritger-Peppas equation and characterized by a time dependent biphasic release profile, with a rapid release in the first 8h, followed by a slower release rate up to 96 h. The comparison between lab-scale and up-scale BNC identified thickness, water content, and the surface area to volume ratio as parameters which have an impact on the control of the release characteristics. Compression and tensile strength remained unchanged upon incorporation of octenidine in BNC. In biological assays, drug-loaded BNC demonstrated high biocompatibility in human keratinocytes and antimicrobial activity against Staphylococcus aureus. In a long-term storage test, the octenidine loaded in BNC was found to be stable, releasable, and biologically active over a period of 6 months without changes. In conclusion, octenidine loaded BNC presents a ready-to-use wound dressing for the treatment of infected wounds that can be stored over 6 months without losing its antibacterial activity.

  13. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing.

    PubMed

    Thu, Hnin-Ei; Zulfakar, Mohd Hanif; Ng, Shiow-Fern

    2012-09-15

    The aims of this research were to develop a novel bilayer hydrocolloid film based on alginate and to investigate its potential as slow-release wound healing vehicle. The bilayer is composed of an upper layer impregnated with model drug (ibuprofen) and a drug-free lower layer, which acted as a rate-controlling membrane. The thickness uniformity, solvent loss, moisture vapour transmission rate (MVTR), hydration rate, morphology, rheology, mechanical properties, in vitro drug release and in vivo wound healing profiles were investigated. A smooth bilayer film with two homogenous distinct layers was produced. The characterisation results showed that bilayer has superior mechanical and rheological properties than the single layer films. The bilayers also showed low MVTR, slower hydration rate and lower drug flux in vitro compared to single layer inferring that bilayer may be useful for treating low suppurating wounds and suitable for slow release application on wound surfaces. The bilayers also provided a significant higher healing rate in vivo, with well-formed epidermis with faster granulation tissue formation when compared to the controls. In conclusions, a novel alginate-based bilayer hydrocolloid film was developed and results suggested that they can be exploited as slow-release wound dressings.

  14. Strategies to reduce wound dressing waste.

    PubMed

    Denhartog, Lauren; Hallman, Laura

    2015-01-01

    Inappropriate use of dressing supplies and the amount of unused, unopened dressings, often stockpiled in patient rooms and discarded upon patient discharge begs the question about the environmental impact of this common practice. Thousands of dollars could be saved each year if nurses placed more emphasis on prevention and education, and addressed wound care in a standardized way that blends cost-effectiveness with evidence-based practice.

  15. Hydro-responsive wound dressings simplify T.I.M.E. wound management framework.

    PubMed

    Ousey, Karen; Rogers, Alan A; Rippon, Mark G

    2016-12-01

    The development of wound management protocols and guidelines such as the T.I.M.E. acronym are useful tools to aid wound care practitioners deliver effective wound care. The tissue, infection/inflammation, moisture balance and edge of wound (T.I.M.E.) framework provides a systematic approach for the assessment and management of the majority of acute and chronic wounds. The debridement of devitalised tissue from the wound bed, the reduction in wound bioburden and effective management of wound exudate - i.e., wound bed preparation - are barriers to wound healing progression that are targeted by T.I.M.E. There are a large number of wound dressings available to experienced wound care practitioners to aid in their goal of healing wounds. Despite the systematic approach of T.I.M.E., the large number of wound dressings available can introduce a level of confusion when dressing choices need to be made. Any simplification in dressing choice, for example by choosing a dressing system comprising of a limited number of dressings that are able to address all aspects of T.I.M.E., would be a valuable resource for delivering effective wound care. This article briefly reviews the principles of T.I.M.E. and describes the evidence for the use of a two-dressing, moisture balance-oriented, dressing-based wound management system.

  16. Chitosan-based dressings loaded with neurotensin--an efficient strategy to improve early diabetic wound healing.

    PubMed

    Moura, Liane I F; Dias, Ana M A; Leal, Ermelindo C; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia

    2014-02-01

    One important complication of diabetes mellitus is chronic, non-healing diabetic foot ulcers (DFUs). This study aims to develop and use dressings based on chitosan derivatives for the sustained delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. Three different derivatives, namely N-carboxymethyl chitosan, 5-methyl pyrrolidinone chitosan (MPC) and N-succinyl chitosan, are presented as potential biomaterials for wound healing applications. Our results show that MPC has the best fluid handling capacity and delivery profile, also being non-toxic to Raw 264.7 and HaCaT cells. NT-loaded and non-loaded MPC dressings were applied to control/diabetic wounds to evaluate their in vitro/in vivo performance. The results show that the former induced more rapid healing (50% wound area reduction) in the early phases of wound healing in diabetic mice. A NT-loaded MPC foam also reduced expression of the inflammatory cytokine TNF-α (P<0.001) and decreased the amount of inflammatory infiltrate on day 3. On day 10 MMP-9 was reduced in diabetic skin (P<0.001), significantly increasing fibroblast migration and collagen (COL1A1, COL1A2 and COL3A1) expression and deposition. These results suggest that MPC-based dressings may work as an effective support for sustained NT release to reduce DFUs.

  17. "Sponge-like" dressings based on biopolymers for the delivery of platelet lysate to skin chronic wounds.

    PubMed

    Rossi, S; Faccendini, A; Bonferoni, M C; Ferrari, F; Sandri, G; Del Fante, C; Perotti, C; Caramella, C M

    2013-01-20

    The aim of the present work was the development of sponge-like dressings, obtained by freeze-drying, based on chitosan glutamate and sodium hyaluronate for platelet lysate (PL) delivery to chronic skin wounds. A first phase of the research focused on the choice of the best dressing composition to obtain formulations endowed with the desired mechanical and hydration properties. In particular glycine amount (cryoprotectant agent), and water content were considered as formulation variables. The addition of glycerophosphate, used to solubilize chitosan at pH close to neutrality, was also investigated. In the second phase of the research, dressings were loaded with different amounts of PL. The influence of freeze-drying process and of excipients on the biological activity of platelet growth factors was investigated by means of a cell proliferation test using human fibroblasts. PDGF AB (platelet derived growth factor) content was assayed by means of ELISA test. Depending on composition, dressings showed different mechanical and hydration properties that make them suitable to wounds with different exudate amounts. Both freeze-drying process and excipients employed did not disturb the activity of platelet growth factors. The dressings loaded with platelet lysate were characterized by % proliferation values on fibroblast cell comparable to those observed for the fresh hemoderivate. The PDGF AB assay confirmed the results obtained from cell proliferation test.

  18. Wound Dressings and Comparative Effectiveness Data

    PubMed Central

    Sood, Aditya; Granick, Mark S.; Tomaselli, Nancy L.

    2014-01-01

    Significance: Injury to the skin provides a unique challenge, as wound healing is a complex and intricate process. Acute wounds have the potential to move from the acute wound to chronic wounds, requiring the physician to have a thorough understanding of outside interventions to bring these wounds back into the healing cascade. Recent Advances: The development of new and effective interventions in wound care remains an area of intense research. Negative pressure wound therapy has undoubtedly changed wound care from this point forward and has proven beneficial for a variety of wounds. Hydroconductive dressings are another category that is emerging with studies underway. Other modalities such as hyperbaric oxygen, growth factors, biologic dressings, skin substitutes, and regenerative materials have also proven efficacious in advancing the wound-healing process through a variety of mechanisms. Critical Issues: There is an overwhelming amount of wound dressings available in the market. This implies the lack of full understanding of wound care and management. The point of using advanced dressings is to improve upon specific wound characteristics to bring it as close to “ideal” as possible. It is only after properly assessing the wound characteristics and obtaining knowledge about available products that the “ideal” dressing may be chosen. Future Directions: The future of wound healing at this point remains unknown. Few high-quality, randomized controlled trials evaluating wound dressings exist and do not clearly demonstrate superiority of many materials or categories. Comparative effectiveness research can be used as a tool to evaluate topical therapy for wound care moving into the future. Until further data emerge, education on the available products and logical clinical thought must prevail. PMID:25126472

  19. DEVELOPMENT OF A NEXT-GENERATION ANTIMICROBIAL WOUND DRESSING.

    PubMed

    Metcalf, Daniel; Parsons, David; Bowler, I Philip

    2016-03-01

    Delayed wound healing due to infection is a burden on healthcare systems, and the patient and caregiver alike. An emerging factor in infection and delayed healing is the presence development of biofilm in wounds. Biofilm is communities of microorganisms, protected by an extracellular matrix of slime in the wound, which can tolerate host defences and applied antimicrobials such as antibiotics or antimicrobial dressings. A growing evidence base exists suggesting that biofilm exists in a majority of chronic wounds, and can be a precursor to infection while causing delayed healing itself. In vivo models have demonstrated that the inflammatory, granulation and epithelialization processes of normal wound healing are impaired by biofilm presence. The challenge in the development of a new antimicrobial wound dressing was to make standard antimicrobial agents more effective against biofilm, and this was answered following extensive biofilm research and testing. A combination of metal chelator, surfactant and pH control displayed highly synergistic anti-biofilm action with 1.2% ionic silver in a carboxymethylcellulose dressing. Its effectiveness was challenged and proven in complex in vitro and in vivo wound biofilm models, followed by clinical safety and performance demonstrations in a 42-patient study and 113 clinical evaluations. Post-market surveillance was conducted on the commercially available dressing, and in a 112-case evaluation, the dressing was shown to effectively manage exudate and suspected biofilm while shifting difficult-to-heal wounds onto healing trajectories, after an average of 4 weeks of new dressing use in otherwise standard wound care protocols. This was accompanied by a low frequency of dressing related adverse events. In a second evaluation, clinical signs of infection and wound dimension data, before and after the evaluations, were also available. Following an average of 5.4 weeks of dressing use, all signs of clinical infection were reduced, from

  20. Superabsorbent dressings for copiously exuding wounds.

    PubMed

    Faucher, Nathalie; Safar, Helene; Baret, Mylène; Philippe, Anne; Farid, Rachida

    Exudate control is important in the management of both acute and chronic wounds. A new category of absorbent dressings that contain superabsorbent particles promises high absorbency. The aim of this multicentre, prospective, non-comparative observational study was to evaluate the clinical efficacy and absorbent capacity of a superabsorbent dressing. Fifteen inpatients and outpatients with highly exuding wounds were included. Most patients (n=8) (53%) had chronic wounds; 20% (n=3) had ulcerating tumours. The superabsorbent dressing was used as a primary or a secondary dressing. Assessment was on day 0 (start), day 3 and day 7 (end of study). The study looked at wound bed and periwound skin condition, exudate production, pain upon dressing removal, reason for dressing removal, and frequency of dressing changes. A clinical visual scoring tool was used, together with digital photographs, which were assessed by the same experienced clinician. All 15 patients completed the study, during which no adverse events were noted. At day 7, maceration had reduced from 46.7% (n=7) at day 0 to 6.7% (n=1). After only 3 days, dressing change frequency was reduced from once daily to twice weekly in 80% (n=12) of patients. The superabsorbent dressing seems to reduce complications associated with exudate production, stimulate wound healing and increase patient comfort; it may also save time and costs for caregivers.

  1. Development and Characterization of Novel Films Based on Sulfonamide-Chitosan Derivatives for Potential Wound Dressing

    PubMed Central

    Dragostin, Oana Maria; Samal, Sangram Keshari; Lupascu, Florentina; Pânzariu, Andreea; Dubruel, Peter; Lupascu, Dan; Tuchilus, Cristina; Vasile, Cornelia; Profire, Lenuta

    2015-01-01

    The objective of this study was to develop new films based on chitosan functionalized with sulfonamide drugs (sulfametoxydiazine, sulfadiazine, sulfadimetho-xine, sulfamethoxazol, sulfamerazine, sulfizoxazol) in order to enhance the biological effects of chitosan. The morphology and physical properties of functionalized chitosan films as well the antioxidant effects of sulfonamide-chitosan derivatives were investigated. The chitosan-derivative films showed a rough surface and hydrophilic properties, which are very important features for their use as a wound dressing. The film based on chitosan-sulfisoxazol (CS-S6) showed the highest swelling ratio (197%) and the highest biodegradation rate (63.04%) in comparison to chitosan film for which the swelling ratio was 190% and biodegradation rate was only 10%. Referring to the antioxidant effects the most active was chitosan-sulfamerazine (CS-S5) which was 8.3 times more active than chitosan related to DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging ability. This compound showed also a good ferric reducing power and improved total antioxidant capacity. PMID:26694354

  2. Development and Characterization of Novel Films Based on Sulfonamide-Chitosan Derivatives for Potential Wound Dressing.

    PubMed

    Dragostin, Oana Maria; Samal, Sangram Keshari; Lupascu, Florentina; Pânzariu, Andreea; Dubruel, Peter; Lupascu, Dan; Tuchilus, Cristina; Vasile, Cornelia; Profire, Lenuta

    2015-12-15

    The objective of this study was to develop new films based on chitosan functionalized with sulfonamide drugs (sulfametoxydiazine, sulfadiazine, sulfadimetho-xine, sulfamethoxazol, sulfamerazine, sulfizoxazol) in order to enhance the biological effects of chitosan. The morphology and physical properties of functionalized chitosan films as well the antioxidant effects of sulfonamide-chitosan derivatives were investigated. The chitosan-derivative films showed a rough surface and hydrophilic properties, which are very important features for their use as a wound dressing. The film based on chitosan-sulfisoxazol (CS-S6) showed the highest swelling ratio (197%) and the highest biodegradation rate (63.04%) in comparison to chitosan film for which the swelling ratio was 190% and biodegradation rate was only 10%. Referring to the antioxidant effects the most active was chitosan-sulfamerazine (CS-S5) which was 8.3 times more active than chitosan related to DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging ability. This compound showed also a good ferric reducing power and improved total antioxidant capacity.

  3. Biomaterials based on N,N,N-trimethyl chitosan fibers in wound dressing applications.

    PubMed

    Zhou, Zhongzheng; Yan, Dong; Cheng, Xiaojie; Kong, Ming; Liu, Ya; Feng, Chao; Chen, Xiguang

    2016-08-01

    In the present work, N,N,N-trimethyl chitosan (TMC) fibers were synthesized successfully and the resulting quaternized materials were characterized by FTIR. The designed TMC fibers with different degree of quaternization achieved high water absorption capability. In antibacterial activity study, TMC fibers showed high antibacterial activity than chitosan fibers against the gram-negative bacteria Escherichia coli (>63%) and gram-positive bacteria Staphylococcus aureus (>99%). TMC fibers exhibited no obvious cytotoxicity to mouse embryo fibroblast cells with low extraction concentrations (<0.05g/mL). In animal wound healing test, TMC2 fibers could significantly enhance wound re-epithelialization and contraction compared with the control (chitosan fibers). In conclusion, TMC fibers have a potential to be used as wound dressing materials.

  4. Swellability of Silver (I) Antimicrobial Wound Dressings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important characteristic of moist wound dressings is their ability to swell and absorb exudates from the wound, while maintaining a moist atmosphere at the wound site. At the Southern Regional Research Center, we have developed antimicrobial silver- CM-cotton print cloth from CM-Printcloth with l...

  5. Antimicrobial coatings based on zinc oxide and orange oil for improved bioactive wound dressings and other applications.

    PubMed

    Rădulescu, Marius; Andronescu, Ecaterina; Cirja, Andreea; Holban, Alina Maria; Mogoantă, LaurenŢiu; Bălşeanu, Tudor Adrian; Cătălin, Bogdan; Neagu, Tiberiu Paul; Lascăr, Ioan; Florea, Denisa Alexandra; Grumezescu, Alexandru Mihai; Ciubuca, Bianca; Lazăr, Veronica; Chifiriuc, Mariana Carmen; Bolocan, Alexandra

    2016-01-01

    This work presents a novel nano-modified coating for wound dressings and other medical devices with anti-infective properties, based on functionalized zinc oxide nanostructures and orange oil (ZnO@OO). The obtained nanosurfaces were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), selected area electron diffraction (SAED), differential thermal analysis-thermogravimetry (DTA-TG), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The obtained nanocomposite coatings exhibited an antimicrobial activity superior to bare ZnO nanoparticles (NPs) and to the control antibiotic against Staphylococcus aureus and Escherichia coli, as revealed by the lower minimal inhibitory concentration values. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based, viable cell count method was used. The coated wound dressings proved to be more resistant to S. aureus microbial colonization and biofilm formation compared to the uncoated controls. These results, correlated with the good in vivo biodistribution open new directions for the design of nanostructured bioactive coating and surfaces, which can find applications in the medical field, for obtaining improved bioactive wound dressings and prosthetic devices, but also in food packaging and cosmetic industry.

  6. A bioactive film based on cashew gum polysaccharide for wound dressing applications.

    PubMed

    Moreira, Bruna R; Batista, Karla A; Castro, Elisandra G; Lima, Eliana M; Fernandes, Kátia F

    2015-05-20

    This work presents the development of a new bioactive material for wound therapeutics which may play a dual role of modulate metallo proteinases activity while prevents infection blocking out pathogenic microorganisms and foreign materials. A CGP/PVA film was activated by covalent immobilization of trypsin. Results from biocompatibility test revealed that PDL fibroblasts grown on the surface of CGP/PVA and the high amount of viable cells proved absence of cytotoxicity. Trypsin immobilized onto CGP/PVA film remained 100% active after 28 days stored dried at room temperature. In addition, CGP/PVA-trypsin film could be used for 9 cycles of storage/use without loss of activity. After immobilization, trypsin retained its collagenolytic activity, indicating this material as a promising material for wound dressing applications.

  7. In vitro investigations of a novel wound dressing concept based on biodegradable polyurethane

    PubMed Central

    Rottmar, Markus; Richter, Michael; Mäder, Xenia; Grieder, Kathrin; Nuss, Katja; Karol, Agnieszka; von Rechenberg, Brigitte; Zimmermann, Erika; Buser, Stephan; Dobmann, Andreas; Blume, Jessica; Bruinink, Arie

    2015-01-01

    Non-healing and partially healing wounds are an important problem not only for the patient but also for the public health care system. Current treatment solutions are far from optimal regarding the chosen material properties as well as price and source. Biodegradable polyurethane (PUR) scaffolds have shown great promise for in vivo tissue engineering approaches, but accomplishment of the goal of scaffold degradation and new tissue formation developing in parallel has not been observed so far in skin wound repair. In this study, the mechanical properties and degradation behavior as well as the biocompatibility of a low-cost synthetic, pathogen-free, biocompatible and biodegradable extracellular matrix mimicking a PUR scaffold was evaluated in vitro. The novel PUR scaffolds were found to meet all the requirements for optimal scaffolds and wound dressings. These three-dimensional scaffolds are soft, highly porous, and form-stable and can be easily cut into any shape desired. All the material formulations investigated were found to be nontoxic. One formulation was able to be defined that supported both good fibroblast cell attachment and cell proliferation to colonize the scaffold. Tunable biodegradation velocity of the materials could be observed, and the results additionally indicated that calcium plays a crucial role in PUR degradation. Our results suggest that the PUR materials evaluated in this study are promising candidates for next-generation wound treatment systems and support the concept of using foam scaffolds for improved in vivo tissue engineering and regeneration. PMID:27877793

  8. In vitro investigations of a novel wound dressing concept based on biodegradable polyurethane

    NASA Astrophysics Data System (ADS)

    Rottmar, Markus; Richter, Michael; Mäder, Xenia; Grieder, Kathrin; Nuss, Katja; Karol, Agnieszka; von Rechenberg, Brigitte; Zimmermann, Erika; Buser, Stephan; Dobmann, Andreas; Blume, Jessica; Bruinink, Arie

    2015-06-01

    Non-healing and partially healing wounds are an important problem not only for the patient but also for the public health care system. Current treatment solutions are far from optimal regarding the chosen material properties as well as price and source. Biodegradable polyurethane (PUR) scaffolds have shown great promise for in vivo tissue engineering approaches, but accomplishment of the goal of scaffold degradation and new tissue formation developing in parallel has not been observed so far in skin wound repair. In this study, the mechanical properties and degradation behavior as well as the biocompatibility of a low-cost synthetic, pathogen-free, biocompatible and biodegradable extracellular matrix mimicking a PUR scaffold was evaluated in vitro. The novel PUR scaffolds were found to meet all the requirements for optimal scaffolds and wound dressings. These three-dimensional scaffolds are soft, highly porous, and form-stable and can be easily cut into any shape desired. All the material formulations investigated were found to be nontoxic. One formulation was able to be defined that supported both good fibroblast cell attachment and cell proliferation to colonize the scaffold. Tunable biodegradation velocity of the materials could be observed, and the results additionally indicated that calcium plays a crucial role in PUR degradation. Our results suggest that the PUR materials evaluated in this study are promising candidates for next-generation wound treatment systems and support the concept of using foam scaffolds for improved in vivo tissue engineering and regeneration.

  9. Novel supramolecular elastomer films based on linear carboxyl-terminated polydimethylsiloxane oligomers: preparation, characterization, biocompatibility, and application in wound dressings.

    PubMed

    Zhang, Anqiang; Deng, Wenwen; Lin, Yaling; Ye, Junhui; Dong, Yaomin; Lei, Yufeng; Chen, Hongtao

    2014-01-01

    A novel supramolecular elastomer (SESi) based on multiple hydrogen bond associations between low-molecular-weight polydimethylsiloxane chains was obtained through a two-step reaction of linear carboxyl-terminated polydimethylsiloxane oligomers with diethylenetriamine and urea, and the reaction mechanism was characterized. The results of differential scanning calorimetry and X-ray diffraction analyses indicated that the supramolecular network structure is completely amorphous, endowing SESi with rubber-like elastic behavior at room temperature. The transparent SESi film prepared by hot pressing displayed nice viscoelasticity, benign water absorption, water vapor transition rates, and ideal biocompatibility; and did not show cytotoxicity or skin irritation. These properties allow the elastomer to function as an occlusive wound dressing. To demonstrate its potential in wound dressings, a detailed comparison of commercial 3M Tegaderm(™) film and the SESi film was conducted. The SESi film exhibited similar effects in wound healing, and the wound bed was covered by the SESi film without the occurrence of significant adverse reactions.

  10. Investigation on Curcumin nanocomposite for wound dressing.

    PubMed

    Venkatasubbu, G Devanand; Anusuya, T

    2017-02-03

    Curcuma longa (turmeric) has a long history of use in medicine as a treatment for inflammatory conditions. The primary active constituent of turmeric and the one responsible for its vibrant yellow color is curcumin. Curcumin is used for treatment of wound and inflammation. It had antimicrobial and antioxidant property. It has low intrinsic toxicity and magnificent properties like with comparatively lesser side-effects. Cotton cloth is one of the most successful wound dressings which utilize the intrinsic properties of cotton fibers. Modern wound dressings, however, require other properties such as antibacterial and moisture maintaining capabilities. In this study, conventional cotton cloth was coated with Curcumin composite for achieving modern wound dressing properties. Curcumin nanocomposite is characterized. The results show that coated cotton cloth with Curcumin nanocomposite has increased drying time (74%) and water absorbency (50%). Furthermore, they show antibacterial efficiency against bacterial species present in wounds.

  11. A PEGylated fibrin-based wound dressing with antimicrobial and angiogenic activity.

    PubMed

    Seetharaman, Shanmuganathan; Natesan, Shanmugasundaram; Stowers, Ryan S; Mullens, Conor; Baer, David G; Suggs, Laura J; Christy, Robert J

    2011-07-01

    Wounds sustained under battlefield conditions are considered to be contaminated and their initial treatment should focus on decreasing this contamination and thus reducing the possibility of infection. The early and aggressive administration of antimicrobial treatment starting with intervention on the battlefield has resulted in improved patient outcomes and is considered the standard of care. Chitosan microspheres (CSM) loaded with silver sulfadiazine (SSD) were developed via a novel water-in-oil emulsion technique to address this problem. The SSD-loaded spheres were porous with needle-like structures (attributed to SSD) that were evenly distributed over the spheres. The average particle size of the SSD-CSM was 125-180 μm with 76.50 ± 2.8% drug entrapment. As a potential new wound dressing with angiogenic activity SSD-CSM particles were impregnated in polyethylene glycol (PEGylated) fibrin gels. In vitro drug release studies showed that a burst release of 27.02% in 6h was achieved, with controlled release for 72 h, with an equilibrium concentration of 27.7% (70 μg). SSD-CSM-PEGylated fibrin gels were able to exhibit microbicidal activity at 125 and 100 μg ml(-1) against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. The in vitro vasculogenic activity of this composite dressing was shown by seeding adipose-derived stem cells (ASC) in SSD-CSM-PEGylated fibrin gels. The ASC spontaneously formed microvascular tube-like structures without the addition of any exogenous factors. This provides a method for the extended release of an antimicrobial drug in a matrix that may provide an excellent cellular environment for revascularization of infected wounds.

  12. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing.

    PubMed

    Boateng, Joshua S; Pawar, Harshavardhan V; Tetteh, John

    2013-01-30

    Polyethylene oxide (Polyox) and carrageenan based solvent cast films have been formulated as dressings for drug delivery to wounds. Films plasticised with glycerol were loaded with streptomycin (30%, w/w) and diclofenac (10%, w/w) for enhanced healing effects in chronic wounds. Blank and drug loaded films were characterised by texture analysis (for mechanical and mucoadhesive properties), scanning electron microscopy, differential scanning calorimetry, X-ray diffraction and Fourier transform infrared spectroscopy. In addition, swelling, in vitro drug release and antibacterial studies were conducted to further characterise the films. Both blank and drug loaded films showed a smooth, homogeneous surface morphology, excellent transparency, high elasticity and acceptable tensile (mechanical) properties. The drug loaded films showed a high capacity to absorb simulated wound fluid and significant mucoadhesion force which is expected to allow effective adherence to and protection of the wound. The films showed controlled release of both streptomycin and diclofenac for 72 h. These drug loaded films produced higher zones of inhibition against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli compared to the individual drugs zones of inhibition. Incorporation of streptomycin can prevent and treat chronic wound infections whereas diclofenac can target the inflammatory phase of wound healing to relieve pain and swelling.

  13. Toxicity assessment of nanosilver wound dressing in Wistar rat.

    PubMed

    Bidgoli, Sepideh Arbabi; Mahdavi, Moujan; Rezayat, Seyed Mahdi; Korani, Mitra; Amani, Amir; Ziarati, Parisa

    2013-05-07

    Antibiotic resistance to microorganisms is one of the major problems faced in the field of wound care in burns patients. Silver nanoparticles have come up as potent antimicrobial agent and are being evaluated in diverse medical applications ranging from silver based dressings to silver coated medical devices. We aimed in present study to test the release of nanosilver from nanosilver wound dressing and compare the dermal and systemic toxicity of nanosilver dressings in a repeated dose (21 days) model. Under general anesthesia, a limited standard 2nd degree burns were provided on the back of each rat in all treatment, negative control (simple dressing) and 5% silver nitrate groups, each contained 5 male wistar rats. According to the analysis made by atomic absorption spectrometry, the wound dressings released 0.599 ± 0.083 ppm of nanosilver during first 24 hrs of study. Daily observations were recoded and wounds were covered with new dressings each 24 hrs. Burn healing was observed in nanosilver wound dressing group in shorter time periods than the control groups. In toxicity assessment, this dressing didn't cause any hematological and histopathological abnormalities in treatment group but biochemical studies showed significant rise of plasma transaminase (ALT) at the endpoint (21 days) of the study (P=0.027). Portal mononuclear lymphoid and polymorphonuclear leukocyte infiltrations in three to four adjacent foci were recognized around the central hepatic vein in treatment group. Mild hepatotoxic effects of nanosilver wound dressing in wistar rat emphasize the necessity of more studies on toxicity potentials of low dose nanosilver by dermal applications.

  14. Efficacy of a new multifunctional surfactant-based biomaterial dressing with 1% silver sulphadiazine in chronic wounds.

    PubMed

    Zölß, Christoph; Cech, Jürgen D

    2016-10-01

    Chronic wounds represent a large and growing segment of health care and add considerably to human suffering and economic burden as populations age. More effective materials, especially those promoting ease of use and economy, are needed to treat this increasing number of patients. A case series conducted at a European outpatient tertiary wound centre used a novel surfactant-based biomaterial dressing containing 1% silver sulphadiazine on 226 chronic wound patients with various aetiologies. Eighty-eight patients had been undergoing standard of care treatment at the facility, while the remainder (n = 138) began treatment with the surfactant-based biomaterial dressing on enrollment. A total of 73% of the first group healed or showed improvement, with 60% healing by a median of 17 weeks after beginning treatment, and 86% of the group of new enrollees healed or showed improvement, with 73% healing within a median of 12 weeks of beginning treatment with the new product. Patient and clinician reports showed improved compliance, reduced pain and a favourable side-effect profile. Limited economic analysis showed markedly reduced treatment costs compared with standard of care. Further research is recommended.

  15. Medicare Payment: Surgical Dressings and Topical Wound Care Products.

    PubMed

    Schaum, Kathleen D

    2014-08-01

    Medicare patients' access to surgical dressings and topical wound care products is greatly influenced by the Medicare payment system that exists in each site of care. Qualified healthcare professionals should consider these payment systems, as well as the medical necessity for surgical dressings and topical wound care products. Scientists and manufacturers should also consider these payment systems, in addition to the Food and Drug Administration requirements for clearance or approval, when they are developing new surgical dressings and topical wound care products. Due to the importance of the Medicare payment systems, this article reviews the Medicare payment systems in acute care hospitals, long-term acute care hospitals, skilled nursing facilities, home health agencies, durable medical equipment suppliers, hospital-based outpatient wound care departments, and qualified healthcare professional offices.

  16. Medicare Payment: Surgical Dressings and Topical Wound Care Products

    PubMed Central

    Schaum, Kathleen D.

    2014-01-01

    Medicare patients' access to surgical dressings and topical wound care products is greatly influenced by the Medicare payment system that exists in each site of care. Qualified healthcare professionals should consider these payment systems, as well as the medical necessity for surgical dressings and topical wound care products. Scientists and manufacturers should also consider these payment systems, in addition to the Food and Drug Administration requirements for clearance or approval, when they are developing new surgical dressings and topical wound care products. Due to the importance of the Medicare payment systems, this article reviews the Medicare payment systems in acute care hospitals, long-term acute care hospitals, skilled nursing facilities, home health agencies, durable medical equipment suppliers, hospital-based outpatient wound care departments, and qualified healthcare professional offices. PMID:25126477

  17. Alginate/chitosan based bi-layer composite membrane as potential sustained-release wound dressing containing ciprofloxacin hydrochloride

    NASA Astrophysics Data System (ADS)

    Han, Fei; Dong, Yang; Song, Aihua; Yin, Ran; Li, Sanming

    2014-08-01

    The aims of this research were to develop and evaluate a novel ciprofloxacin hydrochloride loaded bi-layer composite membrane based on alginate and chitosan. In vitro antimicrobial activity, drug permeation study, morphology, cytotoxicity, primary skin irritation and in vivo pharmacodynamics were investigated. Results showed that the membranes could inhibit the growth of microorganisms for longer than 7 days. And there was no significant decrease in the metabolic activity of the Hacat fibroblasts cells were treated with the membranes. No edema and erythema were observed after administration of membranes on the rabbit skin after 14 days. Moreover, the results of pharmacodynamics showed that the membranes were more effective in improving the wound healing process. In conclusion, a novel bi-layer composite membrane was developed and results suggested that it could be exploited as sustained-release wound dressings.

  18. Development of nonstick and drug-loaded wound dressing based on the hydrolytic hydrophobic poly(carboxybetaine) ester analogue.

    PubMed

    Ji, Fangqin; Lin, Weifeng; Wang, Zhen; Wang, Longgang; Zhang, Juan; Ma, Guanglong; Chen, Shengfu

    2013-11-13

    A novel biocompatible polymer is developed for antimicrobial and nonstick coatings of wound dressing. The polymer is formed by copolymerization of carboxybetaine ester analogue methacrylate (CB-ester) and small partial poly(ethylene glycol) methacrylate (PEGMA) for cross-linking by hexamethylene diisocyanate (HDI), which is highly resistant to nonspecific protein adsorption and mammalian cell attachment after a quick hydrolysis. A small hydrophobic drug, aspirin, can be incorporated into the new polymer and slowly released to inhibit microorganism growth while the new polymer shows very low cytotoxicity. Moreover, the wound dressing, the new polymer coated medical gauze, shows good mechanic properties, such as flexibility and strength, for medical application. After all, this new nonfouling polymer offers great potential for an antimicrobial wound dressing and other applications.

  19. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel.

    PubMed

    Rakhshaei, Rasul; Namazi, Hassan

    2017-04-01

    Lack of antibacterial activity, deficient water vapor and oxygen permeability, and insufficient mechanical properties are disadvantages of existing wound dressings. Hydrogels could absorb wound exudates due to their strong swelling ratio and give a cooling sensation and a wet environment. To overcome these shortcomings, flexible nanocomposite hydrogel films was prepared through combination of zinc oxide impregnated mesoporous silica (ZnO-MCM-41) as a nano drug carrier with carboxymethyl cellulose (CMC) hydrogel. Citric acid was used as cross linker to avoid the cytotoxicity of conventional cross linkers. The prepared nanocomposite hydrogel was characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential and UV-vis spectroscopy. Results of swelling and erosion tests showed CMC/ZnO nanocomposite hydrogel disintegrated during the first hours of the test. Using MCM-41 as a substrate for ZnO nanoparticles solved this problem and the CMC/ZnO-MCM-41 showed a great improvement in tensile strength (12%), swelling (100%), erosion (53%) and gas permeability (500%) properties. Drug delivery and antibacterial properties of the nanocomposite hydrogel films studied using tetracycline (TC) as a broad spectrum antibiotic and showed a sustained TC release. This could efficiently decrease bandage exchange. Cytocompatibility of the nanocomposite hydrogel films has been analyzed in adipose tissue-derived stem cells (ADSCs) and results showed cytocompatibility of CMC/ZnO-MCM-41. Based on these results the prepared CMC nanocomposite hydrogel containing ZnO impregnated MCM-41, could serve as a kind of promising wound dressing with sustained drug delivery properties.

  20. Biomedical evaluation of a novel nitrogen oxides releasing wound dressing.

    PubMed

    Dave, Rachna N; Joshi, Hiren M; Venugopalan, Vayalam P

    2012-12-01

    Chronic wounds are a major cause for both suffering and economical losses. Management of chronic non-healing wounds requires multipronged approach. They are polymicrobial and agonizing for the patient due to associated pain. Moist dressing providing antimicrobial action is a highly desirable chronic wound management option. Here we report a hydrogel based dressing that possesses the antimicrobial properties of acidified sodium nitrite and the homeostatic property of a hydrogel. The dressing was developed by combining citric acid cross-linked cotton gauze and sodium nitrite loaded gelatin. The cotton gauze was cross-linked with citric acid by pad-dry-curing in presence of nano-titania catalyst. The cotton gauze-gelatin hydrogel combination was gamma-irradiated and freeze-dried. At the time of application, the freeze-dried dressing is wetted by sodium nitrite solution. The dressing has a fluid uptake ability of 90 % (w/v) and the water vapour evaporation rate was estimated to be 2,809 ± 20 g/m(2)/day. The dressing showed significant antimicrobial activity against both planktonic and biofilm forms and was effective during consecutive re-uses. Cytotoxicity study showed inhibition of fibroblasts, but to a lesser extent than clinically administered concentrations of antiseptic like povidone iodine. Storage at 37 °C over a 3 month period resulted in no significant loss of its antimicrobial activity.

  1. Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development

    NASA Astrophysics Data System (ADS)

    Anghel, Ion; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Andronescu, Ecaterina; Ficai, Anton; Anghel, Alina Georgiana; Maganu, Maria; Lazǎr, Veronica; Chifiriuc, Mariana Carmen

    2012-12-01

    This paper reports a newly fabricated nanophyto-modified wound dressing with microbicidal and anti-adherence properties. Nanofluid-based magnetite doped with eugenol or limonene was used to fabricate modified wound dressings. Nanostructure coated materials were characterized by TEM, XRD, and FT-IR. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based method for viable cell count was used. The optimized textile dressing samples proved to be more resistant to staphylococcal and pseudomonal colonization and biofilm formation compared to the uncoated controls. The functionalized surfaces for wound dressing seems to be a very useful tool for the prevention of wound microbial contamination on viable tissues.

  2. Novel silk fibroin/elastin wound dressings.

    PubMed

    Vasconcelos, Andreia; Gomes, Andreia C; Cavaco-Paulo, Artur

    2012-08-01

    Silk fibroin (SF) and elastin (EL) scaffolds were successfully produced for the first time for the treatment of burn wounds. The self-assembly properties of SF, together with the excellent chemical and mechanical stability and biocompatibility, were combined with elastin protein to produce scaffolds with the ability to mimic the extracellular matrix (ECM). Porous scaffolds were obtained by lyophilization and were further crosslinked with genipin (GE). Genipin crosslinking induces the conformational transition from random coil to β-sheet of SF chains, yielding scaffolds with smaller pore size and reduced swelling ratios, degradation and release rates. All results indicated that the composition of the scaffolds had a significant effect on their physical properties, and that can easily be tuned to obtain scaffolds suitable for biological applications. Wound healing was assessed through the use of human full-thickness skin equivalents (EpidermFT). Standardized burn wounds were induced by a cautery and the best re-epithelialization and the fastest wound closure was obtained in wounds treated with 50SF scaffolds; these contain the highest amount of elastin after 6 days of healing in comparison with other dressings and controls. The cytocompatibility demonstrated with human skin fibroblasts together with the healing improvement make these SF/EL scaffolds suitable for wound dressing applications.

  3. Impact of an absorbent silver-eluting dressing system on lower extremity revascularization wound complications.

    PubMed

    Childress, Beverly B; Berceli, Scott A; Nelson, Peter R; Lee, W Anthony; Ozaki, C Keith

    2007-09-01

    Surgical wounds for lower extremity revascularization are prone to infection and dehiscence. Acticoat Absorbent, an antimicrobial dressing, offers sustained release of ionic silver. We hypothesized that immediate application of Acticoat as a postoperative dressing would reduce wound complications in patients undergoing leg revascularization. All infrainguinal revascularization cases involving leg incisions at a single Veterans Administration Medical Center were identified from July 1, 2002, to September 30, 2005. The control group received conventional dressings, while the treatment group received an Acticoat dressing. Wound complication rates were captured via National Surgical Quality Improvement Program data. Patient characteristics and procedure distributions were similar between groups. The wound complication rate fell 64% with utilization of the Acticoat-based dressing (control 14% [17/118], treatment 5% [7/130]; P = 0.016). An Acticoat-based dressing system offers a potentially useful, cost-effective adjunct to reduce open surgical leg revascularization wound complications.

  4. A vapour-permeable film dressing used on superficial wounds.

    PubMed

    Meuleneire, Frans

    2014-08-12

    Films are an extremely versatile dressing type that can be effectively used in the treatment of many superficial wounds, such as skin grafts, surgical wounds and superficial burns; they provide an optimal moist environment to promote healing, act as a barrier to bacteria, and afford protection from urine and faecal contamination. Unfortunately, many film dressings are difficult to handle and use traditional adhesives, which can cause trauma to the wound and surrounding skin, as well as increased wound pain at dressing removal. Mepitel® Film is a new, easy-to-use wound dressing designed with Safetac® technology that helps to minimise dressing-related trauma and pain and assist undisturbed wound healing. This article presents case studies that examine Mepitel Film's use on a variety of wounds, and reviews the findings of research that was undertaken to evaluate the benefits of using this recently developed dressing.

  5. Wound Dressing in Maxillofacial Trauma.

    DTIC Science & Technology

    1979-10-31

    Cetylpyridinium chloride is also used for prophylactic anti- sepsis of wounds (Remington’s Pharmaceutical Sciences, 14th edition, p. 117J). Benzalkonium ...copolymer was insoluble in methylene chloride ; hence films were cast from dioxane. These films were ground to powder using liquid nitrogen and the... chloride solution of the composite. Calculations were performed using a Hewlett Packard 9825A com- puter, and results printed on an HP 9871A printer

  6. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings

    PubMed Central

    Brandenburg, Kenneth S.; Calderon, Diego F.; Kierski, Patricia R.; Brown, Amanda L.; Shah, Nihar M.; Abbott, Nicholas L.; Schurr, Michael J.; Murphy, Christopher J.; McAnulty, Jonathan F.; Czuprynski, Charles J.

    2016-01-01

    Chronic non-healing skin wounds often contain bacterial biofilms that prevent normal wound healing and closure and present challenges to the use of conventional wound dressings. We investigated inhibition of Pseudomonas aeruginosa biofilm formation, a common pathogen of chronic skin wounds, on a commercially available biological wound dressing. Building upon prior reports, we examined whether the amino acid tryptophan would inhibit P. aeruginosa biofilm formation on the 3-dimensional surface of the biological dressing. Bacterial biomass and biofilm polysaccharides were quantified using crystal violet staining or an enzyme linked lectin, respectively. Bacterial cells and biofilm matrix adherent to the wound dressing were visualized through scanning electron microscopy. D-/L-tryptophan inhibited P. aeruginosa biofilm formation on the wound dressing in a dose dependent manner and was not directly cytotoxic to immortalized human keratinocytes although there was some reduction in cellular metabolism or enzymatic activity. More importantly, D-/L-tryptophan did not impair wound healing in a splinted skin wound murine model. Furthermore, wound closure was improved when D-/L-tryptophan treated wound dressing with P. aeruginosa biofilms were compared with untreated dressings. These findings indicate that tryptophan may prove useful for integration into wound dressings to inhibit biofilm formation and promote wound healing. PMID:26342168

  7. Effect of sodium carboxymethylcellulose and fucidic acid on the gel characterization of polyvinylalcohol-based wound dressing.

    PubMed

    Lim, Soo-Jeong; Lee, Jeong Hoon; Piao, Ming Guan; Lee, Mi-Kyung; Oh, Dong Hoon; Hwang, Du Hyung; Quan, Qi Zhe; Yong, Chul Soon; Choi, Han-Gon

    2010-07-01

    The purpose of this study was to investigate the effect of sodium carboxymethylcellulose (Na-CMC) and fucidic acid on the gel characterization for the development of sodium fucidate-loaded wound dressing. The cross-linked hydrogel films were prepared with polyvinyl alcohol (PVA) and sodium carboxymethylcellulose (Na-CMC) using the freeze-thawing method. Their gel properties such as gel fraction, swelling, water vapor transmission test, morphology, tensile strength and thermal property were investigated. In vitro protein adsorption test and release were performed. Na-CMC decreased the gel fraction and tensile strength of the hydrogels, but increased the swelling ability, water vapor transmission rate, elasticity and porosity of hydrogels. Thus, the wound dressing developed with PVA and Na-CMC was more swellable, flexible and elastic than that with only PVA because of its cross-linking interaction with PVA. However, the drug had a negative effect on the gel properties of hydrogels but there were no significant differences. In particular, the hydrogel composed of 2.5% PVA, 1.125% Na-CMC and 0.2% drug might give an adequate level of moisture and build up the exudates on the wound area. Thus, this sodium fucidate-loaded hydrogel could be a potential candidate for wound dressing with excellent forming.

  8. Formulation of Novel Layered Sodium Carboxymethylcellulose Film Wound Dressings with Ibuprofen for Alleviating Wound Pain

    PubMed Central

    Vinklárková, Lenka; Vetchý, David; Bernatonienė, Jurga

    2015-01-01

    Effective assessment and management of wound pain can facilitate both improvements in healing rates and overall quality of life. From a pharmacological perspective, topical application of nonsteroidal anti-inflammatory drugs in the form of film wound dressings may be a good choice. Thus, the aim of this work was to develop novel layered film wound dressings containing ibuprofen based on partially substituted fibrous sodium carboxymethylcellulose (nonwoven textile Hcel NaT). To this end, an innovative solvent casting method using a sequential coating technique has been applied. The concentration of ibuprofen which was incorporated as an acetone solution or as a suspension in a sodium carboxymethylcellulose dispersion was 0.5 mg/cm2 and 1.0 mg/cm2 of film. Results showed that developed films had adequate mechanical and swelling properties and an advantageous acidic surface pH for wound application. An in vitro drug release study implied that layered films retained the drug for a longer period of time and thus could minimize the frequency of changing the dressing. Films with suspended ibuprofen demonstrated higher drug content uniformity and superior in vitro drug release characteristics in comparison with ibuprofen incorporation as an acetone solution. Prepared films could be potential wound dressings for the effective treatment of wound pain in low exuding wounds. PMID:26090454

  9. Painful dressing changes for chronic wounds: assessment and management.

    PubMed

    Solowiej, Kazia; Upton, Dominic

    Wound pain can arise from the wound itself, continuing wound treatment and anticipatory pain, which occurs in some patients as a consequence of negative experiences of care. Specifically, pain caused by the removal and application of dressings has been identified as a major contributor to wound pain, from both patient and health professional perspectives. This article reviews literature on the impact of pain at dressing change, and provides practical suggestions for assessment and management of pain during wound care.

  10. The Efficacy of Gelam Honey Dressing towards Excisional Wound Healing.

    PubMed

    Tan, Mui Koon; Hasan Adli, Durriyyah Sharifah; Tumiran, Mohd Amzari; Abdulla, Mahmood Ameen; Yusoff, Kamaruddin Mohd

    2012-01-01

    Honey is one of the oldest substances used in wound management. Efficacy of Gelam honey in wound healing was evaluated in this paper. Sprague-Dawley rats were randomly divided into four groups of 24 rats each (untreated group, saline group, Intrasite Gel group, and Gelam honey group) with 2 cm by 2 cm full thickness, excisional wound created on neck area. Wounds were dressed topically according to groups. Rats were sacrificed on days 1, 5, 10, and 15 of treatments. Wounds were then processed for macroscopic and histological observations. Gelam-honey-dressed wounds healed earlier (day 13) than untreated and saline treated groups, as did wounds treated with Intrasite Gel. Honey-treated wounds exhibited less scab and only thin scar formations. Histological features demonstrated positive effects of Gelam honey on the wounds. This paper showed that Gelam honey dressing on excisional wound accelerated the process of wound healing.

  11. Efficacy of Hydrofiber Silver Dressing in the Treatment of Posttraumatic Skin Wounds in Children.

    PubMed

    Glavan, Nedeljka; Jonjić, Nives

    2015-09-01

    Three case reports on conservative treatment of posttraumatic open conquassant wounds in children are presented. In 2 cases, the wounds opened after rejection of a previously applied skin graft, whereas in the third case, the wound was consequential to toe amputation and treated conservatively. Based on the authors' long-standing favorable experience with this type of dressing in healing of deep burns in children, treatment was continued with the use of a hydrofiber supportive silver-containing dressing (AQUACEL Ag, ConvaTec, Bridgewater, NJ). From the beginning of treatment, wound dressing was performed on an outpatient basis and without antibiotic therapy. The wounds healed within 4-8 weeks. The process of wound healing and treatment, the mechanisms that may compromise it, and the possibilities offered by hydrofiber silver dressing in conservative treatment of posttraumatic conquassant skin wounds are discussed.

  12. Construction, application and biosafety of silver nanocrystalline chitosan wound dressing.

    PubMed

    Lu, Shuangyun; Gao, Wenjuan; Gu, Hai Ying

    2008-08-01

    A novel wound dressing composed of nano-silver and chitosan was fabricated using a nanometer and self-assembly technology. Sterility and pyrogen testing assessed biosafety, and efficacy was evaluated using Sprague-Dawley rats with deep partial-thickness wounds. Silver sulfadiazine and chitosan film dressings were used as controls. At intervals wound areas were measured, wound tissues biopsied and blood samples taken. Compared with the controls, the silver nanocrystalline chitosan dressing significantly (p<0.01) increased the rate of wound healing and was associated with silver levels in blood and tissues lower than levels associated with the silver sulfadiazine dressing (p<0.01). Sterility and pyrogen tests of the silver nanocrystalline chitosan dressing were negative. Thus this dressing should have wide application in clinical settings.

  13. [Clinical study using activity-based costing to assess cost-effectiveness of a wound management system utilizing modern dressings in comparison with traditional wound care].

    PubMed

    Ohura, Takehiko; Sanada, Hiromi; Mino, Yoshio

    2004-01-01

    In recent years, the concept of cost-effectiveness, including medical delivery and health service fee systems, has become widespread in Japanese health care. In the field of pressure ulcer management, the recent introduction of penalty subtraction in the care fee system emphasizes the need for prevention and cost-effective care of pressure ulcer. Previous cost-effectiveness research on pressure ulcer management tended to focus only on "hardware" costs such as those for pharmaceuticals and medical supplies, while neglecting other cost aspects, particularly those involving the cost of labor. Thus, cost-effectiveness in pressure ulcer care has not yet been fully established. To provide true cost effectiveness data, a comparative prospective study was initiated in patients with stage II and III pressure ulcers. Considering the potential impact of the pressure reduction mattress on clinical outcome, in particular, the same type of pressure reduction mattresses are utilized in all the cases in the study. The cost analysis method used was Activity-Based Costing, which measures material and labor cost aspects on a daily basis. A reduction in the Pressure Sore Status Tool (PSST) score was used to measure clinical effectiveness. Patients were divided into three groups based on the treatment method and on the use of a consistent algorithm of wound care: 1. MC/A group, modern dressings with a treatment algorithm (control cohort). 2. TC/A group, traditional care (ointment and gauze) with a treatment algorithm. 3. TC/NA group, traditional care (ointment and gauze) without a treatment algorithm. The results revealed that MC/A is more cost-effective than both TC/A and TC/NA. This suggests that appropriate utilization of modern dressing materials and a pressure ulcer care algorithm would contribute to reducing health care costs, improved clinical results, and, ultimately, greater cost-effectiveness.

  14. [Application of modern wound dressings in the treatment of chronic wounds].

    PubMed

    Triller, Ciril; Huljev, Dubravko; Smrke, Dragica Maja

    2012-10-01

    Chronic and acute infected wounds can pose a major clinical problem because of associated complications and slow healing. In addition to classic preparations for wound treatment, an array of modern dressings for chronic wound care are currently available on the market. These dressings are intended for the wounds due to intralesional physiological, pathophysiological and pathological causes and which failed to heal as expected upon the use of standard procedures. Classic materials such as gauze and bandage are now considered obsolete and of just historical relevance because modern materials employed in wound treatment, such as moisture, warmth and appropriate pH are known to ensure optimal conditions for wound healing. Modern wound dressings absorb wound discharge, reduce bacterial contamination, while protecting wound surrounding from secondary infection and preventing transfer of infection from the surrounding area onto the wound surface. The use of modern wound dressings is only justified when the cause of wound development has been established or chronic wound due to the underlying disease has been diagnosed. Wound dressing is chosen according to wound characteristics and by experience. We believe that the main advantages of modern wound dressings versus classic materials include more efficient wound cleaning, simpler placement of the dressing, reduced pain to touch, decreased sticking to the wound surface, and increased capacity of absorbing wound exudate. Modern wound dressings accelerate the formation of granulation tissue, reduce the length of possible hospital stay and facilitate personnel work. Thus, the overall cost of treatment is reduced, although the price of modern wound dressings is higher than that of classic materials. All types of modern wound dressings, their characteristics and indications for use are described.

  15. In vivo wound-healing effects of novel benzalkonium chloride-loaded hydrocolloid wound dressing.

    PubMed

    Jin, Sung Giu; Yousaf, Abid Mehmood; Jang, Sun Woo; Son, Mi-Won; Kim, Kyung Soo; Kim, Dong-Wuk; Li, Dong Xun; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2015-05-01

    The purpose of this study was to evaluate the wound-healing effects of a novel benzalkonium chloride (BC)-loaded hydrocolloid wound dressing (HCD). A BC-loaded HCD was prepared with various constituents using a hot melting method, and its mechanical properties and antimicrobial activities were assessed. The in vivo wound healings of the BC-loaded HCD in various would models were evaluated in rats compared with a commercial wound dressing, Duoderm™. This BC-loaded HCD gave better skin adhesion, swelling, mechanical strength, and flexibility compared with the commercial wound dressing. It showed excellent antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. In addition, as compared with the commercial wound dressing, it showed more improved wound healings and tissue restoration effect on the excision, infection, and abrasion wounds in rats. Thus, this novel BC-loaded HCD would be an excellent alternative to the commercial wound dressing for treatment of various wounds.

  16. Functional poly(ε-caprolactone)/chitosan dressings with nitric oxide-releasing property improve wound healing.

    PubMed

    Zhou, Xin; Wang, He; Zhang, Jimin; Li, Xuemei; Wu, Yifan; Wei, Yongzhen; Ji, Shenglu; Kong, Deling; Zhao, Qiang

    2017-03-09

    Wound healing dressings are increasingly needed clinically due to the large number of skin damage annually. Nitric oxide (NO) plays a key role in promoting wound healing, thus biomaterials with NO-releasing property receive increasing attention as ideal wound dressing. In present study, we prepared a novel functional wound dressing by combining electrospun poly(ε-caprolactone) (PCL) nonwoven mat with chitosan-based NO-releasing biomaterials (CS-NO). As-prepared PCL/CS-NO dressing released NO sustainably under the physiological conditions, which was controlled by the catalysis of β-galactosidase. In vivo wound healing characteristics were further evaluated on full-thickness cutaneous wounds in mice. Results showed that PCL/CS-NO wound dressings remarkably accelerated wound healing process through enhancing re-epithelialization and granulation formation and effectively improved the organization of regenerated tissues including epidermal-dermal junction, which could be ascribed to the pro-angiogenesis, immunomodulation, and enhanced collagen synthesis provided by the sustained release of NO. Therefore, PCL/CS-NO may be a promising candidate for wound dressings, especially for the chronic wound caused by the ischemia.

  17. A PEGylated Fibrin-Based Wound Dressing with Antimicrobial and Angiogenic Activity

    DTIC Science & Technology

    2011-04-13

    wounds have not been standardized. With this in mind, alternative antimicrobial SSD products have been developed, including water-soluble gels [14] and...isopropyl alcohol as a non -dissolving and non - reacting dispersant. The samples were stirred constantly until completion of the analysis in order to...20 min. Non -specific Fc receptor-mediated sites were blocked by incubating the sections for 1 h with 5% goat serum in HBSS and washed with HBSS (2

  18. Development of honey hydrogel dressing for enhanced wound healing

    NASA Astrophysics Data System (ADS)

    Yusof, Norimah; Ainul Hafiza, A. H.; Zohdi, Rozaini M.; Bakar, Md Zuki A.

    2007-11-01

    Radiation at 25 and 50 kGy showed no effect on the acidic pH of the local honey, Gelam, and its antimicrobial property against Staphylococcus aureus but significantly reduced the viscosity. Honey stored up to 2 years at room temperature retained all the properties studied. Radiation sterilized Gelam honey significantly stimulated the rate of burn wound healing in Sprague-Dawley rats as demonstrated by the increased rate of wound contraction and gross appearance. Gelam honey attenuates wound inflammation; and re-epithelialization was well advanced compared to the treatment using silver sulphadiazine (SSD) cream. To enhance further the use of honey in wound treatment and for easy handling, Gelam honey was incorporated into our hydrogel dressing formulation, which was then cross-linked and sterilized using electron beam at 25 kGy. Hydrogel with 6% of honey was selected based on the physical appearance.

  19. Comparison of silver nylon wound dressing and silver sulfadiazine in partial burn wound therapy.

    PubMed

    Abedini, Fereydoon; Ahmadi, Abdollah; Yavari, Akram; Hosseini, Vahid; Mousavi, Sarah

    2013-10-01

    The study aims to perform a comparative assessment of two types of burn wound treatment. To do the assessment, patients with partial thickness burn wounds with total body surface area <40% were simple randomised to treat with nanocrystalline silver nylon wound dressing or silver sulfadiazine cream. Efficacy of treatment, use of analgesics, number of wound dressing change, wound infection and final hospitalisation cost were evaluated. The study showed silver nylon wound dressing significantly reduced length of hospital stay, analgesic use, wound infection and inflammation compared with silver sulfadiazine.

  20. New antimicrobial chitosan derivatives for wound dressing applications.

    PubMed

    Dragostin, Oana Maria; Samal, Sangram Keshari; Dash, Mamoni; Lupascu, Florentina; Pânzariu, Andreea; Tuchilus, Cristina; Ghetu, Nicolae; Danciu, Mihai; Dubruel, Peter; Pieptu, Dragos; Vasile, Cornelia; Tatia, Rodica; Profire, Lenuta

    2016-05-05

    Chitosan is a non-toxic, biocompatible, biodegradable natural cationic polymer known for its low imunogenicity, antimicrobial, antioxidant effects and wound-healing activity. To improve its therapeutic potential, new chitosan-sulfonamide derivatives have been designed to develop new wound dressing biomaterials. The structural, morphological and physico-chemical properties of synthesized chitosan derivatives were analyzed by FT-IR, (1)H NMR spectroscopy, scanning electron microscopy, swelling ability and porosity. Antimicrobial, in vivo testing and biodegradation behavior have been also performed. The chitosan derivative membranes showed improved swelling and biodegradation rate, which are important characteristics required for the wound healing process. The antimicrobial assay evidenced that chitosan-based sulfadiazine, sulfadimethoxine and sulfamethoxazole derivatives were the most active. The MTT assay showed that some of chitosan derivatives are nontoxic. Furthermore, the in vivo study on burn wound model induced in Wistar rats demonstrated an improved healing effect and enhanced epithelialization of chitosan-sulfonamide derivatives compared to neat chitosan. The obtained results strongly recommend the use of some of the newly developed chitosan derivatives as antimicrobial wound dressing biomaterials.

  1. Fabrication of new chitosan-based composite sponge containing silver nanoparticles and its antibacterial properties for wound dressing.

    PubMed

    Li, Donghong; Diao, Junlin; Zhang, Jiaotao; Liu, Jianchang

    2011-06-01

    The purpose of this research was to investigate chitosan-based composite sponge containing silver nanoparticles (Ag NPs) for wound dressing application. The composite sponge was prepared by a freeze-drying technique, and then immersed in AgNO3 solution with different concentration and autoclaved at 15 psi, 121 degrees C for 15 min for the formation of Ag NPs. The composite sponge containing Ag NPs was characterized by UV-vis spectra, XRD and SEM. The characteristic peaks of Ag in the UV-vis spectra and the XRD pattern revealed the formation of Ag-NPs. The SEM image showed that the silver particles homogeneously distributed on the surface of the composite sponge with an average particle diameter of about 60-80 nm. The contents of silver determined by ICP Single-channel scanning spectrometer were 0.032, 0.096 and 0.166 weight percentage, respectively, when the composite sponge was correspondingly treated with AgNO3 at concentrations of 0.1, 0.25 and 0.5 mM. The results of enzymic degradation in vitro indicated that the Ag-NPs could obviously promote the degradation of the composite sponge. The bacteriostatic and bactericidal properties of the new sponge were preliminarily studied in vitro by using S. aureus E. coli and P. aeruginosa as test microorganisms. The test results demonstrated that the new Ag NPs-loaded chitosan-based composite sponge possessed not only bacteriostatic, but also bactericidal activity against these test bacteria.

  2. Designing tragacanth gum based sterile hydrogel by radiation method for use in drug delivery and wound dressing applications.

    PubMed

    Singh, Baljit; Varshney, Lalit; Francis, Sanju; Rajneesh

    2016-07-01

    Present article discusses synthesis and characterization of the sterile and pure hydrogel wound dressings which were prepared through radiation method by using polyvinyl alcohol (PVA), tragacanth gum (TG) and sodium alginate (SA). The polymer films were characterized by SEM, Cryo-SEM, FTIR, solid state C(13) NMR and XRD, TGA, and DSC. Some important biological properties such as O2 permeability, water vapor transmission rate, microbial permeability, haemolysis, thrombogenic behavior, antioxidant activity, bio-adhesion and mechanical properties were also studied. The hydrogel film showed thrombogenicity (82.43±1.54%), haemolysis (0.83±0.09%), oxygen permeability (6.433±0.058mg/L) and water vapor permeability (197.39±25.34g/m(2)/day). Hydrogel films were found biocompatible and impermeable to microbes. The release of antibiotic drug moxifloxacin occurred through non-Fickian mechanism and release profile was best fitted in Hixson-Crowell model for drug release. Overall, these results indicate the suitability of these hydrogels in wound dressing applications.

  3. Mafenide acetate solution dressings: an adjunct in burn wound care.

    PubMed

    Shuck, J M; Thorne, L W; Cooper, C G

    1975-07-01

    A continuation of the study of 5% aqueous Sulfamylon solution dressings in burned patients was analyzed in 150 consecutive cases. The rate of invasive infection and mortality was not excessive. Dressings were used as an adjunct to other topical chemotherapeutic agents as well as homo/heterograft skin in the overall burn care program. Sulfamylon soaks were shown to be effective for debridement, granulation tissue protection and preparation, and bacterial control. The dressings were comfortable when in place and the wounds appeared clean. Epithelialization was not hampered so that the dressings could be utilized in partial thickness wounds as well as for mesh autografts on extensive burn surfaces=

  4. Absorption and swelling characteristics of silver (I) antimicrobial wound dressings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important characteristic of moist wound dressings is their ability to swell and absorb exudates from the wound, while maintaining a moist atmosphere at the wound site. At the Southern Regional Research Center (SRRC), we have previously developed antimicrobial silver-sodium-carboxymethylated (CM)-...

  5. Efficacy and cost-effectiveness of octenidine wound gel in the treatment of chronic venous leg ulcers in comparison to modern wound dressings.

    PubMed

    Hämmerle, Gilbert; Strohal, Robert

    2016-04-01

    The aim of this study was to determine the efficacy, safety and cost-effectiveness of an octenidine-based wound gel in the treatment of chronic venous leg ulcers. For this purpose, 49 wounds were treated with either modern wound-phase-adapted dressings alone (treatment arm 1; n = 17), octenidine wound gel plus modern wound-phase-adapted dressings (treatment arm 2; n = 17) or octenidine wound gel alone (treatment arm 3; n = 15). During the study period of 42 days with dressing changes every 3-5 days, wound healing characteristics and treatment costs of different dressings were analysed. Wound size reduction was significantly better (P = 0·028) in both octenidine wound gel treatment arms compared to modern dressings alone with total reductions of 14·6%, 64·1% and 96·2% in treatment arms 1-3. Early wound healing was merely observed under octenidine wound gel treatment (n = 9), whereby lowest treatment costs were generated by octenidine wound gel alone (€20·34/dressing change). As a result, the octenidine wound gel is cost-effective and well suitable for the treatment of chronic venous leg ulcers, considering both safety and promotion of wound healing.

  6. Nanocomposite Cryogels Based on Poly (Vinyl Alcohol)/Unmodified Na+-Montmorillonite Suitable for Wound Dressing Application: Optimizing Nanoclay Content

    NASA Astrophysics Data System (ADS)

    Karimi, Ali; Wan Daud, Wan Mohd Ashri

    2016-11-01

    A new type of nanocomposite cryogels containing polyvinyl alcohol and 0-10% of hydrophilic natural Na-montmorillonite (Na+-MMT), free from any modification, were prepared with a freeze-thaw process. The effects of nanoclay content and the sonication process on the morphology and thermomechanical properties, equilibrium water content (EWC), and the water vapor transmission rate (WVTR) of nanocomposite films were investigated at 37°C, and the amount of optimized nanocaly content was found. The kinetics of water sorption and desorption of the nanocomposites were also studied. The results showed that (Na+-MMT) may act as a co-crosslinker and improve the water vapor transmission rate and the swelling characteristics of the nanocomposite cryogels. They also showed the optimized critical concentration of nanoclay in achievement of the required sorption and desorption characteristics as well as WVTR and EWC were within the acceptable range for wound dressing and skin treatment.

  7. Characterization and biocompatibility evaluation of bacterial cellulose-based wound dressing hydrogel: effect of electron beam irradiation doses and concentration of acrylic acid.

    PubMed

    Mohamad, Najwa; Buang, Fhataheyah; Mat Lazim, Azwan; Ahmad, Naveed; Martin, Claire; Mohd Amin, Mohd Cairul Iqbal

    2016-09-30

    The use of bacterial cellulose (BC)-based hydrogel has been gaining attention owing to its biocompatibility and biodegradability. This study was designed to investigate the effect of radiation doses and acrylic acid (AA) composition on in vitro and in vivo biocompatibility of BC/AA as wound dressing materials. Physical properties of the hydrogel, that is, thickness, adhesiveness, rate of water vapor transmission, and swelling were measured. Moreover, the effect of these parameters on skin irritation and sensitization, blood compatibility, and cytotoxicity was studied. Increased AA content and irradiation doses increased the thickness, crosslinking density, and improved the mechanical properties of the hydrogel, but reduced its adhesiveness. The swelling capacity of the hydrogel increased significantly with a decrease in the AA composition in simulated wound fluid. The water vapor permeability of polymeric hydrogels was in the range of 2035-2666 [g/(m(-2 ) day(-1) )]. Dermal irritation and sensitization test demonstrated that the hydrogel was nonirritant and nonallergic. The BC/AA hydrogel was found to be nontoxic to primary human dermal fibroblast skin cells with viability >88% and was found to be biocompatible with blood with a low hemolytic index (0.80-1.30%). Collectively, these results indicate that these hydrogels have the potential to be used as wound dressings. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  8. Hydrocellular foam dressing increases the leptin level in wound fluid.

    PubMed

    Yoshino, Sawako; Nakagami, Gojiro; Ohira, Tomomi; Kawasaki, Rui; Shimura, Mari; Iwatsuki, Ken; Sanada, Hiromi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi; Yamane, Takumi

    2015-09-01

    Hydrocellular foam dressing (HCF) absorbs excessive wound fluid, which contains various cytokines and growth factors, and ensures a moist environment to promote wound healing. However, the molecular mechanisms underlying the wound fluid component changes induced by HCF are poorly understood. In the present study, we examined the effect of HCF on wound healing and the associated regulatory mechanisms in relation to variations in cytokine levels in the wound fluid. We created full-thickness wounds on the dorsolateral skin of rats and collected the resulting wound fluid samples. HCF was immersed in a plate containing the wound fluids. HCF was then removed and the excess wound fluid remaining in the plate was examined by cytokine array and enzyme-linked immunosorbent assay. We also used a rat model and human dermal fibroblast cultures to examine the effect of wound fluid component changes during the wound healing process. Upon treatment with HCF, leptin levels were upregulated in the wound fluid. Fibroblast proliferation was enhanced and the effect was suppressed in the presence of leptin antagonist. In our in vivo model, HCF increased wound contraction compared with film dressings and this positive effect of HCF was suppressed by addition of leptin antagonist. Our results suggest that dermal fibroblast proliferation is upregulated by HCF due to increased leptin level at the wound surface, and these effects promote wound healing. We believe that the present study contributes to furthering the understanding of the mechanisms underlying the effects of HCF-induced wound healing.

  9. A Dressing Solution for Burn Wounds: Antibacterial and Low-Adherent Wound Dressings

    NASA Astrophysics Data System (ADS)

    Pu, Tianyun

    Considering the infection and second trauma caused by dressing changes, development of antibacterial and low-adherent wound dressings is urgently needed. Silver ion is a widely used antimicrobial agent, but its cytotoxicity remains a problem. In this study, low-adherent PAM (polyacrylamide) hydrogel incorporated with less toxic AgNP (silver nanoparticle), was immobilized onto PET (poly(ethylene terephthalate)) substrates by an IPN (interpenetrating polymer network) method. The modified PET is effectively antibacterial and the surface is significantly less adherent than untreated PET. However, silver-resistant bacteria become a potential problem. Thus, ionic 5,5-dimethylhydantoin (DMH) analogues containing either a quaternary ammonium moiety or a phosphonate functional group were designed and synthesized. The DMH analogues were converted to antibacterial N-chloramine counterparts through chlorination to serve as potential alternatives to AgNP. The N-chloramine with a structural cation exhibited distinctly enhanced antibacterial functions both in solution and after immobilization on fabrics.

  10. Effects and mechanisms of a microcurrent dressing on skin wound healing: a review.

    PubMed

    Yu, Chao; Hu, Zong-Qian; Peng, Rui-Yun

    2014-01-01

    The variety of wound types has resulted in a wide range of wound dressings, with new products frequently being introduced to target different aspects of the wound healing process. The ideal wound dressing should achieve rapid healing at a reasonable cost, with minimal inconvenience to the patient. Microcurrent dressing, a novel wound dressing with inherent electric activity, can generate low-level microcurrents at the device-wound contact surface in the presence of moisture and can provide an advanced wound healing solution for managing wounds. This article offers a review of the effects and mechanisms of the microcurrent dressing on the healing of skin wounds.

  11. 21 CFR 878.4022 - Hydrogel wound dressing and burn dressing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hydrogel wound dressing and burn dressing. 878.4022 Section 878.4022 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices §...

  12. 21 CFR 878.4022 - Hydrogel wound dressing and burn dressing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hydrogel wound dressing and burn dressing. 878.4022 Section 878.4022 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices §...

  13. 21 CFR 878.4022 - Hydrogel wound dressing and burn dressing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hydrogel wound dressing and burn dressing. 878.4022 Section 878.4022 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices §...

  14. 21 CFR 878.4022 - Hydrogel wound dressing and burn dressing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hydrogel wound dressing and burn dressing. 878.4022 Section 878.4022 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices §...

  15. 21 CFR 878.4022 - Hydrogel wound dressing and burn dressing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hydrogel wound dressing and burn dressing. 878.4022 Section 878.4022 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices §...

  16. Honey-based PET or PET/chitosan fibrous wound dressings: effect of honey on electrospinning process.

    PubMed

    Arslan, Aysu; Simşek, Murat; Aldemir, Sevcan Dalkıranoğlu; Kazaroğlu, Nur Merve; Gümüşderelioğlu, Menemşe

    2014-07-01

    In this study, fibrous mats were fabricated via electrospinning from solutions of polyethylene terephthalate (PET), PET/chitosan, and PET/honey at different concentrations. The effect of honey and chitosan on electrospinning process was investigated and compared. Fibers containing chitosan had a beaded or ribbon-like/branched morphology, but this morphology improved in the presence of honey. The diameter of electrospun fibers decreased with an increased ratio of honey in PET solution. In addition, fiber deposition area in the collector increased by increasing the honey content. PET/chitosan and PET/honey fibrous mats reached an equilibrium water content in 15 min and their water uptake capacities, which are important for exudating wounds, were found in the range of 280-430% on dry basis. Cytotoxicity evaluation demonstrated that fibers exhibited no cytotoxic activity. This study discloses that PET fibrous mats especially electrospun in the presence of honey could be proposed as potential wound dressing materials owing to their improved processing abilities besides their suitable structural properties.

  17. Influencing dressing choice and supporting wound management using remote 'tele-wound care'.

    PubMed

    King, Brenda

    2014-06-01

    This article describes a local involvement in a project to evaluate a remote system of wound management, incorporating the use of digital and mobile technology. It outlines how this involvement influenced the current system of 'tele wound care' (remote wound management) in a large community organisation. The system allows remote wound assessment, management advice and ongoing monitoring of wounds to ensure that the dressing choice remains appropriate and that timely wound care support can be provided to community nurses, practice nurses and GPs.

  18. Natural and synthetic polymers for wounds and burns dressing.

    PubMed

    Mogoşanu, George Dan; Grumezescu, Alexandru Mihai

    2014-03-25

    In the last years, health care professionals faced with an increasing number of patients suffering from wounds and burns difficult to treat and heal. During the wound healing process, the dressing protects the injury and contributes to the recovery of dermal and epidermal tissues. Because their biocompatibility, biodegradability and similarity to macromolecules recognized by the human body, some natural polymers such as polysaccharides (alginates, chitin, chitosan, heparin, chondroitin), proteoglycans and proteins (collagen, gelatin, fibrin, keratin, silk fibroin, eggshell membrane) are extensively used in wounds and burns management. Obtained by electrospinning technique, some synthetic polymers like biomimetic extracellular matrix micro/nanoscale fibers based on polyglycolic acid, polylactic acid, polyacrylic acid, poly-ɛ-caprolactone, polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, exhibit in vivo and in vitro wound healing properties and enhance re-epithelialization. They provide an optimal microenvironment for cell proliferation, migration and differentiation, due to their biocompatibility, biodegradability, peculiar structure and good mechanical properties. Thus, synthetic polymers are used also in regenerative medicine for cartilage, bone, vascular, nerve and ligament repair and restoration. Biocompatible with fibroblasts and keratinocytes, tissue engineered skin is indicated for regeneration and remodeling of human epidermis and wound healing improving the treatment of severe skin defects or partial-thickness burn injuries.

  19. Topical Agents and Dressings for Pilonidal Sinus Wound Healing by Secondary Intention: A Scoping Review.

    PubMed

    Woo, Kevin Y; Kwong, Enid Wai-Yung; Jimenez, Carolina; Bishop, Richard

    2015-05-01

    Pilonidal disease (PD) is a chronic and debilitating condition. The overall aim of the scoping review is to map and summarize a wide range of evidence to examine which topical agent or dressing is effective in promoting pilonidal wound healing by secondary intention. Review of this cumulative body of evidence will inform care and guide dressing selection for PD related wounds and delineate future research priorities based on identified knowledge gaps and clinical practice issues. Overall, there is some evidence to suggest that topical applications of hydrogel, silver, honey, zinc, selected foam materials, negative pressure wound therapy, platelet rich plasma, and plant extracts may promote wound healing. Topical treatment using polyhexamethylene biguanide and silver may be beneficial in reducing bacterial burden. Finally, silver, honey, and hydrocolloid dressings may help alleviate wound related pain. However, evidence remains insufficient in light of methodological limitations and biases of the studies.

  20. Terbinafine-loaded wound dressing for chronic superficial fungal infections.

    PubMed

    Paskiabi, Farnoush Asghari; Bonakdar, Shahin; Shokrgozar, Mohammad Ali; Imani, Mohammad; Jahanshiri, Zahra; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2017-04-01

    In spite of developing new drugs and modern formulations, the treatments of chronic fungal infections are still challenging. Fibrous wound dressings are new suggestions for the treatment of chronic superficial infections. In the present study, we formulated an antifungal agent, terbinafine hydrochloride (TFH), which is a hydrophobic drug, in wound dressings prepared by electrospun polycaprolactone, polycaprolactone/gelatin (50:50 w/w) and gelatin. To obtain more water-stable meshes, the preparations were treated by glutaraldehyde and their properties were determined before and after treatment. The morphology of fibrous meshes was observed by scanning electron microscopy. Drug loading efficiency and release rate were measured by high performance liquid chromatography (HPLC) and the release rate was monitored for 144h. Antifungal tests were performed on Trichophyton mentagrophytes, Aspergillus fumigatus and Candida albicans cultured on Muller-Hinton agar. The toxicity of the meshes was measured after 24h and 14days by MTT assay. Terbinafine loading of polycaprolactone/gelatin (50:50) was 100% and it released the highest amount of TFH too. In antifungal tests, all samples were able to hinderT. mentagrophytes and A. fumigatus but not C. albicans growth among them, polycaprolactone fibers made the largest inhibition zone. In MTT assay, none of prepared samples showed toxicity against L929 cells. Teken together, the prepared TFH-loaded PCL/gelatin electrospun meshes were able to release TFH slowly and in a steady state in time. With respect to no obvious cytotoxicity in MTT assay and stong antifungal activity toward T. mentagrophytesin vitro, these TFH-based meshes could be considered as potential candidates in clinical application as wound dressing for treatment of chronic dermatophytosis.

  1. 21 CFR 878.4020 - Occlusive wound dressing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Occlusive wound dressing. 878.4020 Section 878.4020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4020 Occlusive wound...

  2. 21 CFR 878.4020 - Occlusive wound dressing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Occlusive wound dressing. 878.4020 Section 878.4020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4020 Occlusive wound...

  3. 21 CFR 878.4020 - Occlusive wound dressing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Occlusive wound dressing. 878.4020 Section 878.4020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4020 Occlusive wound...

  4. 21 CFR 878.4020 - Occlusive wound dressing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Occlusive wound dressing. 878.4020 Section 878.4020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4020 Occlusive wound...

  5. 21 CFR 878.4018 - Hydrophilic wound dressing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hydrophilic wound dressing. 878.4018 Section 878.4018 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4018 Hydrophilic wound...

  6. 21 CFR 878.4020 - Occlusive wound dressing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Occlusive wound dressing. 878.4020 Section 878.4020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4020 Occlusive wound...

  7. 21 CFR 878.4018 - Hydrophilic wound dressing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hydrophilic wound dressing. 878.4018 Section 878.4018 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4018 Hydrophilic wound...

  8. 21 CFR 878.4018 - Hydrophilic wound dressing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hydrophilic wound dressing. 878.4018 Section 878.4018 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4018 Hydrophilic wound...

  9. 21 CFR 878.4018 - Hydrophilic wound dressing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hydrophilic wound dressing. 878.4018 Section 878.4018 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4018 Hydrophilic wound...

  10. 21 CFR 878.4018 - Hydrophilic wound dressing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hydrophilic wound dressing. 878.4018 Section 878.4018 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4018 Hydrophilic wound...

  11. The application of moist dressing in treating burn wound

    PubMed Central

    Wei, Liu

    2015-01-01

    Basic experiments have demonstrated that the effect of wound healing in moist environments is better than that in dry environments; therefore, research on moist dressing is the focus of wound healing research. 42 burn patients receiving treatment in Jiangsu Provincial People’s Hospital were selected as experimental cases. Wound surface is divided into treatment group and control group using a self-contrasted method. The treatment group received a moist dressing in the treatment of burn wounds and the control group adopted iodine gauze or Vaseline gauze coverage. Wound healing effect and the impact on the degree of pain of in the two different treatment methods were observed after treatment. The results of 42 patients were included in the analysis. The average healing time of patients’ burn wounds in treatment group is (10.9 3.3) d, and the average healing time in control group is (13.8 3.6) d, so, the difference is significant (P<0.01). Wound pain in the treatment group is significantly lower than that in the control group (P<0.01). Using moist dressing (Mepitel and Mepilex, etc.) in the treatment of burn wounds, wound-healing time can be shortened and wound pain can be reduced significantly. PMID:28352735

  12. Application of VitaVallis dressing for infected wounds

    NASA Astrophysics Data System (ADS)

    Kirilova, N. V.; Fomenko, A. N.; Korovin, M. S.

    2015-11-01

    Today there is a growing demand for safe and efficient antimicrobial dressings for infected wound treatment. The antimicrobial sorption material for VitaVallis dressings was produced by one-stage oxidation of aluminum nanopowder in water in the presence of fibrous acetylcellulose matrix. Scanning electron microscopy revealed that the material is made up of fibers of diameter 1.5-3.0 µm with adhered agglomerated alumina nanosheets. An antimicrobial study revealed a high inhibitory effect of VitaVallis against the growth of gram-negative (E.coli, P. aeruginosa) and gram-positive (S. aureus) strains. The antimicrobial activity of the dressing against microbial pathogens on the wound surface was demonstrated in in vivo experiments on male rats. The dressing was also tested on volunteer patients. The testing showed reduction of the wound healing period, accelerated cleaning of the infected wound and enhanced tissue regeneration in the wound. The results demonstrate that the VitaVallis dressing can be used for the treatment of deep infected wounds.

  13. Application of VitaVallis dressing for infected wounds

    SciTech Connect

    Kirilova, N. V. Fomenko, A. N. Korovin, M. S.

    2015-11-17

    Today there is a growing demand for safe and efficient antimicrobial dressings for infected wound treatment. The antimicrobial sorption material for VitaVallis dressings was produced by one-stage oxidation of aluminum nanopowder in water in the presence of fibrous acetylcellulose matrix. Scanning electron microscopy revealed that the material is made up of fibers of diameter 1.5–3.0 µm with adhered agglomerated alumina nanosheets. An antimicrobial study revealed a high inhibitory effect of VitaVallis against the growth of gram-negative (E.coli, P. aeruginosa) and gram-positive (S. aureus) strains. The antimicrobial activity of the dressing against microbial pathogens on the wound surface was demonstrated in in vivo experiments on male rats. The dressing was also tested on volunteer patients. The testing showed reduction of the wound healing period, accelerated cleaning of the infected wound and enhanced tissue regeneration in the wound. The results demonstrate that the VitaVallis dressing can be used for the treatment of deep infected wounds.

  14. Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies.

    PubMed

    Archana, D; Dutta, Joydeep; Dutta, P K

    2013-06-01

    In our present investigation, a ternary nano dressing consists of titanium dioxide nano particle loaded chitosan-pectin was prepared to evaluate biocompatibility, antimicrobial and in vivo wound healing properties. The photoactive property of TiO₂ based materials makes it important candidate for numerous medical applications. Chitosan can be easily processed into membranes, gels, nanofibers, beads, nanoparticles, scaffolds, and sponge forms that can be used in wound healing applications. Pectin acts as a natural prophylactic substance against poisoning with toxic cations and its styptic and curing effects are well documented in healing ointments. The characterizations of prepared nano dressing were made by FTIR, TGA, DSC, SEM and TEM. The physicochemical parameters of nano dressing were evaluated by various techniques, namely, the Whole blood clotting test, haemolysis ratio measurement, cytotoxicity test using NIH3T3 and L929 fibroblast cells. The in vivo open excision-type wound healing efficiency of prepared nano dressing and its comparison with conventional gauze were evaluated by measuring wound contraction and histological examinations in adult male albino rats. The synergistic effects of nano dressing such as good antibacterial ability, high swelling properties, high water vapour transmission rate (WVTR), excellent hydrophilic nature, biocompatibility, wound appearance, wound closure rate and histological study through in vivo test makes it a suitable candidate for wound healing applications.

  15. Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions.

    PubMed

    Sun, Fengzhen; Nordli, Henriette R; Pukstad, Brita; Kristofer Gamstedt, E; Chinga-Carrasco, Gary

    2017-05-01

    Wood nanocellulose has been proposed for wound dressing applications partly based on its capability to form translucent films with good liquid absorption capabilities. Such properties are adequate for non-healing and chronic wounds where adequate management of exudates is a requirement. In addition, the translucency will allow to follow the wound development without the necessity to remove the dressing from the wound. Understanding the mechanical properties of nanocellulose films and dressings are also most important for tailoring optimizing wound dressing structures with adequate strength, conformability, porosity and exudate management. Mechanical properties are usually assessed in standard conditions (50% relative humidity, RH), which is not relevant in a wound management situation. In this study we have assessed the mechanical properties of three nanocellulose grades varying in the degree of nanofibrillation. The effect of nanofibrillation and of polyethylene glycol (PEG) addition, on the tensile strength, elongation and elastic modulus were assessed after 24h in water and in phosphate-buffered saline (PBS). The results reveal the behavior of the nanocellulose dressings after wetting and shed light into the development of mechanical properties in environments, which are relevant from a wound management point of view.

  16. Dressings and drains in posterior spine surgery and their effect on wound complications.

    PubMed

    Andrew Glennie, R; Dea, Nicolas; Street, John T

    2015-07-01

    studies reviewed. We recommend favoring of occlusive dressings based on heterogeneous and potentially biased evidence. Drain use does not affect wound healing based on similar evidence. Incisional vacuum dressings have shown promise in managing potentially vulnerable wounds.

  17. Application of wound dressings in dermatology laser procedures

    NASA Astrophysics Data System (ADS)

    Hetzel, Fred W.; Chen, Qun; Hoskins, Greg

    1995-05-01

    High powered lasers have been used in dermatological procedures such as tattoo removal. This use is associated with a potential, biological hazard of high speed tissue particles from the laser field. It has been proposed that by applying a clear dermatological would dressing directly over the laser treatment site, it may be possible to completely trap the potentially airborne tissue particles from the procedure. Some important questions must be addressed prior to the implementation of such a technique. While the use of a wound dressing may significantly reduce the airborne materials during the laser procedures, new problems may arise: 1 . The wound dressing or some of its components may absorb excessive amount of light energy. This would result in a very localized temperature rise which may be harmful to the patient; 2. The smooth surface of the wound dressing material could induce specular reflection of the incident laser beam, thus introducing a laser hazard to the staff and patient. To address these possible problems, we studied a series of ClearSite Wound Dressings which have been reportedly tested for such laser procedures. The objective of the studies were, to determine if the use of ClearSite in conjunction with laser procedures poses a possible hazard to either the patient or to the Operating Room personnel, and to determine the effect of the ClearSite dressing on the optical characteristics of the light beam. The latter includes light absorption and transmittance for various wavelengths.

  18. Extremity trauma, dressings, and wound infection: should every acute limb wound have a silver lining?

    PubMed

    Eardley, William G P; Watts, Sarah A; Clasper, Jon C

    2012-09-01

    The manner in which high-energy transfer limb injuries are dressed can alter the wound environment through manipulation of the bacterial burden, thus minimizing tissue degradation and influencing healing potential. Infection is the principal complication of such wounds, and antiseptic soaked gauze is accepted in early coverage of extremity wounds despite a lack of evidence to support this practice. There has been resurgence in the use of silver in acute wounds, through dressings manipulated to deliver sustained elemental silver to the wound interface. In vitro and in vivo experimentation of silver dressings are characterized however by methodological compromise, primarily through lack of similarity of models to the physiology of the healing wound. Results from in vitro studies caution against the use of silver because of evidence of cytotoxicity, but this is not reproduced in in vivo or clinical experimentation, leading to ambiguity. Review of silver dressing application in burns and chronic wound studies fails to support its use over other dressing systems. Similarly, evidence for the use of silver in acute limb wounds is lacking. This article provides a comprehensive overview of the use of silver dressings in acute wound care and highlights in particular the paucity of evidence regarding its routine use in extremity injury.

  19. Chitosan-based electrospun nanofibrous mats, hydrogels and cast films: novel anti-bacterial wound dressing matrices.

    PubMed

    Shahzad, Sohail; Yar, Muhammad; Siddiqi, Saadat Anwar; Mahmood, Nasir; Rauf, Abdul; Qureshi, Zafar-ul-Ahsan; Anwar, Muhammad Sabieh; Afzaal, Shahida

    2015-03-01

    The development of highly efficient anti-bacterial wound dressings was carried out. For this purpose nanofibrous mats, hydrogels and films were synthesized from chitosan, poly(vinyl alcohol) and hydroxyapatite. The physical/chemical interactions of the synthesized materials were evaluated by FTIR. The morphology, structure; average diameter and pore size of the materials were investigated by scanning electron microscopy. The hydrogels showed a greater degree of swelling as compared to nanofibrous mats and films in phosphate buffer saline solution of pH 7.4. The in vitro drug release studies showed a burst release during the initial period of 4 h and then a sustained release profile was observed in the next upcoming 20 h. The lyophilized hydrogels showed a more slow release as compared to nanofibrous mats and films. Antibacterial potential of drug released solutions collected after 24 h of time interval was determined and all composite matrices showed good to moderate activity against Gram-positive and Gram-negative bacterial strains respectively. To determine the cytotoxicity, cell culture was performed for various cefixime loaded substrates by using neutral red dye uptake assay and all the matrices were found to be non-toxic.

  20. Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing.

    PubMed

    Rezvanian, Masoud; Amin, Mohd Cairul Iqbal Mohd; Ng, Shiow-Fern

    2016-02-10

    Previously, studies have demonstrated that topical application of simvastatin can promote wound healing in diabetic mice via augmentation of angiogenesis and lymphangiogenesis. This study aimed to formulate and characterize simvastatin in alginate-based composite film wound dressings. Biopolymers used for composite films were sodium alginate blended with pectin or gelatin. The films were prepared and characterized based on their physical properties, surface morphology, mechanical strength and rheology. Then, in vitro drug releases from the films were investigated and, finally, the cell viability assay was performed to assess the cytotoxicity profile. From the pre-formulation studies, alginate/pectin composite film showed to possess desirable wound dressing properties and superior mechanical properties. The in vitro drug release profile revealed that alginate/pectin film produced a controlled release drug profile, and cell viability assay showed that the film was non-toxic. In summary, alginate/pectin composite film is suitable to be formulated with simvastatin as a potential wound dressing.

  1. Assessment in vitro of the active hemostatic properties of wound dressings.

    PubMed

    Jesty, Jolyon; Wieland, Martin; Niemiec, Jack

    2009-05-01

    The development of actively hemostatic wound dressings for use in severe trauma remains a major public-health and military goal. But, although some manufacturers claim that existing dressings activate platelets and/or blood coagulation, mechanistic evidence is often lacking. We describe a method for assessing the active hemostatic properties of dressings in vitro, entailing measurement of the flow of recalcified platelet-rich plasma (PRP) through a dressing sample. If the dressing is hemostatically active, flow is reduced. This flow is then compared with the flow-through of PRP in which both platelet and coagulation function are blocked with EDTA. The ratio of the two generates a hemostatic index that ranges from 1.0 (no active hemostasis) to 0 (highly potent). The method is applicable to porous or semiporous dressings, whether fabric, sponge, fleece, or granules. For an active dressing, the test is easily modified to differentiate between the contributions of platelet and coagulation to overall hemostasis. The method is illustrated for fabrics, over-the-counter gauze and sponge dressings, collagen-based sheets, and an absorbent granule dressing. One active collagen dressing is used to illustrate discrimination between platelet and coagulation function. The ability to assess hemostatic properties may significantly enhance the development of advanced active dressings.

  2. A wearable wound moisture sensor as an indicator for wound dressing change: an observational study of wound moisture and status.

    PubMed

    Milne, Stephen D; Seoudi, Ihab; Al Hamad, Hanadi; Talal, Talal K; Anoop, Anzila A; Allahverdi, Niloofar; Zakaria, Zain; Menzies, Robert; Connolly, Patricia

    2016-12-01

    Wound moisture is known to be a key parameter to ensure optimum healing conditions in wound care. This study tests the moisture content of wounds in normal practice in order to observe the moisture condition of the wound at the point of dressing change. This study is also the first large-scale observational study that investigates wound moisture status at dressing change. The WoundSense sensor is a commercially available moisture sensor which sits directly on the wound in order to find the moisture status of the wound without disturbing or removing the dressing. The results show that of the 588 dressing changes recorded, 44·9% were made when the moisture reading was in the optimum moisture zone. Of the 30 patients recruited for this study, 11 patients had an optimum moisture reading for at least 50% of the measurements before dressing change. These results suggest that a large number of unnecessary dressing changes are being made. This is a significant finding of the study as it suggests that the protocols currently followed can be modified to allow fewer dressing changes and less disturbance of the healing wound bed.

  3. Efficacy of commercial dressings in managing malodorous wounds.

    PubMed

    Lee, Gillian; Anand, Subhash C; Rajendran, S; Walker, Ian

    This paper investigates a novel in vitro method of ascertaining quantitative comparative data on a selection of commercial available odour absorbent wound dressing. The aim of this study is to determine and evaluate quantitative desirable data on the efficiency of odour absorbency along with other comparable physical characteristics of commercial odour absorbent dressings. This study is a part of an ongoing research programme into the design and development of novel odour absorbent dressings for managing malodorous wounds. The study also includes the development of a controlled in vitro test method that simulates a more realistic situation. A selection of commercially available activated charcoal dressings were analysed and tested, and comparative evaluation was carried out and discussed.

  4. Situating wound management: technoscience, dressings and 'other' skins.

    PubMed

    Rudge, T

    1999-09-01

    This paper addresses the notion of wound care as a technology of skin and other skins imbued with the combined power of technology and science. It presents the discourses of wound care evident in the accounts of patients and nurses concerning this care, and discussions about wounds in wound care interest groups, journals, and advertising material about wound care products. The discussion focuses on wounds and wound dressings as effects immanent in the power relations of discourses of wound care. These effects colour and influence nurses' responses to wounds and wound care products. Moreover, the discourses that portray these practices are evidence of the complex articulation between technoscience and gender. Nurses and patients are fascinated by wound technoscience and lured towards it by its potential for mastery and control over wounds. Such seductions are evident in the texts of nurses, patients, and pharmaceutical advertisements for wound care products. Finally, the ways that these representations are used to talk about and market wound care products are shown as exemplifying the finer points of wound management as a nursing technoscience.

  5. Nanomaterials from bacterial cellulose for antimicrobial wound dressing

    NASA Astrophysics Data System (ADS)

    Liyaskina, E.; Revin, V.; Paramonova, E.; Nazarkina, M.; Pestov, N.; Revina, N.; Kolesnikova, S.

    2017-01-01

    Bacterial nanocellulose (BNC) is widely used in biomedical applications. BNC has attracted increasing attention as a novel wound dressing material, but it has no antimicrobial activity. To get over this problem in the present study the BNC was saturated with antibiotic fusidic acid (FA). The subject of the experiment was BNC, produced by bacteria Gluconacetobacter sucrofermentans B-11267. The resulting biocomposites have high antibiotic activity against Staphylococcus aureus and can be used in medicine as a wound dressing. The structure of BNC was analyzed by atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR).

  6. Bio-Conjugated Polycaprolactone Membranes: A Novel Wound Dressing

    PubMed Central

    Cai, Elijah Zhengyang; Teo, Erin Yiling; Jing, Lim; Koh, Yun Pei; Qian, Tan Si; Wen, Feng; Lee, James Wai Kit; Hing, Eileen Chor Hoong; Yap, Yan Lin; Lee, Hanjing; Lee, Chuen Neng; Teoh, Swee-Hin; Lim, Jane

    2014-01-01

    Background The combination of polycaprolactone and hyaluronic acid creates an ideal environment for wound healing. Hyaluronic acid maintains a moist wound environment and accelerates the in-growth of granulation tissue. Polycaprolactone has excellent mechanical strength, limits inflammation and is biocompatible. This study evaluates the safety and efficacy of bio-conjugated polycaprolactone membranes (BPM) as a wound dressing. Methods 16 New Zealand white rabbits were sedated and local anaesthesia was administered. Two 3.0×3.0 cm full-thickness wounds were created on the dorsum of each rabbit, between the lowest rib and the pelvic bone. The wounds were dressed with either BPM (n=12) or Mepitel (n=12) (control), a polyamide-silicon wound dressing. These were evaluated macroscopically on the 7th, 14th, 21st, and 28th postoperative days for granulation, re-epithelialization, infection, and wound size, and histologically for epidermal and dermal regeneration. Results Both groups showed a comparable extent of granulation and re-epithelialization. No signs of infection were observed. There was no significant difference (P>0.05) in wound size between the two groups. BPM (n=6): 8.33 cm2, 4.90 cm2, 3.12 cm2, 1.84 cm2; Mepitel (n=6): 10.29 cm2, 5.53 cm2, 3.63 cm2, 2.02 cm2; at the 7th, 14th, 21st, and 28th postoperative days. The extents of epidermal and dermal regeneration were comparable between the two groups. Conclusions BPM is comparable to Mepitel as a safe and efficacious wound dressing. PMID:25396174

  7. Physico-mechanical properties of wound dressing material and its biomedical application.

    PubMed

    Zaman, Haydar U; Islam, J M M; Khan, Mubarak A; Khan, Ruhul A

    2011-10-01

    A bioadhesive wound dressing material, based on gelatin, was prepared by solution casting, and its properties were evaluated. The tensile strength (TS) and percentage elongation at break (Eb) of the membranes were found to be 12.7 MPa and 40.4%, respectively. The buffer uptake and water uptake of the prepared membranes were found to be 298 and 312%, respectively, after 8 min. A scanning electron micrograph of the membrane revealed its uniform porosity, which is an essential criterion to be an ideal wound dressing. From microbial sensitivity analysis, it was found that the membrane had a significant resistance against infection. The wound-healing characteristics of the membrane were evaluated using a rat (Rattus norvegicus) model. Full-thickness wounds were created on the ventral side of the Rattus norvegicus and were dressed with the membrane; eco-plast was used as a control. The wound healing and bioadhesion were monitored at 3-day intervals by real-time imaging. The results revealed that the prepared membrane was more effective in healing the wound than conventional wound dressing.

  8. Supramolecular elastomer based on polydimethylsiloxanes (SESi) film: synthesis, characterization, biocompatibility, and its application in the context of wound dressing.

    PubMed

    Zhang, Anqiang; Yang, Lin; Lin, Yaling; Lu, Hecheng; Qiu, Yuanhuan; Su, Yanlong

    2013-01-01

    Supramolecular elastomer based on polydimethylsiloxanes (SESi) is a kind of novel elastomer cross-linked by the multihydrogen bonds supplied by the functional groups linked to the end of the PDMS chains, such as amide, imidazolidone, pending urea (1,1-dialkyl urea), and bridging urea (1,3-dialkyl urea). SESi showed lower glass transition temperature (T g) at about -113 °C because of the softer chain of PDMS, and could show real rubber-like elastic behaviors and acceptable water vapor transmission rate under room temperature. The high biocompatibility of SESi in the form of films was demonstrated by the cytotoxicity evaluation (MTT cytotoxicity assay and direct contact assay), hemolysis assay, and skin irritation evaluation. Based on detailed comparisons between commercial Tegaderm(™) film and SESi film using a full-thickness rat skin model experiment, it was found that SESi film showed similar wound contraction rate as that of Tegaderm(™) film on day seven, 10, and 14; only on day five, SESi film showed a significant (p < 0.05) lower wound contraction rate. And, the wounds covered with SESi film were filled with new epithelium without any significant adverse reactions, similar with that of Tegaderm(™) film.

  9. Imparting commercial antimicrobial dressings with low-adherence to burn wounds.

    PubMed

    Asghari, Sogol; Logsetty, Sarvesh; Liu, Song

    2016-06-01

    The objective of our study was to decrease the wound adherence of commercial silver based wound dressings by depositing a non-adherent layer. Our hypothesis was that this non-adherent layer will lower the dressing's adherence to burn wounds without compromising the antimicrobial activity or increasing the cytotoxicity. A polyacrylamide (PAM) hydrogel layer was grafted on two commercial silver antimicrobial dressings (silver nanocrystal dressing (NC) and silver plated dressing (SP)) using a proprietary technique. The grafted PAM served as the non-adherent layer. Dressing adherence was measured with a previously published in vitro gelatin model using an Instron mechanical force testing instrument. The dressings were challenged with two clinically retrieved bacterial strains (Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug resistant (MDR) Pseudomonas aeruginosa) with both a disk diffusion test, and a suspension antibacterial test. The cytotoxicity of samples to human neonatal fibroblast cells was evaluated with 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. Both untreated dressings showed high peeling energy: 2070±453J/m(2) (NC) and 669±68J/m(2) (SP), that decreased to 158±119J/m(2) (NC) and 155±138J/m(2) (SP) with the PAM deposition. Addition of the PAM caused no significant difference in zone of inhibition (ZOI) (disk diffusion test) or antibacterial kinetics (suspension test) against both bacteria (p>0.05, n=6) in either dressing. Survival of fibroblasts was improved by the PAM grafting from 48±5% to 60±3% viable cells in the case of NC and from 55±8% to 61±4% viable cells in SP (p<0.05, n=12). It was concluded that PAM as a non-adherent layer significantly decreases the adherence of these two commercial antimicrobial dressings in an in vitro gelatin model while preserving their antimicrobial efficacy, and reducing their cytotoxicity.

  10. Bi-Layer Wound Dressing System for Combat Casualty Care

    DTIC Science & Technology

    2004-08-01

    loading concentration used. The magnitude of this relationship is likely to be material-specific, as we have previously shown a two-fold reduction...mupirocin cream was effective in reducing the bacterial load of foreign-body induced skin wound infections even when the treatment was delayed by... load in superficial muscles in a rat model of established wound infection [24]. Although it appears an important consideration that the dressing

  11. Evaluation of a foam dressing for acute and chronic wound exudate management.

    PubMed

    Bullough, Lindsay; Johnson, Sue; Forder, Rebecca

    2015-09-01

    This article discusses the use of a foam dressing for exudate management in both chronic and acute wounds, such as surgical wounds, pressure ulcers, diabetic ulcers, trauma wounds, and leg ulcers. The primary objective of the study was to observe patients' wound progression in terms of wound size and the condition of the wound bed, when using this foam dressing as either a primary or secondary dressing. The outcome of the evaluation demonstrated that ActivHeal Foam Contact dressing effectively managed exudate. It was also observed that the dressing can assist in autolysis and support improvements in peri-wound status. Choosing an appropriate dressing to manage a wound is essential. Clinicians working in the NHS are under pressure to deliver good-quality clinical outcomes, and the ActivHeal Foam Contact dressing supports this outcome.

  12. Physico-mechanical, morphological and biomedical properties of a novel natural wound dressing material.

    PubMed

    Tavakoli, Javad

    2017-01-01

    Wound healing as a complex biological process greatly affects the quality of patients׳ lives. The high initial cost of wound treatment using advanced wound dressing is a major concern that warrants more attention. Because of the similarities between body macromolecules and polysaccharides and proteoglycans, gelatin and starch were used extensively as wound dressings; however their solubility in aqueous environment is known as a major drawback. Crosslinking, as a common method for enhancing mechanical properties, has its own limitation as some chemical cross-likers reduce biocompatibility. In this research, a simple and economical method for the fabrication of a novel wound dressing foam based on natural polymers of starch and gelatin with borax as the crosslinking agent is introduced. To evaluate the utility of the foams for wound dressing application, morphology, swelling behaviour and kinetics of swelling, vapour permeability, dimension stability, their mechanical properties and cytotoxicity as well as their ability to control release properties were examined as a function of crosslinking density. It was found that however, all borax-induced-samples show acceptable biocompatibility, incorporation of 30% borax solution optimises their mechanical properties.

  13. Enhancing pressure ulcer prevention using wound dressings: what are the modes of action?

    PubMed

    Call, Evan; Pedersen, Justin; Bill, Brian; Black, Joyce; Alves, Paulo; Brindle, C Tod; Dealey, Carol; Santamaria, Nick; Clark, Michael

    2015-08-01

    Recent clinical research has generated interest in the use of sacral wound dressings as preventive devices for patients at risk of ulceration. This study was conducted to identify the modes of action through which dressings can add to pressure ulcer prevention, for example, shear and friction force redistribution and pressure distribution. Bench testing was performed using nine commercially available dressings. The use of dressings can reduce the amplitude of shear stress and friction reaching the skin of patients at risk. They can also effectively redirect these forces to wider areas which minimises the mechanical loads upon skeletal prominences. Dressings can redistribute pressure based upon their effective Poisson ratio and larger deflection areas, providing greater load redistribution.

  14. Chitosan-PVP-nano silver oxide wound dressing: in vitro and in vivo evaluation.

    PubMed

    Archana, D; Singh, Brijesh K; Dutta, Joydeep; Dutta, P K

    2015-02-01

    The main aim of this work was to prepare wound healing material with chitosan, poly vinyl pyrrolidone (PVP), silver oxide nanoparticles. The prepared chitosan, chitosan-PVP-nano silver oxide (CPS) films were characterized for their thermal behaviour, morphological properties, mechanical properties, antibacterial properties and wound healing properties. The CPS film found higher antibacterial activity because the materials both chitosan as well as silver oxide poses good antibacterial activity. L929 cell lines were for cytotoxicity study and Adult male albino rats (140-180 g) were used for wound healing study. The prepared film has more wound healing property than of cotton gauge, 100% chitosan and other reported chitosan based dressings.

  15. Foam dressing releases ibuprofen to ease the pain of chronic wounds.

    PubMed

    2009-02-05

    Painful, chronic wounds have long been treated with dressings that provide moist wound healing. This moist environment, by limiting the exposure of nerve ends, ensures some pain relief. This article reviews a foam dressing that combines the benefits of moist wound healing with a continuous release of ibruprofen into the wound area.

  16. Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing.

    PubMed

    Chen, Huinan; Xing, Xiaodong; Tan, Huaping; Jia, Yang; Zhou, Tianle; Chen, Yong; Ling, Zhonghua; Hu, Xiaohong

    2017-01-01

    An antibacterial and biodegradable composite hydrogel dressing integrated with microspheres is developed for drug delivery and wound healing. The mechanism of gelation is attributed to the Schiff-base reaction between aldehyde and amino groups of oxidized alginate (OAlg) and carboxymethyl chitosan (CMCS). To enhance antibacterial and mechanical properties, tetracycline hydrochloride (TH) loaded gelatin microspheres (GMs) were fabricated by an emulsion cross-linking method, followed by integrating into the OAlg-CMCS hydrogel to produce a composite gel dressing. In vitro gelation time, swelling, degradation, compressive modulus and rheological properties of the gel dressing were investigated as the function of microsphere ratios. With increasing ratios of microspheres from 10 to 40mg/mL, the composite dressing manifested shorter gelation time and lower swelling ratios, as well as higher mechanical strength. Comparing to other formulations, the gel dressing with 30mg/mL microspheres showed more suitable stabilities and mechanical properties for wound healing. Also, in vitro drug release results showed that the loaded TH could be sustained release from the composite gel dressing by contrast with pure hydrogels and microspheres. Furthermore, powerful bacteria growth inhibition effects against Escherichia coli and Staphylococcus aureus suggested that the composite gel dressing, especially the one with 30mg/mL GMs containing TH, has a promising future in treatment of bacterial infection.

  17. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice.

    PubMed

    Moura, Liane I F; Dias, Ana M A; Suesca, Edward; Casadiegos, Sergio; Leal, Ermelindo C; Fontanilla, Marta R; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia

    2014-01-01

    Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT-loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT-loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (p<0.01) and IL-1β (p<0.01) and decreased the inflammatory infiltrate at day 3 post-wounding (inflammatory phase). After complete healing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (p<0.05) which significantly increased fibroblast migration and collagen (collagen type I, alpha 2 (COL1A2) and collagen type III, alpha 1 (COL3A1)) expression and deposition. These results suggest that collagen-based dressings can be an effective support for NT release into diabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone.

  18. Morphology, drug release, antibacterial, cell proliferation, and histology studies of chamomile-loaded wound dressing mats based on electrospun nanofibrous poly(ɛ-caprolactone)/polystyrene blends.

    PubMed

    Motealleh, Behrooz; Zahedi, Payam; Rezaeian, Iraj; Moghimi, Morvarid; Abdolghaffari, Amir Hossein; Zarandi, Mohammad Amin

    2014-07-01

    For the first time, it has been tried to achieve optimum conditions for electrospun poly(ε-caprolactone)/polystyrene (PCL/PS) nanofibrous samples as active wound dressings containing chamomile via D-optimal design approach. In this work, systematic in vitro and in vivo studies were carried out by drug release rate, antibacterial and antifungal evaluations, cell culture, and rat wound model along with histology observation. The optimized samples were prepared under the following electrospinning conditions: PCL/PS ratio (65/35), PCL concentration 9%(w/v), PS concentration 14%(w/v), distance between the syringe needle tip and the collector 15.5 cm, applied voltage 18 kV, and solution flow rate 0.46 mL h(-1) . The FE-SEM micrographs showed electrospun PCL/PS (65/35) nanofibrous sample containing 15% chamomile had a minimum average diameter (∼175 nm) compared to the neat samples (∼268 nm). The drug released resulted in a gradual and high amount of chamomile from the optimized PCL/PS nanofibrous sample (∼70%) in respect to PCL and PS nanofibers after 48 h. This claim was also confirmed by antibacterial and antifungal evaluations in which an inhibitory zone with a diameter of about 7.6 mm was formed. The rat wound model results also indicated that the samples loaded with 15% chamomile extract were remarkably capable to heal the wounds up to 99 ± 0.5% after 14 days post-treatment periods. The adhesion of mesenchymal stem cells and their viability on the optimized samples were confirmed by MTT analysis. Also, the electrospun nanofibrous mats based on PCL/PS (65/35) showed a high efficiency in the wound closure and healing process compared to the reference sample, PCL/PS nanofibers without chamomile. Finally, the histology analysis revealed that the formation of epithelial tissues, the lack of necrosis and collagen fibers accumulation in the dermis tissues for the above optimized samples.

  19. Chitin membranes containing silver nanoparticles for wound dressing application.

    PubMed

    Singh, Rita; Singh, Durgeshwer

    2014-06-01

    Silver nanoparticles are gaining importance as an antimicrobial agent in wound dressings. Chitin is a biopolymer envisioned to promote rapid dermal regeneration and accelerate wound healing. This study was focused on the evaluation of chitin membranes containing silver nanoparticles for use as an antimicrobial wound dressing. Silver nanoparticles were synthesised by gamma irradiation at doses of 50 kGy in the presence of sodium alginate as stabiliser. The UV-Vis absorption spectra of nanoparticles exhibited an absorption band at 415-420 nm, which is the typical plasmon resonance band of silver nanoparticles. The peaks in the X-ray diffraction (XRD) pattern are in agreement with the standard values of the face-centred cubic silver. Transmission electron microscopy (TEM) images indicate silver nanoparticles with spherical morphology and small particle size in the range of 3-13 nm. In vitro antimicrobial tests were performed using Pseudomonas aeruginosa and Staphylococcus aureus to determine the antimicrobial efficiency of the chitin membranes containing 30, 50, 70 and 100 ppm nanosilver. No viable counts for P. aeruginosa were detected with 70 ppm silver nanoparticles dressing after 1-hour exposure. A 2-log reduction in viable cell count was observed for S. aureus after 1 hour and a 4-log reduction after 6 hours with 100 ppm nanosilver chitin membranes. This study demonstrates the antimicrobial capability of chitin membranes containing silver nanoparticles. The chitin membranes with 100 ppm nanosilver showed promising antimicrobial activity against common wound pathogens.

  20. Dressing plantar wounds with foam dressings, is it too much pressure?

    PubMed Central

    Scott Causby, Ryan; Pod, M; Jones, Sara

    2011-01-01

    Diabetes and its associated complications have become a major concern locally, nationally and internationally. One such complication is lower extremity amputation, commonly preceded by chronic ulceration. The cause of this tissue breakdown is multi-faceted, but includes an increase in pressure, particularly plantar pressure. As such, the choice of dressing to be applied to a plantar wound should ideally not increase this pressure further. A commonly used and possibly more bulky dressing is the foam dressing. This pilot study investigates the plantar pressures associated with three common foam dressings (Allevyn®, Lyofoam® and Mepilex®) compared with a control dressing (Melolin®). Twelve healthy males and 19 females [SD] age 36.6 [10.4] were measured using the F-scan plantar pressure measurement system. Substantial variations in individual pressure changes occurred across the foot. No significant differences were identified, once a Bonferroni correction was applied. In healthy adults, it could be concluded that foam dressings do not have any effect on the plantar pressures of the foot. However, the need remains for a robust trial on a pathological population. PMID:22396822

  1. Novel chitosan wound dressing loaded with minocycline for the treatment of severe burn wounds.

    PubMed

    Aoyagi, Shuichi; Onishi, Hiraku; Machida, Yoshiharu

    2007-02-07

    Novel wound dressings composed of chitosan (CH) film and minocycline hydrochloride (MH) were prepared using commercial polyurethane film (Tegaderm) as a backing. CHs with deacetylation degrees of 67%, 83% and 96% (mol/mol), named CH67, CH83 and CH96, respectively, were used. Wound dressing with a large piece of Tegaderm film (4 cm x 4 cm), named CH-MH-N, and wound dressing prepared by cutting CH-MH-N to the wound size, named CH-MH-A, were developed. As CH67-MH-N and CH83-MH-N showed the sustained release of minocycline in vitro, CH67 and CH83 were used as chitosan in the in vivo studies. Various formulations were applied to severe burn wounds in rats in the early stage, and the wound status and change in the wound surface area were examined. The use of 10mg of MH and complete sealing with Tegaderm had a negative effect. MH ointment was not effective, but Geben cream was fairly effective. However, CH83-MH-A containing 2mg of MH (CH83-MH2-A) and CH83 film showed an excellent effect. Considering the elimination of pus, CH83-MH2-A tended to be better than CH83 film. CH83-MH2-A is suggested as a useful formulation for the treatment of severe burn wounds.

  2. Development of an Ultrafast-Curing Wound Dressing

    DTIC Science & Technology

    1985-03-15

    AD V TE4337-53-85 DEVELOPMENT OF AN SULTRAFAST-CURING WOUND DRESSING ANNUAL REPORT 0 Michael Szycher, Ph.D. and Jonathan L. Rolfe March 15, 1985...in this report are not to be construed as.. j an official Department of the Army position unless so A designated by other authorized documents. 85 12...10 037 SECURITY CLASSI’ICATION OF THIS’PAGE .... REPORT DOCUMENTATION PAGE Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS Unc lassif ied

  3. Polymer-xerogel composites for controlled release wound dressings.

    PubMed

    Costache, Marius C; Qu, Haibo; Ducheyne, Paul; Devore, David I

    2010-08-01

    Many polymers and composites have been used to prepare active wound dressings. These materials have typically exhibited potentially toxic burst release of the drugs within the first few hours followed by a much slower, potentially ineffective drug release rate thereafter. Many of these materials also degraded to produce inflammatory and cytotoxic products. To overcome these limitations, composite active wound dressings were prepared here from two fully biodegradable and tissue compatible components, silicon oxide sol-gel (xerogel) microparticles that were embedded in tyrosine-poly(ethylene glycol)-derived poly(ether carbonate) copolymer matrices. Sustained, controlled release of drugs from these composites was demonstrated in vitro using bupivacaine and mepivacaine, two water-soluble local anesthetics commonly used in clinical applications. By systematically varying independent compositional parameters of the composites, including the hydrophilic:hydrophobic balance of the tyrosine-derived monomers and poly(ethylene glycol) in the copolymers and the porosity, weight ratio and drug content of the xerogels, drug release kinetics approaching zero-order were obtained. Composites with xerogel mass fractions up to 75% and drug payloads as high as 13% by weight in the final material were fabricated without compromising the physical integrity or the controlled release kinetics. The copolymer-xerogel composites thus provided a unique solution for the sustained delivery of therapeutic agents from tissue compatible wound dressings.

  4. Evaluation of dense collagen matrices as medicated wound dressing for the treatment of cutaneous chronic wounds.

    PubMed

    Helary, Christophe; Abed, Aicha; Mosser, Gervaise; Louedec, Liliane; Letourneur, Didier; Coradin, Thibaud; Giraud-Guille, Marie Madeleine; Meddahi-Pellé, Anne

    2015-02-01

    Cutaneous chronic wounds are characterized by an impaired wound healing which may lead to infection and amputation. When current treatments are not effective enough, the application of wound dressings is required. To date, no ideal biomaterial is available. In this study, highly dense collagen matrices have been evaluated as novel medicated wound dressings for the treatment of chronic wounds. For this purpose, the structure, mechanical properties, swelling ability and in vivo stability of matrices concentrated from 5 to 40 mg mL(-1) were tested. The matrix stiffness increased with the collagen concentration and was associated with the fibril density and thickness. Increased collagen concentration also enhanced the material resistance against accelerated digestion by collagenase. After subcutaneous implantation in rats, dense collagen matrices exhibited high stability without any degradation after 15 days. The absence of macrophages and neutrophils evidenced their biocompatibility. Subsequently, dense matrices at 40 mg mL(-1) were evaluated as drug delivery system for ampicillin release. More concentrated matrices exhibited the best swelling abilities and could absorb 20 times their dry weight in water, allowing for an efficient antibiotic loading from their dried form. They released efficient doses of antibiotics that inhibited the bacterial growth of Staphylococcus Aureus over 3 days. In parallel, they show no cytotoxicity towards human fibroblasts. These results show that dense collagen matrices are promising materials to develop medicated wound dressings for the treatment of chronic wounds.

  5. Stimulation of Wound Healing by Electroactive, Antibacterial, and Antioxidant Polyurethane/Siloxane Dressing Membranes: In Vitro and in Vivo Evaluations.

    PubMed

    Gharibi, Reza; Yeganeh, Hamid; Rezapour-Lactoee, Alireza; Hassan, Zuhair M

    2015-11-04

    A series of novel polyurethane/siloxane-based wound dressing membranes was prepared through sol-gel reaction of methoxysilane end-functionalized urethane prepolymers composed of castor oil and ricinoleic methyl ester as well as methoxysilane functional aniline tetramer (AT) moieties. The samples were fully characterized and their physicochemical, mechanical, electrical, and biological properties were assayed. The biological activity of these dressings against fibroblast cells and couple of microbes was also studied. It was revealed that samples that displayed electroactivity by introduction of AT moieties showed a broad range of antimicrobial activity toward different microorganisms, promising antioxidant (radical scavenging) efficiency and significant activity for stimulation of fibroblast cell growth and proliferation. Meanwhile, these samples showed appropriate tensile strength and ability for maintaining a moist environment over a wound by controlled equilibrium water absorption and water vapor transmission rate. The selected electroactive dressing was subjected to an in vivo assay using a rat animal model and the wound healing process was monitored and compared with analogous dressing without AT moieties. The recorded results showed that the electroactive dressings induced an increase in the rate of wound contraction, promoted collagen deposition, and encouraged vascularization in the wounded area. On the basis of the results of in vitro and in vivo assays, the positive influence of designed dressings for accelerated healing of a wound model was confirmed.

  6. A comparison of hemorrhage control and hydrogen peroxide generation in commercial and cotton-based wound dressing materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nonwoven UltraCleanTM Cotton (highly cleaned and hydroentangled, greige cotton) retains the native wax and pectin content (~2%) of the cotton fiber traditionally removed from scoured and bleached cotton gauze, yet potentially affording wound healing properties. In vitro thromboelastography, hydrog...

  7. Physically crosslinked-sacran hydrogel films for wound dressing application.

    PubMed

    Wathoni, Nasrul; Motoyama, Keiichi; Higashi, Taishi; Okajima, Maiko; Kaneko, Tatsuo; Arima, Hidetoshi

    2016-08-01

    The thin hydrogel films consisting of water-swollen polymer networks can potentially be applied for biomedical fields. Recently, natural polysaccharides have great attentions to be developed as wound healing and protection. In the present study, we newly prepared and characterized a physically crosslinked-hydrogel film composed of a novel megamolecular polysaccharide sacran for wound dressing application. We successfully fabricated a physically crosslinked-sacran hydrogel film by a solvent-casting method. The thickness of a sacran hydrogel film was lower than that of a sodium alginate (Na-alginate) film. Importantly, the swollen ratio of a sacran hydrogel film in water at 24h was 19-fold, compared to initial weight. Meanwhile, a Na-alginate hydrogel film was completely broken apart after rehydration. Moreover, a sacran hydrogel film did not show any cytotoxicity on NIH3T3 cells, a murine fibroblast cell line. The in vivo skin hydration study revealed that a sacran hydrogel film significantly increased the moisture content on hairless mice skin and considerably improved wound healing ability, compared to control (non-treated), probably due to not only the moisturing effect but also the anti-inflammatory effect of sacran. These results suggest that sacran has the potential properties as a basic biomaterial in a hydrogel film for wound dressing application.

  8. A pre-clinical evaluation of silver, iodine and Manuka honey based dressings in a model of traumatic extremity wounds contaminated with Staphylococcus aureus.

    PubMed

    Guthrie, Hugo C; Martin, Kevin R; Taylor, Christopher; Spear, Abigail M; Whiting, Rachel; Macildowie, Sara; Clasper, Jonathan C; Watts, Sarah A

    2014-08-01

    Prevention of extremity war wound infection remains a clinical challenge. Staphylococcus aureus is the most common pathogen in delayed infection. We hypothesised that choice of wound dressings may affect bacterial burden over 7 days reflecting the current practice of delayed primary closure of wounds within this timeframe. A randomised controlled trial of 3 commercially available dressings (Inadine(®) (Johnson & Johnson, NJ, USA), Acticoat(®) (Smith & Nephew, Hull, UK), Activon Tulle (Advancis Medical, Nottingham, UK)) was conducted in a rabbit model of contaminated forelimb muscle injury. A positive control group treated with antibiotics was included. Groups were compared to a saline soaked gauze control. The primary outcome was a statistically significant reduction (p < 0.05) in tissue S. aureus at 7 days post-injury. Secondary outcome measurements included bacteraemias, observational data, whole blood determination, ELISA for plasma biomarkers, PCR array analysis of wound healing gene expression and muscle/lymph node histopathology. Antibiotic, Inadine and Acticoat groups had statistically significant lower bacterial counts (mean 7.13 [95% CI 0.00-96.31]×10(2); 1.66 [0.94-2.58]×10(5); 8.86 [0.00-53.35]×10(4)cfu/g, respectively) and Activon Tulle group had significantly higher counts (2.82 [0.98-5.61]×10(6)cfu/g) than saline soaked gauze control (7.58 [1.65-17.83]×10(5)cfu/g). There were no bacteraemias or significant differences in observational data or whole blood determination. There were no significant differences in muscle/loss or pathology and lymph node cross-sectional area or morphology. There were some significant differences between treatment groups in the plasma cytokines IL-4, TNFα and MCP-1 in comparison to the control. PCR array data demonstrated more general changes in gene expression in the muscle tissue from the Activon Tulle group than the Inadine or Acticoat dressings with a limited number of genes showing significantly altered

  9. A Prospective Randomized Study to Compare the Effectiveness of Honey Dressing vs. Povidone Iodine Dressing in Chronic Wound Healing.

    PubMed

    Gulati, Sonia; Qureshi, Ashia; Srivastava, Anurag; Kataria, Kamal; Kumar, Pratik; Ji, Acharya Balakrishna

    2014-06-01

    To compare the healing of chronic wounds with honey dressing vs. Povidone iodine dressing in adult subjects with chronic wounds of ≥6 weeks of duration, attending wound care clinic in Surgical Out Patient Department of All India Institute of Medical Sciences, Surgical Out Patient Department of Jai Prakash Narayan Apex Trauma center, New Delhi. Forty five subjects were randomized into two groups i.e., Honey & Povidone iodine dressing group. Dressing was done on alternate day basis for 6 weeks of followup period. Main outcome measure was complete healing at 6 weeks. Wound healing status was assessed at 2 weekly intervals till 6 weeks. Seven out of 22 subjects in honey treated group achieved complete healing as compared to none out of 20 subjects in Povidone iodine treated group. There was a significant decrease in the wound surface area, pain score & increase in comfort score in Honey dressing group in comparison to the Povidone Iodine group at 0.05 level of significance. Honey dressing is highly effective in achieving healing in chronic wounds as compared to Povidone iodine dressing.

  10. Morphological study of burn wound healing with the use of collagen-chitosan wound dressing.

    PubMed

    Kirichenko, A K; Bolshakov, I N; Ali-Riza, A E; Vlasov, A A

    2013-03-01

    Experiments on the model of thermal skin burn in rats showed that the use of wound dressing based on collagen-chitosan complex Kollakhit-Bol in local treatment of grade IIIb skin burns increased healing rate by accelerating the formation of granulation and fibrous connective tissues and reducing crust thickness in comparison with Kollakhit coating. Kollakhit-Bol provided targeted stimulation of reparative processes in the treatment of grade IIIb burns by creating favorable conditions for grafting full thickness skin transplant or dermal-epidermal skin equivalent. In the topical treatment of thermal burn, Kollakhit-Bol application shortened the phases of alteration and exudation and accelerated transition to the productive phase of the inflammatory process with phagocytosis and neoangiogenesis activation.

  11. Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications.

    PubMed

    Ignatova, Milena; Manolova, Nevena; Markova, Nadya; Rashkov, Iliya

    2009-01-09

    Continuous defect-free nanofibers containing chitosan (Ch) or quaternized chitosan (QCh) were successfully prepared by one-step electrospinning of Ch or QCh solutions mixed with poly[(L-lactide)-co-(D,L-lactide)] in common solvent. XPS revealed the surface chemical composition of the bicomponent electrospun mats. Crosslinked Ch- and QCh-containing nanofibers exhibited higher kill rates against bacteria S. aureus and E. coli than the corresponding solvent-cast films. SEM observations showed that hybrid mats were very effective in suppressing the adhesion of pathogenic bacteria S. aureus. The hybrid nanofibers are promising for wound-healing applications.

  12. Superficial Burn Wound Healing with Intermittent Negative Pressure Wound Therapy Under Limited Access and Conventional Dressings

    PubMed Central

    Honnegowda, Thittamaranahalli Muguregowda; Padmanabha Udupa, Echalasara Govindarama; Rao, Pragna; Kumar, Pramod; Singh, Rekha

    2016-01-01

    BACKGROUND Thermal injury is associated with several biochemical and histopathological alteration in tissue. Analysis of these objective parameters in research and clinical field are common to determine healing rate of burn wound. Negative pressure wound therapy has been achieved wide success in treating chronic wounds. This study determines superficial burn wound healing with intermittent negative pressure wound therapy under limited access and conventional dressings METHODS A total 50 patients were randomised into two equal groups: limited access and conventional dressing groups. Selective biochemical parameters such as hydroxyproline, hexosamine, total protein, and antioxidants, malondialdhyde (MDA), wound surface pH, matrix metalloproteinase-2 (MMP-2), and nitric oxide (NO) were measured in the granulation tissue. Histopathologically, necrotic tissue, amount of inflammatory infiltrate, angiogenesis and extracellular matrix deposition (ECM) were studied to determine wound healing under intermittent negative pressure. RESULTS Patients treated with limited access have shown significant increase in the mean hydroxyproline, hexosamine, total protein, reduced glutathione (GSH), glutathione peroxidase (GPx), and decrease in MDA, MMP-2, wound surface pH, and NO. Histopathologic study showed that there was a significant difference after 10 days of treatment between limited access vs conventional dressing group, Median (Q1, Q3)=3 (2, 4.25) vs 2 (1.75, 4). CONCLUSION Limited access was shown to exert its beneficial effects on wound healing by increasing ground substance, antioxidants and reducing MMP-2 activity, MDA, NO and providing optimal pH, decreasing necrotic tissue, amount of inflammatory infiltrate, increasing ECM deposition and angiogenesis. PMID:27853690

  13. Thermosensitive nanofibers loaded with ciprofloxacin as antibacterial wound dressing materials.

    PubMed

    Li, Heyu; Williams, Gareth R; Wu, Junzi; Lv, Yao; Sun, Xiaozhu; Wu, Huanling; Zhu, Li-Min

    2017-01-30

    To obtain wound dressings which could be removed easily without secondary injuries, we prepared thermoresponsive electrospun fiber mats containing poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA). Blend fibers of PDEGMA and poly(l-lactic acid-co-ε-caprolactone) (P(LLA-CL) were fabricated via electrospinning, and analogous fibers containing the antibiotic ciprofloxacin (CIF) were also prepared. Smooth cylindrical fibers were obtained, albeit with a small amount of beading visible for the ciprofloxacin-loaded fibers. X-ray diffraction showed the drug to exist in the amorphous physical form post-electrospinning. The composite fibers showed distinct thermosensitive properties and gave sustained release of CIF over more than 160h in vitro. The fibers could promote the proliferation of fibroblasts, and by varying the temperature cells could easily be attached to and detached from the fibers. Antibacterial tests demonstrated that fibers loaded with ciprofloxacin were effective in inhibiting the growth of E. coli and S. aureus. In vivo investigations on rats indicated that the composite PDEGMA/P(LLA-CL) fibers loaded with CIF had much more potent wound healing properties than a commercial gauze and CIF-loaded fibers made solely of P(LLA-CL). These results demonstrate the potential of PDEGMA/P(LLA-CL)/ciprofloxacin fibers as advanced wound dressing materials.

  14. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing.

    PubMed

    Zhao, Xin; Wu, Hao; Guo, Baolin; Dong, Ruonan; Qiu, Yusheng; Ma, Peter X

    2017-04-01

    Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing.

  15. Chitosan/polyurethane blended fiber sheets containing silver sulfadiazine for use as an antimicrobial wound dressing.

    PubMed

    Lee, Sang Jin; Heo, Dong Nyoung; Moon, Ji-Hoi; Park, Ha Na; Ko, Wan-Kyu; Bae, Min Soo; Lee, Jung Bok; Park, Se Woong; Kim, Eun-Cheol; Lee, Chang Hoon; Jung, Bock-Young; Kwon, Il Keun

    2014-10-01

    Electrospun chitosan (CTS) nanofibers have been well known for use as a wound dressing in the biomedical field. Nevertheless, fatal bacterial infections are still a serious problem when CTS nanofibers are used for wound treatment. In this study, we designed a novel wound dressing based on blending the chitosan with polyurethane (CTS/PU) containing silver sulfadiazine (AgSD) in order to enhance both antibacterial activity and mechanical strength. This fiber sheet was produced using the electrospinning (ELSP) technique. The CTS/PU containing AgSD fiber sheet was characterized by energy-dispersive X-ray spectroscopy (EDX). The physicochemical properties of the CTS/PU/AgSD fiber sheets were also characterized by thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). The electrospun fibers were morphologically characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). For an in vitro evaluation, the CTS/PU/AgSD fiber sheets were tested for their antibacterial activity against gram-negative Pseudomonas aeruginosa (P. aeruginosa), gram-positive Staphylococcus aureus (S. aureus) and Methicillin-resistant Staphylococcus aureus (MRSA). The results indicate that CTS/PU/AgSD fiber sheets have strong antimicrobial activity as displayed by inhibition of bacterial growth and prevention of infection during the healing process. These results indicate that this material would be good for use as a wound dressing material.

  16. Novel Asymmetric Wettable AgNPs/Chitosan Wound Dressing: In Vitro and In Vivo Evaluation.

    PubMed

    Liang, Donghui; Lu, Zhong; Yang, Hao; Gao, Jingting; Chen, Rong

    2016-02-17

    A novel silver nanoparticles (AgNPs)/chitosan composite dressing with asymmetric wettability surfaces was successfully prepared via a simple two-step method for biomedical applications as wound healing materials. First, AgNPs were assembled into the chitosan sponge which was prepared by lyophilization process. Then one side of the sponge was modified by a thin layer of stearic acid. The incorporation of AgNPs into chitosan dressing could enhance the antibacterial activity against drug-sensitive and drug-resistant pathogenic bacteria. The asymmetric surface modification endows the dressing with both highly hydrophobic property and inherent hydrophilic nature of chitosan. The hydrophobic surface of the dressing shows waterproof and antiadhesion for contaminant properties, whereas the hydrophilic surface preserves its water-absorbing capability and efficiently inhibits the growth of bacteria. Furthermore, the AgNPs/chitosan composite dressing displays improved moisture retention and blood clotting ability compared to the unmodified dressings. Cytocompatibility test evaluated in vitro and in a wound infection model illustrates the nontoxic nature of the composite dressing. More importantly, the in vivo wound healing model evaluation in mice reveals that the asymmetric AgNPs/chitosan dressing promotes the wound healing and accelerates the reepithelialization and collagen deposition. The silver accumulation in mice body treated by the composite dressing is far lower than that of the clinically used Acasin nanosilver dressing treated mice. This work indicates the huge potential of the novel AgNPs/chitosan wound dressing with asymmetrical wettability for clinical use.

  17. Development of a continuous finishing chemistry process for manufacture of a phosphorylated cotton chronic wound dressing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A phosphorylated form of cotton gauze for treatment of chronic wounds was designed to improve the wound dressing’s capacity to remove harmful proteases from the wound and facilitate healing. Development of the fabric finishing chemistry of the wound dressing with a process suitable for textile mill...

  18. Novel hydrocolloid-sheet as wound dressing to stimulate healing-impaired wound healing in diabetic db/db mice.

    PubMed

    Yanagibayashi, Satoshi; Kishimoto, Satoko; Ishihara, Masayuki; Murakami, Kaoru; Aoki, Hiroshi; Takikawa, Megumi; Fujita, Masanori; Sekido, Mitsuru; Kiyosawa, Tomoharu

    2012-01-01

    To create a moist environment for wound healing, a hydrocolloid-sheet composed of alginate, chitin/chitosan and fucoidan (ACF-HS) has been developed as a functional wound dressing. ACF-HS gradually adsorbed medium without any maceration and the medium adsorption in vitro reached constant after 18 h. ACF-HS could effectively interact with and protect a healing-impaired wound in diabetic db/db mice, providing a good moist healing environment with exudate. Furthermore, the wound dressing could have other properties like ease of application and removal, and proper adherence. The aim of this study was to evaluate an accelerating effect of ACF-HS on wound healing for healing-impaired wounds in diabetic db/db mice. Round full-thickness skin defects (12 mm in diameter) were made on the back of db/db mice to prepare healing-impaired wounds. After applying ACF-HS to the wounds, the mice were later killed and histological sections of the wound were prepared. Histological examinations showed significantly advanced granulation tissue and capillary formations in the wounds treated with ACF-HS on days 4, 9 and 14 compared with those in commercially available hydrocolloid wound dressing and non-treatment (control). Thus, ACF-HS may serve as a new wound dressing for diabetic healing-impaired wounds.

  19. Randomized Clinical Trial of the Innovative Bilayered Wound Dressing Made of Silk and Gelatin: Safety and Efficacy Tests Using a Split-Thickness Skin Graft Model

    PubMed Central

    Hasatsri, Sukhontha; Angspatt, Apichai; Aramwit, Pornanong

    2015-01-01

    We developed the novel silk fibroin-based bilayered wound dressing for the treatment of partial thickness wounds. And it showed relevant characteristics and accelerated the healing of full-thickness wounds in a rat model. This study is the clinical evaluation of the bilayered wound dressing to confirm its safety and efficacy for the treatment of split-thickness skin donor sites. The safety test was performed using a patch model and no evidence of marked and severe cutaneous reactions was found. The efficacy test of the bilayered wound dressing was conducted on 23 patients with 30 split-thickness skin graft donor sites to evaluate healing time, pain score, skin barrier function, and systemic reaction in comparison to Bactigras. We found that the healing time of donor site wounds treated with the bilayered wound dressing (11 ± 6 days) was significantly faster than those treated with Bactigras (14 ± 6 days) (p = 10−6). The wound sites treated with the bilayered wound dressing showed significantly less pain and more rapid skin functional barrier recovery than those treated with Bactigras (p = 10−5). Therefore, these results confirmed the clinical safety and efficacy of the bilayered wound dressing for the treatment of split-thickness skin graft donor sites. PMID:26221170

  20. Randomized Clinical Trial of the Innovative Bilayered Wound Dressing Made of Silk and Gelatin: Safety and Efficacy Tests Using a Split-Thickness Skin Graft Model.

    PubMed

    Hasatsri, Sukhontha; Angspatt, Apichai; Aramwit, Pornanong

    2015-01-01

    We developed the novel silk fibroin-based bilayered wound dressing for the treatment of partial thickness wounds. And it showed relevant characteristics and accelerated the healing of full-thickness wounds in a rat model. This study is the clinical evaluation of the bilayered wound dressing to confirm its safety and efficacy for the treatment of split-thickness skin donor sites. The safety test was performed using a patch model and no evidence of marked and severe cutaneous reactions was found. The efficacy test of the bilayered wound dressing was conducted on 23 patients with 30 split-thickness skin graft donor sites to evaluate healing time, pain score, skin barrier function, and systemic reaction in comparison to Bactigras. We found that the healing time of donor site wounds treated with the bilayered wound dressing (11 ± 6 days) was significantly faster than those treated with Bactigras (14 ± 6 days) (p = 10(-6)). The wound sites treated with the bilayered wound dressing showed significantly less pain and more rapid skin functional barrier recovery than those treated with Bactigras (p = 10(-5)). Therefore, these results confirmed the clinical safety and efficacy of the bilayered wound dressing for the treatment of split-thickness skin graft donor sites.

  1. Development of biofilm-targeted antimicrobial wound dressing for the treatment of chronic wound infections.

    PubMed

    Ng, Shiow-Fern; Leow, Hon-Lunn

    2015-01-01

    It has been established that microbial biofilms are largely responsible for the recalcitrance of many wound infections to conventional antibiotics. It was proposed that the efficacy of antibiotics could be optimized via the inhibition of bacterial biofilm growth in wounds. The combination of antibiofilm agent and antibiotics into a wound dressing may be a plausible strategy in wound infection management. Xylitol is an antibiofilm agent that has been shown to inhibit the biofilm formation. The purpose of this study was to develop an alginate film containing xylitol and gentamicin for the treatment of wound infection. Three films, i.e. blank alginate film (SA), alginate film with xylitol (F5) and alginate film with xylitol and gentamicin (AG), were prepared. The films were studied for their physical properties, swelling ratio, moisture absorption, moisture vapor transmission rate (MVTR), mechanical and rheology properties, drug content uniformity as well as in vitro drug release properties. Antimicrobial and antibiofilm in vitro studies on Staphylococcus aureus and Pseudomonas aeruginosa were also performed. The results showed that AG demonstrates superior mechanical properties, rheological properties and a higher MVTR compared with SA and F5. The drug flux of AG was higher than that of commercial gentamicin cream. Furthermore, antimicrobial studies showed that AG is effective against both S. aureus and P. aeruginosa, and the antibiofilm assays demonstrated that the combination was effective against biofilm bacteria. In summary, alginate films containing xylitol and gentamicin may potentially be used as new dressings for the treatment of wound infection.

  2. Biological wound dressings sterilized with gamma radiation: Mexican clinical experience

    NASA Astrophysics Data System (ADS)

    Martínez-Pardo, M. E.; Ley-Chávez, E.; Reyes-Frías, M. L.; Rodríguez-Ferreyra, P.; Vázquez-Maya, L.; Salazar, M. A.

    2007-11-01

    Biological wound dressings sterilized with gamma radiation, such as amnion and pig skin, are a reality in Mexico. These tissues are currently processed in the tissue bank and sterilized in the Gamma Industrial Irradiation Plant; both facilities belong to the Instituto Nacional de Investigaciones Nucleares (ININ) (National Institute of Nuclear Research). With the strong support of the International Atomic Energy Agency, the bank was established at the ININ and the Mexican Ministry of Health issued its sanitary license on July 7, 1999. The Quality Management System of the bank was certified by ISO 9001:2000 on August 1, 2003; the scope of the system is "Research, Development and Processing of Biological Tissues Sterilized with Gamma Radiation". At present, more than 150 patients from 16 hospitals have been successfully treated with these tissues. This paper presents a brief description of the tissue processing, as well as the present Mexican clinical experience with children and adult patients who underwent medical treatment with radiosterilized amnion and pig skin, used as biological wound dressings on burns and ocular surface disorders.

  3. A critical review of modern and emerging absorbent dressings used to treat exuding wounds.

    PubMed

    Sweeney, India R; Miraftab, Mohsen; Collyer, Graham

    2012-12-01

    Wound management has progressed significantly over the last five decades. This emanates from a greater understanding of wound healing, technological progression and improved clinical and scientific research. There are currently a plethora of absorbent dressings on the wound care market which claim to have the ability to manage exudates whilst encouraging healing. However, it is becoming clear, from analysing randomised controlled trials, that some of these absorbent dressings are not meeting their expectations when applied in a clinical setting. Many clinicians now feel that there should be more focus, not only on a dressing's ability to manage exudate efficiently, but on a dressing's ability to proactively encourage healing and thus exudate reduction will ensue. This paper proposes to critically review modern and emerging absorbent wound care dressings used to manage exuding wounds and discuses some advances in this area.

  4. Silicone-coated non-woven polyester dressing enhances reepithelialisation in a sheep model of dermal wounds.

    PubMed

    Losi, Paola; Briganti, Enrica; Costa, Manolo; Sanguinetti, Elena; Soldani, Giorgio

    2012-09-01

    Negative-pressure wound therapy (NPWT) also known as V.A.C. (Vacuum-assisted closure), is widely used to manage various type of wounds and accelerate healing. NPWT has so far been delivered mainly via open-cell polyurethane (PU) foam or medical gauze. In this study an experimental setup of sheep wound model was used to evaluate, under NPWT conditions, the performance of a silicone-coated non-woven polyester (N-WPE) compared with PU foam and cotton hydrophilic gauze, used as reference materials. Animals were anesthetized with spontaneous breathing to create three 3 × 3 cm skin defects bilaterally; each animal received three different samples on each side (n = 6 in each experimental group) and was subjected to negative and continuous 125 mmHg pressure up to 16 days. Wound conditions after 1, 8 and 16 days of treatment with the wound dressings were evaluated based on gross and histological appearances. Skin defects treated with the silicone-coated N-WPE showed a significant decrease in wound size, an increase of re-epithelialization, collagen deposition and wound neovascularisation, and a minimal stickiness to the wound tissue, in comparison with gauze and PU foam. Taken all together these findings indicate that the silicone-coated N-WPE dressing enhances wound healing since stimulates higher granulation tissue formation and causes minor tissue trauma during dressing changes.

  5. Histological effects of occlusive dressing on healing of incisional skin wounds.

    PubMed

    Yamamoto, Naoto; Kiyosawa, Tomoharu

    2014-12-01

    Occlusive dressing is widely accepted and used to manage skin ulcers. However, with respect to its application to incisional wounds, most studies have been conducted about the clinical effects on incisional healing of surgical sites. Studies of the histological effects of occlusive dressing for incisional wounds have been few. The aim of this study was to clarify the histological effects of occlusive dressings on healing of incisional skin wounds. Rat dorsal skin was incised down to the panniculus and sutured immediately. Dressing types included 2-octyl cyanoacrylate and hydrocolloid materials as occlusive dressings and no-dressing as the open therapy. Histological examination and dermoscopic observation were performed 1, 2, 4 and 7 days after surgery. The findings from each dressing type were compared. In the open therapy group, the upper portion of the edge of incision was necrosed minimally and finally healed with wide scar formation. However, in the occlusive dressing groups, micronecrosis of the incision edge seen in the no-dressing group was not observed, healing was more rapid and the remaining scar was finer. Occlusive dressing can prevent micronecrosis of the incision edge, resulting in rapid and excellent healing. This study shows that the efficacy of and supports the use of occlusive dressing in incisional wound management.

  6. A model for quantitative evaluation of skin damage at adhesive wound dressing removal.

    PubMed

    Matsumura, Hajime; Ahmatjan, Niyaz; Ida, Yukiko; Imai, Ryutaro; Wanatabe, Katsueki

    2013-06-01

    The removal of adhesive wound dressings from the wound surface involves a risk of damaging the intact stratum corneum and regenerating epithelium. Pain associated with the removal of wound dressings is a major issue for patients and medical personnel. Recently, wound dressings coated with a silicone adhesive have been developed to reduce such skin damage and pain on removal and they have received good evaluation in various clinical settings. However, there is neither a standard method to quantify whether or not the integrity of the stratum corneum and regenerating epithelium is retained or if both structures are damaged by the removal of wound dressings, nor are there standardised values with which to assess skin damage. We applied six different types of adhesive wound dressing on plain copy paper printed with black ink by a laser printer, removed the dressings, examined the adhesive-coated surface of the wound dressings using a high-power videoscope, and examined the stripped areas. Wound dressings coated with a silicone adhesive showed significantly less detachment of the stratum corneum and regenerating epithelium, followed by those coated with polyurethane, hydrocolloid, and acrylic adhesives. The assessment method utilised in this study revealed distinct differences between wound dressing types, but less variation in the evaluation outcome of each type. This assessment method may be useful for the evaluation of adhesive wound dressings, particularly during product development. However, further studies will be needed to examine the effectiveness of this assessment method in the clinical setting because the adherent properties of polyurethane and hydrocolloid adhesives may be altered by the absorption of water from the skin.

  7. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications.

    PubMed

    Vargas, E A Torres; do Vale Baracho, N C; de Brito, J; de Queiroz, A A A

    2010-03-01

    This study reports on the performance of electrospun hyperbranched polyglycerol nanofibers capable of providing an active agent delivery for wound dressing applications. The aim of this work was to prepare electrospun HPGL nanofibers containing Calendula officinalis as a wound-healing and anti-inflammatory agent. The morphology of the electrospun HPGL-C. officinalis nanofibers was analyzed using a scanning electron microscope. The results showed that the diameters of the fibers were in nanoscales. The release of C. officinalis from the electrospun HPGL fibers was determined by HPLC at a physiological temperature (37 degrees C). Rapid release of the C. officinalis from the electrospun HPGL-C. officinalis nanofibers was exhibited as result of the high swelling ability as well as the high porosity of the electrospun HPGL-C. officinalis membranes. The degree of swelling, and the mechanical and biocompatible properties of the electrospun HPGL fibers were determined. The results showed that, in physiological conditions, the water absorption into the HPGL electrospun fibers slowed down, governed by the rate at which the electrospun HPGL-C. officinalis membranes interacted with the physiological fluid. The rate of release of C. officinalis seemed to depend on the C. officinalis content in the HPGL nanofibers. From the elastic modulus, it could be seen that elastic electrospun HPGL fibers were obtained with increments of C. officinalis content in the HPGL-C. officinalis membranes. The results of in vivo experiments in rats suggested that HPGL-C. officinalis might be an interesting bioactive wound dressing material for clinical applications.

  8. Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings.

    PubMed

    Yoo, Hye-Jin; Kim, Han-Do

    2008-05-01

    To accomplish ideal wound healing dressing, a series of waterborne polyurethane (WBPU) hydrogels based on polyethylene glycol (PEG) were synthesized by polyaddition reaction in an emulsion system. The stable WBPU hydrogels which have remaining weight of above 85% were obtained. The effect of the soft segment (PEG) content on water absorbability of WBPU hydrogels was investigated. Water absorption % and equilibrium water content (%) of the WBPU hydrogel significantly increased in proportion to PEG content and the time of water-immersion. The maximum water absorption % and equilibrium water content (%) of WBPU hydrogels containing various PEG contents were in the range of 409-810% and 85-96%, respectively. The water vapor transmission rate of the WBPU hydrogels was found to be in the range of 1490-3118 g/m(2)/day. These results suggest that the WBPU hydrogels prepared in this study may have high potential as new wound dressing materials, which provide and maintain the adequate moist environment required to prevent scab formation and dehydration of the wound bed. By the wound healing evaluation using full-thickness rat model experiment, it was found that the wound covered with a typical WBPU hydrogel (HG-78 sample) was completely filled with new epithelium without any significant adverse reactions.

  9. Estimates of evaporation rates from wounds for various dressing/support surface combinations.

    PubMed

    Lachenbruch, Charlie; VanGilder, Catherine

    2012-01-01

    The management of exudate is an essential aspect of wound care. The wound bed must remain moist to promote healing, but care must be taken to remove excess fluid to avoid maceration and subsequent breakdown of the periwound site, which could serve as a possible portal to infection. Excess fluid is typically absorbed into and/or evaporates through the wound dressing or may be managed by a powered vacuum-assisted closure device. Although the moisture vapor permeability has been studied for dressings, the rate of evaporation associated with wound's immediate treatment environment, or dressing/treatment surface interface, has not been addressed to date. It is essential for caregivers to have an understanding of how these 2 interventions work together in order to provide optimal care to the wound patient. The purpose of this study was to provide estimates of evaporative withdrawal rates for various wound dressings and therapeutic support surfaces.

  10. A comparative study to evaluate the effect of honey dressing and silver sulfadiazene dressing on wound healing in burn patients.

    PubMed

    Baghel, P S; Shukla, S; Mathur, R K; Randa, R

    2009-07-01

    To compare the effect of honey dressing and silver-sulfadiazene (SSD) dressing on wound healing in burn patients. Patients (n=78) of both sexes, with age group between 10 and 50 years and with first and second degree of burn of less than 50% of TBSA (Total body surface area) were included in the study, over a period of 2 years (2006-08). After stabilization, patients were randomly attributed into two groups: 'honey group' and 'SSD group'. Time elapsed since burn was recorded. After washing with normal saline, undiluted pure honey was applied over the wounds of patients in the honey group (n=37) and SSD cream over the wounds of patients in SSD group (n=41), everyday. Wound was dressed with sterile gauze, cotton pads and bandaged. Status of the wound was assessed every third and seventh day and on the day of completion of study. Patients were followed up every fortnight till epithelialization. The bacteriological examination of the wound was done every seventh day. The mean age for case (honey group) and control (SSD group) was 34.5 years and 28.5 years, respectively. Wound swab culture was positive in 29 out of 36 patients who came within 8 hours of burn and in all patients who came after 24 hours. The average duration of healing in patients treated with honey and SSD dressing at any time of admission was 18.16 and 32.68 days, respectively. Wound of all those patients (100%) who reported within 1 hour became sterile with honey dressing in less than 7 days while none with SSD. All of the wounds became sterile in less than 21 days with honey, while tthis was so in only 36.5% with SSD treated wounds. The honey group included 33 patients reported within 24 hour of injury, and 26 out of them had complete outcome at 2 months of follow-up, while numbers for the SSD group were 32 and 12. Complete outcome for any admission point of time after 2 months was noted in 81% and 37% of patients in the honey group and the SSD group. Honey dressing improves wound healing, makes the

  11. Ethyl acetate Salix alba leaves extract-loaded chitosan-based hydrogel film for wound dressing applications.

    PubMed

    Qureshi, Mohammad A; Khatoon, Fehmeeda; Rizvi, Moshahid A; Zafaryab, Md

    2015-01-01

    High toxicity and multidrug resistance associated with various standard antimicrobial drugs have necessitated search for safer alternatives in plant-derived materials. In this study, we performed biological examination of chitosan-based hydrogel film loaded with ethyl acetate Salix alba leaves extract against 11 standard laboratory strains. FTIR showed regeneration of saccharide peak in CP1A at 1047 cm(-1) and increased in height of other peaks. DSC exothermic decomposition peaks at 112 °C, 175 °C and 251 °C reveal the effect of extract on hydrogel film. From FESEM images, three-dimensional cross-linking and extract easily seen in the globular form from the surface. MTT assay on HEK 293 cells showed that CP1A was non-toxic. Minimum inhibitory concentration ranges from 4000 μg/ml to 125 μg/ml. Enterococcus faecium, Candida glabrata and Candida tropicalis were the most resistant, while Salmonella typhi and Candida guilliermondii were the most susceptible micro-organisms.

  12. Antimicrobial activity of silver nanoparticles impregnated wound dressing

    NASA Astrophysics Data System (ADS)

    Shinde, V. V.; Jadhav, P. R.; Patil, P. S.

    2013-06-01

    In this work, silver nanoparticles were synthesized by simple wet chemical reduction method. The silver nitrate was reduced by Sodium borohydride used as reducing agent and Poly (vinyl pyrrolidone) (PVP) as stabilizing agent. The formation of silver nanoparticles was evaluated by UV-visible spectroscope and transmission electron microscope (TEM). Absorption spectrum consist two plasmon peaks at 410 and 668 nm revels the formation of anisotropic nanoparticles confirmed by TEM. The formation of silver nanoparticles was also evidenced by dynamic light scattering (DLS) study. DLS showed polydisperse silver nanoparticles with hydrodynamic size 32 nm. Protecting mechanism of PVP was manifested by FT-Raman study. Silver nanoparticles were impregnated into wound dressing by sonochemical method. The Kirby-Bauer disc diffusion methods were used for antimicrobial susceptibility testing. The antimicrobial activity of the samples has been tested against gram-negative bacterium Escherichia coli and gram-positive bacterium Staphylococcus aureus.

  13. Potential of quaternization-functionalized chitosan fiber for wound dressing.

    PubMed

    Zhou, Yingshan; Yang, Hongjun; Liu, Xin; Mao, Jun; Gu, Shaojin; Xu, Weilin

    2013-01-01

    Quaternization-functionalized chitosan fibers were successfully prepared by using 2,3-epoxypropyl trimethyl ammonium chloride as a quaternized reagent reacted with chitosan fiber. FTIR and (1)H NMR were used to characterize the structure of quaternized chitosan fibers (QCFs). The swelling behavior and mechanical property of QCFs were studied. The results showed that, QCFs had higher liquid absorption capacity than chitosan fiber, while the tensile strength and elongation at break of QCFs were lower than those of chitosan fiber. The antibacterial activity of the QCF had been evaluated by Gram-positive bacteria Staphylococcus aureus (S. aureus). The results indicated that, the antibacterial activity of QCF against S. aureus was stronger than that of chitosan fiber. Indirect cytotoxicity assessment of the fibers indicated that QCF was nontoxic to the L929 cell with relatively low extraction concentration. This novel fiber would be used as potential wound dressing for skin regeneration.

  14. The visualisation and speed of kill of wound isolates on a silver alginate dressing.

    PubMed

    Hooper, Samuel J; Percival, Steven L; Hill, Katja E; Thomas, David W; Hayes, A J; Williams, David W

    2012-12-01

    In chronic wound management, alginate dressings are used to absorb exudate and reduce the microbial burden. Silver alginate offers the added benefit of an additional antimicrobial pressure on contaminating microorganisms. This present study compares the antimicrobial activity of a RESTORE silver alginate dressing with a silver-free control dressing using a combination of in vitro culture and imaging techniques. The wound pathogens examined included Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, β-haemolytic Streptococcus, and strictly anaerobic bacteria. The antimicrobial efficacy of the dressings was assessed using log(10) reduction and 13-day corrected zone of inhibition (CZOI) time-course assays. Confocal laser scanning microscopy (CLSM) was used to visualise the relative proportions of live/dead microorganisms sequestered into the dressings over 24 hours and estimate the comparative speed of kill. The RESTORE silver alginate dressing showed significantly greater log(10) reductions and CZOIs for all microorganisms compared with the control, indicating the antimicrobial effect of ionic silver. Antimicrobial activity was evident against all test organisms for up to 5 days and, in some cases, up to 12 days following an on-going microbial challenge. Imaging bacteria sequestered in the silver-free dressing showed that each microbial species aggregated in the dressing and remained viable for more than 20 hours. Growth was not observed inside of the dressing, indicating a possible microbiostatic effect of the alginate fibres. In comparison, organisms in the RESTORE silver alginate dressing were seen to lose viability at a considerably greater rate. After 16 hours of contact with the RESTORE silver alginate dressing, >90% of cells of all bacteria and yeast were no longer viable. In conclusion, collectively, the data highlights the rapid speed of kill and antimicrobial suitability of this RESTORE silver alginate dressing on wound

  15. Synthesis of carboxymethyl chitosan and coating on wound dressing gauze for wound healing.

    PubMed

    Venkatrajah, B; Malathy, V Vanitha; Elayarajah, B; Rajendran, R; Rammohan, Ram

    2013-11-15

    Wound healing is a long and complex process. To improve wound healing, the wound dressing cotton gauze can be functionalized by imparting moisture holding and antibacterial ability. Moisture is an important factor for wound healing and the absence of microbial intervention can accelerate wound healing process. Direct alkylation method was used to synthesis carboxymethylated chitosan with water solubility, biocompatibility and antibacterial activity. Calcium alginate was used along with modified chitosan as moisture gaining polymeric agent. Pad-dry-cure method was employed to coat both the polymers on cotton gauze surface, which was weaved using 40s Ne cotton yarn. After coating, the cotton was analysed for its polymer add-on percentage, antibacterial action against Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 10229. The persistence analysis of antibacterial activity ensures the polymer withstanding ability on cotton gauze surface. SEM detection of polymers with cotton threads confirms their presence. Wound healing action of the polymer coated cotton gauze was determined using albino rats as animal model.

  16. Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing.

    PubMed

    Zhang, Di; Zhou, Wei; Wei, Bing; Wang, Xin; Tang, Rupei; Nie, Jiemin; Wang, Jun

    2015-07-10

    The objective of this study was to develop a novel carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. To prepare the crosslinked hydrogels, poly(vinyl alcohol) (PVA) was grafted with succinate acid to yield carboxyl-modified poly(vinyl alcohol) (PVA-COOH). Hydrogel films based on PVA-COOH and chitosan (CS) at different concentrations were crosslinked through the formation of amide linkages. The mechanical properties of these crosslinked hydrogel films in dry and swollen state were greatly improved with high swelling ratio. Water vapor and oxygen permeability evaluations indicated that crosslinked hydrogel films could maintain a moist environment over wound bed. Biocompatibility test showed the crosslinked hydrogels had no cytotoxicity and hemolytic potential. Gentamicin sulfate-loaded crosslinked hydrogel films showed sustained drug release profile, and could effectively suppress bacterial proliferation and protect wound from infection.

  17. A Wireless Electroceutical Dressing Lowers Cost of Negative Pressure Wound Therapy

    PubMed Central

    Ghatak, Piya Das; Schlanger, Richard; Ganesh, Kasturi; Lambert, Lynn; Gordillo, Gayle M.; Martinsek, Patsy; Roy, Sashwati

    2015-01-01

    Objective: To test whether the use of a wireless electroceutical dressing (WED) (Procellera®) in conjunction with a 5-day negative pressure wound therapy (NPWT) may reduce the number of dressing changes required per week with this therapy. Approach: At the Ohio State University Comprehensive Wound Center, chronic wound patients (n=30) undergoing NPWT were randomized into two arms following consent as approved by the institutional review board. The control arm received standard of care NPWT, where the dressing change was performed thrice a week. The test arm received the same care except that the WED was added as an interface layer and dressing change was limited to twice a week. Results: A reduced cost of care was achieved using the WED in conjunction with NPWT. Despite fewer dressing changes in wounds dressed with the WED, closure outcomes were comparable with no overt signs of any wound complication, including infection. The cost of NPWT care during the week was significantly lower (from $2918 to $2346) in the WED-treated group compared with patients in the control arm. Innovation: This work introduces a novel technology platform involving a WED, which may be used in conjunction with NPWT. If used as such, NPWT is effective in decreasing the frequency of dressing change and lowering the cost of care. Conclusion: This work points toward the benefit of using the WED combined with NPWT. A larger clinical trial investigating the cost-effectiveness of WED in wound care is warranted. PMID:26005596

  18. Evaluation of a bilayered, micropatterned hydrogel dressing for full-thickness wound healing

    PubMed Central

    Neale, Dylan B; Drinker, Michael C; Willenberg, Bradley J; Reddy, Shravanthi T; La Perle, Krista MD; Schultz, Gregory S; Brennan, Anthony B

    2016-01-01

    Nearly 12 million wounds are treated in emergency departments throughout the United States every year. The limitations of current treatments for complex, full-thickness wounds are the driving force for the development of new wound treatment devices that result in faster healing of both dermal and epidermal tissue. Here, a bilayered, biodegradable hydrogel dressing that uses microarchitecture to guide two key steps in the proliferative phase of wound healing, re-epithelialization, and revascularization, was evaluated in vitro in a cell migration assay and in vivo in a bipedicle ischemic rat wound model. Results indicate that the Sharklet™-micropatterned apical layer of the dressing increased artificial wound coverage by up to 64%, P = 0.024 in vitro. In vivo evaluation demonstrated that the bilayered dressing construction enhanced overall healing outcomes significantly compared to untreated wounds and that these outcomes were not significantly different from a leading clinically available wound dressing. Collectively, these results demonstrate high potential for this new dressing to effectively accelerate wound healing. PMID:27037279

  19. Evaluation of a bilayered, micropatterned hydrogel dressing for full-thickness wound healing.

    PubMed

    Magin, Chelsea M; Neale, Dylan B; Drinker, Michael C; Willenberg, Bradley J; Reddy, Shravanthi T; La Perle, Krista Md; Schultz, Gregory S; Brennan, Anthony B

    2016-05-01

    Nearly 12 million wounds are treated in emergency departments throughout the United States every year. The limitations of current treatments for complex, full-thickness wounds are the driving force for the development of new wound treatment devices that result in faster healing of both dermal and epidermal tissue. Here, a bilayered, biodegradable hydrogel dressing that uses microarchitecture to guide two key steps in the proliferative phase of wound healing, re-epithelialization, and revascularization, was evaluated in vitro in a cell migration assay and in vivo in a bipedicle ischemic rat wound model. Results indicate that the Sharklet™-micropatterned apical layer of the dressing increased artificial wound coverage by up to 64%, P = 0.024 in vitro. In vivo evaluation demonstrated that the bilayered dressing construction enhanced overall healing outcomes significantly compared to untreated wounds and that these outcomes were not significantly different from a leading clinically available wound dressing. Collectively, these results demonstrate high potential for this new dressing to effectively accelerate wound healing.

  20. Physical and biological assessments of the innovative bilayered wound dressing made of silk and gelatin for clinical applications.

    PubMed

    Hasatsri, Sukhontha; Yamdech, Rungnapha; Chanvorachote, Pithi; Aramwit, Pornanong

    2015-04-01

    The physical and biological assessments of the innovative bilayered wound dressing made of silk and gelatin that we have developed previously were performed to evaluate its efficacy for clinical applications. The absorption ability and dehydration rate of the dressing were assessed using the split-thickness skin graft and leg ulcer wound bed models. The bioactivities of the bilayered wound dressing were evaluated. The bilayered dressing showed continuous absorption rate of wound exudate, providing the suitability for the wound with extended inflammation phase. The dehydration rate of the bilayered dressing was comparable to the commercially available dressing of which the moisture maintenance capability is claimed. The bilayered dressing showed good conformability, as can be seen by the homogeneous distribution pattern of bromophenol blue absorbed. In terms of biological activities, the bilayered dressing was less toxic to skin cells than the commercially available dressing. The bilayered dressing was also shown to promote cell migration and collagen production due to the bioactive protein components. We here concluded that the superior properties of the bilayered dressing over the commercially available dressing were the conformability and biological activities to accelerate the wound healing, while the other properties were comparable to those of commercially available dressing. The data obtained in this study would be very useful for the further evaluation of the bilayered dressing in clinical trial.

  1. Managing wound exudate using a super-absorbent polymer dressing: a 53-patient clinical evaluation.

    PubMed

    Cutting, K F

    2009-05-01

    This real-life, observational evaluation shows that, by absorbing and retaining within its structure the corrosive enzymes found in chronic exudate, this dressing both reduces the likelihood of peri-wound maceration and promotes healing.

  2. A superabsorbent polymer-containing wound dressing efficiently sequesters MMPs and inhibits collagenase activity in vitro.

    PubMed

    Wiegand, Cornelia; Hipler, Uta-Christina

    2013-10-01

    Superabsorbent polymer (SAP)-containing wound dressings present a valuable and unique category of wound management products. An in vitro approach was used to assess the effects of a new SAP dressing in treatment of non-healing wounds. It was shown that the SAP dressing possesses a significant binding capacity for MMP-2 and MMP-9 in vitro (P\\0.001). The inclusion of the bound proteases was so strong that no MMP-2 and only marginal amounts of MMP-9 were released from the dressing samples in a subsequent elution step. In addition, the SAP dressing was able to take up collagenase and reduce its activity in vitro. However, collagenase was not completely inactivated upon binding and enzyme-mediated substrate turnover could be observed at the dressings. In conclusion, in vitro data confirm the positive effect of the SAP wound dressing observed in vivo. The findings suggest that it should be specifically useful for highly exuding wounds with an elevated proteolytic activity that needs to be reduced to support healing.

  3. Antimicrobial and release study of drug loaded PVA/PEO/CMC wound dressings.

    PubMed

    Gupta, Bhuvanesh; Agarwal, Roopali; Sarwar Alam, M

    2014-06-01

    The aim of the present study was to develop PVA/PEO/CMC/aloe vera (PPCAV) and PVA/PEO/CMC/curcumin (PPCCu) dressings with nonwoven polyester fabric as the support layer via freeze-drying (FD) approach. Tetracycline hydrochloride drug (TC) was loaded along with curcumin and aloe vera on these dressings. The morphology of the dressings was characterized by scanning electron microscopy. The swelling behavior, water vapor transmission rate (WVTR), in vitro drug release and antimicrobial nature were analyzed to assess the applicability of these freeze-dried membranes as wound dressing materials. The results show that these dressings made from PPCAVTC and PPCCuTC were highly porous with three-dimensional interconnected porous morphology. The cumulative release of drug from the dressings increases with increasing immersion time and continued up to 24 h, after that it gets leveled off. These dressings evidenced wonderful antimicrobial nature in vitro. These dressings were found to have more than 900 % PBS uptake, WVTR was found to be in the range 2,000-2,500 gm(-2) day(-1). These dressings possess many characteristics desirable in an ideal wound dressing material.

  4. A polyurethane dressing is beneficial for split-thickness skin-graft donor wound healing.

    PubMed

    Akita, Sadanori; Akino, Kozo; Imaizumi, Toshifumi; Tanaka, Katsumi; Anraku, Kuniaki; Yano, Hiroki; Hirano, Akiyoshi

    2006-06-01

    Few comparative studies have been performed on the various wound-dressing materials or methods proposed for use. To clarify the efficacy of wound dressing, 35 patients (17 females, aged 44.8+/-26.86 years and 18 males, aged 35.4+/-29.70) were subjected to a prospective study comparing a polyurethane dressing and a hydrogel dressing for split-thickness skin donors from the lateral thighs. We examined their clinical usefulness such as accelerated healing time, frequency of changing the dressing, degree of pain, or amount of exudates, and performed moisture meter analysis at 1 month and 1 year after re-epithelialization, which reflects the quality of the stratum corneum and subsequent scarring. The polyurethane dressing was superior to hydrogel in the wound healing time, amount of exudates, and frequency of dressing changes: the hydrogel was better for regulating the degree of pain. There was a positive correlation between transepidermal water loss and the effective contact coefficient, which indicates skin barrier function and affected by skin surface electrolytes and reflects water content, in moisture meter analysis (r(2)=0.32, p<0.01). Transepidermal water loss returned to the control level at 1 year after healing with both dressings. The effective contact coefficient of the polyurethane wound was significantly lower than that of hydrogel at 1 month (p<0.01), while both dressing wounds demonstrated significantly higher values at both 1 month and 1 year compared to the control (p<0.01). The polyurethane dressing is therefore superior both clinically and in moisture meter analysis.

  5. Absorbent alginate fibres modified with hydrolysed chitosan for wound care dressings--II. Pilot scale development.

    PubMed

    Sweeney, I R; Miraftab, M; Collyer, G

    2014-02-15

    Fibres have been used extensively in wound dressing applications as they provide a high surface area for absorption, ease of fabrication and softness. It is common practice for commercial wound dressings to be produced from natural materials, such a marine polysaccharides, as they are predominantly biocompatible, non-toxic, and often display bioactive properties, such as inherent antimicrobial activity. In this study hydrolysed chitosans were utilised as a sole coagulant for the production of alginate-chitosan fibres via a one-step, direct wet-spinning extrusion process. The levels of chitosan incorporated into the fibres were analysed quantitatively via elemental analysis and qualitatively by staining using Amido Black 10B. It was estimated that the fibres contained between 4.50 and 5.10% (wt.%) chitosan. The presence of chitosan improved tensile properties such as elongation and tenacity of the base alginate fibres. The increased incorporation of chitosan into the fibres also improved the absorption of the fibres in both saline and distilled water; reaching maximum of >30 g/g and >50 g/g, respectively. This work suggests that the observed hydrolysed chitosan content within the fibre may be optimal for the preparation of a novel fibre for wound care application.

  6. Hypromellose succinate-crosslinked chitosan hydrogel films for potential wound dressing.

    PubMed

    Jiang, Qiong; Zhou, Wei; Wang, Jun; Tang, Rupei; Zhang, Di; Wang, Xin

    2016-10-01

    The objective of this study was to develop novel hydrogel films based on carboxyl-modified hypromellose-crosslinked chitosan for potential wound dressing. Hypromellose (HPMC) was grafted with succinic acid to yield hypromellose succinate (HPMCS), and then the reinforced hydrogel films of HPMCS-crosslinked chitosan (HPMCS-CS) were prepared through amide bond formation using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N- hydroxysuccinimide (NHS) as a catalyst. Compared to that of blend film, mechanical properties of HPMCS-CS hydrogel films were significantly enhanced both in dry and swollen state. To assess the applicability of HPMCS-CS hydrogel films as wound dressing, the swelling behavior, water vapor transmission rate (WVTR), oxygen permeability, biocompatibility (cytotoxicity and hemolysis), in vitro drug release and bactericidal properties were analyzed. The results indicated that HPMCS-CS hydrogel films with good biocompatibility possess high swelling ratio, proper WVTR, and oxygen permeability, which might accelerate tissue regeneration. Meanwhile, gentamycin sulfate release from drug-loaded HPMCS-CS hydrogel films were sustained, which would help to protect wound from infection.

  7. Topical application of dressing with amino acids improves cutaneous wound healing in aged rats.

    PubMed

    Corsetti, Giovanni; D'Antona, Giuseppe; Dioguardi, Francesco Saverio; Rezzani, Rita

    2010-09-01

    The principal goal in treating surgical and non-surgical wounds, in particular for aged skin, is the need for rapid closure of the lesion. Cutaneous wound healing processes involve four phases including an inflammatory response with the induction of pro-inflammatory cytokines. If inflammation develops in response to bacterial infection, it can create a problem for wound closure. Reduced inflammation accelerates wound closure with subsequent increased fibroblast function and collagen synthesis. On the contrary, prolonged chronic inflammation results in very limited wound healing. Using histological and immunohistochemical techniques, we investigated the effects of a new wound dressing called Vulnamin that contains four essential amino acids for collagen and elastin synthesis plus sodium ialuronate (Na-Ial), compared with Na-Ial alone, in closure of experimental cutaneous wounds of aged rats. Our results showed that the application of Vulnamin dressings modulated the inflammatory response with a reduction in the number of inflammatory cells and inducible nitric oxide synthase (iNOS) immunolocalisation, while increasing endothelial nitric oxide synthase (eNOS) and transforming growth factor-beta1 (TGF-beta1) immunolocalisation. Furthermore, the dressing increased the distribution density of fibroblasts and aided the synthesis of thin collagen fibers resulting in a reduction in healing time. The nutritive approach using this new wound dressing can provide an efficacious and safe strategy to accelerate wound healing in elderly subjects, simplifying therapeutic procedures and leading to an improved quality of life.

  8. The effects of silver dressings on chronic and burns wound healing.

    PubMed

    Elliott, Chris

    Silver (Ag) has been thought to improve wound healing and reduce instances of associated infections for many years. There are centuries-old records of silver being used in wound treatment, but the past two decades in particular have seen an increasing clinical application of silver-impregnated wound dressings and as such, have seen the number of research articles similarly increase. The majority of these articles focus on the positives and potential negatives (e.g. the toxicity of silver as a heavy metal) of using silver-impregnated dressings in the clinical management of wounds. This article examines the potential advantages and disadvantages of using silver in the management of chronic and burn wounds, and provides a physiological understanding of the body's response to silver absorption. The author also attempts to critically appraise the opposing literature related to the clinical relevance of microbial kill-time and the volume of silver contained in dressings, while investigating the efficacy of silver-impregnated dressings in the management of burns and chronic wounds. In order to collect literature relevant to this review, the author searched CINAHL, Medline, BMJ, Medscape, Journal of Advanced Nursing, the Electronic Medicines Compendium (EMC), and the Cochrane Library, using the terms silver, silver sulfadiazine, impregnated, wound, burn, dressing, review, quantative, efficacy, in vitro, in vivo, nanocrystalline, toxicity, infection, microbial kill-time, and comparison.

  9. Evaluation of semi-interpenetrating polymer networks composed of chitosan and poloxamer for wound dressing application.

    PubMed

    Kim, I Y; Yoo, M K; Seo, J H; Park, S S; Na, H S; Lee, H C; Kim, S K; Cho, C S

    2007-08-16

    We have elsewhere reported the work on the preparation of semi-interpenetrating polymer networks (SIPNs) composed of chitosan (CS) and poloxamer to improve the mechanical strength of CS sponge. This study focuses on evaluation of the CS/poloxamer SIPNs to intend for wound dressing application and the efficacy of dehydroepiandrosterone (DHEA)-loaded CS/poloxamer SIPNs in the wound model studies. The properties required for ideal wound dressing, such as equilibrium water content (EWC), water absorption (A(w)), water vapor transmission rate (WVTR), and evaporative water loss, were examined. The CS/poloxamer SIPNs were found to have a water content of 90% of their weight which could prevent the wound bed from accumulation of exudates and also have excellent water adsorption. The WVTR of CS/poloxamer SIPNs was found to be 2,508.2+/-65.7gm(-2)day(-1), indicating that the SIPNs can maintain a moist environment over wound bed in moderate to heavily exuding wound which enhances epithelial cell migration during the healing process. Also, the CS/poloxamer SIPNs in vitro assessment showed proper biodegradation and low cytotoxicity for wound dressing application. The wound healing efficacy of CS/poloxamer SIPNs as a wound dressing was evaluated on experimental full thickness wounds in a mouse model. It was found that the wounds covered with CS/poloxamer SIPNs or DHEA-loaded CS/poloxamer SIPNs were completely filled with new epithelium without any significant adverse reactions after 3 weeks. The results thus indicate that CS/poloxamer SIPNs could be employed in the future as potential wound dressing materials.

  10. Study of wound dressing structure and hydration/dehydration properties

    NASA Astrophysics Data System (ADS)

    Lugão, A. B.; Machado, L. D. B.; Miranda, L. F.; Alvarez, M. R.; Rosiak, J. M.

    1998-06-01

    Hydrogels manufactured by radio-induced crosslinking and simultaneous sterilisation of hydrogels of PVP, PEG and agar, according to the Rosiak method, have many desirable properties for using as wound dressings. However, some properties need to be improved or better controlled. The membranes need to be strong enough to be freely used. Another important property to be controlled is the capacity of absorption of exudate and the kinetics of drying. Therefore, it was necessary to understand the role of main parameters (agar, PVP, PEG concentration and dose) in the structure of the net and in the hydration and dehydration properties. The structure of the membranes was studied by sol analysis and the hydrating/dehydrating properties were studied by isothermal thermogravimetric analysis. The gel content for all samples were always in agreement with expected values considering that only PVP undergoes crosslinking. The hydrating and dehydration results did not show variation with the tested parameters. It was concluded that the network was solely composed of crosslinked PVP plasticezed by the other compounds. The properties of hydration/dehydration is related rather to diffusion than to capillarity or osmose and to the chemical retention of water in the polymeric matrix.

  11. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer.

    PubMed

    Dong, Yixiao; Hassan, Waqar U; Kennedy, Robert; Greiser, Udo; Pandit, Abhay; Garcia, Yolanda; Wang, Wenxin

    2014-05-01

    Hydrogel dressings have been widely used for wound management due to their ability to maintain a hydrated wound environment, restore the skin's physical barrier and facilitate regular dressing replacement. However, the therapeutic functions of standard hydrogel dressings are restricted. In this study, an injectable hybrid hydrogel dressing system was prepared from a polyethylene glycol (PEG)-based thermoresponsive hyperbranched multiacrylate functional copolymer and thiol-modified hyaluronic acid in combination with adipose-derived stem cells (ADSCs). The cell viability, proliferation and metabolic activity of the encapsulated ADSCs were studied in vitro, and a rat dorsal full-thickness wound model was used to evaluate this bioactive hydrogel dressing in vivo. It was found that long-term cell viability could be achieved for both in vitro (21days) and in vivo (14days) studies. With ADSCs, this hydrogel system prevented wound contraction and enhanced angiogenesis, showing the potential of this system as a bioactive hydrogel dressing for wound healing.

  12. Bilayer Cryogel Wound Dressing and Skin Regeneration Grafts for the Treatment of Acute Skin Wounds.

    PubMed

    Priya, S Geetha; Gupta, Ankur; Jain, Era; Sarkar, Joyita; Damania, Apeksha; Jagdale, Pankaj R; Chaudhari, Bhushan P; Gupta, Kailash C; Kumar, Ashok

    2016-06-22

    In this study, the potential of cryogel bilayer wound dressing and skin regenerating graft for the treatment of surgically created full thickness wounds was evaluated. The top layer was composed of polyvinylpyrrolidone-iodine (PVP-I) cryogel and served as the antiseptic layer, while the bottom regenerative layer was made using gelatin cryogel. Both components of the bilayer showed typical features of a cryogel interconnected macropore network, rapid swelling, high water uptake capacity of about 90%. Both PVP and gelatin cryogel showed high tensile strength of 45 and 10 kPa, respectively. Gelatin cryogel sheets were essentially elastic and could be stretched without any visible deformation. The antiseptic PVP-I layer cryogel sheet showed sustained iodine release and suppressed microbial growth when tested with skin pathogens (zone of inhibition ∼2 cm for sheet of 0.9 cm diameter). The gelatin cryogel sheet degraded in vitro in weeks. The gelatin cryogel sheet supported cell infiltration, attachment, and proliferation of fibroblasts and keratinocytes. Microparticles loaded with bioactive molecules (mannose-6-phosphate and human fibrinogen) were also incorporated in the gelatin cryogel sheets for their role in enhancing skin regeneration and scar free wound healing. In vivo evaluation of healing capacity of the bilayer cryogel was checked in rabbits by creating full thickness wound defect (diameter 2 cm). Macroscopic and microscopic observation at regular time intervals for 4 weeks demonstrated better and faster skin regeneration in the wound treated with cryogel bilayer as compared to untreated defect and the repair was comparable to commercial skin regeneration scaffold Neuskin-F. Complete skin regeneration was observed after 4 weeks of implantation with no sign of inflammatory response. Defects implanted with cryogel having mannose-6-phosphate showed no scar formation, while the wound treated with bilayer incorporated with human fibrinogen microparticles showed

  13. Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications.

    PubMed

    Lalani, Reza; Liu, Lingyun

    2012-06-11

    Zwitterionic poly(sulfobetaine methacrylate) (PSBMA) has been well studied for its superhydrophilic and ultralow biofouling properties, making it a promising material for superabsorbent and nonadherent wound dressings. Electrospinning provides multiple desirable features for wound dressings, including high absorptivity due to high surface-area-to-volume ratio, high gas permeation, and conformability to contour of the wound bed. The goal of this work is to develop a fibrous membrane of PSBMA via electrospinning and evaluate its properties related to wound dressing applications. Being superhydrophilic, PSBMA fibers fabricated by a conventional electrospinning method would readily dissolve in water, whereas if cross-linker is added, the formation of hydrogel would prevent electrospinning. A three-step polymerization-electrospinning-photo-cross-linking process was developed in this work to fabricate the cross-linked electrospun PSBMA fibrous membrane. Such electrospun membrane was stable in water and exhibited high water absorption of 353% (w/w), whereas the PSBMA hydrogel only absorbed 81% water. The electrospun membrane showed strong resistance to protein adsorption and cell attachment. Bacterial adhesion studies using Gram negative P. aeruginosa and Gram positive S. epidermidis showed that the PSBMA electrospun membrane was also highly resistant to bacterial adhesion. The Ag(+)-impregnated electrospun PSBMA membrane was shown microbicidal, against both S. epidermidis and P. aeruginosa. Such electrospun PSBMA membrane is ideal for a novel type of nonadherent, superabsorbent, and antimicrobial wound dressing. The superior water absorption aids in fluid removal from highly exudating wounds while keeping the wound hydrated to support healing. Because of the resistance to protein, cell, and bacterial adhesion, the dressing removal will neither cause patients' pain nor disturb the newly formed tissues. The dressing also prevents the attachment of environmental bacteria

  14. Enhanced Performance and Mode of Action of a Novel Antibiofilm Hydrofiber® Wound Dressing

    PubMed Central

    Parsons, David

    2016-01-01

    Biofilm development in wounds is now acknowledged to be a precursor to infection and a cause of delayed healing. A next-generation antibiofilm carboxymethylcellulose silver-containing wound dressing (NGAD) has been developed to disrupt and kill biofilm microorganisms. This in vitro study aimed to compare its effectiveness against various existing wound dressings and examine its mode of action. A number of biofilm models of increasing complexity were used to culture biofilms of wound-relevant pathogens, before exposure to test dressings. Confocal microscopy, staining, and imaging of biofilm constituents, total viable counting, and elemental analysis were conducted to assess dressing antibiofilm performance. Live/dead staining and viable counting of biofilms demonstrated that the NGAD was more effective at killing biofilm bacteria than two other standard silver dressings. Staining of biofilm polysaccharides showed that the NGAD was also more effective at reducing this protective biofilm component than standard silver dressings, and image analyses confirmed the superior biofilm killing and removal performance of the NGAD. The biofilm-disruptive and silver-enhancing modes of action of the NGAD were supported by significant differences (p < 0.05) in biofilm elemental markers and silver donation. This in vitro study improves our understanding of how antibiofilm dressing technology can be effective against the challenge of biofilm. PMID:27990437

  15. Electron beam crosslinked PEO and PEO/PVA hydrogels for wound dressing

    NASA Astrophysics Data System (ADS)

    Yoshii, F.; Zhanshan, Y.; Isobe, K.; Shinozaki, K.; Makuuchi, K.

    1999-06-01

    In order to prepare polyethylene oxide (PEO) hydrogel for wound dressing, different molecular weight PEO and PEO/poly(vinyl alcohol), PVA blend hydrogels were obtained with electron beam irradiation. Gel formation of PEO in aqueous solution was saturated at 40 kGy and the achieved gel fraction was 60-70%. The PEO hydrogel obtained was very fragile, hence PVA was added at 10-30% to give toughness to the PEO hydrogel. The PEO/PVA hydrogel blend showed satisfactory properties for wound dressing. To evaluate the healing effect of PEO/PVA hydrogel blend for dressing, the hydrogel covered a wound formed on the back of marmots. Healing under the wet environment of the hydrogel dressing had some advantages compared with that of gauze dressing which gives a dry environment: (1) the healing rate is faster, (2) easier to change the dressing, i.e. the hydrogel can be peeled off without any damage to the regenerated surface, and (3) no dressing material remains on the wound.

  16. The accelerating effect of chitosan-silica hybrid dressing materials on the early phase of wound healing.

    PubMed

    Park, Ji-Ung; Jung, Hyun-Do; Song, Eun-Ho; Choi, Tae-Hyun; Kim, Hyoun-Ee; Song, Juha; Kim, Sukwha

    2016-05-24

    Commercialized dressing materials with or without silver have played a passive role in early-phase wound healing, protecting the skin defects from infections, absorbing exudate, and preventing dehydration. Chitosan (CTS)-based sponges have been developed in pure or hybrid forms for accelerating wound healing, but their wound-healing capabilities have not been extensively compared with widely used commercial dressing materials, providing limited information in a practical aspect. In this study, we have developed CTS-silica (CTS-Si) hybrid sponges with water absorption, flexibility, and mechanical behavior similar to those of CTS sponges. In vitro and in vivo tests were performed to compare the CTS-Si sponges with three commercial dressing materials [gauze, polyurethane (PU), and silver-containing hydrofiber (HF-Ag)] in addition to CTS sponges. Both in vitro and in vivo tests showed that CTS-Si sponges promoted fibroblast proliferation, leading to accelerated collagen synthesis, whereas the CTS sponges did not exhibit significant differences in fibroblast proliferation and collagen synthesis from gauze, PU, and HF-Ag sponges. In case of CTS-Si, the inflammatory cells were actively recruited to the wound by the influence of the released silicon ions from CTS-Si sponges, which, in return, led to an enhanced secretion of growth factors, particularly TGF-β during the early stage. The higher level of TGF-β likely improved the proliferation of fibroblasts, and as a result, collagen synthesis by fibroblasts became remarkably productive, thereby increasing collagen density at the wound site. Therefore, the CTS-Si hybrid sponges have considerable potential as a wound-dressing material for accelerating wound healing. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  17. Guanidine hydrochloride embedded polyurethanes as antimicrobial and absorptive wound dressing membranes with promising cytocompatibility.

    PubMed

    Sahraro, Maryam; Yeganeh, Hamid; Sorayya, Marziyeh

    2016-02-01

    Preparation and assessments of novel absorptive wound dressing materials with efficient antimicrobial activity as well as very good cytocompatibility were described in this work. An amine terminated poly(hexamethylene guanidine hydrochloride) was prepared and used as curing agent of different epoxy-terminated polyurethane prepolymers. The structures of prepared materials were elucidated by evaluation of their (1)H NMR and FTIR spectra. The recorded tensile strength of membranes confirmed the excellent dimensional stability of the film type dressings even at fully hydrated conditions. Therefore, these dressings could protect the wound bed from external forces during the healing period. The structurally optimized dressing membranes could preserve the desired moist environment over the wounded area, as a result of their balanced equilibrium, water absorption and water vapor transmission rate. Therefore, a very good condition for stimulation of self-healing of wound bed was attained. Also, owing to the presence of guanidine hydrochloride moieties embedded into the structure of dressings, efficient antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans were detected. In vitro cytotoxicity assay of the prepared dressings revealed cytocompatibility of these materials against fibroblast cells. Therefore, they could support cell growth and proliferation at the wounded area.

  18. The role of allogenic keratin - derived dressing in wound healing in a mouse model.

    PubMed

    Konop, Marek; Sulejczak, Dorota; Czuwara, Joanna; Kosson, Piotr; Misicka, Aleksandra; Lipkowski, Aandrzej W; Rudnicka, Lidia

    2016-12-20

    Keratin is an interesting protein needed for wound healing and tissue recovery. We have recently proposed a new, simple and inexpensive method to obtain fur and hair keratin-derived biomaterials suitable for medical application. The aim of the study was to evaluate the role of the fur keratin derived protein (FKDP) dressing in the allogenic full-thickness surgical skin wound model.

  19. Microbial alginate dressings show improved binding capacity for pathophysiological factors in chronic wounds compared to commercial alginate dressings of marine origin.

    PubMed

    Fischer, Melissa; Gebhard, Florian; Hammer, Timo; Zurek, Christian; Meurer, Guido; Marquardt, Christoph; Hoefer, Dirk

    2017-01-01

    Marine alginates are well established in wound management. Compared with different modern wound dressings, marine alginates cannot prove superior effects on wound healing. Alginates from bacteria have never been studied for medical applications so far, although the microbial polymer raises expectations for improved binding of wound factors because of its unique O-acetylation. Due to its possible positive effects on wound healing, alginates from bacteria might be a superior future medical product for clinical use. To prove the binding capacity of microbial alginates to pathophysiological factors in chronic wounds, we processed microbial alginate fibres, produced from fermentation of the soil bacterium Azotobacter vinelandii ATCC 9046, into needle web dressings and compared them with commercial dressings made of marine alginate. Four dressings were assessed: Marine alginate dressings containing either ionic silver or zinc/manganese/calcium, and microbial alginate dressings with and without nanosilver. All dressings were tested in an in vitro approach for influence on chronic wound parameters such as elastase, matrix metalloproteases-2, tumour necrosis factor-α, interleukin-8, and free radical formation. Despite the alginate origin or addition of antimicrobials, all dressings were able to reduce the concentration of the proinflammatory cytokines TNF-α and IL-8. However, microbial alginate was found to bind considerable larger amounts of elastase and matrix metalloproteases-2 in contrast to the marine alginate dressings. The incorporation of zinc, silver or nanosilver into alginate fibres did not improve their binding capacity for proteases or cytokines. The addition of nanosilver slightly enhanced the antioxidant capacity of microbial alginate dressings, whereas the marine alginate dressing containing zinc/manganese/calcium was unable to inhibit the formation of free radicals. The enhanced binding affinity by microbial alginate of Azotobacter vinelandii to

  20. Novel neomycin sulfate-loaded hydrogel dressing with enhanced physical dressing properties and wound-curing effect.

    PubMed

    Choi, Jong Seo; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jong Oh; Yong, Chul Soon; Cho, Kwan Hyung; Youn, Yu Seok; Jin, Sung Giu; Choi, Han-Gon

    2016-10-01

    To develop a novel neomycin sulfate-loaded hydrogel dressing (HD), numerous neomycin sulfate-loaded HDs were prepared with various amounts of polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) and sodium alginate (SA) using freeze-thawing technique, and their physical dressing properties, drug release, in vivo wound curing and histopathology in diabetic-induced rats were assessed. SA had a positive effect on a swelling capacity, but a negative effect on the physical dressing properties and drug release of HD. However, PVP did the opposite. In particular, the neomycin sulfate-loaded HD composed of drug, PVA, PVP and SA at the weight ratio of 1/10/0.8/0.8 had excellent swelling and bioadhesive capacity, good elasticity and fast drug release. Moreover, this HD gave more improved wound curing effect compared to the commercial product, ensured the disappearance of granulation tissue and recovered the wound tissue to normal. Therefore, this novel neomycin sulfate-loaded HD could be an effective pharmaceutical product for the treatment of wounds.

  1. [Clinical cases about the therapeutic use of debriding dressing hidrodetersive polyacrylate fibers with TLC and foam dressings TLC-NOSF polyurethane in chronic wounds].

    PubMed

    Blasco García, Carmen; Segovia Gómez, Teresa; Bermejo Martínez, Mariano; Cuesta Cuesta, Juan José; Alventosa Cortés, Ana María

    2012-10-01

    The treatment of chronic wounds requires the use of highly specific products for different phases of the healing process. This article raises a number of clinical cases with chronic wounds of vascular origin and pressure ulcers. Such cases required a initial debridement because of the large content of fibrin covering the wound bed at this stage was used dressing hidrodetersive polyacrylate fibers with TLC. Once the debridement is continued treatment with a polyurethane foam dressing with TLC-NOSF.

  2. Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings

    NASA Astrophysics Data System (ADS)

    Augustine, Robin; Kalarikkal, Nandakumar; Thomas, Sabu

    2016-03-01

    An open wound is highly prone to bacterial colonization and infection. Bacterial barrier property is an important factor that determines the success of a wound coverage material. Apart from the bacterial barrier property, presence of antibacterial agents can successfully eliminate the invasion and colonization of pathogen in the wound. Silver nanoparticles are well-known antimicrobial agents against a wide range of microorganisms. Biosynthesized silver nanoparticles are more acceptable for medical applications due to superior biocompatibility than chemically synthesized ones. Presence of biomolecules on biosynthesized silver nanoparticles enhances its therapeutic efficiency. Polycaprolactone (PCL) is a well-known material for biomedical applications including wound dressings. Electrospinning is an excellent technique for the fabrication of thin membranes for wound coverage applications with barrier property against microbes. In this paper, we report the fabrication and characterization of electrospun PCL membranes incorporated with biosynthesized silver nanoparticles for wound dressing applications.

  3. In vivo evaluation of chitosan-PVP-titanium dioxide nanocomposite as wound dressing material.

    PubMed

    Archana, D; Singh, Brijesh K; Dutta, Joydeep; Dutta, P K

    2013-06-05

    In our present study, the blends of chitosan, poly(N-vinylpyrrolidone) (PVP) and titanium dioxide (TiO2) were investigated by Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The size distribution of the TiO2 nanoparticles was measured using transmission electron microscope and scanning electron microscope. The studies on the mechanical properties of composite material indicate that the addition of TiO2 nanoparticles increases its strength. The prepared nanocomposite dressing has excellent antimicrobial efficacy and good biocompatibility against NIH3T3 and L929 fibroblast cells. Compared to conventional gauze, soframycin skin ointment and chitosan treated groups, the prepared nano dressing caused an accelerated healing of open excision type wounds in albino rat model. The synergistic effects of nanocomposite dressing material like good antibacterial ability, high swelling properties, high WVTR, excellent hydrophilic nature, biocompatibility, wound appearance and wound closure rate through in vivo test makes it a suitable candidate for wound healing applications.

  4. Chitosan nanoparticle/PCL nanofiber composite for wound dressing and drug delivery.

    PubMed

    Jung, Sang-Myung; Yoon, Gwang Heum; Lee, Hoo Cheol; Shin, Hwa Sung

    2015-01-01

    Many investigations of wound dressings equipped with drug delivery systems have recently been conducted. Chitosan is widely used not only as a material for wound dressing by the efficacy of its own, but also as a nanoparticle for drug delivery. In this study, an electrospun polycaprolactone nanofiber composite with chitosan nanoparticles (ChiNP-PCLNF) was fabricated and then evaluated for its drug release and biocompatibility to skin fibroblasts. ChiNP-PCLNF complexes showed no cytotoxicity and nanoparticles adsorbed by van der Waals force were released into aquatic environments and then penetrated into rat primary fibroblasts. Our studies demonstrate the potential for application of ChiNP-PCLNF as a wound dressing system with drug delivery for skin wound healing without side effects.

  5. Evaluation of a non-woven fabric coated with a chitosan bi-layer composite for wound dressing.

    PubMed

    Liu, Bai-Shuan; Yao, Chun-Hsu; Fang, Shr-Shin

    2008-05-13

    This study presents a novel design of an easily stripped bi-layer composite that consists of an upper layer of a soybean protein non-woven fabric coated with a lower layer, a genipin-crosslinked chitosan film, as a wound dressing material. This study examines the in vitro properties of the genipin-crosslinked chitosan film and the bi-layer composite. Furthermore, in vivo experiments are conducted to study wounds treated with the composite in a rat model. Experimental results show that the degree of crosslinking and the in vitro degradation rate of the genipin-crosslinked chitosan films can be controlled by varying the genipin contents. In addition, the genipin contents should exceed 0.025 wt.-% of the chitosan-based material if complete crosslinking reactions between genipin and chitosan molecules are required. Water contact angle analysis shows that the genipin-crosslinked chitosan film is not highly hydrophilic; therefore, the genipin-crosslinked chitosan layer is not entangled with the soybean protein non-woven fabric, which forms an easily stripped interface layer between them. Furthermore, this new wound dressing material provides adequate moisture, thereby minimizing the risk of wound dehydration, and exhibits good mechanical properties. The in vivo histological assessment results reveal that epithelialization and reconstruction of the wound are achieved by covering the wound with the composite, and the composite is easily stripped from the wound surface without damaging newly regenerated tissue.

  6. Evaluation of an Oxygen-Diffusion Dressing for Accelerated Healing of Donor-Site Wounds

    DTIC Science & Technology

    2014-06-01

    of their wounds, compared with a similar occlusive dressing without oxygen.7 Hyperbaric oxy- gen therapy is thought to improve healing of chronic...wounds in humans,8 but requires visits to facilities with trained personnel and is limited by oxygen toxicity issues. Compared with hyperbaric oxygen...3rd, Fife CE, Gesell LB, Bennett M. Undersea Hyperbaric Medicine Society (UHMS) position statement: topical oxygen for chronic wounds. Undersea

  7. Which dressing do donor site wounds need?: study protocol for a randomized controlled trial

    PubMed Central

    2011-01-01

    Background Donor site wounds after split-skin grafting are rather 'standard' wounds. At present, lots of dressings and topical agents for donor site wounds are commercially available. This causes large variation in the local care of these wounds, while the optimum 'standard' dressing for local wound care is unclear. This protocol describes a trial in which we investigate the effectiveness of various treatment options for these donor site wounds. Methods A 14-center, six-armed randomized clinical trial is being carried out in the Netherlands. An a-priori power analysis and an anticipated dropout rate of 15% indicates that 50 patients per group are necessary, totaling 300 patients, to be able to detect a 25% quicker mean time to complete wound healing. Randomization has been computerized to ensure allocation concealment. Adult patients who need a split-skin grafting operation for any reason, leaving a donor site wound of at least 10 cm2 are included and receive one of the following dressings: hydrocolloid, alginate, film, hydrofiber, silicone dressing, or paraffin gauze. No combinations of products from other intervention groups in this trial are allowed. Optimum application and changes of these dressings are pursued according to the protocol as supplied by the dressing manufacturers. Primary outcomes are days to complete wound healing and pain (using a Visual Analogue Scale). Secondary outcomes are adverse effects, scarring, patient satisfaction, and costs. Outcome assessors unaware of the treatment allocation will assess whether or not an outcome has occurred. Results will be analyzed according to the intention to treat principle. The first patient was randomized October 1, 2009. Discussion This study will provide comprehensive data on the effectiveness of different treatment options for donor site wounds. The dressing(s) that will prevail in effectiveness, satisfaction and costs will be promoted among clinicians dealing with such patients. Thus, we aim to

  8. Antimicrobial Wound Dressing Containing Silver Sulfadiazine With High Biocompatibility: In Vitro Study.

    PubMed

    Mohseni, Mina; Shamloo, Amir; Aghababaei, Zahra; Vossoughi, Manouchehr; Moravvej, Hamideh

    2016-08-01

    Many patients all over the world suffer from acute wounds caused by traumas or burns. In most crucial cases, skin regeneration cannot be promoted spontaneously, and skin grafts are applied as the main treatment. However, this therapy has some drawbacks which motivate researchers to develop wound dressings. In this study, electrospun mats consisting of polycaprolactone (PCL) and polyvinyl alcohol (PVA) incorporated with silver sulfadiazine (SSD) are proposed to be used as antimicrobial wound dressings with the capability of cell seeding. Various amounts of SSD were loaded into PVA nanofibers, and the effects of SSD particles on the morphological characteristics of nanofibers, mechanical behaviors, and physical properties of the mats were studied for the first time. The cellular viability, antimicrobial properties of the scaffolds, and release behavior of silver were also examined. Finally, the best concentration of SSD was determined based on the quality of nanofibers, antibacterial features, and the ability of cellular attachment and proliferation. Fibronectin was also coated to enhance the biocompatibility of the selective scaffold. It was shown that the mats have appropriate mechanical properties with good handling ability in wet environment and also have a hydrophilic surface to adhere to the wound bed. Results indicate that SSD particles increase the fiber diameter and hydrophilic properties, while they weaken the mechanical characteristics of the mats. Furthermore, 5 wt% SSD/PVA was determined as the best concentration of SSD as it results in a desirable fiber quality for the mats with enough antimicrobial properties and acceptable cell proliferation on the surface. Coating fibronectin was also introduced as an effective method to increase the biocompatibility of the scaffolds incorporated with SSD particles.

  9. Role of natural polysaccharides in radiation formation of PVA hydrogel wound dressing

    NASA Astrophysics Data System (ADS)

    Varshney, Lalit

    2007-02-01

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible, mechanically strong, biocompatible, effective and economical hydrogel dressings. The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing poly-vinylalcohol (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5-2% resulted in increase of tensile strength from 45 g/cm 2 to 411 g/cm 2, elongation from 30% to 410% and water uptake from 25% to 157% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. PVA formulations containing the polysaccharides show significantly different pre-gel viscosities behaviour. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The results indicate that pre irradiation network structure of the formulation plays an important role in determining mechanical properties of the irradiated gel dressing. Formulations containing 7-9% PVA, 0.5-1.5% carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning electron micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non-healing ulcers of diabetes, leprosy and other external wounds. The dressings are now being marketed in India under different brand names.

  10. The multifunctional wound dressing with core-shell structured fibers prepared by coaxial electrospinning

    NASA Astrophysics Data System (ADS)

    Wei, Qilin; Xu, Feiyang; Xu, Xingjian; Geng, Xue; Ye, Lin; Zhang, Aiying; Feng, Zengguo

    2016-06-01

    The non-woven wound dressing with core-shell structured fibers was prepared by coaxial electrospinning. The polycaprolactone (PCL) was electrospun as the fiber's core to provide mechanical strength whereas collagen was fabricated into the shell in order to utilize its good biocompatibility. Simultaneously, the silver nanoparticles (Ag-NPs) as anti-bacterial agent were loaded in the shell whereas the vitamin A palmitate (VA) as healing-promoting drug was encapsulated in the core. Resulting from the fiber's core-shell structure, the VA released from the core and Ag-NPs present in the shell can endow the dressing both heal-promoting and anti-bacteria ability simultaneously, which can greatly enhance the dressing's clinical therapeutic effect. The dressing can maintain high swelling ratio of 190% for 3 d indicating its potential application as wet dressing. Furthermore, the dressing's anti-bacteria ability against Staphylococcus aureus was proved by in vitro anti-bacteria test. The in vitro drug release test showed the sustainable release of VA within 72 h, while the cell attachment showed L929 cells can well attach on the dressing indicating its good biocompatibility. In conclusion, the fabricated nanofibrous dressing possesses multiple functions to benefit wound healing and shows promising potential for clinical application.

  11. Bubble template fabrication of chitosan/poly(vinyl alcohol) sponges for wound dressing applications.

    PubMed

    Chen, Changfeng; Liu, Li; Huang, Tao; Wang, Qiong; Fang, Yue'e

    2013-11-01

    The present investigation involves the synthesis of chitosan based composite sponges in view of their applications in wound dressing, antibacterial and haemostatic. A facile CO2 bubbles template freeze-drying method was developed for the fabrication of macroporous chitosan-poly(vinyl alcohol) (PVA) composite sponges with a typical porosity of 50% and pore size of 100-300 μm. Effects of the content of cross-linking agent and PVA on morphology, mechanical properties, water uptake and moisture permeability were examined. The macroporous chitosan/PVA composite sponges exhibited an enhanced water absorption capacity over those reported microporous chitosan sponges prepared using traditional free-drying methods. Improved strength and flexibility of the chitosan sponges were observed with the presence of PVA. Further, the antibacterial and haemostatic activities have been also demonstrated. The chitosan/PVA composite sponges showed higher haemostatic activity than pure chitosan sponges and solutions. Erythrocytes cells bind first to the surface of chitosan polymer in the sponges and then promote the binding with other cells in the solution. The chitosan/PVA sponges of high liquid absorbing, appropriate moisture permeability, antimicrobial property and unique haemostatic behavior can be used for wound dressing applications.

  12. A modified collagen gel dressing promotes angiogenesis in a preclinical swine model of chronic ischemic wounds.

    PubMed

    Elgharably, Haytham; Ganesh, Kasturi; Dickerson, Jennifer; Khanna, Savita; Abas, Motaz; Ghatak, Piya Das; Dixit, Sriteja; Bergdall, Valerie; Roy, Sashwati; Sen, Chandan K

    2014-01-01

    We recently performed proteomic characterization of a modified collagen gel (MCG) dressing and reported promising effects of the gel in healing full-thickness excisional wounds. In this work, we test the translational relevance of our aforesaid findings by testing the dressing in a swine model of chronic ischemic wounds recently reported by our laboratory. Full-thickness excisional wounds were established in the center of bipedicle ischemic skin flaps on the backs of animals. Ischemia was verified by laser Doppler imaging, and MCG was applied to the test group of wounds. Seven days post wounding, macrophage recruitment to the wound was significantly higher in MCG-treated ischemic wounds. In vitro, MCG up-regulated expression of Mrc-1 (a reparative M2 macrophage marker) and induced the expression of anti-inflammatory cytokine interleukin (IL)-10 and of fibroblast growth factor-basic (β-FGF). An increased expression of CCR2, an M2 macrophage marker, was noted in the macrophages from MCG treated wounds. Furthermore, analyses of wound tissues 7 days post wounding showed up-regulation of transforming growth factor-β, vascular endothelial growth factor, von Willebrand's factor, and collagen type I expression in MCG-treated ischemic wounds. At 21 days post wounding, MCG-treated ischemic wounds displayed higher abundance of proliferating endothelial cells that formed mature vascular structures and increased blood flow to the wound. Fibroblast count was markedly higher in MCG-treated ischemic wound-edge tissue. In addition, MCG-treated wound-edge tissues displayed higher abundance of mature collagen with increased collagen type I : III deposition. Taken together, MCG helped mount a more robust inflammatory response that resolved in a timely manner, followed by an enhanced proliferative phase, angiogenic outcome, and postwound tissue remodeling. Findings of the current study warrant clinical testing of MCG in a setting of ischemic chronic wounds.

  13. The stimulation of postdermabrasion wound healing with stabilized aloe vera gel-polyethylene oxide dressing.

    PubMed

    Fulton, J E

    1990-05-01

    Full-face dermabrasion provided an ideal opportunity to document the effects of dressings on wound healing management. Following the procedure, the abraded face was divided in half. One side was treated with the standard polyethylene oxide gel wound dressings. The other side was treated with a polyethylene oxide gel dressing saturated with stabilized aloe vera. The polyethylene oxide dressing provided an excellent matrix for the release of aloe vera gel during the initial 5 days of wound healing. By 24-48 hours there was dramatic vasoconstriction and accompanying reduction in edema on the aloe-treated side. By the third to fourth day there was less exudate and crusting at the aloe site, and by the fifth to sixth day the reepithelialization at the aloe site was complete. Overall, wound healing was approximately 72 hours faster at the aloe site. This acceleration in wound healing is important to reduce bacterial contamination, subsequent keloid formation, and/or pigmentary changes. The exact mechanism of acceleration of wound healing by aloe vera is unknown.

  14. Use of a new silver barrier dressing, ALLEVYN◊ Ag in exuding chronic wounds

    PubMed Central

    Kotz, Paula; Fisher, Jane; McCluskey, Pat; Hartwell, Samantha D; Dharma, Hussein

    2009-01-01

    Recognising and managing wounds at risk of infection is vital in wound management. ALLEVYN Ag dressings have been designed to manage exudate in chronic wounds that are at risk of infection; are displaying signs of local infection; or where a suspected increase in bacterial colonisation is delaying healing. They combine an absorbent silver sulfadiazine containing hydrocellular foam layer, with a perforated wound contact layer and highly breathable top film. The results presented are from a multi-centre clinical evaluation of 126 patients conducted to assess the performance of ALLEVYN Ag (Adhesive, Non Adhesive and Sacrum dressings) in a range of indications. Clinicians rated the dressings as acceptable for use in various wound types in 88% of patients. The majority of clinical signs of infection reduced between the initial and the final assessment. The condition of wound tissue and surrounding skin was observed to improve, and there was significant evidence of a reduction in the level of exudate from initial to final assessment (p < 0.001). Clinicians rated ALLEVYN Ag as satisfying or exceeding expectations in over 90% of patients. The evaluation showed the dressings to offer real benefits to patients and clinicians across multiple indications when used in conjunction with local protocols. PMID:19538192

  15. Honey/Chitosan Nanofiber Wound Dressing Enriched with Allium sativum and Cleome droserifolia: Enhanced Antimicrobial and Wound Healing Activity.

    PubMed

    Sarhan, Wessam A; Azzazy, Hassan M E; El-Sherbiny, Ibrahim M

    2016-03-01

    Two natural extracts were loaded within fabricated honey, poly(vinyl alcohol), chitosan nanofibers (HPCS) to develop biocompatible antimicrobial nanofibrous wound dressing. The dried aqueous extract of Cleome droserifolia (CE) and Allium sativum aqueous extract (AE) and their combination were loaded within the HPCS nanofibers in the HPCS-CE, HPCS-AE, and HPCS-AE/CE nanofiber mats, respectively. It was observed that the addition of AE resulted in the least fiber diameter (145 nm), whereas the addition of the AE and CE combination resulted in the least swelling ability and the highest weight loss. In vitro antibacterial testing against Staphylococcus aureus, Escherichia coli, Methicillin-resistant S. aureus (MRSA), and multidrug-resistant Pseudomonas aeruginosa was performed in comparison with the commercial dressing AquacelAg and revealed that the HPCS-AE and HPCS-AE/CE nanofiber mats allowed complete inhibition of S. aureus and the HPCS-AE/CE exhibited mild antibacterial activity against MRSA. A preliminary in vivo study revealed that the developed nanofiber mats enhanced the wound healing process as compared to the untreated control as proved by the enhanced wound closure rates in mice and by the histological examination of the wounds. Moreover, comparison with the commercial dressing Aquacel Ag, the HPCS, and HPCS-AE/CE demonstrated similar effects on the wound healing process, whereas the HPCS/AE allowed an enhanced wound closure rate. Cell culture studies proved the biocompatibility of the developed nanofiber mats in comparison with the commercial Aquacel Ag, which exhibited noticeable cytotoxicity. The developed natural nanofiber mats hold potential as promising biocompatible antibacterial wound dressing.

  16. Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents.

    PubMed

    Tummalapalli, Mythili; Berthet, Morgane; Verrier, Bernard; Deopura, B L; Alam, M S; Gupta, Bhuvanesh

    2016-01-01

    Aloe vera and curcumin loaded oxidized pectin-gelatin (OP-Gel) matrices were used as antimicrobial finishes on nonwoven cotton fabrics to produce composite wound care devices. The drug release characteristics of the biocomposite dressings indicated that curcumin is released through a biphasic mechanism - erosion of the polymeric matrix, followed by diffusion, while aloe vera is released upon leaching of the polymeric matrix. A 50/50 composition of aloe vera/curcumin was used to fabricate OP-Gel-Aloe Curcumin dressings. However, contrary to our expectations, OP-Gel-Aloe Curcumin dressings exhibited lesser antimicrobial activity compared to OP-Gel-Aloe and OP-Gel-Curcumin dressings. The cytocompatibility of the fabricated dressings was evaluated using NIH3T3 mouse fibroblast cells. OP-Gel-Aloe treated fibroblasts had the highest viability, with the matrices providing a substrate for good cell attachment and proliferation. On the other hand, OP-Gel-Curcumin and OP-Gel-Aloe Curcumin seemed to have induced apoptosis in NIH3T3 cells. In vivo wound healing analysis was carried out using an excisional splint wound model on C57BL/6J mice. OP-Gel-Aloe treated wounds exhibited very rapid healing with 80% of the wound healing in just 8 days. Furthermore, aloe vera exerted a strong anti-inflammatory effect and prominent scar prevention. Histological examination revealed that an ordered collagen formation and neovascularization could be observed along with migration of nuclei. Therefore, OP-Gel-Aloe biocomposite dressings are proposed as viable materials for effective wound management.

  17. The use of keratin-based wound products on refractory wounds.

    PubMed

    Batzer, Annette T; Marsh, Clive; Kirsner, Robert S

    2016-02-01

    Keratin proteins have been shown to play a key role in wound healing. Controlled keratin gene (KRT) expression promotes cell growth, migration and differentiation, and as an example of the importance of keratin proteins, absence of KRT17 has been shown to delay wound closure. In addition, downregulation of KRT6 and KRT16 in non-healing chronic venous ulcers suggests that deregulation of keratin expression contributes to non-healing phenotype. A sample of 45 chronic wounds of mixed aetiologies presenting in 31 patients were treated with keratin-based novel topical wound healing products. Thirty-seven wounds or 82% of wounds were either healed or reduced in size of >50% during treatment, with 29 (64%) healing completely and an additional 8 wounds experiencing 50% wound size reduction or greater. Of the wounds that responded, 15 required antimicrobial treatment during their course of treatment, suggesting that keratin dressing treatment should be interrupted briefly and then restarted when wound infection occur.

  18. Exploratory Development of an Ultra-Fast-Curing Wound Dressing

    DTIC Science & Technology

    1989-11-30

    mwv’eri if neceswey ". idientify by block number) eare developing a drug -dispensing field dermal dressing. The dermal dressing, which can be easily applied...polyurethane oligomer which is designed to cure at room temperature and Oelivers drugs on a controlled, sustainedI and highly reproducible basis.i I 20...3 ITASK I .......................................... 5 A. OPTIMIZE DISPERSION OF THE DRUGS ........ 5 B 5. UTILIZE MORE POTENT DRUGS

  19. Chitosan-aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound.

    PubMed

    Phaechamud, Thawatchai; Yodkhum, Kotchamon; Charoenteeraboon, Juree; Tabata, Yasuhiko

    2015-05-01

    There are many factors that delay healing in chronic wounds including lowering level of growth factors and increasing exudate level comprising high amount of tissue destructive enzymes. Asiaticoside possesses interesting wound healing and angiogenic activities that are employed to stimulate tissue regeneration in wound healing application. This study attempted to develop chitosan-aluminum monostearate (Alst) composite sponge containing asiaticoside for use as an absorbent medical dressing in chronic wound. N-methyl-2-pyrrolidone (NMP) was used to enhance homogeneity of asiaticoside in the polymer composite matrix. The sponge dressings were prepared by lyophilization and dehydrothermal treatment (DHT). Functional group interaction, crystallinity, and morphology of the prepared sponges were investigated using FT-IR, PXRD, and SEM, respectively. Physicochemical properties, porosity, hydrophilic/hydrophobic properties and mechanical property, were evaluated. Wound dressing properties, water vapor transmission rate (WVTR), fluid absorbency, oxygen permeation (OP), and bio-adhesive property, were investigated. In vitro asiaticoside release study was conducted using immersion method. Cytotoxicity was studied in normal human dermal fibroblast (NHDF) and normal human epidermal keratinocyte (NHEK). Angiogenic activity of asiaticoside was evaluated using chick-chorioallantoic membrane (CAM) assay. FT-IR and PXRD results revealed the amidation after DHT to enhance the crystallinity of the prepared sponges. The prepared sponges had high porosity comprising high Alst-loaded amount that exhibited more compact structure. Alst enhanced hydrophobicity therefore it reduced the fluid absorption and WVTR together with bio-adhesion of the prepared sponge dressings. Porosity of all sponges was more than 85% therefore resulting in their high OP. Enhancing hydrophobicity of the material by Alst and more homogeneity caused by NMP eventually retarded the asiaticoside release for 7 days. The

  20. Using chitosan nanoparticles as drug carriers for the development of a silver sulfadiazine wound dressing.

    PubMed

    El-Feky, Gina S; Sharaf, Samar S; El Shafei, Amira; Hegazy, Aisha A

    2017-02-20

    Burn wounds environment favors the growth of micro-organisms causing delay in wound healing. The traditional treatment with antimicrobial creams offer inaccurate doses. In the present study, a dressing coated with silver sulfadiazine (SSD) loaded chitosan nanoparticles (CSNPs) for the controlled-release of SSD into burn wound to control bacterial growth was investigated. CSNPs were formulated with different concentrations of chitosan and CM-β-CD and loaded with SSD complexed in 1:1 molar ratio with CM-β-CD, CSNPs were assessed for their particle size, polydispersity index, morphology and association efficiency. The formula showing the best characteristics was selected for the preparation of SSD loaded CSNPs wound dressing through a padding process with/without the use of cross-linker. The dressing was characterized for its physical properties, in addition, FTIR, X-ray, SEM and in vitro release were used for characterization. The dressing was proven effective for the inhibition of the growth of Gram positive and Gram negative bacteria as well as candida on an infected wound.

  1. The Effect of Virtual Reality Distraction on Pain Relief During Dressing Changes in Children with Chronic Wounds on Lower Limbs.

    PubMed

    Hua, Yun; Qiu, Rong; Yao, Wen-Yan; Zhang, Qin; Chen, Xiao-Li

    2015-10-01

    It has been demonstrated that patients with chronic wounds experience the most pain during dressing changes. Currently, researchers focus mostly on analgesics and appropriate dressing materials to relieve pain during dressing changes of chronic wounds. However, the effect of nonpharmacologic interventions, such as virtual reality distraction, on pain management during dressing changes of pediatric chronic wounds remains poorly understood. To investigate the effect of virtual reality distraction on alleviating pain during dressing changes in children with chronic wounds on their lower limbs. A prospective randomized study. A pediatric center in a tertiary hospital. Sixty-five children, aged from 4 to 16 years, with chronic wounds on their lower limbs. Pain and anxiety scores during dressing changes were recorded by using the Wong-Baker Faces picture scale, visual analogue scale, and pain behavior scale, as well as physiological measurements including pulse rate and oxygen saturation. Time length of dressing change was recorded. Virtual reality distraction significantly relieved pain and anxiety scores during dressing changes and reduced the time length for dressing changes as compared to standard distraction methods. The use of virtual reality as a distraction tool in a pediatric ward offered superior pain reduction to children as compared to standard distractions. This device can potentially improve clinical efficiency by reducing length time for dressing changes.

  2. Mechanical properties and water vapour permeability of film from Haruan (Channa striatus) and fusidic acid spray for wound dressing and wound healing.

    PubMed

    Febriyenti; Noor, Azmin Mohd; Bai, Saringat Bin

    2010-04-01

    Aerosol is a new dosage form for wound dressing and wound healing. Concentrate of aerosols which were prepared for wound dressing and wound healing will produced films after sprayed onto the surface of wounds. The aim of this study is to evaluate the mechanical and water vapour permeability properties of the films from the aerosol concentrates. Film forming dispersions contained Haruan extract and Fusidic acid as the active ingredients, hydroxypropyl methylcellulose (HPMC) as polymer and polyethylene glycol (PEG) 400, glycerin and propylene glycol as plasticizers. Haruan extract is used to promote healing and Fusidic acid is added in formula as antibiotic to prevent the infections. The films were prepared by using casting technique. Based on the results, it is concluded that films produced from Formula E1, E2 and F4 possessed good elongation at break but low tensile strength. All Formula E, Formula F4 and F5 were permeable but Formula F5 was brittle and would peel off by themselves from the Petri dish.

  3. Superabsorbent polymer-containing wound dressings have a beneficial effect on wound healing by reducing PMN elastase concentration and inhibiting microbial growth.

    PubMed

    Wiegand, C; Abel, M; Ruth, P; Hipler, U C

    2011-11-01

    A comprehensive in vitro approach was used to assess the effects of superabsorbent polymer (SAP) containing wound dressings in treatment of non-healing wounds. A slight negative effect on HaCaT cells was noted in vitro which is most likely due to the Ca(2+) deprivation of the medium by binding to the SAP. It could be shown that SAP wound dressings are able to bind considerable amounts of elastase reducing enzyme activity significantly. Furthermore, SAP's inhibit the formation of free radicals. The SAP-containing wound dressings tested also exhibited a significant to strong antimicrobial activity effectively impeding the growth of gram-negative and gram-positive bacteria as well as yeasts. In conclusion, in vitro data confirm the positive effect of SAP wound dressings observed in vivo and suggest that they should be specifically useful for wound cleansing.

  4. Efficient surface functionalization of wound dressings by a phytoactive nanocoating refractory to Candida albicans biofilm development.

    PubMed

    Anghel, Ion; Holban, Alina Maria; Andronescu, Ecaterina; Grumezescu, Alexandru Mihai; Chifiriuc, Mariana Carmen

    2013-12-01

    The present study reports the fabrication and characterization of a novel nanostructured phyto-bioactive coated rayon/polyester wound dressing (WD) surface refractory to Candida albicans adhesion, colonization and biofilm formation, based on functionalized magnetite nanoparticles and Anethum graveolens (AG) and Salvia officinalis (SO) essential oils (EOs). TEM, XRD, TGA, FT-IR were used for the characterization of the fabricated nanobiocoated WDs. Using magnetic nanoparticles for the stabilization and controlled release of EOs, the activity of natural volatile compounds is significantly enhanced and their effect is stable during time. For this reason the nanobiocoated surfaces exhibited a longer term anti-biofilm effect, maintained for at least 72 h. Besides their excellent anti- adherence properties, the proposed solutions exhibit the advantage of using vegetal natural compounds, which are less toxic and easily biodegradable in comparison with synthetic antifungal drugs, representing thus promising approaches for the development of successful ways to control and prevent fungal biofilms associated infections.

  5. Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction.

    PubMed

    Xu, Rui; Luo, Gaoxing; Xia, Hesheng; He, Weifeng; Zhao, Jian; Liu, Bo; Tan, Jianglin; Zhou, Junyi; Liu, Daisong; Wang, Yuzhen; Yao, Zhihui; Zhan, Rixing; Yang, Sisi; Wu, Jun

    2015-02-01

    Wound dressing is critical important for cutaneous wound healing. However, the application of current products is limited due to poor mechanical property, unsuitable water vapor transmission rate (WVTR), poor anti-infective property or poor biocompatibility, etc. In the present study, a microporous silicone rubber membrane bilayer (SRM-B) composed of two layers with different pore sizes was prepared. The physical properties, the influences of pore structure on the bacterial penetration, the cell adhesion and proliferation were studied. Lastly, the effects of the SRM-B on the healing of a mouse full-thickness wound were examined. The data showed that the small pore upper layer of SRM-B could effectively prevent the bacterial invasion, as well as properly keep the water vapor transmission rate; the large pore lower layer of SRM-B could promote the cell adhesion and proliferation. The in vivo results showed that SRM-B could significantly enhance wound re-epithelialization and contraction, which accelerated the wound healing. Our data suggested that the SRM-B, with different particular pore sizes, could serve as a kind of promising wound dressing.

  6. Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation.

    PubMed

    Kumar, P T Sudheesh; Lakshmanan, Vinoth-Kumar; Anilkumar, T V; Ramya, C; Reshmi, P; Unnikrishnan, A G; Nair, Shantikumar V; Jayakumar, R

    2012-05-01

    Current wound dressings have disadvantages such as less flexibility, poor mechanical strength, lack of porosity, and a tendency for dressings to adhere onto the wound surface; in addition, a majority of the dressings did not possess antibacterial activity. Hydrogel-based wound dressings would be helpful to provide a cooling sensation and a moisture environment, as well as act as a barrier to microbes. To overcome these hassles, we have developed flexible and microporous chitosan hydrogel/nano zinc oxide composite bandages (CZBs) via the incorporation of zinc oxide nanoparticles (nZnO) into chitosan hydrogel. The prepared nanocomposite bandages were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), and scanning electron microscopy (SEM). In addition, swelling, degradation, blood clotting, antibacterial, cytocompatibility, cell attachment on the material, and cell infiltration into the composite bandages were evaluated. The nanocomposite bandage showed enhanced swelling, blood clotting, and antibacterial activity. Cytocompatibility of the composite bandage has been analyzed in normal human dermal fibroblast cells. Cell attachment and infiltration studies showed that the cells were found attached to the nanocomposite bandages and penetrated into the interior. Furthermore, the in vivo evaluations in Sprague-Dawley rats revealed that these nanocomposite bandages enhanced the wound healing and helped for faster re-epithelialization and collagen deposition. The obtained data strongly encourage the use of these composite bandages for burn wounds, chronic wounds, and diabetic foot ulcers.

  7. Beneficial effects of honey dressings in wound management.

    PubMed

    Sharp, Ailsa

    Honey was commonly used to treat wounds until the introduction of antibiotics. However, increasing numbers of antibiotic-resistant bacteria mean that alternative treatment options, such as honey, are receiving renewed interest. This article provides an overview of the use of honey in wound management and reviews the evidence to support its effectiveness.

  8. An Overview on Application of Natural Substances Incorporated with Electrospun Nanofibrous Scaffolds to Development of Innovative Wound Dressings.

    PubMed

    Zarghami, Nosratollah; Sheervalilou, Roghayeh; Fattahi, Amir; Mohajeri, Abbas; Dadashpour, Mehdi; Pilehvar-Soltanahmadi, Younes

    2017-03-08

    Conventional dressings are cost-effective and highly absorbent, but not effectual enough to promote hemostasis, adherence and in holding a moist wound bed. Thanks to the developments in the field of nanotechnology and bioengineering, one of the promising current trends is to move progress of innovative wound dressings, merging the application of traditional healing agents and modern products/practices, such as hydrocolloids, hydrogels, films and nanofibers. The electrospun nanofibers webs can provide the essential parameters require for wound dressing to heal wounds including absorptivity, oxygen permeability, and non-adherence to the healing tissue, barrier to bacteria, bioactivity and occlusivity. The modern wound dressings materials made of electrospun nanofibers contain various traditional healing agents such as plant derived compounds could be beneficial to the healing of wounds. Natural substances have been used in skin wound care for many years because of their therapeutic properties, including antimicrobial, antioxidant, anti-inflammatory and mitogenic activities. This review surveys on potentials of electrospun nanofibrous mats for wound dressing applications. Furthermore, loading of bioactive molecules and therapeutic agents into the nanofibrous mats especially natural compounds with the aim of fabrication novel bioactive electrospun nanofibrous mats for skin substitutes and wound dressings are discussed.

  9. A D-optimal design to model the performances of dressings and devices for negative pressure wound therapy.

    PubMed

    Salvo, P; Smajda, R; Dini, V; Saxby, C; Voirin, G; Romanelli, M; Di Francesco, F

    2016-05-01

    A D-optimal design was used to identify and model variables that affect the transit time of wound exudate through an illustrative dressing used for negative pressure wound therapy. Many authors have addressed the clinical benefits of negative pressure wound therapy, but limited information is available on how to assess performances of dressings. In this paper, the transit time of wound exudate through a dressing was chosen as a model parameter to show how experimental design (DOE) can be used for this purpose. Results demonstrated that rate of exudate production, temperature and dressing thickness were the variables with the largest impact on transit time. The DOE approach could be used to model other dressing properties, like for example capability of absorbing excess exudate or breathability.

  10. Clinical safety and effectiveness evaluation of a new antimicrobial wound dressing designed to manage exudate, infection and biofilm.

    PubMed

    Metcalf, Daniel G; Parsons, David; Bowler, Philip G

    2017-02-01

    The objective of this work was to evaluate the safety and effectiveness of a next-generation antimicrobial wound dressing (NGAD; AQUACEL(®) Ag+ Extra™ dressing) designed to manage exudate, infection and biofilm. Clinicians were requested to evaluate the NGAD within their standard protocol of care for up to 4 weeks, or as long as deemed clinically appropriate, in challenging wounds that were considered to be impeded by suspected biofilm or infection. Baseline information and post-evaluation dressing safety and effectiveness data were recorded using standardised evaluation forms. This data included wound exudate levels, wound bed appearance including suspected biofilm, wound progression, skin health and dressing usage. A total of 112 wounds from 111 patients were included in the evaluations, with a median duration of 12 months, and biofilm was suspected in over half of all wounds (54%). After the introduction of the NGAD, exudate levels had shifted from predominantly high or moderate to low or moderate levels, while biofilm suspicion fell from 54% to 27% of wounds. Wound bed coverage by tissue type was generally shifted from sloughy or suspected biofilm towards predominantly granulation tissue after the inclusion of the NGAD. Stagnant (65%) and deteriorating wounds (27%) were shifted to improved (65%) or healed wounds (13%), while skin health was also reported to have improved in 63% of wounds. High levels of clinician satisfaction with the dressing effectiveness and change frequency were accompanied by a low number of dressing-related adverse events (n = 3; 2·7%) and other negative observations or comments. This clinical user evaluation supports the growing body of evidence that the anti-biofilm technology in the NGAD results in a safe and effective dressing for the management of a variety of challenging wound types.

  11. Controlled Release of Chitosan and Sericin from the Microspheres-Embedded Wound Dressing for the Prolonged Anti-microbial and Wound Healing Efficacy.

    PubMed

    Aramwit, Pornanong; Yamdech, Rungnapha; Ampawong, Sumate

    2016-05-01

    One approach in wound dressing development is to incorporate active molecules or drugs in the dressing. In order to reduce the frequency of dressing changes as well as to prolong wound healing efficacy, wound dressings that can sustain the release of the active molecules should be developed. In our previous work, we developed chitosan/sericin (CH/SS) microspheres that released sericin in a controlled rate. However, the difficulty of applying the microspheres that easily diffuse and quickly degrade onto the wound was its limitations. In this study, we aimed to develop wound dressing materials which are easier to apply and to provide extended release of sericin. Different amounts of CH/SS microspheres were embedded into various compositions of polyvinyl alcohol/gelatin (PVA/G) scaffolds and fabricated using freeze-drying and glutaraldehyde crosslinking techniques. The obtained CH/SS microspheres-embedded scaffolds with appropriate design and formulation were introduced as a wound dressing material. Sericin was released from the microspheres and the scaffolds in a sustained manner. Furthermore, an optimized formation of the microspheres-embedded scaffolds (2PVA2G+2CHSS) was shown to possess an effective antimicrobial activity against both gram-positive and gram-negative bacteria. These microspheres-embedded scaffolds were not toxic to L929 mouse fibroblast cells, and they did not irritate the tissue when applied to the wound. Finally, probably by the sustained release of sericin, these microspheres-embedded scaffolds could promote wound healing as well as or slightly better than a clinically used wound dressing (Allevyn®) in a mouse model. The antimicrobial CH/SS microspheres-embedded PVA/G scaffolds with sustained release of sericin would appear to be a promising candidate for wound dressing application.

  12. Electrospinning polyvinylidene fluoride fibrous membranes containing anti-bacterial drugs used as wound dressing.

    PubMed

    He, Ting; Wang, Jingnan; Huang, Peilin; Zeng, Baozhen; Li, Haihong; Cao, Qingyun; Zhang, Shiying; Luo, Zhuo; Deng, David Y B; Zhang, Hongwu; Zhou, Wuyi

    2015-06-01

    The aim of this study was to synthesis drug-loaded fibrous membrane scaffolds for potential applications as wound dressing. Polyvinylidene fluoride (PVDF) fibrous membranes were loaded with enrofloxacin (Enro) drugs by using an electrospinning process, and their mechanical strength, drug release profile and anti-bacterial properties were evaluated. Enro drug-loaded PVDF membranes exhibited good elasticity, flexibility and excellent mechanical strength. The electrospinning Enro/PVDF membranes showed a burst drug release in the initial 12h, followed by sustained release for the next 3 days, which was an essential property for antibiotic drugs applied for wound healing. The drug-loaded PVDF fibrous membranes displayed excellent anti-bacterial activity toward Escherichia coli and Staphylococcus aureus. The results suggest that electrospinning PVDF membrane scaffolds loaded with drugs can be used as wound dressing.

  13. Surface fluid-swellable chitosan fiber as the wound dressing material.

    PubMed

    Xia, Guixue; Lang, Xuqian; Kong, Ming; Cheng, Xiaojie; Liu, Ya; Feng, Chao; Chen, Xiguang

    2016-01-20

    The objective of this study was to develop a novel surface fluid-swellable chitosan (SFSC) fiber for potential wound dressing. The SFSC fiber was successfully prepared by surface modification of chitosan fiber with succinic anhydride, which was characterized by FTIR and solid-state (13)C NMR. The SFSC fiber exhibited better water absorption capacity (approx. 2980%) and stronger antibacterial activities (both above 90%) against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) than chitosan fiber (both below 75%). The cell viability was more than 90% after treated with the SFSC fiber extract, which demonstrated that SFSC fiber had low cytotoxicity towards mouse embryo fibroblasts (MEFs). The SFSC fiber could promote wound healing with advanced development of granulation tissue and epithelial coverage compared with the control (gauze-covered) group. The results indicated that SFSC fiber had great potential to be used as wound dressing material.

  14. Preparation of chitosan/silk fibroin blending membrane fixed with alginate dialdehyde for wound dressing.

    PubMed

    Gu, Zhipeng; Xie, HuiXu; Huang, Chengcheng; Li, Li; Yu, Xixun

    2013-07-01

    The objective of this work was to prepare chitosan/silk fibroin (CS/SF) blending membranes crosslinked with alginate dialdehyde (ADA) as wound dressings and to evaluate the physical properties and biocompatibility of the membranes. The morphology of membrane was observed by scanning electron microscopy (SEM) which showed that the well consistency of these two compositions. Further, the stability, water absorption and water vapor permeability of the ADA fixed CS/SF membranes could meet the needs of wound dressing. Furthermore, the biocompatibility of ADA fixed membranes was investigated by MTT assays and SEM in vitro, and the membranes were found to promote the cell attachment and proliferation. These results suggest that ADA fixed CS/SF blending membranes with a suitable ratio could be a promising candidate for wound healing applications.

  15. Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo.

    PubMed

    Wu, Jian; Zheng, Yudong; Wen, Xiaoxiao; Lin, Qinghua; Chen, Xiaohua; Wu, Zhigu

    2014-06-01

    Bacterial cellulose (BC) has attracted increasing attention as a novel wound dressing material, but its antimicrobial activity, which is one of the critical skin-barrier functions in wound healing, is not sufficient for use in practical applications. To overcome such a deficiency, silver nanoparticles were generated and self-assembled on the surface of BC nanofibers, forming a stable and evenly distributed Ag nanoparticle coated BC nanofiber (AgNP-BC). The performance of AgNP-BC was systematically studied in terms of antibacterial activities, cytocompatibility and effects on wound healing. The results showed that AgNP-BC exhibited significant antibacterial activity against Staphylococcus aureus. Moreover, AgNP-BC allowed attachment, and growth of rat fibroblasts with low cytotoxicity emerged. Based on these advantages, AgNP-BC samples were applied in a second-degree rat wound model. Wound flora showed a significant reduction during the healing. The fresh epidermal and dermis thicknesses with AgNP-BC samples were 111 and 855 µm respectively, higher than 74 and 619 µm for BC groups and 57 and 473 µm for untreated control wounds. The results demonstrated that AgNP-BC could reduce inflammation and promote scald wound healing.

  16. Enhancing effect of γ-cyclodextrin on wound dressing properties of sacran hydrogel film.

    PubMed

    Wathoni, Nasrul; Motoyama, Keiichi; Higashi, Taishi; Okajima, Maiko; Kaneko, Tatsuo; Arima, Hidetoshi

    2017-01-01

    A wound dressing is one of the essential approaches for preventing further harm to cutaneous wounds as well as promoting wound healing. Therefore, to achieve ideal wound healing, the development of advanced dressing materials is necessary. Recently, we revealed that a novel megamolecular polysaccharide, sacran, has potential properties as a biomaterial in a physically cross-linked hydrogel film (HGF) for wound dressing application. In this study, to enhance the wound-healing properties of sacran hydrogel film (Sac-HGF) further, we fabricated and characterized novel Sac-HGFs containing cyclodextrins (CyDs). The sacran/α-CyD film (Sac/α-CyD-HGF) and sacran/γ-CyD HGF (Sac/γ-CyD-HGF), but not sacran/β-CyD HGF (Sac/β-CyD-HGF), were well prepared without surface roughness. Powder X-ray diffraction (XRD) patterns of the Sac/γ-CyD-HGFs showed a totally amorphous state compared to that shown by Sac/α-CyD-HGFs. Furthermore, the addition of γ-CyD to Sac-HGFs significantly increased the swelling ratio, porosity, and moisture content of the HGFs, compared to those of the Sac-HGF without CyDs. The Sac/γ-CyD-HGFs were not cytotoxic against NIH3T3 cells, a murine fibroblast cell line. Notably, the Sac/γ-CyD-HGFs significantly improved wound healing in mice, compared to that achieved with the Sac-HGF without γ-CyD. These results suggest that γ-CyD has the potential to promote the wound healing ability of Sac-HGF.

  17. Exploratory Development of an Ultrafast-Curing Wound Dressing

    DTIC Science & Technology

    1991-05-31

    Dermal Dressing with the Antimicrobial Controlled Release Layer Exposed 7 2. Chromatogram of Lyophilized Chlorhexidine Gluconate Stored at 450C for Six...Months ........................ 1 3. Chromatogram of Chlorhexidine Gluconate Standard (1000 mcg/ml) Spiked with p-chloroaniline (50 mcg/ml) 19 4...Release Profile of 30% Chlorhexidine Gluconate ADD’s After E-beam Sterilization. Stability Samples at Time t = 0

  18. An ultrathin poly(L-lactic acid) nanosheet as a burn wound dressing for protection against bacterial infection.

    PubMed

    Miyazaki, Hiromi; Kinoshita, Manabu; Saito, Akihiro; Fujie, Toshinori; Kabata, Koki; Hara, Etsuko; Ono, Satoshi; Takeoka, Shinji; Saitoh, Daizoh

    2012-01-01

    Burn wounds are highly susceptible to bacterial infection due to impairment of the skin's integrity. Therefore, prevention of bacterial colonization/infection in the wound is crucial for the management of burns, including partial-thickness burn injuries. Although partial-thickness burn injuries still retain the potential for reepithelialization, the complication of wound infection severely impairs the reepithelialization even in such superficial burn injuries. We recently developed a biocompatible nanosheet consisting of poly(L-lactic acid) (PLLA). The PLLA nanosheets have many useful and advantageous biological properties for their application as a wound dressing, such as sufficient flexibility, transparency, and adhesiveness. We herein investigated the suitability of the PLLA nanosheets as a wound dressing for partial-thickness burn wounds in mice. The PLLA nanosheets tightly adhered to the wound without any adhesive agents. Although wound infection with Pseudomonas aeruginosa in the controls significantly impaired reepithelialization of burn wounds, dressing with the PLLA nanosheet markedly protected against bacterial wound infection, thereby improving wound healing in the mice receiving partial-thickness burn injuries. The PLLA nanosheet also showed a potent barrier ability for protecting against bacterial penetration in vitro. The ultrathin PLLA nanosheet may be applied as a protective dressing to reduce environmental contamination of bacteria in a partial-thickness burn wound.

  19. Dress Nicer = Know More? Young Children's Knowledge Attribution and Selective Learning Based on How Others Dress.

    PubMed

    McDonald, Kyla P; Ma, Lili

    2015-01-01

    This research explored whether children judge the knowledge state of others and selectively learn novel information from them based on how they dress. The results indicated that 4- and 6-year-olds identified a formally dressed individual as more knowledgeable about new things in general than a casually dressed one (Study 1). Moreover, children displayed an overall preference to seek help from a formally dressed individual rather than a casually dressed one when learning about novel objects and animals (Study 2). These findings are discussed in relation to the halo effect, and may have important implications for child educators regarding how instructor dress might influence young students' knowledge attribution and learning preferences.

  20. Protease Inhibition by Oleic Acid Transfer From Chronic Wound Dressings to Albumin

    SciTech Connect

    Edwards, J. V.; Howley, Phyllis; Davis, Rachel M.; Mashchak, Andrew D.; Goheen, Steven C.

    2007-08-01

    High elastase and cathepsin G activities have been observed in chronic wounds. These levels can inhibit healing through degradation of growth factors, cytokines, and extracellular matrix proteins. Oleic acid (18:1) is a non-toxic elastase inhibitor with some potential for redressing the imbalance of elastase activity found in chronic wounds. Cotton wound dressing material was characterized as a transfer carrier for affinity uptake of 18:1 by albumin under conditions mimicking chronic wounds. 18:1-treated cotton was examined for its ability to bind and release the fatty acid in the presence of albumin. The mechanism of 18:1 uptake from cotton and binding by albumin was examined with both intact dressings and cotton fiber-designed chromatography. Raman spectra of the albumin-18:1 complexes under liquid-liquid equilibrium conditions revealed fully saturated albumin-18:1 complexes with a 1:1 weight ratio of albumin:18:1. Cotton chromatography under liquid-solid equilibrium conditions revealed oleic acid transfer from cotton to albumin at 27 mole equivalents of 18:1 per mole albumin. Cotton was contrasted with hydrogel, and hydrocolloid wound dressing for its comparative ability to lower elastase activity. Each dressing material evaluated was found to release 18:1 in the presence of albumin with significant inhibition of elastase activity. The 18:1-formulated wound dressings lowered elastase activity in a dose dependent manner in the order cotton gauze > hydrogel > hydrocolloid. In contrast the cationic serine protease Cathepsin G was inihibited by 18:1 within a narrow range of 18:1-cotton formulations. Four per cent Albumin solutions were most effective in binding cotton bound-18:1. However, 2% albumin was sufficient to transfer quantities of 18:1 necessary to achieve a significant elastase-lowering effect. Formulations with 128 mg 18:1/g cotton gauze had equivalent elastase lowering with 1 - 4% albumin. 18:1 bound to cotton wound dressings may have promise in the

  1. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing.

    PubMed

    Lu, Zhong; Gao, Jingting; He, Qingfeng; Wu, Jie; Liang, Donghui; Yang, Hao; Chen, Rong

    2017-01-20

    Nano Ag/ZnO hybrid material has been considered to be a promising nanocomposites for biomedical application because it has enhanced antibacterial activity and low cytotoxicity. Here a sponge-like nano Ag/ZnO-loaded chitosan composite dressing was first synthesized via preparing a chitosan sponge by lyophilization process, followed by the incorporation of Ag/ZnO nanocomposites into chitosan sponge. The porosity, swelling, blood clotting and in vitro antibacterial activity against drug-sensitive and drug-resistant pathogenic bacteria were evaluated. The results demonstrate that the prepared composite dressing shows high porosity and swelling as well as enhanced blood clotting and antibacterial activity. Cytocompatibility test evaluated in vitro illustrates the very low toxic nature of the composite dressing. Furthermore, the in vivo evaluation in mice reveals that the chitosan-Ag/ZnO composite dressing enhances the wound healing and promotes re-epithelialization and collagen deposition. These results strongly support the possibility of using this novel chitosan-AgZnO composite dressing for wound care application.

  2. Highly biocompatible collagen-Delonix regia seed polysaccharide hybrid scaffolds for antimicrobial wound dressing.

    PubMed

    Cheirmadurai, Kalirajan; Thanikaivelan, Palanisamy; Murali, Ragothaman

    2016-02-10

    Biomaterials based entirely on biological resources are ideal for tissue engineering applications. Here we report the preparation of hybrid collagen scaffolds comprising gulmohar seed polysaccharide (GSP) and cinnamon bark extract as cross-linking agent. (1)H NMR spectrum of GSP confirms the presence of galactose and mannose in the ratio of 1:1.54, which was further corroborated using FT-IR. The hybrid scaffolds show better enzyme and thermal stability in contrast to pure collagen scaffold probably due to weak interactions from GSP and covalent interaction through cinnamaldehyde. Gas permeability and scanning electron microscopic analysis show that the porosity of the hybrid scaffolds is slightly reduced with the increase in the concentration of GSP. The infrared and circular dichroic spectral studies show that the secondary structure of the collagen did not change after the interaction with GSP and cinnamaldehyde. The hybrid scaffolds stabilized with cinnamaldehyde show good antimicrobial activity against the common multi-drug resistant wound pathogens. These results suggest that the prepared hybrid scaffolds have great potential for antimicrobial wound dressing applications.

  3. Semi-permanent skin staining associated with silver-coated wound dressing Acticoat

    PubMed Central

    Zweiker, D.; Horn, S.; Hoell, A.; Seitz, S.; Walter, D.; Trop, M.

    2014-01-01

    Summary A 17-year-old male with burns to 8% of his total body surface area was treated for 10 days with Acticoat®, a nanocrystalline silver dressing. The burns, which were on his back and shoulder, healed without infection. However, a skin discoloration in the wound area and the adjacent uninjured skin appeared in the first days of treatment. The staining remained visible even after the treatment had ended and disappeared approximately three years later. Despite the outstanding antimicrobial properties, possible side effects of silver nanocrystalline dressings should be kept in mind. PMID:26336367

  4. Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: gel characterization and in vivo healing evaluation.

    PubMed

    Hwang, Ma-Ro; Kim, Jong Oh; Lee, Jeong Hoon; Kim, Yong Il; Kim, Jeong Hoon; Chang, Sun Woo; Jin, Sung Gju; Kim, Jung Ae; Lyoo, Won Seok; Han, Sung Soo; Ku, Sae Kwang; Yong, Chul Soon; Choi, Han-Gon

    2010-09-01

    To develop a gentamicin-loaded wound dressing, cross-linked hydrogel films were prepared with polyvinyl alcohol (PVA) and dextran using the freezing-thawing method. Their gel properties such as gel fraction, swelling, water vapor transmission test, morphology, tensile strength, and thermal property were investigated. In vitro protein adsorption test, in vivo wound healing test, and histopathology were performed. Dextran decreased the gel fraction, maximum strength, and thermal stability of hydrogels. However, it increased the swelling ability, water vapor transmission rate, elasticity, porosity, and protein adsorption. The drug gave a little positive effect on the gel properties of hydrogels. The gentamicin-loaded wound dressing composed of 2.5% PVA, 1.13% dextran, and 0.1% drug was more swellable, flexible, and elastic than that with only PVA because of its cross-linking interaction with PVA. In particular, it could provide an adequate level of moisture and build up the exudates on the wound area. From the in vivo wound healing and histological results, this gentamicin-loaded wound dressing enhanced the healing effect more compared to conventional product because of the potential healing effect of gentamicin. Thus, this gentamicin-loaded wound dressing would be used as a potential wound dressing with excellent forming and improved healing effect in wound care.

  5. Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing.

    PubMed

    Luan, Jiabin; Wu, Jian; Zheng, Yudong; Song, Wenhui; Wang, Guojie; Guo, Jia; Ding, Xun

    2012-12-01

    Silver sulfadiazine (SSD) is a useful antimicrobial agent for wound treatment. However, recent findings indicate that conventional SSD cream has several drawbacks for use in treatments. Bacterial cellulose (BC) is a promising material for wound dressing due to its outstanding properties of holding water, strength and degradability. Unfortunately, BC itself exhibits no antimicrobial activity. A combination of SSD and BC is envisaged to form a new class of wound dressing with both antimicrobial activity and biocompatibility, which has not been reported to date. To achieve antimicrobial activity, SSD particles were impregnated into BC by immersing BC into SSD suspension after ultrasonication, namely SSD-BC. Parameters influencing SSD-BC impregnation were systematically studied. Optimized conditions of sonication time for no less than 90 min and the proper pH value between 6.6 and 9.0 were suggested. The absorption of SSD onto the BC nanofibrous network was revealed by XRD and SEM analyses. The SSD-BC membranes exhibited significant antimicrobial activities against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus evaluated by the disc diffusion method. In addition, the favorable biocompatibility of SSD-BC was verified by MTT colorimetry, epidermal cell counting method and optical microscopy. The results demonstrate the potential of SSD-BC membranes as a new class of antimicrobial and biocompatible wound dressing.

  6. Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation

    NASA Astrophysics Data System (ADS)

    Singh, Durgeshwer; Singh, Rita

    2012-11-01

    Wound debridement is essential for the removal of necrotic or nonviable tissue from the wound surface to create an environment conducive to healing. Nonsurgical enzymatic debridement is an attractive method due to its effectiveness and ease of use. Papain is a proteolytic enzyme derived from the fruit of Carica papaya and is capable of breaking down a variety of necrotic tissue substrates. The present study was focused on the use of gamma radiation for sterilization of papain dressing with wound debriding activity. Membranes with papain were prepared using 0.5% chitin in lithium chloride/dimethylacetamide solvent and sterilized by gamma radiation. Fluid absorption capacity of chitin-papain membranes without glycerol was 14.30±6.57% in 6 h. Incorporation of glycerol resulted in significant (p<0.001) increase in the absorption capacity. Moisture vapour transmission rate of the membranes was 4285.77±455.61 g/m2/24 h at 24 h. Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings. Infrared (IR) spectral scanning has shown that papain was stable on gamma irradiation at 25-35 kGy. The irradiated chitin-papain membranes were impermeable to different bacterial strains and also exhibited strong bactericidal action against both Gram-positive and Gram-negative bacteria. The fluid handling characteristics and the antimicrobial properties of chitin-papain membranes sterilized by gamma radiation were found suitable for use as wound dressing with debriding activity.

  7. Active and passive distraction in children undergoing wound dressings.

    PubMed

    Nilsson, Stefan; Enskär, Karin; Hallqvist, Carina; Kokinsky, Eva

    2013-04-01

    The aim of this study was to test how distraction influences pain, distress and anxiety in children during wound care. Sixty participants aged 5-12 years were randomized to three groups: serious gaming, the use of lollipops and a control group. Self-reported pain, distress, anxiety and observed pain behaviour were recorded in conjunction with wound care. Serious gaming, an active distraction, reduced the observed pain behaviour and self-reported distress compared with the other groups. A sense of control and engagement in the distraction, together, may be the explanation for the different pain behaviours when children use serious gaming.

  8. Dressing-related pain in patients with chronic wounds: an international patient perspective.

    PubMed

    Price, Patricia E; Fagervik-Morton, Hilde; Mudge, Elizabeth J; Beele, Hilde; Ruiz, Jose Contreras; Nystrøm, Theis Huldt; Lindholm, Christina; Maume, Sylvie; Melby-Østergaard, Britta; Peter, Yolanda; Romanelli, Marco; Seppänen, Salla; Serena, Thomas E; Sibbald, Gary; Soriano, Jose Verdú; White, Wendy; Wollina, Uwe; Woo, Kevin Y; Wyndham-White, Carolyn; Harding, Keith G

    2008-06-01

    This cross-sectional international survey assessed patients' perceptions of their wound pain. A total of 2018 patients (57% female) from 15 different countries with a mean age of 68.6 years (SD = 15.4) participated. The wounds were categorised into ten different types with a mean wound duration of 19.6 months (SD = 51.8). For 2018 patients, 3361 dressings/compression systems were being used, with antimicrobials being reported most frequently (n= 605). Frequency of wound-related pain was reported as 32.2%, 'never' or 'rarely', 31.1%, 'quite often' and 36.6%, 'most' or 'all of the time', with venous and arterial ulcers associated with more frequent pain (P= 0.002). All patients reported that 'the wound itself' was the most painful location (n= 1840). When asked if they experienced dressing-related pain, 286 (14.7%) replied 'most of the time' and 334 (17.2%) reported pain 'all of the time'; venous, mixed and arterial ulcers were associated with more frequent pain at dressing change (P < 0.001). Eight hundred and twelve (40.2%) patients reported that it took <1 hour for the pain to subside after a dressing change, for 449 (22.2%) it took 1-2 hours, for 192 (9.5%) it took 3-5 hours and for 154 (7.6%) patients it took more than 5 hours. Pain intensity was measured using a visual analogue scale (VAS) (0-100) giving a mean score of 44.5 (SD = 30.5, n= 1981). Of the 1141 who reported that they generally took pain relief, 21% indicated that they did not feel it was effective. Patients were asked to rate six symptoms associated with living with a chronic wound; 'pain' was given the highest mean score of 3.1 (n= 1898). In terms of different types of daily activities, 'overdoing things' was associated with the highest mean score (mean = 2.6, n= 1916). During the stages of the dressing change procedure; 'touching/handling the wound' was given the highest mean score of 2.9, followed by cleansing and dressing removal (n= 1944). One thousand four hundred and eighty-five (80

  9. Polymeric Multilayers that Localize the Release of Chlorhexidine from Biologic Wound Dressings

    PubMed Central

    Agarwal, Ankit; Nelson, Tyler B.; Kierski, Patricia R.; Schurr, Michael J.; Murphy, Christopher J.; Czuprynski, Charles J.; McAnulty, Jonathan F.; Abbott, Nicholas L.

    2012-01-01

    Biologic wound dressings contain animal-derived components and are susceptible to high infection rates. To address this issue, we report an approach that permits incorporation of non-toxic levels of the small-molecule antiseptic ‘chlorhexidine’ into biologic dressings. The approach relies on the fabrication of polyelectrolyte multilayer (PEMs) films containing poly(allylaminehydrochloride) (PAH), poly(acrylicacid) (PAA), and chlorhexidine acetate (CX) on elastomeric poly(dimethylsiloxane) (PDMS) sheets. The PEMs (20-100 nm thick) are subsequently stamped onto the wound-contact surface of a synthetic biologic dressing, Biobrane, which contains collagen peptides. Chlorhexidine loading in the PEMs was tailored by tuning the number of (CX/PAA) bilayers deposited, providing burst release of up to 0.98±0.06 μg/cm2 of CX over 24 h, followed by zero order release of 0.35±0.04 μg/cm2/day for another week. Although the CX concentrations released were below the reported in vitro cytotoxicity limit (5 μg/mL over 24 h) for human dermal fibroblasts, they killed 4 log10 counts of pathogenic bacteria Staphylococcus aureus in solution. The CX/PEMs could be stamped onto Biobrane with high efficiency to provide CX release kinetics and in-vitro antibacterial activity similar to that on PDMS stamps. In a full-thickness ‘splinted’ dermal wound-model in normal wild-type mice, the CX-functionalized Biobrane showed no decrease in either its adherence to the wound-bed or wound-closure rate over 14 days. The murine wounds topically inoculated with ~105 CFU/cm2 of S. aureus and treated with CX-functionalized Biobrane demonstrated a 3 log10 decrease in the wound's bacterial burden within 3 days, compared to persistent bacterial colonization found in wounds treated with unmodified Biobrane (n=10 mice, p<0.005). Overall, this study presents a promising approach to prevent bacterial colonization in wounds under biologic dressings. PMID:22784602

  10. Hydrogel-elastomer composite biomaterials: 4. Experimental optimization of hydrogel-elastomer composite fibers for use as a wound dressing.

    PubMed

    Peng, Henry T; Martineau, Lucie; Hung, Andy

    2008-04-01

    We report a novel 3-D cavity wound dressing based on a hydrogel-elastomer Interpenetrating Polymer Network (IPN) fabricated into an open-mesh architecture. IPN fibers used to form the dressing were produced by a wet spinning method and optimized in two steps. A factorial experiment was first conducted to identify key parameters that controlled fiber properties. We observed that gelatin wt% played a major role in determining fiber yield, swelling, strength and stability. Other contributing factors included coagulation solution composition, gelatin type, and pre- and post-UV irradiation time. The key factors were then further evaluated individually to achieve a condition that provided a combination of good swelling, mechanical properties and stability. The concentration of the gelatin/HydroThane extrusion solution significantly affected fiber formation and properties, presumably due to the changes in solution viscosity. The effects of pre-UV irradiation were also ascribed to its impact on the solution viscosity and became negligible at higher concentrations when viscosity is mainly controlled by concentration. The composition of the coagulation bath influenced the fiber swelling and wet stress. These results, taken together with our previous studies, suggest that our biomaterial would provide a combination of mechanical and swelling properties suitable for wound dressing applications.

  11. Bacterial cellulose membrane produced by Acetobacter sp. A10 for burn wound dressing applications.

    PubMed

    Kwak, Moon Hwa; Kim, Ji Eun; Go, Jun; Koh, Eun Kyoung; Song, Sung Hwa; Son, Hong Joo; Kim, Hye Sung; Yun, Young Hyun; Jung, Young Jin; Hwang, Dae Youn

    2015-05-20

    Bacteria cellulose membranes (BCM) are used for wound dressings, bone grafts, tissue engineering, artificial vessels, and dental implants because of their high tensile strength, crystallinity and water holding ability. In this study, the effects of BCM application for 15 days on healing of burn wounds were investigated based on evaluation of skin regeneration and angiogenesis in burn injury skin of Sprague-Dawley (SD) rats. BCM showed a randomly organized fibrils network, 12.13 MPa tensile strength, 12.53% strain, 17.63% crystallinity, 90.2% gel fraction and 112.14 g × m(2)/h highest water vapor transmission rate (WVTR) although their swelling ratio was enhanced to 350% within 24h. In SD rats with burned skin, the skin severity score was lower in the BCM treated group than the gauze (GZ) group at all time points, while the epidermis and dermis thickness and number of blood vessels was greater in the BCM treated group. Furthermore, a significant decrease in the number of infiltrated mast cells and in vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) expression was observed in the BCM treated group at day 10 and 15. Moreover, a significant high level in collagen expression was observed in the BCM treated group at day 5 compared with GZ treated group, while low level was detected in the same group at day 10 and 15. However, the level of metabolic enzymes representing liver and kidney toxicity in the serum of BCM treated rats was maintained at levels consistent with GZ treated rats. Overall, BCM may accelerate the process of wound healing in burn injury skin of SD rats through regulation of angiogenesis and connective tissue formation as well as not induce any specific toxicity against the liver and kidney.

  12. Human neutrophil elastase inhibition with a novel cotton alginate wound dressing formulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Occlusion and elasticity were combined in a novel cotton-based alginate dressing containing a non-toxic elastase inhibitor. Cotton gauzes were modified with a textile finishing process for incorporating alginate to yield a dressing material that retains elasticity while enhancing absorption. The ...

  13. Silver Dressings Augment the Ability of Negative Pressure Wound Therapy to Reduce Bacteria in a Contaminated Open Fracture Model

    DTIC Science & Technology

    2011-07-01

    ORIGINAL ARTICLE Silver Dressings Augment the Ability of Negative Pressure Wound Therapy to Reduce Bacteria in a Contaminated Open Fracture Model...contaminated by S. aureus. Key Words: Contamination, Infection, Open fracture , Negative pressure, Silver dressing. (J Trauma. 2011;71: S147–S150...is commonly used in the treatment of large wounds and acute open fractures , and has even been applied to surgical incisions in an effort to minimize

  14. Antibacterial performance of polypropylene nonwoven fabric wound dressing surfaces containing passive and active components

    NASA Astrophysics Data System (ADS)

    Xin, Zhirong; Du, Shanshan; Zhao, Chunyu; Chen, Hao; Sun, Miao; Yan, Shunjie; Luan, Shifang; Yin, Jinghua

    2016-03-01

    A growing number of wound dressing-related nosocomial infections necessitate the development of novel antibacterial strategies. Herein, polypropylene non-woven fabric (PPNWF) was facilely modified with passive and active antibacterial components, namely photografting polymerization both N-Vinyl-2-pyrrolidone (NVP) and glycidyl methacrylate (GMA) monomers, and the introduction of guanidine polymer through the reaction between active amino groups and epoxy groups. The modified samples were confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), respectively. Water contact angle measurement, antibacterial test, platelet and red blood cell adhesion were used to evaluate the hydrophilicity, antibacterial properties and hemocompatibility of the samples. It was found that the antibacterial properties were obviously enhanced, meanwhile significantly suppressing platelet and red blood cell adhesion after the above modification. This PPNWF samples that possess antifouling and antimicrobial properties, have great potential in wound dressing applications.

  15. Fabrication, characterization, and in vitro evaluation of silver-containing arabinoxylan foams as antimicrobial wound dressing.

    PubMed

    Aduba, Donald C; An, Seon-Sook; Selders, Gretchen S; Wang, Juan; Andrew Yeudall, W; Bowlin, Gary L; Kitten, Todd; Yang, Hu

    2016-10-01

    Arabinoxylan ferulate (AXF) foams were fabricated via enzymatic peroxidase/hydrogen peroxide crosslinking reaction followed by freeze-drying and studied as a potential wound dressing material. The AXF foam's rheological, morphological, porous, and swelling properties were examined. AXF foams were found to be a viscoelastic material that proved to be highly porous and water absorbent. AXF foams possessed low endotoxin levels and were cytocompatible with fibroblasts. Silver was successfully integrated into AXF foams and slowly released over 48 h. AXF foams impregnated with silver demonstrated efficacy inhibiting bacterial growth according to a modified Kirby-Bauer disk diffusion susceptibility test. Overall, AXF foams possess appropriate material properties and the silver-loaded AXF foams showed antimicrobial activity necessary to be a candidate material in wound dressing development. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2456-2465, 2016.

  16. The effect of tea tree oil (Melaleuca alternifolia) on wound healing using a dressing model.

    PubMed

    Chin, Karen B; Cordell, Barbara

    2013-12-01

    Numerous studies have shown the promising antibacterial effects of Melaleuca alternifolia, or tea tree essential oil. The study detailed here replicates in humans a 2004 in vitro study that used a dressing model over Petri dishes to determine the antimicrobial effects of the fumes of tea tree essential oil. The current study used the same dressing model with patients who had wounds infected with Staphylococcus aureus. Ten participants volunteered for the quasi-experimental study, and four of the 10 were used as matched participants to compare wound healing times between conventional treatment alone and conventional treatment plus fumes of tea tree essential oil. The results demonstrated decreased healing time in all but one of the participants treated with tea tree oil. The differences between the matched participants were striking. The results of this small investigational study indicate that additional study is warranted.

  17. The use of honey as a topical dressing to treat a large, devitalized wound in a stumptail macaque (Macaca arctoides).

    PubMed

    Staunton, Christine J; Halliday, Lisa C; Garcia, Kelly D

    2005-07-01

    There are many reasons wounds are managed as open wounds rather than by primary closure. Indications include gross contamination, infection, and skin loss leading to insufficient adjacent tissue for wound closure. The most common method of managing an open wound is with wet-to-dry dressings. Wet-to-dry dressings provide mechanical debridement and promote the movement of viscous exudates away from the wound. Wet-to-dry bandages ideally are changed every 12 to 24 h. For nonhuman primates, it is desirable to develop wound management techniques that limit animal handling for bandage changes and thus the frequency of sedation. Anecdotal reports on the use of honey to treat wounds date back to 2000 B.C. Recently, scientific inquiries have found merit to these reports. Honey accelerates healing because of its direct effects on tissue and antibacterial properties. In addition, dressings with honey can be changed relatively infrequently. Honey decreases inflammatory edema, hastens sloughing of devitalized tissue, attracts macrophages which cleanse the wound, provides a local cellular energy source, and protectively covers the wound. A high osmolarity, acidity, and hydrogen peroxide content confer honey with antibacterial properties. Here we describe the use of honey to manage a bite wound in a stumptail macaque (Macaca arctoides). The wound healed rapidly: after 2 weeks of treatment, there was markedly less exudate and no necrotic tissue. This report describes how honey may be helpful in the management of open wounds in nonhuman primates by minimizing the need for sedation for bandage changes.

  18. [Treatment of infected wounds and abscesses in bovine limbs with Ligasano-polyurethane-soft foam dressing material].

    PubMed

    Kofler, Johann; Martinek, Birgit; Reinöhl-DeSouza, Cornelia

    2004-01-01

    The objective of this report is to present the most important indications for the use of Ligasano-polyurethane-soft-foam dressing material in the treatment of infected wounds in cattle. For this study, 28 cattle were selected, which were treated at the clinic (2000-2003) for infected cut, puncture and laceration wounds on the limbs, purulent tarsal hygromas, large abscesses in the tarsal, crural and thigh regions, and purulent tenosynovitis of the digital flexor tendon sheath caused by penetrating puncture wounds. After routine wound cleansing, debridement or adequate surgery with wound lavage, Ligasano-polyurethane-soft-foam (Ligamed Medical Produkte, Cadolzburg-Wachendorf, Germany) was applied as a primary wound dressing instead of the conventional cotton gauze swabs or as drainage material in all these wounds. The porous surface structure of this material caused subtle wound debridement and mechanical stimulation of the wound surface increasing exudation and decreasing fibrinous adhesions. The pores ensured good drainage, reduced infection, avoided the accumulation of exudate and the following destruction of the wound surface. In all these indications, except abscesses and purulent hygromas, no or only slight purulent exudation of the treated wounds was observed. Especially in the treatment of purulent tenosynovitis of the digital flexor tendon sheath with tendon resection a rapid healing of these large surgical wounds--often within 2 weeks--was found. The therapeutic effect of Ligasano-polyurethane-soft-foam as a primary wound dressing was so convincing in these bovine patients, that it is now used exclusively as primary wound dressing material for treatment of infected wounds.

  19. Pilot scale-up and shelf stability of hydrogel wound dressings obtained by gamma radiation

    NASA Astrophysics Data System (ADS)

    Soler, Dulce María; Rodríguez, Yanet; Correa, Hector; Moreno, Ailed; Carrizales, Lila

    2012-08-01

    This study is aimed of producing pilot batches of hydrogel wound dressings by gamma radiation and evaluating their shelf stability. Six batches of 3L capacity were prepared based on poly(vinyl pyrrolidone), agar and polyethylene glycol and they were dispensed in polyester trays, covered with polyester films and sealed in two types of materials: polyethylene bags and vacuum polyethylene bags. Dressings were formed in a single step process for the hydrogel formation and sterilization at 25-30 kGy gamma radiation dose in a JS-9500 Gamma Irradiator (Nordion, Canada). The six batches were initially physicochemical characterized in terms of dimensions and appearance, gel fraction, morphology analysis, hydrogel strength, moisture retention capability and swelling capacity. They were kept under two storage conditions: room temperature (T: 30±2 °C/RH: 70± 5%) and refrigerated temperature (T: 5±3 °C) during 24 months and sterility test was performed. The appearance of membranes was transparent, clear, uncut and flexible; the gel fraction of batches was higher than 75% and the hydrogel surface showed a porous structure. There was a slow decrease of the compression rate 20% until 7 h and about 70% at 24 h. Moisture retention capability in 5 h was similar for all the batches, about 40% and 60% at 37 °C and at room temperature respectively. The swelling of hydrogels in acidic media was strong and in alkaline media the weight variation remains almost stable until 24 h and then there is a loss of weight. The six batches remained sterile during the stability study in the conditions tested. The pilot batches were consistent from batch to batch and remained stable during 24 months.

  20. Antibacterial Efficacy of Silver-Impregnated Polyelectrolyte Multilayers Immobilized on a Biological Dressing in a Murine Wound Infection Model

    PubMed Central

    Guthrie, Kathleen M.; Agarwal, Ankit; Tackes, Dana S.; Johnson, Kevin W.; Abbott, Nicholas L.; Murphy, Christopher J.; Czuprynski, Charles J.; Kierski, Patricia R.; Schurr, Michael J.; McAnulty, Jonathan F.

    2012-01-01

    Objective To investigate the antibacterial effect of augmenting a biological dressing with polymer films containing silver nanoparticles. Background Biological dressings, such as Biobrane, are commonly used for treating partial-thickness wounds and burn injuries. Biological dressings have several advantages over traditional wound dressings. However, as many as 19% of wounds treated with Biobrane become infected, and, once infected, the Biobrane must be removed and a traditional dressing approach should be employed. Silver is a commonly used antimicrobial in wound care products, but current technology uses cytotoxic concentrations of silver in these dressings. We have developed a novel and facile technology that allows immobilization of bioactive molecules on the surfaces of soft materials, demonstrated here by augmentation of Biobrane with nanoparticulate silver. Surfaces modified with nanometer-thick polyelectrolyte multilayers (PEMs) impregnated with silver nanoparticles have been shown previously to result in in vitro antibacterial activity against Staphylococcus epidermidis at loadings of silver that are noncytotoxic. Methods We demonstrated that silver-impregnated PEMs can be nondestructively immobilized onto the surface of Biobrane (Biobrane-Ag) and determined the in vitro antibacterial activity of Biobrane-Ag with Staphylococcus aureus. In this study, we used an in vivo wound infection model in mice induced by topical inoculation of S aureus onto full-thickness 6-mm diameter wounds. After 72 hours, bacterial quantification was performed. Results Wounds treated with Biobrane-Ag had significantly (P < 0.001) fewer colony-forming units than wounds treated with unmodified Biobrane (more than 4 log10 difference). Conclusions The results of our study indicate that immobilizing silver-impregnated PEMs on the wound-contact surface of Biobrane significantly reduces bacterial bioburden in full-thickness murine skin wounds. Further research will investigate whether

  1. Sequential antibiotic and growth factor releasing chitosan-PAAm semi-IPN hydrogel as a novel wound dressing.

    PubMed

    Pulat, Mehlika; Kahraman, Anıl Sera; Tan, Nur; Gümüşderelioğlu, Menemşe

    2013-01-01

    The aim of this study is to prepare a novel wound dressing material which provides burst release of an antibiotic in combination with sustained release of growth factor delivery. This might be beneficial for the prevention of infections and to stimulate wound healing. As a wound dressing material, the semi-interpenetrating network (semi-IPN) hydrogel based on polyacrylamide (PAAm) and chitosan (CS) was synthesized via free radical polymerization. Ethylene glycol dimethacrylate was used for cross-linking of PAAm to form semi-IPN hydrogel. The hydrogel shows high water content (∼1800%, in dry basis) and stable swelling characteristics in the pH range of the wound media (∼4.0-7.4). The antibiotic, piperacillin-tazobactam, which belongs to the penicillin group was loaded into the hydrogel. The therapeutic serum dose of piperacillin-tazobactam for topic introduction was reached at 1st hour of the release. Additionally, in order to increase the mitogenic activity of hydrogel, epidermal growth factor (EGF) was embedded into the CS-PAAm in different amounts. Cell culture studies were performed with L929 mouse fibroblasts and the simulated cell growth was investigated by 3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide assay. The successful sustained release behavior of CS-PAAm hydrogel for EGF maintained the presence of EGF in the culture up to 5 days and the highest mitochondrial activities were recorded for the 0.4 μg EGF-loaded/mg of hydrogel group. In conclusion, CS-PAAm semi-IPN hydrogel loaded with piperacillin-tazobactam and EGF could be proposed for an effective system in wound-healing management.

  2. Alginate Hydrogels Coated with Chitosan for Wound Dressing

    PubMed Central

    Straccia, Maria Cristina; Gomez d’Ayala, Giovanna; Romano, Ida; Oliva, Adriana; Laurienzo, Paola

    2015-01-01

    In this work, a coating of chitosan onto alginate hydrogels was realized using the water-soluble hydrochloride form of chitosan (CH-Cl), with the dual purpose of imparting antibacterial activity and delaying the release of hydrophilic molecules from the alginate matrix. Alginate hydrogels with different calcium contents were prepared by the internal setting method and coated by immersion in a CH-Cl solution. Structural analysis by cryo-scanning electron microscopy was carried out to highlight morphological alterations due to the coating layer. Tests in vitro with human mesenchymal stromal cells (MSC) were assessed to check the absence of toxicity of CH-Cl. Swelling, stability in physiological solution and release characteristics using rhodamine B as the hydrophilic model drug were compared to those of relative uncoated hydrogels. Finally, antibacterial activity against Escherichia coli was tested. Results show that alginate hydrogels coated with chitosan hydrochloride described here can be proposed as a novel medicated dressing by associating intrinsic antimicrobial activity with improved sustained release characteristics. PMID:25969981

  3. Alginate hydrogels coated with chitosan for wound dressing.

    PubMed

    Straccia, Maria Cristina; d'Ayala, Giovanna Gomez; Romano, Ida; Oliva, Adriana; Laurienzo, Paola

    2015-05-11

    In this work, a coating of chitosan onto alginate hydrogels was realized using the water-soluble hydrochloride form of chitosan (CH-Cl), with the dual purpose of imparting antibacterial activity and delaying the release of hydrophilic molecules from the alginate matrix. Alginate hydrogels with different calcium contents were prepared by the internal setting method and coated by immersion in a CH-Cl solution. Structural analysis by cryo-scanning electron microscopy was carried out to highlight morphological alterations due to the coating layer. Tests in vitro with human mesenchymal stromal cells (MSC) were assessed to check the absence of toxicity of CH-Cl. Swelling, stability in physiological solution and release characteristics using rhodamine B as the hydrophilic model drug were compared to those of relative uncoated hydrogels. Finally, antibacterial activity against Escherichia coli was tested. Results show that alginate hydrogels coated with chitosan hydrochloride described here can be proposed as a novel medicated dressing by associating intrinsic antimicrobial activity with improved sustained release characteristics.

  4. Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan.

    PubMed

    Sung, Jung Hoon; Hwang, Ma-Ro; Kim, Jong Oh; Lee, Jeong Hoon; Kim, Yong Il; Kim, Jeong Hoon; Chang, Sun Woo; Jin, Sung Giu; Kim, Jung Ae; Lyoo, Won Seok; Han, Sung Soo; Ku, Sae Kwang; Yong, Chul Soon; Choi, Han-Gon

    2010-06-15

    The purpose of this study was to develop a minocycline-loaded wound dressing with an enhanced healing effect. The cross-linked hydrogel films were prepared with polyvinyl alcohol (PVA) and chitosan using the freeze-thawing method. Their gel properties, in vitro protein adsorption, release, in vivo wound healing effect and histopathology were then evaluated. Chitosan decreased the gel fraction, maximum strength and thermal stability of PVA hydrogel, while it increased the swelling ability, water vapour transmission rate, elasticity and porosity of PVA hydrogel. Incorporation of minocycline (0.25%) did not affect the gel properties, and chitosan hardly affected drug release and protein adsorption. Furthermore, the minocycline-loaded wound dressing composed of 5% PVA, 0.75% chitosan and 0.25% drug was more swellable, flexible and elastic than PVA alone because of relatively weak cross-linking interaction of chitosan with PVA. In wound healing test, this minocycline-loaded PVA-chitosan hydrogel showed faster healing of the wound made in rat dorsum than the conventional product or the control (sterile gauze) due to antifungal activity of chitosan. In particular, from the histological examination, the healing effect of minocycline-loaded hydrogel was greater than that of the drug-loaded hydrogel, indicating the potential healing effect of minocycline. Thus, the minocycline-loaded wound dressing composed of 5% PVA, 0.75% chitosan and 0.25% drug is a potential wound dressing with excellent forming and enhanced wound healing.

  5. Alkali-treated konjac glucomannan film as a novel wound dressing.

    PubMed

    Huang, Yi-Cheng; Chu, Hao-Wen; Huang, Chih-Ching; Wu, Wen-Ching; Tsai, Jenn-Shou

    2015-03-06

    To investigate the potential medical application of konjac glucomannan (KGM), we treated KGM film with potassium hydroxide (KOH) or calcium hydroxide (Ca(OH)2), and evaluated its use as a wound dressing. The Ca(OH)2-treated KGM (Ca(OH)2-KGM) film exhibited more favorable properties of swelling, tensile strength, and elongation compared with the KOH-treated KGM (KOH-KGM) film, and also had a suitable water vapor transmission rate. Results from in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay further indicated the biocompatibility of the Ca(OH)2-KGM film with L929 fibroblast cells and HaCaT keratinocyte cells. The Ca(OH)2-KGM film inhibited the absorption and activation of platelets, and effectively promoted wound contractility in vivo, particularly at an early healing stage. Histological examination revealed considerably collagen secretion and advanced development of granulation tissue and epithelial coverage by Days 7 and 14 postsurgery in wounds treated with Ca(OH)2-KGM film. Our study results indicate the potential use of alkali-treated KGM film as a novel wound dressing.

  6. Tissue engineered plant extracts as nanofibrous wound dressing.

    PubMed

    Jin, Guorui; Prabhakaran, Molamma P; Kai, Dan; Annamalai, Sathesh Kumar; Arunachalam, Kantha D; Ramakrishna, Seeram

    2013-01-01

    Use of plant extracts for treatment of burns and wound is a common practice followed over the decades and it is an important aspect of health management. Many medicinal plants have a long history of curative properties in wound healing. Electrospun nanofibers provide high porosity with large surface area-to-volume ratio and are more appropriate for cell accommodation, nutrition infiltration, gas exchange and waste excretion. Electrospinning makes it possible to combine the advantages of utilizing these plant extracts in the form of nanofibrous mats to serve as skin graft substitutes. In this study, we investigated the potential of electrospinning four different plant extracts, namely Indigofera aspalathoides, Azadirachta indica, Memecylon edule (ME) and Myristica andamanica along with a biodegradable polymer, polycaprolactone (PCL) for skin tissue engineering. The ability of human dermal fibroblasts (HDF) to proliferate on the electrospun nanofibrous scaffolds was evaluated via cell proliferation assay. HDF proliferation on PCL/ME nanofibers was found the highest among all the other electrospun nanofibrous scaffolds and it was 31% higher than the proliferation on PCL nanofibers after 9 days of cell culture. The interaction of HDF with the electrospun scaffold was studied by F-actin and collagen staining studies. The results confirmed that PCL/ME had the least cytotoxicity among the different plant extract containing scaffolds studied here. Therefore we performed the epidermal differentiation of adipose derived stem cells on PCL/ME scaffolds and obtained early and intermediate stages of epidermal differentiation. Our studies demonstrate the potential of electrospun PCL/ME nanofibers as substrates for skin tissue engineering.

  7. Synthesis and evaluation of novel absorptive and antibacterial polyurethane membranes as wound dressing.

    PubMed

    Yari, Abbas; Yeganeh, Hamid; Bakhshi, Hadi

    2012-09-01

    Preparation and evaluation of new polyurethane membranes for wound dressing application was considered in this work. The membranes were prepared through amine curing reaction of epoxy-terminated polyurethane prepolymers and an antibacterial epoxy-functional quaternary ammonium compound (glycidyltriehtylammonium chloride, GTEACl. To render the prepared membranes to be highly absorptive of wound exudates, poly (ethylene glycol) polyols were introduced into the polyurethane networks. Evaluation of biocompatibity via both MTT assay and direct contact with two different cell lines (fibroblast and epidermal keratinocytes) reveled that membranes with appropriate loading of GTEACl showed proper biocompatibility. Promising antibacterial activity of the prepared membranes against Staphylococcus aureus and Escherichia coli bacteria was confirmed by both agar diffusion and shaking flask methods. The membranes with balanced crosslink density and ionic groups' concentration possessed appropriate hydrophilicity and water vapor transmission rate; therefore, they could prevent the accumulation of exudates and decrease the surface inflammation in the wounded area.

  8. Use of tissue adhesive as a field expedient barrier dressing for hand wounds in disaster responders.

    PubMed

    Levy, Matthew J; Tang, Nelson

    2014-02-01

    Injuries sustained by disaster responders can impede the affected individuals' ability to perform critical functions and often require the redirection of already scarce resources. Soft-tissue injuries to the hand are commonly experienced by disaster workers and even seemingly mild lacerations can pose the potential for significant complications in such hazard-filled environments. In this report, the authors describe their experience utilizing tissue adhesive to create a functional and effective barrier dressing for a hand injury sustained by a responder at the West, Texas USA fertilizer plant explosion. This technique of wound management allowed the patient to continue performing essential onsite functions for a sustained period following the explosion and the subsequent investigative processes. At the 30-day follow-up, the wound was well healed and without complications. This technique proved to be a valuable method of field expedient wound management and is worthy of consideration in similar future circumstances.

  9. Molecular Wiring in Smart Dressings: Opening a New Route to Monitoring Wound pH

    PubMed Central

    McLister, Anna; Davis, James

    2015-01-01

    It has been proposed that fluctuations in wound pH can give valuable insights into the healing processes in chronic wounds, but acquiring such data can be a technological challenge especially where there is little sample available. Developments in voltammetric pH sensing have opened up new avenues for the design of probes that can function in ultra-small volumes and can be inherently disposable but, as yet few can meet the demands of wound monitoring. A preliminary investigation of the pH response of a new redox wire prepared from a peptide homopolymer of tryptophan is presented and its potential applicability as a sensing material for use in smart dressings is critically discussed. PMID:27417774

  10. [Timing of dressing removal in the healing of surgical wounds by primary intention: a meta-analysis].

    PubMed

    Eberhardt, Doris; Berg, Almuth; Fleischer, Steffen; Langer, Gero

    2013-08-01

    An appropriate postoperative wound management helps to prevent surgical site infections. However, ideal timing of dressing removal is an unresolved issue in current practice. The objective of this systematic review therefore was to provide a comprehensive synthesis of existing evidence concerning the efficacy of different periods of postoperative dressing removal in surgical wounds which are healing by primary intention. We searched MEDLINE, EMBASE, CINAHL, The Cochrane Library (all in August 2011), and hand-searched additional sources. All randomised controlled trials that were comparing different periods of leaving dressings in place, including not dressing the surgical site at all, and covering wounds until suture removal were included. We conducted our systematic review and meta-analysis in accordance with the recommendations of the Cochrane Collaboration. Eight trials with a total of 2097 participants were included in our meta-analysis. All studies were at high or unclear risk of bias. This meta-analysis did not show a higher rate of wound infections or other wound complications associated with an early dressing removal in wounds that are healing by primary intention: risk difference (RD) -0.01; 95%-confidence interval (CI) -0.03, 0.01. However, conclusions are limited due to bad study quality of included studies. Finally more sound research is needed.

  11. Spongy bilayer dressing composed of chitosan-Ag nanoparticles and chitosan-Bletilla striata polysaccharide for wound healing applications.

    PubMed

    Ding, Lang; Shan, Xindi; Zhao, Xiaoliang; Zha, Hualian; Chen, Xiaoyu; Wang, Jianjun; Cai, Chao; Wang, Xiaojiang; Li, Guoyun; Hao, Jiejie; Yu, Guangli

    2017-02-10

    The purpose of this study was to develop a promising wound dressing. Though chitosan cross-linked with genipin has been widely used as biomaterials, with the addition of partially oxidized Bletilla striata polysaccharide, the newly developed material in this study (coded as CSGB) showed less gelling time, more uniform aperture distribution, higher water retention, demanded mechanical strength and more L929 cell proliferation compared to the chitosan cross-linked only with genipin. Owning to partial blocking of free amino groups of chitosan, CSGB revealed almost no antibacterial activities, thus the bilayer composite of chitosan-silver nanoparticles (CS-AgG) on CSGB was designed to inhibit microbial invasion. The in vivo studies indicated that both CSGB and bilayer wound dressing significantly accelerated the healing rate of cutaneous wounds in mice, and the bilayer exhibited better mature epidermization with less inflammatory cells on Day 7. Therefore, this novel bilayer composite has great potential in wound dressing applications.

  12. Radiation synthesis of PVP/alginate hydrogel containing nanosilver as wound dressing.

    PubMed

    Singh, Rita; Singh, Durgeshwer

    2012-11-01

    Hydrogels with polyvinyl pyrrolidone (PVP) and alginate were synthesized and silver nanoparticles were incorporated in hydrogel network using gamma radiation. PVP (10 and 15 %) in combination with 0.5 and 1 % alginate was gamma irradiated at different doses of 25 and 40 kGy. Maximum gel percent was obtained with 15 % PVP in combination with 0.5 % alginate. The fluid absorption capacity for the PVP/alginate hydrogels was about 1881-2361 % at 24 h. Moisture vapour transmission rate (MVTR) of hydrogels containing nanosilver at 24 h was 278.44 g/(m(2)h). The absorption capacity and moisture permeability of the PVP/alginate-nanosilver composite hydrogel dressings show the ability of the hydrogels to prevent fluid accumulation in exudating wound. The hydrogels containing nanosilver demonstrated strong antimicrobial effect and complete inhibition of microbial growth was observed with 70 ppm nanosilver dressings. PVP/alginate hydrogels containing nanosilver with efficient fluid handling capacity and antimicrobial activity was found suitable for use as wound dressing.

  13. Impact of a novel, antimicrobial dressing on in vivo, Pseudomonas aeruginosa wound biofilm: quantitative comparative analysis using a rabbit ear model.

    PubMed

    Seth, Akhil K; Zhong, Aimei; Nguyen, Khang T; Hong, Seok J; Leung, Kai P; Galiano, Robert D; Mustoe, Thomas A

    2014-01-01

    The importance of bacterial biofilms to chronic wound pathogenesis is well established. Different treatment modalities, including topical dressings, have yet to show consistent efficacy against wound biofilm. This study evaluates the impact of a novel, antimicrobial Test Dressing on Pseudomonas aeruginosa biofilm-infected wounds. Six-mm dermal punch wounds in rabbit ears were inoculated with 10(6) colony-forming units of P. aeruginosa. Biofilm was established in vivo using our published model. Dressing changes were performed every other day with either Active Control or Test Dressings. Treated and untreated wounds were harvested for several quantitative endpoints. Confirmatory studies were performed to measure treatment impact on in vitro P. aeruginosa and in vivo polybacterial wounds containing P. aeruginosa and Staphylococcus aureus. The Test Dressing consistently decreased P. aeruginosa bacterial counts, and improved wound healing relative to Inactive Vehicle and Active Control wounds (p < 0.05). In vitro bacterial counts were also significantly reduced following Test Dressing therapy (p < 0.05). Similarly, improvements in bacterial burden and wound healing were also achieved in polybacterial wounds (p < 0.05). This study represents the first quantifiable and consistent in vivo evidence of a topical antimicrobial dressing's impact against established wound biofilm. The development of clinically applicable therapies against biofilm such as this is critical to improving chronic wound care.

  14. Suction assisted pulse lavage: randomised controlled studies comparing its efficacy with conventional dressings in healing of chronic wounds.

    PubMed

    Shetty, Rahul; Barreto, Elvino; Paul, Kingsly M

    2014-02-01

    Chronic, open, non-healing wounds pose a continual challenge in medicine as the treatment is variable and there are no documented consistent responses. Although wound aetiologies vary and there are a number of factors that affect chronic wound pathogenesis, wound ischaemia and bacterial colonisation of wounds are the chief concerns among them. Conventionally, pulse lavage has been used primarily as a wound debriding device. To address both the critical factors of wound ischaemia and bacterial burden, a couple of technical points were proposed and applied in this study. The objective of our study was to evaluate pulse lavage therapy's ability to improve the healing rate of chronic wounds compared to that of the traditional saline-wet-to-moist dressings. The study period was from 1 August 2010 to 31 January 2012 and was conducted in our institution. Thirty patients with 31 chronic, non-healing wounds were enrolled in the study after obtaining proper consent. Subjects were randomised (15 patients each) to the pulse lavage group and the control group. Patients in the test group were subjected to irrigation of their wounds with pulsed lavage at 10 to 15 psi pressure. In the control group, wound was closed by applying moist betadine saline gauze dressings after cleaning with saline. Wounds treated with pulse lavage system significantly reduced in size, had better control of bacterial contamination and had overall faster healing rates. Efficacy of pulse lavage can be increased by correct method of administration of the irrigant.

  15. Poly(n-vinylpyrrolidone) hydrogels: 2.Hydrogel composites as wound dressing for tropical environment

    NASA Astrophysics Data System (ADS)

    Himly, N.; Darwis, D.; Hardiningsih, L.

    1993-10-01

    POLY(N-VINYLPYRROLIDONE) HYDROGELS: 2. HYDROGEL COMPOSITES AS WOUND DRESSING FOR TROPICAL ENVIRONMENT. The effects of irradiation on hydration and other properties of poly(vinylpyrrolidone) (PVP) hydrogel composites have been investigated. The aqueous solution of vinylpyrrolidone (VP) 10 wt % was mixed with several additives such as agar and polyethylen glycol (PEG). The solution was then irradiated with gamma rays from Cobalt-60 source at room temperature. Several parameters such as elongation at break (EB), tensile strength (TS), degree of swelling (DS), water vapor transmission rate (WVTR), equilibrium water content (EWC), microbial growth and penetration test, and water activity (Aw) were analysed at room temperature of 29 ±2°C humidity of 80 ± 10%. Results show that elongation at break of hydrogel membranes with initial composition of VP with agar, VP with agar and PEG were 240 % and 250 % kGy, the equilibrium water content of membranes were 96 to 90%, whereas degree of swelling were 55 to 10. The WVTR of hydrogel membranes with initial composition of VP with agar and PEG was 70 g m -2h -1, while the water activity was 0.9. Such hydrogel membranes exhibits the following properties: They are elastic, transparent, flexible, impermeable for bacteria. They absopt a high capacity of water, attached to healthy skin but not to the wound and they are easy to remove. These properties of the hydrogel membranes allow for applying as a wound dressings in tropical environment.

  16. The interaction of wood nanocellulose dressings and the wound pathogen P. aeruginosa.

    PubMed

    Jack, Alison A; Nordli, Henriette R; Powell, Lydia C; Powell, Kate A; Kishnani, Himanshu; Johnsen, Per Olav; Pukstad, Brita; Thomas, David W; Chinga-Carrasco, Gary; Hill, Katja E

    2017-02-10

    Chronic wounds pose an increasingly significant worldwide economic burden (over £1 billion per annum in the UK alone). With the escalation in global obesity and diabetes, chronic wounds will increasingly be a significant cause of morbidity and mortality. Cellulose nanofibrils (CNF) are highly versatile and can be tailored with specific physical properties to produce an assortment of three-dimensional structures (hydrogels, aerogels or films), for subsequent utilization as wound dressing materials. Growth curves using CNF (diameter <20nm) in suspension demonstrated an interesting dose-dependent inhibition of bacterial growth. In addition, analysis of biofilm formation (Pseudomonas aeruginosa PAO1) on nanocellulose aerogels (20g/m(2)) revealed significantly less biofilm biomass with decreasing aerogel porosity and surface roughness. Importantly, virulence factor production by P. aeruginosa in the presence of nanocellulose materials, quantified for the first time, was unaffected (p>0.05) over 24h. These data demonstrate the potential of nanocellulose materials in the development of novel dressings that may afford significant clinical potential.

  17. Gentamicin sulfate-loaded porous natural rubber films for wound dressing.

    PubMed

    Phaechamud, Thawatchai; Issarayungyuen, Pongsathorn; Pichayakorn, Wiwat

    2016-04-01

    Antimicrobial wound dressings have been developed for effectiveness of wound therapy. In this study, gentamicin sulfate was loaded into modified porous natural rubber films. The hydrophilic porous structure in natural rubber films was formed when the polar liquid such as glycerin or triethyl citrate and hydrophilic xanthan gum were blended. Film properties including morphology, drug release, water sorption and erosion, mechanical property, adhesive property, surface free energy, water vapor transmission rate, oxygen permeation, and antimicrobial activity were determined. The angiogenesis activity of films was investigated using chick chorio-allantoic membrane assay. For the system containing triethyl citrate, bi-layers comprising of a dense-top layer and a high porous-bottom layer were observed. Xanthan gum enhanced the water sorption capacity and modified to obtain the optimum rate of the drug release from the film. The developed film topography with dense-top layer induced the low adhesive property, water vapor and oxygen permeability whereas demonstrated good antimicrobial activities against Staphylococcus aureus and Pseudomonas aeruginosa with angiogenic activity. Therefore it had the potential use for medicated wound dressing.

  18. Enhanced healing of mitomycin C-treated healing-impaired wounds in rats with hydrosheets composed of chitin/chitosan, fucoidan, and alginate as wound dressings.

    PubMed

    Murakami, Kaoru; Ishihara, Masayuki; Aoki, Hiroshi; Nakamura, Shingo; Nakamura, Shin-Ichiro; Yanagibayashi, Satoshi; Takikawa, Megumi; Kishimoto, Satoko; Yokoe, Hidetaka; Kiyosawa, Tomoharu; Sato, Yasunori

    2010-01-01

    To create a moist environment for rapid wound healing, a hydrosheet composed of alginate, chitin/chitosan, and fucoidan (ACF-HS) has been developed as a functional wound dressing. The aim of this study was to evaluate the accelerating effect of ACF-HS on wound healing for rat mitomycin C-treated healing-impaired wounds. Full-thickness skin defects were made on the back of rats and mitomycin C was applied onto the wound for 10 minutes to prepare a healing-impaired wound. After thoroughly washing out the mitomycin C, ACF-HS was applied to the healing-impaired wounds. The rats were later euthanized and histological sections of the wounds were prepared. The histological examinations showed significantly advanced granulation tissue and capillary formations in the healing-impaired wounds treated with ACF-HS on days 7 and 14, in comparison with that in alginate fiber (Kaltostat), hydrogel wound dressing (DuoACTIVE), and nontreatment (negative control). Furthermore, in cell culture studies, ACF-HS-absorbed serum and fibroblast growth factor-2 was found to be proliferative for fibroblasts and endothelial cells, respectively, and ACF-HS-absorbed serum was found to be chemoattractive for fibroblasts. However, our results may not be strictly comparable with general healing-impaired wound models in humans because of the cell damage by mitomycin C. In addition, more biocompatibility studies of fucoidan are essential due to the possibility of renal toxicity.

  19. A silicone-nylon laminated dressing (IP-758) for closure of excised or débrided burn wounds.

    PubMed

    Nathan, P; Robb, E C; Dressler, D; MacMillan, B G

    1982-05-01

    A synthetic dressing (IP-758) consisting of a silicone membrane with a laminated layer of nylon fabric was evaluated in patients as a substitute for biological materials to cover excised areas of burn wounds. During a 3-day interval, the tissue developed a tightly adherent bond to the synthetic dressing. The IP-758 conformed to irregularly-shaped regions and stretched with the movements of the wound surface. Seventeen burned children from 3 to 12 years of age and 1 adult are included in this study. In 12 cases, the mean area covered with the synthetic ranged from approximately 39 to 118 cm2. The average dressing remained in place for 3 days and was replaced once. Microbiological sampling (wet swab technique) of the area under the IP-758 after application of second dressing was compared with open control sites treated with topical antibiotics. The results with Staphylococcus aureus, a frequent contaminant, were similar for the two test areas. The IP-758 site in 6 patients contained an average of 10 3 S. aureus per swab test. Immediately following removal of the adherent IP-758 and control of local bleeding, the wounds in most patients provided excellent sites for autografts. The IP-758 dressing is well-tolerated, elastic and adherent to the burn wound permitting maturation of the wound to readily accept autografts.

  20. The safety and efficacy of bacterial nanocellulose wound dressing incorporating sericin and polyhexamethylene biguanide: in vitro, in vivo and clinical studies.

    PubMed

    Napavichayanun, Supamas; Yamdech, Rungnapha; Aramwit, Pornanong

    2016-03-01

    In our previous work, we have attempted to develop a novel bacterial nanocellulose wound dressing which composed of both polyhexamethylene biguanide (PHMB) as an antimicrobial agent and sericin as an accelerative wound healing component. The loading sequence and concentration of PHMB and sericin were optimized to provide the wound dressing with the most effective antimicrobial activity and enhanced collagen production. In this study, further in vitro, in vivo, and clinical studies of this novel wound dressing were performed to evaluate its safety, efficacy, and applicability. For the in vitro cytotoxic test with L929 mouse fibroblast cells, our novel dressing was not toxic to the cells and also promoted cell migration as good as the commercially available dressing, possibly due to the component of sericin released. When implanted subcutaneously in rats, the lower inflammation response was observed for the novel dressing implanted, comparing to the commercially available dressing. This might be that the antimicrobial PHMB component of the novel dressing played a role to reduce infection and inflammation reaction. The clinical trial patch test was performed on the normal skin of healthy volunteers to evaluate the irritation effect of the dressing. Our novel dressing did not irritate the skin of any volunteers, as characterized by the normal levels of erythema and melanin and the absence of edema, papule, vesicle, and bullae. Then, the novel dressing was applied for the treatment of full-thickness wounds in rats. The wounds treated with our novel dressing showed significantly lower percentage of wound size and higher extent of collagen formation mainly due to the activity of sericin. We concluded that our novel bacterial nanocellulose incorporating PHMB and sericin was a safe and efficient wound dressing material for further investigation in the wound healing efficacy in clinic.

  1. Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial.

    PubMed

    Akturk, Omer; Tezcaner, Aysen; Bilgili, Hasan; Deveci, M Salih; Gecit, M Rusen; Keskin, Dilek

    2011-09-01

    Sericin, a silk protein, has high potential for use in biomedical applications. In this study, wound dressing membranes of Sericin (S) and Collagen (C) were prepared by glutaraldehyde cross-linking at S/C; 2:1, 1:1, 1:2, and 0:1 weight ratios. They were stable in water for 4 weeks. However, increasing the proportion of sericin had decreasing effect on the membrane stability. Water swelling property of membranes was enhanced with sericin. The highest water swelling was obtained in 1:1 group (9.06 g/g), but increasing collagen or sericin content in the membranes had a diminishing effect. Highest water vapor transmission rate was obtained with 1:2 group (1013.80 g/m(2)/day). Oxygen permeability results showed that 1:2 (7.67 mg/L) and 2:1 (7.85 mg/L) S/C groups were better than the other groups. While sericin decreased the tensile strength and elongation of membranes, it increased modulus. Sericin also increased brittleness of membranes, but their UTS range (24.93-44.92 MPa) was still suitable for a wound dressing. Membranes were not penetrable to microorganisms. Cytotoxicity studies showed that fibroblasts and keratinocytes attached and gained their characteristic morphologies. They also proliferated on membranes significantly. After 1 week of subcutaneous implantation, a fibrous capsule formed around all membranes with an acute inflammation. Sericin containing membranes showed signs of degradation (at 2nd week), while collagen only membranes remained largely intact. Eventually, sericin containing membranes degraded in 3 weeks with moderate inflammatory response. Overall results suggest that sericin/collagen membranes would be favorable as wound dressing material when sericin ratio is less than or equal to the collagen component.

  2. Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing.

    PubMed

    Liu, Xin; Lin, Tong; Gao, Yuan; Xu, Zhiguang; Huang, Chen; Yao, Gang; Jiang, Linlin; Tang, Yanwei; Wang, Xungai

    2012-08-01

    In this study, a series of nanofibrous membranes were prepared from cellulose acetate (CA) and polyester urethane (PEU) using coelectrospinning or blend-electrospinning. The drug release, in vitro antimicrobial activity and in vivo wound healing performance of the nanofiber membranes were evaluated for use as wound dressings. To prevent common clinical infections, an antimicrobial agent, polyhexamethylene biguanide (PHMB) was incorporated into the electrospun fibers. The presence of CA in the nanofiber membrane improved its hydrophilicity and permeability to air and moisture. CA fibers became slightly swollen upon contacting with liquid phase. CA not only increased the liquid uptake but also created a moist environment for the wound, which accelerated wound recovery. PHMB release dynamics of the membranes was controlled by the structure and component ratios of the membranes. The lower ratio of CA: PEU helped to preserve the physical and thermal properties of the membranes, and also reduced the burst release effectively and slowed down diffusion of PHMB during in vitro tests. The controlled-diffusion membranes exerted long-term antimicrobial effect for wound healing.

  3. Immobilization of derivatized dextran nanoparticles on konjac glucomannan/chitosan film as a novel wound dressing.

    PubMed

    Zhang, Hui; Gu, Chun-Hu; Wu, Hong; Fan, Li; Li, Fei; Yang, Fan; Yang, Qian

    2007-01-01

    The aim of this study was to prepare konjac glucomannan (KGM)/chitosan (CS) film containing glycidyl methacrylate derivatized dextran (dex-GMA)/acrylic acid(AAc) nanoparticles loaded with antibacterial agent. In this study, An optimized procedure chosen from three methods was used to prepare Erythromycin (EM)-loaded poly(dex-GMA/AAc) nanoparticles and obtained nanoparticles ranged from 50-200 nm. Film was found to have equilibrium water content (EWC) 99.3% which could prevent exudates on wound bed from accumulating and also have excellent water adsorption 2362.3 +/- 55.2%; the water vapor transmission rate (WVTR) was 2335 +/- 36 gm(-2) day(-1) and evaporative water loss from the film (EWL) was approximately 10% after 1 h and within 6 h it increased to 90%. Drug release of film containing nanoparticles or absent was determined, within 22 h accumulative release was 40.3%, 72.5% respectively. In conclusion, KGM/CS film containing nanoparticles could not only maintain a moist environment over wound bed in moderate to heavily exuding wound but also provide a continuous and sustained release of the antibacterial agent on the wound surface, which could be potential wound dressing.

  4. Nanospray technology for an in situ gelling nanoparticulate powder as a wound dressing.

    PubMed

    De Cicco, Felicetta; Porta, Amalia; Sansone, Francesca; Aquino, Rita P; Del Gaudio, Pasquale

    2014-10-01

    In the current study the feasibility of the novel nano spray drying technique for the production of stable nanoparticulate dry powder, able to gel when administered locally on a wound, is explored. Gentamicin sulphate (GS) was loaded into alginate/pectin nanoparticles as highly soluble (hygroscopic) model drug with wide range antibacterial agent for wound dressing. The influence of process variables, mainly spray mesh size and feed concentration, on particle size and morphology, powder wound fluid uptake ability and gelling rate, as well as hydrogel water vapour transmission at wound site were studied. Particles morphology was spherical with few exceptions as slightly corrugated particles when the larger nozzle was used. Production of spherical nanoparticles (d50 ∼ 350 nm) in good yield (82-92%) required 4 μm spray mesh whereas 7 μm mesh produced larger wrinkled particles. Nano spray-dried particles showed high encapsulation efficiency (∼ 80%), good flowability, high fluid uptake, fast gel formation (15 min) and proper adhesiveness to fill the wound site and to remove easily the formulation after use. Moreover, moisture transmission of the in situ formed hydrogel was between 95 and 90 g/m(2)/h, an optimum range to avoid wound dehydration or occlusion phenomena. Release of the encapsulated GS, monitored as permeation rate using Franz cells in simulated wound fluid (SWF) was related to particle size and gelling rate. Sustained permeation profiles were obtained achieving total permeation of the drug between 3 and 6 days. However, all nano spray-dried formulations presented a burst effect, suitable to prevent infection spreading at the beginning of the therapy. Antimicrobial tests against Staphylococcus aureus and Pseudomonas aeruginosa showed stronger and prolonged antimicrobial effect of the nanoparticles compared to pure GS both shortly after administration and over time (till 12 days).

  5. Development of part-dissolvable chitosan fibers with surface N-succinylation for wound care dressing

    NASA Astrophysics Data System (ADS)

    Sun, Guohui; Feng, Chao; Kong, Ming; Cheng, Xiaojie; Bing, Jiaojiao; Xia, Guixue; Bao, Zixian; Park, Hyunjin; Chen, Xiguang

    2015-09-01

    To enhance the liquor absorptivity of chitosan fibers (CS-Fs), N-succinyl surface-modified chitosan fibers (NSCS-Fs) were developed and evaluated for wound healing. The NSCS-Fs exhibited cracks on the surface and high liquor absorbing capacity with absorbing-dissolvable equilibrium state in phosphate buffer solution (PBS). The bacteriostasis ratios of NSCS-Fs against E. coli, S. aureus and C. albicans were higher than 80%. No cytotoxicity has been found for mouse embryo fibroblasts (MEFs) treated with NSCS-Fs leach liquor. Acute oral toxicity and skin irritation experiment were taken to evaluate the safety of NSCS-Fs in vitro. Muscle implant study showed that NSCS-Fs were biodegradable and non-toxic in vivo. These results suggested that the surface modified NSCS-Fs had favorable biological properties and improved liquor absorptivity, indicating that they could be used as promising dressing materials for wound care.

  6. Polysaccharides and cellulose in the design of wound healing materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. Chronic Wound Dressings that Sequester Harmful Proteases: Traditionally the use of carbohydrate-based wound dressings including cotton, xerogels, charcoal cloth, alginates, chitosan and hydrogels, have afforded properties such as absorbency, ease of application and removal, bacterial protection, ...

  7. Polysaccharides and Cellulose in the Design of Wound Healing Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic Wound Dressings that Sequester Harmful Proteases: Traditionally the use of carbohydrate-based wound dressings including cotton, xerogels, charcoal cloth, alginates, chitosan and hydrogels, have afforded properties such as absorbency, ease of application and removal, bacterial protection, flu...

  8. Acemannan-containing wound dressing gel reduces radiation-induced skin reactions in C3H mice

    SciTech Connect

    Roberts, D.B.; Travis, E.L.

    1995-07-15

    To determine (a) whether a wound dressing gel that contains acemannan extracted from aloe leaves affects the severity of radiation-induced acute skin reactions in C3H mice; (b) if so, whether other commercially available gels such as a personal lubricating jelly and a healing ointment have similar effects; and (c) when the wound dressing gel should be applied for maximum effect. Male C3H mice received graded single doses of gamma radiation ranging from 30 to 47.5 Gy to the right leg. In most experiments, the gel was applied daily beginning immediately after irradiation. Dose-response curves were obtained by plotting the percentage of mice that reached or exceeded a given peak skin reaction as a function of dose. Curves were fitted by logit analysis and ED{sub 50} values, and 95% confidence limits were obtained. The average peak skin reactions of the wound dressing gel-treated mice were lower than those of the untreated mice at all radiation doses tested. The ED{sub 50} values for skin reactions of 2.0-2.75 were approximately 7 Gy higher in the wound dressing gel-treated mice. The average peak skin reactions and the ED{sub 50} values for mice treated with personal lubricating jelly or healing ointment were similar to irradiated control values. Reduction in the percentage of mice with skin reactions of 2.5 or more was greatest in the groups that received wound dressing gel for at least 2 weeks beginning immediately after irradiation. There was no effect if gel was applied only before irradiation or beginning 1 week after irradiation. Wound dressing gel, but not personal lubricating jelly or healing ointment, reduces acute radiation-induced skin reactions in C3H mice if applied daily for at least 2 weeks beginning immediately after irradiation. 31 refs., 4 figs., 1 tab.

  9. Audit of the use of sugar dressings for the control of wound odour at Lilongwe Central Hospital, Malawi.

    PubMed

    Chiwenga, S; Dowlen, Henry; Mannion, Steve

    2009-01-01

    Seventy-one patients with malodorous, painful wounds were treated with sugar dressings in Lilongwe Hospital, Malawi, to assess the effects of such dressings on diminishing pain and odour. Pain and odour were assessed at the beginning of dressing application and then at frequent intervals. Mean patient odour scores reduced from 5.45 (out of 10) on application to 2.94 at 10 days, and mean patient discomfort scores reduced from 6.73 on application to 3.87 at 10 days. This very cheap treatment produced reproducible benefits as part of an appropriate protocol for use in developing world hospitals with limited resources and nursing care.

  10. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study

    PubMed Central

    Li, Chenwen; Fu, Ruoqiu; Yu, Caiping; Li, Zhuoheng; Guan, Haiyan; Hu, Daqiang; Zhao, Dehua; Lu, Laichun

    2013-01-01

    In this study, a mixture of poly(vinyl alcohol) (PVA) and chitosan oligosaccharides (COS) was electrospun with silver nanoparticles (AgNPs) to produce fibrous mats for use in wound healing. The AgNPs were reduced by COS prior to electrospinning or Ag+ was reduced via ultraviolet irradiation in nanofibers. The morphologies of the PVA/COS/AgNO3 and PVA/COS-AgNP nanofibers were analyzed by scanning electron microscopy. Formation of the AgNPs was investigated by field emission transmission electron microscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. We also evaluated the biocompatibility of the nanofibers, particularly their cytotoxicity to human skin fibroblasts and potential to cause primary skin irritation. The in vitro antibacterial activity and in vivo wound healing capacity of the nanofibers were also investigated. The nanofibers had a smooth surface with an average diameter of 130–192 nm. The diameters of the AgNPs were in the range of 15–22 nm. The nanofibers significantly inhibited growth of Escherichia coli and Staphylococcus aureus bacteria. PVA/COS-AgNP nanofibers accelerated the rate of wound healing over that of the control (gauze). The results of our in vitro and in vivo animal experiments suggest that PVA/COS-AgNP nanofibers should be of greater interest than PVA/COS/AgNO3 nanofibers for clinical use as a bioactive wound dressing. PMID:24204142

  11. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study.

    PubMed

    Li, Chenwen; Fu, Ruoqiu; Yu, Caiping; Li, Zhuoheng; Guan, Haiyan; Hu, Daqiang; Zhao, Dehua; Lu, Laichun

    2013-01-01

    In this study, a mixture of poly(vinyl alcohol) (PVA) and chitosan oligosaccharides (COS) was electrospun with silver nanoparticles (AgNPs) to produce fibrous mats for use in wound healing. The AgNPs were reduced by COS prior to electrospinning or Ag(+) was reduced via ultraviolet irradiation in nanofibers. The morphologies of the PVA/COS/AgNO3 and PVA/COS-AgNP nanofibers were analyzed by scanning electron microscopy. Formation of the AgNPs was investigated by field emission transmission electron microscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. We also evaluated the biocompatibility of the nanofibers, particularly their cytotoxicity to human skin fibroblasts and potential to cause primary skin irritation. The in vitro antibacterial activity and in vivo wound healing capacity of the nanofibers were also investigated. The nanofibers had a smooth surface with an average diameter of 130-192 nm. The diameters of the AgNPs were in the range of 15-22 nm. The nanofibers significantly inhibited growth of Escherichia coli and Staphylococcus aureus bacteria. PVA/COS-AgNP nanofibers accelerated the rate of wound healing over that of the control (gauze). The results of our in vitro and in vivo animal experiments suggest that PVA/COS-AgNP nanofibers should be of greater interest than PVA/COS/AgNO3 nanofibers for clinical use as a bioactive wound dressing.

  12. Silver-Zinc Redox-Coupled Electroceutical Wound Dressing Disrupts Bacterial Biofilm

    PubMed Central

    Roy, Sashwati; Khanna, Savita; Hemann, Craig; Deng, Binbin; Das, Amitava; Zweier, Jay L.; Wozniak, Daniel; Sen, Chandan K.

    2015-01-01

    Pseudomonas aeruginosa biofilm is commonly associated with chronic wound infection. A FDA approved wireless electroceutical dressing (WED), which in the presence of conductive wound exudate gets activated to generate electric field (0.3–0.9V), was investigated for its anti-biofilm properties. Growth of pathogenic P. aeruginosa strain PAO1 in LB media was markedly arrested in the presence of the WED. Scanning electron microscopy demonstrated that WED markedly disrupted biofilm integrity in a setting where silver dressing was ineffective. Biofilm thickness and number of live bacterial cells were decreased in the presence of WED. Quorum sensing genes lasR and rhlR and activity of electric field sensitive enzyme, glycerol-3-phosphate dehydrogenase was also repressed by WED. This work provides first electron paramagnetic resonance spectroscopy evidence demonstrating that WED serves as a spontaneous source of reactive oxygen species. Redox-sensitive multidrug efflux systems mexAB and mexEF were repressed by WED. Taken together, these observations provide first evidence supporting the anti-biofilm properties of WED. PMID:25803639

  13. Silver sulfadiazine loaded chitosan/chondroitin sulfate films for a potential wound dressing application.

    PubMed

    Fajardo, André R; Lopes, Laís C; Caleare, Angelo O; Britta, Elizandra A; Nakamura, Celso V; Rubira, Adley F; Muniz, Edvani C

    2013-03-01

    Silver sulfadiazine (AgSD) loaded chitosan/chondroitin sulfate (CHI/CS) films were formed to be applied as a potential wound dressing material. The liquid uptake capacity of both, CHI/CS and CHI/CS/AgSD, films exhibited a pH-dependent behavior. Tensile tests showed that the amount of CS used to form the films and the further incorporation of AgSD affect the mechanical properties of the films. In vitro AgSD-release assays showed that the CHI/CS mass ratio influences the AgSD release rate. All the investigated CHI/CS/AgSD films sustain the AgSD release up to 96h at physiological pH. Antibacterial activity and cell viability assays showed that all the CHI/CS/AgSD films have activity against Pseudomonas aeruginosa and Staphylococcus aureus but they were not toxic to Vero cells. The results presented in this work indicate that the CHI/CS/AgSD exhibits potential to be applied as a wound dressing material.

  14. Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings.

    PubMed

    Klinkajon, Wimonwan; Supaphol, Pitt

    2014-08-01

    The incorporation of a metal ion, with antimicrobial activity, into an alginate dressing is an attractive approach to minimize infection in a wound. In this work, copper (II) cross-linked alginate hydrogels were successfully prepared using a two-step cross-linking procedure. In the first step, solid alginate films were prepared using a solvent-casting method from soft gels of alginate solutions that had been lightly cross-linked using a copper (II) (Cu(2+)) sulfate solution. In the second step, the films were further cross-linked in a corresponding Cu(2+) sulfate solution using a dipping method to further improve their dimensional stability. Alginate solution (at 2%w/v) and Cu(2+) sulfate solution (at 2%w/v) in acetate buffer at a low pH provided soft films with excellent swelling behavior. An increase in either Cu(2+) ion concentration or cross-linking time led to hydrogels with more densely-cross-linked networks that limited water absorption. The hydrogels clearly showed antibacterial activity against Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis and Streptococcus pyogenes, which was proportional to the Cu(2+) ion concentration. Blood coagulation studies showed that the tested copper (II) cross-linked alginate hydrogels had a tendency to coagulate fibrin, and possibly had an effect on pro-thrombotic coagulation and platelet activation. Conclusively, the prepared films are likely candidates as antibacterial wound dressings.

  15. Preparation of silver-chitosan nanocomposites and coating on bandage for antibacterial wound dressing application

    NASA Astrophysics Data System (ADS)

    Susilowati, Endang; Maryani, Ashadi

    2016-02-01

    Bandage is a medical device that is essential for wound dressing. To improve the performance of the bandage, it has been coated by silver-chitosan nanocomposites (Ag/Chit) with pad-dry-cure method. The nanocomposites were performed by chemical reduction method at room temperature using glucose as reducing agent, sodium hydroxide (NaOH) as accelerator reagent, silver nitrate (AgNO3) as metal precursor and chitosan as stabilizing agent. Localized surface plasmon resonance (LSPR) absorption band of silver nanoparticles was investigated using UV-Vis spectrophotometer. The bandage coated Ag/Chit nanocomposites (B-Ag/Chit) were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). In addition, antibacterial activity of the bandage toward Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) were also studied. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 412.2 - 423.2 nm. Coating of nanocomposite cause increasing rigidity of bandage and decreasing on crystallinity. The bandages of B-Ag/Chit demonstrated good activity against both Gram positive (S. aureus) and Gram negative (E.Coli). Thus the bandages have a potential to be used for antibacterial wound dressing application.

  16. Preparation of silver-chitosan nanocomposites and coating on bandage for antibacterial wound dressing application

    SciTech Connect

    Susilowati, Endang Ashadi; Maryani

    2016-02-08

    Bandage is a medical device that is essential for wound dressing. To improve the performance of the bandage, it has been coated by silver-chitosan nanocomposites (Ag/Chit) with pad-dry-cure method. The nanocomposites were performed by chemical reduction method at room temperature using glucose as reducing agent, sodium hydroxide (NaOH) as accelerator reagent, silver nitrate (AgNO{sub 3}) as metal precursor and chitosan as stabilizing agent. Localized surface plasmon resonance (LSPR) absorption band of silver nanoparticles was investigated using UV-Vis spectrophotometer. The bandage coated Ag/Chit nanocomposites (B-Ag/Chit) were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). In addition, antibacterial activity of the bandage toward Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) were also studied. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 412.2 – 423.2 nm. Coating of nanocomposite cause increasing rigidity of bandage and decreasing on crystallinity. The bandages of B-Ag/Chit demonstrated good activity against both Gram positive (S. aureus) and Gram negative (E.Coli). Thus the bandages have a potential to be used for antibacterial wound dressing application.

  17. Assessment of reinforced poly(ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model.

    PubMed

    Chen, Szu-Hsien; Tsao, Ching-Ting; Chang, Chih-Hao; Lai, Yi-Ting; Wu, Ming-Fung; Chuang, Ching-Nan; Chou, Hung-Chia; Wang, Chih-Kuang; Hsieh, Kuo-Haung

    2013-07-01

    Wound dressings of chitosan are biocompatible, biodegradable, antibacterial and hemostatic biomaterials. However, applications for chitosan are limited due to its poor mechanical properties. Here, we conducted an in vivo mouse angiogenesis study on reinforced poly(ethylene glycol) (PEG)-chitosan (RPC) hydrogels. RPC hydrogels were formed by cross-linking chitosan with PEGs of different molecular weights at various PEG to chitosan ratios in our previous paper. These dressings can keep the wound moist, had good gas exchange capacity, and was capable of absorbing or removing the wound exudate. We examined the ability of these RPC hydrogels and neat chitosan to heal small cuts and full-thickness skin defects on the backs of male Balb/c mice. Histological examination revealed that chitosan suppressed the infiltration of inflammatory cells and accelerated fibroblast proliferation, while PEG enhanced epithelial migration. The RPC hydrogels promoted wound healing in the small cuts and full layer wounds. The optimal RPC hydrogel had a swelling ratio of 100% and a water vapor transmission rate (WVTR) of about 2000 g/m(2)/day. In addition, they possess good mechanical property and appropriate degradation rates. Thus, the optimal RPC hydrogel formulation functioned effectively as a wound dressing and promoted wound healing.

  18. Fabrication and structure analysis of poly(lactide-co-glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications.

    PubMed

    Shahverdi, Sheida; Hajimiri, Mirhamed; Esfandiari, Mohammad Amin; Larijani, Bagher; Atyabi, Fatemeh; Rajabiani, Afsaneh; Dehpour, Ahmad Reza; Gharehaghaji, Ali Akbar; Dinarvand, Rassoul

    2014-10-01

    Silk fibroin (SF) and poly(lactide-co-glycolic acid) (PLGA) have been proved to be invaluable polymers in the field wound healing. This study aims at optimizing the electrospinning process of those polymers to make a hybrid membrane as a chronic wounds dressing. After characterizing the scaffolds, PLGA/SF (2:1), and PLGA scaffolds were selected for further study according to their superior tensile mechanical properties. The attachment and proliferation of mouse fibroblasts (L929) on scaffolds were measured using colorimetric assay and scanning electron microscopy. Furthermore, to evaluate the wound healing effect of the scaffolds in comparison with gauze and Comfeel(®) dressings, an excision wound model was conducted on diabetic rats. On the postoperative days of 3, 6, 9, 12, and 15, residual wound area was calculated using macroscopic data. In vitro results showed that the attachment and proliferation of L929 were significantly increased on PLGA/SF (2:1) hybrid scaffold. Animal study and histopathological evaluation outcomes confirmed the in vitro results as well. On day 15, the residual wound area in PLGA/SF (2:1) hybrid membrane group was significantly smaller than PLGA and control groups. This promising scaffold has the potential to be used for the upcoming development of wound dressings with or without biological drugs.

  19. Wound closure after split-thickness skin grafting is accelerated with the use of continuous direct anodal microcurrent applied to silver nylon wound contact dressings.

    PubMed

    Huckfeldt, Roger; Flick, A Bart; Mikkelson, Debbie; Lowe, Cindy; Finley, Phillip J

    2007-01-01

    Wound healing after graft closure of excised burn wounds is a critical factor in the recovery process after thermal injury. Processes that speed time to stable wound closure should lead to improved outcomes, shorter lengths of hospital stays, and decreased complications. A randomized clinical trial to test the ability of continuous direct anodal microcurrent application to silver nylon wound contact dressings was designed. Time for wound closure after split-thickness skin grafting was observed. Thirty patients with full-thickness thermal burns were randomized into two groups. The control group received postoperative dressing care using moistened silver nylon fabric covered with gauze after tangential burn wound excision and split-thickness skin grafting. The study group received an identical protocol with the addition of continuous direct anodal microcurrent application. Time to 95% wound closure was measured using digital photography. The digital photographs were evaluated by a burn surgeon blinded to the patient's randomization. An independent t-test was used to analyze the data. The study group experienced a 36% reduction in time to wound closure (mean of 4.6 days) as compared to the control group (mean of 7.2 days). This was statistically significant at a P value of <.05. The use of continuous direct anodal microcurrent decreased time to wound closure after split-thickness skin grafting.

  20. Physico-chemical properties and efficacy of silk fibroin fabric coated with different waxes as wound dressing.

    PubMed

    Kanokpanont, Sorada; Damrongsakkul, Siriporn; Ratanavaraporn, Juthamas; Aramwit, Pornanong

    2013-04-01

    Silk fibroin (SF) has been widely used as a wound dressing material due to its suitable physical and biological characteristics. In this study, a non-adhesive wound dressing which applies to cover the wound surface as an absorbent pad that would absorb wound fluid while accelerate wound healing was developed. The modification of SF fabrics by wax coating was purposed to prepare the non-adhesive wound dressing that is required in order to minimize pain and risk of repeated injury. SF woven fabrics were coated with different types of waxes including shellac wax, beeswax, or carnauba wax. Physical and mechanical properties of the wax-coated SF fabrics were characterized. It was clearly observed that all waxes could be successfully coated on the SF fabrics, possibly due to the hydrophobic interactions between hydrophobic domains of SF and waxes. The wax coating improved tensile modulus and percentage of elongation of the SF fabrics due to the denser structure and the thicker fibers coated. The in vitro degradation study demonstrated that all wax-coated SF fabrics remained up to 90% of their original weights after 7 weeks of incubation in lysozyme solution under physiological conditions. The wax coating did not affect the degradation behavior of the SF fabrics. A peel test of the wax-coated SF fabrics was carried out in the partial- and full-thickness wounds of porcine skin in comparison to that of the commercial wound dressing. Any wax-coated SF fabrics were less adhesive than the control, as confirmed by less number of cells attached and less adhesive force. This might be that the wax-coated SF fabrics showed the hydrophobic property, allowing the loosely adherence to the hydrophilic wound surface. In addition, the in vivo biocompatibility test of the wax-coated SF fabrics was performed in Sprague-Dawley rats with subcutaneous model. The irritation scores indicated that the carnauba wax-coated SF fabric was not irritant while the shellac wax or beeswax-coated SF

  1. Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing.

    PubMed

    Chen, Yu; Zhang, Yong; Wang, Fengju; Meng, Weiwei; Yang, Xinlin; Li, Peng; Jiang, Jianxin; Tan, Huimin; Zheng, Yongfa

    2016-06-01

    The volume phase transition of a hydrogel initiated by shrinking may result in complex patterns on its surface. Based on this unique property of hydrogel, we have developed a novel solvent precipitation method to prepare a kind of novel superabsorbent polymers with excellent hemostatic properties. A porous carboxymethyl chitosan grafted poly (acrylic acid) (CMCTS-g-PAA) superabsorbent polymer was prepared by precipitating CMCTS-g-PAA hydrogel with ethanol. Its potential application in hemostatic wound dressing was investigated. The results indicate that the modified superabsorbent polymer is non-cytotoxic. It showed a high swelling capacity and better hemostatic performance in the treatments of hemorrhage model of ear artery, arteria cruralis and spleen of the New Zealand white rabbit than the unmodified polymer and other commonly used clinic wound dressings. The hemostatic mechanism of the porous CMCTS-g-PAA polymer was also discussed.

  2. Semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing.

    PubMed

    Kweon, Haeyong; Yeo, Joo-hong; Lee, Kwang-gill; Lee, Hyun Chul; Na, Hee Sam; Won, Young Ho; Cho, Chong Su

    2008-09-01

    Semi-interpenetrating polymer networks (SIPNs) composed of silk fibroin (SF) and poly(ethylene glycol) (PEG) were prepared by photopolymerization of a PEG macromer in the presence of SF to improve the mechanical properties of SF sponge as wound dressing. The morphological structure of the SF/PEG SIPNs was observed to be composed of an interconnected microporous surface and a cross-sectional area. SF/PEG SIPNs showed non-cytotoxicity evaluated by a cell proliferation method using L929 fibroblasts. Wound contraction treated with SF/PEG SIPNs sponges was faster than that of Vaseline gauze as a control. Histological observation confirmed that the deposition of collagen in the dermis was organized by covering the wound area with SF/PEG SIPNs. The above results indicated that SF/PEG SIPNs could be used as wound dressing.

  3. Release of insulin from PLGA-alginate dressing stimulates regenerative healing of burn wounds in rats.

    PubMed

    Dhall, Sandeep; Silva, João P; Liu, Yan; Hrynyk, Michael; Garcia, Monika; Chan, Alex; Lyubovitsky, Julia; Neufeld, Ronald J; Martins-Green, Manuela

    2015-12-01

    Burn wound healing involves a complex set of overlapping processes in an environment conducive to ischaemia, inflammation and infection costing $7.5 billion/year in the U.S.A. alone, in addition to the morbidity and mortality that occur when the burns are extensive. We previously showed that insulin, when topically applied to skin excision wounds, accelerates re-epithelialization and stimulates angiogenesis. More recently, we developed an alginate sponge dressing (ASD) containing insulin encapsulated in PLGA [poly(D,L-lactic-co-glycolic acid)] microparticles that provides a sustained release of bioactive insulin for >20 days in a moist and protective environment. We hypothesized that insulin-containing ASD accelerates burn healing and stimulates a more regenerative, less scarring healing. Using heat-induced burn injury in rats, we show that burns treated with dressings containing 0.04 mg insulin/cm(2) every 3 days for 9 days have faster closure, a higher rate of disintegration of dead tissue and decreased oxidative stress. In addition, in insulin-treated wounds, the pattern of neutrophil inflammatory response suggests faster clearing of the burned dead tissue. We also observe faster resolution of the pro-inflammatory macrophages. We also found that insulin stimulates collagen deposition and maturation with the fibres organized more like a basket weave (normal skin) than aligned and cross-linked (scar tissue). In summary, application of ASD-containing insulin-loaded PLGA particles on burns every 3 days stimulates faster and more regenerative healing. These results suggest insulin as a potential therapeutic agent in burn healing and, because of its long history of safe use in humans, insulin could become one of the treatments of choice when repair and regeneration are critical for proper tissue function.

  4. A study on the ability of quaternary ammonium groups attached to a polyurethane foam wound dressing to inhibit bacterial attachment and biofilm formation.

    PubMed

    Tran, Phat L; Hamood, Abdul N; de Souza, Anselm; Schultz, Gregory; Liesenfeld, Bernd; Mehta, Dilip; Reid, Ted W

    2015-01-01

    Bacterial infection of acute and chronic wounds impedes wound healing significantly. Part of this impediment is the ability of bacterial pathogens to grow in wound dressings. In this study, we examined the effectiveness of a polyurethane (PU) foam wound dressings coated with poly diallyl-dimethylammonium chloride (pDADMAC-PU) to inhibit the growth and biofilm development by three main wound pathogens, Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, within the wound dressing. pDADMAC-PU inhibited the growth of all three pathogens. Time-kill curves were conducted both with and without serum to determine the killing kinetic of pDADMAC-PU. pDADMAC-PU killed S. aureus, A. baumannii, and P. aeruginosa. The effect of pDADMAC-PU on biofilm development was analyzed quantitatively and qualitatively. Quantitative analysis, colony-forming unit assay, revealed that pDADMAC-PU dressing produced more than eight log reduction in biofilm formation by each pathogen. Visualization of the biofilms by either confocal laser scanning microscopy or scanning electron microscopy confirmed these findings. In addition, it was found that the pDADMAC-PU-treated foam totally inhibited migration of bacteria through the foam for all three bacterial strains. These results suggest that pDADMAC-PU is an effective wound dressing that inhibits the growth of wound pathogens both within the wound and in the wound dressing.

  5. Quercetin impregnated chitosan-fibrin composite scaffolds as potential wound dressing materials - Fabrication, characterization and in vivo analysis.

    PubMed

    Vedakumari, Weslen S; Ayaz, Nazeeha; Karthick, Arun S; Senthil, Rethinam; Sastry, Thotapalli P

    2017-01-15

    The present study efforts at fabricating chitosan-fibrin composite (CF) scaffolds impregnated with quercetin for wound dressing application and aims at investigating their physicochemical properties. CF scaffolds were prepared by mixing acidic solution of chitosan with an alkaline solution of fibrin, to which quercetin (Q) was added, homogenized and lyophilized obtain Q-CF scaffold. FTIR spectra were used to determine the interactions between the functional groups of quercetin and CF scaffolds. TGA analysis revealed the decomposition of saccharide rings and amino acids of chitosan and fibrin at the temperature range of 255-400°C. Q-CF scaffold exhibited maximum tensile strength of 1.45MPa, an ideal mechanical strength for a wound dressing material. Q-CF scaffolds exhibited good bactericidal activity against Escherichia coli and Staphylococcus aureus. Biocompatibility of Q-CF scaffold was assessed using MTT assay, which elucidated its non-toxic property and excellent suitability for tissue engineering applications. In vivo wound healing experiments performed using albino rats revealed that topical application of Q-CF scaffold on open excision type of wounds can significantly accelerate the process of wound healing. These results suggest that Q-CF scaffold could serve as a promising wound dressing material.

  6. Preparation and characterization of silver nanoparticles on silk fibroin/carboxymethylchitosan composite sponge as anti-bacterial wound dressing.

    PubMed

    Pei, Zejun; Sun, Qing; Sun, Xin; Wang, Yaping; Zhao, Peng

    2015-01-01

    The infection in burn wounds covered by biologic dressings leads to wound deepening and chronic wounds. The introduction of silver nanoparticles (AgNPs) into biologic dressings is a beneficial method to prevent wound infection and simultaneously promote wound healing. In this study, an AgNP-loaded silk fibroin (SF)/carboxymethylchitosan (CMC) composite sponge was fabricated. AgNPs with a mean diameter of 4.9 nm was synthesized in SF solution in situ. While CMC was incorporated and chemically crosslinked, SF was insolubilized by ethanol annealing. SEM imaging determined that the AgNP-loaded SF/CMC sponge was more porous than the pure SF sponge. Anti-bacterial results, measured by disk-diffusion and bacterial suspension assay, showed that the AgNP-loaded SF/CMC sponge demonstrated effective anti-bacterial activity against S. aureus and P. aeruginosa, and that its anti-P. aeruginosa activity was higher than that of AQUACEL®; Ag. The introduction of CMC improved the water absorption capacity, retention ability, and water vapor transmission rate of the sponge, which are all important properties of wound dressings.

  7. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications.

    PubMed

    Lin, Wen-Chun; Lien, Chun-Chieh; Yeh, Hsiu-Jen; Yu, Chao-Ming; Hsu, Shan-Hui

    2013-04-15

    Bacterial cellulose (BC) and bacterial cellulose-chitosan (BC-Ch) membranes were successfully produced in large scale. BC was synthesized by Acetobacter xylinum. BC-Ch was prepared by immersing BC in chitosan followed by freeze-drying. The surface morphology of BC and BC-Ch membranes were examined by a scanning electron microscope (SEM). SEM images showed that BC-Ch possessed a denser fibril network with smaller pores than BC. Infrared spectroscopy was used to confirm the incorporation of chitosan in BC-Ch. The swelling behavior, water retention capacity, and mechanical properties of BC and BC-Ch were further evaluated. Results indicated that both membranes maintained proper moisture contents for an extensive period without dehydration. The tensile strength and elongation at break for BC-Ch were slightly lower while the Young's modulus was higher. Cell culture studies demonstrated that BC and BC-Ch had no cytotoxicity. In the antibacterial test, the addition of chitosan in BC showed significant growth inhibition against Escherichia coli and Staphylococcus aureus. The effects of BC and BC-Ch on skin wound healing were assessed by rat models. Histological examinations revealed that wounds treated with BC-Ch epithelialized and regenerated faster than those treated with BC or Tegaderm. Therefore, BC-Ch was considered as a potential candidate for wound dressing materials.

  8. 21 CFR 878.4015 - Wound dressing with poly (diallyl dimethyl ammonium chloride) (pDADMAC) additive.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wound dressing with poly (diallyl dimethyl ammonium chloride) (pDADMAC) additive. 878.4015 Section 878.4015 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC...

  9. 21 CFR 878.4015 - Wound dressing with poly (diallyl dimethyl ammonium chloride) (pDADMAC) additive.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wound dressing with poly (diallyl dimethyl ammonium chloride) (pDADMAC) additive. 878.4015 Section 878.4015 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC...

  10. 21 CFR 878.4015 - Wound dressing with poly (diallyl dimethyl ammonium chloride) (pDADMAC) additive.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wound dressing with poly (diallyl dimethyl ammonium chloride) (pDADMAC) additive. 878.4015 Section 878.4015 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC...

  11. 21 CFR 878.4015 - Wound dressing with poly (diallyl dimethyl ammonium chloride) (pDADMAC) additive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wound dressing with poly (diallyl dimethyl ammonium chloride) (pDADMAC) additive. 878.4015 Section 878.4015 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC...

  12. 21 CFR 878.4015 - Wound dressing with poly (diallyl dimethyl ammonium chloride) (pDADMAC) additive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wound dressing with poly (diallyl dimethyl ammonium chloride) (pDADMAC) additive. 878.4015 Section 878.4015 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC...

  13. Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound.

    PubMed

    Shan, Ying-Hui; Peng, Li-Hua; Liu, Xin; Chen, Xi; Xiong, Jie; Gao, Jian-Qing

    2015-02-20

    Functional wound dressing has provided new challenges for researchers who focus on burn to improve skin graft quality, reduce scarring, and develop a pluristratified dermal or epidermal construct of a burn wound. This study aimed to investigate the effect of a silk fibroin/gelatin (SF/GT) electrospun nanofibrous dressing loaded with astragaloside IV (AS) on deep partial-thickness burn wound. AS-loaded SF/GT-blended nanofibrous dressing was prepared by electrospinning nanotechnology. The optimal ratio (25:75) of silk fibroin to gelatin was further optimized by evaluating ATR-FTIR characteristics, mechanical properties, porosity, swelling rate, degradation, and release profile of the AS-loaded SF/GT nanofibrous dressing. In contrast to the blank control, the AS-loaded SF/GT nanofibrous dressing promoted cell adhesion and proliferation with good biocompatibility in vitro (p<0.01). This dressing also accelerated wound healing and inhibited scar formation in vivo by stimulating wound closure (p<0.05), increasing angiogenesis, regulating newly formed types of collagen, and improving collagen organization. These results showed that SF/GT nanofibrous dressing is a promising topical drug delivery system. Furthermore, AS-functionalized SF/GT nanofibrous dressing is an excellent topical therapeutic that could be applied to promote healing and elicit anti-scar effects on partial-thickness burn wound.

  14. Induction of Low-Level Hydrogen Peroxide Generation by Unbleached Cotton Nonwovens as Potential Wound Dressing Materials

    PubMed Central

    Edwards, J. Vincent; Prevost, Nicolette T.; Nam, Sunghyun; Hinchliffe, Doug; Condon, Brian; Yager, Dorne

    2017-01-01

    Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD), and trace metals, which are associated with hydrogen peroxide (H2O2) generation during cotton fiber development. Traditionally, the processing of cotton into gauze involves scouring and bleaching processes that remove the components in the cuticle and primary cell wall. The use of unbleached, greige cotton fibers in dressings, has been relatively unexplored. We have recently determined that greige cotton can generate low levels of H2O2 (5–50 micromolar). Because this may provide advantages for the use of greige cotton-based wound dressings, we have begun to examine this in more detail. Both brown and white cotton varieties were examined in this study. Brown cotton was found to have a relatively higher hydrogen peroxide generation and demonstrated different capacities for H2O2 generation, varying from 1 to 35 micromolar. The H2O2 generation capacities of white and brown nonwoven greige cottons were also examined at different process stages with varying chronology and source parameters, from field to nonwoven fiber. The primary cell wall of nonwoven brown cotton appeared very intact, as observed by transmission electron microscopy, and possessed higher pectin levels. The levels of pectin, SOD, and polyphenolics, correlated with H2O2 generation. PMID:28272304

  15. Induction of Low-Level Hydrogen Peroxide Generation by Unbleached Cotton Nonwovens as Potential Wound Dressing Materials.

    PubMed

    Edwards, J Vincent; Prevost, Nicolette T; Nam, Sunghyun; Hinchliffe, Doug; Condon, Brian; Yager, Dorne

    2017-03-06

    Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD), and trace metals, which are associated with hydrogen peroxide (H₂O₂) generation during cotton fiber development. Traditionally, the processing of cotton into gauze involves scouring and bleaching processes that remove the components in the cuticle and primary cell wall. The use of unbleached, greige cotton fibers in dressings, has been relatively unexplored. We have recently determined that greige cotton can generate low levels of H₂O₂ (5-50 micromolar). Because this may provide advantages for the use of greige cotton-based wound dressings, we have begun to examine this in more detail. Both brown and white cotton varieties were examined in this study. Brown cotton was found to have a relatively higher hydrogen peroxide generation and demonstrated different capacities for H₂O₂ generation, varying from 1 to 35 micromolar. The H₂O₂ generation capacities of white and brown nonwoven greige cottons were also examined at different process stages with varying chronology and source parameters, from field to nonwoven fiber. The primary cell wall of nonwoven brown cotton appeared very intact, as observed by transmission electron microscopy, and possessed higher pectin levels. The levels of pectin, SOD, and polyphenolics, correlated with H₂O₂ generation.

  16. Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings.

    PubMed

    Zhao, Rui; Li, Xiang; Sun, Bolun; Zhang, Ying; Zhang, Dawei; Tang, Zhaohui; Chen, Xuesi; Wang, Ce

    2014-07-01

    Chitosan and sericin are natural and low cost biomaterials. Both biomaterials displayed good compatibility to human tissues and antibacterial properties for biomedical application. In this study, we have successfully fabricated chitosan/sericin composite nanofibers by electrospinning. The obtained composite nanofibers were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) studies. The composite nanofibers had good morphology with diameter between 240nm and 380nm. In vitro methyl thiazolyl tetrazolium (MTT) assays demonstrated that the chitosan/sericin composite nanofibers were biocompatible and could promote the cell proliferation. Furthermore, the composite nanofibers showed good bactericidal activity against both of Gram-positive and Gram-negative bacteria. Thus, the chitosan/sericin composite nanofibers are promising for wound dressing applications.

  17. Bluebelle study (phase A): a mixed-methods feasibility study to inform an RCT of surgical wound dressing strategies

    PubMed Central

    2016-01-01

    Objectives Dressing primary surgical wounds is common, but the implications for surgical site infection (SSI) remain unknown. The Bluebelle study aimed to determine the feasibility of a randomised controlled trial (RCT) comparing ‘simple’, ‘complex’ or ‘no’ dressings on abdominal wounds, as prespecified in a funder's research brief. Bluebelle includes exploratory work (phase A) to inform a pilot version of the proposed RCT (phase B). Phase A aimed to investigate current dressing practices and perspectives on the proposed RCT, with a view to refining the forthcoming pilot. Design Mixed methods, including semi-structured interviews and document analysis. Setting 6 UK hospitals. Participants 51 patients and 92 clinical professionals from abdominal surgical specialities. Results Professionals had variable interpretations of what constitutes a ‘dressing’, particularly with respect to ‘glue’—a product listed under ‘wound-closure products’ in the British National Formulary, which some surgeons reportedly applied as a ‘wound covering’. Areas of ambiguity arising from interviews informed development of pragmatic definitions, including specification of conditions under which glue constituted a ‘dressing’. Professionals reported that ‘simple’ dressings were routinely used in practice, whereas ‘complex’ dressings were not. This raised questions about the relevance of comparison groups, prompting the design of a survey to determine the types/frequency of dressing use in abdominal surgery (reported elsewhere). This confirmed that complex dressings were rarely used, while ‘glue as a dressing’ was used relatively frequently. ‘Complex dressings’ were therefore substituted for ‘glue as a dressing’ (following an updated Cochrane review, which found insufficient evidence to determine the effectiveness of ‘glue as a dressing’). Patients and professionals acknowledged uncertainty around dressing use and SSI prevention, but felt

  18. Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications

    PubMed Central

    Hassiba, Alaa J; El Zowalaty, Mohamed E; Webster, Thomas J; Abdullah, Aboubakr M; Nasrallah, Gheyath K; Khalil, Khalil Abdelrazek; Luyt, Adriaan S; Elzatahry, Ahmed A

    2017-01-01

    Herein, novel hybrid nanomaterials were developed for wound dressing applications with antimicrobial properties. Electrospinning was used to fabricate a double layer nanocomposite nanofibrous mat consisting of an upper layer of poly(vinyl alcohol) and chitosan loaded with silver nanoparticles (AgNPs) and a lower layer of polyethylene oxide (PEO) or polyvinylpyrrolidone (PVP) nanofibers loaded with chlorhexidine (as an antiseptic). The top layer containing AgNPs, whose purpose was to protect the wound site against environmental germ invasion, was prepared by reducing silver nitrate to its nanoparticulate form through interaction with chitosan. The lower layer, which would be in direct contact with the injured site, contained the antibiotic drug needed to avoid wound infections which would otherwise interfere with the healing process. Initially, the upper layer was electrospun, followed sequentially by electrospinning the second layer, creating a bilayer nanofibrous mat. The morphology of the nanofibrous mats was studied by scanning electron microscopy and transmission electron microscopy, showing successful nanofiber production. X-ray diffraction confirmed the reduction of silver nitrate to AgNPs. Fourier transform infrared spectroscopy showed a successful incorporation of the material used in the produced nanofibrous mats. Thermal studies carried out by thermogravimetric analysis indicated that the PVP–drug-loaded layer had the highest thermal stability in comparison to other fabricated nanofibrous mats. Antimicrobial activities of the as-synthesized nanofibrous mats against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans were determined using disk diffusion method. The results indicated that the PEO–drug-loaded mat had the highest antibacterial activity, warranting further attention for numerous wound-healing applications. PMID:28356737

  19. Wound bed preparation 2014 update: management of critical colonization with a gentian violet and methylene blue absorbent antibacterial dressing and elevated levels of matrix metalloproteases with an ovine collagen extracellular matrix dressing.

    PubMed

    Sibbald, R Gary; Ovington, Liza G; Ayello, Elizabeth A; Goodman, Laurie; Elliott, James A

    2014-03-01

    Wound bed preparation (WBP) is a paradigm for holistic patient care that includes treatment of the cause along with patient-centered concerns before optimizing the components of local wound care (debridement, infection/inflammation, moisture balance, and, when required, the edge effect). This review incorporates a methylene blue and gentian violet bound foam dressing for critical colonization and an ovine collagen extracellular matrix dressing for reduction of elevated levels of matrix metalloproteases into the WBP paradigm.

  20. Positively and Negatively Charged Ionic Modifications to Cellulose Assessed as Cotton-Based Protease-Lowering and Haemostatic Wound Agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent developments in cellulose wound dressings targeted to different stages of wound healing have been based on structural and charge modifications that function to modulate events in the complex inflammatory and hemostatic phases of wound healing. Hemostasis and inflammation comprise two overlapp...

  1. Development of chitosan-collagen hydrogel incorporated with lysostaphin (CCHL) burn dressing with anti-methicillin-resistant Staphylococcus aureus and promotion wound healing properties.

    PubMed

    Cui, Fuying; Li, Guodong; Huang, Jinjiang; Zhang, Jien; Lu, Min; Lu, Wanying; Huan, Jingning; Huang, Qingshan

    2011-04-01

    Methicillin-resistant Staphylococcus aureus (MRSA) have become increasingly prevalent as nosocomial pathogens, especially in burn patients, which is the leading cause of their death. A drug delivery system of chitosan-collagen hydrogel incorporated with lysostaphin (CCHL) based on the lysostaphin gauze was developed for MRSA infected burn wounds. CCHL scaffold consisted of numerous interconnected sphericles and tubular bodies with an average diameter of 100-200 µm, 20-60-fold swelling, high water retention capacity, and cell proliferation properties. The minimal inhibitory concentration of CCHL was 0.053 U/mL. By the second week after its application on MRSA infected third-degree burn wounds, no bacteria could be detected and the burn wounds had started healing. Therefore, CCHL should be studied further as a promising candidate of burn treatment dressing against MRSA infections for clinics.

  2. Non-healing foot ulcers in diabetic patients: general and local interfering conditions and management options with advanced wound dressings.

    PubMed

    Uccioli, Luigi; Izzo, Valentina; Meloni, Marco; Vainieri, Erika; Ruotolo, Valeria; Giurato, Laura

    2015-04-01

    Medical knowledge about wound management has improved as recent studies have investigated the healing process and its biochemical background. Despite this, foot ulcers remain an important clinical problem, often resulting in costly, prolonged treatment. A non-healing ulcer is also a strong risk factor for major amputation. Many factors can interfere with wound healing, including the patient's general health status (i.e., nutritional condition indicated by albumin levels) or drugs such as steroids that can interfere with normal healing. Diabetic complications (i.e., renal insufficiency) may delay healing and account for higher amputation rates observed in diabetic patients under dialysis treatment. Wound environment (e.g., presence of neuropathy, ischaemia, and infection) may significantly influence healing by interfering with the physiological healing cascade and adding local release of factors that may worsen the wound. The timely and well-orchestrated release of factors regulating the healing process, observed in acute wounds, is impaired in non-healing wounds that are blocked in a chronic inflammatory phase without progressing to healing. This chronic phase is characterised by elevated protease activity (EPA) of metalloproteinases (MMPs) and serine proteases (e.g., human neutrophil elastase) that interfere with collagen synthesis, as well as growth factor release and action. EPA (mainly MMP 9, MMP-8 and elastase) and inflammatory factors present in the wound bed (such as IL-1, IL-6, and TNFa) account for the catabolic state of non-healing ulcers. The availability of wound dressings that modulate EPA has added new therapeutic options for treating non-healing ulcers. The literature confirms advantages obtained by reducing protease activity in the wound bed, with better outcomes achieved by using these dressings compared with traditional ones. New technologies also allow a physician to know the status of the wound bed environment, particularly EPA, in a clinical

  3. 3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for Wound Dressing Applications

    PubMed Central

    Gethin, David T.; Syverud, Kristin; Hill, Katja E.; Thomas, David W.

    2015-01-01

    Nanocellulose has a variety of advantages, which make the material most suitable for use in biomedical devices such as wound dressings. The material is strong, allows for production of transparent films, provides a moist wound healing environment, and can form elastic gels with bioresponsive characteristics. In this study, we explore the application of nanocellulose as a bioink for modifying film surfaces by a bioprinting process. Two different nanocelluloses were used, prepared with TEMPO mediated oxidation and a combination of carboxymethylation and periodate oxidation. The combination of carboxymethylation and periodate oxidation produced a homogeneous material with short nanofibrils, having widths <20 nm and lengths <200 nm. The small dimensions of the nanofibrils reduced the viscosity of the nanocellulose, thus yielding a material with good rheological properties for use as a bioink. The nanocellulose bioink was thus used for printing 3D porous structures, which is exemplified in this study. We also demonstrated that both nanocelluloses did not support bacterial growth, which is an interesting property of these novel materials. PMID:26090461

  4. Fabrication of Chitosan/Silk Fibroin Composite Nanofibers for Wound-dressing Applications

    PubMed Central

    Cai, Zeng-xiao; Mo, Xiu-mei; Zhang, Kui-hua; Fan, Lin-peng; Yin, An-lin; He, Chuang-long; Wang, Hong-sheng

    2010-01-01

    Chitosan, a naturally occurring polysaccharide with abundant resources, has been extensively exploited for various biomedical applications, typically as wound dressings owing to its unique biocompatibility, good biodegradability and excellent antibacterial properties. In this work, composite nanofibrous membranes of chitosan (CS) and silk fibroin (SF) were successfully fabricated by electrospinning. The morphology of electrospun blend nanofibers was observed by scanning electron microscopy (SEM) and the fiber diameters decreased with the increasing percentage of chitosan. Further, the mechanical test illustrated that the addition of silk fibroin enhanced the mechanical properties of CS/SF nanofibers. The antibacterial activities against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) were evaluated by the turbidity measurement method; and results suggest that the antibacterial effect of composite nanofibers varied on the type of bacteria. Furthermore, the biocompatibility of murine fibroblast on as-prepared nanofibrous membranes was investigated by hematoxylin and eosin (H&E) staining and MTT assays in vitro, and the membranes were found to promote the cell attachment and proliferation. These results suggest that as-prepared chitosan/silk fibroin (CS/SF) composite nanofibrous membranes could be a promising candidate for wound healing applications. PMID:20957110

  5. Biodegradable gelatin-ciprofloxacin-montmorillonite composite hydrogels for controlled drug release and wound dressing application.

    PubMed

    Kevadiya, Bhavesh D; Rajkumar, Shalini; Bajaj, Hari C; Chettiar, Shiva Shankaran; Gosai, Kalpeshgiri; Brahmbhatt, Harshad; Bhatt, Adarsh S; Barvaliya, Yogesh K; Dave, Gaurav S; Kothari, Ramesh K

    2014-10-01

    This work reports intercalation of a sparingly soluble antibiotic (ciprofloxacin) into layered nanostructure silicate, montmorillonite (MMT) and its reaction with bone derived polypeptide, gelatin that yields three-dimensional composite hydrogel. Drug intercalation results in changes in MMT layered space and drug loaded MMT and gelatin creates 3D morphology with biodegradable composite hydrogels. These changes can be correlated with electrostatic interactions between the drug, MMT and the gelatin polypeptides as confirmed by X-ray diffraction patterns, thermal, spectroscopic analyses, computational modeling and 3D morphology revealed by SEM and TEM analysis. No significant changes in structural and functional properties of drug was found after intercalation in MMT layers and composite hydrogels. In vitro drug release profiles showed controlled release up to 150h. The drug loaded composite hydrogels were tested on lung cancer cells (A549) by MTT assay. The results of in vitro cell migration and proliferation assay were promising as composite hydrogels induced wound healing progression. In vitro biodegradation was studied using proteolytic enzymes (lysozyme and protease K) at physiological conditions. This new approach of drug intercalation into the layered nanostructure silicate by ion-exchange may have significant applications in cost-effective wound dressing biomaterial with antimicrobial property.

  6. 3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for Wound Dressing Applications.

    PubMed

    Rees, Adam; Powell, Lydia C; Chinga-Carrasco, Gary; Gethin, David T; Syverud, Kristin; Hill, Katja E; Thomas, David W

    2015-01-01

    Nanocellulose has a variety of advantages, which make the material most suitable for use in biomedical devices such as wound dressings. The material is strong, allows for production of transparent films, provides a moist wound healing environment, and can form elastic gels with bioresponsive characteristics. In this study, we explore the application of nanocellulose as a bioink for modifying film surfaces by a bioprinting process. Two different nanocelluloses were used, prepared with TEMPO mediated oxidation and a combination of carboxymethylation and periodate oxidation. The combination of carboxymethylation and periodate oxidation produced a homogeneous material with short nanofibrils, having widths <20 nm and lengths <200 nm. The small dimensions of the nanofibrils reduced the viscosity of the nanocellulose, thus yielding a material with good rheological properties for use as a bioink. The nanocellulose bioink was thus used for printing 3D porous structures, which is exemplified in this study. We also demonstrated that both nanocelluloses did not support bacterial growth, which is an interesting property of these novel materials.

  7. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications.

    PubMed

    Cai, Zeng-Xiao; Mo, Xiu-Mei; Zhang, Kui-Hua; Fan, Lin-Peng; Yin, An-Lin; He, Chuang-Long; Wang, Hong-Sheng

    2010-09-21

    Chitosan, a naturally occurring polysaccharide with abundant resources, has been extensively exploited for various biomedical applications, typically as wound dressings owing to its unique biocompatibility, good biodegradability and excellent antibacterial properties. In this work, composite nanofibrous membranes of chitosan (CS) and silk fibroin (SF) were successfully fabricated by electrospinning. The morphology of electrospun blend nanofibers was observed by scanning electron microscopy (SEM) and the fiber diameters decreased with the increasing percentage of chitosan. Further, the mechanical test illustrated that the addition of silk fibroin enhanced the mechanical properties of CS/SF nanofibers. The antibacterial activities against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) were evaluated by the turbidity measurement method; and results suggest that the antibacterial effect of composite nanofibers varied on the type of bacteria. Furthermore, the biocompatibility of murine fibroblast on as-prepared nanofibrous membranes was investigated by hematoxylin and eosin (H&E) staining and MTT assays in vitro, and the membranes were found to promote the cell attachment and proliferation. These results suggest that as-prepared chitosan/silk fibroin (CS/SF) composite nanofibrous membranes could be a promising candidate for wound healing applications.

  8. Melatonin-loaded chitosan/Pluronic® F127 microspheres as in situ forming hydrogel: An innovative antimicrobial wound dressing.

    PubMed

    Romić, Marieta Duvnjak; Klarić, Maja Šegvić; Lovrić, Jasmina; Pepić, Ivan; Cetina-Čižmek, Biserka; Filipović-Grčić, Jelena; Hafner, Anita

    2016-10-01

    The aim of this study was to develop melatonin-loaded chitosan based microspheres as dry powder formulation suitable for wound dressing, rapidly forming hydrogel in contact with wound exudate. Microspheres were produced by spray-drying method. Fractional factorial design was employed to elucidate the effect of formulation and process parameters (feed flow rate, inlet air temperature, chitosan concentration, chitosan/melatonin ratio and chitosan/Pluronic® F127 ratio) on the product characteristics related to process applicability (production yield, entrapment efficiency and product moisture content) and microsphere performance in biological environment (microsphere mean diameter and surface charge). Appropriate formulation and process parameters for the establishment of efficient drying process resulting in fine-tuned chitosan and chitosan/Pluronic® F127 microspheres (efficient melatonin encapsulation, small diameter positive surface charge and low moisture content) were identified. Microspheres were characterized by appropriate flowability and high rate and extent of fluid uptake. Incorporation of Pluronic® F127 in microsphere matrix resulted in high melatonin amorphization and consequent higher melatonin release rate. Entrapment of melatonin in chitosan/Pluronic® F127 microspheres has potentiated chitosan antimicrobial activity against Staphylococcus aureus and five clinical isolates S. aureus MRSA strains. Microspheres were shown to be biocompatible with skin keratinocytes and fibroblasts at concentrations relevant for antimicrobial activity against planktonic bacteria.

  9. In situ deposition of a personalized nanofibrous dressing via a handy electrospinning device for skin wound care

    NASA Astrophysics Data System (ADS)

    Dong, Rui-Hua; Jia, Yue-Xiao; Qin, Chong-Chong; Zhan, Lu; Yan, Xu; Cui, Lin; Zhou, Yu; Jiang, Xingyu; Long, Yun-Ze

    2016-02-01

    Current strategies for wound care provide limited relief to millions of patients who suffer from burns, chronic skin ulcers or surgical-related wounds. The goal of this work is to develop an in situ deposition of a personalized nanofibrous dressing via a handy electrospinning (e-spinning) device and evaluate its properties related to skin wound care. MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs) were prepared by a facile and environmentally friendly approach, which possessed long-term antibacterial activity and low cytotoxicity. Poly-ε-caprolactone (PCL) incorporated with Ag-MSNs was successfully electrospun (e-spun) into nanofibrous membranes. These in situ e-spun nanofibrous membranes allowed the continuous release of Ag ions and showed broad-spectrum antimicrobial activity against two common types of pathogens, Staphylococcus aureus and Escherichia coli. In addition, the in vivo studies revealed that these antibacterial nanofibrous membranes could reduce the inflammatory response and accelerate wound healing in Wistar rats. The above results strongly demonstrate that such patient-specific dressings could be broadly applied in emergency medical transport, hospitals, clinics and at the patients' home in the near future.Current strategies for wound care provide limited relief to millions of patients who suffer from burns, chronic skin ulcers or surgical-related wounds. The goal of this work is to develop an in situ deposition of a personalized nanofibrous dressing via a handy electrospinning (e-spinning) device and evaluate its properties related to skin wound care. MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs) were prepared by a facile and environmentally friendly approach, which possessed long-term antibacterial activity and low cytotoxicity. Poly-ε-caprolactone (PCL) incorporated with Ag-MSNs was successfully electrospun (e-spun) into nanofibrous membranes. These in situ e

  10. The effect and safety of dressing composed by nylon threads covered with metallic silver in wound treatment.

    PubMed

    Brogliato, Ariane R; Borges, Paula A; Barros, Janaina F; Lanzetti, Manuela; Valença, Samuel; Oliveira, Nesser C; Izário-Filho, Hélcio J; Benjamim, Claudia F

    2014-04-01

    Silver is used worldwide in dressings for wound management. Silver has demonstrated great efficacy against a broad range of microorganisms, but there is very little data about the systemic absorption and toxicity of silver in vivo. In this study, the antimicrobial effect of the silver-coated dressing (SilverCoat(®)) was evaluated in vitro against the most common microorganisms found in wounds, including Pseudomonas aeruginosa, Candida albicans, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus and Klebsiella pneumoniae. We also performed an excisional skin lesion assay in mice to evaluate wound healing after 14 days of treatment with a silver-coated dressing, and we measured the amount of silver in the blood, the kidneys and the liver after treatment. Our data demonstrated that the nylon threads coated with metallic silver have a satisfactory antimicrobial effect in vitro, and the prolonged use of these threads did not lead to systemic silver absorption, did not induce toxicity in the kidneys and the liver and were not detrimental to the normal wound-healing process.

  11. Preliminary characterization of genipin-cross-linked silk sericin/poly(vinyl alcohol) films as two-dimensional wound dressings for the healing of superficial wounds.

    PubMed

    Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong

    2013-01-01

    The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds.

  12. Development of novel wound care systems based on nanosilver nanohydrogels of polymethacrylic acid with Aloe vera and curcumin.

    PubMed

    Anjum, Sadiya; Gupta, Amlan; Sharma, Deepika; Gautam, Deepti; Bhan, Surya; Sharma, Anupama; Kapil, Arti; Gupta, Bhuvanesh

    2016-07-01

    This study is aimed at the development of a composite material for wound dressing containing nanosilver nanohydrogels (nSnH) along with Aloe vera and curcumin that promote antimicrobial nature, wound healing and infection control. Nanosliver nanohydrogels were synthesized by nanoemulsion polymerization of methacrylic acid (MAA) followed by subsequent crosslinking and silver reduction under irradiation. Both the polymerization and irradiation time had significant influence on the nanoparticle shape, size and its formation. Polyvinyl alcohol/polyethylene oxide/carboxymethyl cellulose matrix was used as gel system to blend with nSnH, A. vera, curcumin and coat it on the hydrolysed PET fabric to develop antimicrobial dressings. The cumulative release of silver from the dressing was found to be ~42% of the total loading after 48h. The antimicrobial activity of the dressings was studied against both Staphylococcus aureus and Escherichia coli. In vivo wound healing studies were carried out over a period of 16d on full-thickness skin wounds created on Swiss albino mice. Fast healing was observed in Gel/nSnH/Aloe treated wounds with minimum scarring, as compared to other groups. The histological studies showed A. vera based dressings to be the most optimum one. These results suggest that nSnH along with A. vera based dressing material could be promising candidates for wound dressings.

  13. Dual-functional Polyurea Microcapsules for Chronic Wound Care Dressings: Sustained Drug Delivery and Non-leaching Infection Control

    NASA Astrophysics Data System (ADS)

    He, Wei

    A new design of dual-functional polyurea microcapsules was proposed for chronic wound dressings to provide both non-leaching infection control and sustained topical drug delivery functionalities. Quaternary ammonium functionalized polyurea microcapsules (MCQs) were synthesized under mild conditions through an interfacial crosslinking reaction between branched polyethylenimine (PEI) and 2,4-toluene diisocyanate (TDI) in a dimethylformamide/cyclohexane emulsion. An in-situ modification method was developed to endow non-leaching surface antimicrobial properties to MCQs via bonding antimicrobial surfactants to surface isocyanate residues on the polyurea shells. The resultant robust MCQs with both non-leaching antimicrobial properties and sustained drug releasing properties have potential applications in medical textiles, such as chronic wound dressings, for infection control and drug delivery.

  14. A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings.

    PubMed

    Luo, Xiaogang; Zhang, Hao; Cao, Zhenni; Cai, Ning; Xue, Yanan; Yu, Faquan

    2016-06-05

    The objective of this study is to develop transparent porous nanodiamonds/cellulose nanocomposite membranes with controlled release of doxorubicin for potential applications as wound dressings, which were fabricated by tape casting method from dispersing carboxylated nanodiamonds and dissolving cellulose homogeneously in 7 wt% NaOH/12 wt% urea aqueous solution. By adjusting the carboxylated nanodiamonds content, various nanocomposite membranes were obtained. The structure and properties of these membranes have been investigated by light transmittance measurements, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), tensile tests, water loss analyses, etc. The drug loading and release was investigated using doxorubicin hydrochloride as a model drug. In vitro cytotoxicity assay of the membranes was also studied. This work presented a proof-of-concept utility of these membranes for loading and release of bioactive compounds to be employed as a candidate for wound dressing.

  15. Effect of discarded keratin-based biocomposite hydrogels on the wound healing process in vivo.

    PubMed

    Park, Mira; Shin, Hye Kyoung; Kim, Byoung-Suhk; Kim, Myung Jin; Kim, In-Shik; Park, Byung-Yong; Kim, Hak-Yong

    2015-10-01

    Biocompatible keratin-based hydrogels prepared by electron beam irradiation (EBI) were examined in wound healing. As the EBI dose increased to 60 kGy, the tensile strength of the hydrogels increased, while the percentage of elongation of the hydrogels decreased. After 7 days, the dehydrated wool-based hydrogels show the highest mechanical properties (the % elongation of 1341 and the tensile strength of 6030 g/cm(2) at an EBI dose of 30 kGy). Excision wound models were used to evaluate the effects of human hair-based hydrogels and wool-based hydrogels on various phases of healing. On post-wounding days 7 and 14, wounds treated with either human hair-based or wool-based hydrogels were greatly reduced in size compared to wounds that received other treatments, although the hydrocolloid wound dressing-treated wound also showed a pronounced reduction in size compared to an open wound as measured by a histological assay. On the 14th postoperative day, the cellular appearances were similar in the hydrocolloid wound dressing and wool-based hydrogel-treated wounds, and collagen fibers were substituted with fibroblasts and mixed with fibroblasts in the dermis. Furthermore, the wound treated with a human hair-based hydrogel showed almost complete epithelial regeneration, with the maturation of immature connective tissue and hair follicles and formation of a sebaceous gland.

  16. Formation and Biopharmaceutical Characterization of Electrospun PVP Mats with Propolis and Silver Nanoparticles for Fast Releasing Wound Dressing.

    PubMed

    Adomavičiūtė, Erika; Stanys, Sigitas; Žilius, Modestas; Juškaitė, Vaida; Pavilonis, Alvydas; Briedis, Vitalis

    2016-01-01

    Antibacterial, antiviral, antifungal, antioxidant, anti-inflammatory, and anticancer activities of propolis and its ability to stimulate the immune system and promote wound healing make it a proper component for wound dressing materials. Silver nanoparticles are recognized to demonstrate strong antiseptic and antimicrobial activity; thus, it also could be considered in the development of products for wound healing. Combining propolis and silver nanoparticles can result in improved characteristics of products designed for wound healing and care. The aim of this study was to formulate electrospun fast dissolving mats for wound dressing containing propolis ethanolic extract and silver nanoparticles. Produced electrospun nano/microfiber mats were evaluated studying their structure, dissolution rate, release of propolis phenolic compounds and silver nanoparticles, and antimicrobial activity. Biopharmaceutical characterization of electrospun mats demonstrated fast release of propolis phenolic compounds and silver nanoparticles. Evaluation of antimicrobial activity on Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Bacillus subtilis, Bacillus cereus, and Candida albicans strains confirmed the ability of electrospun mats to inhibit the growth of the tested microorganisms.

  17. Formation and Biopharmaceutical Characterization of Electrospun PVP Mats with Propolis and Silver Nanoparticles for Fast Releasing Wound Dressing

    PubMed Central

    Adomavičiūtė, Erika; Stanys, Sigitas; Žilius, Modestas; Juškaitė, Vaida; Pavilonis, Alvydas; Briedis, Vitalis

    2016-01-01

    Antibacterial, antiviral, antifungal, antioxidant, anti-inflammatory, and anticancer activities of propolis and its ability to stimulate the immune system and promote wound healing make it a proper component for wound dressing materials. Silver nanoparticles are recognized to demonstrate strong antiseptic and antimicrobial activity; thus, it also could be considered in the development of products for wound healing. Combining propolis and silver nanoparticles can result in improved characteristics of products designed for wound healing and care. The aim of this study was to formulate electrospun fast dissolving mats for wound dressing containing propolis ethanolic extract and silver nanoparticles. Produced electrospun nano/microfiber mats were evaluated studying their structure, dissolution rate, release of propolis phenolic compounds and silver nanoparticles, and antimicrobial activity. Biopharmaceutical characterization of electrospun mats demonstrated fast release of propolis phenolic compounds and silver nanoparticles. Evaluation of antimicrobial activity on Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Bacillus subtilis, Bacillus cereus, and Candida albicans strains confirmed the ability of electrospun mats to inhibit the growth of the tested microorganisms. PMID:26981531

  18. Application of Chitosan/PVA Nano fiber as a potential wound dressing for streptozotocin-induced diabetic rats.

    PubMed

    Ahmadi Majd, Saeed; Rabbani Khorasgani, Mohammad; Moshtaghian, Seyed Jamal; Talebi, Ardeshir; Khezri, Maryam

    2016-11-01

    Diabetes mellitus is a worldwide health problem affecting 1-2% of the population of world with noticeable morbidity and mortality. Vascular events such as hypertension, nephropathy, neuropathy and retinopathy are happened in diabetic patients. Decline in tissue blood circulation may causes hypoxia and finally may leads to slow wound healing and amputation. PVA/Chitosan Nano fiber wound dressings have high moisture vapor transmission rate and good antimicrobial activity(1) PCNWD substrate does not have any recognized cytotoxicity effects and has excellent odor absorbing capability. In the present study, Streptozotocin (STZ) is used to induce diabetes in rats, Skin ulcers are produced experimentally in the experimentally induced diabetic and non-diabetic rats. Then PCNWD used as wound dressing for 2 weeks period to evaluate its macroscopic and microscopic effects on wound healing in comparison with untreated diabetic and non-diabetic rats experimental ulcers. The findings of current study indicate significant acceleration in diabetes wound healing on the rats treated by PVA/Chitosan Nano fiber.

  19. Fabrication of a novel poly(3-hydroxyoctanoate) / nanoscale bioactive glass composite film with potential as a multifunctional wound dressing

    NASA Astrophysics Data System (ADS)

    Rai, Ranjana; Boccaccini, Aldo R.; Knowles, Jonathan C.; Locke, Ian C.; Gordge, Michael P.; McCormick, Aine; Salih, Vehid; Mordon, Nicola; Keshavarz, Tajalli; Roy, Ipsita

    2010-06-01

    Fabrication of a composite scaffold of nanobioglass (n-BG) 45S5 and poly(3-hydroxyocatnoate), P(3HO) was studied for the first time with the aim of developing a novel, multifunctional wound dressing. The incorporation of n-BG accelerated blood clotting time and its incorporation in the polymer matrix enhanced the wettability, surface roughness and bio-compatibility of the scaffold.

  20. Fabrication of a novel poly(3-hydroxyoctanoate)/ nanoscale bioactive glass composite film with potential as a multifunctional wound dressing

    SciTech Connect

    Rai, Ranjana; Keshavarz, Tajalli; Roy, Ipsita; Boccaccini, Aldo R.; Knowles, Jonathan C.; Salih, Vehid; Mordon, Nicola; Locke, Ian C.; Gordge, Michael P.; McCormick, Aine

    2010-06-02

    Fabrication of a composite scaffold of nanobioglass (n-BG) 45S5 and poly(3-hydroxyocatnoate), P(3HO) was studied for the first time with the aim of developing a novel, multifunctional wound dressing. The incorporation of n-BG accelerated blood clotting time and its incorporation in the polymer matrix enhanced the wettability, surface roughness and bio-compatibility of the scaffold.

  1. Chitosan/banana peel powder nanocomposites for wound dressing application: Preparation and characterization.

    PubMed

    Kamel, Nagwa A; Abd El-Messieh, Salwa L; Saleh, Neveen M

    2017-03-01

    Wound infection is a serious infection has been spread worldwide. In order to provide fast aid treatments for such infection, banana peels have been incorporated within chitosan as wound dressing. Banana was collected from Egyptian markets peeled and the dried peels were grounded to powder, Incorporated as nano fillers within chitosan matrix with different concentrations (0, 2, 5 and 10wt%). Glycerol was added as plasticizer and crosslinker to the membranes. The banana peel powder (BPP) particle shape and size were determined using Transmission Electron Microscope (TEM), The homogeneity and distribution of BPP in the membranes were investigated through Scanning Electron Microscope (SEM). The interaction between BPP and chitosan was characterized by Fourier Transform Infrared (FTIR). The dielectric properties of chitosan and BPP-chitosan membranes studied via dielectric constant, dielectric loss and conductivity measurements over a frequency range 100Hz up to 100kHz. The curves relating ε″ and the applied frequency are broad enough reflecting more than one relaxation process. These processes may be attributed to the relaxation processes of the main chain and its related motions. The higher values of ε″ at low frequency range may be a combination of the losses due to the electrical conductivity and the interfacial polarization process called "Maxwell Wagner Sillers" effect. By increasing BPP content in the sample a pronounced shift towards lower frequency was noticed. This shift may be due to some sort of polymer/filler interaction which causes an increase in the relaxed units and consequently the relaxation time. The addition of BPP decreases the swelling degree of chitosan matrix. The antimicrobial properties of the membranes were done against Gram positive, Gram negative bacteria and yeast. The results showed that chitosan/BPP membranes have a synergistic action with the highest activity at 10wt%. Moreover, Candida albicans was the most sensitive strain

  2. Papain wound dressings obtained from poly(vinyl alcohol)/calcium alginate blends as new pharmaceutical dosage form: Preparation and preliminary evaluation.

    PubMed

    Dutra, J A P; Carvalho, S G; Zampirolli, A C D; Daltoé, R D; Teixeira, R M; Careta, F P; Cotrim, M A P; Oréfice, R L; Villanova, J C O

    2017-04-01

    Transparent, soft, flexible, mechanically resistant films, which are ideal for use as wound dressings were prepared in the presence of 2% papain, a proteolytic enzyme that can play a role in the chemical debridement of the skin and can accelerate the healing process. The films, based on poly(vinyl alcohol):calcium alginate blends with increasing concentrations of polysaccharide (10, 20, and 30% v/v), were obtained by casting method. FTIR and DSC analyses were performed to assess the composition and miscibility of blends. Mechanical properties such as tensile strength, elasticity modulus, and elongation at breakpoint were evaluated. The influence of different concentrations of calcium alginate on physical attributes of films like wettability, swelling capacity and mechanical properties was determined. The stability of papain in the films was assessed indirectly by hemolytic activity assay employing direct contact method and confirmed by technique based on blood agar diffusion. Preliminary cytotoxicity was evaluated with the XTT method. The results showed that at the polymer concentrations tested, the blends were miscible. The increase in the content of the calcium alginate increased the wettability and swelling capacity of the films, which is desirable in wound dressings. On the other hand, mechanical resistance decreased without causing breakage of the films during the swelling tests. The hemolytic activity of the films was maintained during the studied period, suggesting the stability of papain in the proposed formulations. Cellular viability indicated that the films were non-toxic. The analysis of the results showed that it is possible to prepare interactive and bioactive wound dressing containing papain from blends of PVA and calcium alginate polymers.

  3. Comparative effectiveness of different wound dressings for patients with partial-thickness burns: study protocol of a systematic review and a Bayesian framework network meta-analysis

    PubMed Central

    Jiang, Qiong; Chen, Zhao-Hong; Wang, Shun-Bin; Chen, Xiao-Dong

    2017-01-01

    Introduction Selecting a suitable wound dressing for patients with partial-thickness burns (PTBs) is important in wound care. However, the comparative effectiveness of different dressings has not been studied. We report the protocol of a network meta-analysis designed to combine direct and indirect evidence of wound dressings in the management of PTB. Methods and analysis We will search for randomised controlled trials (RCTs) evaluating the wound-healing effect of a wound dressing in the management of PTB. Searches will be conducted in MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, the Cochrane Wounds Group Specialised Register and CINAHL. A comprehensive search strategy is developed to retrieve articles reporting potentially eligible RCTs. Besides, we will contact the experts in the field and review the conference proceedings to locate non-published studies. The reference lists of articles will be reviewed for any candidate studies. Two independent reviewers will screen titles and abstracts of the candidate articles. All eligible RCTs will be obtained in full text to perform a review. Disagreement on eligibility of an RCT will be solved by group discussion. The information of participants, interventions, comparisons and outcomes from included RCTs will be recorded and summarised. The primary outcome is time to complete wound healing. Secondary outcomes include the proportion of burns completely healed at the end of treatment, change in wound surface area at the end of treatment, incidence of adverse events, etc. Ethics and dissemination The result of this review will provide evidence for the comparative effectiveness of different wound dressings in the management of PTB. It will also facilitate decision-making in choosing a suitable wound dressing. We will disseminate the review through a peer-review journal and conference abstracts or posters. Trial registration number PROSPERO CRD42016041574; Pre-results. PMID:28336737

  4. Open-label clinical trial comparing the clinical and economic effectiveness of using a polyurethane film surgical dressing with gauze surgical dressings in the care of post-operative surgical wounds.

    PubMed

    Arroyo, Ana Abejón; Casanova, Pabló López; Soriano, José Verdú; Torra I Bou, Joan-Enric

    2015-06-01

    Surgical site infection (SSI) is a common postoperative complication and can cause avoidable morbidity and excessive costs for the health service. Novel dressings, designed specifically for postoperative wounds, can help to reduce the risk of SSI and other complications such as blistering. This study compared the use of a new polyurethane film surgical dressing (Opsite Post-Op Visible, Smith & Nephew, Hull, UK) with gauze and tape in the management of postoperative wounds. The results show that the polyurethane film dressing results in a significant reduction in SSI (1·4% versus 6·6%, P = 0·006) as well as a reduction in other postoperative wound complications (e.g. blistering and erythema). Economic analysis conducted alongside the study suggests that these improved outcomes can be achieved at a lower treatment cost than gauze and tape dressings. The modest incremental cost of the polyurethane film surgical dressing is easily offset by the reduction in the costs related to treating SSI and other wound complications associated with gauze and tape dressings.

  5. Sericin-carboxymethyl cellulose porous matrices as cellular wound dressing material.

    PubMed

    Nayak, Sunita; Kundu, S C

    2014-06-01

    In this study, porous three-dimensional (3D) hydrogel matrices are fabricated composed of silk cocoon protein sericin of non-mulberry silkworm Antheraea mylitta and carboxymethyl cellulose. The matrices are prepared via freeze-drying technique followed by dual cross-linking with glutaraldehyde and aluminum chloride. The microstructure of the hydrogel matrices is assessed using scanning electron microscopy and biophysical characterization are carried out using Fourier transform infrared spectroscopy and X-ray diffraction. The transforming growth factor β1 release from the cross-linked matrices as a growth factor is evaluated by immunosorbent assay. Live dead assay and 3-[4,5-dimethylthiazolyl-2]-2,5-diphenyl tetrazolium bromide assay show no cytotoxicity of blended matrices toward human keratinocytes. The matrices support the cell attachment and proliferation of human keratinocytes as observed through scanning electron microscope and confocal images. Gelatin zymography demonstrates the low levels of matrix metalloproteinase 2 (MMP-2) and insignificant amount of MMP-9 in the culture media of cell seeded matrices. Low inflammatory response of the matrices is indicated through tumor necrosis factor alpha release assay. The results indicate that the fabricated matrices constitute 3D cell-interactive environment for tissue engineering applications and its potential use as a future cellular biological wound dressing material.

  6. Preparation and characterization of chitin beads as a wound dressing precursor.

    PubMed

    Yusof, N L; Lim, L Y; Khor, E

    2001-01-01

    Chitin was dissolved in N, N-dimethylacetamide/5% lithium chloride (DMAc/5%LiCl) to form a 0.5% chitin solution. Chitin beads were formed by dropping the 0.5% chitin solution into a nonsolvent coagulant, ethanol. The beads were left in ethanol for 24 h to permit hardening, consolidation, and removal of residual DMAc/5%LiCl solvent in order to give spherical chitin beads uniform size distribution. The ethanol-gelled chitin beads had an average diameter of 535 microm. The chitin beads were subsequently activated in 50% (w/v) NaOH solution and reacted with 1.9 M monochloroacetic acid/2-propanol solution to introduce a carboxymethylated surface layer to the chitin beads. The bilayer character of the surface-carboxymethylated chitin (SCM-chitin) beads was verified by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and confocal microscopy. The bilayered SCM-chitin beads were found to absorb up to 95 times their dry weight of water. These SCM-chitin beads have potential as a component of wound dressings.

  7. Chitosan finishing nonwoven textiles loaded with silver and iodide for antibacterial wound dressing applications.

    PubMed

    Aubert-Viard, François; Martin, Adeline; Chai, Feng; Neut, Christel; Tabary, Nicolas; Martel, Bernard; Blanchemain, Nicolas

    2015-03-02

    Polyethylene terephtalate (PET) and Polypropylene (PP) textiles are widely used in biomedical application such as wound dressings and implants. The aim of this work was to develop an antibacterial chitosan (CHT) coating activated by silver or by iodine. Chitosan was immobilized onto PET and PP supports using citric acid (CTR) as a crosslinking agent through a pad-dry-cure textile finishing process. Interestingly, depending on the CHT/CTR molar ratio, two different systems were obtained: rich in cationic ammonium groups when the CTR concentration was 1%w/v, and rich in anionic carboxylate groups when the CTR concentration was 10%w/v. As a consequence, such samples could be selectively loaded with iodine and silver nitrate, respectively.Both types of coatings were analyzed using SEM and FTIR, their sorption capacities were evaluated toward iodide/iodate anions (I(-)/IO3(-)) and the silver cations (Ag(+)) were evaluated using elemental analysis. Finally, in vitro evaluations were carried out to evaluate the cytocompatibility on the epithelial cell line. The silver loaded textile reported a stronger antibacterial effect against E.coli (5 log10 reduction) than toward S. aureus (3 log10) while the antibacterial effect of the iodide loaded textiles was limited to 1 log10 to 2 log10 on both strains.

  8. Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings

    PubMed Central

    Oliveira, R. N.; Rouzé, R.; Quilty, B.; Alves, G. G.; Soares, G. D. A.; Thiré, R. M. S. M.; McGuinness, G. B.

    2014-01-01

    Polyvinyl alcohol (PVA) hydrogels are materials for potential use in burn healing. Silver nanoparticles can be synthesized within PVA hydrogels giving antimicrobial hydrogels. Hydrogels have to be swollen prior to their application, and the common medium available for that in hospitals is saline solution, but the hydrogel could also take up some of the wound's fluid. This work developed gamma-irradiated PVA/nano-Ag hydrogels for potential use in burn dressing applications. Silver nitrate (AgNO3) was used as nano-Ag precursor agent. Saline solution, phosphate-buffered solution (PBS) pH 7.4 and solution pH 4.0 were used as swelling media. Microstructural evaluation revealed an effect of the nanoparticles on PVA crystallization. The swelling of the PVA-Ag samples in solution pH 4.0 was low, as was their silver delivery, compared with the equivalent samples swollen in the other media. The highest swelling and silver delivery were related to samples prepared with 0.50% AgNO3, and they also presented lower strength in PBS pH 7.4 and solution pH 4.0. Both PVA-Ag samples were also non-toxic and presented antimicrobial activity, confirming that 0.25% AgNO3 concentration is sufficient to establish an antimicrobial effect. Both PVA-Ag samples presented suitable mechanical and swelling properties in all media, representative of potential burn site conditions. PMID:24501677

  9. Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application.

    PubMed

    Meng, Xin; Tian, Feng; Yang, Jian; He, Chun-Nian; Xing, Nan; Li, Fan

    2010-05-01

    This study investigated the characteristics and drug release properties of membranes of chitosan and alginate prepared via a casting/solvent evaporation technique. Membranes of chitosan and alginate with silver sulfadiazine as model drug incorporated in different concentrations and different membrane compositions were obtained. The polyblend solution viscosity reached to the highest at the composition polyblends of (1:1). This chitosan/alginate membranes showed pH- and ionic strength-dependent water uptake properties and had the WVTR rang from 442 to 618 g/m(2)/day. The maximum value of the dry membrane of breaking strength was 52.16 MPa and the maximum value of the wet membrane breaking elongation was 46.28%. The results of controlled release studies showed that the silver sulfadiazine release rate was the fastest when the alginate content was 50%. On the basis of the requisite physical properties, the chitosan-alginate PEC membrane can be considered for potential wound dressing or controlled release application.

  10. [Preparation and clinical application of polyvinyl alcohol/drug-loaded chitosan microsphere composite wound dressing].

    PubMed

    Zhang, Xiuju; Lin, Zhidan; Chen, Wenbin; Song, Ying; Li, Zhizhong

    2011-04-01

    In order to prepare and apply the polyvinyl alcohol/drug-loaded chitosan microspheres composite wound dressing, we first prepared chitosan microspheres by emulsion cross-linking method, and then added chitosan microspheres into the reactants during the acetalization of polyvinyl alcohol and formaldehyde. We further studied the morphology, water absorption, swelling degree, mechanical properties and in vitro release of the sponge with different amount of chitosan microspheres. The results showed that polyvinyl alcohol/drug-loaded chitosan composite sponge has porous structure with connectionism. Increasing the amount of chitosan microspheres would make the apertures smaller, so that the water absorption and the swelling of sponge decreased, but the tensile strength and compressive strength increased. With the increase of the amount of chitosan microspheres, the drug absorption of cefradine and the release rate increase, and the release time become longer. With the results of toxicity grade of 0 to 1, this type of composite sponge is non-toxic and meets the requirement of biocompatibility. The observation of rabbit nasal cavity after surgical operation suggested that polyvinyl acetal sponge modified with the chitosan has antiphlogistic, hemostatic and non-adherent characteristic, and can promote the healing and recovering of the nasalmucosa. After using this composite material, best growing surroundings for patients' granulation tissue were provided. Exposed bone and tendon were covered well with granulation tissue.

  11. Analysis of Healing Effect of Alginate Sulfate Hydrogel Dressing Containing Antimicrobial Peptide on Wound Infection Caused by Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Babavalian, Hamid; Latifi, Ali Mohammad; Shokrgozar, Mohammad Ali; Bonakdar, Shahin; Mohammadi, Sajjad; Moosazadeh Moghaddam, Mehrdad

    2015-01-01

    Background: Wound infections caused by methicillin-resistant Staphylococcus aureus are a health problem worldwide; therefore, it is necessary to develop new antimicrobial compounds. Considering broad-spectrum antimicrobial activity and low probability of drug resistance to peptides, applications these peptides are being studied extensively. Objectives: In this study, to control drug release over time, an alginate sulfate-based hydrogel impregnated with the CM11 peptide as the antimicrobial agent was developed, and its healing effects were tested on skin infections caused by methicillin-resistant S. aureus strains in a mouse model. Materials and Methods: Minimum inhibitory and minimum bactericidal concentrations of the CM11 peptide and alginate hydrogel in combination with the peptide were determined. Forty mice were divided into 4 groups: 1 group as a negative control (without treatment; however, 5 mice received hydrogel dressing without peptide), 1 group as a positive control (2% mupirocin treatment), and 2 groups as test groups. To establish skin infection, 200 μL of bacterial suspension with 3 × 108 CFU/mL concentration was subcutaneously injected in the scapular region of the mice. On the basis of the in vitro minimal bactericidal concentration of the alginate hydrogel containing peptide for 15 clinical isolates, hydrogel containing 128 mg/L of peptide was used for wound dressing over an 8-day period. Results: The highest and lowest numbers of wounds were observed on day 2 in the negative and positive control groups, respectively. During the 8-day period, the positive control and hydrogel containing peptide treatment groups showed similar levels of wound healing. Conclusions: This study showed that compared to standard drug treatment, treatment with hydrogel containing peptide had substantial antibacterial effects on S. aureus wound infections in mice. PMID:26487923

  12. Mussel-Inspired Electrospun Nanofibers Functionalized with Size-Controlled Silver Nanoparticles for Wound Dressing Application.

    PubMed

    GhavamiNejad, Amin; Rajan Unnithan, Afeesh; Ramachandra Kurup Sasikala, Arathyram; Samarikhalaj, Melisa; Thomas, Reju George; Jeong, Yong Yeon; Nasseri, Saeed; Murugesan, Priya; Wu, Dongmei; Hee Park, Chan; Kim, Cheol Sang

    2015-06-10

    Electrospun nanofibers that contain silver nanoparticles (AgNPs) have a strong antibacterial activity that is beneficial to wound healing. However, most of the literature available on the bactericidal effects of this material is based on the use of AgNPs with uncontrolled size, shape, surface properties, and degree of aggregation. In this study, we report the first versatile synthesis of novel catechol moieties presenting electrospun nanofibers functionalized with AgNPs through catechol redox chemistry. The synthetic strategy allows control of the size and amount of AgNPs on the surface of nanofibers with the minimum degree of aggregation. We also evaluated the rate of release of the AgNPs, the biocompatibility of the nanofibers, the antibacterial activity in vitro, and the wound healing capacity in vivo. Our results suggest that these silver-releasing nanofibers have great potential for use in wound healing applications.

  13. Advantages of collagen based biological dressings in the management of superficial and superficial partial thickness burns in children.

    PubMed

    Mathangi Ramakrishnan, K; Babu, M; Mathivanan; Jayaraman, V; Shankar, J

    2013-06-30

    Collagen based dressings for acute burn wound management have been extensively used in India, particularly in the city of Chennai. Due to the high levels of humidity in our city, closed dressings become infected and treatment with topical antimicrobials, like Silver Sulfadiazine cream, quickly become desiccated. Collagen membrane dressings were manufactured by the biomaterial laboratory of the Central Leather Research Institute (CLRI), Government of India in Chennai, and then the process was patented. Collagen was extracted from bovine skin and Achilles tendons, and then reconstituted. This was used on burn wounds as dressings after clearance from the Institutional Review Board and Ethics Committees of the Hospital and CLRI. Continued research in this field to enable resulted in the design of silver sulphadiazine loaded alginate microspheres which were embedded in the reconstituted collagen. Controlled delivery of silver sulphadiazine. This collagen membrane was used in chronic infected burns. Low molecular weight heparin was given subcutaneously to improve wound healing in burn injuries and collagen membrane dressings were also applied. After several trials the process technology was patented. The advantages and disadvantages of the collagen membrane cover is elaborated in a group of 487 pediatric burn patients. The trial was conducted at the burn unit of Kanchi Kamakoti Childs Trust Hospital (KKCTH) in Chennai, India.

  14. Gelation time, homogeneity, and rupture testing of alginate-calcium carbonate-hydrogen peroxide gels for use as wound dressings.

    PubMed

    Alexander, Brendan R; Murphy, Kathleen E; Gallagher, Joanne; Farrell, Garrett F; Taggart, Gertie

    2012-02-01

    The care of chronic wounds carries a heavy financial burden on the healthcare industry, with billons being spent annually on their treatment. This, coupled with a decreased quality of life for sufferers, has led to a real urgency in developing inexpensive wound dressings that promote wound healing. Alginate gels for application as wound dressings were formed by varying alginate (0%-6% w/v), calcium carbonate (0%-1% w/v), hydrogen peroxide (0%-3.75% v/v), and hyaluronic acid (0-1.25 mg/L) content. The aging effects on the physical properties of the gels over a 14-day period were also investigated. The results indicated that the concentration of calcium carbonate and hydrogen peroxide, as well as sample age, all had a significant effect on the rupture characteristics and gelation time of the gels. Increased calcium carbonate content caused an increase in rupture force and rupture energy values, whereas increased hydrogen peroxide content and sample age resulted in a decrease in rupture force and rupture energy measurements. Increased calcium carbonate and hydrogen peroxide content produced a decrease in the time required for gel formation. Statistical models were also produced to provide a means of estimating rupture characteristics and gelation times for gels containing other concentrations of these components.

  15. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds

    PubMed Central

    Seow, Wei Yang; Salgado, Giorgiana; Lane, E. Birgitte; Hauser, Charlotte A. E.

    2016-01-01

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing. PMID:27600999

  16. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds

    NASA Astrophysics Data System (ADS)

    Seow, Wei Yang; Salgado, Giorgiana; Lane, E. Birgitte; Hauser, Charlotte A. E.

    2016-09-01

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing.

  17. Polyvinyl pyrrolidone/carrageenan blend hydrogels with nanosilver prepared by gamma radiation for use as an antimicrobial wound dressing.

    PubMed

    Singh, Durgeshwer; Singh, Antaryami; Singh, Rita

    2015-01-01

    Hydrogels were prepared using polyvinyl pyrrolidone (PVP) blended with carrageenan by gamma irradiation at different doses of 25 and 40 kGy. Gel fraction of hydrogels prepared using 10 and 15% PVP in combination with 0.25 and 0.5% carrageenan was evaluated. Based on gel fraction, 15% PVP in combination with 0.25% carrageenan and radiation dose of 25 kGy was selected for the preparation of hydrogels with nanosilver. Radiolytic synthesis of silver nanoparticles within the PVP hydrogel was carried out. The hydrogels with silver nanoparticles were assessed for antimicrobial effectiveness and physical properties of relevance to clinical performance. Fluid handling capacity (FHC) for PVP/carrageenan was 2.35 ± 0.39-6.63 ± 0.63 g/10 cm(2) in 2-24 h. No counts for Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, and Candida albicans were observed in the presence of hydrogels containing 100 ppm nanosilver after 3-6 h. The release of silver from hydrogels containing 100 ppm nanosilver was 20.42 ± 1.98 ppm/100 cm(2) in 24 h. Hydrogels containing 100 ppm nanosilver with efficient FHC demonstrated potential microbicidal activity (≥3 log10 decrease in CFU/ml) against wound pathogens, P. aeruginosa, S. aureus, E. coli, and C. albicans. PVP/carrageenan hydrogels containing silver nanoparticles can be used as wound dressings to control infection and facilitate the healing process for burns and other skin injuries.

  18. A novel poly(γ-glutamic acid)/silk-sericin hydrogel for wound dressing: Synthesis, characterization and biological evaluation.

    PubMed

    Shi, Lu; Yang, Ning; Zhang, Hao; Chen, Li; Tao, Lei; Wei, Yen; Liu, Hui; Luo, Ying

    2015-03-01

    A novel multifunctional poly(γ-glutamic acid)/silk sericin (γ-PGA/SS) hydrogel has been developed and used as wound dressing. The physical and chemical properties of the γ-PGA/SS gels were systemically investigated. Furthermore, these γ-PGA/SS gels have been found to promote the L929 fibroblast cells proliferate, and in the in vivo study, significant stimulatory effects were also observed on granulation and capillary formation on day 9 in H-2-treated wounds, indicating that this new complex hydrogel could maintain a moist healing environment, protect the wound from bacterial infection, absorb excess exudates, and promote cell proliferation to reconstruct damaged tissue. Considering the simple preparation process and excellent biological property, this γ-PGA/SS hydrogel might have a wide range of applications in biomedical and clinical areas.

  19. Lipid-colloid dressing shows improved reepithelialization, pain relief, and corneal barrier function in split-thickness skin-graft donor wound healing.

    PubMed

    Tanaka, Katsuya; Akita, Sadanori; Yoshimoto, Hiroshi; Houbara, Seiji; Hirano, Akiyoshi

    2014-09-01

    Donor-site wound healing was tested with a nonadherent petrolatum- and hydrocolloid-impregnated polyester, a lipid-colloid dressing, and a nonadherent polyester dressing, supplemented with petrolatum manually by a physician onsite. Ten patients, 1 woman and 9 men (22 to 79 years old; average 58.4 ± 17.54 years), were enrolled in this prospective comparison study. The split-thickness skin graft was 14.5 ± 7.49 cm long × 8.2 ± 4.07 cm wide (5.5-27 cm long and 4.0-14.0 wide) and 14/1000 inches (0.356 mm) deep. The degree of reepithelialization in lipid-colloid dressing was significantly better than that in polyester mesh dressing, with 1.7 ± 1.00 and 2.8 ± 0.83 for the lipid-colloid dressing and polyester mesh dressing, respectively (P < .05), and degree of pain was significantly lower in lipid-colloid dressing than that in polyester dressing, 1.7 ± 1.11 and 2.9 ± 1.12 for the lipid-colloid dressing and polyester mesh dressing, respectively (P < .01). In moisture meter analyses, the values of effective contact coefficient and corneal thickness in lipid-colloid at wound healing was significantly smaller than those in polyester mesh (effective contact coefficient: 11.7 ± 1.87% and 15.6 ± 3.09% for lipid-colloid and polyester mesh, respectively, P < .05; corneal thickness: 31.1 ± 6.65 µm and 40.7 ± 8.69 µm for lipid-colloid and polyester mesh, respectively, P < .05). No significant difference was observed at 1 month after healing. The nonadherent lipid-colloid polyester dressing has superior wound healing and pain relief and demonstrates better corneal barrier function delineated by effective contact coefficient and corneal thickness at healing in split-thickness donors.

  20. Protease biosensors based on peptide-nanocellulose conjugates: from molecular design to dressing interface

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of point of care diagnostic protease sensors applied to wound healing has received increased interest for chronic wound treatment and as an interface with chronic wound dressings. Biosensor technology has grown exponentially in recent years. Here we focus on nanocelluosic biosensor t...

  1. Dress Nicer = Know More? Young Children’s Knowledge Attribution and Selective Learning Based on How Others Dress

    PubMed Central

    McDonald, Kyla P.; Ma, Lili

    2015-01-01

    This research explored whether children judge the knowledge state of others and selectively learn novel information from them based on how they dress. The results indicated that 4- and 6-year-olds identified a formally dressed individual as more knowledgeable about new things in general than a casually dressed one (Study 1). Moreover, children displayed an overall preference to seek help from a formally dressed individual rather than a casually dressed one when learning about novel objects and animals (Study 2). These findings are discussed in relation to the halo effect, and may have important implications for child educators regarding how instructor dress might influence young students’ knowledge attribution and learning preferences. PMID:26636980

  2. Effect of chitosan-gluconic acid conjugate/poly(vinyl alcohol) cryogels as wound dressing on partial-thickness wounds in diabetic rats.

    PubMed

    Takei, Takayuki; Nakahara, Hideki; Tanaka, Sadao; Nishimata, Hiroto; Yoshida, Masahiro; Kawakami, Koei

    2013-10-01

    We previously developed chitosan cryogels from chitosan-gluconic acid conjugate without using toxic additives for wound care. In this study, we improved physiological characteristics of the previous cryogels by incorporating poly(vinyl alcohol) that also form cryogels. Mechanical strength of the cryogels was more than two times higher than that of the previous cryogels. Furthermore, the incorporation of poly(vinyl alcohol) enhanced water retention and resistance to degradation of the gels by lysozyme. The cryogels retained the favorable biological properties of the previous cryogels that they accelerate infiltration of inflammatory cells into wound sites. Time period for repairing 50 % of initial area of partial-thickness skin wound treated with the cryogels (4.0 ± 1.1 days) was shorter than those with gauze (6.5 ± 0.3 days) or a commercial hydrogel dressing (5.7 ± 0.3 days). Finally, we confirmed that incorporation of basic fibroblast growth factor into the cryogels was effective to further accelerate wound healing (2.7 ± 1.0 days). These results demonstrate that the cryogels in this study are promising for wound care.

  3. The Assessment of a Novel In Situ Forming Wound Dressing for Military Use

    DTIC Science & Technology

    2008-12-01

    Kirby - Bauer Zone of Inhibition study was performed against ATCC strains of Pseudomonas Aeruginosa [10145U] and Staphylococcus Aureus [29213]. In...based upon preliminary evaluations and have not been reviewed by the FDA and warrant additional testing . 2. INTRODUCTION The process for...blade and n=9 wounds per test article. The test articles were the GelSpray™ and GelSpray™ with silver salts with the negative and positive control

  4. The efficacy of hydrogel dressings as a first aid measure for burn wound management in the pre-hospital setting: a systematic review of the literature.

    PubMed

    Goodwin, Nicholas S; Spinks, Anneliese; Wasiak, Jason

    2016-08-01

    The aim of this systematic review was to determine the supporting evidence for the clinical use of hydrogel dressings as a first aid measure for burn wound management in the pre-hospital setting. Two authors searched three databases (Ovid Medline, Ovid Embase and The Cochrane Library) for relevant English language articles published through September 2014. Reference lists, conference proceedings and non-indexed academic journals were manually searched. A separate search was conducted using the Internet search engine Google to source additional studies from burns advisory agencies, first aid bodies, military institutions, manufacturer and paramedic websites. Two authors independently assessed study eligibility and relevance of non-traditional data forms for inclusion. Studies were independently assessed and included if Hydrogel-based burn dressings (HBD) were examined in first aid practices in the pre-hospital setting. A total of 129 studies were considered for inclusion, of which no pre-hospital studies were identified. The review highlights that current use of HBD in the pre-hospital setting appears to be driven by sources of information that do not reflect the paramedic environment. We recommend researchers in the pre-hospital settings undertake clinical trials in this field. More so, the review supports the need for expert consensus to identify key demographic, clinical and injury outcomes for clinicians and researchers undertaking further research into the use of dressings as a first aid measure.

  5. Investigation into the potential use of poly(vinyl alcohol)/methylglyoxal fibres as antibacterial wound dressing components.

    PubMed

    Bulman, Sophie E L; Goswami, Parikshit; Tronci, Giuseppe; Russell, Stephen J; Carr, Chris

    2015-03-01

    As problems of antibiotic resistance increase, a continuing need for effective bioactive wound dressings is anticipated for the treatment of infected chronic wounds. Naturally derived antibacterial agents, such as Manuka honey, consist of a mixture of compounds, more than one of which can influence antimicrobial potency. The non-peroxide bacteriostatic properties of Manuka honey have been previously linked to the presence of methylglyoxal. The incorporation of methylglyoxal as a functional antibacterial additive during fibre production was explored as a potential route for manufacturing wound dressing components. Synthetic methylglyoxal and poly(vinyl alcohol) were fabricated into webs of sub-micron fibres by means of electrostatic spinning of an aqueous spinning solution. Composite fabrics were also produced by direct deposition of the poly(vinyl alcohol)-methylglyoxal fibres onto a preformed spunbonded nonwoven substrate. Attenuated total reflectance fourier transform infrared and proton nuclear magnetic resonance spectroscopies confirmed the presence of methylglyoxal within the resulting fibre structure. The antibacterial activity of the fibres was studied using strains of Staphylococcus aureus and Escherichia coli. Strong antibacterial activity, as well as diffusion of methylglyoxal from the fibres was observed at a concentration of 1.55 mg/cm(2).

  6. Evaluation of Human Amniotic Membrane as a Wound Dressing for Split-Thickness Skin-Graft Donor Sites

    PubMed Central

    Loeffelbein, Denys J.; Rohleder, Nils H.; Eddicks, Matthias; Baumann, Claudia M.; Stoeckelhuber, Mechthild; Wolff, Klaus-D.; Drecoll, Enken; Steinstraesser, Lars; Hennerbichler, Simone; Kesting, Marco R.

    2014-01-01

    Human amniotic membrane (HAM) has been used as a biomaterial in various surgical procedures and exceeds some qualities of common materials. We evaluated HAM as wound dressing for split-thickness skin-graft (STSG) donor sites in a swine model (Part A) and a clinical trial (Part B). Part A: STSG donor sites in 4 piglets were treated with HAM or a clinically used conventional polyurethane (PU) foil (n = 8 each). Biopsies were taken on days 5, 7, 10, 20, 40, and 60 and investigated immunohistochemically for alpha-smooth muscle actin (αSMA: wound contraction marker), von Willebrand factor (vWF: angiogenesis), Ki-67 (cell proliferation), and laminin (basement membrane integrity). Part B: STSG donor sites in 45 adult patients (16 female/29 male) were treated with HAM covered by PU foam, solely by PU foam, or PU foil/paraffin gauze (n = 15 each). Part A revealed no difference in the rate of wound closure between groups. HAM showed improved esthetic results and inhibitory effects on cicatrization. Angioneogenesis was reduced, and basement membrane formation was accelerated in HAM group. Part B: no difference in re-epithelialization/infection rate was found. HAM caused less ichor exudation and less pruritus. HAM has no relevant advantage over conventional dressings but might be a cost-effective alternative. PMID:25003117

  7. A novel in situ-formed hydrogel wound dressing by the photocross-linking of a chitosan derivative.

    PubMed

    Lu, Guozhong; Ling, Kai; Zhao, Peng; Xu, Zhenghong; Deng, Cao; Zheng, Hua; Huang, Jin; Chen, Jinghua

    2010-01-01

    In situ photopolymerized hydrogel dressings create minimally invasive methods that offer advantages over the use of preformed dressings such as conformability in any wound bed, convenience of application, and improved patient compliance and comfort. Here, we report an in situ-formed hydrogel membrane through ultraviolet cross-linking of a photocross-linkable azidobenzoic hydroxypropyl chitosan aqueous solution. The hydrogel membrane is stable, flexible, and transparent, with a bulk network structure of smoothness, integrity, and density. Fluid uptake ability, water vapor transmission rate, water retention, and bioadhesion of the thus resulted hydrogel membranes (0.1 mm thick) were determined to range from 97.0-96.3%, 2,934-2,561 g/m(2)/day, 36.69-22.94% (after 6 days), and 4.8-12.3 N/cm(2), respectively. These data indicate that the hydrogel membrane can maintain a long period of moist environment over the wound bed for enhancing reepithelialization. Specifically, these properties of the hydrogel membrane were controllable to some extent, by adjusting the substitution degree of the photoreactive azide groups. The hydrogel membrane also exhibited barrier function, as it was impermeable to bacteria but permeable to oxygen. In vitro experiments using two major skin cell types (dermal fibroblast and epidermal keratinocyte) revealed the hydrogel membrane have neither cytotoxicity nor an effect on cell proliferation. Taken together, the in situ photocross-linked azidobenzoic hydroxypropyl chitosan hydrogel membrane has a great potential in the management of wound healing and skin burn.

  8. Spanish Broom (Spartium junceum L.) fibers impregnated with vancomycin-loaded chitosan nanoparticles as new antibacterial wound dressing: Preparation, characterization and antibacterial activity.

    PubMed

    Cerchiara, Teresa; Abruzzo, Angela; Ñahui Palomino, Rogers Alberto; Vitali, Beatrice; De Rose, Renata; Chidichimo, Giuseppe; Ceseracciu, Luca; Athanassiou, Athanassia; Saladini, Bruno; Dalena, Francesco; Bigucci, Federica; Luppi, Barbara

    2017-03-01

    In this work, we propose as new wound dressing, the Spanish Broom fibers impregnated with vancomycin (VM) loaded chitosan nanoparticles. Spanish Broom fibers were extracted by patented method DiCoDe and the morphological, physical and mechanical properties were investigated. Chitosan nanoparticles were prepared by ionic gelation using different weight ratios between chitosan (CH) and tripolyphosphate (TPP). Nanoparticles were characterized in terms of size, zeta potential, yield, encapsulation efficiency, stability and drug release. Finally, the antibacterial activity against Staphylococcus aureus as well as in vitro cytotoxicity on HaCaT cells were evaluated. The best formulation CH/TPP 4:1 was selected based on the encapsulation efficiency and yield. Spanish Broom fibers impregnated with loaded nanoparticles showed an increased antibacterial activity against S. aureus compared to the same fibers containing VM without nanoparticles. Moreover, these fibers were not toxic to HaCaT keratinocytes cells. In conclusion, Spanish Broom fibers impregnated with VM loaded CH/TPP nanoparticles would appear to be a promising candidate for wound dressing application.

  9. Evaluation of the effects of a combination of Japanese honey and hydrocolloid dressing on cutaneous wound healing in male mice.

    PubMed

    Mukai, Kanae; Koike, Miki; Nakamura, Saki; Kawaguchi, Yuka; Katagiri, Fumika; Nojiri, Saki; Yamada, Yuki; Miyajima, Eri; Matsumoto, Mayuko; Komatsu, Emi; Nakajima, Yukari; Urai, Tamae; Murakado, Naoko; Nakatani, Toshio

    2015-01-01

    The aim of this study was to evaluate the effect of the combined use of Japanese honey and hydrocolloid dressing (HCD) on cutaneous wound healing. Mice were divided into four groups: the Acacia (Japan) + HCD, Manuka (New Zealand) + HCD, Chinese milk vetch (Japan) + HCD, and HCD (control) groups. The mice received two full-thickness wounds. The wounds of the HCD group were covered with HCD, whereas those of the other groups were treated with 0.1 mL of the relevant type of honey, before being covered with HCD. Wound area was significantly smaller in the HCD group than in the Acacia + HCD and Manuka + HCD groups on day 13 and days 8-14, respectively. Moreover, compared with the HCD group, reepithelialization was delayed in the Acacia + HCD group and reepithelialization and collagen deposition were delayed in the Chinese milk vetch + HCD and Manuka + HCD groups. These results indicate that the combined use of Japanese honey and HCD does not promote cutaneous wound healing compared with the use of HCD alone. Thus, this method is probably not useful for promoting healing.

  10. In situ forming antibacterial dextran blend hydrogel for wound dressing: SAA technology vs. spray drying.

    PubMed

    De Cicco, Felicetta; Reverchon, Ernesto; Adami, Renata; Auriemma, Giulia; Russo, Paola; Calabrese, Elena C; Porta, Amalia; Aquino, Rita P; Del Gaudio, Pasquale

    2014-01-30

    This study focuses on designing microparticulate carriers based on high-mannuronic alginate and amidated pectin blend loaded with gentamicin sulphate able to move rapidly from dry to soft hydrogel. Supercritical assisted atomization was used to produce microparticles in form of dry powder and characteristics were compared with those obtained by spray-drying. Particles with very high encapsulation efficiency (approximately 100%) and small diameter (less than 2 μm) showed good flowability and high fluid uptake enabling wound site filling and limiting bacterial proliferation. Moisture transmission of the in situ formed hydrogel was about 95 g/m(2)h, ideal to avoid wound dehydration or occlusion phenomena. All formulations presented a burst effect, suitable to prevent infection spreading at the beginning of the therapy, followed by prolonged release (4-10 days) related to drug/polymers ratio. Antimicrobial tests showed stronger effect than pure GS over time (up-to 24 days) and the ability to degrade preformed biofilms, essential to properly treat infected wounds.

  11. Electrospun Polycaprolactone Membrane Incorporated with Biosynthesized Silver Nanoparticles as Effective Wound Dressing Material.

    PubMed

    Thomas, Roshmi; Soumya, K R; Mathew, Jyothis; Radhakrishnan, E K

    2015-08-01

    Biosynthesized silver nanoparticles (AgNPs) incorporated polycaprolactone (PCL) nanomembrane was prepared by electrospinning as a cost-effective nanocomposite for application as an antimicrobial agent against wound infection. The nanocomposite membrane was characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis and Scanning Electron microscopy (SEM). The hydrophilicity analysis of electrospun membranes as evaluated by water contact angle measurement showed the change of hydrophobicity of PCL to hydrophilic upon incorporation of silver nanoparticles. Better mechanical properties were also observed for PCL membrane due to the incorporation of silver nanoparticles and are highly supportive to explore its biomedical applications. Further antibacterial analysis of silver nanoparticle-incorporated PCL membrane against common wound pathogens coagulase-negative Staphylococcus epidermidis and Staphylococcus haemolyticus showed remarkable activity. As biosynthesized AgNPs are least explored for clinical applications, the current study is a promising cost-effective method to explore the development of silver nanoparticle-based electrospun nanocomposite to resist wound-associated infection.

  12. Thermo-responsive wound dressings by grafting chitosan and poly(N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics

    NASA Astrophysics Data System (ADS)

    Chen, Jyh-Ping; Kuo, Chang-Yi; Lee, Wen-Li

    2012-12-01

    To obtain a chitosan wound dressings with temperature-responsive characteristics, polypropylene (PP) non-woven fabric (NWF) was modified by direct current pulsed oxygen plasma-induced grafting polymerization of acrylic acid (AAc) to improve hydrophilicity and to introduce carboxylic acid groups. Conjugation of chitosan and poly(N-isopropylacrylamide) (PNIPAAm) followed by using water-soluble carbodiimide as a coupling agent to form a novel bigraft PP-g-chitosan-g-PNIPAAm wound dressing. The amount of chitosan and PNIPAAm grafted to PP-g-chitosan-g-PNIPAAm were 83.0 ± 4.6 μg/cm2 and 189.5 ± 8.2 μg/cm2, respectively. The surface chemical composition and microstructure of the NWF were studied by electron spectroscopy for chemical analysis (ESCA) and scanning electron microscopy (SEM). The linkages between AAc, chitosan, and PNIPAAm were confirmed with the formation of amide bonds. Physical properties of the NWF were characterized and potentials of these NWFs as wound dressings were evaluated using SD rat as the animal model. NWFs contained PNIPAAm were better than those contained only chitosan in wound healing rates and the wound areas covered by PP-g-chitosan-g-PNIPAAm wound dressings healed completely in 17 days.

  13. Negative pressure wound therapy with Bio-Dome dressing technology in the treatment of complex wounds: a case series.

    PubMed

    Penny, H L; Spinazzola, J; Green, A; Rifkah, M; Faretta, M; Youshaw, D; Weaver, A; Zaki, P

    2014-04-01

    The treatment of complex wounds is difficult and not always effective. Various treatment options are used with varying degrees of success. Negative pressure wound therapy (NPWT) is a cost-efficient and effective way to help treat these wounds. The use of a vacuum device applies the negative pressure to the site of the wound and promotes waste removal and increases circulation and tissue formation. While various NPWT systems are currently on the market, we utilised the ConvaTec Engenex® system with Bio-DomeTM technology; however, our case study is not intended to advocate the specific use of this system, but instead focuses on the use of NPWT as a viable option for wound healing. Each of the following case study patients presented with difficult-to-heal wounds that failed traditional therapeutic approaches. Through the use of NPWT, our patients saw major wound size reductions. Each patient exhibited at least a 94% reduction in wound area, wound volume or both.

  14. Comparative study of the microvascular blood flow in the intestinal wall, wound contraction and fluid evacuation during negative pressure wound therapy in laparostomy using the V.A.C. abdominal dressing and the ABThera open abdomen negative pressure therapy system.

    PubMed

    Lindstedt, Sandra; Malmsjö, Malin; Hlebowicz, Joanna; Ingemansson, Richard

    2015-02-01

    This study aimed to compare the changes in microvascular blood flow in the small intestinal wall, wound contraction and fluid evacuation, using the established V.A.C. abdominal dressing (VAC dressing) and a new abdominal dressing, the ABThera open abdomen negative pressure therapy system (ABThera dressing), in negative pressure wound therapy (NPWT). Midline incisions were made in 12 pigs that were subjected to treatment with NPWT using the VAC or ABThera dressing. The microvascular blood flow in the intestinal wall was measured before and after the application of topical negative pressures of −50, −75 and −125mmHg using laser Doppler velocimetry. Wound contraction and fluid evacuation were also measured. Baseline blood flow was defined as 100% in all settings. The blood flow was significantly reduced to 64·6±6·7% (P <0·05) after the application of −50mmHg using the VAC dressing, and to 65·3±9·6% (P <0·05) after the application of −50mmHg using the ABThera dressing. The blood flow was significantly reduced to 39·6±6·7% (P <0·05) after the application of −125mmHg using VAC and to 40·5±6·2% (P <0·05) after the application of −125mmHg using ABThera. No significant difference in reduction in blood flow could be observed between the two groups. The ABThera system afforded significantly better fluid evacuation from the wound, better drainage of the abdomen and better wound contraction than the VAC dressing.

  15. Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing.

    PubMed

    Xu, Fenghua; Weng, Baicheng; Gilkerson, Robert; Materon, Luis Alberto; Lozano, Karen

    2015-01-22

    This study presents the successful development of biocompatible tannic acid (TA)/chitosan (CS)/pullulan (PL) composite nanofibers (NFs) with synergistic antibacterial activity against the Gram-negative bacteria Escherichia coli. The NFs were developed utilizing the forcespinning(®) (FS) technique from CS-CA aqueous solutions to avoid the usage of toxic organic solvents. The ternary nanofibrous membranes were crosslinked to become water stable for potential applications as wound dressing. The morphology, structure, water solubility, water absorption capability and thermal properties of the NFs were characterized. The ternary composite membrane exhibits good water absorption ability with rapid uptake rate. This novel membrane favors fibroblast cell attachment and growth by providing a 3D environment which mimics the extracellular matrix (ECM) in skin and allows cells to move through the fibrous structure resulting in interlayer growth throughout the membrane, thus favoring potential for deep and intricate wound healing.

  16. Chitosan–cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility

    PubMed Central

    Harkins, April L.; Duri, Simon; Kloth, Luther C.; Tran, Chieu D.

    2014-01-01

    Chitosan (CS), a polysaccharide derived from chitin, the second most abundant polysaccharide, is widely used in the medical world because of its natural and nontoxic properties and its innate ability for antibacterial and hemostasis effects. In this study, the novel composites containing CS and cellulose (CEL) (i.e., [CEL + CS]), which we have previously synthesized using a green and totally recyclable method, were investigated for their antimicrobial activity, absorption of anticoagulated whole blood, anti-inflammatory activity through the reduction of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and the biocompatibility with human fibroblasts. The [CEL + CS] composites were found to inhibit the growth of both Gram positive and negative microorganisms. For examples, the regenerated 100% lyophilized chitosan material was found to reduce growth of Escherichia coli (ATCC 8739 and vancomycin resistant Enterococcus faecalis (ATCC 51299) by 78, 36, and 64%, respectively. The composites are nontoxic to fibroblasts; that is, fibroblasts, which are critical to the formation of connective tissue matrix were found to grow and proliferate in the presence of the composites. They effectively absorb blood, and at the same rate and volume as commercially available wound dressings. The composites, in both air-dried and lyophilized forms, significantly inhibit the production of TNF-α and IL-6 by stimulated macrophages. These results clearly indicate that the biodegradable, biocompatible and nontoxic [CEL + CS] composites, particularly those dried by lyophilizing, can be effectively used as a material in wound dressings. PMID:24407857

  17. PVA-PEG physically cross-linked hydrogel film as a wound dressing: experimental design and optimization.

    PubMed

    Ahmed, Afnan Sh; Mandal, Uttam Kumar; Taher, Muhammad; Susanti, Deny; Jaffri, Juliana Md

    2017-04-05

    The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze-thaw method. Response surface methodology with Box-Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze-thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12 hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze-thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.

  18. Chitosan-cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility.

    PubMed

    Harkins, April L; Duri, Simon; Kloth, Luther C; Tran, Chieu D

    2014-08-01

    Chitosan (CS), a polysaccharide derived from chitin, the second most abundant polysaccharide, is widely used in the medical world because of its natural and nontoxic properties and its innate ability for antibacterial and hemostasis effects. In this study, the novel composites containing CS and cellulose (CEL) (i.e., [CEL + CS]), which we have previously synthesized using a green and totally recyclable method, were investigated for their antimicrobial activity, absorption of anticoagulated whole blood, anti-inflammatory activity through the reduction of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and the biocompatibility with human fibroblasts. The [CEL + CS] composites were found to inhibit the growth of both Gram positive and negative micro-organisms. For examples, the regenerated 100% lyophilized chitosan material was found to reduce growth of Escherichia coli (ATCC 8739 and vancomycin resistant Enterococcus faecalis (ATCC 51299) by 78, 36, and 64%, respectively. The composites are nontoxic to fibroblasts; that is, fibroblasts, which are critical to the formation of connective tissue matrix were found to grow and proliferate in the presence of the composites. They effectively absorb blood, and at the same rate and volume as commercially available wound dressings. The composites, in both air-dried and lyophilized forms, significantly inhibit the production of TNF-α and IL-6 by stimulated macrophages. These results clearly indicate that the biodegradable, biocompatible and nontoxic [CEL + CS] composites, particularly those dried by lyophilizing, can be effectively used as a material in wound dressings.

  19. A bilayer composite composed of TiO2-incorporated electrospun chitosan membrane and human extracellular matrix sheet as a wound dressing.

    PubMed

    Woo, Chang Hee; Choi, Young Chan; Choi, Ji Suk; Lee, Hee Young; Cho, Yong Woo

    2015-01-01

    We designed bilayer composites composed of an upper layer of titanium dioxide (TiO2)-incorporated chitosan membrane and a sub-layer of human adipose-derived extracellular matrix (ECM) sheet as a wound dressing for full-thickness wound healing. The dense and fibrous top layer, which aims to protect the wound from bacterial infection, was prepared by electrospinning of chitosan solution followed by immersion in TiO2 solution. The sponge-like sub-layer, which aims to promote new tissue regeneration, was prepared with acellular ECM derived from human adipose tissue. Using a modified drop plate method, there was a 33.9 and 69.6% reduction in viable Escherichia coli and Staphylococcus aureus on the bilayer composite, respectively. In an in vivo experiment using rats, the bilayer composites exhibited good biocompatibility and provided proper physicochemical and compositional cues at the wound site. Changes in wound size and histological examination of full-thickness wounds showed that the bilayer composites induced faster regeneration of granulation tissue and epidermis with less scar formation, than control wounds. Overall results suggest that the TiO2-incorporated chitosan/ECM bilayer composite can be a suitable candidate as a wound dressing, with an excellent inhibition of bacterial penetration and wound healing acceleration effects.

  20. [Improper use of dressings].

    PubMed

    Candas, Emmanuelle

    2016-01-01

    Neither nurses nor doctors receive initial training in wounds and the use of dressings. They are however required in their daily practice to provide this type of care. Advances in wound healing techniques and the appearance of "modern" dressings offer a wide range of solutions to caregivers. Professionals must acquire skills in this area and make the best possible use of the dressings at their disposal to optimise the controlled wound healing.

  1. Mechanical and biocompatible characterization of a cross-linked collagen-hyaluronic acid wound dressing.

    PubMed

    Kirk, James F; Ritter, Gregg; Finger, Isaac; Sankar, Dhyana; Reddy, Joseph D; Talton, James D; Nataraj, Chandra; Narisawa, Sonoko; Millán, José Luis; Cobb, Ronald R

    2013-01-01

    Collagen scaffolds have been widely employed as a dermal equivalent to induce fibroblast infiltrations and dermal regeneration in the treatment of chronic wounds and diabetic foot ulcers. Cross-linking methods have been developed to address the disadvantages of the rapid degradation associated with collagen-based scaffolds. To eliminate the potential drawbacks associated with glutaraldehyde cross-linking, methods using a water soluble carbodiimide have been developed. In the present study, the glycosaminoglycan (GAG) hyaluronic acid (HA), was covalently attached to an equine tendon derived collagen scaffold using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) to create ntSPONGE The HA was shown to be homogeneously distributed throughout the collagen matrix. In vitro analyses of the scaffold indicated that the cross-linking enhanced the biological stability by decreasing the enzymatic degradation and increasing the thermal denaturation temperature. The material was shown to support the attachment and proliferation of mouse L929 fibroblast cells. In addition, the cross-linking decreased the resorption rate of the collagen as measured in an intramuscular implant model in rabbits. The material was also shown to be biocompatible in a variety of in vitro and in vivo assays. These results indicate that this cross-linked collagen-HA scaffold, ntSPONGE has the potential for use in chronic wound healing.

  2. Collagen-Based Films Containing Liposome-Loaded Usnic Acid as Dressing for Dermal Burn Healing

    PubMed Central

    Nunes, Paula S.; Albuquerque-Júnior, Ricardo L. C.; Cavalcante, Danielle R. R.; Dantas, Marx D. M.; Cardoso, Juliana C.; Bezerra, Marília S.; Souza, Jamille C. C.; Serafini, Mairim Russo; Quitans-Jr, Lucindo J.; Bonjardim, Leonardo R.; Araújo, Adriano A. S.

    2011-01-01

    The aim of this study was assess the effect of collagen-based films containing usnic acid as a wound dressing for dermal burn healing. Second-degree burn wounds were performed in forty-five Wistar rats, assigned into nine groups: COL—animals treated with collagen-based films; PHO—animals treated with collagen films containing empty liposomes; UAL—animals treated with collagen-based films containing usnic acid incorporated into liposomes. After 7, 14, and 21 days the animals were euthanized. On 7th day there was a moderate infiltration of neutrophils, in UAL, distributed throughout the burn wounds, whereas in COL and PHO, the severity of the reaction was slighter and still limited to the margins of the burn wounds. On the 14th day, the inflammatory reaction was less intense in UAL, with remarkable plasma cells infiltration. On the 21st day, there was reduction of the inflammation, which was predominantly composed of plasma cells in all groups, particularly in UAL. The use of the usnic acid provided more rapid substitution of type-III for type-I collagen on the 14th day, and improved the collagenization density on the 21st day. It was concluded that the use of reconstituted bovine type-I collagen-based films containing usnic acid improved burn healing process in rats. PMID:21274404

  3. In vitro inhibition of human neutrophil elastase by oleic acid albumin formulations from derivatized cotton wound dressings.

    PubMed

    Edwards, J Vincent; Howley, Phyllis; Cohen, I Kelman

    2004-10-13

    Human neutrophil elastase (HNE) is elevated in chronic wounds. Oleic acid albumin formulations that inhibit HNE may be applicable to treatment modalities for chronic wounds. Oleic acid/albumin formulations with mole ratios of 100:1, 50:1, and 25:1 (oleic acid to albumin) were prepared and found to have dose response inhibition properties against HNE. The IC50 values for inhibition of HNE with oleic acid/albumin formulations were 0.029-0.049 microM. Oleic acid/albumin (BSA) formulations were bound to positively and negatively charged cotton wound dressings and assessed for elastase inhibition using a fiber bound formulation in an assay designed to mimic HNE inhibition in the wound. Cotton derivatized with both carboxylate and amine functional groups were combined with oleic acid/albumin formulations at a maximum loading of 0.030 mg oleic acid + 0.14 mg BSA/mg fiber. The IC50 values for inhibition of HNE with oleic acid/albumin formulations bound to derivatized cotton were 0.26-0.42 microM. Release of the oleic acid/albumin formulation from the fiber was measured by measuring oleic acid levels with quantitative GC analysis. Approximately, 35-50% of the fiber bound formulation was released into solution within the first 15 min of incubation. Albumin was found to enhance the rate of elastase hydrolysis of the substrate within a concentration range of 0.3-50 g/L. The acceleration of HNE substrate hydrolysis by albumin required increased concentration of inhibitor in the formulation to obtain complete inhibition of HNE. Oleic acid formulations prepared with albumin enable transport, solubility and promote dose response inhibition of HNE from derivatized cotton fibers under aqueous conditions mimicking the chronic wound.

  4. Hemostatic, antibacterial biopolymers from Acacia arabica (Lam.) Willd. and Moringa oleifera (Lam.) as potential wound dressing materials.

    PubMed

    Bhatnagar, Monica; Parwani, Laxmi; Sharma, Vinay; Ganguli, Jhuma; Bhatnagar, Ashish

    2013-10-01

    Acacia arabica and Moringa oleifera are credited with a number of medicinal properties. Traditionally gum of Acacia plant is used in the treatment of skin disorders to soothe skin rashes, soreness, inflammation and burns while Moringa seed extracts are known to have antibacterial activity. In the present study the potential of the polymeric component of aqueous extracts of gum acacia (GA) and the seeds of M. oleifera (MSP) in wound management was evaluated. The results revealed that both biopolymers were hemostatic and hasten blood coagulation. They showed shortening of activated partial thromboplastin time and prothrombin time and were non-cytotoxic in nature. Both showed antibacterial activity against organisms known to be involved in wound infections with MIC ranging from 500-600 microg mL(-1) for GA and 300-700 microg mL(-1) for MSP. They were biodegradable and exhibited water absorption capacity in the range of 415 to 935%. The hemostatic character coupled to these properties envisions their potential in preparation of dressings for bleeding and profusely exuding wounds. The biopolymers have been further analysed for their composition by Gas chromatography.

  5. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing.

    PubMed

    Wu, Jian; Zheng, Yudong; Song, Wenhui; Luan, Jiabin; Wen, Xiaoxiao; Wu, Zhigu; Chen, Xiaohua; Wang, Qi; Guo, Shaolin

    2014-02-15

    Bacterial cellulose has attracted increasing attention as a novel wound dressing material, but it has no antimicrobial activity, which is one of critical skin-barrier functions in wound healing. To overcome such deficiency, we developed a novel method to synthesize and impregnate silver nanoparticles on to bacterial cellulose nanofibres (AgNP-BC). Uniform spherical silver nano-particles (10-30 nm) were generated and self-assembled on the surface of BC nano-fibers, forming a stable and evenly distributed Ag nanoparticles coated BC nanofiber. Such hybrid nanostructure prevented Ag nanoparticles from dropping off BC network and thus minimized the toxicity of nanoparticles. Regardless the slow Ag(+) release, AgNP-BC still exhibited significant antibacterial activities with more than 99% reductions in Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, AgNP-BC allowed attachment and growth of epidermal cells with no cytotoxicity emerged. The results demonstrated that AgNP-BC could reduce inflammation and promote wound healing.

  6. Comparative effectiveness of a bilayered living cellular construct and a porcine collagen wound dressing in the treatment of venous leg ulcers.

    PubMed

    Marston, William A; Sabolinski, Michael L; Parsons, Nathan B; Kirsner, Robert S

    2014-01-01

    Using data from a national wound-specific electronic medical record (WoundExpert, Net Health, Pittsburgh, PA), we compared the effectiveness of a bilayered living cellular construct (BLCC) and an acellular porcine small intestine submucosa collagen dressing (SIS) for the treatment of venous leg ulcer. Data from 1,489 patients with 1,801 refractory venous leg ulcers (as defined by failure to have >40% reduction in size in the 4 weeks prior to treatment) with surface areas between 1 and 150 cm(2) in size, treated between July 2009 and July 2012 at 158 wound care facilities across the US were analyzed. Patient baseline demographics and wound characteristics were comparable between groups. Kaplan-Meier-derived estimates of wound closure for BLCC (1,451 wounds) was significantly greater (p = 0.01, log-rank test) by weeks 12 (31% vs. 26%), 24 (50% vs. 41%), and 36 (61% vs. 46%), respectively, compared with SIS (350 wounds). BLCC treatment reduced the median time to wound closure by 44%, achieving healing 19 weeks sooner (24 vs. 43 weeks, p = 0.01, log-rank test). Treatment with BLCC increased the probability of healing by 29% compared with porcine SIS dressing (hazard ratio = 1.29 [95% confidence interval 1.06, 1.56], p = 0.01).

  7. Porous dressings of modified chitosan with poly(2-hydroxyethyl acrylate) for topical wound delivery of levofloxacin.

    PubMed

    Siafaka, Panoraia I; Zisi, Asimina P; Exindari, Maria K; Karantas, Ioannis D; Bikiaris, Dimitrios N

    2016-06-05

    Absorbable and non-absorbable dressings have been fabricated into sponges via a modified thermally induced phase separation method, using a grafted derivative of chitosan with 2-hydroxyethylacrylate (CS-g-PHEA). The material was synthesized via free-radical polymerization and was characterized with FT-IR and (1)H NMR spectroscopies. The swelling ability, biocompatibility and biodegradability of the dressings were evaluated through in vitro assays while antibacterial studies were performed using three different bacterial strains, Methicillin susceptible Staphylococcus aureus (MSSA), Methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Levofloxacin was used as model drug at different concentrations. Morphological characterization of the drug loaded dressings was performed by scanning electron microscopy, while drug-matrix interactions were evaluated by FT-IR spectroscopy. X-ray diffraction studies were carried out for the identification of the physical state for both neat and drug loaded materials. The prepared dressings showed a significant inhibition zone of the bacteria indicating the antibacterial property of the materials and loaded sponges.

  8. Chitosan/TiO2 composite membrane improves proliferation and survival of L929 fibroblast cells: Application in wound dressing and skin regeneration.

    PubMed

    Behera, Sudhanshu Shekhar; Das, Urmimala; Kumar, Awanish; Bissoyi, Akalabya; Singh, Abhishek Kumar

    2017-05-01

    The microbial infection and growth of fibroblasts are the critical factors for the effective wound healing. The natural polymer-based dressing membranes may mimic extracellular matrix to support the survival, proliferation and differentiation of fibroblasts. The present study deals with the preparation of chitosan/titanium dioxide (CS/TiO2) composite membranes with different degree of TiO2 incorporation, and their characterization in terms of morphology, ultrastructure, thermal behavior and mechanical properties with SEM, FTIR, XRD and tensile strength analyses. The data demonstrated the formation of strong O-Ti-O bonding between TiO2 and CS resulting in superior porosity, mechanical strength, crystallinity and flexibility of the composite membranes. Further, the cyto-compatibility, proliferation, oxidative stress, cell cycle and apoptosis analyses of fibroblast L929 cells demonstrated the enhanced proliferation and survival, and decreased oxidative stress and apoptosis in L929 cells grown on CS/TiO2 membrane incorporated with 025% TiO2. Next, we measured the significant up-regulation in the expression of fibroblast-markers in L929 cells cultured on CS/TiO2 (0.25%) membrane. Furthermore, the CS/TiO2 composite membranes exhibited a superior antibacterial activity against Staphylococcus aureus. Taken together, the data confirmed that CS/TiO2 (0.25%) membrane improved the growth, survival and functional integrity of fibroblasts, and exerted antibacterial activity which may be utilized as potential dressing materials.

  9. The Use of a Pure Native Collagen Dressing for Wound Bed Preparation Prior to Use of a Living Bi-layered Skin Substitute

    PubMed Central

    Wahab, Naz; Roman, Martha; Chakravarthy, Debashish; Luttrell, Tammy

    2015-01-01

    Management of chronic wounds in the outpatient setting is quite challenging. The extensive co-morbid medical problems of the chronically ill patient along with the complexities of the wound bed and its biochemical environment has led to a plethora of patients with poor wound healing. This ever increasing population is a challenge for the wound care practitioner and cost to the health care system and patient. Increased wound chronicity has promulgated the use of advanced wound care products, including Living Skin Substitutes (LSS), in an attempt to obtain wound closure, and ultimately both physiological and functional healing.1–3 In the outpatient setting, it is evident that the efficacy of the LSS varies widely depending on the patient type with some patients responding quite favorably while others who do not achieve healing despite repeated applications of LSS. This case series demonstrates that a systematic method of wound bed preparation prior to the application of LSS improved healing outcomes. The entire wound bed preparation protocol included autolytic, non-selective, and sharp-selective debridement, if deemed appropriate, followed by the weekly application of a pure native collagen. The wound bed preparation protocol was completed prior to LSS application. This case series presents evidence supporting the application of a 100% native collagen dressing to wound bed prior to the final step of LSS utilization. PMID:26442205

  10. All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties.

    PubMed

    Liakos, Ioannis; Rizzello, Loris; Scurr, David J; Pompa, Pier Paolo; Bayer, Ilker S; Athanassiou, Athanassia

    2014-03-25

    We present natural polymeric composite films made of essential oils (EOs) dispersed in sodium alginate (NaAlg) matrix, with remarkable anti-microbial and anti-fungal properties. Namely, elicriso italic, chamomile blue, cinnamon, lavender, tea tree, peppermint, eucalyptus, lemongrass and lemon oils were encapsulated in the films as potential active substances. Glycerol was used to induce plasticity and surfactants were added to improve the dispersion of EOs in the NaAlg matrix. The topography, chemical composition, mechanical properties, and humidity resistance of the films are presented analytically. Antimicrobial tests were conducted on films containing different percentages of EOs against Escherichia coli bacteria and Candida albicans fungi, and the films were characterized as effective or not. Such diverse types of essential oil-fortified alginate films can find many applications mainly as disposable wound dressings but also in food packaging, medical device protection and disinfection, and indoor air quality improvement materials, to name a few.

  11. Facile fabrication of bactericidal and antifouling switchable chitosan wound dressing through a 'click'-type interfacial reaction.

    PubMed

    Wang, Xianghong; Yuan, Shuaishuai; Guo, Yu; Shi, Dean; Jiang, Tao; Yan, Shunjie; Ma, Jiao; Shi, Hengchong; Luan, Shifang; Yin, Jinghua

    2015-12-01

    A facile approach to functionalize chitosan (CS) non-woven surface with the bactericidal and antifouling switchable moieties is presented. Azlactone-cationic carboxybetaine ester copolymer was firstly prepared, then chemically attached onto CS non-woven surface through the fast and efficient 'click'-type interfacial reaction between CS primary amines and azlactone moieties. The CS non-woven surface functionalized with cationic carboxybetaine esters is able to kill bacteria effectively. Upon the hydrolysis of carboxybetaine esters into zwitterionic groups, the resulting zwitterionic surface can further prevent the attachment of proteins, platelets, erythrocytes and bacteria. This CS non-woven that switches from bactericidal performance during storage to antifouling property before its service has great potential in wound dressing applications.

  12. Preparation and characterization of gatifloxacin-loaded sodium alginate hydrogel membranes supplemented with hydroxypropyl methylcellulose and hydroxypropyl cellulose polymers for wound dressing

    PubMed Central

    Prabu, Durai; Majdalawieh, Amin F.; Abu-Yousef, Imad A.; Inbasekaran, Kadambari; Balasubramaniam, Tharani; Nallaperumal, Narayanan; Gunasekar, Conjeevaram J.

    2016-01-01

    Introduction: The aim of this study is to evaluate gatifloxacin-loaded sodium alginate hydrogel membranes, supplemented with glycerol (a plasticizer), glutaraldehyde (a cross-linking agent), and hydroxypropyl methylcellulose (HPMC) or hydroxypropyl cellulose (HPC) polymers, as potential wound dressing materials based on their physicochemical properties and the sustain-release phenomenon. Materials and Methods: The physicochemical properties of the prepared hydrogel membranes were evaluated by several methods including Fourier transform infrared and differential scanning calorimetry. Different techniques were used to assess the swelling behavior, tensile strength and elongation, % moisture absorption, % moisture loss, water vapor transmission rate (WVTR), and microbial penetration for the hydrogel membranes. In vitro gatifloxacin release from the hydrogel membranes was examined using the United States Pharmacopeia XXIII dissolution apparatus. Four kinetics models (zero-order, first-order, Higuchi equation, and Korsmeyer-Peppas equation) were applied to study drug release kinetics. Results: The addition of glycerol, glutaraldehyde, HPMC, and HPC polymers resulted in a considerable increase in the tensile strength and flexibility/elasticity of the hydrogel membranes. WVTR results suggest that hydrated hydrogel membranes can facilitate water vapor transfer. None of the hydrogel membranes supported microbial growth. HPMC-treated and HPC-treated hydrogel membranes allow slow, but sustained, release of gatifloxacin for 48 h. Drug release kinetics revealed that both diffusion and dissolution play an important role in gatifloxacin release. Conclusions: Given their physicochemical properties and gatifloxacin release pattern, HPMC-treated and HPC-treated hydrogel membranes exhibit effective and sustained drug release. Furthermore, HPMC-treated and HPC-treated hydrogel membranes possess physiochemical properties that make them effective and safe wound dressing materials. PMID

  13. Composite electrospun nanomembranes of fish scale collagen peptides/chito-oligosaccharides: antibacterial properties and potential for wound dressing

    PubMed Central

    Wang, Yan; Zhang, Chen-lu; Zhang, Qun; Li, Ping

    2011-01-01

    Purpose: The objective of the present investigation was to evaluate the antibacterial properties and the biocompatibility of composite electrospun nanofibrous membranes (NFMs) with low-molecular-weight fish scale collagen peptides (FSCP) and chito-oligosaccharide (COS), to determine their potential for use as wound dressings. Methods: Low-molecular-weight FSCP were combined with COS to prepare nanofibers by electrospinning, and polyvinyl alcohol (PVA) was used for enhancing fiber-forming ability. Transmission electron microscope and scanning electron microscope methods were used to observe bacterial adhesion and the bacterial cell membrane. Fibroblast cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: The best FSCP/COS mass ratio for electrospinning was 2:1, and the nanofibers had small dimensions ranging from 50 to 100 nm. The NFM showed good antibacterial activities against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The antibacterial activity against S. aureus was higher than against E. coli. The pili and adhesive fimbriae of E. coli promoted bacterial adhesion to the NFM surfaces, and S. aureus biofilms aided S. aureus adhesion on the surface of NFMs. Damage to the bacterial cell membrane indicates that the NFMs could lead to the release of intracellular materials, particularly with S. aureus. In addition, FSCP/COS NFM rapidly increased the permeability of the outer membranes of E. coli. The electrospun NFM with FSCP and COS had good biocompatibility in vitro and supported proliferation of human skin fibroblasts. Conclusion: FSCP are superior to mammalian collagen, and have feasibility and potency for wound dressings. FSCP/COS NFMs had good anti-bactericidal activity that improved with increased COS, and showed good biocompatibility in vitro and supported the proliferation of fibroblasts. PMID:21556341

  14. Generation of Two Biological Wound Dressings as a Potential Delivery System of Human Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Brena-Molina, Ana; Martínez-López, Valentín; Melgarejo-Ramírez, Yaaziel; Tamay de Dios, Lenin; Gómez-García, Ricardo; Reyes-Frías, Ma. de Lourdes; Rodríguez-Rodríguez, Lourdes; Garciadiego-Cázares, David; Lugo-Martínez, Haydée; Ibarra, Clemente

    2015-01-01

    Human adipose-derived mesenchymal stem cells (hADMSCs) are believed to be potential key factors for starting the regenerative process after tissue injury. However, an efficient method of delivering these regenerative cells to an external wound site is still lacking. Human amnion and pig skin have long been used as skin wound dressings for the treatment of burns and other skin lesions. Herein, we present the generation of two constructs using these two biomaterials as effective scaffolds for the culture of hADMSCs. It was found that hADMSCs seeded onto radiosterilized human amnion and pig skin are viable and proliferate. These cells are able to migrate over these scaffolds as demonstrated by using time-lapse microscopy. In addition, the scaffolds induce hADMSCs to secrete interleukin-10, an important negative regulator of inflammation, and interleukin-1β, a proinflammatory protein. The interplay between these two proteins has been proven to be vital for a balanced restoration of all necessary tissues. Thus, radiosterilized human amnion and pig skin are likely suitable scaffolds for delivery of hADMSCs transplants that could promote tissue regeneration in skin injuries like patients with burn injuries. PMID:26418201

  15. Generation of Two Biological Wound Dressings as a Potential Delivery System of Human Adipose-Derived Mesenchymal Stem Cells.

    PubMed

    Sánchez-Sánchez, Roberto; Brena-Molina, Ana; Martínez-López, Valentín; Melgarejo-Ramírez, Yaaziel; Tamay de Dios, Lenin; Gómez-García, Ricardo; Reyes-Frías, Ma de Lourdes; Rodríguez-Rodríguez, Lourdes; Garciadiego-Cázares, David; Lugo-Martínez, Haydée; Ibarra, Clemente; Martínez-Pardo, María Esther; Velasquillo-Martínez, Cristina

    2015-01-01

    Human adipose-derived mesenchymal stem cells (hADMSCs) are believed to be potential key factors for starting the regenerative process after tissue injury. However, an efficient method of delivering these regenerative cells to an external wound site is still lacking. Human amnion and pig skin have long been used as skin wound dressings for the treatment of burns and other skin lesions. Herein, we present the generation of two constructs using these two biomaterials as effective scaffolds for the culture of hADMSCs. It was found that hADMSCs seeded onto radiosterilized human amnion and pig skin are viable and proliferate. These cells are able to migrate over these scaffolds as demonstrated by using time-lapse microscopy. In addition, the scaffolds induce hADMSCs to secrete interleukin-10, an important negative regulator of inflammation, and interleukin-1β, a proinflammatory protein. The interplay between these two proteins has been proven to be vital for a balanced restoration of all necessary tissues. Thus, radiosterilized human amnion and pig skin are likely suitable scaffolds for delivery of hADMSCs transplants that could promote tissue regeneration in skin injuries like patients with burn injuries.

  16. Evaluation of pain intensity measurement during the removal of wound dressing material using 'the PainVision™ system' for quantitative analysis of perception and pain sensation in healthy subjects.

    PubMed

    Matsumura, Hajime; Imai, Ryutaro; Gondo, Masahide; Watanabe, Katsueki

    2012-08-01

    Reducing pain caused by the removal of adhesive wound dressing materials is very important in clinical practice and is also one of the factors to consider when choosing dressing materials. A visual analogue scale is the most popular method for assessing pain, but it is subjective and is difficult to evaluate quantitatively or statistically. Recently, a new method for the quantitative measurement of pain intensity using a painless electrical stimulation system, PainVision™, has been developed. In this study, we evaluated pain intensity during the removal of wound dressing materials in healthy volunteers by comparing pain during the removal of wound dressing materials, which use acrylic pressure-sensitive adhesive and pain during the removal of materials, which use soft silicone adhesive, as evaluated using the PainVision™ system. Pain intensity was significantly lower with the dressing materials, which use soft silicone adhesive when measured with the PainVision™ system. The PainVision™ system promises to be useful for the quantitative assessment of pain caused by the removal of adhesive wound dressing materials. Further studies are needed to determine whether the PainVision™ system is also effective in measuring pain caused by the removal of wound dressing materials in actual wounds.

  17. Collagen-Based Biomaterials for Wound Healing

    PubMed Central

    Chattopadhyay, Sayani; Raines, Ronald T.

    2014-01-01

    With its wide distribution in soft and hard connective tissues, collagen is the most abundant of animal proteins. In vitro, natural collagen can be formed into highly organized, three-dimensional scaffolds that are intrinsically biocompatible, biodegradable, non-toxic upon exogenous application, and endowed with high tensile strength. These attributes make collagen the material of choice for wound healing and tissue engineering applications. In this article, we review the structure and molecular interactions of collagen in vivo; the recent use of natural collagen in sponges, injectables, films and membranes, dressings, and skin grafts; and the on-going development of synthetic collagen mimetic peptides as pylons to anchor cytoactive agents in wound beds. PMID:24633807

  18. The effect of a cellulose dressing and topical vancomycin on methicillin-resistant Staphylococcus aureus (MRSA) and Gram-positive organisms in chronic wounds: a case series.

    PubMed

    Albaugh, Karen W; Biely, Scott A; Cavorsi, Joseph P

    2013-05-01

    High levels of persistent bacteria may contribute to wound chronicity and delayed healing. A prospective study was conducted to: 1) evaluate the effect of applying vancomycin topically on appropriately cultured chronic lower leg wounds, specifically methicillin-resistant Staphylococcus aureus (MRSA) and Gram-positive bacteria, and 2) evaluate its effect in combination with a cellulose dressing on healing. Twenty-three (23) outpatients (11 men, 12 women, average age 65 years [range 39-89 years]) with lower extremity wounds (15 venous ulcers, six chronic open wounds with a history of diabetes, and two chronic open trauma wounds) averaging 43.58 weeks' (range 5-121 weeks) duration and swab-cultured positive for MRSA or Gram-positive bacteria were provided 1 g vancomycin delivered by a cellulose dressing and changed every 72 hours. Patients served as their own control, and all wounds were debrided once a week. Wound surface area and bacterial and exudate levels were recorded weekly during the 3-week pretreatment period and compared to 3-week treatment period levels. Patients were followed until healed. Mean change in wound surface area was +14.5% (SD 71.91) per week before and -24.6% (SD 13.59) during the vancomycin treatment period (P = 0.014), average exudate levels decreased from 2.75 (range 1-4) to 1.81 (range 0-3) (P = 0.016), and the number of patients with positive wound cultures for MRSA or Gram-positive bacteria decreased from 23 to four after the 3-week study period. All wounds healed after an average of 8.18 weeks (SD 4.76, range 2-17 weeks). The results of this study suggest topical vancomycin applied using a dressing that retains moisture reduces wound bacterial load and may facilitate healing. Randomized, controlled clinical studies to evaluate the effectiveness and efficacy of this treatment modality and explore the relationship between wound culture results and healing are warranted.

  19. Negative Pressure Wound Therapy With Controlled Saline Instillation (NPWTi): Dressing Properties and Granulation Response In Vivo.

    PubMed

    Lessing, Chris; Slack, Paul; Hong, K Z; Kilpadi, Deepak; McNulty, Amy

    2011-10-01

    Negative pressure wound therapy (NPWT) with reticulated open-cell foam (ROCF) dressings (ROCF G, V.A.C.® GranuFoamTM Dress- ing, KCI USA, Inc, San Antonio, TX) creates a healing environment that removes wound exudates, reduces edema, and promotes perfusion and granulation tissue formation. Controlled instillation of saline dur- ing NPWT (NPWTi) may further enhance healing by facilitating auto- matic and contained volumetric wound irrigation and cleansing. A new ROCF dressing (ROCF-V, V.A.C. VeraFloTM Dressing, KCI USA, Inc, San Antonio, TX) has been developed for use with NPWTi; benchtop and in vivo tests compared the properties and performance of both ROCF-G and ROCF-V. Pore size and density (contributors to microdeformation) are similar for both ROCF-G and ROCF-V, while mechanical testing demonstrates ROCF-V is stronger than ROCF-G under both tensile and tear loading. ROCF-V surface energy is higher than ROCF-G, making ROCF-V less hydrophobic. Under wet conditions ROCF-V wicks more fluid and shows less pressure drop than ROCF-G, suggesting ROCF-V may be better suited for NPWTi. After 7 days of therapy in a porcine full-thickness excisional wound model, NPWTi with ROCF-V resulted in a 43% increase (P < 0.05) in granulation tissue thickness compared to NPWT with ROCF-G. These data suggest NPWTi with ROCF-V creates a wound healing environment that provides enhanced granulation tissue formation compared to standard NPWT with ROCF-G. .

  20. Printable Biodegradable Hydrogel for Skin Wound Dressing Using Inkjet Printing Technology

    ERIC Educational Resources Information Center

    Yanez, Maria

    2013-01-01

    Chronic wounds are becoming more frequent. Foot ulcers affect approximately 10%-15% of patients with diabetes throughout their lifetimes, and by 2025, it is estimated the prevalence of diabetes will be 250 million people in the worldwide. There is increased potential for patients with peripheral neuropathy and peripheral vascular disease to suffer…

  1. Development of lamellar gel phase emulsion containing marigold oil (Calendula officinalis) as a potential modern wound dressing.

    PubMed

    Okuma, C H; Andrade, T A M; Caetano, G F; Finci, L I; Maciel, N R; Topan, J F; Cefali, L C; Polizello, A C M; Carlo, T; Rogerio, A P; Spadaro, A C C; Isaac, V L B; Frade, M A C; Rocha-Filho, P A

    2015-04-25

    Appropriate therapeutics for wound treatments can be achieved by studying the pathophysiology of tissue repair. Here we develop formulations of lamellar gel phase (LGP) emulsions containing marigold (Calendula officinalis) oil, evaluating their stability and activity on experimental wound healing in rats. LGP emulsions were developed and evaluated based on a phase ternary diagram to select the best LGP emulsion, having a good amount of anisotropic structure and stability. The selected LGP formulation was analyzed according to the intrinsic and accelerated physical stability at different temperatures. In addition, in vitro and in vivo studies were carried out on wound healing rats as a model. The LGP emulsion (15.0% marigold oil; 10.0% of blend surfactants and 75.0% of purified water [w/w/w]) demonstrated good stability and high viscosity, suggesting longer contact of the formulation with the wound. No cytotoxic activity (50-1000 μg/mL) was observed in marigold oil. In the wound healing rat model, the LGP (15 mg/mL) showed an increase in the leukocyte recruitment to the wound at least on days 2 and 7, but reduced leukocyte recruitment after 14 and 21 days, as compared to the control. Additionally, collagen production was reduced in the LGP emulsion on days 2 and 7 and further accelerated the process of re-epithelialization of the wound itself. The methodology utilized in the present study has produced a potentially useful formulation for a stable LGP emulsion-containing marigold, which was able to improve the wound healing process.

  2. Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing.

    PubMed

    Unnithan, Afeesh Rajan; Gnanasekaran, Gopalsamy; Sathishkumar, Yesupatham; Lee, Yang Soo; Kim, Cheol Sang

    2014-02-15

    In this study, an antibacterial electrospun nanofibrous scaffolds with diameters around 400-700 nm were prepared by physically blending polyurethane (PU) with two biopolymers such as cellulose acetate (CA) and zein. Here, PU was used as the foundation polymer, was blended with CA and zein to achieve desirable properties such as better hydrophilicity, excellent cell attachment, proliferation and blood clotting ability. To prevent common clinical infections, an antimicrobial agent, streptomycin sulfate was incorporated into the electrospun fibers and its antimicrobial ability against the gram negative and gram positive bacteria were examined. The interaction between fibroblasts and the PU-CA and PU-CA-zein-drug scaffolds such as viability, proliferation, and attachment were characterized. PU-CA-zein-drug composite nanoscaffold showed enhanced blood clotting ability in comparison with pristine PU nanofibers. The presence of CA and zein in the nanofiber membrane improved its hydrophilicity, bioactivity and created a moist environment for the wound, which can accelerate wound recovery.

  3. Rapidly stopping hemorrhage by enhancing blood clotting at an opened wound using chitosan/polylactic acid/polycaprolactone wound dressing device.

    PubMed

    Boonkong, Wasinee; Petsom, Amorn; Thongchul, Nuttha

    2013-06-01

    Doxycycline and monosodium glutamate (MSG) loaded chitosan (CHI)/polylactic acid (PLA)/polycaprolactone (PCL) blend film was studied as a model device to deliver drug to targeted human organ which in this case was the skin with opened wound. The CHI/PLA/PCL blend film containing 60 % CHI, 28 % PLA, and 12 % PCL exhibited the good properties for making the dressing device. It was observed that doxycycline/MSG loaded CHI/PLA/PCL blend film could rapidly deliver both doxycycline and MSG at the high release percentage approaching 100 % loaded. MSG accelerated blood clotting and fibrin formation; thus, it exhibited the good hemostatic activity. The antibacterial activity of doxycycline loaded CHI/PLA/PCL blend film against Staphylococcus aureus and Escherichia coli as model bacteria was investigated. Doxycycline release played the crucial role in bacterial inhibition as observed from the lowest bacterial cell dry weight observed when compared with the control bacterial culture or the bacterial cultures with the presence of other films studied.

  4. Wet to dry dressing changes

    MedlinePlus

    ... warm water before and after each dressing change. Put on a pair of non-sterile gloves. Carefully ... pads or packing tape from inside your wound. Put the old dressing, packing material, and your gloves ...

  5. The economic benefits of negative pressure wound therapy in community-based wound care in the NHS.

    PubMed

    Dowsett, Caroline; Davis, Lynn; Henderson, Valerie; Searle, Richard

    2012-10-01

    The human and economic costs of wounds are of major concern within today's National Health Service. Advances in wound care technology have been shown to be beneficial both in healing and in relation to patient quality of life. Negative pressure has often been associated with high-cost care and restricted to use in the secondary care setting. There is growing use of negative pressure within the community, and this has the potential to benefit the patient and the service by providing quality care in the patient's home setting. Three community sites were chosen to monitor their use of negative pressure wound therapy (NPWT) over a period of 2 years, and this paper presents some of the key findings of this work. The data generated has been used to help target resources and prevent misuse of therapy. Cost per patient episode has been calculated, and this can be compared to similar costs in secondary care, showing significant savings if patients are discharged earlier from secondary care. There is also an increased demand for more patients with complex wounds to be cared for in the community, and in the future, it is likely that community initiated NPWT may become more common. Early analysis of the data showed that the average cost of dressing complex wounds would be significantly less than using traditional dressings, where increased nursing visits could increase costs. There is a compelling argument for more negative pressure to be used and initiated in the community, based not only on improved quality of life for patients but also on the economic benefits of the therapy.

  6. Optimization of the dressing parameters in cylindrical grinding based on a generalized utility function

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Irina

    2016-01-01

    The existing studies, concerning the dressing process, focus on the major influence of the dressing conditions on the grinding response variables. However, the choice of the dressing conditions is often made, based on the experience of the qualified staff or using data from reference books. The optimal dressing parameters, which are only valid for the particular methods and dressing and grinding conditions, are also used. The paper presents a methodology for optimization of the dressing parameters in cylindrical grinding. The generalized utility function has been chosen as an optimization parameter. It is a complex indicator determining the economic, dynamic and manufacturing characteristics of the grinding process. The developed methodology is implemented for the dressing of aluminium oxide grinding wheels by using experimental diamond roller dressers with different grit sizes made of medium- and high-strength synthetic diamonds type ??32 and ??80. To solve the optimization problem, a model of the generalized utility function is created which reflects the complex impact of dressing parameters. The model is built based on the results from the conducted complex study and modeling of the grinding wheel lifetime, cutting ability, production rate and cutting forces during grinding. They are closely related to the dressing conditions (dressing speed ratio, radial in-feed of the diamond roller dresser and dress-out time), the diamond roller dresser grit size/grinding wheel grit size ratio, the type of synthetic diamonds and the direction of dressing. Some dressing parameters are determined for which the generalized utility function has a maximum and which guarantee an optimum combination of the following: the lifetime and cutting ability of the abrasive wheels, the tangential cutting force magnitude and the production rate of the grinding process. The results obtained prove the possibility of control and optimization of grinding by selecting particular dressing

  7. Surgical wound infection - treatment

    MedlinePlus

    ... wounds heal, you may have a wound VAC (vacuum-assisted closure) dressing. It increases blood flow in ... helps with healing. This is a negative pressure (vacuum) dressing. There is a vacuum pump, a foam ...

  8. Wireless Microcurrent-Generating Antimicrobial Wound Dressing in Primary Total Knee Arthroplasty: A Single-Center Experience.

    PubMed

    Chow, James

    2016-06-27

    The spread of multidrug-resistant bacteria and financial burden of periprosthetic joint infection (PJI) further the need for treatments to address pathogenic contamination and expedite healing. This retrospective study was a chart review of a series of 92 patients who underwent 100 total knee arthroplasties performed by the same surgeon and treated with a novel microcurrent-generating antimicrobial dressing (MCD). Mean hospital length of stay was 2.3±0.9 days, while the mean length of treatment with MCD was 8.3±1.2 days. No major complications, PJI or major infectious complications were reported, with two readmissions (2%) within 30 days of surgery. Knee Society Score function showed statistically significant improvements post-operatively, with a mean six-month score of 75.0±20.3 and mean change from baseline of 36.3±21.1 (P<0.0001). These results support previous findings that use of the MCD may result in improved outcomes as an element in post-operative wound management.

  9. Wireless Microcurrent-Generating Antimicrobial Wound Dressing in Primary Total Knee Arthroplasty: A Single-Center Experience

    PubMed Central

    Chow, James

    2016-01-01

    The spread of multidrug-resistant bacteria and financial burden of periprosthetic joint infection (PJI) further the need for treatments to address pathogenic contamination and expedite healing. This retrospective study was a chart review of a series of 92 patients who underwent 100 total knee arthroplasties performed by the same surgeon and treated with a novel microcurrent-generating antimicrobial dressing (MCD). Mean hospital length of stay was 2.3±0.9 days, while the mean length of treatment with MCD was 8.3±1.2 days. No major complications, PJI or major infectious complications were reported, with two readmissions (2%) within 30 days of surgery. Knee Society Score function showed statistically significant improvements post-operatively, with a mean six-month score of 75.0±20.3 and mean change from baseline of 36.3±21.1 (P<0.0001). These results support previous findings that use of the MCD may result in improved outcomes as an element in post-operative wound management. PMID:27433298

  10. Chitosan wound dressing with hexagonal silver nanoparticles for hyperthermia and enhanced delivery of small molecules.

    PubMed

    Levi-Polyachenko, Nicole; Jacob, Reuben; Day, Cynthia; Kuthirummal, Narayanan

    2016-06-01

    Chitosan films were synthesized with hexagonal silver nanoparticles (Ag NP). The unique shape and size of the Ag NP shift the optical absorption into the infrared. Stimulation of the nanoparticles with infrared light was used to generate heat and facilitate intracellular delivery of fluorescently-labeled dextran molecules. Chitosan films prepared with hexagonal or spherical Ag NP were characterized by optical and thermal analyses, and X-ray diffraction. There were found to be slight differences between how the chitosan molecular chains interface with the Ag NP depending upon shape of the nanoparticle. Viability of cells associated with dermal wound healing was evaluated on chitosan films prepared with hexagonal or spherical Ag NP, with both keratinocytes and fibroblasts having normal or moderately enhanced growth on films containing hexagonally-shaped nanoparticles.

  11. Clinical Usage and Economic Effectiveness of a Recently Developed Epidermal Autograft Harvesting System in 13 Chronic Wound Patients in a University-Based Wound Center

    PubMed Central

    Hulsey, Angela; Linneman, Paul

    2016-01-01

    Introduction: Chronic wounds are a significant healthcare problem in the United States. Their costs approach 25 billion dollars in the United States. Current wound-care treatments of local wound care, moist dressings, and source control, while necessary for wound healing, are frequently not enough to ensure complete wound closure. The current surgical technique of split-thickness skin grafting is an operative procedure, painful, time-consuming, and leaves significant donor site wounds. A recently developed and marketed epidermal autograft harvester was tested at our university hospital wound center on 13 patients with wounds of various etiologies. Their clinical outcomes were evaluated, as were the costs associated with its usage compared with the potential costs of continued wound care without autograft placement. Methods: Thirteen patients whose wounds appeared to have "stalled" or reached a plateau in healing by measurement data and visual evidence were chosen to receive an epidermal autograft to accelerate wound closure. Wound-types included diabetic ulcers, venous or lymphedema-related ulcers, surgical site wounds, and traumatic wounds. Time-to-healing in days, when applicable, was captured. Wound center billing and charges were available and evaluated for nine of the 13 patients. Costs of standard care continuation compared with the cost of epidermal autograft technology usage were compared. Results: Healing rates were 62%; eight of the 13 patients had healed within four months, two were lost to follow-up, and three have wounds that remain open. Four of the patients healed in less than one month. The comparatively rapid closure of the open wound(s) post-epidermal autograft placement potentially reduced healthcare costs based on charges at an average of $1,153 per patient and yielded an average of $650 to the wound center, not applying the routine costs of dressings applied in the center.  Conclusion: The epidermal autograft harvester

  12. A prospective two-armed trial assessing the efficacy and performance of a silver dressing used postoperatively on high-risk, clean surgical wounds.

    PubMed

    Schwartz, Jamie; Goss, Selena; Facchin, Federico; Manizate, Fotini; Gendics, Cynthia; Braitman, Elissa; Lantis, John

    2014-04-01

    Surgical site infections (SSI) are a known complication of surgery. Silver-containing wound treatments are popular, despite the lack of evidence of SSI reduction. A two-armed study was conducted between July 2007 and November 2008 to evaluate the efficacy and ease of use of a postoperative silver dressing. In the first arm of the study, patients undergoing clean general, vascular, orthopedic, and neurosurgical procedures were allocated to receive a postoperative silver dressing (POSD) or a standard dressing of nonstick gauze under a fluid occlusive dressing. Outcome variables included the incidence of antibiotic initiation for SSI, clinical signs of infection, and leukocyte counts. The second arm of the study was a prospective case series designed to evaluate the performance and handling characteristics of the POSD. Onehundred- ninety-nine (199) patients (mean age 59.2 [range 21-94] years) were enrolled in the first arm of the study. Three out of 99 (3%) patients in the POSD and six out of 100 (6%) control group patients received antibiotic therapy for SSI (P = 0.498). Differences in the percentage of patients with clinical signs of infection following surgery also were not statistically significant (POSD: n = 24, 24.2%; control: n = 30, 30%; P = 0.426). In the second arm, 34 out of 36 patients rated the study dressing easy to apply in (94%), and no pain on removal was noted in 38 out of 57 (66.7%) assessments. No patients in the dressing performance cohort developed an SSI. Prospective, randomized, controlled clinical studies with large sample sizes are warranted to evaluate the efficacy and cost-effectiveness of the POSD.

  13. Sponge-Like Dressings Based on the Association of Chitosan and Sericin for the Treatment of Chronic Skin Ulcers. II. Loading of the Hemoderivative Platelet Lysate.

    PubMed

    Mori, Michela; Rossi, Silvia; Ferrari, Franca; Bonferoni, Maria C; Sandri, Giuseppina; Riva, Federica; Tenci, Marika; Del Fante, Claudia; Nicoletti, Giovanni; Caramella, Carla

    2016-03-01

    Platelet lysate (PL) was loaded into dressings based on chitosan glutamate (CSG) low and high molecular weight, sericin (Ser), and glycine (Gly). A synergic effect of Ser and PL on fibroblast proliferation was proved in vitro. Two different PL loading approaches were considered: the first provided to prepare dressings by freeze-drying a mixture of PL and CSG/Gly/Ser solution, the second approach consisted in the extemporarily loading of PL in the CSG/Gly/Ser freeze-dried dressings. As for the first approach, PL loading did not produce any variation in dressing mechanical properties. Such dressings absorbed a high amount (about 8-fold of dry weight) of phosphate-buffered saline (fluid mimicking wound exudate), forming a gel with pseudoplastic and elastic properties. Platelet-derived growth factor AB assay indicated that neither freeze-drying nor the excipients alter PL growth factor content. As for the second approach, mechanical and rheological properties of the gel formed upon PL absorption enabled to choose a PL loading of about 90 μL/cm(2). Upon contact with fibroblasts, all PL loaded formulations increased the number not only of viable cells but also of those in the proliferative phase. Histological studies effected on human skin strips pointed out the positive effect of PL loaded dressings on dermal matrix reconstruction.

  14. The effect of multifunctional polymer-based gels on wound healing in full thickness bacteria-contaminated mouse skin wound models.

    PubMed

    Yates, Cecelia C; Whaley, Diana; Babu, Ranjith; Zhang, Jianying; Krishna, Priya; Beckman, Eric; Pasculle, A William; Wells, Alan

    2007-09-01

    We determined whether a two-part space-conforming polyethylene glycol/dopa polymer-based gel promoted healing of contaminated wounds in mice. This silver-catalysed gel was previously developed to be broadly microbiocidal in vitro while being biocompatible with human wound cell functioning. Full-thickness wounds were created on the backs of mice. The wounds were inoculated with 10(4) CFU of each of four common skin wound contaminants, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumanii and Clostridium perfringens. The wounds were then treated with our multifunctional polymer-based gel, the commercially available NewSkin product, or left to heal untreated. The untreated wounds were overtly infected, and presented detectable bacterial loads over the entire 21-day healing period, while the gel and NewSkin groups presented significantly smaller rises in bacterial levels and were cleared of detectable colonies by the third week, with the gel group clearing the bacteria earlier. While all three groups healed their wounds, the polymer-based gel-treated group demonstrated significantly earlier re-epithelialization and dermal maturation (P<0.05). This was reflected in a quick regain of tensile strength. This accelerated dermal maturation and regain in strength was noted in mice treated with the polymer-based gel when compared to wound treated with the commercially available Aquacel-Ag dressing (P<0.05). What distinguishes the polymer-based gel from these other products is that it is incorporated within the healing wound. These preclinical studies show that the anti-microbial polymer gel not only supports but also accelerates healing of bacterially contaminated wounds.

  15. Anionic polymers and 10 nm Fe₃O₄@UA wound dressings support human foetal stem cells normal development and exhibit great antimicrobial properties.

    PubMed

    Grumezescu, Alexandru Mihai; Holban, Alina Maria; Andronescu, Ecaterina; Mogoşanu, George Dan; Vasile, Bogdan Stefan; Chifiriuc, Mariana Carmen; Lazar, Veronica; Andrei, Eugen; Constantinescu, Andrei; Maniu, Horia

    2014-03-25

    The aims of this study were the development, characterization and bioevaluation of a novel biocompatible, resorbable and bio-active wound dressing prototype, based on anionic polymers (sodium alginate--AlgNa, carboximethylcellulose--CMC) and magnetic nanoparticles loaded with usnic acid (Fe₃O₄@UA). The antimicrobial activity was tested against Staphylococcus aureus grown in biofilms. The biocompatibility testing model included an endothelial cell line from human umbilical vein and human foetal progenitor cells derived from the amniotic fluid, that express a wide spectrum of surface molecules involved in different vascular functions and inflammatory response, and may be used as skin regenerative support. The obtained results demonstrated that CMC/Fe₃O₄@UA and AlgNa/Fe₃O₄@UA are exhibiting structural and functional properties that recommend them for further applications in the biomedical field. They could be used alone or coated with different bio-active compounds, such as Fe₃O₄@UA, for the development of novel, multifunctional porous materials used in tissues regeneration, as antimicrobial substances releasing devices, providing also a mechanical support for the eukaryotic cells adhesion, and exhibiting the advantage of low cytotoxicity on human progenitor cells. The great antimicrobial properties exhibited by the newly synthesized nano-bioactive coatings are recommending them as successful candidates for improving the implanted devices surfaces used in regenerative medicine.

  16. Evidence-based recommendations for negative pressure wound therapy: treatment variables (pressure levels, wound filler and contact layer)--steps towards an international consensus.

    PubMed

    Birke-Sorensen, H; Malmsjo, M; Rome, P; Hudson, D; Krug, E; Berg, L; Bruhin, A; Caravaggi, C; Chariker, M; Depoorter, M; Dowsett, C; Dunn, R; Duteille, F; Ferreira, F; Francos Martínez, J M; Grudzien, G; Ichioka, S; Ingemansson, R; Jeffery, S; Lee, C; Vig, S; Runkel, N; Martin, R; Smith, J

    2011-09-01

    Negative pressure wound therapy (NPWT) is becoming a commonplace treatment in many clinical settings. New devices and dressings are being introduced. Despite widespread adoption, there remains uncertainty regarding several aspects of NPWT use. To respond to these gaps, a global expert panel was convened to develop evidence-based recommendations describing the use of NPWT. In a previous communication, we have reviewed the evidence base for the use of NPWT within trauma and reconstructive surgery. In this communication, we present results of the assessment of evidence relating to the different NPWT treatment variables: different wound fillers (principally foam and gauze); when to use a wound contact layer; different pressure settings; and the impact of NPWT on bacterial bioburden. Evidence-based recommendations were obtained by a systematic review of the literature, grading of evidence and drafting of the recommendations by a global expert panel. Evidence and recommendations were graded according to the Scottish Intercollegiate Guidelines Network (SIGN) classification system. In general, there is relatively weak evidence on which to base recommendations for any one NPWT treatment variable over another. Overall, 14 recommendations were developed: five for the choice of wound filler and wound contact layer, four for choice of pressure setting and five for use of NPWT in infected wounds. With respect to bioburden, evidence suggests that reduction of bacteria in wounds is not a major mode of action of NPWT.

  17. Potentials of Chitosan-Based Delivery Systems in Wound Therapy: Bioadhesion Study

    PubMed Central

    Hurler, Julia; Škalko-Basnet, Nataša

    2012-01-01

    Chitosan is currently proposed to be one of the most promising polymers in wound dressing development. Our research focuses on its potential as a vehicle for nano-delivery systems destined for burn therapy. One of the most important features of wound dressing is its bioadhesion to the wounded site. We compared the bioadhesive properties of chitosan with those of Carbopol, a synthetic origin polymer. Chitosan-based hydrogels of different molecular weights were first analyzed by texture analysis for gel cohesiveness, adhesiveness and hardness. In vitro release studies showed no difference in release of model antimicrobial drug from the different hydrogel formulations. Bioadhesion tests were performed on pig ear skin and the detachment force, necessary to remove the die from the skin, and the amount of remaining formulation on the skin were determined. Although no significant difference regarding detachment force could be seen between Carbopol-based and chitosan-based formulations, almost double the amount of chitosan formulation remained on the skin as compared to Carbopol formulations. The findings confirmed the great potential of chitosan-based delivery systems in advanced wound therapy. Moreover, results suggest that formulation retention on the ex vivo skin samples could provide deeper insight on formulation bioadhesiveness than the determination of detachment force. PMID:24956514

  18. A green salt-leaching technique to produce sericin/PVA/glycerin scaffolds with distinguished characteristics for wound-dressing applications.

    PubMed

    Aramwit, Pornanong; Ratanavaraporn, Juthamas; Ekgasit, Sanong; Tongsakul, Duangta; Bang, Nipaporn

    2015-05-01

    Sericin/PVA/glycerin scaffolds could be fabricated using the freeze-drying technique; they showed good physical and biological properties and can be applied as wound dressings. However, freeze-drying is an energy- and time-consuming process with a high associated cost. In this study, an alternative, solvent-free, energy- and time-saving, low-cost salt-leaching technique is introduced as a green technology to produce sericin/PVA/glycerin scaffolds. We found that sericin/PVA/glycerin scaffolds were successfully fabricated without any crosslinking using a salt-leaching technique. The salt-leached sericin/PVA/glycerin scaffolds had a porous structure with pore interconnectivity. The sericin in the salt-leached scaffolds had a crystallinity that was as high as that of the freeze-dried scaffolds. Compared to the freeze-dried scaffolds with the same composition, the salt-leached sericin/PVA/glycerin scaffolds has larger pores, a lower Young's modulus, and faster rates of biodegradation and sericin release. When cultured with L929 mouse fibroblast cells, a higher number of cells were found in the salt-leached scaffolds. Furthermore, the salt-leached scaffolds were less adhesive to the wound, which would reduce pain upon removal. Therefore, salt-leached sericin/PVA/glycerin scaffolds with distinguished characteristics were introduced as another choice of wound dressing, and their production process was simpler, more energy efficient, and saved time and money compared to the freeze-dried scaffolds.

  19. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems.

    PubMed

    Abdelgawad, Abdelrahman M; Hudson, Samuel M; Rojas, Orlando J

    2014-01-16

    Novel hybrid nanomaterials have been developed for antimicrobial applications. Here we introduce a green route to produce antibacterial nanofiber mats loaded with silver nanoparticles (Ag-NPs, 25 nm diameter) enveloped in chitosan after reduction with glucose. The nanofiber mats were obtained from colloidal dispersions of chitosan-based Ag-NPs blended with polyvinyl alcohol. Nanofibers (150 nm average diameter and narrow size distribution) were obtained by electrospinning and cross-linked with glutaraldhyde. The effect of crosslinking on the release of silver was studied by atomic absorption spectroscopy. Antimicrobial activity was studied by the viable cell-counting; mats loaded with silver and control samples (chitosan/PVA) with different degrees of cross-linking were compared for their effectiveness in reducing or halting the growth of aerobic bacteria. The results showed superior properties and synergistic antibacterial effects by combining chitosan with Ag-NPs.

  20. Role of Surgical Dressings in Total Joint Arthroplasty: A Randomized Controlled Trial.

    PubMed

    Springer, Bryan D; Beaver, Walter B; Griffin, William L; Mason, J Bohannon; Odum, Susan M

    2015-09-01

    We conducted a randomized controlled trial to compare efficacy of an occlusive antimicrobial barrier dressing and a standard surgical dressing in patients who underwent primary total joint arthroplasty. Two hundred sixty-two patients were randomized to receive either an occlusive dressing or a standard dressing. Wounds were closed in identical fashion. Outcomes included wound complications, dressing changes, and patient satisfaction. With use of occlusive dressing (vs standard dressing), wound complications (including skin blistering) were significantly (P = 0.15) reduced; there were significantly (P < .0001) fewer dressing changes; and patient satisfaction was significantly (P < .0001) higher. Use of occlusive dressings can reduce wound complications and promote wound healing after total joint arthroplasty.

  1. Current wound healing procedures and potential care

    PubMed Central

    Dreifke, Michael B.; Jayasuriya, Amil A.; Jayasuriya, Ambalangodage C.

    2015-01-01

    In this review, we describe current and future potential wound healing treatments for acute and chronic wounds. The current wound healing approaches are based on autografts, allografts, and cultured epithelial autografts, and wound dressings based on biocompatible and biodegradable polymers. The Food and Drug Administration approved wound healing dressings based on several polymers including collagen, silicon, chitosan, and hyaluronic acid. The new potential therapeutic intervention for wound healing includes sustained delivery of growth factors, and siRNA delivery, targeting micro RNA, and stem cell therapy. In addition, environment sensors can also potentially utilize to monitor and manage micro environment at wound site. Sensors use optical, odor, pH, and hydration sensors to detect such characteristics as uric acid level, pH, protease level, and infection – all in the hopes of early detection of complications. PMID:25579968

  2. Current wound healing procedures and potential care.

    PubMed

    Dreifke, Michael B; Jayasuriya, Amil A; Jayasuriya, Ambalangodage C

    2015-03-01

    In this review, we describe current and future potential wound healing treatments for acute and chronic wounds. The current wound healing approaches are based on autografts, allografts, and cultured epithelial autografts, and wound dressings based on biocompatible and biodegradable polymers. The Food and Drug Administration approved wound healing dressings based on several polymers including collagen, silicon, chitosan, and hyaluronic acid. The new potential therapeutic intervention for wound healing includes sustained delivery of growth factors, and siRNA delivery, targeting microRNA, and stem cell therapy. In addition, environment sensors can also potentially utilize to monitor and manage microenvironment at wound site. Sensors use optical, odor, pH, and hydration sensors to detect such characteristics as uric acid level, pH, protease level, and infection - all in the hopes of early detection of complications.

  3. Gauze Packing of Open Surgical Wounds: Empirical or Evidence-Based Practice?

    PubMed Central

    Dinah, F; Adhikari, A

    2006-01-01

    INTRODUCTION Most surgical wounds are closed primarily, but some are allowed to heal by secondary intention. This usually involves repeated packing and dressing of the raw wound surfaces. Although the long-term care of such wounds has devolved to the care of nurses in the community or out-patient setting, the initial wound dressing or cavity packing is done by the surgeon in the operating theatre. Many surgeons are unaware of the growth of the discipline of wound care, and still use traditional soaked gauze for dressing and packing open surgical wounds and cavities. RESULTS This review summarises the some of the modern alternatives available and the evidence – or the lack of it – for their use in both the acute and chronic setting. PMID:16460637

  4. Repeated Use of Immersive Virtual Reality Therapy to Control Pain during Wound Dressing Changes in Pediatric and Adult Burn Patients

    PubMed Central

    Faber, Albertus W.; Patterson, David R.; Bremer, Marco

    2012-01-01

    Objective The current study explored whether immersive virtual reality continues to reduce pain (via distraction) during more than one wound care session per patient. Patients: Thirty six patients aged 8 to 57 years (mean age of 27.7 years), with an average of 8.4% total body surface area burned (range .25 to 25.5 TBSA) received bandage changes, and wound cleaning. Methods Each patient received one baseline wound cleaning/debridement session with no-VR (control condition) followed by one or more (up to seven) subsequent wound care sessions during VR. After each wound care session (one session per day), worst pain intensity was measured using a Visual Analogue Thermometer (VAT), the dependent variable. Using a within subjects design, worst pain intensity VAT during wound care with no-VR (baseline, Day 0) was compared to pain during wound care while using immersive virtual reality (up to seven days of wound care during VR). Results Compared to pain during no-VR Baseline (Day 0), pain ratings during wound debridement were statistically lower when patients were in virtual reality on Days 1, 2 and 3, and although not significant beyond day 3, the pattern of results from Days 4, 5, and 6 are consistent with the notion that VR continues to reduce pain when used repeatedly. Conclusions Results from the present study suggest that VR continues to be effective when used for three (or possibly more) treatments during severe burn wound debridement. PMID:23970314

  5. Using In situ Dynamic Cultures to Rapidly Biofabricate Fabric-Reinforced Composites of Chitosan/Bacterial Nanocellulose for Antibacterial Wound Dressings

    PubMed Central

    Zhang, Peng; Chen, Lin; Zhang, Qingsong; Hong, Feng F.

    2016-01-01

    Bacterial nano-cellulose (BNC) is considered to possess incredible potential in biomedical applications due to its innate unrivaled nano-fibrillar structure and versatile properties. However, its use is largely restricted by inefficient production and by insufficient strength when it is in a highly swollen state. In this study, a fabric skeleton reinforced chitosan (CS)/BNC hydrogel with high mechanical reliability and antibacterial activity was fabricated by using an efficient dynamic culture that could reserve the nano-fibrillar structure. By adding CS in culture media to 0.25–0.75% (w/v) during bacterial cultivation, the CS/BNC composite hydrogel was biosynthesized in situ on a rotating drum composed of fabrics. With the proposed method, BNC biosynthesis became less sensitive to the adverse antibacterial effects of CS and the production time of the composite hydrogel with desirable thickness could be halved from 10 to 5 days as compared to the conventional static cultures. Although, its concentration was low in the medium, CS accounted for more than 38% of the CS/BNC dry weight. FE-SEM observation confirmed conservation of the nano-fibrillar networks and covering of CS on BNC. ATR-FTIR showed a decrease in the degree of intra-molecular hydrogen bonding and water absorption capacity was improved after compositing with CS. The fabric-reinforced CS/BNC composite exhibited bacteriostatic properties against Escherichia coli and Staphylococcus aureus and significantly improved mechanical properties as compared to the BNC sheets from static culture. In summary, the fabric-reinforced CS/BNC composite constitutes a desired candidate for advanced wound dressings. From another perspective, coating of BNC or CS/BNC could upgrade the conventional wound dressings made of cotton gauze to reduce pain during wound healing, especially for burn patients. PMID:26973634

  6. Hemostasis and Post-operative Care of Oral Surgical Wounds by Hemcon Dental Dressing in Patients on Oral Anticoagulant Therapy: A Split Mouth Randomized Controlled Clinical Trial

    PubMed Central

    Kumar, K.R. Ashok; Sarvagna, Jagadesh; Gadde, Praveen; Chikkaboriah, Shwetha

    2016-01-01

    Introduction Hemostasis is a fundamental management issue post-operatively in minor oral surgical procedures. To ensure safety and therapeutic efficacy in patients, under oral anti coagulant therapy, is complicated by necessity for frequent determination of prothrombin time or international normalised ratio. Aim The aim of the study was to determine whether early hemostasis achieved by using Hemcon Dental Dressing (HDD) will affect post-operative care and surgical healing outcome in minor oral surgical procedures. Materials and Methods A total of 30 patients, aged 18 years to 90 years, except those allergic to seafood, who consented to participate, were enrolled into this study. Patients were required to have two or more surgical sites so that they would have both surgical and control sites. All patients taking Oral Anticoagulation Therapy (OAT) were included for treatment in the study without altering the anticoagulant regimens. Institutional Review Board approval was obtained for the same. The collected data was subjected to statistical analysis using unpaired t-test. Results All HDD surgically treated sites achieved hemostasis in 1.49 minutes and control wounds in 4.06 minutes (p < 0.001). Post-operative pain at HDD treated sites (1.87,1.27 on 1st and 3rd day respectively) was significantly lower than the control sites (4.0,1.87 on 1st and 3rd day respectively) p-value (0.001, 0.001 respectively). HDD treated oral surgery wounds achieved statistically significant improved healing both at 1st and 3rd post-operative days (p <0.0001). Conclusion The HDD has been proven to be a clinically effective hemostatic dressing material that significantly shortens bleeding time following minor oral surgical procedures under local anaesthesia, including those patients taking OAT. Patients receiving the HDD had improved surgical wound healing as compared to controls. PMID:27790577

  7. Qualitative bacteriology in malignant wounds--a prospective, randomized, clinical study to compare the effect of honey and silver dressings.

    PubMed

    Lund-Nielsen, Betina; Adamsen, Lis; Gottrup, Finn; Rorth, Mikael; Tolver, Anders; Kolmos, Hans Jorn

    2011-07-01

     Between 5% and 10% of cancer patients develop malignant wounds. In vitro and some clinical studies suggest that silver- or honey-coated dressings may have an antibacterial effect in nonmalignant wounds, but their possible antibacterial effect in malignant wounds remains unknown. A prospective, randomized, single-blind controlled clinical study was conducted to evaluate the bacteriology of malignant wounds and compare the effect of a honey-coated (Group A) to a silver-coated (Group B) dressing on the qualitative bacteriology of malignant wounds. All wound interventions were performed by the same healthcare professional. Swab cultures were obtained at baseline and following a 4-week intervention and were evaluated without information about the patient treatment group. Of the 75 patients with advanced cancer and malignant wounds identified, 67 (34 in group A, 33 in group B; median age 64 years, range 47-92) consented to participate and completed the 4-week study. The majority were women (88%) with breast cancer (79%). No statistically significant differences were found between the type and number of different wound pathogens in the wounds during the course of the study or between Group A and Group B. Neither anti-neoplastic nor antibiotic treatment influenced the presence of wound pathogens. Staphylococci were found in 42%, enteric bacteria in 34%, anaerobic bacteria in 16%, Pseudomonas in 10%, and hemolytic streptococci in 6% of wounds at baseline; in total, 25 different bacterial species were identified. Sixty-one percent (61%) of wounds decreased in size following treatment, but no significant differences were observed between the type and variety of wound pathogens and whether wound size decreased. Although quantitative bacteriological changes may have occurred, the possible antibacterial effect of the honey or silver dressing could not be confirmed in these malignant wounds. Routine wound swabbing of malignant

  8. Assessment of the effectiveness of silver-coated dressing, chlorhexidine acetate (0.5%), citric acid (3%), and silver sulfadiazine (1%) for topical antibacterial effects against the multi-drug resistant Pseudomonas aeruginosa infecting full-skin thickness burn wounds on rats.

    PubMed

    Yabanoglu, Hakan; Basaran, Ozgur; Aydogan, Cem; Azap, Ozlem Kurt; Karakayali, Feza; Moray, Gokhan

    2013-01-01

    The aim of this study was to compare the effects of four different topical antimicrobial dressings on a multi-drug resistant Pseudomonas aeruginosa contaminated full-thickness burn wound rat model. A total of 40 adult male Wistar albino rats were used. The control group (group 1), silver sulfadiazine (1%) group 2, chlorhexidine acetate (0.5%) group 3, citric acid (3%) group 4, and silver-coated dressing group 5 were compared to assess the antibacterial effects of a daily application to a 30% full-skin thickness burn wound seeded 10 minutes earlier with 10(8) CFU (colony forming unit)/0.5 mL of a multi-drug resistant Pseudomonas aeruginosa strain. Five groups (1 control group and 4 treatment groups) were compared. The administration of third-degree burns to all rats was confirmed based on histopathologic data. The tissue cultures from groups 2 and 5 exhibited significant differences compared to those of the other 3 groups, whereas no significant differences were observed between groups 1, 3, and 4. The effectiveness of the treatments was as follows: 1% silver sulfadiazine > silver-coated dressing > 3% citric acid > 0.5% chlorhexidine acetate > control group. Our results supported the efficacy of topical therapy by silver sulfadiazine and silver-coated dressing on infections caused by multi-drug resistant Pseudomonas spp.

  9. Assessment of the Effectiveness of Silver-Coated Dressing, Chlorhexidine Acetate (0.5%), Citric Acid (3%), and Silver Sulfadiazine (1%) for Topical Antibacterial Effects Against the Multi-Drug Resistant Pseudomonas Aeruginosa Infecting Full-Skin Thickness Burn Wounds on Rats

    PubMed Central

    Yabanoglu, Hakan; Basaran, Ozgur; Aydogan, Cem; Azap, Ozlem Kurt; Karakayali, Feza; Moray, Gokhan

    2013-01-01

    The aim of this study was to compare the effects of four different topical antimicrobial dressings on a multi-drug resistant Pseudomonas aeruginosa contaminated full-thickness burn wound rat model. A total of 40 adult male Wistar albino rats were used. The control group (group 1), silver sulfadiazine (1%) group 2, chlorhexidine acetate (0.5%) group 3, citric acid (3%) group 4, and silver-coated dressing group 5 were compared to assess the antibacterial effects of a daily application to a 30% full-skin thickness burn wound seeded 10 minutes earlier with 108 CFU (colony forming unit)/0.5 mL of a multi-drug resistant Pseudomonas aeruginosa strain. Five groups (1 control group and 4 treatment groups) were compared. The administration of third-degree burns to all rats was confirmed based on histopathologic data. The tissue cultures from groups 2 and 5 exhibited significant differences compared to those of the other 3 groups, whereas no significant differences were observed between groups 1, 3, and 4. The effectiveness of the treatments was as follows: 1% silver sulfadiazine > silver-coated dressing > 3% citric acid > 0.5% chlorhexidine acetate > control group. Our results supported the efficacy of topical therapy by silver sulfadiazine and silver-coated dressing on infections caused by multi-drug resistant Pseudomonas spp. PMID:24229034

  10. Negative pressure wound therapy-associated tissue trauma and pain: a controlled in vivo study comparing foam and gauze dressing removal by immunohistochemistry for substance P and calcitonin gene-related peptide in the wound edge.

    PubMed

    Malmsjö, Malin; Gustafsson, Lotta; Lindstedt, Sandra; Ingemansson, Richard

    2011-12-01

    Pain upon negative pressure wound therapy (NPWT) dressing removal has been reported and is believed to be associated with the observation that granulation tissue grows into foam. Wound tissue damage upon removal of the foam may cause the reported pain. Calcitonin gene-related peptide (CGRP) and substance P are neuropeptides that cause inflammation and signal pain and are known to be released when tissue trauma occurs. The aim of this controlled in vivo study was to compare the expression of CGRP and substance P in the wound bed in control wounds and following NPWT and foam or gauze dressing removal. Eight pigs with two wounds each were treated with open-pore structure polyurethane foam or AMD gauze and NPWT of 0 (control) or -80 mm Hg for 72 hours. Following removal of the wound filler, the expression of CGRP and substance P was measured, using arbitrary units, in sections of biopsies from the wound bed using immunofluorescence techniques. Substance P and CGRP were more abundant in the wound edge following the removal of foam than of gauze dressings and least abundant in control wounds. The immunofluorescence staining of the wound edge for CGRP was 52 ± 3 au after the removal of gauze and 97 ± 5 au after the removal of foam (P <0.001). For substance P, the staining was 55 ± 3 au after gauze removal and 95 ± 4 au after foam removal (P <0.001). CGRP and substance P staining was primarily located to nerves and leukocytes. The increase in CGRP and substance P immunofluorescence was especially prominent in the dermis but also was seen in subcutaneous and muscle tissue. Using gauze may be one way of reducing NPWT dressing change-related pain. New wound fillers designed to optimize granulation tissue formation and minimize pain issues presumably will be developed in the near future.

  11. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model.

    PubMed

    Zhao, Shichang; Li, Le; Wang, Hui; Zhang, Yadong; Cheng, Xiangguo; Zhou, Nai; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing

    2015-01-01

    There is a need for better wound dressings that possess the requisite angiogenic capacity for rapid in situ healing of full-thickness skin wounds. Borate bioactive glass microfibers are showing a remarkable ability to heal soft tissue wounds but little is known about the process and mechanisms of healing. In the present study, wound dressings composed of borate bioactive glass microfibers (diameter = 0.4-1.2 μm; composition 6Na2O, 8K2O, 8MgO, 22CaO, 54B2O3, 2P2O5; mol%) doped with 0-3.0 wt.% CuO were created and evaluated in vitro and in vivo. When immersed in simulated body fluid, the fibers degraded and converted to hydroxyapatite within ∼7 days, releasing ions such as Ca, B and Cu into the medium. In vitro cell culture showed that the ionic dissolution product of the fibers was not toxic to human umbilical vein endothelial cells (HUVECs) and fibroblasts, promoted HUVEC migration, tubule formation and secretion of vascular endothelial growth factor (VEGF), and stimulated the expression of angiogenic-related genes of the fibroblasts. When used to treat full-thickness skin defects in rodents, the Cu-doped fibers (3.0 wt.% CuO) showed a significantly better capacity to stimulate angiogenesis than the undoped fibers and the untreated defects (control) at 7 and 14 days post-surgery. The defects treated with the Cu-doped and undoped fibers showed improved collagen deposition, maturity and orientation when compared to the untreated defects, the improvement shown by the Cu-doped fibers was not markedly better than the undoped fibers at 14 days post-surgery. These results indicate that the Cu-doped borate glass microfibers have a promising capacity to stimulate angiogenesis and heal full-thickness skin defects. They also provide valuable data for understanding the role of the microfibers in healing soft tissue wounds.

  12. Topical Collagen-Based Biomaterials for Chronic Wounds: Rationale and Clinical Application

    PubMed Central

    Gould, Lisa J.

    2016-01-01

    Significance: The extracellular matrix (ECM) is known to be deficient in chronic wounds. Collagen is the major protein in the ECM. Many claims are made while extolling the virtues of collagen-based biomaterials in promoting cell growth and modulating matrix metalloproteinases. This review will explore the rationale for using topical collagen or ECM as an interface for healing. Recent Advances: Rapid improvements in electrospinning and nanotechnology have resulted in the creation of third-generation biomaterials that mimic the native ECM, stimulate cellular and genetic responses in the target tissue, and provide a platform for controlled release of bioactive molecules and live cells. Although the major focus is currently on development of artificial tissues and organ regeneration, better understanding of the mechanisms that stimulate wound healing can be applied to specific deficits in the chronic wound. Critical Issues: When choosing between the various advanced wound-care products and dressings, the clinician is challenged to select the most appropriate material at the right time. Understanding how the ECM components promote tissue regeneration and modulate the wound microenvironment will facilitate those choices. Laboratory discoveries of biomolecular and cellular strategies that promote skin regeneration rather than repair should be demonstrated to translate to deficits in the chronic wound. Future Directions: Cost-effective production of materials that utilize non-mammalian sources of collagen or ECM components combined with synthetic scaffolding will provide an optimal structure for cellular ingrowth and modulation of the chronic wound microenvironment to facilitate healing. These bioengineered materials will be customizable to provide time-released delivery of bioactive molecules or drugs based on the degradation rate of the scaffold or specific signals from the wound. PMID:26858912

  13. Topical Collagen-Based Biomaterials for Chronic Wounds: Rationale and Clinical Application.

    PubMed

    Gould, Lisa J

    2016-01-01

    Significance: The extracellular matrix (ECM) is known to be deficient in chronic wounds. Collagen is the major protein in the ECM. Many claims are made while extolling the virtues of collagen-based biomaterials in promoting cell growth and modulating matrix metalloproteinases. This review will explore the rationale for using topical collagen or ECM as an interface for healing. Recent Advances: Rapid improvements in electrospinning and nanotechnology have resulted in the creation of third-generation biomaterials that mimic the native ECM, stimulate cellular and genetic responses in the target tissue, and provide a platform for controlled release of bioactive molecules and live cells. Although the major focus is currently on development of artificial tissues and organ regeneration, better understanding of the mechanisms that stimulate wound healing can be applied to specific deficits in the chronic wound. Critical Issues: When choosing between the various advanced wound-care products and dressings, the clinician is challenged to select the most appropriate material at the right time. Understanding how the ECM components promote tissue regeneration and modulate the wound microenvironment will facilitate those choices. Laboratory discoveries of biomolecular and cellular strategies that promote skin regeneration rather than repair should be demonstrated to translate to deficits in the chronic wound. Future Directions: Cost-effective production of materials that utilize non-mammalian sources of collagen or ECM components combined with synthetic scaffolding will provide an optimal structure for cellular ingrowth and modulation of the chronic wound microenvironment to facilitate healing. These bioengineered materials will be customizable to provide time-released delivery of bioactive molecules or drugs based on the degradation rate of the scaffold or specific signals from the wound.

  14. Cytotoxicity testing of a polyurethane nanofiber membrane modified with chitosan/β-cyclodextrin/berberine suitable for wound dressing application: evaluation of biocompatibility.

    PubMed

    Klempaiová, Monika; Dragúňová, Jana; Kabát, Peter; Hnátová, Mária; Koller, Ján; Bakoš, Dušan

    2016-12-01

    In this study we evaluated the biocompatibility of a modified polyurethane nanofiber membrane on a polypropylene spunbond substrate. This material was treated with plasma using diffuse coplanar surface barrier discharge, and subsequent modification was done by continuous spraying of a biologically active chitosan solution (CHIT) containing an inclusion complex of β-cyclodextrin (β-CD) encapsulating berberine (BRB). Biocompatibility was evaluated using several in vitro assays. Human dermal fibroblasts (HDFs) and 3T3 murine fibroblasts were used as biological models. The results of these assays showed that a polyurethane nanofiber membrane modified by CHIT/β-CD/BRB appears to be non-toxic and biocompatible; potentially, it could be used as a wound dressing after further testing.

  15. Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing.

    PubMed

    Mabrouk, Mostafa; Choonara, Yahya E; Marimuthu, Thashree; Kumar, Pradeep; du Toit, Lisa C; van Vuuren, Sandy; Pillay, Viness

    2016-06-30

    The aim of this study was to develop an in situ hybridized poly(vinyl alcohol)/calcium silicate (PVA/Ca2OSi) nanofibrous antibacterial wound dressing with calcium phosphate [Ca3(PO4)2] surface precipitation for enhanced bioactivity. This was achieved by hybridizing the antibacterial ions Zn(2+) and/or Ag(+) in a Ca2O4Si composite. The hybridization effect on the thermal behavior, physicochemical, morphological, and physicomechanical properties of the nanofibers was studied using Differential Scanning calorimetric (DSC), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Textural Analysis, respectively. In vitro bioactivity, biodegradation and pH variations of the nanofiber composite were evaluated in Simulated Body Fluid (SBF). The antibacterial activity was assessed against Staphylococcus aureus and Pseudomonas aeruginosa. Hybridization of Zn(2+) and/or Ag(+) into the PVA/Ca2O4Si nanofiber composite was confirmed by DSC, XRD and FTIR. The thickness of the nanofibers was dependent on the presence of Zn(2+) and Ag(+) as confirmed by SEM. The nanofibers displayed enhanced tensile strength (19-115.73MPa) compared to native PVA. Zn(2+) and/or Ag(+) hybridized nanofibers showed relatively enhanced in vitro bioactivity, biodegradation (90%) and antibacterial activity compared with the native PVA/Ca2O4Si nanofiber composite. Results of this study has shown that the PVA/Ca2O4Si composite hybridized with both Zn(2+) and Ag(+) may be promising as an antibacterial wound dressing with a nanofibrous archetype with enhanced bioactivity.

  16. Mechanics of Wound Closure: Emerging Tape-Based Wound Closure Technology vs. Traditional Methods

    PubMed Central

    Ichiryu, Kei; Kefel, Pelin; Keller, Juergen; Grice, Jon; Belson, Ori; Storne, Eric; Safa, Bauback

    2016-01-01

    To date, there is still a lack of understanding of how wound closure methods perform comparatively under daily bodily movement during the course of healing and how they affect the mechanics of healing. The present study is a first step in understanding and objectively quantifying the gap. The study provides both a new method of metrology for noninvasive evaluation of skin mechanics at the onset of wound healing and an emerging tape-based wound closure technology. The latter shows better performance with respect to commonly used staples and sutures, holding the wound intact and providing uniform mechanical support across the incision. PMID:27882274

  17. Thrombin Production and Human Neutrophil Elastase Sequestration by Modified Cellulosic Dressings and Their Electrokinetic Analysis

    PubMed Central

    Edwards, Judson Vincent; Prevost, Nicolette

    2011-01-01

    Wound healing is a complex series of biochemical and cellular events. Optimally, functional material design addresses the overlapping acute and inflammatory stages of wound healing based on molecular, cellular, and bio-compatibility issues. In this paper the issues addressed are uncontrolled hemostasis and inflammation which can interfere with the orderly flow of wound healing. In this regard, we review the serine proteases thrombin and elastase relative to dressing functionality that improves wound healing and examine the effects of charge in cotton/cellulosic dressing design on thrombin production and elastase sequestration (uptake by the wound dressing). Thrombin is central to the initiation and propagation of coagulation, and elastase is released from neutrophils that can function detrimentally in a stalled inflammatory phase characteristic of chronic wounds. Electrokinetic fiber surface properties of the biomaterials of this study were determined to correlate material charge and polarity with function relative to thrombin production and elastase sequestration. Human neutrophil elastase sequestration was assessed with an assay representative of chronic wound concentration with cotton gauze cross-linked with three types of polycarboxylic acids and one phosphorylation finish; thrombin production, which was assessed in a plasma-based assay via a fluorogenic peptide substrate, was determined for cotton, cotton-grafted chitosan, chitosan, rayon/polyester, and two kaolin-treated materials including a commercial hemorrhage control dressing (QuickClot Combat Gauze). A correlation in thrombin production to zeta potential was found. Two polycarboxylic acid cross linked and a phosphorylated cotton dressing gave high elastase sequestration. PMID:24956451

  18. Cytotoxicity and wound healing properties of PVA/ws-chitosan/glycerol hydrogels made by irradiation followed by freeze-thawing

    NASA Astrophysics Data System (ADS)

    Yang, Xiaomin; Yang, Kang; Wu, Shengwei; Chen, Xiliang; Yu, Feng; Li, Jungang; Ma, Mingwang; Zhu, Zhiyong

    2010-05-01

    Hydrogels based on poly(vinyl alcohol), water-soluble chitosan and glycerol made by irradiation followed by freeze-thawing were evaluated as wound dressing. MTT assay suggested that the extract of hydrogels was nontoxic towards L929 mouse fibroblasts. Compared to gauze dressing, the hydrogel can accelerate the healing process of full-thickness wounds in a rat model. Wounds treated with hydrogel healed at 11th day postoperatively and histological observation showed that mature epidermal architecture was formed. These indicate that it is a good wound dressing.

  19. Bi-layer composite dressing of gelatin nanofibrous mat and poly vinyl alcohol hydrogel for drug delivery and wound healing application: in-vitro and in-vivo studies.

    PubMed

    Jaiswal, Maneesh; Gupta, Asheesh; Agrawal, Ashwini K; Jassal, Manjeet; Dinda, Amit Kr; Koul, Veena

    2013-09-01

    Present investigation involves the development of a bi-layer dressing of gelatin nanofibrous mat loaded with epigallocatechin gallate (EGCG)/poly vinyl alcohol (PVA) hydrogel and its in-vivo evaluation on full-thickness excision wounds in experimental Wistar rats. Nanomorphological observation, porosity, effect of crosslinking on tensile strength, physical stability and drug release profile in phosphate buffer and biocompatibility aspects of electrospun nanomat were investigated by various physico-chemical tools. EGCGa release profile was found to increase from 2-4 days with decreasing crosslinking time from 15 to 5 min. PVA hydrogels were prepared by freeze-thaw method and has been utilized as a protective and hydrating outer layer of the bi-layer dressing. Topical application of bi-layer composite dressing loaded with EGCG improve the healing rate in experimental rats as acute wounds model which was evidenced by significant increase in DNA (approximately 42%), total protein (approximately 32%), hydroxyproline (approximately 26%) and hexosamine approximately 24%) contents. A faster wound contraction was observed in wounds treated with composite dressing from approximately 14% to 47%. Histopathological examination revealed significant improvement in angiogenesis, re-epithelialization and less inflammatory response in comparison to control. Van-Gieson's collagen stains revealed matured, compact and parallel deposition of collagen fibrils on day 12. These results were supported by up-regulated expressions of matrix metalloproteinase (MMPs-2 and 9) by gelatin zymography. Control release of EGCG, 3D porous architecture of nanofibrous scaffolds as well as moist microenvironment provides ideal conditions for uninterrupted wound healing.

  20. Fabrication and hemocompatibility assessment of novel polyurethane-based bio-nanofibrous dressing loaded with honey and Carica papaya extract for the management of burn injuries

    PubMed Central

    Balaji, Arunpandian; Jaganathan, Saravana Kumar; Ismail, Ahmad Fauzi; Rajasekar, Rathanasamy

    2016-01-01

    Management of burn injury is an onerous clinical task since it requires continuous monitoring and extensive usage of specialized facilities. Despite rapid improvizations and investments in burn management, >30% of victims hospitalized each year face severe morbidity and mortality. Excessive loss of body fluids, accumulation of exudate, and the development of septic shock are reported to be the main reasons for morbidity in burn victims. To assist burn wound management, a novel polyurethane (PU)-based bio-nanofibrous dressing loaded with honey (HN) and Carica papaya (PA) fruit extract was fabricated using a one-step electrospinning technique. The developed dressing material had a mean fiber diameter of 190±19.93 nm with pore sizes of 4–50 µm to support effective infiltration of nutrients and gas exchange. The successful blending of HN- and PA-based active biomolecules in PU was inferred through changes in surface chemistry. The blend subsequently increased the wettability (14%) and surface energy (24%) of the novel dressing. Ultimately, the presence of hydrophilic biomolecules and high porosity enhanced the water absorption ability of the PU-HN-PA nanofiber samples to 761.67% from 285.13% in PU. Furthermore, the ability of the bio-nanofibrous dressing to support specific protein adsorption (45%), delay thrombus formation, and reduce hemolysis demonstrated its nontoxic and compatible nature with the host tissues. In summary, the excellent physicochemical and hemocompatible properties of the developed PU-HN-PA dressing exhibit its potential in reducing the clinical complications associated with the treatment of burn injuries. PMID:27621626

  1. Fabrication and hemocompatibility assessment of novel polyurethane-based bio-nanofibrous dressing loaded with honey and Carica papaya extract for the management of burn injuries.

    PubMed

    Balaji, Arunpandian; Jaganathan, Saravana Kumar; Ismail, Ahmad Fauzi; Rajasekar, Rathanasamy

    Management of burn injury is an onerous clinical task since it requires continuous monitoring and extensive usage of specialized facilities. Despite rapid improvizations and investments in burn management, >30% of victims hospitalized each year face severe morbidity and mortality. Excessive loss of body fluids, accumulation of exudate, and the development of septic shock are reported to be the main reasons for morbidity in burn victims. To assist burn wound management, a novel polyurethane (PU)-based bio-nanofibrous dressing loaded with honey (HN) and Carica papaya (PA) fruit extract was fabricated using a one-step electrospinning technique. The developed dressing material had a mean fiber diameter of 190±19.93 nm with pore sizes of 4-50 µm to support effective infiltration of nutrients and gas exchange. The successful blending of HN- and PA-based active biomolecules in PU was inferred through changes in surface chemistry. The blend subsequently increased the wettability (14%) and surface energy (24%) of the novel dressing. Ultimately, the presence of hydrophilic biomolecules and high porosity enhanced the water absorption ability of the PU-HN-PA nanofiber samples to 761.67% from 285.13% in PU. Furthermore, the ability of the bio-nanofibrous dressing to support specific protein adsorption (45%), delay thrombus formation, and reduce hemolysis demonstrated its nontoxic and compatible nature with the host tissues. In summary, the excellent physicochemical and hemocompatible properties of the developed PU-HN-PA dressing exhibit its potential in reducing the clinical complications associated with the treatment of burn injuries.

  2. Wound care centers

    MedlinePlus

    ... types of dressings as your wound heals. Hyperbaric Oxygen Therapy Depending on the type of wound, your doctor may recommend hyperbaric oxygen therapy . Oxygen is important for healing. During this ...

  3. Development of fibroblast culture in three-dimensional activated carbon fiber-based scaffold for wound healing.

    PubMed

    Huang, Wen-Ying; Yeh, Chia-Lin; Lin, Jui-Hsiang; Yang, Jai-Sing; Ko, Tse-Hao; Lin, Yu-Hsin

    2012-06-01

    This work developed a novel bi-layer wound dressing composed of 3D activated carbon fibers that allows facilitates fibroblast cell growth and migration to a wound site for tissue reconstruction, and the gentamicin is incorporated into a poly(γ-glutamic acid)/gelatin membrane to prevent bacterial infection. In an in vitro, field emission scanning electron microscopy shows that rat skin fibroblasts appeared and spread on the surface of activated carbon fibers, and penetrated the interior and exterior of the 3D activated carbon fiber construct to a depth of roughly 200 μm. An in vivo analysis shows that fibroblast cells containing the proposed 3D scaffold had the potential of a biologically functionalized dressing to accelerate wound closure. Additionally, fibroblasts migrated to the wound site in a bi-layer wound dressing containing fibroblasts, enhancing fibronectin and type I collagen expression, resulting in faster skin regeneration than that achieved with a Tegaderm™ hydrocolloid dressing or gauze.

  4. P(TA) macro-, micro-, nanoparticle-embedded super porous p(HEMA) cryogels as wound dressing material.

    PubMed

    Sahiner, Nurettin; Sagbas, Selin; Sahiner, Mehtap; Silan, Coskun

    2017-01-01

    Super porous poly(2-hydroxy ethyl methacrylate) (p(HEMA)) cryogel was successfully synthesized by using polyethylene glycol diacrylate (p(EGDA)) crosslinker under cryogenic conditions. Poly(Tannic acid) (p(TA)) macro-, micro-, and nanoparticles prepared from a natural polyphenol, tannic acid (TA), were embedded into p(HEMA) cryogel networks to obtain composite p(TA) particle-embedded p(HEMA) cryogel. Different size ranges of spherical p(TA) particles, 2000-500μm, 500-200μm, 200-20μm, and 20-0.5μm size, were included in the cryogel network and illustrated by digital camera, optic microscope, and SEM images of the microgel-cryogel network. The swelling properties and moisture content of p(TA) microgel-embedded p(HEMA) cryogel were investigated at wound healing pH conditions such as pH5.4, 7.4, and 9 at 37.5°C, and the highest swelling capacity was found at pH9 with 972±2% swelling in 30s. Higher amounts of DI water were quickly absorbed by p(HEMA)-based cryogel, and moisture retention within the cryogel structure for a longer time period at room temperature is due to existence of p(TA) particles. Degradation profiles of p(TA) particle-embedded p(HEMA) cryogel were shown to be controlled by different pH conditions, and a linear release profile was found with total cumulative release of 5.8±0.8mg/g TA up to 12days at pH7.4 and 37.5°C. The antioxidant behavior of degraded p(TA) particles from p(HEMA) cryogel were found as 46±1μgmL(-1) gallic acid equivalent and 165±18mMtroloxequivalentg(-1). The p(TA) particle-embedded p(HEMA) cryogel has high hemocompatibility with 0.0158±0.0126% hemolysis ratio, and effective hemostatic properties with 8.1±0.9 blood clotting index.

  5. Silver Toxicity With the Use of Silver-Impregnated Dressing and Wound Vacuum-Assisted Closure in an Immunocompromised Patient

    PubMed Central

    LaRiviere, Cabrini A.; Goldin, Adam B.; Avansino, Jeffrey

    2011-01-01

    Silver-containing topical agents are used to help prevent infectious complications in wound therapy. Toxicity from topical silver agent exposure was initially reported in 1975 and was clinically characterized by granulocytopenia. Currently, the data regarding potential toxicity associated with silver-impregnated devices are limited. A 23-year-old patient receiving chemotherapy for acute lymphoblastic leukemia presented with necrotizing fasciitis of the abdominal wall and scrotum from a Crohn disease–related psoas-enteric fistula. Surgical debridement of the soft-tissue and abdominal musculature was performed to the peritoneum. Silver-containing foam sponges and wound vacuum-assisted closure were applied directly to the peritoneum 2 weeks after initial debridement. Subsequently, the patient developed leukopenia, and workup revealed the serum silver level was 4 times normal level. Silver-impregnated sponges were discontinued and silver-free sponges and wound vacuum-assisted closure therapy resumed, followed by leukopenia resolution. Silver toxicity associated with routine application of silver-impregnated sponges has not been previously reported. PMID:24527160

  6. Platelet-Rich Plasma-Loaded Poly(d,l-lactide)-Poly(ethylene glycol)-Poly(d,l-lactide) Hydrogel Dressing Promotes Full-Thickness Skin Wound Healing in a Rodent Model

    PubMed Central

    Qiu, Manle; Chen, Daoyun; Shen, Chaoyong; Shen, Ji; Zhao, Huakun; He, Yaohua

    2016-01-01

    Traditional therapeutic methods for skin wounds have many disadvantages, and new wound dressings that can facilitate the healing process are thus urgently needed. Platelet-rich plasma (PRP) contains multiple growth factors (GFs) and shows a significant capacity to heal soft tissue wounds. However, these GFs have a short half-life and deactivate rapidly; we therefore need a sustained delivery system to overcome this shortcoming. In this study, poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) (PDLLA-PEG-PDLLA: PLEL) hydrogel was successfully created as delivery vehicle for PRP GFs and was evaluated systematically. PLEL hydrogel was injectable at room temperature and exhibited a smart thermosensitive in situ gel-formation behavior at body temperature. In vitro cell culture showed PRP-loaded PLEL hydrogel (PRP/PLEL) had little cytotoxicity, and promoted EaHy926 proliferation, migration and tube formation; the factor release assay additionally indicated that PLEL realized the controlled release of PRP GFs for as long as 14 days. When employed to treat rodents’ full-thickness skin defects, PRP/PLEL showed a significantly better ability to raise the number of both newly formed and mature blood vessels compared to the control, PLEL and PRP groups. Furthermore, the PRP/PLEL-treated group displayed faster wound closure, better reepithelialization and collagen formation. Taken together, PRP/PLEL provides a promising strategy for promoting angiogenesis and skin wound healing, which extends the potential of this dressing for clinical application. PMID:27347938

  7. Filament wound data base development, revision 1

    NASA Technical Reports Server (NTRS)

    Sharp, R. Scott; Braddock, William F.

    1985-01-01

    The objective was to update the present Space Shuttle Solid Rocket Booster (SRB) baseline reentry aerodynamic data base and to develop a new reentry data base for the filament wound case SRB along with individual protuberance increments. Lockheed's procedures for performing these tasks are discussed. Free fall of the SRBs after separation from the Space Shuttle Launch Vehicle is completely uncontrolled. However, the SRBs must decelerate to a velocity and attitude that is suitable for parachute deployment. To determine the SRB reentry trajectory parameters, including the rate of deceleration and attitude history during free-fall, engineers at Marshall Space Flight Center are using a six-degree-of-freedom computer program to predict dynamic behavior. Static stability aerodynamic coefficients are part of the information required for input into this computer program. Lockheed analyzed the existing reentry aerodynamic data tape (Data Tape 5) for the current steel case SRB. This analysis resulted in the development of Data Tape 7.

  8. An introduction to absorbent dressings.

    PubMed

    Jones, Menna Lloyd

    2014-12-01

    Exudate bathes the wound bed with a serous fluid that contains essential components that promote wound healing. However, excess exudate is often seen as a challenge for clinicians. Absorbent dressings are often used to aid in the management of exudate, with the aim of providing a moist but unmacerated environment. With so many different types of absorbent dressings available today-alongside making a holistic assessment-it is essential that clinicians also have the knowledge and skill to select the most appropriate absorbent dressing for a given patient.

  9. A fitted neoprene garment to cover dressings in swine models.

    PubMed

    Mino, Matthew J; Mauskar, Neil A; Matt, Sara E; Pavlovich, Anna R; Prindeze, Nicholas J; Moffatt, Lauren T; Shupp, Jeffrey W

    2012-12-17

    Domesticated porcine species are commonly used in studies of wound healing, owing to similarities between porcine skin and human skin. Such studies often involve wound dressings, and keeping these dressings intact on the animal can be a challenge. The authors describe a novel and simple technique for constructing a fitted neoprene garment for pigs that covers dressings and maintains their integrity during experiments.

  10. Surgical wound care - open

    MedlinePlus

    Surgical incision care; Open wound care ... your wound again with sutures, you need to care for it at home, since it may take ... Your health care provider will tell you how often to change your dressing . To prepare for the dressing change: Clean your ...

  11. Evidence-based Management Strategies for Treatment of Chronic Wounds

    PubMed Central

    Werdin, Frank; Tennenhaus, Mayer; Schaller, Hans-Eberhardt; Rennekampff, Hans-Oliver

    2009-01-01

    The care and management of patients with chronic wounds and their far-reaching effects challenge both the patient and the practitioner. Further complicating this situation is the paucity of evidence-based treatment strategies for chronic wound care. After searching both MEDLINE and Cochrane databases, we reviewed currently available articles concerning chronic wound care. Utilizing this information, we have outlined a review of current, evidence-based concepts as they pertain to the treatment of chronic wounds, focusing on fundamental treatment principles for the management of venous, arterial, diabetic, and pressure ulcers. Individualized treatment options as well as general wound management principles applicable to all varieties of chronic wounds are described. Classification and treatment guidelines as well as the adoption of the TIME acronym facilitate an organized conceptional approach to wound care. In so doing, individual aspects of generalized wound care such as debridement, infection, and moisture control as well as attention to the qualities of the wound edge are comprehensively evaluated, communicated, and addressed. Effective adjuvant agents for the therapy of chronic wounds including nutritional and social support measures are listed, as is a brief review of strategies helpful for preventing recurrence. An appreciation of evidence-based treatment pathways and an understanding of the pathophysiology of chronic wounds are important elements in the management of patients with chronic wounds. To achieve effective and long-lasting results, a multidisciplinary approach to patient care, focused on the education and coordination of patient, family as well as medical and support staff can prove invaluable. PMID:19578487

  12. Stem Cell-Based Therapeutics to Improve Wound Healing

    PubMed Central

    Hu, Michael S.; Leavitt, Tripp; Malhotra, Samir; Duscher, Dominik; Pollhammer, Michael S.; Walmsley, Graham G.; Maan, Zeshaan N.; Cheung, Alexander T. M.; Schmidt, Manfred; Huemer, Georg M.; Longaker, Michael T.; Lorenz, H. Peter

    2015-01-01

    Issues surrounding wound healing have garnered deep scientific interest as well as booming financial markets invested in novel wound therapies. Much progress has been made in the field, but it is unsurprising to find that recent successes reveal new challenges to be addressed. With regard to wound healing, large tissue deficits, recalcitrant wounds, and pathological scar formation remain but a few of our most pressing challenges. Stem cell-based therapies have been heralded as a promising means by which to surpass current limitations in wound management. The wide differentiation potential of stem cells allows for the possibility of restoring lost or damaged tissue, while their ability to immunomodulate the wound bed from afar suggests that their clinical applications need not be restricted to direct tissue formation. The clinical utility of stem cells has been demonstrated across dozens of clinical trials in chronic wound therapy, but there is hope that other aspects of wound care will inherit similar benefit. Scientific inquiry into stem cell-based wound therapy abounds in research labs around the world. While their clinical applications remain in their infancy, the heavy investment in their potential makes it a worthwhile subject to review for plastic surgeons, in terms of both their current and future applications. PMID:26649195

  13. Investigating the role of charge on cotton materials designed to intervene in the hemostatic and inflammatory stages of wound healing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent developments in cellulose wound dressings targeted to different stages of wound healing have been based on structural and charge modifications that function to modulate events in the complex inflammatory and haemostatic phases of wound healing. Hemostasis and inflammation comprise two overlap...

  14. Simultaneous dual syringe electrospinning system using benign solvent to fabricate nanofibrous P(3HB-co-4HB)/collagen peptides construct as potential leave-on wound dressing.

    PubMed

    Vigneswari, S; Murugaiyah, V; Kaur, G; Abdul Khalil, H P S; Amirul, A A

    2016-09-01

    The main focus of this study is the incorporation of collagen peptides to fabricate P(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] nano-fiber construct to further enhance surface wettability and support cell growth while harbouring desired properties for biodegradable wound dressing. Simultaneous electrospinning of nanofiber P(3HB-co-4HB)/collagen peptides construct was carried out using dual syringe system. The wettability of the constructs increased with the increase in 4HB molar fraction from 20mol% 4HB [53.2°], P(3HB-co-35mol%4HB)[48.9°], P(3HB-co-50mol%4HB)[44.5°] and P(3HB-co-82mol%4HB) [37.7°]. In vitro study carried out using mouse fibroblast cells (L929) grown on nanofiber P(3HB-co-4HB)/collagen peptides construct showed an increase in cell proliferation. In vivo study using animal model (Sprague Dawley rats) showed that nanofibrous P(3HB-co-4HB)/collagen peptides construct had a significant effect on wound contractions with the highest percentage of wound closure of 79%. Hence, P(3HB-co-4HB)/collagen peptides construct suitable for wound dressing have been developed using nano-fabrication technique.

  15. Measurement of skin dose variations produced by a silicon-based protective dressing in radiotherapy.

    PubMed

    Butson, Martin J; Cheung, Tsang; Yu, Peter K N; Metcalfe, Peter

    2002-06-07

    Variations in skin dose caused by a silicon-based burn dressing used in radiotherapy during treatment have been investigated. Measurement of these variations in skin dose has been achieved using thermoluminescent dosimeters (TLDs) and Gafchromic film. For a 6 MV x-ray beam results have shown that an approximately 0.4 mm thick silicon mesh dressing increases the average surface dose by approximately 12.5% to 14% of the maximum and average dose at 1 mm depth and by 4% to 6% of the maximum for field sizes ranging from 5 cm x 5 cm up to 40 cm x 40 cm at 100 cm source to surface distance (SSD). The radiation effective thickness of the silicon dressing was calculated to be 0.5 mm +/- 0.05 mm water equivalent. TLDs of various thicknesses provide point-dose assessment and Gafchromic film can provide a detailed two-dimensional dose map with a high spatial resolution. Results have shown that a large variation in skin dose is delivered under the dressing depending on the amount of material directly above it as defined by the silicon mesh outline.

  16. Hidradenitis Suppurativa and Wound Management.

    PubMed

    Dini, Valentina; Oranges, Teresa; Rotella, Luca; Romanelli, Marco

    2015-09-01

    Hidradenitis suppurativa (HS) is a chronic, burdensome, debilitating disease of the hair follicle. It presents with recurrent painful inflamed and noninflamed lesions usually in specific body areas such as axillary, inguinal, perineal, and genital areas. It is associated with a large range of other diseases and conditions, such as obesity, arthropathy, inflammatory bowel diseases, and sqaumous cell carcinoma. Medical therapy may be systemic or topical, mainly based on antibiotics, retinoids, hormones and immunosuppressive drugs, including biological therapies. Surgical and laser therapies may be a valid therapeutic approach in order to treat locally recurring lesions. The aim of this article is to review the wound healing options after skin excision and laser treatments, with a focus on lesions left to heal by secondary intention, analyzing the efficacy of moist wound dressings, negative pressure wound therapy, bioactive dressings, such as platelet-rich plasma gel and hylarunoic acid scaffold, or autologous keratinocyte suspension in platelet concentrate and skin-grafting tecniques.

  17. Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application

    NASA Astrophysics Data System (ADS)

    Cai, Ning; Li, Chao; Han, Chao; Luo, Xiaogang; Shen, Liang; Xue, Yanan; Yu, Faquan

    2016-04-01

    In this work, magnetic Fe3O4 nanoparticles (NPs) were utilized to improve the mechanical and antibacterial properties of chitosan (CS)/gelatin (GE) composite nanofiber membranes. Homogeneous Fe3O4/CS/GE nanofibers were electrospun successfully. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images confirmed the presence of well-dispersed Fe3O4 NPs in the composite nanofibers. Fourier transform infrared spectroscopy (FTIR) spectra revealed the effective interactions of Fe3O4 NPs to the composite matrix through hydrogen bonding. The improvement on the thermal stability of the Fe3O4/CS/GE was observed by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA), which is tightly correlated to strong filler-matrix adhesion. The incorporation of Fe3O4 NPs resulted in a substantial enhancement of mechanical properties. The optimum mechanical performance was demonstrated on 1 wt% Fe3O4/CS/GE nanofiber membranes, achieving 155% augment of Young's modulus, 128% increase of tensile strength, and 100% boost of toughness from CS/GE. The excellent mechanical enhancement can be explained by the effective dispersion of fillers and the filler-matrix interactions, which ensures the efficient load transfer from CS/GE matrix to Fe3O4 nanofillers. Moreover, zones of inhibition for Escherichia coli and Staphylococcus aureus expanded markedly with the supplement of Fe3O4 NPs. In all, nanofiber membranes made of Fe3O4/CS/GE composite with tailored mechanical and antibacterial properties appear a promising wound dressing material.

  18. Naturally Occurring Wound Healing Agents: An Evidence-Based Review.

    PubMed

    Karapanagioti, E G; Assimopoulou, A N

    2016-01-01

    Nature constitutes a pool of medicines for thousands of years. Nowadays, trust in nature is increasingly growing, as many effective medicines are naturally derived. Over the last decades, the potential of plants as wound healing agents is being investigated. Wounds and ulcers affect the patients' life quality and often lead to amputations. Approximately 43,000,000 patients suffer from diabetic foot ulcers worldwide. Annually, $25 billion are expended for the treatment of chronic wounds, with the number growing due to aging population and increased incidents of diabetes and obesity. Therefore a timely, orderly and effective wound management and treatment is crucial. This paper aims to systematically review natural products, mainly plants, with scientifically well documented wound healing activity, focusing on articles based on animal and clinical studies performed worldwide and approved medicinal products. Moreover, a brief description of the wound healing mechanism is presented, to provide a better understanding. Although a plethora of natural products are in vitro and in vivo evaluated for wound healing activity, only a few go through clinical trials and even fewer launch the market as approved medicines. Most of them rely on traditional medicine, indicating that ethnopharmacology is a successful strategy for drug development. Since only 6% of plants have been systematically investigated pharmacologically, more intensified efforts and emerging advancements are needed to exploit the potentials of nature for the development of novel medicines. This paper aims to provide a reliable database and matrix for thorough further investigation towards the discovery of wound healing agents.

  19. Wound healing efficacy of a chitosan-based film-forming gel containing tyrothricin in various rat wound models.

    PubMed

    Kim, Ju-Young; Jun, Joon-Ho; Kim, Sang-Joon; Hwang, Kyu-Mok; Choi, Sung Rak; Han, Sang Duk; Son, Mi-Won; Park, Eun-Seok

    2015-02-01

    The objective of this study was to evaluate the healing effects of a chitosan-based, film-forming gel containing tyrothricin (TYR) in various rat wound models, including burn, abrasion, incision, and excision models. After solidification, the chitosan film layer successfully covered and protected a variety of wounds. Wound size was measured at predetermined timepoints after wound induction, and the effects of the film-forming gel were compared with negative (no treatment) and positive control groups (commercially available sodium fusidate ointment and TYR gel). In burn, abrasion and excision wound models, the film-forming gel enabled significantly better healing from 1 to 6 days after wound induction, compared with the negative control. Importantly, the film-forming gel also enabled significantly better healing compared with the positive control treatments. In the incision wound model, the breaking strength of wound strips from the group treated with the film-forming gel was significantly increased compared with both the negative and positive control groups. Histological studies revealed advanced granulation tissue formation and epithelialization in wounds treated with the film-forming gel. We hypothesize that the superior healing effects of the film-forming gel are due to wound occlusion, conferred by the chitosan film. Our data suggest that this film-forming gel may be useful in treating various wounds, including burn, abrasion, incision and excision wounds.

  20. [E-health benefiting wounds and healing].

    PubMed

    Klein, Laurent

    2016-10-01

    The treatment of wounds forms a major part of nurses' practice in patients' homes. The choice of dressing requires real expertise drawing notably on collaborative approaches and the sharing of the patient's records. Based on this observation, Laurent Klein, a private practice nurse, designed and developed an e-health tool aimed specifically at the treatment of wounds. A real nursing success story which has helped to improve the quality of care.

  1. Cloth Simulation Based Motion Capture of Dressed Humans

    NASA Astrophysics Data System (ADS)

    Hasler, Nils; Rosenhahn, Bodo; Seidel, Hans-Peter

    Commonly, marker based as well as markerless motion capture systems assume that the tracked person is wearing tightly fitting clothes. Unfortunately, this restriction cannot be satisfied in many situations and most preexisting video data does not adhere to it either. In this work we propose a graphics based vision approach for tracking humans markerlessly without making this assumption. Instead, a physically based simulation of the clothing the tracked person is wearing is used to guide the tracking algorithm.

  2. Postoperative dressing and management strategies for transtibial amputations: a critical review.

    PubMed

    Smith, Douglas G; McFarland, Lynne V; Sangeorzan, Bruce J; Reiber, Gayle E; Czerniecki, Joseph M

    2003-01-01

    Postamputation management is an important determinant of recovery from amputation.