A mirror for lab-based quasi-monochromatic parallel x-rays
NASA Astrophysics Data System (ADS)
Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb; Jeon, Insu
2014-09-01
A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.
Zhu, Yu; Wang, Yabing; Sun, Tianxi; Sun, Xuepeng; Zhang, Xiaoyun; Liu, Zhiguo; Li, Yufei; Zhang, Fengshou
2018-07-01
A total reflection X-ray fluorescence (TXRF) spectrometer based on an elliptical monocapillary X-ray lens (MXRL) and a parallel polycapillary X-ray lens (PPXRL) was designed. This TXRF instrument has micro focal spot, low divergence and high intensity of incident X-ray beam. The diameter of the focal spot of MXRL was 16.5 µm, and the divergence of the incident X-ray beam was 3.4 mrad. We applied this TXRF instrument to the micro analysis of a single-layer film containing Ni deposited on a Si substrate by metal vapor vacuum arc ion source. Copyright © 2018 Elsevier Ltd. All rights reserved.
Method for spatially modulating X-ray pulses using MEMS-based X-ray optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Daniel; Shenoy, Gopal; Wang, Jin
A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.
Micromirror-based manipulation of synchrotron x-ray beams
NASA Astrophysics Data System (ADS)
Walko, D. A.; Chen, Pice; Jung, I. W.; Lopez, D.; Schwartz, C. P.; Shenoy, G. K.; Wang, Jin
2017-08-01
Synchrotron beamlines typically use macroscopic, quasi-static optics to manipulate x-ray beams. We present the use of dynamic microelectromechanical systems-based optics (MEMS) to temporally modulate synchrotron x-ray beams. We demonstrate this concept using single-crystal torsional MEMS micromirrors oscillating at frequencies of 75 kHz. Such a MEMS micromirror, with lateral dimensions of a few hundred micrometers, can interact with x rays by operating in grazing-incidence reflection geometry; x rays are deflected only when an x-ray pulse is incident on the rotating micromirror under appropriate conditions, i.e., at an angle less than the critical angle for reflectivity. The time window for such deflections depends on the frequency and amplitude of the MEMS rotation. We demonstrate that reflection geometry can produce a time window of a few microseconds. We further demonstrate that MEMS optics can isolate x rays from a selected synchrotron bunch or group of bunches. With ray-trace simulations we explain the currently achievable time windows and suggest a path toward improvements.
NASA Astrophysics Data System (ADS)
Wu, Meiyi; Burcklen, Catherine; André, Jean-Michel; Guen, Karine Le; Giglia, Angelo; Koshmak, Konstantin; Nannarone, Stefano; Bridou, Françoise; Meltchakov, Evgueni; Rossi, Sébastien de; Delmotte, Franck; Jonnard, Philippe
2017-11-01
We study Cr/Sc-based multilayer mirrors designed to work in the water window range using hard and soft x-ray reflectivity as well as x-ray fluorescence enhanced by standing waves. Samples differ by the elemental composition of the stack, the thickness of each layer, and the order of deposition. This paper mainly consists of two parts. In the first part, the optical performances of different Cr/Sc-based multilayers are reported, and in the second part, we extend further the characterization of the structural parameters of the multilayers, which can be extracted by comparing the experimental data with simulations. The methodology is detailed in the case of Cr/B4C/Sc sample for which a three-layer model is used. Structural parameters determined by fitting reflectivity curve are then introduced as fixed parameters to plot the x-ray standing wave curve, to compare with the experiment, and confirm the determined structure of the stack.
Design of a normal incidence multilayer imaging X-ray microscope
NASA Astrophysics Data System (ADS)
Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.
Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.
Alternative designs for space x-ray telescopes
NASA Astrophysics Data System (ADS)
Hudec, R.; Pína, L.; Maršíková, Veronika; Černá, Daniela; Inneman, A.; Tichý, V.
2017-11-01
The X-ray optics is a key element of space X-ray telescopes, as well as other X-ray imaging instruments. The grazing incidence X-ray lenses represent the important class of X-ray optics. Most of grazing incidence (reflective) X-ray imaging systems used in astronomy but also in other (laboratory) applications are based on the Wolter 1 (or modified) arrangement. But there are also other designs and configurations proposed, used and considered for future applications both in space and in laboratory. The Kirkpatrick-Baez (K-B) lenses as well as various types of Lobster-Eye optics and MCP/Micropore optics serve as an example. Analogously to Wolter lenses, the X-rays are mostly reflected twice in these systems to create focal images. Various future projects in X-ray astronomy and astrophysics will require large segments with multiple thin shells or foils. The large Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All related space projects will require high quality and light segmented shells (bent or flat foils) with high X-ray reflectivity and excellent mechanical stability. The Multi Foil Optics (MFO) approach represent a promising alternative for both LE and K-B X-ray optical modules. Several types of reflecting substrates may be considered for these applications, with emphasis on thin float glass sheets and, more recently, high quality silicon wafers. This confirms the importance of non-Wolter X-ray optics designs for the future. The alternative designs require novel reflective substrates which are also discussed in the paper.
Design of a normal incidence multilayer imaging x-ray microscope.
Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W
1989-01-01
Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.
NASA Technical Reports Server (NTRS)
Buitrago-Casas, Juan Camilo; Glesener, Lindsay; Christe, Steven; Elsner, Ronald; Ramsey, Brian; Courtade, Sasha; Ishikawa, Shin-nosuke; Narukage, Noriyuki; Vievering, Juliana; Subramania, Athiray;
2017-01-01
In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload which uses seven sets of nested Wolter-I figured mirrors that, together with seven high-sensitivity semiconductor detectors, observes the Sun in hard X-rays by direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in Summer 2018. The Wolter-I geometry consists of two consecutive mirrors, one paraboloid, and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect twice, once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a pattern of single-bounce photons that can limit the sensitivity of the observation of faint focused X-rays. Understanding and cutting down the singly reflected rays on the FOXSI optics will maximize the instrument's sensitivity of the faintest solar sources for future flights. We present an analysis of the FOXSI singly reflected rays based on ray-tracing simulations, as well as the effectiveness of different physical strategies to reduce them.
Compact X-ray sources: X-rays from self-reflection
NASA Astrophysics Data System (ADS)
Mangles, Stuart P. D.
2012-05-01
Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.
New trends in space x-ray optics
NASA Astrophysics Data System (ADS)
Hudec, R.; Maršíková, V.; Pína, L.; Inneman, A.; Skulinová, M.
2017-11-01
The X-ray optics is a key element of various X-ray telescopes, X-ray microscopes, as well as other X-ray imaging instruments. The grazing incidence X-ray lenses represent the important class of X-ray optics. Most of grazing incidence (reflective) X-ray imaging systems used in astronomy but also in other (laboratory) applications are based on the Wolter 1 (or modified) arrangement. But there are also other designs and configurations proposed, used and considered for future applications both in space and in laboratory. The Kirkpatrick-Baez (K-B) lenses as well as various types of Lobster-Eye optics and MCP/Micropore optics serve as an example. Analogously to Wolter lenses, the X-rays are mostly reflected twice in these systems to create focal images. Various future projects in X-ray astronomy and astrophysics will require large segments with multiple thin shells or foils. The large Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (bent or flat foils) with high X-ray reflectivity and excellent mechanical stability. The Multi Foil Optics (MFO) approach represent a promising alternative for both LE and K-B X-ray optical modules. Several types of reflecting substrates may be considered for these applications, with emphasis on thin float glass sheets and, more recently, high quality silicon wafers. This confirms the importance of non- Wolter X-ray optics designs for the future. Future large space X-ray telescopes (such as IXO) require precise and light-weight X-ray optics based on numerous thin reflecting shells. Novel approaches and advanced technologies are to be exploited and developed. In this contribution, we refer on results of tested X-ray mirror shells produced by glass thermal forming (GTF) and by shaping Si wafers. Both glass foils and Si wafers are commercially available, have excellent surface microroughness of a few 0.1 nm, and low weight (the volume density is 2.5 g cm-3 for glass and 2.3 g cm-3 for Si). Technologies are needed to be exploited; how to shape these substrates to achieve the required precise Xray optics geometries without degradations of the fine surface microroughness. Although glass and recently silicon wafers are considered to represent most promising materials for future advanced large aperture space Xray telescopes, there also exist other alternative materials worth further study such as amorphous metals and glassy carbon [1]. In order to achieve sub-arsec angular resolutions, principles of active optics have to be adopted.
Novel ultra-lightweight and high-resolution MEMS x-ray optics
NASA Astrophysics Data System (ADS)
Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Takagi, Utako; Mita, Makoto; Riveros, Raul; Yamaguchi, Hitomi; Kato, Fumiki; Sugiyama, Susumu; Fujiwara, Kouzou; Morishita, Kohei; Nakajima, Kazuo; Fujihira, Shinya; Kanamori, Yoshiaki; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Maeda, Ryutaro
2009-05-01
We have been developing ultra light-weight X-ray optics using MEMS (Micro Electro Mechanical Systems) technologies.We utilized crystal planes after anisotropic wet etching of silicon (110) wafers as X-ray mirrors and succeeded in X-ray reflection and imaging. Since we can etch tiny pores in thin wafers, this type of optics can be the lightest X-ray telescope. However, because the crystal planes are alinged in certain directions, we must approximate ideal optical surfaces with flat planes, which limits angular resolution of the optics on the order of arcmin. In order to overcome this issue, we propose novel X-ray optics based on a combination of five recently developed MEMS technologies, namely silicon dry etching, X-ray LIGA, silicon hydrogen anneal, magnetic fluid assisted polishing and hot plastic deformation of silicon. In this paper, we describe this new method and report on our development of X-ray mirrors fabricated by these technologies and X-ray reflection experiments of two types of MEMS X-ray mirrors made of silicon and nickel. For the first time, X-ray reflections on these mirrors were detected in the angular response measurements. Compared to model calculations, surface roughness of the silicon and nickel mirrors were estimated to be 5 nm and 3 nm, respectively.
NASA Astrophysics Data System (ADS)
Buitrago-Casas, Juan Camilo; Elsner, Ronald; Glesener, Lindsay; Christe, Steven; Ramsey, Brian; Courtade, Sasha; Ishikawa, Shin-nosuke; Narukage, Noriyuki; Turin, Paul; Vievering, Juliana; Athiray, P. S.; Musset, Sophie; Krucker, Säm.
2017-08-01
In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload that uses seven sets of nested Wolter-I figured mirrors together with seven high-sensitivity semiconductor detectors to observe the Sun in hard X-rays through direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in summer 2018. The Wolter-I geometry consists of two consecutive mirrors, one paraboloid and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a background pattern of singly reflected rays (i.e., ghost rays) that can limit the sensitivity of the observation to faint, focused sources. Understanding and mitigating the impact of the singly reflected rays on the FOXSI optical modules will maximize the instruments' sensitivity to background-limited sources. We present an analysis of the FOXSI singly reflected rays based on ray-tracing simulations and laboratory measurements, as well as the effectiveness of different physical strategies to reduce them.
Crystals for krypton helium-alpha line emission microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Jeffrey A.; Haugh, Michael J.
2018-04-17
A system for reflecting and recording x-ray radiation from an x-ray emitting event to characterize the event. A crystal is aligned to receive radiation along a first path from an x-ray emitting event. Upon striking the crystal, the x-ray reflects from the crystal along a second path due to a reflection plane of the crystal defined by one of the following Miller indices: (9,7,3) or (11,3,3). Exemplary crystalline material is germanium. The x-rays are reflected to a detector aligned to receive reflected x-rays that are reflected from the crystal along the second path and the detector generates a detector signalmore » in response to x-rays impacting the detector. The detector may include a CCD electronic detector, film plates, or any other detector type. A processor receives and processes the detector signal to generate reflection data representing the x-rays emitted from the x-ray emitting event.« less
Polymeric and Molecular Materials for Advanced Organic Electronics
2014-10-20
x - ray reflectivity, grazing incidence x - ray scattering, cyclic voltam- metry...6). ix These materials are characterized by AFM, conducting AFM, XPS, x - ray reflectivity (XRR), standing wave x - ray reflectivity (SWXRR), x - ray ...radiation hard - ness measurements, and quantum chemical computation of dielectric constants. Remark- ably, for semiconductors as diverse
Studying Pulsed Laser Deposition conditions for Ni/C-based multi-layers
NASA Astrophysics Data System (ADS)
Bollmann, Tjeerd R. J.
2018-04-01
Nickel carbon based multi-layers are a viable route towards future hard X-ray and soft γ-ray focusing telescopes. Here, we study the Pulsed Laser Deposition growth conditions of such bilayers by Reflective High Energy Electron Diffraction, X-ray Reflectivity and Diffraction, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy and cross-sectional Transmission Electron Microscopy analysis, with emphasis on optimization of process pressure and substrate temperature during growth. The thin multi-layers are grown on a treated SiO substrate resulting in Ni and C layers with surface roughnesses (RMS) of ≤0.2 nm. Small droplets resulting during melting of the targets surface increase the roughness, however, and cannot be avoided. The sequential process at temperatures beyond 300 °C results into intermixing between the two layers, being destructive for the reflectivity of the multi-layer.
X-ray photonic microsystems for the manipulation of synchrotron light
Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; ...
2015-05-05
In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractivemore » optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.« less
NASA Astrophysics Data System (ADS)
Sander, M.; Pudell, J.-E.; Herzog, M.; Bargheer, M.; Bauer, R.; Besse, V.; Temnov, V.; Gaal, P.
2017-12-01
We present time-resolved x-ray reflectivity measurements on laser excited coherent and incoherent surface deformations of thin metallic films. Based on a kinematical diffraction model, we derive the surface amplitude from the diffracted x-ray intensity and resolve transient surface excursions with sub-Å spatial precision and 70 ps temporal resolution. The analysis allows for decomposition of the surface amplitude into multiple coherent acoustic modes and a substantial contribution from incoherent phonons which constitute the sample heating.
Reflection soft X-ray microscope and method
Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy
1993-01-01
A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.
Reflection soft X-ray microscope and method
Suckewer, S.; Skinner, C.H.; Rosser, R.
1993-01-05
A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.
X-ray microscopy using reflection targets based on SEM with tungsten filament
NASA Astrophysics Data System (ADS)
Liu, Junbiao; Ma, Yutian; Zhao, Weixia; Niu, Geng; Chu, Mingzhang; Yin, Bohua; Han, Li; Liu, Baodong
2016-10-01
X-ray MicroandNano imaging is developed based on the conventional x-ray tomography, it can not only provide nondestructive testing with higher resolution measurement, but also be used to examine the material or the structure with low atomic number and low density. The source with micro-focal spot size is one of the key components of x-ray MicroandNano imaging. The focused electron beam from SEM bombarding the metal target can generate x-ray with ultra-small size. It is convenient to set up x-ray microscopy based on SEM for laboratory use. This paper describes a new x-ray microscopy using reflection targets based on FEI Quanta600 SEM with tungsten filament. The flat panel detector is placed outside of the vacuum chamber with 300μm thickness Be-window to isolate vacuum from the air. A stage with 3 DOFs is added to adjust the positions of the target, the SEM's sample stage is used to move sample. And the shape of target is designed as cone with 60° half cone angle to get the maximum x-ray dosage. The attenuation coefficient of Bewindow for x-ray is about 25%. Finally, the line pair card is used to evaluate the resolution and the result shows that the resolution of the system can receive less than 750nm, when the acceleration voltage is 30keV, the beam current is 160nA, the SEM working distance is 5mm and the acquisition time of the detector is 60s.
An update on X-ray reflection gratings developed for future missions
NASA Astrophysics Data System (ADS)
Miles, Drew
2018-01-01
X-ray reflection gratings are a key technology being studied for future X-ray spectroscopy missions, including the Lynx X-ray mission under consideration for the 2020 Decadal Survey. We present an update on the status of X-ray reflection gratings being developed at Penn State University, including current fabrication techniques and mass-replication processes and the latest diffraction efficiency results and resolving power measurements. Individual off-plane X-ray reflection gratings have exceeded the current Lynx requirements for both effective area and resolving power. Finally, we discuss internal projects that will advance the technology readiness level of these gratings.
Prototyping iridium coated mirrors for x-ray astronomy
NASA Astrophysics Data System (ADS)
Döhring, Thorsten; Probst, Anne-Catherine; Stollenwerk, Manfred; Emmerich, Florian; Stehlíková, Veronika; Inneman, Adolf
2017-05-01
X-ray astronomy uses space-based telescopes to overcome the disturbing absorption of the Earth's atmosphere. The telescope mirrors are operating at grazing incidence angles and are coated with thin metal films of high-Z materials to get sufficient reflectivity for the high-energy radiation to be observed. In addition the optical payload needs to be light-weighted for launcher mass constrains. Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. The X-ray telescopes currently developed within this Bavarian- Czech project are of Lobster eye type optical design. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The deposition of the iridium films is based on a magnetron sputtering process. Sputtering with different parameters, especially by variation of the argon gas pressure, leads to iridium films with different properties. In addition to investigations of the uncoated mirror substrates the achieved surface roughness has been studied. Occasional delamination of the iridium films due to high stress levels is prevented by chromium sublayers. Thereby the sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.
The x ray reflectivity of the AXAF VETA-I optics
NASA Technical Reports Server (NTRS)
Kellogg, Edwin M.; Chartas, G.; Graessle, D.; Hughes, John P.; Vanspeybroeck, Leon; Zhao, Ping; Weisskopf, M. C.; Elsner, R. F.; Odell, S. L.
1992-01-01
The x-ray reflectivity of the VETA-I optic, the outermost shell of the AXAF x-ray telescope, with a bare Zerodur surface, is measured and compared with theoretical predictions. Measurements made at energies of 0.28, 0.9, 1.5, 2.1, and 2.3 keV are compared with predictions based on ray trace calculations. The data were obtained at the x-ray calibrations facility at Marshall Space Flight Center with an electron impact x-ray source located 528 m from the grazing incidence mirror. The source used photoelectric absorption filters to eliminate bremsstrahlung continuum. The mirror has a diameter of 1.2 m and a focal length of 10 m. The incident and reflected x-ray flux are detected using two proportional counters, one located in the incident beam of x-rays at the entrance aperture of the VETA-I, and the other in the focal plane behind an aperture of variable size. Results on the variation of the reflectivity with energy as well as the absolute value of the reflectivity are presented. We also present a synchrotron reflectivity measurement with high energy resolution over the range 0.26 to 1.8 keV on a flat Zerodur sample, done at NSLS. We present evidence for contamination of the flat by a thin layer of carbon on the surface, and the possibility of alteration of the surface composition of the VETA-I mirror perhaps by the polishing technique. The overall agreement between the measured and calculated effective area of VETA-I is between 2.6 percent and 10 percent, depending on which model for the surface composition is adopted. Measurements at individual energies deviate from the best-fitting calculation to 0.3 to 0.8 percent, averaging 0.6 percent at energies below the high energy cutoff of the mirror reflectivity, and are as high as 20.7 percent at the cutoff. We also discuss the approach to the final preflight calibration of the full AXAF flight mirror.
Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity
Mezger, Markus; Ocko, Benjamin M.; Reichert, Harald; Deutsch, Moshe
2013-01-01
The molecular-scale structure of the ionic liquid [C18mim]+[FAP]− near its free surface was studied by complementary methods. X-ray absorption spectroscopy and resonant soft X-ray reflectivity revealed a depth-decaying near-surface layering. Element-specific interfacial profiles were extracted with submolecular resolution from energy-dependent soft X-ray reflectivity data. Temperature-dependent hard X-ray reflectivity, small- and wide-angle X-ray scattering, and infrared spectroscopy uncovered an intriguing melting mechanism for the layered region, where alkyl chain melting drove a negative thermal expansion of the surface layer spacing. PMID:23431181
Automatic tool alignment in a backscatter X-ray scanning system
Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.
2015-11-17
Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a medical device is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.
Automatic tool alignment in a backscatter x-ray scanning system
Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.
2015-06-16
Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a tool is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.
Methods for reducing ghost rays on the Wolter-I focusing figures of the FOXSI rocket payload
NASA Astrophysics Data System (ADS)
Buitrago-Casas, Juan Camilo; Glesener, Lindsay; Christe, Steven; Ramsey, Brian; Elsner, Ronald; Courtade, Sasha; Vievering, Juliana; Subramania, Athiray; Krucker, Sam; Bale, Stuart
2017-08-01
In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload which uses seven sets of nested Wolter-I figured mirrors that, together with seven high-sensitive semiconductor detectors, observes the Sun in hard X-rays by direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in summer 2018.The Wolter-I geometry consists of two consecutive mirrors, one paraboloid, and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect twice, once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a pattern of single-bounce photons, or ‘ghost rays’ that can limit the sensitivity of the observation of focused X-rays. Understanding and cutting down the ghost rays on the FOXSI optics will maximize the instrument’s sensitivity of the solar faintest sources for future flights. We present an analysis of the FOXSI ghost rays based on ray-tracing simulations, as well as the effectiveness of different physical strategies to reduce them.
Crystals for astronomical X-ray spectroscopy
NASA Technical Reports Server (NTRS)
Burek, A.
1976-01-01
Crystal spectrometric properties and the factors that affect their measurement are discussed. Theoretical and experimental results on KAP are summarized and theoretical results based on the dynamical theory of X-ray diffraction are given for the acid phthalates as well as for the commonly used planes of ADP, PET and EDDT. Anomalous dispersion is found to be important for understanding the details of crystal Bragg reflection properties at long X-ray wavelengths and some important effects are pointed out. The theory of anomalous dispersion is applied to explain the anomalous reflectivity exhibited by KAP at 23.3 A.
X-ray diffraction and X-ray standing-wave study of the lead stearate film structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blagov, A. E.; Dyakova, Yu. A.; Kovalchuk, M. V.
2016-05-15
A new approach to the study of the structural quality of crystals is proposed. It is based on the use of X-ray standing-wave method without measuring secondary processes and considers the multiwave interaction of diffraction reflections corresponding to different harmonics of the same crystallographic reflection. A theory of multiwave X-ray diffraction is developed to calculate the rocking curves in the X-ray diffraction scheme under consideration for a long-period quasi-one-dimensional crystal. This phase-sensitive method is used to study the structure of a multilayer lead stearate film on a silicon substrate. Some specific structural features are revealed for the surface layer ofmore » the thin film, which are most likely due to the tilt of the upper layer molecules with respect to the external normal to the film surface.« less
RHEED-TRAXS as a tool for in-situ stoichiometry control.
NASA Astrophysics Data System (ADS)
Chandril, Sandeep; Keenan, Cameron; Myers, Thomas; Lederman, David
2008-03-01
RHEED-total reflection x-ray spectroscopy (-TRAXS) is an in-situ chemical and structural characterization technique which is highly surface sensitive. This consists of a grazing-angle electron beam from which characteristic x-rays from the sample are measured also at grazing angles. We have demonstrated that monolayer sensitivity in Y and Mn films on GaN can be achieved. We have also developed a theoretical model for the angular dependence of the x-ray Kα peaks for the thin films, based on Parratt's formalism for x-ray reflectivity and the electron trajectory simulation software CASINO, to correct for grazing angle electron beam as a source for x-rays. As the angular dependence is highly dependent upon the film thickness and the smoothness of the film, it can be used to determine the deposition rate of individual elements as well as the interface chemical roughness
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Editor)
1992-01-01
The present conference discusses the Advanced X-ray Astrophysics Facility (AXAF) calibration by means of synchrotron radiation and its X-ray reflectivity, X-ray scattering measurements from thin-foil X-ray mirrors, lobster-eye X-ray optics using microchannel plates, space-based interferometry at EUV and soft X-ray wavelengths, a water-window imaging X-ray telescope, a graded d-spacing multilayer telescope for high energy X-ray astronomy, photographic films for the multispectral solar telescope array, a soft X-ray ion chamber, and the development of hard X-ray optics. Also discussed are X-ray spectroscopy with multilayered optics, a slit aperture for monitoring X-ray experiments, an objective double-crystal spectrometer, a Ly-alpha coronagraph/polarimeter, tungsten/boron nitride multilayers for XUV optical applications, the evaluation of reflectors for soft X-ray optics, the manufacture of elastically bent crystals and multilayer mirrors, and selective photodevices for the VUV.
NASA Technical Reports Server (NTRS)
Czerny, Bozena; Zycki, Piotr T.
1994-01-01
The broad-band ROSAT/EXOSAT X-ray spectra of six Seyfert 1 galaxies are fitted by a model consisting of a direct power law and a component due to reflection/reprocessing from a partially ionized, optically thick medium. The reflected spectrum contains emission features from various elements in the soft X-ray range. In all objects but one (Mrk 335), the fit is satisfactory, and no additional soft X-ray excess is required by the data. This means that in most sources there is no need for the thermal 'big blue bumps' to extend into soft X-rays, and the soft X-ray excesses reported previously can be explained by reflection/reprocessing. Satisfactory fits are obtained for a medium ionized by a source radiating at less than or approximately 15% of the Eddington rate. The fits require that the reflection is enhanced relative to an isotropically emitting source above a flat disk. The necessary high effectiveness of reflection in the soft X-ray band requires strong soft thermal flux dominating over hard X-rays.
Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage
NASA Astrophysics Data System (ADS)
Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing
2018-02-01
With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.
Correct interpretation of diffraction properties of quartz crystals for X-ray optics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xian-Rong; Gog, Thomas; Kim, Jungho
Quartz has hundreds of strong Bragg reflections that may offer a great number of choices for making fixed-angle X-ray analyzers and polarizers at virtually any hard X-ray energies with selectable resolution. However, quartz crystals, unlike silicon and germanium, are chiral and may thus appear in two different forms of handedness that are mirror images. Furthermore, because of the threefold rotational symmetry along thecaxis, the {h 1h 2h 3L} and {h 2h 1h 3L} Bragg reflections may have quite different Darwin bandwidth, reflectivity and angular acceptance, although they have the same Bragg angle. The design of X-ray optics from quartz crystalsmore » therefore requires unambiguous determination of the orientation, handedness and polarity of the crystals. The Laue method and single-axis diffraction technique can provide such information, but the variety of conventions used in the literature to describe quartz structures has caused widespread confusion. The current studies give detailed guidelines for design and fabrication of quartz X-ray optics, with special emphasis on the correct interpretation of Laue patterns in terms of the crystallography and diffraction properties of quartz. Meanwhile, the quartz crystals examined were confirmed by X-ray topography to have acceptably low densities of dislocations and other defects, which is the foundation for developing high-resolution quartz-based X-ray optics.« less
Szeto, Timothy C; Webster, Christie Ann; Koprinarov, Ivaylo; Rowlands, J A
2008-03-01
Digital x-ray radiographic systems are desirable as they offer high quality images which can be processed, transferred, and stored without secondary steps. However, current clinical systems are extraordinarily expensive in comparison to film-based systems. Thus, there is a need for an economical digital imaging system for general radiology. The x-ray light valve (XLV) is a novel digital x-ray detector concept with the potential for high image quality and low cost. The XLV is comprised of a photoconductive detector layer and liquid crystal (LC) cell physically coupled in a sandwich structure. Upon exposure to x rays, charge is collected at the surface of the photoconductor, causing a change in the reflective properties of the LC cell. The visible image so formed can subsequently be digitized with an optical scanner. By choosing the properties of the LC cell in combination with the appropriate photoconductor thickness and bias potentials, the XLV can be optimized for various diagnostic imaging tasks. Specifically for chest radiography, we identified three potentially practical reflective cell designs by selecting from those commonly used in LC display technology. The relationship between reflectance and x-ray exposure (i.e., the characteristic curve) was determined for all three cells using a theoretical model. The results indicate that the reflective electrically controlled birefringence (r-ECB) cell is the preferred choice for chest radiography, provided that the characteristic curve can be shifted towards lower exposures. The feasibility of the shift of the characteristic curve is shown experimentally. The experimental results thus demonstrate that an XLV based on the r-ECB cell design exhibits a characteristic curve suitable for chest radiography.
Novel wide-field x-ray optics for space
NASA Astrophysics Data System (ADS)
Hudec, René; Pína, Ladislav; Inneman, Adolf
2017-11-01
We report on the program of design and development of innovative very wide field X-ray optics for space applications. We describe the idea of wide field X-ray optics of the lobster-eye type of both Angel and Schmidt arrangements. This optics was suggested in 70ies but not yet used in space experiment due to severe manufacturing problems. The lobster-eye X-ray optics may achieve up to 180 degrees (diameter) field of view at angular resolution of order of 1 arcmin. We report on various prototypes of lobster-eye X-ray lenses based on alternative technologies (replicated double sided X-ray reflecting flats, float glass, replicated square channels etc.) as well as on their optical and X-ray tests. We also discuss the importance and performance of lobster-eye X-ray telescopes in future X-ray astronomy projects.
The approach to reflection x-ray microscopy below the critical angles
NASA Astrophysics Data System (ADS)
Artyukov, Igor A.; Busarov, Alexander; Popov, Nikolay L.; Vinogradov, Alexander V.
2017-05-01
There is a quest for new knowledge and methods to study various materials and processes on surfaces and interfaces at the nanoscale. It concerns ablation, phase transitions, physical and chemical transformations, dissolution, selforganization etc. Obviously, to achieve an appropriate resolution it is necessary to use a corresponding wavelength . Higher resolution can be obtained with shorter wavelengths. On the other hand, in surface modification, ablation, study of buried interfaces etc. the penetration length of radiation into the materials, which depends on the wavelength and angle of incidence, plays important role... Considering these factors the experimental studies in nano-physics and nanotechnology are usually carried out using X-ray radiation with a photon energy of 0.1-10 keV. As far as surfaces and films are investigated, it is reasonable to use an X-ray microscope operating in the reflection mode. However, in this spectral range a substantial portion of the radiation is reflected only at small grazing angles (e.g. <= 10°). Thus, the idea of grazing incidence reflection-mode X-ray microscope has been developed. In this paper, we consider one of possible schemes of such an X-ray microscope. Our analysis and simulation is based on the extension of the Fresnel propagation theory to tilted object problems.
NASA Technical Reports Server (NTRS)
Langer, S. H.; Petrosian, V.
1976-01-01
A Monte Carlo method is described for evaluation of the spectrum, directivity and polarization of X-rays diffusely reflected from stellar photospheres. the accuracy of the technique is evaluated through comparison with analytic results. Using the characteristics of the incident X-rays of the model for solar X-ray flares, the spectrum, directivity and polarization of the reflected and the total X-ray fluxes are evaluated. The results are compared with observations.
Design and modeling of an additive manufactured thin shell for x-ray astronomy
NASA Astrophysics Data System (ADS)
Feldman, Charlotte; Atkins, Carolyn; Brooks, David; Watson, Stephen; Cochrane, William; Roulet, Melanie; Willingale, Richard; Doel, Peter
2017-09-01
Future X-ray astronomy missions require light-weight thin shells to provide large collecting areas within the weight limits of launch vehicles, whilst still delivering angular resolutions close to that of Chandra (0.5 arc seconds). Additive manufacturing (AM), also known as 3D printing, is a well-established technology with the ability to construct or `print' intricate support structures, which can be both integral and light-weight, and is therefore a candidate technique for producing shells for space-based X-ray telescopes. The work described here is a feasibility study into this technology for precision X-ray optics for astronomy and has been sponsored by the UK Space Agency's National Space Technology Programme. The goal of the project is to use a series of test samples to trial different materials and processes with the aim of developing a viable path for the production of an X-ray reflecting prototype for astronomical applications. The initial design of an AM prototype X-ray shell is presented with ray-trace modelling and analysis of the X-ray performance. The polishing process may cause print-through from the light-weight support structure on to the reflecting surface. Investigations in to the effect of the print-through on the X-ray performance of the shell are also presented.
Reflectivity around the gold L-edges of x-ray reflector of the soft x-ray telescope onboard ASTRO-H
NASA Astrophysics Data System (ADS)
Maeda, Yoshitomo; Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu; Iizuka, Ryo; Hayashi, Takayuki; Okajima, Takashi; Matsumoto, Hironori; Mitsuishi, Ikuyuki; Saji, Shigetaka; Sato, Toshiki; Tachibana, Sasagu; Mori, Hideyuki; Christensen, Finn; Brejnholt, Nicolai; Nitta, Kiyofumi; Uruga, Tomoya
2016-07-01
We report the atomic scattering factor in the 11.2{15.4 keV for the ASTRO-H Soft X-ray Telescope (SXT)9 obtained in the ground based measurements. The large effective area of the SXT covers above 10 keV. In fact, the flight data show the spectra of the celestical objects in the hard X-ray band. In order to model the area, the reflectivity measurements in the 11.2{15.4 keV band with the energy pitch of 0.4 { 0.7 eV were made in the synchrotron beamline Spring-8 BL01B1. We obtained atomic scattering factors f1 and f2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the gold's L-I, II, and III transitions are identified, of which the depths are found to be roughly 60% shallower than those expected from the Henke's atomic scattering factor.
Reflectivity Around the Gold L-Edges of X-Ray Reflector of the Soft X-Ray Telescope Onboard ASTRO-H
NASA Technical Reports Server (NTRS)
Maeda, Yoshitomo; Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu; Iizuka, Ryo; Hayashi, Takayuki; Okajima, Takashi; Matsumoto, Hironori; Mitsuishi, Ikuyuki; Saji, Shigetaka;
2016-01-01
We report the atomic scattering factor in the 11.215.4 keV for the ASTRO-H Soft X-ray Telescope (SXT) obtained in the ground based measurements. The large effective area of the SXT covers above 10 keV. In fact, the flight data show the spectra of the celestical objects in the hard X-ray band. In order to model the area, the reflectivity measurements in the 11.2-15.4 keV band with the energy pitch of 0.4-0.7 eV were made in the synchrotron beamline Spring-8 BL01B1. We obtained atomic scattering factors f1 and f2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the golds L-I, II, and III transitions are identified, of which the depths are found to be roughly 60 percent shallower than those expected from the Henke's atomic scattering factor.
Xu, Yihui; Kuhlmann, Jan; Brennich, Martha; Komorowski, Karlo; Jahn, Reinhard; Steinem, Claudia; Salditt, Tim
2018-02-01
SNAREs are known as an important family of proteins mediating vesicle fusion. For various biophysical studies, they have been reconstituted into supported single bilayers via proteoliposome adsorption and rupture. In this study we extended this method to the reconstitution of SNAREs into supported multilamellar lipid membranes, i.e. oriented multibilayer stacks, as an ideal model system for X-ray structure analysis (X-ray reflectivity and diffraction). The reconstitution was implemented through a pathway of proteomicelle, proteoliposome and multibilayer. To monitor the structural evolution in each step, we used small-angle X-ray scattering for the proteomicelles and proteoliposomes, followed by X-ray reflectivity and grazing-incidence small-angle scattering for the multibilayers. Results show that SNAREs can be successfully reconstituted into supported multibilayers, with high enough orientational alignment for the application of surface sensitive X-ray characterizations. Based on this protocol, we then investigated the effect of SNAREs on the structure and phase diagram of the lipid membranes. Beyond this application, this reconstitution protocol could also be useful for X-ray analysis of many further membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.
Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage.
Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing
2018-02-01
With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Ito, Yoshiaki; Tochio, Tatsunori; Fukushima, Sei
A 4-crystal X-ray spectrometer was designed based on a 2-crystal X-ray spectrometer to be able to perform the absolute measurement of Bragg angle. This basic thought based on 2 crystals dates back to the times to A.Compton etc.. Because a distortion to give the crystal by the adhesive when a crystal was glued, greatly affected the X-rays profile, we changed it to the channel cut crystal without a free distortion as for having made each crystal of 2-crystal a channel cut. The influence of the foot in the spectral profile is more suppressed because four times of reflections reflect it. It is a high resolution so as not to need to consider instrumental function by the reflection degree that a specific atomic analysis can be executed with the chemical state which it is possible for making the placement of the 4-crystal (+, +) setting. This type of spectrum device is first time in the world. Because the absolute measurement of 2 θ angles is enabled by (+,-) and (+, +) setting from the center of gravity position of the rocking curve and the center of gravity position of the X-rays spectrum, we may measure the absolute value of the X-ray photon energy. Because we evaluated the energy of the Cu Kα , β lines, we report it. We acknowledge financial support for the measurements of a part of the data by the REXDAB collaboration that was initiated within the International Fundamental Parameter Initiative.
Application of MEMS-based x-ray optics as tuneable nanosecond choppers
NASA Astrophysics Data System (ADS)
Chen, Pice; Walko, Donald A.; Jung, Il Woong; Li, Zhilong; Gao, Ya; Shenoy, Gopal K.; Lopez, Daniel; Wang, Jin
2017-08-01
Time-resolved synchrotron x-ray measurements often rely on using a mechanical chopper to isolate a set of x-ray pulses. We have started the development of micro electromechanical systems (MEMS)-based x-ray optics, as an alternate method to manipulate x-ray beams. In the application of x-ray pulse isolation, we recently achieved a pulse-picking time window of half a nanosecond, which is more than 100 times faster than mechanical choppers can achieve. The MEMS device consists of a comb-drive silicon micromirror, designed for efficiently diffracting an x-ray beam during oscillation. The MEMS devices were operated in Bragg geometry and their oscillation was synchronized to x-ray pulses, with a frequency matching subharmonics of the cycling frequency of x-ray pulses. The microscale structure of the silicon mirror in terms of the curvature and the quality of crystallinity ensures a narrow angular spread of the Bragg reflection. With the discussion of factors determining the diffractive time window, this report showed our approaches to narrow down the time window to half a nanosecond. The short diffractive time window will allow us to select single x-ray pulse out of a train of pulses from synchrotron radiation facilities.
Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source
NASA Astrophysics Data System (ADS)
Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang
2017-04-01
As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.
Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source.
Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang
2017-04-01
As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.
Exploring interface morphology of a deeply buried layer in periodic multilayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Gangadhar; Srivastava, A. K.; Tiwari, M. K., E-mail: mktiwari@rrcat.gov.in
2016-06-27
Long-term durability of a thin film device is strongly correlated with the nature of interface structure associated between different constituent layers. Synthetic periodic multilayer structures are primarily employed as artificial X-ray Bragg reflectors in many applications, and their reflection efficiency is predominantly dictated by the nature of the buried interfaces between the different layers. Herein, we demonstrate the applicability of the combined analysis approach of the X-ray reflectivity and grazing incidence X-ray fluorescence measurements for the reliable and precise determination of a buried interface structure inside periodic X-ray multilayer structures. X-ray standing wave field (XSW) generated under Bragg reflection conditionmore » is used to probe the different constituent layers of the W- B{sub 4}C multilayer structure at 10 keV and 12 keV incident X-ray energies. Our results show that the XSW assisted fluorescence measurements are markedly sensitive to the location and interface morphology of a buried layer structure inside a periodic multilayer structure. The cross sectional transmission electron microscopy results obtained on the W-B{sub 4}C multilayer structure provide a deeper look on the overall reliability and accuracy of the XSW method. The method described here would also be applicable for nondestructive characterization of a wide range of thin film based semiconductor and optical devices.« less
Xu, Dechao; Huang, Qiushi; Wang, Yiwen; Li, Pin; Wen, Mingwu; Jonnard, Philippe; Giglia, Angelo; Kozhevnikov, Igor V; Wang, Kun; Zhang, Zhong; Wang, Zhanshan
2015-12-28
Pd/Y multilayer mirrors operating in the soft X-ray region are characterized by a high theoretical reflectance, reaching 65% at normal incidence in the 8-12 nm wavelength range. However, a severe intermixing of neighboring Pd and Y layers results in an almost total disappearance of the interfaces inside the multilayer structures fabricated by direct current magnetron sputtering and thus a dramatic reflectivity decrease. Based on grazing incidence X-ray reflectometry and X-ray photoelectron spectroscopy, we demonstrate that the stability of the interfaces in Pd/Y multilayer structures can be essentially improved by adding a small amount of nitrogen (4-8%) to the working gas (Ar). High resolution transmission electron microscopy shows that the interlayer width is only 0.9 nm and 0.6 nm for Y(N)-on-Pd(N) and Pd(N)-on-Y(N) interfaces, respectively. A well-defined crystalline texture of YN (200) is observed on the electron diffraction pattern. As a result, the measured reflectance of the Pd(N)/Y(N) multilayer achieves 30% at λ = 9.3 nm. The peak reflectivity value is limited by the remaining interlayers and the formation of the YN compound inside the yttrium layers, resulting in an increased absorption.
NASA Technical Reports Server (NTRS)
Bai, T.; Ramaty, R.
1977-01-01
The solar photosphere backscatters a substantial fraction of the hard X rays from solar flares incident upon it. This reflection was studied using a Monte Carlo simulation which takes into account Compton scattering and photo-electric absorption. Both isotropic and anisotropic X ray sources are considered. The bremsstrahlung from an anisotropic distribution of electrons are evaluated. By taking the reflection into account, the inconsistency is removed between recent observational data regarding the center-to-limb variation of solar X ray emission and the predictions of models in which accelerated electrons are moving down toward the photosphere.
Hayashi, Kouichi
2010-12-01
Based on our previous work, I review the applications of x-ray refraction and the x-ray waveguide phenomenon to organic and inorganic thin films in the present paper. Under grazing incidence conditions, observations of refracted x-rays and guided x-rays due to the x-ray waveguide phenomenon provide information about thin film structures, and thus have potential as alternative methods to x-ray reflectivity. To date, we have measured the spectra of the refracted x-rays and guided x-rays from end faces of thin films using white incident x-ray beams, and utilized them for the determination of film density and thickness. Some of this work is summarized in the present paper. At the end of this paper, I describe our recent achievement in this field, namely the in situ measurement of guided x-rays during the film degradation process due to strong synchrotron radiation damage. Moreover, I discuss the perspective of the present technique from the viewpoint of micro-characterization and real-time estimation of thin films.
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Editor); Walker, Arthur B. C., Jr. (Editor)
1991-01-01
Topics discussed in this issue include the fabrication of multilayer X-ray/EUV coatings; the design, characterization, and test of multilayer X-ray/EUV coatings; multilayer X-ray/EUV monochromators and imaging microscopes; X-ray/EUV telescopes; the test and calibration performance of X-ray/EUV instruments; XUV/soft X-ray projection lithography; X-ray/EUV space observatories and missions; X-ray/EUV telescopes for solar research; X-ray/EUV polarimetry; X-ray/EUV spectrographs; and X-ray/EUV filters and gratings. Papers are presented on the deposition-controlled uniformity of multilayer mirrors, interfaces in Mo/Si multilayers, the design and analysis of an aspherical multilayer imaging X-ray microscope, recent developments in the production of thin X-ray reflecting foils, and the ultraprecise scanning technology. Consideration is also given to an active sun telescope array, the fabrication and performance at 1.33 nm of a 0.24-micron-period multilayer grating, a cylindrical proportional counter for X-ray polarimetry, and the design and analysis of the reflection grating arrays for the X-Ray Multi-Mirror Mission.
Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Surendra, E-mail: surendra@barc.gov.in; Basu, Saibal
2016-05-23
X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependentmore » structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.« less
X ray microscope assembly and alignment support and advanced x ray microscope design and analysis
NASA Technical Reports Server (NTRS)
Shealy, David L.
1991-01-01
Considerable efforts have been devoted recently to the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft x ray application in microscopy and projection lithography. The spherical Schwarzschild microscope consists of two concentric spherical mirrors configured such that the third order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for x ray applications, it is desirable to have only two reflecting surfaces in a microscope. In order to reduce microscope aberrations and increase the field of view, generalized mirror surface profiles have been considered in this investigation. Based on incoherent and sine wave modulation transfer function (MTF) calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical head reflecting two mirror microscope configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Gangadhar; Kane, S. R.; Khooha, Ajay
2015-05-15
A new multipurpose x-ray reflectometer station has been developed and augmented at the microfocus beamline (BL-16) of Indus-2 synchrotron radiation source to facilitate synchronous measurements of specular x-ray reflectivity and grazing incidence x-ray fluorescence emission from thin layered structures. The design and various salient features of the x-ray reflectometer are discussed. The performance of the reflectometer has been evaluated by analyzing several thin layered structures having different surface interface properties. The results reveal in-depth information for precise determination of surface and interface properties of thin layered materials demonstrating the immense potential of the combined measurements of x-ray reflectivity and grazingmore » incidence fluorescence on a single reflectometer.« less
A soft X-ray beam-splitting multilayer optic for the NASA GEMS Bragg Reflection Polarimeter
Allured, Ryan; Kaaret, Philip; Fernandez-Perea, Monica; ...
2013-04-12
A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90° angle to the BRP detector, and transmit 2–10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 μm thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developedmore » and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Furthermore, reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing.« less
A soft X-ray beam-splitting multilayer optic for the NASA GEMS Bragg Reflection Polarimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allured, Ryan; Kaaret, Philip; Fernandez-Perea, Monica
A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90° angle to the BRP detector, and transmit 2–10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 μm thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developedmore » and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Furthermore, reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing.« less
X ray reflection masks: Manufacturing, characterization and first tests
NASA Astrophysics Data System (ADS)
Rahn, Stephen
1992-09-01
SXPL (Soft X-ray Projection Lithography) multilayer mirrors are characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors with a 2d in the region of 14 nm were characterized by Cu-k(alpha) grazing incidence as well as soft X-ray normal incidence reflectivity measurements. The multilayer mirrors were patterned by reactive ion etching with CF4 using a photoresist as etch mask, thus producing X-ray reflection masks. The masks were tested at the synchrotron radiation laboratory of the electron accelerator ELSA. A double crystal X-ray monochromator was modified so as to allow about 0.5 sq cm of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto a resist and structure sizes down to 8 micrometers were nicely reproduced. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.
NASA Technical Reports Server (NTRS)
Mckenzie, D. L.; Landecker, P. B.; Underwood, J. H.
1976-01-01
Results of the measurement of Bragg reflection properties of crystals suitable for use in X-ray astronomy are presented. Measurements with a double crystal spectrometer were performed on rubidium acid phthalate and thallium acid phthalate to yield values of the integrated reflectivity and diffraction width in the range 8-18 A, and measurements of integrated reflectivity were also performed on ammonium dihydrogen phosphate. The theory and design of an arc-minute range multigrid collimator to be flown on a rocket for solar X-ray studies are also described, along with a method for determining the collimator's X-ray axis.
Solution algorithm of dwell time in slope-based figuring model
NASA Astrophysics Data System (ADS)
Li, Yong; Zhou, Lin
2017-10-01
Surface slope profile is commonly used to evaluate X-ray reflective optics, which is used in synchrotron radiation beam. Moreover, the measurement result of measuring instrument for X-ray reflective optics is usually the surface slope profile rather than the surface height profile. To avoid the conversion error, the slope-based figuring model is introduced introduced by processing the X-ray reflective optics based on surface height-based model. However, the pulse iteration method, which can quickly obtain the dell time solution of the traditional height-based figuring model, is not applied to the slope-based figuring model because property of the slope removal function have both positive and negative values and complex asymmetric structure. To overcome this problem, we established the optimal mathematical model for the dwell time solution, By introducing the upper and lower limits of the dwell time and the time gradient constraint. Then we used the constrained least squares algorithm to solve the dwell time in slope-based figuring model. To validate the proposed algorithm, simulations and experiments are conducted. A flat mirror with effective aperture of 80 mm is polished on the ion beam machine. After iterative polishing three times, the surface slope profile error of the workpiece is converged from RMS 5.65 μrad to RMS 1.12 μrad.
A Connection Between Corona and Jet
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-03-01
The structure immediately around a supermassive black hole at the heart of an active galaxy can tell us about how material flows in and out of these monsters but this region is hard to observe! A new study provides us with clues of what might be going on in these active and energetic cores of galaxies.In- and OutflowsIn active galactic nuclei (AGN), matter flows both in and out. As material flows toward the black hole via its surrounding accretion disk, much of this gas and dust can then be expelled from the vicinity via highly collimated jets.Top: The fraction of X-rays that is reflected decreases as jet power increases. Bottom: the distance between the corona and the reflecting part of the disk increases as jet power increases. [Adapted from King et al. 2017]To better understand this symbiosis between accretion and outflows, we examine whats known as the corona the hot, X-ray-emitting gas thats located in the closest regions around the black hole. But because the active centers of galaxies are generally obscured by surrounding gas and dust, its difficult for us to learn about the structure of these inner regions near the black hole.Where are the X-rays of the corona produced: in the inner accretion flow, or at the base of the jet? How far away is this corona from the disk? And how does the coronas behavior relate to that of the jet?Reflected ObservationsTo address some of these questions, a group of scientists led by Ashley King (Einstein Fellow at Stanford University) has analyzed X-ray observations from NuSTAR and XMM-Newton of over 40 AGN. The team examined the reflections of the X-rays off of the accretion disk and used two measurements to learn about the structure around the black hole:the fraction of the coronas X-rays that are reflected by the disk, andthe time lag between the original and reflected X-rays, which reveals the distance from the corona to the reflecting part of the disk.A visualization of the authors model for an AGN. The accretion disk is red, corona is green, and jet is blue. The corona shines on the disk, causing the inner regions (colored brighter) to fluoresce, reflecting the radiation. As the accretion rate increases from the top to the bottom panel, the jet power increases and the dominant reflective part of the disk moves outward due to the ionization of the inner region (which puffs up into a torus). [Adapted from King et al. 2017]King and collaborators find two interesting relationships between the corona and the jet: there is an inverse correlation between jet power and reflection fraction, and there is a correlation between jet power and the distance of the corona from the reflecting part of the disk the disk. These observations indicate that there is a relationship between changes in the corona and jet production in AGN.Modeling the CoronaThe authors use these observations to build a self-consistent model of an AGNs corona. In their picture, the corona is located at the base of the jet and movesmildly relativistically away from the disk, propagating into the large-scale jets.As the velocity of the corona increases, more of its radiation is relativistically beamed away from the accretion disk, which decreases the fraction of X-rays that are reflected explaining the inverse correlation between jet power and reflection fraction.At the same time, the increased mass accretion further ionizesthe inner disk region, pushing the dominant reflection region to further out in the disk which explains the correlation between jet power and the distance from corona to reflection region.King and collaborators show that this model is fully consistent with the X-ray observations of the 40 AGN they examined. Future X-ray observations of the strongest radio jet sources will help us to further pin down whats happening at the heart of active galaxies.CitationAshley L. King et al 2017 ApJ 835 226. doi:10.3847/1538-4357/835/2/226
NASA Astrophysics Data System (ADS)
Sullivan, M. C.; Ward, M. J.; Joress, H.; Gutierrez-Llorente, A.; White, A. E.; Woll, A.; Brock, J. D.
2014-03-01
The most popular tool for characterizing in situ layer-by-layer growth is Reflection High-Energy Electron Diffraction (RHEED). X-ray reflectivity can also be used to study layer-by-layer growth, as long as the incident angle of the x-rays is far from a Bragg peak. During layer-by-layer homoepitaxial growth, both the RHEED intensity and the reflected x-ray intensity will oscillate, and each complete oscillation indicates the addition of one layer of material. However, it is well documented, but not well understood, that the maxima in the RHEED intensity oscillations do not necessarily occur at the completion of a layer. In contrast, the maxima in the x-ray intensity oscillations do occur at the completion of a layer, thus the RHEED and x-ray oscillations are rarely in phase. We present our results on simultaneous in situ x-ray reflectivity and RHEED during layer-by-layer growth of SrTiO3 and discuss how to determine the completion of a layer for RHEED oscillations independent of the phase of the RHEED oscillation. Supported by DOE Office of Basic Energy Sciences Award DE-SC0001086, CHESS is supported by the NSF & NIH/NIGMS via NSF award DMR-0936384.
NASA Astrophysics Data System (ADS)
Khachaturov, R. V.
2014-06-01
A mathematical model of X-ray reflection and scattering by multilayered nanostructures in the quasi-optical approximation is proposed. X-ray propagation and the electric field distribution inside the multilayered structure are considered with allowance for refraction, which is taken into account via the second derivative with respect to the depth of the structure. This model is used to demonstrate the possibility of solving inverse problems in order to determine the characteristics of irregularities not only over the depth (as in the one-dimensional problem) but also over the length of the structure. An approximate combinatorial method for system decomposition and composition is proposed for solving the inverse problems.
1991-01-31
Reflection in Relativistic Electron Beam Channel Radiation Systems, IEEE Trans. on Plasma Science 16(5), 548 (1988). 3. M. Strauss, P. Amendt, N...Reduced Radiation Losses in a Channeled-Beam X-Ray Laser by Bragg Reflection Coupling, Phys. Rev. A 39(11), 5791 (1989). 6. M. Strauss and N. Rostoker... Radiation Guiding in Channeling Beam X-Ray Laser by Bragg Reflection Coupling, Phys. Rev. A 40(12), 7097 (1989). 91-00870111 llllltl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A. H.; Garson, A. B.; Anastasio, M. A.
In this study, we report initial demonstrations of the use of single crystals in indirect x-ray imaging with a benchtop implementation of propagation-based (PB) x-ray phase contrast imaging. Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point-spread function (PSF) with the 50-μm thick single crystal scintillators than with the reference polycrystalline phosphor/scintillator. Fiber-optic plate depth-of-focus and Al reflective-coating aspects are also elucidated. Guided by the results from the 25-mm diameter crystal samples, we report additionally the first results with a unique 88-mm diameter single crystal bonded to a fiber optic platemore » and coupled to the large format CCD. Both PSF and x-ray phase contrast imaging data are quantified and presented.« less
NASA Astrophysics Data System (ADS)
Marguí, Eva; Hidalgo, Manuela; Migliori, Alessandro; Leani, Juan José; Queralt, Ignasi; Kallithrakas-Kontos, Nikolaos; Streli, Christina; Prost, Josef; Karydas, Andreas Germanos
2018-07-01
The aim of the work is to present a systematic evaluation of the analytical capabilities of the new X-ray fluorescence facility jointly operated between the International Atomic Energy Agency and the Elettra Sincrotrone Trieste for multipurpose total reflection X-ray fluorescence analysis. The analytical performance of the XRF beamline end-station (IAEAXspe) was systematically evaluated under TXRF excitation geometry by analyzing different types of aqueous (lake, waste and fresh water) and solid (soil, vegetal, biological) certified reference materials using an excitation energy of 13.0 keV (for the purpose of multielemental analysis). The results obtained for both types of samples in terms of limits of detection and accuracy were also compared with those obtained using laboratory X-ray tube based TXRF systems with different features (including Mo and W X-ray tube systems). Taking advantage of the possibility to work under high vacuum, the IAEAXspe set-up instrumental sensitivity was also determined using an excitation energy of 6.2 keV to explore the possibilities for light elements determination. A clear improvement of the element detection limits is achieved when comparing this facility to conventional X-ray tube based TXRF systems highlighting the benefits of using the monoenergetic synchrotron exciting radiation and the ultra-high vacuum chamber in comparison with conventional laboratory systems. The results of the present work are discussed in view of further exploitation of the facility for different environmental and biological related applications.
Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.
2016-08-15
Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from themore » sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhawan, Rajnish, E-mail: rajnish@rrcat.gov.in; Rai, Sanjay
2016-05-23
W/Si multilayers four samples have been deposited on silicon substrate using ion beam sputtering system. Thickness of tungsten (W) varies from around 10 Å to 40 Å while the silicon (Si) thickness remains constant at around 30 Å in multilayers [W-Si]{sub x4}. The samples have been characterized by grazing incidence X-ray diffraction (GIXRD) and X-ray reflectivity technique (XRR). GIXRD study shows the crystalline behaviour of W/Si multilayer by varying W thickness and it is found that above 20 Å the W film transform from amorphous to crystalline phase and X-ray reflectivity data shows that the roughnesses of W increases onmore » increasing the W thicknesses in W/Si multilayers.« less
NASA Technical Reports Server (NTRS)
Schwartz, Daniel A.; Allured, Ryan; Bookbinder, Jay A.; Cotroneo, Vincenzo; Forman, William R.; Freeman, Mark D.; McMuldroch, Stuart; Reid, Paul B.; Tananbaum, Harvey; Vikhlinin, Alexey A.;
2014-01-01
Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first super-massive black holes. We have envisioned a mission, the Square Meter Arcsecond Resolution Telescope for X-rays (SMART-X), based on adjustable x-ray optics technology, incorporating mirrors with the required small ratio of mass to collecting area. We are pursuing technology which achieves sub-arcsecond resolution by on-orbit adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMART-X will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no requirements more stringent than those which are well understood and proven on the current Chandra X-ray Observatory.
Su, Luning; Li, Wei; Wu, Mingxuan; Su, Yun; Guo, Chongling; Ruan, Ningjuan; Yang, Bingxin; Yan, Feng
2017-08-01
Lobster-eye optics is widely applied to space x-ray detection missions and x-ray security checks for its wide field of view and low weight. This paper presents a theoretical model to obtain spatial distribution of focusing efficiency based on lobster-eye optics in a soft x-ray wavelength. The calculations reveal the competition mechanism of contributions to the focusing efficiency between the geometrical parameters of lobster-eye optics and the reflectivity of the iridium film. In addition, the focusing efficiency image depending on x-ray wavelengths further explains the influence of different geometrical parameters of lobster-eye optics and different soft x-ray wavelengths on focusing efficiency. These results could be beneficial to optimize parameters of lobster-eye optics in order to realize maximum focusing efficiency.
NASA Technical Reports Server (NTRS)
Spencer, Dwight C.
1996-01-01
Hoover et. al. built and tested two imaging Schwarzschild multilayer microscopes. These instruments were constructed as prototypes for the "Water Window Imaging X-Ray Microscope," which is a doubly reflecting, multilayer x-ray microscope configured to operate within the "water window." The "water window" is the narrow region of the x-ray spectrum between the K absorption edges of oxygen (lamda = 23.3 Angstroms) and of carbon (lamda = 43.62 Angstroms), where water is relatively highly transmissive and carbon is highly absorptive. This property of these materials, thus permits the use of high resolution multilayer x-ray microscopes for producing high contrast images of carbon-based structures within the aqueous physiological environments of living cells. We report the design, fabrication and testing of multilayer optics that operate in this regime.
NASA Astrophysics Data System (ADS)
Sanchez del Rio, Manuel; Pareschi, Giovanni
2001-01-01
The x-ray reflectivity of a multilayer is a non-linear function of many parameters (materials, layer thicknesses, densities, roughness). Non-linear fitting of experimental data with simulations requires to use initial values sufficiently close to the optimum value. This is a difficult task when the space topology of the variables is highly structured, as in our case. The application of global optimization methods to fit multilayer reflectivity data is presented. Genetic algorithms are stochastic methods based on the model of natural evolution: the improvement of a population along successive generations. A complete set of initial parameters constitutes an individual. The population is a collection of individuals. Each generation is built from the parent generation by applying some operators (e.g. selection, crossover, mutation) on the members of the parent generation. The pressure of selection drives the population to include 'good' individuals. For large number of generations, the best individuals will approximate the optimum parameters. Some results on fitting experimental hard x-ray reflectivity data for Ni/C multilayers recorded at the ESRF BM5 are presented. This method could be also applied to the help in the design of multilayers optimized for a target application, like for an astronomical grazing-incidence hard X-ray telescopes.
Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.
1987-08-07
An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.
Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.
1989-01-01
An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.
Thoe, Robert S.
1991-01-01
Method and apparatus for producing sharp, chromatic, magnified images of X-ray emitting objects, are provided. The apparatus, which constitutes an X-ray microscope or telescope, comprises a connected collection of Bragg reflecting planes, comprised of either a bent crystal or a synthetic multilayer structure, disposed on and adjacent to a locus determined by a spherical surface. The individual Bragg planes are spatially oriented to Bragg reflect radiation from the object location toward the image location. This is accomplished by making the Bragg planes spatially coincident with the surfaces of either a nested series of prolate ellipsoids of revolution, or a nested series of spheres. The spacing between the Bragg reflecting planes can be tailored to control the wavelengths and the amount of the X-radiation that is Bragg reflected to form the X-ray image.
Large-area soft x-ray projection lithography using multilayer mirrors structured by RIE
NASA Astrophysics Data System (ADS)
Rahn, Steffen; Kloidt, Andreas; Kleineberg, Ulf; Schmiedeskamp, Bernt; Kadel, Klaus; Schomburg, Werner K.; Hormes, F. J.; Heinzmann, Ulrich
1993-01-01
SXPL (soft X-ray projection lithography) is one of the most promising applications of X-ray reflecting optics using multilayer mirrors. Within our collaboration, such multilayer mirrors were fabricated, characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors were produced by electron beam evaporation in UHV under thermal treatment with an in-situ X-ray controlled thickness in the region of 2d equals 14 nm. The reflectivities measured at normal incidence reached up to 54%. Various surface analysis techniques have been applied in order to characterize and optimize the X-ray mirrors. The multilayers were patterned by reactive ion etching (RIE) with CF(subscript 4), using a photoresist as the etch mask, thus producing X-ray reflection masks. The masks were tested in the synchrotron radiation laboratory of the electron accelerator ELSA at the Physikalisches Institut of Bonn University. A double crystal X-ray monochromator was modified so as to allow about 0.5 cm(superscript 2) of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto the resist (Hoechst AZ PF 514), which was mounted at an average distance of about 7 mm. In the first test-experiments, structure sizes down to 8 micrometers were nicely reproduced over the whole of the exposed area. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.
Iwamoto, Hiroyuki; Trombitás, Károly; Yagi, Naoto; Suggs, Jennifer A.; Bernstein, Sanford I.
2014-01-01
Fruit fly (Drosophila melanogaster) is one of the most useful animal models to study the causes and effects of hereditary diseases because of its rich genetic resources. It is especially suitable for studying myopathies caused by myosin mutations, because specific mutations can be induced to the flight muscle-specific myosin isoform, while leaving other isoforms intact. Here we describe an X-ray-diffraction-based method to evaluate the structural effects of mutations in contractile proteins in Drosophila indirect flight muscle. Specifically, we describe the effect of the headless myosin mutation, Mhc10-Y97, in which the motor domain of the myosin head is deleted, on the X-ray diffraction pattern. The loss of general integrity of the filament lattice is evident from the pattern. A striking observation, however, is the prominent meridional reflection at d = 14.5 nm, a hallmark for the regularity of the myosin-containing thick filament. This reflection has long been considered to arise mainly from the myosin head, but taking the 6th actin layer line reflection as an internal control, the 14.5-nm reflection is even stronger than that of wild-type muscle. We confirmed these results via electron microscopy, wherein image analysis revealed structures with a similar periodicity. These observations have major implications on the interpretation of myosin-based reflections. PMID:25400584
NASA Technical Reports Server (NTRS)
Schwartz, Daniel A.; Allured, Ryan; Bookbinder, Jay; Cotroneo, Vincenzo; Forman, William; Freeman, Mark; McMuldroch, Stuart; Reid, Paul; Tananbaum, Harvey; Vikhlinin, Alexey;
2014-01-01
Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first supermassive black holes. We have envisioned a mission based on adjustable x-ray optics technology, in order to achieve the required reduction of mass to collecting area for the mirrors. We are pursuing technology which effects this adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMARTX will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no more stringent requirements than those which are well understood and proven on the current Chandra X-ray Observatory.
Optical and x-ray alignment approaches for off-plane reflection gratings
NASA Astrophysics Data System (ADS)
Allured, Ryan; Donovan, Benjamin D.; DeRoo, Casey T.; Marlowe, Hannah R.; McEntaffer, Randall L.; Tutt, James H.; Cheimets, Peter N.; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt
2015-09-01
Off-plane reflection gratings offer the potential for high-resolution, high-throughput X-ray spectroscopy on future missions. Typically, the gratings are placed in the path of a converging beam from an X-ray telescope. In the off-plane reflection grating case, these gratings must be co-aligned such that their diffracted spectra overlap at the focal plane. Misalignments degrade spectral resolution and effective area. In-situ X-ray alignment of a pair of off-plane reflection gratings in the path of a silicon pore optics module has been performed at the MPE PANTER beamline in Germany. However, in-situ X-ray alignment may not be feasible when assembling all of the gratings required for a satellite mission. In that event, optical methods must be developed to achieve spectral alignment. We have developed an alignment approach utilizing a Shack-Hartmann wavefront sensor and diffraction of an ultraviolet laser. We are fabricating the necessary hardware, and will be taking a prototype grating module to an X-ray beamline for performance testing following assembly and alignment.
Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS)
NASA Technical Reports Server (NTRS)
Murray, Stephen S.; Pierce, David L. (Technical Monitor)
2002-01-01
The Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS) is an astrophysics mission concept for measuring the polarization of X-ray sources at low energies below the C-K band (less than 277 eV). PLEXAS uses the concept of variations in the reflectivity of a multilayered X-ray telescope as a function of the orientation of an X-rays polarization vector with respect to the reflecting surface of the optic. By selecting an appropriate multilayer, and rotating the X-ray telescope while pointing to a source, there will be a modulation in the source intensity, as measured at the focus of the telescope, which is proportional to the degree of polarization in the source.
JEUMICO: Czech-Bavarian astronomical X-ray optics project
NASA Astrophysics Data System (ADS)
Hudec, R.; Döhring, T.
2017-07-01
Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.
Normal incidence x-ray mirror for chemical microanalysis
Carr, M.J.; Romig, A.D. Jr.
1987-08-05
An x-ray mirror for both electron column instruments and micro x-ray fluorescence instruments for making chemical, microanalysis comprises a non-planar mirror having, for example, a spherical reflecting surface for x-rays comprised of a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on a substrate and whose layers have a thickness which is a multiple of the wavelength being reflected. For electron column instruments, the wavelengths of interest lie above 1.5nm, while for x-ray fluorescence instruments, the range of interest is below 0.2nm. 4 figs.
Orbital Verification of the CXO High-Resolution Mirror Assembly Alignment and Vignetting
NASA Technical Reports Server (NTRS)
Gaetz, T. J.; Jerius, D.; Edgar, R. J.; VanSpeybroeck, L. P.; Schwartz, D. A.; Markevitch, M.; Schulz, N. S.
2000-01-01
Prior to launch, the High Resolution Mirror Assembly (HRMA) of the Chandra X-ray Observatory underwent extensive ground testing at the X-ray Calibration Facility (XRCF) at the Marshall Space Flight Center in Huntsville. Observations made during the post-launch Orbital Activation and Calibration period, allow the on-orbit condition of the X-ray optics to be assessed. Based on these ground-based and on-orbit data, we examine the alignment of the x-ray optics based on the PSF, and the boresight and alignment of the optical axis alignment relative to the detectors. We examine the vignetting and the single reflection ghost suppression properties of the telescope. Slight imperfections in alignment lead to a small azimuthal dependence of the off-axis area; the morphology of off-axis images also shows an additional small azimuthal dependence varying as 1/2 the off-axis azimuth angle.
Ionized absorbers, ionized emitters, and the X-ray spectrum of active galactic nuclei
NASA Technical Reports Server (NTRS)
Netzer, Hagai
1993-01-01
Broad absorption features are common in the X-ray spectrum of low-luminosity AGNs. The features have been modeled by leaky neutral absorbers or by highly ionized gas that completely occult the continuum source. Such models are incomplete since they do not take into account all the physical processes in the gas. In particular, no previous model included the X-ray emission by the ionized absorbing gas and the reflection of the continuum source radiation. The present work discusses the emission, absorption, and reflection properties of photoionized gases with emphasis on conditions thought to prevail in AGNs. It shows that such gas is likely to produce intense X-ray line and continuum radiation and to reflect a sizable fraction of the nonstellar continuum at all energies. If such gas is indeed responsible for the observed X-ray absorption, then absorption edges are much weaker than commonly assumed, and some residual X-ray continuum is likely to be observed even if the line of sight is completely blocked. Moreover, X-ray emission features may show up in sources not showing X-ray absorption. This has immense consequences for medium-resolution X-ray missions, such as BBXRT and Astro-D, and for the planned high-resolution experiments on board XMM and AXAF.
NASA Technical Reports Server (NTRS)
Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.
1986-01-01
The analysis of the beryllium-filtered data from Flight 17.020 was completed. The data base provided by the Wisconsin diffuse X-ray sky survey is being analyzed by correlating the B and C band emission with individual velocity components of neutral hydrogen. Work on a solid state detector to be used in high resolution spectroscopy of diffuse or extend X-ray sources is continuing. A series of 21 cm observations was completed. A paper on the effects of process parameter variation on the reflectivity of sputter-deposited tungsten-carvon multilayers was published.
1990-09-01
231 Harry L. Frisch PART V: IONOMERS/STRUCTURE SMALL ANGLE X - RAY SCATTERING ON POLY(ETHYLENE-METHACRYLIC ACID) LEAD AND LEAD SULFIDE IONOMERS 237...E.J. Kramer, R.J. Composto, R.S. Stein, T.P. Russell, G.P. Felcher, A. Mansour, and A. Karim * td:tt Papet Vil X - RAY REFLECTIVITY AND FLUORESCENCE...Sammann DETERMINATION OF PARTICLE SIZE OF A DISPERSED PHASE BY SMALL-ANGLE X - RAY SCATTERING 413 Frank C. Wilson *Invited Paper ix SYNTHESIS AND
Krupin, O; Trigo, M; Schlotter, W F; Beye, M; Sorgenfrei, F; Turner, J J; Reis, D A; Gerken, N; Lee, S; Lee, W S; Hays, G; Acremann, Y; Abbey, B; Coffee, R; Messerschmidt, M; Hau-Riege, S P; Lapertot, G; Lüning, J; Heimann, P; Soufli, R; Fernández-Perea, M; Rowen, M; Holmes, M; Molodtsov, S L; Föhlisch, A; Wurth, W
2012-05-07
The recent development of x-ray free electron lasers providing coherent, femtosecond-long pulses of high brilliance and variable energy opens new areas of scientific research in a variety of disciplines such as physics, chemistry, and biology. Pump-probe experimental techniques which observe the temporal evolution of systems after optical or x-ray pulse excitation are one of the main experimental schemes currently in use for ultrafast studies. The key challenge in these experiments is to reliably achieve temporal and spatial overlap of the x-ray and optical pulses. Here we present measurements of the x-ray pulse induced transient change of optical reflectivity from a variety of materials covering the soft x-ray photon energy range from 500eV to 2000eV and outline the use of this technique to establish and characterize temporal synchronization of the optical-laser and FEL x-ray pulses.
X ray imaging microscope for cancer research
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.
1991-01-01
The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.
NASA Astrophysics Data System (ADS)
Xu, Jie; Wang, Xin; Mu, Baozhong; Zhan, Qi; Xie, Qing; Li, Yaran; Chen, Yifan; He, Yanan
2016-10-01
In order to counter drug-related crimes effectively, and to safeguard homeland security as well as public safety, it is important to inspect drugs, explosives and other contraband quickly and accurately from the express mail system, luggage, vehicles and other objects. In this paper, we discuss X-ray backscatter inspection system based on a novel lobster-eye X-ray objective, which is an effective inspection technology for drugs, explosives and other contraband inspection. Low atomic number materials, such as drugs and explosives, leads to strong Compton scattering after irradiated by X-ray, which is much stronger than high atomic number material, such as common metals, etc. By detecting the intensity of scattering signals, it is possible to distinguish between organics and inorganics. The lobster-eye X-ray optical system imitates the reflective eyes of lobsters, which field of view can be made as large as desired and it is practical to achieve spatial resolution of several millimeters for finite distance detection. A novel lobster-eye X-ray objective is designed based on modifying Schmidt geometry by using multi-lens structure, so as to reduce the difference of resolution between the horizontal and vertical directions. The demonstration experiments of X-ray backscattering imaging were carried out. A suitcase, a wooden box and a tire with several typical samples hidden in them were imaged by the X-ray backscattering inspection system based on a lobster-eye X-ray objective. The results show that this X-ray backscattering inspection system can get a resolution of less than five millimeters under the FOV of more than two hundred millimeters with 0.5 meter object distance, which can still be improved.
NASA Astrophysics Data System (ADS)
Stepanov, Sergey
2013-03-01
X-Ray Server (x-server.gmca.aps.anl.gov) is a WWW-based computational server for modeling of X-ray diffraction, reflection and scattering data. The modeling software operates directly on the server and can be accessed remotely either from web browsers or from user software. In the later case the server can be deployed as a software library or a data fitting engine. As the server recently surpassed the milestones of 15 years online and 1.5 million calculations, it accumulated a number of technical solutions that are discussed in this paper. The developed approaches to detecting physical model limits and user calculations failures, solutions to spam and firewall problems, ways to involve the community in replenishing databases and methods to teach users automated access to the server programs may be helpful for X-ray researchers interested in using the server or sharing their own software online.
Polarization and long-term variability of Sgr A* X-ray echo
NASA Astrophysics Data System (ADS)
Churazov, E.; Khabibullin, I.; Ponti, G.; Sunyaev, R.
2017-06-01
We use a model of the molecular gas distribution within ˜100 pc from the centre of the Milky Way (Kruijssen, Dale & Longmore) to simulate time evolution and polarization properties of the reflected X-ray emission, associated with the past outbursts from Sgr A*. While this model is too simple to describe the complexity of the true gas distribution, it illustrates the importance and power of long-term observations of the reflected emission. We show that the variable part of X-ray emission observed by Chandra and XMM-Newton from prominent molecular clouds is well described by a pure reflection model, providing strong support of the reflection scenario. While the identification of Sgr A* as a primary source for this reflected emission is already a very appealing hypothesis, a decisive test of this model can be provided by future X-ray polarimetric observations, which will allow placing constraints on the location of the primary source. In addition, X-ray polarimeters (like, e.g. XIPE) have sufficient sensitivity to constrain the line-of-sight positions of molecular complexes, removing major uncertainty in the model.
Modeling multilayer x-ray reflectivity using genetic algorithms
NASA Astrophysics Data System (ADS)
Sánchez del Río, M.; Pareschi, G.; Michetschläger, C.
2000-06-01
The x-ray reflectivity of a multilayer is a non-linear function of many parameters (materials, layer thickness, density, roughness). Non-linear fitting of experimental data with simulations requires the use of initial values sufficiently close to the optimum value. This is a difficult task when the topology of the space of the variables is highly structured. We apply global optimization methods to fit multilayer reflectivity. Genetic algorithms are stochastic methods based on the model of natural evolution: the improvement of a population along successive generations. A complete set of initial parameters constitutes an individual. The population is a collection of individuals. Each generation is built from the parent generation by applying some operators (selection, crossover, mutation, etc.) on the members of the parent generation. The pressure of selection drives the population to include "good" individuals. For large number of generations, the best individuals will approximate the optimum parameters. Some results on fitting experimental hard x-ray reflectivity data for Ni/C and W/Si multilayers using genetic algorithms are presented. This method can also be applied to design multilayers optimized for a target application.
Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror
NASA Astrophysics Data System (ADS)
Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Arefiev, Alexey V.; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V.; Shvets, G.; Downer, M. C.
2015-02-01
We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a0 ˜ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic "denting" of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75-200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (˜6 × 10-12) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.
Waiting in the Wings: Reflected X-ray Emission from the Homunculus Nebula
NASA Technical Reports Server (NTRS)
Corcoran, M. F.; Hamaguchi, K.; Gull, T.; Davidson, K.; Petre, R.; Hillier, D. J.; Smith, N.; Damineli, A.; Morse, J. A.; Walborn, N. R.
2004-01-01
We report the first detection of X-ray emission associated with the Homunculus Nebula which surrounds the supermassive star eta Carinae. The emission is characterized by a temperature in excess of 100 MK, and is consistent with scattering of the time-delayed X-ray flux associated with the star. The nebular emission is bright in the northwestern lobe and near the central regions of the Homunculus, and fainter in the southeastern lobe. We also report the detection of an unusually broad Fe K fluorescent line, which may indicate fluorescent scattering off the wind of a companion star or some other high velocity outflow. The X-ray Homunculus is the nearest member of the small class of Galactic X-ray reflection nebulae, and the only one in which both the emitting and reflecting sources are distinguishable.
NASA Astrophysics Data System (ADS)
Fabian, A. C.; Ross, R. R.
2010-12-01
Material irradiated by X-rays produces backscattered radiation which is commonly known as the Reflection Spectrum. It consists of a structured continuum, due at high energies to the competition between photoelectric absorption and electron scattering enhanced at low energies by emission from the material itself, together with a complex line spectrum. We briefly review the history of X-ray reflection in astronomy and discuss various methods for computing the reflection spectrum from cold and ionized gas, illustrated with results from our own work reflionx. We discuss how the reflection spectrum can be used to obtain the geometry of the accretion flow, particularly the inner regions around black holes and neutron stars.
NASA Astrophysics Data System (ADS)
L. Wang, F.; Mu, B. Z.; Wang, Z. S.; Gu, C. S.; Zhang, Z.; Qin, S. J.; Chen, L. Y.
A grazing Kirkpatrick-Baez (K-B) microscope was designed for hard x-ray (8keV; Cu Ka radiation) imaging in Inertial Confinement Fusion (ICF) diagnostic experiments. Ray tracing software was used to simulate optical system performance. The optimized theoretical resolution of K-B microscope was about 2 micron and better than 10 micron in 200 micron field of view. Tungsten and boron carbide were chosen as multilayer materials and the multilayer was deposited onto the silicon wafer substrate and the reflectivity was measured by x-ray diffraction (XRD). The reflectivity of supermirror was about 20 % in 0.3 % of bandwidth. 8keV Cu target x-ray tube source was used in x-ray imaging experiments and the magnification of 1x and 2x x-ray images were obtained.
Development of optics for x-ray phase-contrast imaging of high energy density plasmas.
Stutman, D; Finkenthal, M; Moldovan, N
2010-10-01
Phase-contrast or refraction-enhanced x-ray radiography can be useful for the diagnostic of low-Z high energy density plasmas, such as imploding inertial confinement fusion (ICF) pellets, due to its sensitivity to density gradients. To separate and quantify the absorption and refraction contributions to x-ray images, methods based on microperiodic optics, such as shearing interferometry, can be used. To enable applying such methods with the energetic x rays needed for ICF radiography, we investigate a new type of optics consisting of grazing incidence microperiodic mirrors. Using such mirrors, efficient phase-contrast imaging systems could be built for energies up to ∼100 keV. In addition, a simple lithographic method is proposed for the production of the microperiodic x-ray mirrors based on the difference in the total reflection between a low-Z substrate and a high-Z film. Prototype mirrors fabricated with this method show promising characteristics in laboratory tests.
Development of X-ray CCD camera based X-ray micro-CT system
NASA Astrophysics Data System (ADS)
Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.
2017-02-01
Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.
X-ray reflection from cold white dwarfs in magnetic cataclysmic variables
NASA Astrophysics Data System (ADS)
Hayashi, Takayuki; Kitaguchi, Takao; Ishida, Manabu
2018-02-01
We model X-ray reflection from white dwarfs (WDs) in magnetic cataclysmic variables (mCVs) using a Monte Carlo simulation. A point source with a power-law spectrum or a realistic post-shock accretion column (PSAC) source irradiates a cool and spherical WD. The PSAC source emits thermal spectra of various temperatures stratified along the column according to the PSAC model. In the point-source simulation, we confirm the following: a source harder and nearer to the WD enhances the reflection; higher iron abundance enhances the equivalent widths (EWs) of fluorescent iron Kα1, 2 lines and their Compton shoulder, and increases the cut-off energy of a Compton hump; significant reflection appears from an area that is more than 90° apart from the position right under the point X-ray source because of the WD curvature. The PSAC simulation reveals the following: a more massive WD basically enhances the intensities of the fluorescent iron Kα1, 2 lines and the Compton hump, except for some specific accretion rate, because the more massive WD makes a hotter PSAC from which higher-energy X-rays are preferentially emitted; a larger specific accretion rate monotonically enhances the reflection because it makes a hotter and shorter PSAC; the intrinsic thermal component hardens by occultation of the cool base of the PSAC by the WD. We quantitatively estimate the influences of the parameters on the EWs and the Compton hump with both types of source. We also calculate X-ray modulation profiles brought about by the WD spin. These depend on the angles of the spin axis from the line of sight and from the PSAC, and on whether the two PSACs can be seen. The reflection spectral model and the modulation model involve the fluorescent lines and the Compton hump and can directly be compared to the data, which allows us to estimate these geometrical parameters with unprecedented accuracy.
NASA Technical Reports Server (NTRS)
Langer, S. H.; Petrosian, V.
1977-01-01
The paper presents the spectrum, directivity, and state of polarization of the bremsstrahlung radiation expected from a beam of high-energy electrons spiraling along radial magnetic field lines toward the photosphere. A Monte Carlo method is then described for evaluation of the spectrum, directivity, and polarization of X-rays diffusely reflected from stellar photospheres. The accuracy of the technique is evaluated through comparison with analytic results. The calculated characteristics of the incident X-rays are used to evaluate the spectrum, directivity, and polarization of the reflected and total X-ray fluxes. The results are compared with observations.
Hard X-ray mirrors for Nuclear Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Descalle, M. A.; Brejnholt, N.; Hill, R.
Research performed under this LDRD aimed to demonstrate the ability to detect and measure hard X-ray emissions using multilayer X-ray reflective optics above 400 keV, to enable the development of inexpensive and high-accuracy mirror substrates, and to investigate applications of hard X-ray mirrors of interest to the nuclear security community. Experiments conducted at the European Synchrotron Radiation Facility demonstrated hard X-ray mirror reflectivity up to 650 keV for the first time. Hard X-ray optics substrates must have surface roughness under 3 to 4 Angstrom rms, and three materials were evaluated as potential substrates: polycarbonates, thin Schott glass and a newmore » type of flexible glass called Willow Glass®. Chemical smoothing and thermal heating of the surface of polycarbonate samples, which are inexpensive but have poor intrinsic surface characteristics, did not yield acceptable surface roughness. D263 Schott glass was used for the focusing optics of the NASA NuSTAR telescope. The required specialized hardware and process were costly and motivated experiments with a modified non-contact slumping technique. The surface roughness of the glass was preserved and the process yielded cylindrical shells with good net shape pointing to the potential advantage of this technique. Finally, measured surface roughness of 200 and 130 μm thick Willow Glass sheets was between 2 and 2.5 A rms. Additional results of flexibility tests and multilayer deposition campaigns indicated it is a promising substrate for hard X-ray optics. The detection of U and Pu characteristics X-ray lines and gamma emission lines in a high background environment was identified as an area for which X-ray mirrors could have an impact and where focusing optics could help reduce signal to noise ratio by focusing signal onto a smaller detector. Hence the first one twelvetant of a Wolter I focusing optics for the 90 to 140 keV energy range based on aperiodic multilayer coating was designed. Finally, we conducted the first demonstration that reflective multilayer mirrors could be used as diagnostic for HED experiment with an order of magnitude improvement in signal-to-noise ratio for the multilayer optic compared a transmission crystal spectrometer.« less
Kugland, Nathan; Doeppner, Tilo; Glenzer, Siegfried; Constantin, Carmen; Niemann, Chris; Neumayer, Paul
2015-04-07
A method is provided for characterizing spectrometric properties (e.g., peak reflectivity, reflection curve width, and Bragg angle offset) of the K.alpha. emission line reflected narrowly off angle of the direct reflection of a bent crystal and in particular of a spherically bent quartz 200 crystal by analyzing the off-angle x-ray emission from a stronger emission line reflected at angles far from normal incidence. The bent quartz crystal can therefore accurately image argon K.alpha. x-rays at near-normal incidence (Bragg angle of approximately 81 degrees). The method is useful for in-situ calibration of instruments employing the crystal as a grating by first operating the crystal as a high throughput focusing monochromator on the Rowland circle at angles far from normal incidence (Bragg angle approximately 68 degrees) to make a reflection curve with the He-like x-rays such as the He-.alpha. emission line observed from a laser-excited plasma.
X-ray Reverberation Mapping of Ci Cam
NASA Astrophysics Data System (ADS)
Bartlett, Elizabeth; Garcia, M.
2009-01-01
We have analyzed the X-ray lightcurve of the star CI Cam, the optical counterpart of the X-ray transient XTE J0421+56 using data from XMM-Newton. Our motivation is based on evidence from ground based optical interferometry from the Keck and IOTA observatories which suggests that the dust surrounding CI CAM has a taurus morphology rather than a spherical distribution as previously hypothesized. By using a technique known as reverberation mapping we have constrained the time delay between the continuum of CI Cam and the Fe-K fluorescence line, corresponding to the reflection of the continuum off the dusty taurus. The time delay yields information on the size of the taurus.
NASA Astrophysics Data System (ADS)
Sinha, Mangalika; Modi, Mohammed H.
2017-10-01
In-depth compositional analysis of 240 Å thick aluminium oxide thin film has been carried out using soft x-ray reflectivity (SXR) and x-ray photoelectron spectroscopy technique (XPS). The compositional details of the film is estimated by modelling the optical index profile obtained from the SXR measurements over 60-200 Å wavelength region. The SXR measurements are carried out at Indus-1 reflectivity beamline. The method suggests that the principal film region is comprised of Al2O3 and AlOx (x = 1.6) phases whereas the interface region comprised of SiO2 and AlOx (x = 1.6) mixture. The soft x-ray reflectivity technique combined with XPS measurements explains the compositional details of principal layer. Since the interface region cannot be analyzed with the XPS technique in a non-destructive manner in such a case the SXR technique is a powerful tool for nondestructive compositional analysis of interface region.
Surface studies of solids using integral x-ray-induced photoemission yield
Stoupin, Stanislav; Zhernenkov, Mikhail; Shi, Bing
2016-11-22
X-ray induced photoemission yield contains structural information complementary to that provided by X-ray Fresnel reflectivity, which presents an advantage to a wide variety of surface studies if this information is made easily accessible. Photoemission in materials research is commonly acknowledged as a method with a probing depth limited by the escape depth of the photoelectrons. Here we show that the integral hard-X-ray-induced photoemission yield is modulated by the Fresnel reflectivity of a multilayer structure and carries structural information that extends well beyond the photoelectron escape depth. A simple electric self-detection of the integral photoemission yield and Fourier data analysis permitmore » extraction of thicknesses of individual layers. The approach does not require detection of the reflected radiation and can be considered as a framework for non-invasive evaluation of buried layers with hard X-rays under grazing incidence.« less
Surface studies of solids using integral X-ray-induced photoemission yield
Stoupin, Stanislav; Zhernenkov, Mikhail; Shi, Bing
2016-01-01
X-ray induced photoemission yield contains structural information complementary to that provided by X-ray Fresnel reflectivity, which presents an advantage to a wide variety of surface studies if this information is made easily accessible. Photoemission in materials research is commonly acknowledged as a method with a probing depth limited by the escape depth of the photoelectrons. Here we show that the integral hard-X-ray-induced photoemission yield is modulated by the Fresnel reflectivity of a multilayer structure and carries structural information that extends well beyond the photoelectron escape depth. A simple electric self-detection of the integral photoemission yield and Fourier data analysis permit extraction of thicknesses of individual layers. The approach does not require detection of the reflected radiation and can be considered as a framework for non-invasive evaluation of buried layers with hard X-rays under grazing incidence. PMID:27874041
ACCRETION DISK SIGNATURES IN TYPE I X-RAY BURSTS: PROSPECTS FOR FUTURE MISSIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keek, L.; Wolf, Z.; Ballantyne, D. R., E-mail: laurens.keek@nasa.gov
2016-07-20
Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst–disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi , Neutron Star Interior Composition Explorer ( NICER ), Athena , and Large Observatory For X-ray Timing ( LOFT ). Burstmore » spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi -like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10{sup 7.5} erg cm{sup 2} s{sup 1} and also effectively constrain the reflection parameters for bright bursts with fluxes of ∼10{sup 7} erg cm{sup 2} s{sup 1} in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.« less
Matsushita, Tadashi; Arakawa, Etsuo; Voegeli, Wolfgang; Yano, Yohko F.
2013-01-01
An X-ray reflectometer has been developed, which can simultaneously measure the whole specular X-ray reflectivity curve with no need for rotation of the sample, detector or monochromator crystal during the measurement. A bent-twisted crystal polychromator is used to realise a convergent X-ray beam which has continuously varying energy E (wavelength λ) and glancing angle α to the sample surface as a function of horizontal direction. This convergent beam is reflected in the vertical direction by the sample placed horizontally at the focus and then diverges horizontally and vertically. The normalized intensity distribution of the reflected beam measured downstream of the specimen with a two-dimensional pixel array detector (PILATUS 100K) represents the reflectivity curve. Specular X-ray reflectivity curves were measured from a commercially available silicon (100) wafer, a thin gold film coated on a silicon single-crystal substrate and the surface of liquid ethylene glycol with data collection times of 0.01 to 1000 s using synchrotron radiation from a bending-magnet source of a 6.5 GeV electron storage ring. A typical value of the simultaneously covered range of the momentum transfer was 0.01–0.45 Å−1 for the silicon wafer sample. The potential of this reflectometer for time-resolved X-ray studies of irreversible structural changes is discussed. PMID:23254659
NASA Technical Reports Server (NTRS)
Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)
2010-01-01
An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.
Emoto, T; Akimoto, K; Ichimiya, A
1998-05-01
A new X-ray diffraction technique has been developed in order to measure the strain field near a solid surface under ultrahigh vacuum (UHV) conditions. The X-ray optics use an extremely asymmetric Bragg-case bulk reflection. The glancing angle of the X-rays can be set near the critical angle of total reflection by tuning the X-ray energy. Using this technique, rocking curves for Si surfaces with different surface structures, i.e. a native oxide surface, a slightly oxide surface and an Si(111) 7 x 7 surface, were measured. It was found that the widths of the rocking curves depend on the surface structures. This technique is efficient in distinguishing the strain field corresponding to each surface structure.
NASA Astrophysics Data System (ADS)
Spears, Brian K.; Munro, David H.; Sepke, Scott; Caggiano, Joseph; Clark, Daniel; Hatarik, Robert; Kritcher, Andrea; Sayre, Daniel; Yeamans, Charles; Knauer, James; Hilsabeck, Terry; Kilkenny, Joe
2015-05-01
We simulate in 3D both the hydrodynamics and, simultaneously, the X-ray and neutron diagnostic signatures of National Ignition Facility (NIF) implosions. We apply asymmetric radiation drive to study the impact of low mode asymmetry on diagnostic observables. We examine X-ray and neutron images as well as neutron spectra for these perturbed implosions. The X-ray images show hot spot evolution on small length scales and short time scales, reflecting the incomplete stagnation seen in the simulation. The neutron images show surprising differences from the X-ray images. The neutron spectra provide additional measures of implosion asymmetry. Flow in the hot spot alters the neutron spectral peak, namely, the peak location and width. The changes in the width lead to a variation in the apparent temperature with viewing angle that signals underlying hot spot asymmetry. We compare our new expectations based on the simulated data with NIF data. We find that some recent cryogenic layered experiments show appreciable temperature anisotropy indicating residual flow in the hot spot. We also find some trends in the data that do not reflect our simulation and theoretical understanding.
Study of lobster eye optics with iridium coated x-ray mirrors for a rocket experiment
NASA Astrophysics Data System (ADS)
Stehlikova, Veronika; Urban, Martin; Nentvich, Ondrej; Inneman, Adolf; Döhring, Thorsten; Probst, Anne-Catherine
2017-05-01
In the field of astronomical X-ray telescopes, different types of optics based on grazing incidence mirrors can be used. This contribution describes the special design of a lobster-eye optics in Schmidt's arrangement, which uses dual reflection to increase the collecting area. The individual mirrors of this wide-field telescope are made of at silicon wafers coated with reflecting iridium layers. This iridium coatings have some advantages compared to more common gold layers as is shown in corresponding simulations. The iridium coating process for the X-ray mirrors was developed within a cooperation of the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague. Different mirror parameters essential for a proper function of the X-ray optics, like the surface microroughness and the problematic of a good adhesion quality of the coatings were studied. After integration of the individual mirrors into the final lobster-eye optics and the corresponding space qualification testing it is planned to fly the telescope in a recently proposed NASA rocket experiment.
NASA Astrophysics Data System (ADS)
Maser, Jörg; Shi, Xianbo; Reininger, Ruben; Lai, Barry; Vogt, Stefan
2016-12-01
Next-generation hard X-ray nanoprobe beamlines such as the In Situ Nanoprobe (ISN) beamline being planned at the Advanced Photon Source aim at providing very high spatial resolution while also enabling very high focused flux, to study complex materials and devices using fast, multidimensional imaging across many length scales. The ISN will use diffractive optics to focus X-rays with a bandpass of Δ E/ E = 10-4 into a focal spot of 20 nm or below. Reflective optics in Kirkpatrick-Baez geometry will be used to focus X-rays with a bandpass as large as Δ E/ E = 10-2 into a focal spot of 50 nm. Diffraction-limited focusing with reflective optics is achieved by spatial filtering and use of a very long, vertically focusing mirror. To quantify the performance of the ISN beamline, we have simulated the propagation of both partially and fully coherent wavefronts from the undulator source, through the ISN beamline and into the mirror-based focal spot. Simulations were carried out using the recently developed software " HYBRID."
Kern, Jan; Hattne, Johan; Tran, Rosalie; Alonso-Mori, Roberto; Laksmono, Hartawan; Gul, Sheraz; Sierra, Raymond G.; Rehanek, Jens; Erko, Alexei; Mitzner, Rolf; Wernet, Phillip; Bergmann, Uwe; Sauter, Nicholas K.; Yachandra, Vittal; Yano, Junko
2014-01-01
X-ray free-electron lasers (XFELs) open up new possibilities for X-ray crystallographic and spectroscopic studies of radiation-sensitive biological samples under close to physiological conditions. To facilitate these new X-ray sources, tailored experimental methods and data-processing protocols have to be developed. The highly radiation-sensitive photosystem II (PSII) protein complex is a prime target for XFEL experiments aiming to study the mechanism of light-induced water oxidation taking place at a Mn cluster in this complex. We developed a set of tools for the study of PSII at XFELs, including a new liquid jet based on electrofocusing, an energy dispersive von Hamos X-ray emission spectrometer for the hard X-ray range and a high-throughput soft X-ray spectrometer based on a reflection zone plate. While our immediate focus is on PSII, the methods we describe here are applicable to a wide range of metalloenzymes. These experimental developments were complemented by a new software suite, cctbx.xfel. This software suite allows for near-real-time monitoring of the experimental parameters and detector signals and the detailed analysis of the diffraction and spectroscopy data collected by us at the Linac Coherent Light Source, taking into account the specific characteristics of data measured at an XFEL. PMID:24914169
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingerle, D.; Schiebl, M.; Streli, C.
2014-08-15
As Grazing Incidence X-ray Fluorescence (GIXRF) analysis does not provide unambiguous results for the characterization of nanometre layers as well as nanometre depth profiles of implants in silicon wafers by its own, the approach of providing additional information using the signal from X-ray Reflectivity (XRR) was tested. As GIXRF already uses an X-ray beam impinging under grazing incidence and the variation of the angle of incidence, a GIXRF spectrometer was adapted with an XRR unit to obtain data from the angle dependent fluorescence radiation as well as data from the reflected beam. A θ-2θ goniometer was simulated by combining amore » translation and tilt movement of a Silicon Drift detector, which allows detecting the reflected beam over 5 orders of magnitude. HfO{sub 2} layers as well as As implants in Silicon wafers in the nanometre range were characterized using this new setup. A just recently published combined evaluation approach was used for data evaluation.« less
Wolter Optics for Neutron Focusing
NASA Technical Reports Server (NTRS)
Mildner, D. F. R.; Gubarev, M. V.
2010-01-01
Focusing optics based on Wolter optical geometries developed for x-ray grazing incidence beams can be designed for neutron beams. Wolter optics are formed by grazing incidence reflections from two concentric conic sections (for example, a paraboloid and a hyperboloid). This has transformed observational X-ray astronomy by increasing the sensitivity by many orders of magnitude for research in astrophysics and cosmology. To increase the collection area, many reflecting mirrors of different diameters are nested with a common focal plane. These mirrors are fabricated using nickel-electroformed replication techniques. We apply these ideas to neutron focusing using nickel mirrors. We show an initial test of a conical mirror using a beam of cold neutrons. key words: electroformed nickel replication, focusing optics, grazing angle incidence, mirror reflection, neutron focusing, Wolter optics
Development of microchannel plate x-ray optics
NASA Technical Reports Server (NTRS)
Kaaret, Philip
1995-01-01
The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with size on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. We have succeeded in producing silicon lenses with a geometry suitable for a 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for testing the optics. Most recently, we have done several experiments to find the fundamental limits that the anisotropic etch process placed on the etched surface roughness.
Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.
2015-02-15
We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a{sub 0} ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jetmore » exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10{sup −12}) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.« less
X-ray standing wave analysis of nanostructures using partially coherent radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, M. K., E-mail: mktiwari@rrcat.gov.in; Das, Gangadhar; Bedzyk, M. J.
2015-09-07
The effect of longitudinal (or temporal) coherence on total reflection assisted x-ray standing wave (TR-XSW) analysis of nanoscale materials is quantitatively demonstrated by showing how the XSW fringe visibility can be strongly damped by decreasing the spectral resolution of the incident x-ray beam. The correction for nonzero wavelength dispersion (δλ ≠ 0) of the incident x-ray wave field is accounted for in the model computations of TR-XSW assisted angle dependent fluorescence yields of the nanostructure coatings on x-ray mirror surfaces. Given examples include 90 nm diameter Au nanospheres deposited on a Si(100) surface and a 3 nm thick Zn layer trapped on top amore » 100 nm Langmuir-Blodgett film coating on a Au mirror surface. Present method opens up important applications, such as enabling XSW studies of large dimensioned nanostructures using conventional laboratory based partially coherent x-ray sources.« less
Optics for coherent X-ray applications.
Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya
2014-09-01
Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.
Development of Multilayer Coatings for Hard X-Ray Optics at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Gurgew, Danielle N.; Broadway, David M.; Ramsey, Brian; Gregory, Don
2017-01-01
Broadband X-ray multilayer coatings are under development at NASA MSFC for use on future astronomical X-ray telescopes. Multilayer coatings deposited onto the reflecting surfaces of X-ray optics can provide a large bandpass enabling observations of higher energy astrophysical objects and phenomena.
Ray-trace analysis of glancing-incidence X-ray optical systems
NASA Technical Reports Server (NTRS)
Foreman, J. W., Jr.; Cardone, J. M.
1976-01-01
The results of a ray-trace analysis of several glancing-incidence X-ray optical systems are presented. The object of the study was threefold. First, the vignetting characteristics of the S-056 X-ray telescope were calculated using experimental data to determine mirror reflectivities. Second, a small Wolter Type I X-ray telescope intended for possible use in the Geostationary Operational Environmental Satellite program was designed and ray traced. Finally, a ray-trace program was developed for a Wolter-Schwarzschild X-ray telescope.
The ASTRO-H SXT Performance to the Large Off-Set Angles
NASA Technical Reports Server (NTRS)
Sato, Toshiki; Iizuka, Ryo; Mori, Hideyuki; Hayashi, Takayuki; Maeda, Yoshitomo; Ishida, Manabu; Kikuchi, Naomichi; Kurashima, Sho; Nakaniwa, Nozomi; Okajima, Takashi;
2016-01-01
The X-ray astronomy satellite ASTRO-H, which is the 6th Japanese X-ray astronomy satellite and is renamed Hitomi after launch, is designed to observe celestial X-ray objects in a wide energy band from a few hundred eV to 600 keV. The Soft X-ray Telescopes (SXTs) onboard ASTRO-H play a role of collecting and imaging X-rays up to approximately 12 keV. Although the field of view of the SXT is approximately 15' (FWHM), due to the thin-foil-nested Wolter-I type optics adopted in the SXTs, X-rays out of the field of view can reach the focal plane without experiencing a normal double reflection. This component is referred to as 'stray light'. Owing to investigation of the stray light so far, 'secondary reflection' is now identified as the main component of the stray light, which is composed of X-rays reflected only by secondary reflectors. In order to cut the secondary reflections, a 'pre-collimator' is equipped on top of the SXTs. However, we cannot cut all the stray lights with the pre-collimator in some off-axis angle domain. In this study, we measure the brightness of the stray light of the SXTs at some representative off-axis angles by using the ISAS X-ray beam line. ASTRO-H is equipped with two modules of the SXT; one is for the Soft X-ray Spectrometer (SXS), an X-ray calorimeter, and the other is for the Soft X-ray Imager (SXI), an X-ray CCD camera. These SXT modules are called SXT-S and SXT-I, respectively. Of the two detector systems, the SXI has a large field of view, a square with 38' on a side. To cope with this, we have made a mosaic mapping of the stray light at a representative off-axis angle of 30' in the X-ray beam line at the Institute of Space and Astronautical Science. The effective area of the brightest secondary reflection is found of order approximately 0.1% of the on-axis effective area at the energy of 1.49 keV. The other components are not so bright (less than 5 x 10(exp -4) times smaller than the on-axis effective area). On the other hand, we have found that the effective area of the stray light in the SXS field of view (approximately 3' x 3') at large off-axis angles (greater than 15') are approximately 1(exp -4) times smaller than the on-axis effective area (approximately 590 sq cm at 1.49 keV).
Cr/B 4C multilayer mirrors: Study of interfaces and X-ray reflectance
Burcklen, C.; Soufli, R.; Gullikson, E.; ...
2016-03-24
Here, we present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B 4C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B 4C-on-Cr interface, which we modeled with a 1–1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L 2,3 absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulatedmore » refractive index (optical constants) values for Cr.« less
Mei, A. B.; Hellman, O.; Schlepuetz, C. M.; ...
2015-11-03
Synchrotron reflection x-ray thermal diffuse scattering (TDS) measurements, rather than previously reported transmission TDS, are carried out at room temperature and analyzed using a formalism based upon second-order interatomic force constants and long-range Coulomb interactions to obtain quantitative determinations of MgO phonon dispersion relations (h) over bar omega(j) (q), phonon densities of states g((h) over bar omega), and isochoric temperature-dependent vibrational heat capacities c v (T). We use MgO as a model system for investigating reflection TDS due to its harmonic behavior as well as its mechanical and dynamic stability. Resulting phonon dispersion relations and densities of states are foundmore » to be in good agreement with independent reports from inelastic neutron and x-ray scattering experiments. Temperature-dependent isochoric heat capacities c v (T), computed within the harmonic approximation from (h) over bar omega(j) (q) values, increase with temperature from 0.4 x 10 -4 eV/atom K at 100 K to 1.4 x 10 -4 eV/atom K at 200 K and 1.9 x 10 -4 eV/atom K at 300 K, in excellent agreement with isobaric heat capacity values c p (T) between 4 and 300 K. We anticipate that the experimental approach developed here will be valuable for determining vibrational properties of heteroepitaxial thin films since the use of grazing-incidence (θ ≲ θ c where θ c is the density-dependent critical angle) allows selective tuning of x-ray penetration depths to ≲ 10 nm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying, E-mail: liu.ying.48r@st.kyoto-u.ac.jp; Imashuku, Susumu; Sasaki, Nobuharu
In this study, a portable total reflection x-ray fluorescence (TXRF) spectrometer was used to analyze unknown laboratory hazards that precipitated on exterior surfaces of cooling pipes and fume hood pipes in chemical laboratories. With the aim to examine the accuracy of TXRF analysis for the determination of elemental composition, analytical results were compared with those of wavelength-dispersive x-ray fluorescence spectrometry, scanning electron microscope and energy-dispersive x-ray spectrometry, energy-dispersive x-ray fluorescence spectrometry, inductively coupled plasma atomic emission spectrometry, x-ray diffraction spectrometry (XRD), and x-ray photoelectron spectroscopy (XPS). Detailed comparison of data confirmed that the TXRF method itself was not sufficient tomore » determine all the elements (Z > 11) contained in the samples. In addition, results suggest that XRD should be combined with XPS in order to accurately determine compound composition. This study demonstrates that at least two analytical methods should be used in order to analyze the composition of unknown real samples.« less
Silicon pore optics development for ATHENA
NASA Astrophysics Data System (ADS)
Collon, Maximilien J.; Vacanti, Giuseppe; Günther, Ramses; Yanson, Alex; Barrière, Nicolas; Landgraf, Boris; Vervest, Mark; Chatbi, Abdelhakim; Beijersbergen, Marco W.; Bavdaz, Marcos; Wille, Eric; Haneveld, Jeroen; Koelewijn, Arenda; Leenstra, Anne; Wijnperle, Maurice; van Baren, Coen; Müller, Peter; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Conconi, Paolo; Christensen, Finn E.
2015-09-01
The ATHENA mission, a European large (L) class X-ray observatory to be launched in 2028, will essentially consist of an X-ray lens and two focal plane instruments. The lens, based on a Wolter-I type double reflection grazing incidence angle design, will be very large (~ 3 m in diameter) to meet the science requirements of large effective area (1-2 m2 at a few keV) at a focal length of 12 m. To meet the high angular resolution (5 arc seconds) requirement the X-ray lens will also need to be very accurate. Silicon Pore Optics (SPO) technology has been invented to enable building such a lens and thus enabling the ATHENA mission. We will report in this paper on the latest status of the development, including details of X-ray test campaigns.
High-resolution interference-monochromator for hard X-rays.
Tsai, Yi-Wei; Chang, Ying-Yi; Wu, Yu-Hsin; Lee, Kun-Yuan; Liu, Shih-Lun; Chang, Shih-Lin
2016-12-26
An X-ray interference-monochromator combining a Fabry-Perot resonator (FPR) and a double-crystal monochromator (DCM) is proposed and realized for obtaining single-mode X-rays with 3.45 meV energy resolution. The monochromator is based on the generation of cavity interference fringes from a FPR and single-mode selection of the transmission spectrum by a DCM of a nearly backward symmetric reflection geometry. The energy of the monochromator can be tuned within 2500 meV(= ΔE) by temperature control of the FPR and the DCM crystals in the range of ΔT = 70 K at room temperature. The diffraction geometry and small size of the optical components used make the interference-monochromator very easy to be adapted in modern synchrotron beamlines and X-ray optics applications.
Focusing hard x rays beyond the critical angle of total reflection by adiabatically focusing lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patommel, Jens; Klare, Susanne; Hoppe, Robert
In response to the conjecture that the numerical aperture of x-ray optics is fundamentally limited by the critical angle of total reflection, the concept of adiabatically focusing refractive lenses was proposed to overcome this limit. Here, we present an experimental realization of these optics made of silicon and demonstrate that they indeed focus 20 keV x rays to a 18.4 nm focus with a numerical aperture of 1.73(9) × 10 –3 that clearly exceeds the critical angle of total reflection of 1.55 mrad.
Focusing hard x rays beyond the critical angle of total reflection by adiabatically focusing lenses
Patommel, Jens; Klare, Susanne; Hoppe, Robert; ...
2017-03-06
In response to the conjecture that the numerical aperture of x-ray optics is fundamentally limited by the critical angle of total reflection, the concept of adiabatically focusing refractive lenses was proposed to overcome this limit. Here, we present an experimental realization of these optics made of silicon and demonstrate that they indeed focus 20 keV x rays to a 18.4 nm focus with a numerical aperture of 1.73(9) × 10 –3 that clearly exceeds the critical angle of total reflection of 1.55 mrad.
X-ray Reflectivity Characterization of Ion Distribution at Biomimetic Membrane Surfaces
NASA Astrophysics Data System (ADS)
Krüger, Peter; Pittler, Jens; Vaknin, David; Lösche, Mathias
2003-03-01
Ions at cell membrane surfaces may control the function and conformation of nearby biomolecules, thus playing an important role in inter- and intracellular transport as well as in biorecognition processes. Moreover, charge patterns at membrane surfaces may direct the growth of inorganic crystals in biomineralization. Langmuir monolayers are widely employed as model systems for studying charge distribution and growth processes at the organic/inorganic interface. We present a novel x-ray reflectivity technique that provides detailed information on ion distribution at biomembrane surfaces by using monochromatic x-rays at various energies at and away from the ion x-ray absorption edges. As a model, the interaction of Ba^2+ with DMPA^- (dimyristoyl phosphatidic acid) monolayers at the aqueous surface was studied. We find an unexpectedly large concentration of the cations near the interface where they form a Stern layer of bound ions. These studies have been complemented with conventional x-ray reflectivity measurements and extended to other anionic lipid species (DMPS, DMPG) and cations (Ca^2+).
Refractive optics to compensate x-ray mirror shape-errors
NASA Astrophysics Data System (ADS)
Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal; Pape, Ian
2017-08-01
Elliptically profiled mirrors operating at glancing angle are frequently used at X-ray synchrotron sources to focus X-rays into sub-micrometer sized spots. Mirror figure error, defined as the height difference function between the actual mirror surface and the ideal elliptical profile, causes a perturbation of the X-ray wavefront for X- rays reflecting from the mirror. This perturbation, when propagated to the focal plane results in an increase in the size of the focused beam. At Diamond Light Source we are developing refractive optics that can be used to locally cancel out the wavefront distortion caused by figure error from nano-focusing elliptical mirrors. These optics could be used to correct existing optical components on synchrotron radiation beamlines in order to give focused X-ray beam sizes approaching the theoretical diffraction limit. We present our latest results showing measurement of the X-ray wavefront error after reflection from X-ray mirrors and the translation of the measured wavefront into a design for refractive optical elements for correction of the X-ray wavefront. We show measurement of the focused beam with and without the corrective optics inserted showing reduction in the size of the focus resulting from the correction to the wavefront.
NASA Astrophysics Data System (ADS)
Urry, C. Megan
1997-01-01
This grant was awarded to Dr. C. Megan Urry of the Space Telescope Science Institute in response to two successful ADP proposals to use archival Ginga and Rosat X-ray data for 'Testing the Pairs-Reflection model with X-Ray Spectral Variability' (in collaboration with Paola Grandi, now at the University of Rome) and 'X-Ray Properties of Complete Samples of Radio-Selected BL Lacertae Objects' (in collaboration with then-graduate student Rita Sambruna, now a post-doc at Goddard Space Flight Center). In addition, post-docs Joseph Pesce and Elena Pian, and graduate student Matthew O'Dowd, have worked on several aspects of these projects. The grant was originally awarded on 3/01/94; this report covers the full period, through May 1997. We have completed our project on the X-ray properties of radio-selected BL Lacs.
Sharp chemical interface in epitaxial Fe{sub 3}O{sub 4} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gálvez, S.; Rubio-Zuazo, J., E-mail: rubio@esrf.fr; Salas-Colera, E.
Chemically sharp interface was obtained on single phase single oriented Fe{sub 3}O{sub 4} (001) thin film (7 nm) grown on NiO (001) substrate using oxygen assisted molecular beam epitaxy. Refinement of the atomic structure, stoichiometry, and oxygen vacancies were determined by soft and hard x-ray photoelectron spectroscopy, low energy electron diffraction and synchrotron based X-ray reflectivity, and X-ray diffraction. Our results demonstrate an epitaxial growth of the magnetite layer, perfect iron stoichiometry, absence of oxygen vacancies, and the existence of an intermixing free interface. Consistent magnetic and electrical characterizations are also shown.
First experience with x-ray dark-field radiography for human chest imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Noel, Peter B.; Willer, Konstantin; Fingerle, Alexander A.; Gromann, Lukas B.; De Marco, Fabio; Scherer, Kai H.; Herzen, Julia; Achterhold, Klaus; Gleich, Bernhard; Münzel, Daniela; Renz, Martin; Renger, Bernhard C.; Fischer, Florian; Braun, Christian; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian F.; Schröter, Tobias; Mohr, Jürgen; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Proksa, Roland; Köhler, Thomas; Wieberneit, Nataly; Rindt, Karsten; Rummeny, Ernst J.; Pfeiffer, Franz
2017-03-01
Purpose: To evaluate the performance of an experimental X-ray dark-field radiography system for chest imaging in humans and to compare with conventional diagnostic imaging. Materials and Methods: The study was institutional review board (IRB) approved. A single human cadaver (52 years, female, height: 173 cm, weight: 84 kg, chest circumference: 97 cm) was imaged within 24 hours post mortem on the experimental x-ray dark-field system. In addition, the cadaver was imaged on a clinical CT system to obtain a reference scan. The grating-based dark-field radiography setup was equipped with a set of three gratings to enable grating-based dark-field contrast x-ray imaging. The prototype operates at an acceleration voltage of up to 70 kVp and with a field-of-view large enough for clinical chest x-ray (>35 x 35 cm2). Results: It was feasible to extract x-ray dark-field signal of the whole human thorax, clearly demonstrating that human x-ray dark-field chest radiography is feasible. Lung tissue produced strong scattering, reflected in a pronounced x-ray dark-field signal. The ribcage and the backbone are less prominent than the lung but are also distinguishable. Finally, the soft tissue is not present in the dark-field radiography. The regions of the lungs affected by edema, as verified by CT, showed less dark-field signal compared to healthy lung tissue. Conclusion: Our results reveal the current status of translating dark-field imaging from a micro (small animal) scale to a macro (patient) scale. The performance of the experimental x-ray dark-field radiography setup offers, for the first time, obtaining multi-contrast chest x-ray images (attenuation and dark-field signal) from a human cadaver.
The X-ray reflectivity of the AXAF VETA-I optics
NASA Technical Reports Server (NTRS)
Kellogg, E.; Chartas, G.; Graessle, D.; Hughes, J. P.; Van Speybroeck, L.; Zhao, Ping; Weisskopf, M. C.; Elsner, R. F.; O'Dell, S. L.
1993-01-01
The study measures the X-ray reflectivity of the AXAF VETA-I optic and compares it with theoretical predictions. Measurements made at energies of 0.28, 0.9, 1.5, 2.1, and 2.3 keV are compared with predictions based on ray trace calculations. Results on the variation of the reflectivity with energy as well as the absolute value of the reflectivity are presented. A synchrotron reflectivity measurement with a high-energy resolution over the range 0.26 to 1.8 keV on a flat Zerodur sample is also reported. Evidence is found for contamination of the flat by a thin layer of carbon on the surface, and the possibility of alteration of the surface composition of the VETA-I mirror, perhaps by the polishing technique. The overall agreement between the measured and calculated effective area of VETA-I is between 2.6 and 10 percent. Measurements at individual energies deviate from the best-fitting calculation to 0.3 to 0.8 percent, averaging 0.6 percent at energies below the high energy cutoff of the mirror reflectivity, and are as high as 20.7 percent at the cutoff.
Bragg x-ray optics for imaging spectroscopy of plasma microsources.
Pikuz, T A; Ya Faenov, A; Pikuz, S A; Romanova, V M; Shelkovenko, T A
1995-01-01
Bragg x-ray optics based on crystals with transmission and reflection properties bent on cylindrical or spherical surfaces are discussed. Applications of such optics for obtaining one- and two-dimensional monochromatic images of different plasma sources in the wide spectral range 1-20 Å are described. Samples of spectra obtained with spectral resolution of up to λ/Δλ ~ 10,000 and spatial resolution of up to 18 μm are presented.
Mesozoic clay diagenesis in the Appalachian Plateau
NASA Astrophysics Data System (ADS)
Boles, A.; Mulch, A.; van der Pluijm, B.
2017-12-01
Integrated investigation of authigenic clays in the Appalachian Plateau of the northeastern US Midcontinent using X-ray goniometry, Rietveld-method based illite polytype analysis, and 40Ar/39Ar geochronology yields novel insights about the structural diagenetic history of the North American sedimentary cover sequence. Texture analysis by High Resolution X-ray Texture Goniometry records the presence of a bedding-parallel diagenetic fabric, corresponding to a burial depth of 2-5 km. New development of polytype modeling using BGMN®, a quantitative X-ray powder diffraction forward modeling and whole-pattern matching program matches mineralic characteristic of illite at those depths and reduces uncertainty estimates in age analysis. Based on dating size fractions, the diagenetic age is constrained to 225-250 Ma (Triassic) by four authigenic illite samples, reflecting protracted, regional diagenesis in the area. Preliminary H isotopic analysis points to a surface-derived diagenetic fluid with δD values ranging from -48 to -72‰ (in the range of predicted Pangea meteoric fluid), with a dependence on proximity to the Appalachian Mountains that may reflect a rain shadow effect.
NASA Astrophysics Data System (ADS)
Streli, C.; Pepponi, G.; Wobrauschek, P.; Jokubonis, C.; Falkenberg, G.; Záray, G.; Broekaert, J.; Fittschen, U.; Peschel, B.
2006-11-01
At the Hamburger Synchrotronstrahlungslabor (HASYLAB), Beamline L, a vacuum chamber for synchrotron radiation-induced total reflection X-ray fluorescence analysis, is now available which can easily be installed using the adjustment components for microanalysis present at this beamline. The detector is now in the final version of a Vortex silicon drift detector with 50-mm 2 active area from Radiant Detector Technologies. With the Ni/C multilayer monochromator set to 17 keV extrapolated detection limits of 8 fg were obtained using the 50-mm 2 silicon drift detector with 1000 s live time on a sample containing 100 pg of Ni. Various applications are presented, especially of samples which are available in very small amounts: As synchrotron radiation-induced total reflection X-ray fluorescence analysis is much more sensitive than tube-excited total reflection X-ray fluorescence analysis, the sampling time of aerosol samples can be diminished, resulting in a more precise time resolution of atmospheric events. Aerosols, directly sampled on Si reflectors in an impactor were investigated. A further application was the determination of contamination elements in a slurry of high-purity Al 2O 3. No digestion is required; the sample is pipetted and dried before analysis. A comparison with laboratory total reflection X-ray fluorescence analysis showed the higher sensitivity of synchrotron radiation-induced total reflection X-ray fluorescence analysis, more contamination elements could be detected. Using the Si-111 crystal monochromator also available at beamline L, XANES measurements to determine the chemical state were performed. This is only possible with lower sensitivity as the flux transmitted by the crystal monochromator is about a factor of 100 lower than that transmitted by the multilayer monochromator. Preliminary results of X-ray absorption near-edge structure measurements for As in xylem sap from cucumber plants fed with As(III) and As(V) are reported. Detection limits of 170 ng/l of As in xylem sap were achieved.
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.; Parker, R. J.; Zaretsky, E. V.
1973-01-01
An empirical elastohydrodynamic film thickness formula for heavily loaded contacts based upon X-ray film thickness measurements made with a synthetic paraffinic oil is presented. The deduced relation was found to adequately reflect the high load dependence exhibited by the measured minimum film thickness data at high Hertizian contact stresses, that is, above 1.04 x 10 to the ninth N/sq m (150,000 psi). Comparisons were made with the numerical results from a theoretical isothermal film thickness formula. The effects of changes in contact geometry, material, and lubricant properties on the form of the empirical model are also discussed.
Quantitative X-ray Differential Interference Contrast Microscopy
NASA Astrophysics Data System (ADS)
Nakamura, Takashi
Full-field soft x-ray microscopes are widely used in many fields of sciences. Advances in nanofabrication technology enabled short wavelength focusing elements with significantly improved spatial resolution. In the soft x-ray spectral region, samples as small as 12 nm can be resolved using micro zone-plates as the objective lens. In addition to conventional x-ray microscopy in which x-ray absorption difference provides the image contrast, phase contrast mechanisms such as differential phase contrast (DIC) and Zernike phase contrast have also been demonstrated These phase contrast imaging mechanisms are especially attractive at the x-ray wavelengths where phase contrast of most materials is typically 10 times stronger than the absorption contrast. With recent progresses in plasma-based x- ray sources and increasing accessibility to synchrotron user facilities, x-ray microscopes are quickly becoming standard measurement equipment in the laboratory. To further the usefulness of x-ray DIC microscopy this thesis explicitly addresses three known issues with this imaging modality by introducing new techniques and devices First, as opposed to its visible-light counterpart, no quantitative phase imaging technique exists for x-ray DIC microscopy. To address this issue, two nanoscale x-ray quantitative phase imaging techniques, using exclusive OR (XOR) patterns and zone-plate doublets, respectively, are proposed. Unlike existing x-ray quantitative phase imaging techniques such as Talbot interferometry and ptychography, no dedicated experimental setups or stringent illumination coherence are needed for quantitative phase retrieval. Second, to the best of our knowledge, no quantitative performance characterization of DIC microscopy exists to date. Therefore the imaging system's response to sample's spatial frequency is not known In order to gain in-depth understanding of this imaging modality, performance of x-ray DIC microscopy is quantified using modulation transfer function. A new illumination apparatus required for the transfer function analysis under partially coherent illumination is also proposed. Such a characterization is essential for a proper selection of DIC optics for various transparent samples under study. Finally, optical elements used for x-ray DIC microscopy are highly absorptive and high brilliance x-ray sources such as synchrotrons are generally needed for image contrast. To extend the use of x-ray DIC microscopy to a wider variety of applications, a high efficiency large numerical aperture optical element consisting of high reflective Bragg reflectors is proposed. Using Bragg reflectors, which have 70% ˜99% reflectivity at extreme ultraviolet and soft x-rays for all angles of glancing incidence, the first order focusing efficiency is expected to increase by ˜ 8 times compared to that of a typical Fresnel zone-plate. This thesis contributes to current nanoscale x-ray phase contrast imaging research and provides new insights for biological, material, and magnetic sciences
X-ray Crystallography Facility
NASA Technical Reports Server (NTRS)
2000-01-01
Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gofron, K. J., E-mail: kgofron@bnl.gov; Cai, Y. Q.; Coburn, D. S.
A novel on-axis X-ray microscope with 3 µm resolution, 3x magnification, and a working distance of 600 mm for in-situ sample alignment and X-ray beam visualization for the Inelastic X-ray Scattering (IXS) beamline at NSLS-II is presented. The microscope uses reflective optics, which minimizes dispersion, and allows imaging from Ultraviolet (UV) to Infrared (IR) with specifically chosen objective components (coatings, etc.). Additionally, a portable high resolution X-ray microscope for KB mirror alignment and X-ray beam characterization was developed.
Halide Ions Effects on Surface Excess of Long Chain Ionic Liquids Water Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenjie; Sung, Woongmo; Ao, Mingqi
2013-10-07
The interfacial structure and composition of water solutions with alkylimidazolium ionic liquids varying in their halide anions ([C12mim][X], X = Cl and I) were investigated by X-ray near-total-reflection fluorescence spectroscopy and X-ray reflectivity measurements. We demonstrate that X-ray fluorescence and reflectivity techniques provide a more direct measurement of surface adsorption. Furthermore, we show that for [C12mim][Cl] and [C12mim][I] solutions with mixed inorganic salts (NaI, NaCl), I– ions replace Cl– above the critical micelle concentration (CMC) of [C12mim][Cl] at much lower concentrations of NaI, whereas NaCl concentrations a hundred times higher than the CMC of [C12mim][I] only partially replace the I–more » at the interface. Our surface-sensitive X-ray diffraction and spectroscopy provide two independent tools to directly determine the surface adsorption of ionic surfactants and the interfacial composition of the surface films.« less
Measured reflectance of graded multilayer mirrors designed for astronomical hard X-ray telescopes
NASA Astrophysics Data System (ADS)
Christensen, F. E.; Craig, W. W.; Windt, D. L.; Jimenez-Garate, M. A.; Hailey, C. J.; Harrison, F. A.; Mao, P. H.; Chakan, J. M.; Ziegler, E.; Honkimaki, V.
2000-09-01
Future astronomical X-ray telescopes, including the balloon-borne High-Energy Focusing Telescope (HEFT) and the Constellation-X Hard X-ray Telescope (Con-X HXT) plan to incorporate depth-graded multilayer coatings in order to extend sensitivity into the hard X-ray (10<~E<~80keV) band. In this paper, we present measurements of the reflectance in the 18-170 keV energy range of a cylindrical prototype nested optic taken at the European Synchrotron Radiation Facility (ESRF). The mirror segments, mounted in a single bounce stack, are coated with depth-graded W/Si multilayers optimized for broadband performance up to 69.5 keV (WK-edge). These designs are ideal for both the HEFT and Con-X HXT applications. We compare the measurements to model calculations to demonstrate that the reflectivity can be well described by the intended power law distribution of the bilayer thicknesses, and that the coatings are uniform at the 5% level over the mirror surface. Finally, we apply the measurements to predict effective areas achievable for HEFT and Con-X HXT using these W/Si designs.
Three mirror glancing incidence system for X-ray telescope
NASA Technical Reports Server (NTRS)
Hoover, R. B. (Inventor)
1974-01-01
A telescope suitable for soft X-ray astronomical observations consists of a paraboloid section for receiving rays at a grazing angle and a hyperboloid section which receives reflections from the paraboloid at a grazing angle and directs them to a predetermined point of focus. A second hyperboloid section is centrally located from the other two surfaces and positioned to reflect from its outer surface radiation which was not first reflected by the paraboloid. A shutter is included to assist in calibration.
NASA Astrophysics Data System (ADS)
Ingerle, D.; Pepponi, G.; Meirer, F.; Wobrauschek, P.; Streli, C.
2016-04-01
Grazing incidence XRF (GIXRF) is a very surface sensitive, nondestructive analytical tool making use of the phenomenon of total external reflection of X-rays on smooth polished surfaces. In recent years the method experienced a revival, being a powerful tool for process analysis and control in the fabrication of semiconductor based devices. Due to the downscaling of the process size for semiconductor devices, junction depths as well as layer thicknesses are reduced to a few nanometers, i.e. the length scale where GIXRF is highly sensitive. GIXRF measures the X-ray fluorescence induced by an X-ray beam incident under varying grazing angles and results in angle dependent intensity curves. These curves are correlated to the layer thickness, depth distribution and mass density of the elements in the sample. But the evaluation of these measurements is ambiguous with regard to the exact distribution function for the implants as well as for the thickness and density of nanometer-thin layers. In order to overcome this ambiguity, GIXRF can be combined with X-ray reflectometry (XRR). This is straightforward, as both techniques use similar measurement procedures and the same fundamental physical principles can be used for a combined data evaluation strategy. Such a combined analysis removes ambiguities in the determined physical properties of the studied sample and, being a correlative spectroscopic method, also significantly reduces experimental uncertainties of the individual techniques. In this paper we report our approach to a correlative data analysis, based on a concurrent calculation and fitting of simultaneously recorded GIXRF and XRR data. Based on this approach we developed JGIXA (Java Grazing Incidence X-ray Analysis), a multi-platform software package equipped with a user-friendly graphic user interface (GUI) and offering various optimization algorithms. Software and data evaluation approach were benchmarked by characterizing metal and metal oxide layers on Silicon as well as Arsenic implants in Silicon. The results of the different optimization algorithms have been compared to test the convergence of the algorithms. Finally, simulations for Iron nanoparticles on bulk Silicon and on a W/C multilayer are presented, using the assumption of an unaltered X-ray Standing Wave above the surface.
Webster, Christie Ann; Koprinarov, Ivaylo; Germann, Stephen; Rowlands, J A
2008-03-01
New x-ray radiographic systems based on large-area flat-panel technology have revolutionized our capability to produce digital x-ray images. However, these imagers are extraordinarily expensive compared to the systems they are replacing. Hence, there is a need for a low-cost digital imaging system for general applications in radiology. A novel potentially low-cost radiographic imaging system based on established technologies is proposed-the X-Ray Light Valve (XLV). This is a potentially high-quality digital x-ray detector made of a photoconducting layer and a liquid-crystal cell, physically coupled in a sandwich structure. Upon exposure to x rays, charge is collected on the surface of the photoconductor. This causes a change in the optical properties of the liquid-crystal cell and a visible image is generated. Subsequently, it is digitized by a scanned optical imager. The image formation is based on controlled modulation of light from an external source. The operation and practical implementation of the XLV system are described. The potential performance of the complete system and issues related to sensitivity, spatial resolution, noise, and speed are discussed. The feasibility of clinical use of an XLV device based on amorphous selenium (a-Se) as the photoconductor and a reflective electrically controlled birefringence cell is analyzed. The results of our analysis indicate that the XLV can potentially be adapted to a wide variety of radiographic tasks.
Maser, Jorg; Shi, Xianbo; Reininger, Ruben; ...
2016-02-22
Next-generation hard X-ray nanoprobe beamlines such as the In Situ Nanoprobe (ISN) beamline being planned at the Advanced Photon Source aim at providing very high spatial resolution while also enabling very high focused flux, to study complex materials and devices using fast, multidimensional imaging across many length scales. The ISN will use diffractive optics to focus X-rays with a bandpass of ΔE/E = 10 –4 into a focal spot of 20 nm or below. Reflective optics in Kirkpatrick-Baez geometry will be used to focus X-rays with a bandpass as large as ΔE/E = 10 –2 into a focal spot ofmore » 50 nm. Diffraction-limited focusing with reflective optics is achieved by spatial filtering and use of a very long, vertically focusing mirror. Furthermore, to quantify the performance of the ISN beamline, we have simulated the propagation of both partially and fully coherent wavefronts from the undulator source, through the ISN beamline and into the mirror-based focal spot. Simulations were carried out using the recently developed software “HYBRID.”« less
Wirkert, Florian J; Paulus, Michael; Nase, Julia; Möller, Johannes; Kujawski, Simon; Sternemann, Christian; Tolan, Metin
2014-01-01
A high-pressure cell for in situ X-ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set-up of this hydrostatic high-pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure-induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X-ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.
Measurements of the hard-x-ray reflectivity of iridium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romaine, S.; Bruni, R.; Gorenstein, P.
2007-01-10
In connection with the design of a hard-x-ray telescope for the Constellation X-Ray Observatory we measured the reflectivity of an iridium-coated zerodur substrate as a function of angle at 55, 60, 70, and 80 keV at the National Synchrotron Light Source of Brookhaven National Laboratory. The optical constants were derived from the reflectivity data. The real component of the index of refraction is in excellent agreement with theoretical values at all four energies. However, the imaginary component, which is related to the mass attenuation coefficient, is 50% to 70% larger at 55, 60, and 70 keV than theoretical values.
Measurements of the hard-x-ray reflectivity of iridium.
Romaine, S; Bruni, R; Gorenstein, P; Zhong, Z
2007-01-10
In connection with the design of a hard-x-ray telescope for the Constellation X-Ray Observatory we measured the reflectivity of an iridium-coated zerodur substrate as a function of angle at 55, 60, 70, and 80 keV at the National Synchrotron Light Source of Brookhaven National Laboratory. The optical constants were derived from the reflectivity data. The real component of the index of refraction is in excellent agreement with theoretical values at all four energies. However, the imaginary component, which is related to the mass attenuation coefficient, is 50% to 70% larger at 55, 60, and 70 keV than theoretical values.
A new streaked soft x-ray imager for the National Ignition Facility
Benstead, J.; Moore, A. S.; Ahmed, M. F.; ...
2016-05-27
Here, a new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters weremore » used to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.« less
Optics for coherent X-ray applications
Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya
2014-01-01
Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986
High-efficiency collector design for extreme-ultraviolet and x-ray applications.
Zocchi, Fabio E
2006-12-10
A design of a two-reflection mirror for nested grazing-incidence optics is proposed in which maximum overall reflectivity is achieved by making the two grazing-incidence angles equal for each ray. The design is proposed mainly for application to nonimaging collector optics for extreme-ultraviolet microlithography where the radiation emitted from a hot plasma source needs to be collected and focused on the illuminator optics. For completeness, the design of a double- reflection mirror with equal reflection angles is also briefly outlined for the case of an object at infinity for possible use in x-ray applications.
Karydas, Andreas Germanos; Czyzycki, Mateusz; Leani, Juan José; Migliori, Alessandro; Osan, Janos; Bogovac, Mladen; Wrobel, Pawel; Vakula, Nikita; Padilla-Alvarez, Roman; Menk, Ralf Hendrik; Gol, Maryam Ghahremani; Antonelli, Matias; Tiwari, Manoj K; Caliri, Claudia; Vogel-Mikuš, Katarina; Darby, Iain; Kaiser, Ralf Bernd
2018-01-01
The International Atomic Energy Agency (IAEA) jointly with the Elettra Sincrotrone Trieste (EST) operates a multipurpose X-ray spectrometry endstation at the X-ray Fluorescence beamline (10.1L). The facility has been available to external users since the beginning of 2015 through the peer-review process of EST. Using this collaboration framework, the IAEA supports and promotes synchrotron-radiation-based research and training activities for various research groups from the IAEA Member States, especially those who have limited previous experience and resources to access a synchrotron radiation facility. This paper aims to provide a broad overview about various analytical capabilities, intrinsic features and performance figures of the IAEA X-ray spectrometry endstation through the measured results. The IAEA-EST endstation works with monochromatic X-rays in the energy range 3.7-14 keV for the Elettra storage ring operating at 2.0 or 2.4 GeV electron energy. It offers a combination of different advanced analytical probes, e.g. X-ray reflectivity, X-ray absorption fine-structure measurements, grazing-incidence X-ray fluorescence measurements, using different excitation and detection geometries, and thereby supports a comprehensive characterization for different kinds of nanostructured and bulk materials.
The Ultracompact Nature of the Black Hole Candidate X-Ray Binary 47 Tuc X9
NASA Technical Reports Server (NTRS)
Bahramian, Arash; Heinke, Craig O.; Tudor, Vlad; Miller-Jones, James C. A.; Bogdanov, Slavko; Maccarone, Thomas J.; Knigge, Christian; Sivakoff, Gregory R.; Chomiuk, Laura; Strader, J.;
2017-01-01
47 Tuc X9 is a low-mass X-ray binary (LMXB) in the globular cluster 47 Tucanae, and was previously thought to be a cataclysmic variable. However, Miller-Jones et al. recently identified a radio counterpart to X9 (inferring a radio X-ray luminosity ratio consistent with black hole LMXBs), and suggested that the donor star might be a white dwarf. We report simultaneous observations of X9 performed by Chandra, NuSTAR and Australia Telescope Compact Array. We find a clear 28.18+/- 0.02-min periodic modulation in the Chandra data, which we identify as the orbital period, confirming this system as an ultracompact X-ray binary. Our X-ray spectral fitting provides evidence for photoionized gas having a high oxygen abundance in this system, which indicates a CO white dwarf donor. We also identify reflection features in the hard X-ray spectrum, making X9 the faintest LMXB to show X-ray reflection. We detect an approx. 6.8-d modulation in the X-ray brightness by a factor of 10, in archival Chandra, Swift and ROSAT data. The simultaneous radio X-ray flux ratio is consistent with either a black hole primary or a neutron star primary, if the neutron star is a transitional millisecond pulsar. Considering the measured orbital period (with other evidence of a white dwarf donor), and the lack of transitional millisecond pulsar features in the X-ray light curve, we suggest that this could be the first ultracompact black hole X-ray binary identified in our Galaxy.
Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su P.; Kaznatcheev K.; Wang, Y.
In a previous paper, the University of Arizona (UA) has developed a measurement technique called: Software Configurable Optical Test System (SCOTS) based on the principle of reflection deflectometry. In this paper, we present results of this very efficient optical metrology method applied to the metrology of X-ray mirrors. We used this technique to measure surface slope errors with precision and accuracy better than 100 nrad (rms) and {approx}200 nrad (rms), respectively, with a lateral resolution of few mm or less. We present results of the calibration of the metrology systems, discuss their accuracy and address the precision in measuring amore » spherical mirror.« less
X-ray Fluorescence Spectroscopy: the Potential of Astrophysics-developed Techniques
NASA Astrophysics Data System (ADS)
Elvis, M.; Allen, B.; Hong, J.; Grindlay, J.; Kraft, R.; Binzel, R. P.; Masterton, R.
2012-12-01
X-ray fluorescence from the surface of airless bodies has been studied since the Apollo X-ray fluorescence experiment mapped parts of the lunar surface in 1971-1972. That experiment used a collimated proportional counter with a resolving power of ~1 and a beam size of ~1degree. Filters separated only Mg, Al and SI lines. We review progress in X-ray detectors and imaging for astrophysics and show how these advances enable much more powerful use of X-ray fluorescence for the study of airless bodies. Astrophysics X-ray instrumentation has developed enormously since 1972. Low noise, high quantum efficiency, X-ray CCDs have flown on ASCA, XMM-Newton, the Chandra X-ray Observatory, Swift and Suzaku, and are the workhorses of X-ray astronomy. They normally span 0.5 to ~8 keV with an energy resolution of ~100 eV. New developments in silicon based detectors, especially individual pixel addressable devices, such as CMOS detectors, can withstand many orders of magnitude more radiation than conventional CCDs before degradation. The capability of high read rates provides dynamic range and temporal resolution. Additionally, the rapid read rates minimize shot noise from thermal dark current and optical light. CMOS detectors can therefore run at warmer temperatures and with ultra-thin optical blocking filters. Thin OBFs mean near unity quantum efficiency below 1 keV, thus maximizing response at the C and O lines.such as CMOS detectors, promise advances. X-ray imaging has advanced similarly far. Two types of imager are now available: specular reflection and coded apertures. X-ray mirrors have been flown on the Einstein Observatory, XMM-Newton, Chandra and others. However, as X-ray reflection only occurs at small (~1degree) incidence angles, which then requires long focal lengths (meters), mirrors are not usually practical for planetary missions. Moreover the field of view of X-ray mirrors is comparable to the incident angle, so can only image relatively small regions. More useful are coded-aperture imagers, which have flown on ART-P, Integral, and Swift. The shadow pattern from a 50% full mask allows the distribution of X-rays from a wide (10s of degrees) field of view to be imaged, but uniform emission presents difficulties. A version of a coded-aperture plus CCD detector for airless bodies study is being built for OSIRIS-REx as the student experiment REXIS. We will show the quality of the spectra that can be expected from this class of instrument.
NASA Astrophysics Data System (ADS)
Ghosh, Ritesh; Dewangan, Gulab C.; Mallick, Labani; Raychaudhuri, Biplab
2018-06-01
We present a broadband spectral study of the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342 based on multi-epoch observations performed with NuSTAR on 2014 March 15, and two simultaneous observations performed with Suzaku and Swift on 2009 July 26 and 2013 March 1. We found the presence of a strong soft X-ray excess emission, a broad but weak Fe line and hard X-ray excess emission. We used the blurred reflection (relxill) and the intrinsic disc Comptonization (optxagnf), two physically motivated models, to describe the broadband spectra and to disentangle the disk/corona and jet emission. The relxill model is mainly constrained by the strong soft X-ray excess although the model failed to predict this excess when fitted above 3{keV} and extrapolated to lower energies. The joint spectral analysis of the three datasets above 3{keV} with this model resulted in a high black hole spin (a > 0.9) and moderate reflection fraction R ˜ 0.5. The optxagnf model fitted to the two simultaneous datasets resulted in an excess emission in the UV band. The simultaneous UV-to-hard X-ray spectra of 1H 0323+342 are best described by a model consisting of a primary X-ray power-law continuum with Γ ˜ 1.8, a blurred reflection component with R ˜ 0.5, Comptonised disk emission as the soft X-ray excess, optical/UV emission from a standard accretion disk around a black hole of mass ˜107M⊙ and a steep power law (Γ ˜ 3 - 3.5) component, most likely the jet emission in the UV band. The fractional RMS variability spectra suggest that both the soft excess and the powerlaw component are variable in nature.
Prospect of space-based interferometry at EUV and soft X-ray wavelengths
NASA Technical Reports Server (NTRS)
Welsh, Barry Y.; Chakrabarti, Supriya
1992-01-01
We review the current capabilities of high-resolution, spectroscopic, space-borne instrumentation available for both solar and stellar observations in the EUV and soft X-ray wavelength regimes, and describe the basic design of a compact, all-reflection interferometer based on the spatial heterodyne technique; this is capable of producing a resolving power (lambda/Delta-lambda) of about 20,000 in the 100-200 A region using presently available multilayer optical components. Such an instrument can be readily constructed with existing technology. Due to its small size and lack of moving parts, it is ideally suited to spaceborne applications. Based on best estimates of the efficiency of this instrument at soft X-ray wavelengths, we review the possible use of this high-resolution interferometer in obtaining high-resolution full-disk spectroscopy of the sun. We also discuss its possible use for observations of diffuse sources such as the EUV interstellar background radiation.
NASA Astrophysics Data System (ADS)
Wobrauschek, P.; Prost, J.; Ingerle, D.; Kregsamer, P.; Misra, N. L.; Streli, C.
2015-08-01
The extension of the detectable elemental range with Total Reflection X-ray Fluorescence (TXRF) analysis is a challenging task. In this paper, it is demonstrated how a TXRF spectrometer is modified to analyze elements from carbon to uranium. Based on the existing design of a vacuum TXRF spectrometer with a 12 specimen sample changer, the following components were renewed: the silicon drift detector with 20 mm2 active area and having a special ultra-thin polymer window allowing the detection of elements from carbon upwards. Two exchangeable X-ray sources guarantee the efficient excitation of both low and high Z elements. These X-ray sources were two light-weighted easily mountable 35 W air-cooled low-power tubes with Cr and Rh anodes, respectively. The air cooled tubes and the Peltier-cooled detector allowed to construct a transportable tabletop spectrometer with compact dimensions, as neither liquid nitrogen cooling for the detector nor a water cooling circuit and a bulky high voltage generator for the X-ray tubes are required. Due to the excellent background conditions as a result of the TXRF geometry, detection limits of 150 ng for C, 12 ng for F, and 3.3 ng for Na have been obtained using Cr excitation in vacuum. For Rh excitation, the detection limits of 90 pg could be achieved for Sr. Taking 10 to 20 μl of sample volume, extrapolated detection limits in the ng/g (ppb) range are resulting in terms of concentration.
The Hitomi (ASTRO-H) Soft X-ray Telescope (SXT): current status of calibration
NASA Astrophysics Data System (ADS)
Maeda, Yoshitomo; Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu; Iizuka, Ryo; Hayashi, Takayuki; Okajima, Takashi; Matsumoto, Hironori; Mitsuishi, Ikuyuki; Saji, Shigetaka; Sato, Toshiki; Tachibana, Sasagu; Mori, Hideyuki; Christensen, Finn; Brejnholt, Nicolai; Nitta, Kiyofumi; Uruga, Tomoya
2017-08-01
We report the atomic scattering factor in the 11.2-15.4 keV for the ASTRO-H Soft X-ray Telescope (SXT)9 obtained in the ground based measurements. The large effective area of the SXT covers above 10 keV. In fact, the flight data show the spectra of the celestical objects in the hard X-ray band. In order to model the area, the reflectivity measurements in the 11.2-15.4 keV band with the energy pitch of 0.4 - 0.7 eV were made in the synchrotron beamline Spring-8 BL01B1. We obtained atomic scattering factors f1 and f2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the gold' s L-I, II, and III transitions are identified, of which the depths are found to be roughly 60% shallower than those expected from the Henke's atomic scattering factor.
The microstructural changes of Ge2Sb2Te5 thin film during crystallization process
NASA Astrophysics Data System (ADS)
Xu, Jingbo; Qi, Chao; Chen, Limin; Zheng, Long; Xie, Qiyun
2018-05-01
Phase change memory is known as the most promising candidate for the next generation nonvolatile memory technology. In this paper, the microstructural changes of Ge2Sb2Te5 film, which is the most common choice of phase change memory material, has been carefully studied by the combination of several characterization techniques. The combination of resistance measurements, X-ray diffraction, Raman spectroscopy and X-ray reflectivity allows us to simultaneously extract the characteristics of microstructural changes during crystallization process. The existence of surface/interface Ge2Sb2Te5 layer has been proposed here based on X-ray reflectivity measurements. Although the total film thickness decreases, as a result of the phase transition from amorphous to metastable crystalline cubic and then to the stable hexagonal phase, the surface/interface thickness increases after crystallization. Moreover, the increase of average grain size, density and surface roughness has been confirmed during thermal annealing process.
X-ray lithography using holographic images
Howells, M.S.; Jacobsen, C.
1997-03-18
Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.
X-ray lithography using holographic images
Howells, Malcolm S.; Jacobsen, Chris
1997-01-01
Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.
Optical performance of W/B4C multilayer mirror in the soft x-ray region
NASA Astrophysics Data System (ADS)
Pradhan, P. C.; Majhi, A.; Nayak, M.
2018-03-01
W/B4C x-ray multilayers (MLs) with 300 layer pairs and a period in the range of d = 2-1.6 nm are fabricated and investigated for the x-ray optical element in the soft x-ray regime. The structural analyses of the MLs are carried out by using hard x-ray reflectivity (HXR) measurements at 8.047 keV. Well-defined successive higher order Bragg peaks (up to 3rd order) in HXR data collected up to glancing incidence angles of ˜9° reveal a good quality of the periodic structure. The ML mirrors have an average interface width of ˜0.35 nm and have a compressive residual stress of ˜0.183 GPa and 0. 827 GPa for d = 1.62 nm and d = 1.98 nm, respectively. MLs maintain structural stability over a long time, with a slight increase in interface widths of the W layers by 0.1 nm due to self-diffusion. Soft x-ray reflectivity (SXR) performances are evaluated in the energy range of 650 to 1500 eV. At energy ˜ 1489 eV, measured reflectivities (energy resolution, ΔE) are ˜ 10% (19 eV) and 4.5% (13 eV) at glancing incident angles of 12.07° and 15° for MLs having periods of 1.98 nm and 1.62 nm, respectively. The optical performance from 1600 eV to 4500 eV is theoretically analysed by considering the measured structural parameters. The structure-stress-optical performance is correlated on the basis of the mechanism of film growth. The implications of W/B4C MLs are discussed, particularly with respect to the development of ML optics with high spectral selectivity and reflectance for soft x-ray instruments.
A hard X-ray view of the soft excess in AGN
NASA Astrophysics Data System (ADS)
Boissay, R.; Ricci, C.; Paltani, S.
2017-10-01
A soft X-ray emission in excess of the extrapolation of the hard X-ray continuum is detected in many Seyfert 1 galaxies below 1 keV. To understand the uncertain nature of this soft excess, which could be due to warm Comptonization or to blurred ionized reflection, we consider the different behaviors of these models above 10 keV. We present the results of a study done on 102 Seyfert 1s from the Swift BAT 70-Month Hard X-ray Survey catalog. We have performed the joint spectral analysis of Swift/BAT and XMM-Newton data in order to get a hard X-ray view of the soft excess. We discuss the links between the soft-excess strength and the reflection at high energy, the slope of the continuum and the Eddington ratio. We compare our results to simulations of blurred ionized-reflection models and show that they are in contradiction. Indeed, we do not find the expected correlation between the reflection and the soft-excess strengths, neither in individual, nor in stacked spectra. We also present our current project of broadband fitting, using different models explaining the soft excess, to simultaneous XMM-Newton and NuSTAR observations of about ten objects of our sample.
X-ray light valve (XLV): a novel detectors' technology for digital mammography
NASA Astrophysics Data System (ADS)
Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter
2014-03-01
A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Koshiishi, Masaki
2010-02-20
The x-ray reflectivity of an ultralightweight and low-cost x-ray optic using anisotropic wet etching of Si (110) wafers is evaluated at two energies, C K{alpha}0.28 keV and Al K{alpha}1.49 keV. The obtained reflectivities at both energies are not represented by a simple planar mirror model considering surface roughness. Hence, an geometrical occultation effect due to step structures upon the etched mirror surface is taken into account. Then, the reflectivities are represented by the theoretical model. The estimated surface roughness at C K{alpha} ({approx}6 nm rms) is significantly larger than {approx}1 nm at Al K{alpha}. This can be explained by differentmore » coherent lengths at two energies.« less
Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Koshiishi, Masaki; Mita, Makoto; Maeda, Yoshitomo; Yamasaki, Noriko Y; Mitsuda, Kazuhisa; Shirata, Takayuki; Hayashi, Takayuki; Takano, Takayuki; Maeda, Ryutaro
2010-02-20
The x-ray reflectivity of an ultralightweight and low-cost x-ray optic using anisotropic wet etching of Si (110) wafers is evaluated at two energies, C K(alpha)0.28 keV and Al K(alpha)1.49 keV. The obtained reflectivities at both energies are not represented by a simple planar mirror model considering surface roughness. Hence, an geometrical occultation effect due to step structures upon the etched mirror surface is taken into account. Then, the reflectivities are represented by the theoretical model. The estimated surface roughness at C K(alpha) (approximately 6 nm rms) is significantly larger than approximately 1 nm at Al K(alpha). This can be explained by different coherent lengths at two energies.
Grazing-incidence coherent x-ray imaging in true reflection geometry
NASA Astrophysics Data System (ADS)
Sun, Tao; Jiang, Zhang; Strzalka, Joseph; Wang, Jin
2012-02-01
The development of the 3^rd and 4^th generation synchrotrons has stimulated extensive research activities in x-ray imaging techniques. Among all, coherent diffractive imaging (CDI) shows great promise, as its resolution is only limited by the wavelength of the source. Most of the CDI work reported thus far used transmission geometry, which however is not suitable for samples on opaque substrates or in which only the surfaces are the regions of interest. Even though two groups have performed CDI experiments (using laser or x-ray) in reflection geometry and succeeded in reconstructing the planar image of the surface, the theoretical underpinnings and analysis approaches of their techniques are essentially identical to transmission CDI. Most importantly, they couldn't obtain the structural information along sample thickness direction. Here, we introduce a reflection CDI technique that works at grazing-incidence geometry. By visualizing Au nanostructures fabricated on Si substrate, we demonstrate that this innovative imaging technique is capable of obtaining both 2D and 3D information of surfaces or buried structures in the samples. In the meanwhile, we will also explain the grazing-incidence-scattering based-algorithm developed for 3D phase retrieval.
A Comparison of Two Methods for Estimating Black Hole Spin in Active Galactic Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capellupo, Daniel M.; Haggard, Daryl; Wafflard-Fernandez, Gaylor, E-mail: danielc@physics.mcgill.ca
Angular momentum, or spin, is a fundamental property of black holes (BHs), yet it is much more difficult to estimate than mass or accretion rate (for actively accreting systems). In recent years, high-quality X-ray observations have allowed for detailed measurements of the Fe K α emission line, where relativistic line broadening allows constraints on the spin parameter (the X-ray reflection method). Another technique uses accretion disk models to fit the AGN continuum emission (the continuum-fitting, or CF, method). Although each technique has model-dependent uncertainties, these are the best empirical tools currently available and should be vetted in systems where bothmore » techniques can be applied. A detailed comparison of the two methods is also useful because neither method can be applied to all AGN. The X-ray reflection technique targets mostly local ( z ≲ 0.1) systems, while the CF method can be applied at higher redshift, up to and beyond the peak of AGN activity and growth. Here, we apply the CF method to two AGN with X-ray reflection measurements. For both the high-mass AGN, H1821+643, and the Seyfert 1, NGC 3783, we find a range in spin parameter consistent with the X-ray reflection measurements. However, the near-maximal spin favored by the reflection method for NGC 3783 is more probable if we add a disk wind to the model. Refinement of these techniques, together with improved X-ray measurements and tighter BH mass constraints, will permit this comparison in a larger sample of AGN and increase our confidence in these spin estimation techniques.« less
NASA Astrophysics Data System (ADS)
Miller, J. M.; Fabian, A. C.; Reynolds, C. S.; Nowak, M. A.; Homan, J.; Freyberg, M. J.; Ehle, M.; Belloni, T.; Wijnands, R.; van der Klis, M.; Charles, P. A.; Lewin, W. H. G.
2004-05-01
We have analyzed spectra of the Galactic black hole GX 339-4 obtained through simultaneous 76 ks XMM-Newton/EPIC-pn and 10 ks Rossi X-Ray Timing Explorer observations during a bright phase of its 2002-2003 outburst. An extremely skewed, relativistic Fe Kα emission line and ionized disk reflection spectrum are revealed in these spectra. Self-consistent models for the Fe Kα emission-line profile and disk reflection spectrum rule out an inner disk radius compatible with a Schwarzschild black hole at more than the 8 σ level of confidence. The best-fit inner disk radius of (2-3)rg suggests that GX 339-4 harbors a black hole with a>=0.8-0.9 (where rg=GM/c2 and a=cJ/GM2, and assuming that reflection in the plunging region is relatively small). This confirms indications for black hole spin based on a Chandra spectrum obtained later in the outburst. The emission line and reflection spectrum also rule out a standard power-law disk emissivity in GX 339-4 a broken power-law form with enhanced emissivity inside ~6rg gives improved fits at more than the 8 σ level of confidence. The extreme red wing of the line and the steep emissivity require a centrally concentrated source of hard X-rays that can strongly illuminate the inner disk. Hard X-ray emission from the base of a jet-enhanced by gravitational light-bending effects-could create the concentrated hard X-ray emission; this process may be related to magnetic connections between the black hole and the inner disk. We discuss these results within the context of recent results from analyses of XTE J1650-500 and MCG -6-30-15, and of models for the inner accretion flow environment around black holes.
Microfabrication: LIGA-X and applications
NASA Astrophysics Data System (ADS)
Kupka, R. K.; Bouamrane, F.; Cremers, C.; Megtert, S.
2000-09-01
X-ray LIGA (Lithography, Electrogrowth, Moulding) is one of today's key technologies in microfabrication and upcoming modern (meso)-(nano) fabrication, already used and anticipated for micromechanics (micromotors, microsensors, spinnerets, etc.), micro-optics, micro-hydrodynamics (fluidic devices), microbiology, in medicine, in biology, and in chemistry for microchemical reactors. It compares to micro-electromechanical systems (MEMS) technology, offering a larger, non-silicon choice of materials and better inherent precision. X-ray LIGA relies on synchrotron radiation to obtain necessary X-ray fluxes and uses X-ray proximity printing. Inherent advantages are its extreme precision, depth of field and very low intrinsic surface roughness. However, the quality of fabricated structures often depends on secondary effects during exposure and effects like resist adhesion. UV-LIGA, relying on thick UV resists is an alternative for projects requiring less precision. Modulating the spectral properties of synchrotron radiation, different regimes of X-ray lithography lead to (a) the mass-fabrication of classical nanostructures, (b) the fabrication of high aspect ratio nanostructures (HARNST), (c) the fabrication of high aspect ratio microstructures (HARMST), and (d) the fabrication of high aspect ratio centimeter structures (HARCST). Reviewing very recent activities around X-ray LIGA, we show the versatility of the method, obviously finding its region of application there, where it is best and other competing microtechnologies are less advantageous. An example of surface-based X-ray and particle lenses (orthogonal reflection optics (ORO)) made by X-ray LIGA is given.
A new spectrometer for total reflection X-ray fluorescence analysis of light elements
NASA Astrophysics Data System (ADS)
Streli, Christina; Wobrauschek, Peter; Unfried, Ernst; Aiginger, Hannes
1993-10-01
A new spectrometer for total reflection X-ray fluorescence analysis (TXRF) of light elements as C, N, O, F, Na,… has been designed, constructed and realized. This was done under the aspect of optimizing all relevant parameters for excitation and detection under the conditions of Total Reflection in a vacuum chamber. A commercially available Ge(HP) detector with a diamond window offering a high transparency for low energy radiation was used. As excitation sources a special self-made windowless X-ray tube with Cu-target as well as a standard fine-focus Cr-tube were applied. Detection limits achieved are in the ng range for Carbon and Oxygen.
Normal incidence X-ray mirror for chemical microanalysis
Carr, Martin J.; Romig, Jr., Alton D.
1990-01-01
A non-planar, focusing mirror, to be utilized in both electron column instruments and micro-x-ray fluorescence instruments for performing chemical microanalysis on a sample, comprises a concave, generally spherical base substrate and a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on the base substrate. The thickness of each layer is an integral multiple of the wavelength being reflected and may vary non-uniformly according to a predetermined design. The chemical analytical instruments in which the mirror is used also include a predetermined energy source for directing energy onto the sample and a detector for receiving and detecting the x-rays emitted from the sample; the non-planar mirror is located between the sample and detector and collects the x-rays emitted from the sample at a large solid angle and focuses the collected x-rays to the sample. For electron column instruments, the wavelengths of interest lie above 1.5 nm, while for x-ray fluorescence instruments, the range of interest is below 0.2 nm. Also, x-ray fluorescence instruments include an additional non-planar focusing mirror, formed in the same manner as the previously described m The invention described herein was made in the performance of work under contract with the Department of Energy, Contract No. DE-AC04-76DP00789, and the United States Government has rights in the invention pursuant to this contract.
X-Ray Reflected Spectra from Accretion Disk Models. II. Diagnostic Tools for X-Ray Observations
NASA Technical Reports Server (NTRS)
Garcia, J.; Kallman, T. R.; Mushotzky, R. F.
2011-01-01
We present a comprehensive study of the emission spectra from accreting sources. We use our new reflection code to compute the reflected spectra from an accretion disk illuminated by X-rays. This set of models covers different values of ionization parameter, solar iron abundance and photon index for the illuminating spectrum. These models also include the most complete and recent atomic data for the inner-shell of the iron and oxygen isonuclear sequences. We concentrate our analysis to the 2 - 10 keV energy region, and in particular to the iron K-shell emission lines. We show the dependency of the equivalent width (EW) of the Fe Ka with the ionization parameter. The maximum value of the EW is approx. 800 eV for models with log Epsilon approx. 1.5, and decreases monotonically as Epsilon increases. For lower values of Epsilon the Fe K(alpha) EW decreases to a minimum near log Epsilon approx. 0.8. We produce simulated CCD observations based on our reflection models. For low ionized, reflection dominated cases, the 2 -10 keV energy region shows a very broad, curving continuum that cannot be represented by a simple power-law. We show that in addition to the Fe K-shell emission, there are other prominent features such as the Si and S L(alpha) lines, a blend of Ar VIII-XI lines, and the Ca x K(alpha) line. In some cases the S xv blends with the He-like Si RRC producing a broad feature that cannot be reproduced by a simple Gaussian profile. This could be used as a signature of reflection.
X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.
1997-04-01
X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.
Multilayer films with sharp, stable interfaces for use in EUV and soft X-ray application
Barbee, Jr., Troy W.; Bajt, Sasa
2002-01-01
The reflectivity and thermal stability of Mo/Si (molybdenum/silicon) multilayer films, used in soft x-ray and extreme ultraviolet region, is enhanced by deposition of a thin layer of boron carbide (e.g., B.sub.4 C) between alternating layers of Mo and Si. The invention is useful for reflective coatings for soft X-ray and extreme ultraviolet optics, multilayer for masks, coatings for other wavelengths and multilayers for masks that are more thermally stable than pure Mo/Si multilayers
Lodha, G S; Yamashita, K; Kunieda, H; Tawara, Y; Yu, J; Namba, Y; Bennett, J M
1998-08-01
Grazing-incidence specular reflectance and near-specular scattering were measured at Al-K(alpha) (1.486-keV, 8.34-?) radiation on uncoated dielectric substrates whose surface topography had been measured with a scanning probe microscope and a mechanical profiler. Grazing-incidence specular reflectance was also measured on selected substrates at the Cu-K(alpha) (8.047-keV, 1.54-?) wavelength. Substrates included superpolished and conventionally polished fused silica; SiO(2) wafers; superpolished and precision-ground Zerodur; conventionally polished, float-polished, and precision-ground BK-7 glass; and superpolished and precision-ground silicon carbide. Roughnesses derived from x-ray specular reflectance and scattering measurements were in good agreement with topographic roughness values measured with a scanning probe microscope (atomic force microscope) and a mechanical profiler that included similar ranges of surface spatial wavelengths. The specular reflectance was also found to be sensitive to the density of polished surface layers and subsurface damage down to the penetration depth of the x rays. Density gradients and subsurface damage were found in the superpolished fused-silica and precision-ground Zerodur samples. These results suggest that one can nondestructively evaluate subsurface damage in transparent materials using grazing-incidence x-ray specular reflectance in the 1.5-8-keV range.
Innovative space x-ray telescopes
NASA Astrophysics Data System (ADS)
Hudec, R.; Inneman, A.; Pina, L.; Sveda, L.; Ticha, H.; Brozek, V.
2017-11-01
We report on the progress in innovative X-ray mirror development with focus on requirements of future X-ray astronomy space projects. Various future projects in X-ray astronomy and astrophysics will require large lightweight but highly accurate segments with multiple thin shells or foils. The large Wolter 1 grazing incidence multiple mirror arrays, the Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (shaped, bent or flat foils) with high X-ray reflectivity and excellent mechanical stability.
New X-Ray Technique to Characterize Nanoscale Precipitates in Aged Aluminum Alloys
NASA Astrophysics Data System (ADS)
Sitdikov, V. D.; Murashkin, M. Yu.; Valiev, R. Z.
2017-10-01
This paper puts forward a new technique for measurement of x-ray patterns, which enables to solve the problem of identification and determination of precipitates (nanoscale phases) in metallic alloys of the matrix type. The minimum detection limit of precipitates in the matrix of the base material provided by this technique constitutes as little as 1%. The identification of precipitates in x-ray patterns and their analysis are implemented through a transmission mode with a larger radiation area, longer holding time and higher diffractometer resolution as compared to the conventional reflection mode. The presented technique has been successfully employed to identify and quantitatively describe precipitates formed in the Al alloy of the Al-Mg-Si system as a result of artificial aging. For the first time, the x-ray phase analysis has been used to identify and measure precipitates formed during the alloy artificial aging.
Real-time x-ray scattering study of the initial growth of organic crystals on polymer brushes
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Sung Yup; Ahn, Kwangseok; Kim, Doris Yangsoo
2014-04-21
We studied the early-stage growth structures of pentacene organic crystals grown on polymer brushes using real-time x-ray scattering techniques. In situ x-ray reflectivity and atomic force microscopy analyses revealed that at temperatures close to the glass transition temperature of polymer brush, the pentacene overlayer on a polymer brush film showed incomplete condensation and 3D island structures from the first monolayer. A growth model based on these observations was used to quantitatively analyze the real-time anti-Bragg x-ray scattering intensities measured during pentacene growth to obtain the time-dependent layer coverage of the individual pentacene monolayers. The extracted total coverage confirmed significant desorptionmore » and incomplete condensation in the pentacene films deposited on the polymer brushes. These effects are ascribed to the change in the surface viscoelasticity of the polymer brushes around the glass transition temperature.« less
X-ray resonant magnetic scattering ellipsometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Z.; Randall, K.J.; Gluskin, E.
1996-09-01
It is very difficult to characterize the polarization of a synchrotron radiation source in the soft and/or intermediate x-ray energy region particularly from 1 to 2 keV. Conventional multilayer mirror or single-crystal polarimeters do not work over this energy region because their throughput (the reflectivities combined with the phase shift) becomes insignificant. In this paper, we present a new ellipsometer scheme that is able to fully characterize the polarization of synchrotron radiation sources in this energy region. It is based on the dichroic x-ray resonant ferromagnetic scattering that yields information on both the polarization of the x-ray and the materialmore » (element specific) dielectric-constant tensor [C.-C. Kao {ital et} {ital al}., Phys. Rev. B {bold 50}, 9599 (1994)] due to the interband ferromagnetic Kerr effect [B.R. Cooper, Phys. Rev. A {bold 139}, 1504 (1965)]. {copyright} {ital 1996 American Institute of Physics.}« less
Yano, Yohko F; Uruga, Tomoya; Tanida, Hajime; Toyokawa, Hidenori; Terada, Yasuko; Yamada, Hironari
2010-07-01
An X-ray reflectometer for simultaneous measurement of specular and off-specular reflection of liquid surfaces is described. The reflectometer, equipped with a two-dimensional single X-ray photon-counting pixel array detector obtained the full range of X-ray specular and off-specular reflections in an extremely short time (1 s). Both the specular and off-specular reflection of water exhibited good agreement with the predicted capillary-wave theory within the appropriate instrumental resolution. The approach is also demonstrated on an aqueous solution of 1-dodecyl-3-methylimidazolium chloride. The monolayer in which the dodecyl chain faces upwards and the Cl(-) anion locates next to the imidazolium ring formed on the water surface was found to be laterally homogeneous. The use of a pixel array detector will be particularly powerful for in situ measurements to investigate both out-of-plane and in-plane structures simultaneously, not only for liquid surfaces but also for other thin films.
Assessing the Chemical Accuracy of Protein Structures via Peptide Acidity
Anderson, Janet S.; Hernández, Griselda; LeMaster, David M.
2012-01-01
Although the protein native state is a Boltzmann conformational ensemble, practical applications often require a representative model from the most populated region of that distribution. The acidity of the backbone amides, as reflected in hydrogen exchange rates, is exquisitely sensitive to the surrounding charge and dielectric volume distribution. For each of four proteins, three independently determined X-ray structures of differing crystallographic resolution were used to predict exchange for the static solvent-exposed amide hydrogens. The average correlation coefficients range from 0.74 for ubiquitin to 0.93 for Pyrococcus furiosus rubredoxin, reflecting the larger range of experimental exchange rates exhibited by the latter protein. The exchange prediction errors modestly correlate with the crystallographic resolution. MODELLER 9v6-derived homology models at ~60% sequence identity (36% identity for chymotrypsin inhibitor CI2) yielded correlation coefficients that are ~0.1 smaller than for the cognate X-ray structures. The most recently deposited NOE-based ubiquitin structure and the original NMR structure of CI2 fail to provide statistically significant predictions of hydrogen exchange. However, the more recent RECOORD refinement study of CI2 yielded predictions comparable to the X-ray and homology model-based analyses. PMID:23182463
Unifying Spectral and Timing Studies of Relativistic Reflection in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Reynolds, Christopher
X-ray observations of active galactic nuclei (AGN) contain a wealth of information relevant for understanding the structure of AGN, the process of accretion, and the gravitational physics of supermassive black holes. A particularly exciting development over the past four years has been the discovery and subsequent characterization of time delays between variability of the X-ray power-law continuum and the inner disk reflection spectrum including the broad iron line. The fact that the broad iron line shows this echo, or reverberation, in XMM-Newton, Suzaku and NuSTAR data is a strong confirmation of the disk reflection paradigm and has already been used to place constraints on the extent and geometry of the X-ray corona. However, current studies of AGN X-ray variability, including broad iron line reverberation, are only scratching the surface of the available data. At the present time, essentially all studies conduct temporal analyzes in a manner that is largely divorced from detailed spectroscopy - consistency between timing results (e.g., conclusions regarding the location of the primary X-ray source) and detailed spectral fits is examined after the fact. We propose to develop and apply new analysis tools for conducting a truly unified spectraltiming analysis of the X-ray properties of AGN. Operationally, this can be thought of as spectral fitting except with additional parameters that are accessing the temporal properties of the dataset. Our first set of tools will be based on Fourier techniques (via the construction and fitting of the energy- and frequency-dependent cross-spectrum) and most readily applicable to long observations of AGN with XMM-Newton. Later, we shall develop more general schemes (of a more Bayesian nature) that can operate on irregularly sampled data or quasi-simultaneous data from multiple instruments. These shall be applied to the long joint XMM-Newton/NuSTAR and Suzaku/NuSTAR AGN campaigns as well as Swift monitoring campaigns. Another important dimension of our work is the introduction of spectral and spectral-timing models of X-ray reflection from black hole disks that include realistic disk thickness (as opposed to the razor-thin disks assumed in current analysis tools). The astrophysical implications of our work are: - The first rigorous decomposition of the time-lags into those from reverberation and those from intrinsic continuum processes. - A new method for determining the density of photoionized (warm) absorbers in AGN through a measurement of the recombination time lags. - AGN black hole mass estimates obtained purely from X-ray data, and hence complementary to (observationally expensive) optical broad line reverberation campaigns. - The best possible characterization of strong gravity signatures in the reflected disk emission. - Detection and characterization of non-trivial accretion disk structure. Each of our tools and data products will be made available to the community/public upon the publication of the first results with that tool. The proposed work is in direct support of the NASA Science Plan, and is of direct relevant and support to NASA's fleet of X-ray observatories.
NASA Astrophysics Data System (ADS)
Heilmann, Ralf K.; Bruccoleri, Alexander; Schattenburg, Mark; Kolodziejczak, jeffery; Gaskin, Jessica; O'Dell, Stephen L.
2017-01-01
A number of high priority subjects in astrophysics are addressed by a state-of-the-art soft x-ray grating spectrometer, e.g. the role of Active Galactic Nuclei in galaxy and star formation, characterization of the WHIM and the “missing baryon” problem, characterization of halos around the Milky Way and nearby galaxies, and stellar coronae and surrounding winds and disks. An Explorer-scale, large-area (A > 1,000 cm2), high resolving power (R > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology, even for telescopes with angular resolution of 5-10 arcsec. Significantly higher performance could be provided by a CAT grating spectrometer on an X-ray-Surveyor-type mission (A > 4,000 cm2, R > 5,000). CAT gratings combine advantages of blazed reflection gratings (high efficiency, use of higher orders) with those of transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimal mission resource requirements. Blazing is achieved through grazing-incidence reflection off the smooth silicon grating bar sidewalls. Silicon is well matched to the soft x-ray band, and 30% absolute diffraction efficiency has been acheived with clear paths for further improvement. CAT gratings with sidewalls made of high-Z elements allow extension of blazing to higher energies and larger dispersion angles, enabling higher resolving power at shorter wavelengths. X-ray data from CAT gratings coated with a thin layer of platinum using atomic layer deposition demonstrate efficient blazing to higher energies and much larger blaze angles than possible with silicon alone. Measurements of the resolving power of a breadboard CAT grating spectrometer consisting of a Wolter-I slumped-glass focusing optic from GSFC and CAT gratings, taken at the MSFC Stray Light Facility, have demonstrated resolving power > 10,000. Thus currently fabricated CAT gratings are compatible with the most advanced grating spectrometer instrument designs for future soft x-ray spectroscopy missions. We will review the most recent CAT grating fabrication and x-ray test results.
Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics
NASA Astrophysics Data System (ADS)
Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert; Yakshin, Andrey; Louis, Eric; Bijkerk, Fred
2017-03-01
Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV experiments. Both planar and three dimensional multilayer structures have been developed to tailor the spectral response in a wide wavelength range. For the planar multilayer optics, different layered schemes are explored. Stacks of periodic multilayers and capping layers are demonstrated to achieve multi-channel reflection or suppression of the reflective properties. Aperiodic multilayer structures enable broadband reflection both in angles and wavelengths, with the possibility of polarization control. The broad wavelength band multilayer is also used to shape attosecond pulses for the study of ultrafast phenomena. Narrowband multilayer monochromators are delivered to bridge the resolution gap between crystals and regular multilayers. High spectral purity multilayers with innovated anti-reflection structures are shown to select spectrally clean XUV radiation from broadband X-ray sources, especially the plasma sources for EUV lithography. Significant progress is also made in the three dimensional multilayer optics, i.e., combining micro- and nanostructures with multilayers, in order to provide new freedom to tune the spectral response. Several kinds of multilayer gratings, including multilayer coated gratings, sliced multilayer gratings, and lamellar multilayer gratings are being pursued for high resolution and high efficiency XUV spectrometers/monochromators, with their advantages and disadvantages, respectively. Multilayer diffraction optics are also developed for spectral purity enhancement. New structures like gratings, zone plates, and pyramids that obtain full suppression of the unwanted radiation and high XUV reflectance are reviewed. Based on the present achievement of the spectral tailoring multilayer optics, the remaining challenges and opportunities for future researches are discussed.
Relativistic Effects on Reflection X-ray Spectra of AGN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Khee-Gan; /University Coll. London; Fuerst, Steven V.
2007-01-05
We have calculated the reflection component of the X-ray spectra of active galactic nuclei (AGN) and shown that they can be significantly modified by the relativistic motion of the accretion flow and various gravitational effects of the central black hole. The absorption edges in the reflection spectra suffer severe energy shifts and smearing. The degree of distortion depends on the system parameters, and the dependence is stronger for some parameters such as the inner radius of the accretion disk and the disk viewing inclination angles. The relativistic effects are significant and are observable. Improper treatment of the reflection component ofmore » the X-ray continuum in spectral fittings will give rise to spurious line-like features, which will mimic the fluorescent emission lines and mask the relativistic signatures of the lines.« less
Background-reducing X-ray multilayer mirror
Bloch, Jeffrey J.; Roussel-Dupre', Diane; Smith, Barham W.
1992-01-01
Background-reducing x-ray multilayer mirror. A multiple-layer "wavetrap" deposited over the surface of a layered, synthetic-microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered, mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 .ANG. wavelengths have been optimized, while that at 304 .ANG. has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, and their number and distance for the "wavetrap."
NASA's Chandra Finds That Saturn Reflects X-rays From Sun
NASA Astrophysics Data System (ADS)
2005-05-01
When it comes to mysterious X-rays from Saturn, the ringed planet may act as a mirror, reflecting explosive activity from the sun, according to scientists using NASA's Chandra X-ray Observatory. The findings stem from the first observation of an X-ray flare reflected from Saturn's low-latitudes - the region that correlates to Earth's equator and tropics. Led by Dr. Anil Bhardwaj, a planetary scientist at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., the study revealed that Saturn acts as a diffuse mirror for solar X-rays. Counting photons - particles that carry electromagnetic energy including X-rays - was critical to this discovery. For every few thousand X-ray photons Saturn receives from the sun, it reflects a single X-ray photon back. Previous studies revealed that Jupiter, with a diameter 11 times that of Earth, behaves in a similar fashion. Saturn is about 9.5 times as big as Earth, but is twice as far from Earth as Jupiter. "The bigger the planet and nearer to the Sun, the more solar photons it will intercept - resulting in more reflected X-rays," said Bhardwaj. "These results imply we could use giant planets like Jupiter and Saturn as remote-sensing tools. By reflecting solar activity back to us, they could help us monitor X-ray flaring on portions of the sun facing away from Earth's space satellites." Massive solar explosions called flares often accompany coronal mass ejections, which emit solar material and magnetic field. When directed toward the Earth, these ejections can wreak havoc on communication systems from cell phones to satellites. Even as the research appears to have solved one mystery - the source of Saturn's X-rays, it fueled longstanding questions about magnetic fields. Earth's magnetic field is the reason compasses work, since the field acts like a huge bar magnet, causing the magnetic north pole of a compass to point to the magnetic south pole of the Earth. In addition, migratory birds seem to sense the magnetic field, which allows them to navigate. But other affects of magnetic fields, only recently studied in detail, are obvious only to those living at Earth's high latitudes, or to those observing the Earth from space. Of the three magnetic planets in our solar system that have been studied extensively, Jupiter and Earth emit two general types of X rays -- auroral emissions from polar regions and disk emissions from low latitudes. However, no research to-date - including the recent study using the Chandra Observatory - has observed unambiguous signatures of auroral X-ray emissions on Saturn. "We were surprised to find no clear evidence of auroral X-ray emissions during our observations," said Bhardwaj. "It is interesting to note that even as research solves some mysteries, it confirms there is much more we have to learn. The research appeared in the May 10, 2005 issue of Astrophysical J. Letters, and the team also included Ron Elsner of MSFC; Hunter Waite of the University of Michigan in Ann Arbor; Randy Gladstone of the Southwest Research Institute in San Antonio, Texas; Thomas Cravens of the University of Kansas in Lawrence and Peter Ford from the Massachusetts Institute of Technology in Cambridge. Bhardwaj is working at MSFC on leave from the Space Physics Laboratory of the Vikram Sarabhai Space Centre in India. The Marshall Center manages the Chandra program for NASA's Science Mission Directorate in Washington. Northrop Grumman of Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
NASA Astrophysics Data System (ADS)
Dhara, Sangita; Khooha, Ajay; Singh, Ajit Kumar; Tiwari, M. K.; Misra, N. L.
2018-06-01
Systematic studies to assess the analytical parameters obtained in the total reflection X-ray fluorescence (TXRF) determinations of interfering elements Rb and U using profile fitting are reported in the present manuscript. The X-ray lines Rb Kα and U Lα having serious spectral interference (ΔE = 218 eV), have been used as analytical lines. The intensities of these X-ray lines have been assessed using profile fitting. In order to compare the analytical results of Rb determinations in presence of U, with and without U excitation, synchrotron radiation was tuned to energy just above and below the U Labs edge. This approach shall excite both Rb Kα and U Lα simultaneously and Rb Kα selectively. Finally, the samples were also analyzed with a laboratory based TXRF spectrometer. The analytical results obtained in all these conditions were comparable. The authenticity of the results was assessed by analyzing U with respect to Rb in Rb2U(SO4)3, a standard reference material for U. The average precision obtained for TXRF determinations was below 3% (RSD, n = 3, 1σ) and the percent deviation of TXRF values from the expected values calculated on the basis of sample preparation was within 3%.
Design and analysis of multilayer x ray/XUV microscope
NASA Technical Reports Server (NTRS)
Shealy, David L.
1990-01-01
The design and analysis of a large number of normal incidence multilayer x ray microscopes based on the spherical mirror Schwarzschild configuration is examined. Design equations for the spherical mirror Schwarzschild microscopes are summarized and used to evaluate mirror parameters for microscopes with magnifications ranging from 2 to 50x. Ray tracing and diffraction analyses are carried out for many microscope configurations to determine image resolution as a function of system parameters. The results are summarized in three publication included herein. A preliminary study of advanced reflecting microscope configurations, where aspherics are used in place of the spherical microscope mirror elements, has indicated that the aspherical elements will improve off-axis image resolution and increase the effective field of view.
Water window imaging x ray microscope
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Inventor)
1992-01-01
A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope.
NASA Astrophysics Data System (ADS)
Sakurai, Kenji
2010-12-01
This special issue is devoted to describing recent applications of x-ray and neutron scattering techniques to the exploration of surfaces and buried interfaces of various functional materials. Unlike many other surface-sensitive methods, these techniques do not require ultra high vacuum, and therefore, a variety of real and complicated surfaces fall within the scope of analysis. It must be particularly emphasized that the techniques are capable of seeing even buried function interfaces as well as the surface. Furthermore, the information, which ranges from the atomic to mesoscopic scale, is highly quantitative and reproducible. The non-destructive nature of the techniques is another important advantage of using x-rays and neutrons, when compared with other atomic-scale analyses. This ensures that the same specimen can be measured by other techniques. Such features are fairly attractive when exploring multilayered materials with nanostructures (dots, tubes, wires, etc), which are finding applications in electronic, magnetic, optical and other devices. The Japan Applied Physics Society has established a group to develop the research field of studying buried function interfaces with x-rays and neutrons. As the methods can be applied to almost all types of materials, from semiconductor and electronic devices to soft materials, participants have fairly different backgrounds but share a common interest in state-of-the-art x-ray and neutron techniques and sophisticated applications. A series of workshops has been organized almost every year since 2001. Some international interactions have been continued intensively, although the community is part of a Japanese society. This special issue does not report the proceedings of the recent workshop, although all the authors are in some way involved in the activities of the above society. Initially, we intended to collect quite long overview papers, including the authors' latest and most important original results, as well as updates on recent progress and global trends in the field. We planned to cover quite a wide area of surface and buried interface science with x-rays and neutrons. Following a great deal of discussion during the editing process, we have decided to change direction. As we intend to publish similar special issues on a frequent basis, we will not insist on editing this issue as systematic and complete collections of research. Many authors decided to write an ordinary research paper rather than an article including systematic accounts. Due to this change in policy, some authors declined to contribute, and the number of papers is now just 12. However, readers will find that the special issue gives an interesting collection of new original research in surface and buried interface studies with x-rays and neutrons. The 12 papers cover the following research topics: (1) polymer analysis by diffuse scattering; (2) discussion of the electrochemical solid--liquid interface by synchrotron x-ray diffraction; (3) analysis of capped nanodots by grazing incidence small-angle x-ray scattering (GISAXS); (4) discussion of the strain distribution in silicon by high-resolution x-ray diffraction; (5) study of mesoporous structures by a combination of x-ray reflectivity and GISAXS; (6) discussion of energy-dispersive x-ray reflectometry and its applications; (7) neutron reflectivity studies on hydrogen terminated silicon interface; (8) the fabrication and performance of a special mirror for water windows; (9) depth selective analysis by total-reflection x-ray diffraction; (10) nanoparticle thin films prepared by a gas deposition technique; (11) discussion of crystal truncation rod (CTR) scattering of semiconductor nanostructures; (12) magnetic structure analysis of thin films by polarized neutron reflectivity. While not discussed in the present special issue, x-ray and neutron techniques have made great progress. The most important steps forward have been in 2D/3D real-space imaging, and realtime measurement. Advances in such technologies are bringing with them new opportunities in surface and buried interface science. In the not too distant future, we will publish a special issue or a book detailing such progress. Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques contents Lateral uniformity in chemical composition along a buried reaction front in polymers using off-specular reflectivity Kristopher A Lavery, Vivek M Prabhu, Sushil Satija and Wen-li Wu Orientation dependence of Pd growth on Au electrode surfaces M Takahasi, K Tamura, J Mizuki, T Kondo and K Uosaki A grazing incidence small-angle x-ray scattering analysis on capped Ge nanodots in layer structures Hiroshi Okuda, Masayuki Kato, Keiji Kuno, Shojiro Ochiai, Noritaka Usami, Kazuo Nakajima and Osami Sakata High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer Kazuhiko Omote X-ray analysis of mesoporous silica thin films templated by Brij58 surfactant S Fall, M Kulij and A Gibaud Review of the applications of x-ray refraction and the x-ray waveguide phenomenon to estimation of film structures Kouichi Hayashi Epitaxial growth of largely mismatched crystals on H-terminated Si(111) surfaces Hidehito Asaoka Novel TiO2/ZnO multilayer mirrors at 'water-window' wavelengths fabricated by atomic layer epitaxy H Kumagai, Y Tanaka, M Murata, Y Masuda and T Shinagawa Depth-selective structural analysis of thin films using total-external-reflection x-ray diffraction Tomoaki Kawamura and Hiroo Omi Structures of Yb nanoparticle thin films grown by deposition in He and N2 gas atmospheres: AFM and x-ray reflectivity studies Martin Jerab and Kenji Sakurai Ga and As composition profiles in InP/GaInAs/InP heterostructures—x-ray CTR scattering and cross-sectional STM measurements Yoshikazu Takeda, Masao Tabuchi and Arao Nakamura Polarized neutron reflectivity study of a thermally treated MnIr/CoFe exchange bias system Naoki Awaji, Toyoo Miyajima, Shuuichi Doi and Kenji Nomura
NASA Astrophysics Data System (ADS)
Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.
2008-12-01
Many studies have identified an important number of toxic elements along with organic carcinogen molecules and radioactive isotopes in tobacco. In this work we have analyzed by Total Reflection X-Ray Fluorescence 9 brands of cigarettes being manufactured and distributed in the Mexican market. Two National Institute of Standards and Technology standards and a blank were equally treated at the same time. Results show the presence of some toxic elements such as Pb and Ni. These results are compared with available data for some foreign brands, while their implications for health are discussed. It can be confirmed that the Total Reflection X-Ray Fluorescence method provides precise (reproducible) and accuracy (trueness) data for 15 elements concentration in tobacco samples.
2000-04-20
Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.
NASA Technical Reports Server (NTRS)
Garcia, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Ekmann, W.
2013-01-01
We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code xillver that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Gamma of the illuminating radiation, the ionization parameter zeta at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A(sub Fe) relative to the solar value. The ranges of the parameters covered are: 1.2 <= Gamma <= 3.4, 1 <= zeta <= 104, and 0.5 <= A(sub Fe) <= 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file suitable for the analysis of X-ray observations via the atable model in xspec. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of xillver.
NASA Technical Reports Server (NTRS)
Robinson-Saba, J. L.
1983-01-01
Observations of the binary X-ray source Circinus X-1 provide samples of a range of spectral and temporal behavior whose variety is thought to reflect a broad continuum of accretion conditions in an eccentric binary system. The data support an identification of three or more X-ray spectral components, probably associated with distinct emission regions.
NASA Astrophysics Data System (ADS)
Matsushita, T.; Takahashi, T.; Shirasawa, T.; Arakawa, E.; Toyokawa, H.; Tajiri, H.
2011-11-01
To conduct time-resolved measurements in the wide momentum transfer (q = 4π sinθ/λ, θ: the glancing angle of the x-ray beam, λ: x-ray wavelength) range of interest, we developed a method that can simultaneously measure the whole profile of x-ray diffraction and crystal truncation rod scattering of interest with no need of rotation of the specimen, detector, and monochromator crystal during the measurement. With a curved crystal polychromator (Si 111 diffraction), a horizontally convergent x-ray beam having a one-to-one correlation between wavelength (energy: 16.24-23.0 keV) and direction is produced. The convergent x-ray beam components of different wavelengths are incident on the specimen in a geometry where θ is the same for all the x-ray components and are diffracted within corresponding vertical scattering planes by a specimen ([GaAs(12ML)/AlAs(8 ML)]50 on GaAs(001) substrate) placed at the focal point. Although θ is the same for all the directions, q continuously varies because λ changes as a function of direction. The normalized horizontal intensity distribution across the beam, as measured using a two-dimensional pixel array detector downstream of the specimen, represents the reflectivity curve profile both near to and far from the Bragg point. As for the crystal truncation rod scattering around the 002 reflection, the diffraction profile from the Bragg peak down to reflectivity of 1.0 × 10-9 was measured with a sufficient data collection time (1000-2000 s). With data collection times of 100, 10, 1.0, and 0.1 s, profiles down to a reflectivity of ˜6 × 10-9, ˜2 × 10-8, ˜8 × 10-8, and ˜8 × 10-7 were measured, respectively. To demonstrate the time-resolving capability of the system, reflectivity curves were measured with time resolutions of 1.0 s while rotating the specimen. We have also measured the diffraction profile around the 113 reflection in the non-specular reflection geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benstead, J., E-mail: james.benstead@awe.co.uk; Morton, J.; Guymer, T. M.
A new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters were usedmore » to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benstead, J.; Moore, A. S.; Ahmed, M. F.
Here, a new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters weremore » used to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.« less
Imaging Schwarzschild multilayer X-ray microscope
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Baker, Phillip C.; Shealy, David L.; Core, David B.; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.; Kerstetter, Ted
1993-01-01
We have designed, analyzed, fabricated, and tested Schwarzschild multilayer X-ray microscopes. These instruments use flow-polished Zerodur mirror substrates which have been coated with multilayers optimized for maximum reflectivity at normal incidence at 135 A. They are being developed as prototypes for the Water Window Imaging X-Ray Microscope. Ultrasmooth mirror sets of hemlite grade sapphire have been fabricated and they are now being coated with multilayers to reflect soft X-rays at 38 A, within the biologically important 'water window'. In this paper, we discuss the fabrication of the microscope optics and structural components as well as the mounting of the optics and assembly of the microscopes. We also describe the optical alignment, interferometric and visible light testing of the microscopes, present interferometrically measured performance data, and provide the first results of optical imaging tests.
Solar flare hard and soft x ray relationship determined from SMM HXRBS and BCS data
NASA Technical Reports Server (NTRS)
Toot, G. David
1989-01-01
The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.
Solar flare hard and soft X ray relationship determined from SMM HXRBS and BCS data
NASA Astrophysics Data System (ADS)
Toot, G. David
1989-09-01
The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.
NASA Astrophysics Data System (ADS)
Mori, Kaya; Hailey, Charles J.; Krivonos, Roman; Hong, Jaesub; Ponti, Gabriele; Bauer, Franz; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Tomsick, John A.; Alexander, David M.; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Grindlay, Jonathan E.; Harrison, Fiona A.; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Luu, Vy; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Stern, Daniel; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas
2015-12-01
We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ˜ 1.3-2.3 up to ˜50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (˜1023 cm-2), primary X-ray spectra (power-laws with Γ ˜ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to LX ≳ 1038 erg s-1. Above ˜20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95-0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses MWD ˜ 0.9 M⊙. Spectral energy distribution analysis suggests that G359.95-0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745-290, strongly favoring a leptonic origin of the GC TeV emission.
Allegretta, Ignazio; Porfido, Carlo; Martin, Maria; Barberis, Elisabetta; Terzano, Roberto; Spagnuolo, Matteo
2018-06-24
Arsenic concentration and distribution were studied by combining laboratory X-ray-based techniques (wavelength dispersive X-ray fluorescence (WDXRF), micro X-ray fluorescence (μXRF), and X-ray powder diffraction (XRPD)), field emission scanning electron microscopy equipped with microanalysis (FE-SEM-EDX), and sequential extraction procedure (SEP) coupled to total reflection X-ray fluorescence (TXRF) analysis. This approach was applied to three contaminated soils and one mine tailing collected near the gold extraction plant at the Crocette gold mine (Macugnaga, VB) in the Monte Rosa mining district (Piedmont, Italy). Arsenic (As) concentration, measured with WDXRF, ranged from 145 to 40,200 mg/kg. XRPD analysis evidenced the presence of jarosite and the absence of any As-bearing mineral, suggesting a high weathering grade and strong oxidative conditions. However, small domains of Fe arsenate were identified by combining μXRF with FE-SEM-EDX. SEP results revealed that As was mainly associated to amorphous Fe oxides/hydroxides or hydroxysulfates (50-80%) and the combination of XRPD and FE-SEM-EDX suggested that this phase could be attributed to schwertmannite. On the basis of the reported results, As is scarcely mobile, even if a consistent As fraction (1-3 g As/kg of soil) is still potentially mobilizable. In general, the proposed combination of laboratory X-ray techniques could be successfully employed to unravel environmental issues related to metal(loid) pollution in soil and sediments.
Unveiling the past of the Galactic nucleus with X-ray echoes
NASA Astrophysics Data System (ADS)
Chuard, D.; Terrier, R.; Goldwurm, A.; Clavel, M.; Soldi, S.; Morris, M. R.; Ponti, G.; Walls, M.; Chernyakova, M.
2017-12-01
Giant molecular clouds populating the central molecular zone have a high enough column density to reflect X-rays coming from strong compact sources in their neighbourhood, including possible powerful outbursts from the Galactic supermassive black hole SgrA. From observations of the molecular complex Sgr C made with the X-ray observatories XMM and Chandra between 2000 and 2014, we confirm this reflection scenario, even though the region hosts several objects (including two PWN candidates) that may be responsible for intense cosmic-ray production. By comparing data to Monte Carlo simulated reflection spectra, we are able to put the best constraints to date on the line-of-sight positions of the main bright clumps of the molecular complex. Ultimately, extending this approach by the inclusion of other molecular complexes allows us to partially reconstruct the past lightcurve of the Galactic supermassive black hole.
X-ray verification of an optically aligned off-plane grating module
NASA Astrophysics Data System (ADS)
Donovan, Benjamin D.; McEntaffer, Randall L.; Tutt, James H.; DeRoo, Casey T.; Allured, Ryan; Gaskin, Jessica A.; Kolodziejczak, Jeffery J.
2018-01-01
Off-plane x-ray reflection gratings are theoretically capable of achieving high resolution and high diffraction efficiencies over the soft x-ray bandpass, making them an ideal technology to implement on upcoming x-ray spectroscopy missions. To achieve high effective area, these gratings must be aligned into grating modules. X-ray testing was performed on an aligned grating module to assess the current optical alignment methods. Results indicate that the grating module achieved the desired alignment for an upcoming x-ray spectroscopy suborbital rocket payload with modest effective area and resolving power. These tests have also outlined a pathway towards achieving the stricter alignment tolerances of future x-ray spectrometer payloads, which require improvements in alignment metrology, grating fabrication, and testing techniques.
X-ray spectroscopies studies of the 3d transition metal oxides and applications of photocatalysis
Ye, Yifan; Kapilashrami, Mukes; Chuang, Cheng-Hao; ...
2017-02-08
Some recent advances in synchrotron based x-ray spectroscopy enable materials scientists to emanate fingerprints on important materials properties, e.g., electronic, optical, structural, and magnetic properties, in real-time and under nearly real-world conditions. This characterization, then, in combination with optimized materials synthesis routes and tailored morphological properties could contribute greatly to the advances in solid-state electronics and renewable energy technologies. In connection to this, such perspective reflects the current materials research in the space of emerging energy technologies, namely photocatalysis, with a focus on transition metal oxides, mainly on the Fe 2O 3- and TiO 2-based materials.
Research in the Optical Sciences.
1984-10-01
cannot tolerate the high temperatures used for 9 conventional hard MgF, depositions. The ion beam processing led to durable films (in some cases more...sputter epitaxy techniques for the production of high-reflectivity mirrors for near-normal incidence in the x-ray-ultraviolet (X- UV ) wavelength range...codes for X- UV multilayer mirror design, (2) acquisition of a data base of optical constants in this wavelength range, (3) theoretical designs of
Telescope for x ray and gamma ray studies in astrophysics
NASA Technical Reports Server (NTRS)
Weaver, W. D.; Desai, Upendra D.
1993-01-01
Imaging of x-rays has been achieved by various methods in astrophysics, nuclear physics, medicine, and material science. A new method for imaging x-ray and gamma-ray sources avoids the limitations of previously used imaging devices. Images are formed in optical wavelengths by using mirrors or lenses to reflect and refract the incoming photons. High energy x-ray and gamma-ray photons cannot be reflected except at grazing angles and pass through lenses without being refracted. Therefore, different methods must be used to image x-ray and gamma-ray sources. Techniques using total absorption, or shadow casting, can provide images in x-rays and gamma-rays. This new method uses a coder made of a pair of Fresnel zone plates and a detector consisting of a matrix of CsI scintillators and photodiodes. The Fresnel zone plates produce Moire patterns when illuminated by an off-axis source. These Moire patterns are deconvolved using a stepped sine wave fitting or an inverse Fourier transform. This type of coder provides the capability of an instantaneous image with sub-arcminute resolution while using a detector with only a coarse position-sensitivity. A matrix of the CsI/photodiode detector elements provides the necessary coarse position-sensitivity. The CsI/photodiode detector also allows good energy resolution. This imaging system provides advantages over previously used imaging devices in both performance and efficiency.
On the X-ray spectra of luminous, inhomogeneous accretion flows
NASA Astrophysics Data System (ADS)
Merloni, A.; Malzac, J.; Fabian, A. C.; Ross, R. R.
2006-08-01
We discuss the expected X-ray spectral and variability properties of black hole accretion discs at high luminosity, under the hypothesis that radiation-pressure-dominated discs are subject to violent clumping instabilities and, as a result, have a highly inhomogeneous two-phase structure. After deriving the full accretion disc solutions explicitly in terms of the parameters of the model, we study their radiative properties both with a simple two-zone model, treatable analytically, and with radiative transfer simulations which account simultaneously for energy balance and Comptonization in the hot phase, together with reflection, reprocessing, ionization and thermal balance in the cold phase. We show that, if not only the density, but also the heating rate within these flows is inhomogeneous, then complex reflection-dominated spectra can be obtained for a high enough covering fraction of the cold phase. In general, large reflection components in the observed X-ray spectra should be associated with strong soft excesses, resulting from the combined emission of ionized atomic emission lines. The variability properties of such systems are such that, even when contributing to a large fraction of the hard X-ray spectrum, the reflection component is less variable than the power-law-like emission originating from the hot Comptonizing phase, in agreement with what is observed in many Narrow Line Seyfert 1 galaxies and bright Seyfert 1. Our model falls within the family of those trying to explain the complex X-ray spectra of bright AGN with ionized reflection, but presents an alternative, specific, physically motivated, geometrical set-up for the complex multiphase structure of the inner regions of near-Eddington accretion flows.
Fragments of the past activity of Sgr A* inferred from X-ray echoes in Sgr C
NASA Astrophysics Data System (ADS)
Chuard, D.; Terrier, R.; Goldwurm, A.; Soldi, S.; Clavel, M.; Morris, M.; Ponti, G.; Walls, M.; Chernyakova, M.
2017-10-01
Giant molecular clouds populating the central molecular zone have a high enough column density to reflect X-rays coming from strong compact sources in their neighbourhood, including possible powerful outbursts from the Galactic supermassive black hole Sgr A*. We study this reflected emission in observations of the molecular complex Sgr C made with the X-ray observatories XMM-Newton and Chandra between 2000 and 2014. We show that this complex exhibits clear variability in both space and time, which strongly favours the reflection scenario, the most likely illuminating source being Sgr A*. By comparing data to Monte-Carlo simulated reflection spectra, we are able to put the best constraints to date on the line-of-sight positions of the main bright clumps of the molecular complex. Ultimately, extending this approach by the inclusion of other molecular complexes allows us to partially reconstruct the past lightcurve of the Galactic supermassive black hole.
Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving
Shvyd’ko, Yuri; Blank, Vladimir; Terentyev, Sergey
2017-06-09
Diamond features a unique combination of outstanding physical properties perfect for numerous x-ray optics applications, where traditional materials such as silicon fail to perform. In the last two decades, impressive progress has been achieved in synthesizing diamond with high crystalline perfection, in manufacturing efficient, resilient, high-resolution, wavefront-preserving diamond optical components, and in implementing them in cutting-edge x-ray instruments. Diamond optics are essential for tailoring x-rays to the most challenging needs of x-ray research. Furthermore, they are becoming vital for the generation of fully coherent hard x-rays by seeded x-ray free-electron lasers. In this article, we review progress in manufacturing flawlessmore » diamond crystal components and their applications in diverse x-ray optical devices, such as x-ray monochromators, beam splitters, high-reflectance backscattering mirrors, lenses, phase plates, diffraction gratings, bent-crystal spectrographs, and windows.« less
NASA Astrophysics Data System (ADS)
Kubala-Kukuś, A.; Banaś, D.; Braziewicz, J.; Góźdź, S.; Majewska, U.; Pajek, M.
2007-07-01
The total reflection X-ray fluorescence method was applied to study the trace element concentrations in human breast malignant and breast benign neoplasm tissues taken from the women who were patients of Holycross Cancer Centre in Kielce (Poland). These investigations were mainly focused on the development of new possibilities of cancer diagnosis and therapy monitoring. This systematic comparative study was based on relatively large (˜ 100) population studied, namely 26 samples of breast malignant and 68 samples of breast benign neoplasm tissues. The concentrations, being in the range from a few ppb to 0.1%, were determined for thirteen elements (from P to Pb). The results were carefully analysed to investigate the concentration distribution of trace elements in the studied samples. The measurements of concentration of trace elements by total reflection X-ray fluorescence were limited, however, by the detection limit of the method. It was observed that for more than 50% of elements determined, the concentrations were not measured in all samples. These incomplete measurements were treated within the statistical concept called left-random censoring and for the estimation of the mean value and median of censored concentration distributions, the Kaplan-Meier estimator was used. For comparison of concentrations in two populations, the log-rank test was applied, which allows to compare the censored total reflection X-ray fluorescence data. Found statistically significant differences are discussed in more details. It is noted that described data analysis procedures should be the standard tool to analyze the censored concentrations of trace elements analysed by X-ray fluorescence methods.
Soft x-ray reduction camera for submicron lithography
Hawryluk, Andrew M.; Seppala, Lynn G.
1991-01-01
Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.
X-ray lithography using holographic images
Howells, Malcolm R.; Jacobsen, Chris
1995-01-01
A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.
New contrasts for x-ray imaging and synergy with optical imaging
NASA Astrophysics Data System (ADS)
Wang, Ge
2017-02-01
Due to its penetrating power, fine resolution, unique contrast, high-speed, and cost-effectiveness, x-ray imaging is one of the earliest and most popular imaging modalities in biomedical applications. Current x-ray radiographs and CT images are mostly on gray-scale, since they reflect overall energy attenuation. Recent advances in x-ray detection, contrast agent, and image reconstruction technologies have changed our perception and expectation of x-ray imaging capabilities, and generated an increasing interest in imaging biological soft tissues in terms of energy-sensitive material decomposition, phase-contrast, small angle scattering (also referred to as dark-field), x-ray fluorescence and luminescence properties. These are especially relevant to preclinical and mesoscopic studies, and potentially mendable for hybridization with optical molecular tomography. In this article, we review new x-ray imaging techniques as related to optical imaging, suggest some combined x-ray and optical imaging schemes, and discuss our ideas on micro-modulated x-ray luminescence tomography (MXLT) and x-ray modulated opto-genetics (X-Optogenetics).
Kowarik, S.; Hinderhofer, A.; Wang, C.; ...
2015-11-30
Highly crystalline and stable molecular superlattices are grown with the smallest possible stacking period using monolayers (MLs) of the organic semiconductors pentacene (PEN) and perfluoro-pentacene (PFP). Superlattice reflections in X-ray reflectivity and their energy dependence in resonant soft X-ray reflectivity measurements show that PFP and PEN MLs indeed alternate even though the coherent ordering is lost after ~ 4 ML. The observed lattice spacing of 15.9 Å in the superlattice is larger than in pure PEN and PFP films, presumably because of more upright standing molecules and lack of interdigitation between the incommensurate crystalline PEN and PFP layers. The findingsmore » are important for the development of novel organic quantum optoelectronic devices.« less
Final Report - X-ray Studies of Highly Correlated Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Clement
2017-11-27
The overall goal of the research was to improve the capabilities of x-ray synchrotron instrumentation to enable cutting-edge research in condensed matter physics. The main goal of the current grant cycle was to find a method to measure the polarization of the scattered x-ray in resonant inelastic x-ray scattering. To do this, we developed a polarization analysis apparatus using a thin, toroidally bent single crystal, which could be set to reflect one or the other of the two polarization components in the scattered x-ray beam. Resonant x-ray scattering measurements were also carried out on interfaces and the charge density wavemore » in high temperature superconducting materials.« less
Koch, Jeffrey A [Livermore, CA
2003-07-08
An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A. H.; Macrander, A. T.
Using the 1-BM-C beamline at the Advanced Photon Source (APS), we have performed the initial indirect x - ray imaging point-spread-function (PSF) test of a unique 88-mm diameter YAG:Ce single crystal of only 100 - micron thickness. The crystal was bonded to a fiber optic plat e (FOP) for mechanical support and to allow the option for FO coupling to a large format camera. This configuration resolution was compared to that of self - supported 25-mm diameter crystals, with and without an Al reflective coating. An upstream monochromator was used to select 17-keV x-rays from the broadband APS bending magnetmore » source of synchrotron radiation. The upstream , adjustable Mo collimators were then used to provide a series of x-ray source transverse sizes from 200 microns down to about 15-20 microns (FWHM) at the crystal surface. The emitted scintillator radiation was in this case lens coupled to the ANDOR Neo sCMOS camera, and the indirect x-ray images were processed offline by a MATLAB - based image processing program. Based on single Gaussian peak fits to the x-ray image projected profiles, we observed a 10.5 micron PSF. This sample thus exhibited superior spatial resolution to standard P43 polycrystalline phosphors of the same thickness which would have about a 100-micron PSF. Lastly, this single crystal resolution combined with the 88-mm diameter makes it a candidate to support future x-ray diffraction or wafer topography experiments.« less
NASA Astrophysics Data System (ADS)
Porquet, D.; Reeves, J. N.; Matt, G.; Marinucci, A.; Nardini, E.; Braito, V.; Lobban, A.; Ballantyne, D. R.; Boggs, S. E.; Christensen, F. E.; Dauser, T.; Farrah, D.; Garcia, J.; Hailey, C. J.; Harrison, F.; Stern, D.; Tortosa, A.; Ursini, F.; Zhang, W. W.
2018-01-01
Context. The physical characteristics of the material closest to supermassive black holes (SMBHs) are primarily studied through X-ray observations. However, the origins of the main X-ray components such as the soft X-ray excess, the Fe Kα line complex, and the hard X-ray excess are still hotly debated. This is particularly problematic for active galactic nuclei (AGN) showing a significant intrinsic absorption, either warm or neutral, which can severely distort the observed continuum. Therefore, AGN with no (or very weak) intrinsic absorption along the line of sight, so-called "bare AGN", are the best targets to directly probe matter very close to the SMBH. Aims: We perform an X-ray spectral analysis of the brightest and cleanest bare AGN known so far, Ark 120, in order to determine the process(es) at work in the vicinity of the SMBH. Methods: We present spectral analyses of data from an extensive campaign observing Ark 120 in X-rays with XMM-Newton (4 × 120 ks, 2014 March 18-24), and NuSTAR (65.5 ks, 2014 March 22). Results: During this very deep X-ray campaign, the source was caught in a high-flux state similar to the earlier 2003 XMM-Newton observation, and about twice as bright as the lower-flux observation in 2013. The spectral analysis confirms the "softer when brighter" behavior of Ark 120. The four XMM-Newton/pn spectra are characterized by the presence of a prominent soft X-ray excess and a significant Fe Kα complex. The continuum is very similar above about 3 keV, while significant variability is present for the soft X-ray excess. We find that relativistic reflection from a constant-density, flat accretion disk cannot simultaneously produce the soft excess, broad Fe Kα complex, and hard X-ray excess. Instead, Comptonization reproduces the broadband (0.3-79 keV) continuum well, together with a contribution from a mildly relativistic disk reflection spectrum. Conclusions: During this 2014 observational campaign, the soft X-ray spectrum of Ark 120 below 0.5 keV was found to be dominated by Comptonization of seed photons from the disk by a warm (kTe 0.5 keV), optically-thick corona (τ 9). Above this energy, the X-ray spectrum becomes dominated by Comptonization from electrons in a hot optically thin corona, while the broad Fe Kα line and the mild Compton hump result from reflection off the disk at several tens of gravitational radii.
The Ferrara hard X-ray facility for testing/calibrating hard X-ray focusing telescopes
NASA Astrophysics Data System (ADS)
Loffredo, Gianluca; Frontera, Filippo; Pellicciotta, Damiano; Pisa, Alessandro; Carassiti, Vito; Chiozzi, Stefano; Evangelisti, Federico; Landi, Luca; Melchiorri, Michele; Squerzanti, Stefano
2005-12-01
We will report on the current configuration of the X-ray facility of the University of Ferrara recently used to perform reflectivity tests of mosaic crystals and to calibrate the experiment JEM X aboard Integral. The facility is now located in the technological campus of the University of Ferrara in a new building (named LARIX laboratory= LARge Italian X-ray facility) that includes a tunnel 100 m long with, on the sides, two large experimental rooms. The facility is being improved for determining the optical axis of mosaic crystals in Laue configuration, for calibrating Laue lenses and hard X-ray mirror prototypes.
Problems for the standard black hole/accretion disk models in Cygnus X-1?
NASA Technical Reports Server (NTRS)
Done, C.; Mulchaey, J. S.; Mushotzky, R. F.; Arnaud, K. A.
1992-01-01
Archival EXOSAT and HEAO1-A2 data from Cyg X-1 show the 'high energy excess' above 10 keV seen in X-ray observations of AGN. Using a likelihood ratio test, we are for the first time able to distinguish conclusively in favor of Compton reflection rather than partial covering as the origin of the high energy excess. This supports the idea of an X-ray illuminated accretion disk in Cyg X-1, but the line equivalent width is smaller by a factor of 2-3 than that expected from such a disk. While the larger optical depth required for reflection as opposed to line emission admit the possibility of seeing line without reflection, the converse is not possible. To see a reflection spectrum, including the strong iron absorption edge, implies that strong iron emission must be observed as the line and edge are causally linked.
NASA Technical Reports Server (NTRS)
Underwood, J. H.; Barbee, T. W., Jr.
1981-01-01
The theory of X-ray diffraction by periodic structures is applied to the layered synthetic microstructures (LSMs) made possible by recent developments in thin film technology, and approximate formulas for estimating their performance are presented. A more complete computation scheme based on optical multilayer theory is also described, and it is shown that the diffracting properties may be tailored to specific applications by adjusting the refractive indices and thicknesses of the component layers. The theory may be modified to take account of imperfections in the LMS structure, and the properties of nonperiodic structures thereby computed. Structures with high integrated reflectivity constructed according to the methods defined have potential application in many areas of X-ray or EUV research and instrumentation.
NASA Technical Reports Server (NTRS)
Borgstahl, Gloria (Inventor); Lovelace, Jeff (Inventor); Snell, Edward Holmes (Inventor); Bellamy, Henry (Inventor)
2008-01-01
The present invention provides a digital topography imaging system for determining the crystalline structure of a biological macromolecule, wherein the system employs a charge coupled device (CCD) camera with antiblooming circuitry to directly convert x-ray signals to electrical signals without the use of phosphor and measures reflection profiles from the x-ray emitting source after x-rays are passed through a sample. Methods for using said system are also provided.
Aplanatic and quasi-aplanatic diffraction gratings
Hettrick, M.C.
1987-09-14
A reflection diffraction grating having a series of transverse minute grooves of progressively varying spacing along a concave surface enables use of such gratings for x-ray or longer wavelength imaging of objects. The variable groove spacing establishes aplanatism or substantially uniform magnetification across the optical aperture. The grating may be sued, for example, in x-ray microscopes or telescopes of the imaging type and in x-ray microprobed. Increased spatial resolution and field of view may be realized in x-ray imaging. 5 figs.
Saito, Norio; Cordier, Stéphane; Lemoine, Pierric; Ohsawa, Takeo; Wada, Yoshiki; Grasset, Fabien; Cross, Jeffrey S; Ohashi, Naoki
2017-06-05
The electronic and crystal structures of Cs 2 [Mo 6 X 14 ] (X = Cl, Br, I) cluster-based compounds were investigated by density functional theory (DFT) simulations and experimental methods such as powder X-ray diffraction, ultraviolet-visible spectroscopy, and X-ray photoemission spectroscopy (XPS). The experimentally determined lattice parameters were in good agreement with theoretically optimized ones, indicating the usefulness of DFT calculations for the structural investigation of these clusters. The calculated band gaps of these compounds reproduced those experimentally determined by UV-vis reflectance within an error of a few tenths of an eV. Core-level XPS and effective charge analyses indicated bonding states of the halogens changed according to their sites. The XPS valence spectra were fairly well reproduced by simulations based on the projected electron density of states weighted with cross sections of Al K α , suggesting that DFT calculations can predict the electronic properties of metal-cluster-based crystals with good accuracy.
X-ray Diffraction Crystal Calibration and Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael J. Haugh; Richard Stewart; Nathan Kugland
2009-06-05
National Security Technologies’ X-ray Laboratory is comprised of a multi-anode Manson type source and a Henke type source that incorporates a dual goniometer and XYZ translation stage. The first goniometer is used to isolate a particular spectral band. The Manson operates up to 10 kV and the Henke up to 20 kV. The Henke rotation stages and translation stages are automated. Procedures have been developed to characterize and calibrate various NIF diagnostics and their components. The diagnostics include X-ray cameras, gated imagers, streak cameras, and other X-ray imaging systems. Components that have been analyzed include filters, filter arrays, grazing incidencemore » mirrors, and various crystals, both flat and curved. Recent efforts on the Henke system are aimed at characterizing and calibrating imaging crystals and curved crystals used as the major component of an X-ray spectrometer. The presentation will concentrate on these results. The work has been done at energies ranging from 3 keV to 16 keV. The major goal was to evaluate the performance quality of the crystal for its intended application. For the imaging crystals we measured the laser beam reflection offset from the X-ray beam and the reflectivity curves. For the curved spectrometer crystal, which was a natural crystal, resolving power was critical. It was first necessary to find sources of crystals that had sufficiently narrow reflectivity curves. It was then necessary to determine which crystals retained their resolving power after being thinned and glued to a curved substrate.« less
Is HE 0436-4717 Anemic? A deep look at a bare Seyfert 1 galaxy
NASA Astrophysics Data System (ADS)
Bonson, K.; Gallo, L. C.; Vasudevan, R.
2015-06-01
A multi-epoch, multi-instrument analysis of the Seyfert 1 galaxy HE 0436-4717 is conducted using optical to X-ray data from XMM-Newton and Swift (including the Burst Alert Telescope). Fitting of the UV-to-X-ray spectral energy distribution shows little evidence of extinction and the X-ray spectral analysis does not confirm previous reports of deep absorption edges from O VIII. HE 0436-4717 is a `bare' Seyfert with negligible line-of-sight absorption making it ideal to study the central X-ray emitting region. Three scenarios were considered to describe the X-ray data: partial covering absorption, blurred reflection, and soft Comptonization. All three interpretations describe the 0.5-10.0 keV spectra well. Extrapolating the models to 100 keV results in poorer fits for the partial covering model. When also considering the rapid variability during one of the XMM-Newton observations, the blurred reflection model appears to describe all the observations in the most self-consistent manner. If adopted, the blurred reflection model requires a very low iron abundance in HE 0436-4717. We consider the possibilities that this is an artefact of the fitting process, but it appears possible that it is intrinsic to the object.
NASA Technical Reports Server (NTRS)
Eguchi, Satoshi; Ueda, Yoshihiro; Terashima, Yuichi; Mushotzky, Richard F.; Tueller, Jack
2009-01-01
We present a systematic spectral analysis with Suzaku of six AGNs detected in the Swift/BAT hard X-ray (15-200 keV) survey, Swift J0138.6-4001, J0255.2-0011, J0350.1-5019, J0505.7-2348, J0601.9-8636, and J1628.1-5145. This is considered to be a representative sample of new AGNs without X-ray spectral information before the BAT survey. We find that the 0.5-200 keV spectra of these sources can be uniformly fit with a base model consisting of heavily absorbed (log NH >23.5/sq cm) transmitted components, scattered lights, a reflection component, and an iron-K emission line. There are two distinct groups, three "new type" AGNs (including the two sources reported by Ueda et al. 2007) with an extremely small scattered fraction (f(sub scat) < 0:5%) and strong reflection component (R = omega/2pi > or equal to 0.8 where omega is the solid angle of the reflector), and three "classical type" ones with f(sub scat > 0.5% and R < or approx. 0.8. The spectral parameters suggest that the new type has an optically thick torus for Thomson scattering (N(sub H) approx. 10(exp 25)/sq cm) with a small opening angle theta approx. 20deg viewed in a rather face-on geometry, while the classical type has a thin torus (N(sub H) approx. 10(exp 23-24)/sq cm) with theta > or approx. 30deg. We infer that a significant number of new type AGNs with an edge-on view is missing in the current all-sky hard X-ray surveys. Subject headings: galaxies: active . gamma rays: observations . X-rays: galaxies . X-rays: general
NASA Technical Reports Server (NTRS)
Kellogg, E.; Brissenden, R.; Flanagan, K.; Freeman, M.; Hughes, J.; Jones, M.; Ljungberg, M.; Mckinnon, P.; Podgorski, W.; Schwartz, D.
1992-01-01
Advanced X-ray Astrophysics Facility (AXAF) X-ray optics testing is conducted by VETA-I, which consists of six nested Wolter type I grazing-incidence mirrors; VETA's X-ray Detection System (VXDS) in turn measures the imaging properties of VETA-I, yielding FWHM and encircled energy of the X-ray image obtained, as well as its effective area. VXDS contains a high resolution microchannel plate imaging X-ray detector and a pinhole scanning system in front of proportional-counter detectors. VETA-I's X-ray optics departs from the AXAF flight configuration in that it uses a temporary holding fixture; its mirror elements are not cut to final length, and are not coated with the metal film used to maximize high-energy reflection.
The changing source of X-ray reflection in the radio-intermediate Seyfert 1 galaxy III Zw 2
NASA Astrophysics Data System (ADS)
Gonzalez, A. G.; Waddell, S. G. H.; Gallo, L. C.
2018-03-01
We report on X-ray observations of the radio-intermediate, X-ray bright Seyfert 1 galaxy, III Zw 2, obtained with XMM-Newton, Suzaku, and Swift over the past 17 yr. The source brightness varies significantly over yearly time-scales, but more modestly over periods of days. Pointed observations with XMM-Newton in 2000 and Suzaku in 2011 show spectral differences despite comparable X-ray fluxes. The Suzaku spectra are consistent with a power-law continuum and a narrow Gaussian emission feature at ˜6.4 keV, whereas the earlier XMM-Newton spectrum requires a broader Gaussian profile and soft-excess below ˜2 keV. A potential interpretation is that the primary power-law emission, perhaps from a jet base, preferentially illuminates the inner accretion disc in 2000, but the distant torus in 2011. The interpretation could be consistent with the hypothesized precessing radio jet in III Zw 2 that may have originated from disc instabilities due to an ongoing merging event.
Lacquer polishing of X-ray optics
NASA Technical Reports Server (NTRS)
Catura, R. C.; Joki, E. G.; Roethig, D. T.; Brookover, W. J.
1987-01-01
Techniques for polishing figured X-ray optics by a lacquer-coating process are described. This acrylic lacquer coating has been applied with an optical quality of an eighth-wave in red light and very effectively covers surface roughness with spatial wavelengths less than about 0.2 mm. Tungsten films have been deposited on the lacquer coatings to provide highly efficient X-ray reflectivity.
X-ray tube with magnetic electron steering
Reed, Kim W.; Turman, Bobby N.; Kaye, Ronald J.; Schneider, Larry X.
2000-01-01
An X-ray tube uses a magnetic field to steer electrons. The magnetic field urges electrons toward the anode, increasing the proportion of electrons emitted from the cathode that reach desired portions of the anode and consequently contribute to X-ray production. The magnetic field also urges electrons reflected from the anode back to the anode, further increasing the efficiency of the tube.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wobrauschek, P., E-mail: wobi@ati.ac.at; Prost, J.; Ingerle, D.
2015-08-15
The extension of the detectable elemental range with Total Reflection X-ray Fluorescence (TXRF) analysis is a challenging task. In this paper, it is demonstrated how a TXRF spectrometer is modified to analyze elements from carbon to uranium. Based on the existing design of a vacuum TXRF spectrometer with a 12 specimen sample changer, the following components were renewed: the silicon drift detector with 20 mm{sup 2} active area and having a special ultra-thin polymer window allowing the detection of elements from carbon upwards. Two exchangeable X-ray sources guarantee the efficient excitation of both low and high Z elements. These X-raymore » sources were two light-weighted easily mountable 35 W air-cooled low-power tubes with Cr and Rh anodes, respectively. The air cooled tubes and the Peltier-cooled detector allowed to construct a transportable tabletop spectrometer with compact dimensions, as neither liquid nitrogen cooling for the detector nor a water cooling circuit and a bulky high voltage generator for the X-ray tubes are required. Due to the excellent background conditions as a result of the TXRF geometry, detection limits of 150 ng for C, 12 ng for F, and 3.3 ng for Na have been obtained using Cr excitation in vacuum. For Rh excitation, the detection limits of 90 pg could be achieved for Sr. Taking 10 to 20 μl of sample volume, extrapolated detection limits in the ng/g (ppb) range are resulting in terms of concentration.« less
High Reflectance Nanoscale V/Sc Multilayer for Soft X-ray Water Window Region.
Huang, Qiushi; Yi, Qiang; Cao, Zhaodong; Qi, Runze; Loch, Rolf A; Jonnard, Philippe; Wu, Meiyi; Giglia, Angelo; Li, Wenbin; Louis, Eric; Bijkerk, Fred; Zhang, Zhong; Wang, Zhanshan
2017-10-10
V/Sc multilayer is experimentally demonstrated for the first time as a high reflectance mirror for the soft X-ray water window region. It primarily works at above the Sc-L edge (λ = 3.11 nm) under near normal incidence while a second peak appears at above the V-L edge (λ = 2.42 nm) under grazing incidence. The V/Sc multilayer fabricated with a d-spacing of 1.59 nm and 30 bilayers has a smaller interface width (σ = 0.27 and 0.32 nm) than the conventional used Cr/Sc (σ = 0.28 and 0.47 nm). For V/Sc multilayer with 30 bilayers, the introduction of B 4 C barrier layers has little improvement on the interface structure. As the number of bilayers increasing to 400, the growth morphology and microstructure of the V/Sc layers evolves with slightly increased crystallization. Nevertheless, the surface roughness remains to be 0.25 nm. A maximum soft X-ray reflectance of 18.4% is measured at λ = 3.129 nm at 9° off-normal incidence using the 400-bilayers V/Sc multilayer. According to the fitted model, an s-polarization reflectance of 5.2% can also be expected at λ = 2.425 nm under 40° incidence. Based on the promising experimental results, further improvement of the reflectance can be achieved by using a more stable deposition system, exploring different interface engineering methods and so on.
Soft x-ray reduction camera for submicron lithography
Hawryluk, A.M.; Seppala, L.G.
1991-03-26
Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, Adam; Piquette, Kathryn E.; Bergmann, Uwe
Ancient Egyptian mummies were often covered with an outer casing, panels and masks made from cartonnage: a lightweight material made from linen, plaster, and recycled papyrus held together with adhesive. Egyptologists, papyrologists, and historians aim to recover and read extant text on the papyrus contained within cartonnage layers, but some methods, such as dissolving mummy casings, are destructive. The use of an advanced range of different imaging modalities was investigated to test the feasibility of non-destructive approaches applied to multi-layered papyrus found in ancient Egyptian mummy cartonnage. Eight different techniques were compared by imaging four synthetic phantoms designed to providemore » robust, well-understood, yet relevant sample standards using modern papyrus and replica inks. The techniques include optical (multispectral imaging with reflection and transillumination, and optical coherence tomography), X-ray (X-ray fluorescence imaging, X-ray fluorescence spectroscopy, X-ray micro computed tomography and phase contrast X-ray) and terahertz-based approaches. Optical imaging techniques were able to detect inks on all four phantoms, but were unable to significantly penetrate papyrus. X-ray-based techniques were sensitive to iron-based inks with excellent penetration but were not able to detect carbon-based inks. However, using terahertz imaging, it was possible to detect carbon-based inks with good penetration but with less sensitivity to iron-based inks. The phantoms allowed reliable and repeatable tests to be made at multiple sites on three continents. Finally, the tests demonstrated that each imaging modality needs to be optimised for this particular application: it is, in general, not sufficient to repurpose an existing device without modification. Furthermore, it is likely that no single imaging technique will to be able to robustly detect and enable the reading of text within ancient Egyptian mummy cartonnage. However, by carefully selecting, optimising and combining techniques, text contained within these fragile and rare artefacts may eventually be open to non-destructive imaging, identification, and interpretation.« less
Gibson, Adam; Piquette, Kathryn E.; Bergmann, Uwe; ...
2018-02-26
Ancient Egyptian mummies were often covered with an outer casing, panels and masks made from cartonnage: a lightweight material made from linen, plaster, and recycled papyrus held together with adhesive. Egyptologists, papyrologists, and historians aim to recover and read extant text on the papyrus contained within cartonnage layers, but some methods, such as dissolving mummy casings, are destructive. The use of an advanced range of different imaging modalities was investigated to test the feasibility of non-destructive approaches applied to multi-layered papyrus found in ancient Egyptian mummy cartonnage. Eight different techniques were compared by imaging four synthetic phantoms designed to providemore » robust, well-understood, yet relevant sample standards using modern papyrus and replica inks. The techniques include optical (multispectral imaging with reflection and transillumination, and optical coherence tomography), X-ray (X-ray fluorescence imaging, X-ray fluorescence spectroscopy, X-ray micro computed tomography and phase contrast X-ray) and terahertz-based approaches. Optical imaging techniques were able to detect inks on all four phantoms, but were unable to significantly penetrate papyrus. X-ray-based techniques were sensitive to iron-based inks with excellent penetration but were not able to detect carbon-based inks. However, using terahertz imaging, it was possible to detect carbon-based inks with good penetration but with less sensitivity to iron-based inks. The phantoms allowed reliable and repeatable tests to be made at multiple sites on three continents. Finally, the tests demonstrated that each imaging modality needs to be optimised for this particular application: it is, in general, not sufficient to repurpose an existing device without modification. Furthermore, it is likely that no single imaging technique will to be able to robustly detect and enable the reading of text within ancient Egyptian mummy cartonnage. However, by carefully selecting, optimising and combining techniques, text contained within these fragile and rare artefacts may eventually be open to non-destructive imaging, identification, and interpretation.« less
Experimental investigation of a HOPG crystal fan for x-ray fluorescence molecular imaging
NASA Astrophysics Data System (ADS)
Rosentreter, Tanja; Müller, Bernhard; Schlattl, Helmut; Hoeschen, Christoph
2017-03-01
Imaging x-ray fluorescence generally generates a conflict between the best image quality or highest sensitivity and lowest possible radiation dose. Consequently many experimental studies investigating the feasibility of this molecular imaging method, deal with either monochromatic x-ray sources that are not practical in clinical environment or accept high x-ray doses in order to maintain the advantage of high sensitivity and producing high quality images. In this work we present a x-ray fluorescence imaging setup using a HOPG crystal fan construction consisting of a Bragg reflecting analyzer array together with a scatter reducing radial collimator. This method allows for the use of polychromatic x-ray tubes that are in general easily accessible in contrast to monochromatic x-ray sources such as synchrotron facilities. Moreover this energy-selecting device minimizes the amount of Compton scattered photons while simultaneously increasing the fluorescence signal yield, thus significantly reducing the signal to noise ratio. The aim is to show the feasibility of this approach by measuring the Bragg reflected Kα fluorescence signal of an object containing an iodine solution using a large area detector with moderate energy resolution. Contemplating the anisotropic energy distribution of background scattered x-rays we compare the detection sensitivity, applying two different detector angular configurations. Our results show that even for large area detectors with limited energy resolution, iodine concentrations of 0.12 % can be detected. However, the potentially large scan times and therefore high radiation dose need to be decreased in further investigations.
The X-Ray Weakness of GPS Radio Galaxies: A Volume-Limited Complete Sample
NASA Technical Reports Server (NTRS)
Mushotzky, Richard F. (Technical Monitor); Siemiginowska, Aneta (Principal Investigator)
2004-01-01
The XMM observations of Mkn 668 have been analyzed. We found soft X-ray signatures of a hot plasma (kT approximately 10^7 approximately K) and a hard X-ray emission from the nucleus. The X-ray spectrum above 2.5 approximately keV is characterized by a very flat (observed photon index, Gamma approximately 0.5) power-law continuum, alongside with a strong Fe-K-alpha neutral iron fluorescent line (EW approximately 600 approximately eV). The best explanation for the origin of this high energy X-ray emission is in terms of the Compton-reflection of the nuclear emission. The primary X-ray emission is obscured by a Compton-thick (N_H approximately 10^24 approximately cm-2) matter which becomes transparent at higher energies. The observed above 2.5-keV X-rays are mostly due to reflection which is indicated by a strong Fe-K-alpha line. This represents the second hard X-ray detection of the GPS galaxy ever (the first one being 1345+125; O Dea et al. 2000). Interestingly, the both such trend is confirmed by our on going XMM-Newton observations of a larger GPS sample, it would lead us to looking into the question on how the dense nuclear environment impacts the nature and evolution of a GPS source, and more generally, on the history of radio power in the universe. The paper summarizing the results has been submitted to Astronomy and Astrophysics in December 2003.
X-rays and gamma-rays from accretion flows onto black holes in Seyferts and X-ray binaries
NASA Technical Reports Server (NTRS)
Zdziarski, Andrzej A.; Johnson, W. Neil; Poutanen, Juri; Magdziarz, Pawel; Gierlinski, Marek
1997-01-01
Observations and theoretical models of X-ray/gamma ray spectra of radio quiet Seyfert galaxies and Galactic black hole candidates are reviewed. The spectra from these objects share the following characteristics: an underlying power law with a high energy cutoff above 200 keV; a Compton reflection component with a Fe K alpha line, and a low energy absorption by intervening cold matter. The X-ray energy spectral index, alpha, is typically in the range between 0.8 and 1 in Seyfert spectra, and that of the hard state spectra of the black hole candidates Cygnus X-1 and GX 339-4 is typically between 0.6 and 0.8. The Compton reflection component corresponds with cold matter covering a solid angle of between 0.8pi and 2pi as seen from the X-ray source. The broadband spectra of both classes of sources are well fitted by Compton upscattering of soft photons in thermal plasma. The fits yield a thermal plasma temperature of 100 keV and the Thomson optical depth of 1. All the spectra presented are cut off before the electron rest energy 511 keV, indicating that electron/positron pair production is an important process.
Kurylo, Ievgen; Hamdi, Abderrahmane; Addad, Ahmed; Coffinier, Yannick
2017-01-01
We created different TiO2-based coatings on silicon nanowires (SiNWs) by using either thermal metallization or atomic layer deposition (ALD). The fabricated surfaces were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and reflectivity measurements. Surfaces with different TiO2 based coating thicknesses were then used for phosphopeptide enrichment and subsequent detection by laser desorption/ionization mass spectrometry (LDI-MS). Results showed that the best enrichment and LDI-MS detection were obtained using the silicon nanowires covered with 10 nm of oxidized Ti deposited by means of thermal evaporation. This sample was also able to perform phosphopeptide enrichment and MS detection from serum. PMID:28914806
Method for fabricating beryllium-based multilayer structures
Skulina, Kenneth M.; Bionta, Richard M.; Makowiecki, Daniel M.; Alford, Craig S.
2003-02-18
Beryllium-based multilayer structures and a process for fabricating beryllium-based multilayer mirrors, useful in the wavelength region greater than the beryllium K-edge (111 .ANG. or 11.1 nm). The process includes alternating sputter deposition of beryllium and a metal, typically from the fifth row of the periodic table, such as niobium (Nb), molybdenum (Mo), ruthenium (Ru), and rhodium (Rh). The process includes not only the method of sputtering the materials, but the industrial hygiene controls for safe handling of beryllium. The mirrors made in accordance with the process may be utilized in soft x-ray and extreme-ultraviolet projection lithography, which requires mirrors of high reflectivity (>60%) for x-rays in the range of 60-140 .ANG. (60-14.0 nm).
Development of microchannel plate x-ray optics
NASA Technical Reports Server (NTRS)
Kaaret, Philip; Chen, Andrew
1994-01-01
The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with sizes on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. An anisotropic etchant is a chemical which etches certain silicon crystal planes much more rapidly than others. Using wafers in which the slowly etched crystal planes are aligned perpendicularly to the wafer surface, it is possible to etch a pattern completely through a wafer with very little distortion. Our optics consist of rectangular pores etched completely through group of zone axes (110) oriented silicon wafers. The larger surfaces of the pores (the mirror elements) were aligned with the group of zone axes (111) planes of the crystal perpendicular to the wafer surface. We have succeeded in producing silicon lenses with a geometry suitable for 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. A significant progress was made in obtaining good optical surface quality. The RMS roughness was decreased from 110 A for our initial lenses to 30 A in the final lenses. A further factor of three improvement in surface quality is required for the production of efficient x-ray optics. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for testing the optics.
Macromolecular Topography Leaps into the Digital Age
NASA Technical Reports Server (NTRS)
Lovelace, J.; Bellamy, H.; Snell, E. H.; Borgstahl, G.
2003-01-01
A low-cost, real-time digital topography system is under development which will replace x-ray film and nuclear emulsion plates. The imaging system is based on an inexpensive surveillance camera that offers a 1000x1000 array of 8 im square pixels, anti-blooming circuitry, and very quick read out. Currently, the system directly converts x-rays to an image with no phosphor. The system is small and light and can be easily adapted to work with other crystallographic equipment. Preliminary images have been acquired of cubic insulin at the NSLS x26c beam line. NSLS x26c was configured for unfocused monochromatic radiation. Six reflections were collected with stills spaced from 0.002 to 0.001 degrees apart across the entire oscillation range that the reflections were in diffracting condition. All of the reflections were rotated to the vertical to reduce Lorentz and beam related effects. This particular CCD is designed for short exposure applications (much less than 1 sec) and so has a relatively high dark current leading to noisy raw images. The images are processed to remove background and other system noise with a multi-step approach including the use of wavelets, histogram, and mean window filtering. After processing, animations were constructed with the corresponding reflection profile to show the diffraction of the crystal volume vs. the oscillation angle as well as composite images showing the parts of the crystal with the strongest diffraction for each reflection. The final goal is to correlate features seen in reflection profiles captured with fine phi slicing to those seen in the topography images. With this development macromolecular topography finally comes into the digital age.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Kaya; Hailey, Charles J.; Perez, Kerstin
2015-12-01
We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456–2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ∼ 1.3–2.3 up to ∼50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4more » keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (∼10{sup 23} cm{sup −2}), primary X-ray spectra (power-laws with Γ ∼ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to L{sub X} ≳ 10{sup 38} erg s{sup −1}. Above ∼20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95–0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses M{sub WD} ∼ 0.9 M{sub ⊙}. Spectral energy distribution analysis suggests that G359.95–0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745–290, strongly favoring a leptonic origin of the GC TeV emission.« less
Projection x-ray topography system at 1-BM x-ray optics test beamline at the advanced photon source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Liu, Zunping; Trakhtenberg, Emil
2016-07-27
Projection X-ray topography of single crystals is a classic technique for the evaluation of intrinsic crystal quality of large crystals. In this technique a crystal sample and an area detector (e.g., X-ray film) collecting intensity of a chosen crystallographic reflection are translated simultaneously across an X-ray beam collimated in the diffraction scattering plane (e.g., [1, 2]). A bending magnet beamline of a third-generation synchrotron source delivering x-ray beam with a large horizontal divergence, and therefore, a large horizontal beam size at a crystal sample position offers an opportunity to obtain X-ray topographs of large crystalline samples (e.g., 6-inch wafers) inmore » just a few exposures. Here we report projection X-ray topography system implemented recently at 1-BM beamline of the Advanced Photon Source. A selected X-ray topograph of a 6-inch wafer of 4H-SiC illustrates capabilities and limitations of the technique.« less
Crystal Structure, Magnetic and Optical Properties of Mn-Doped BiFeO₃ by Hydrothermal Synthesis.
Zhang, Ning; Wei, Qinhua; Qin, Laishun; Chen, Da; Chen, Zhi; Niu, Feng; Wang, Jiangying; Huanag, Yuexiang
2017-01-01
In this paper, Mn doped BiFeO₃ were firstly synthesized by hydrothermal process. The influence of Mn doping on structural, optical and magnetic properties of BiFeO₃ was studied. The different amounts of Mn doping in BiFeO₃ were characterized by X-ray diffraction, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscope, UV-Vis diffuse reflectance spectroscopy and magnetic measurements. The X-ray diffraction (XRD) patterns confirmed the formation of pure phase rhombohedral structure in BiFe(1−x) Mn (x) O₃ (x = 0.01, 0.03, 0.05, 0.07) samples. The morphologies and chemical compositions of as-prepared samples could be observed by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscope (EDS). A relative large saturated magnetization (Ms) of 0.53 emu/g for x = 0.07 sample was obtained at room temperature, which is considered to be Mn ions doping. UV-Vis diffuse reflectance spectroscopy showed strong absorption of light in the range of 200–1000 nm, indicating the optical band gap in the visible region for these samples. This implied that BiFe(1−x) Mn(x)O₃ may be a potential photocatalyst for utilizing solar energy.
Insights on the X-ray weak quasar phenomenon from XMM-Newton monitoring of PHL 1092
NASA Astrophysics Data System (ADS)
Miniutti, G.; Brandt, W. N.; Schneider, D. P.; Fabian, A. C.; Gallo, L. C.; Boller, Th.
2012-09-01
PHL 1092 is a z ˜ 0.4 high-luminosity counterpart of the class of Narrow-Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ˜260 with respect to a previous observation performed 4.5 yr earlier. The ultraviolet (UV) flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope αox from -1.57 to -2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with three further XMM-Newton observations, producing a simultaneous UV and X-ray data base spanning almost 10 yr in total in the activity of the source. Our monitoring programme demonstrates that the αox variability in PHL 1092 is entirely driven by long-term X-ray flux changes. We apply a series of physically motivated models with the goal of explaining the UV-to-X-ray spectral energy distribution and the extreme X-ray and αox variability. We consider three possible models. (i) A breathing corona scenario in which the size of the X-ray-emitting corona is correlated with the X-ray flux. In this case, the lowest X-ray flux states of PHL 1092 are associated with an almost complete collapse of the X-ray corona down to the marginal stable orbit. (ii) An absorption scenario in which the X-ray flux variability is entirely due to intervening absorption. If so, PHL 1092 is a quasar with standard X-ray output for its optical luminosity, appearing as X-ray weak at times due to absorption. (iii) A disc-reflection-dominated scenario in which the X-ray-emitting corona is confined within a few gravitational radii from the black hole at all times. In this case, the intrinsic variability of PHL 1092 only needs to be a factor of ˜10 rather than the observed factor of ˜260. We discuss these scenarios in the context of non-BAL X-ray weak quasars.
Anomalous X-Ray Reflectivity Characterization of Ion Distribution at Biomimetic Membranes
NASA Astrophysics Data System (ADS)
Vaknin, David; Krüger, Peter; Lösche, Mathias
2003-05-01
Anomalous x-ray reflectivity measurements provides detailed information on ion binding to biomembrane surfaces. Using a monochromatic beam tuned to various x-ray energies at the Argonne National Laboratory Advanced Photon Source and utilizing a newly commissioned x-ray liquid surfaces reflectometer, measurements at and away from ion absorption edges allow determination of the distribution of these ions as they accumulate near lipid membranes. As a model, the interaction of Ba2+ ions with DMPA- (1,2-dimyristoyl-sn-glycero-3-phosphatidic acid) monolayers at the aqueous surface is studied. We find an unexpectedly large concentration of barium at the interface, ≈1.5 per DMPA-, forming a Stern layer of bound ions and a cloud of less densely bound ions near the lipid headgroups. This result can be understood only if one assumes that bound cations are partially speciated, e.g., as BaOH+.
Dual-detector X-ray fluorescence imaging of ancient artifacts with surface relief
Smilgies, Detlef-M.; Powers, Judson A.; Bilderback, Donald H.; Thorne, Robert E.
2012-01-01
Interpretation of X-ray fluorescence images of archeological artifacts is complicated by the presence of surface relief and roughness. Using two symmetrically arranged fluorescence detectors in a back-reflection geometry, the proper X-ray fluorescence yield can be distinguished from intensity variations caused by surface topography. This technique has been applied to the study of Roman inscriptions on marble. PMID:22713888
JMFA2—a graphically interactive Java program that fits microfibril angle X-ray diffraction data
Steve P. Verrill; David E. Kretschmann; Victoria L. Herian
2006-01-01
X-ray diffraction techniques have the potential to decrease the time required to determine microfibril angles dramatically. In this paper, we discuss the latest version of a curve-fitting toll that permits us to reduce the time required to evaluate MFA X-ray diffraction patterns. Further, because this tool reflects the underlying physics more accurately than existing...
Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors
NASA Technical Reports Server (NTRS)
Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B.; Allen, Maxwell J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C., Jr.
1991-01-01
The Multispectral Solar Telescope Array is a rocket-borne observatory which encompasses seven compact soft X-ray/EUV, multilayer-coated, and two compact far-UV, interference film-coated, Cassegrain and Ritchey-Chretien telescopes. Extensive measurements are presented on the efficiency and spectral bandpass of the X-ray/EUV telescopes. Attention is given to systematic errors and measurement errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Michael E.
X-ray diffraction from macromolecular crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering reflects the mean electron density in the unit cells of the crystal. The diffuse scattering arises from correlations in the variations of electron density that may occur from one unit cell to another, and therefore contains information about collective motions in proteins.
Effect of enhanced x-ray flux on the ionosphere over Cyprus during solar flares
NASA Astrophysics Data System (ADS)
Mostafa, Md. Golam; Haralambous, Haris
2015-06-01
In this work we study the effect of solar flares on the ionosphere over Cyprus. Solar flares are impulsive solar activity events usually coupled with Coronal Mass Ejection (CME). The arrival and the subsequent impact of solar flares on geospace, following an eruption on the Sun's surface is almost immediate (around 9 min) whereas the impact of CMEs is rather delayed (2-3 days) as the former is based on X-ray radiation whereas the latter phenomenon is related with particles and magnetic fields travelling at lower speeds via the Solar Wind. The penetration of X-rays down to the Dregion following such an event enhances the electron density. This increase can be monitored by ionosondes, which measure the electron density up to the maximum electron density NmF2. The significance of this increase lies on the increase of signal absorption causing limited window of operating frequencies for HF communications. In this study the effect of enhanced X-ray flux on the ionosphere over Cyprus during solar flares has been investigated. To establish the correlation and extent of impact on different layers, data of X-ray intensity from Geostationary Operational Environmental Satellite (GOES) and ionospheric characteristics (D & F layer) over Nicosia station (35° N, 33° E) were examined for all solar flares during the period 2011-2014. The analysis revealed a positive and good correlation between frequency of minimum reflection, fmin and X-ray intensity for D layer demonstrating that X-rays play a dominant role in the ionization of lower ionosphere. Hence, X-ray flux can be used as a good proxy for studying the solar flare effects on lower ionosphere. The correlation coefficient between maximum electron density of F layer, NmF2 and X-ray intensity was found to be poor.
Hercules X-1: Spectral Variability of an X-Ray Pulsar in a Stellar Binary System. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Pravdo, S. H.
1976-01-01
A cosmic X-ray spectroscopy experiment onboard the Orbiting Solar Observatory 8 (OSO-8), observed Her x-1 continuously for approximately 8 days. Spectral-temporal correlations of the X-ray emission were obtained. The major results concern observations of: (1) iron band emission, (2) spectral hardening (increase in effective x-ray temperature) within the X-ray pulse, and (3) a transition from an X-ray low state to a high state. The spectrum obtained prior to the high state can be interpreted as reflected emission from a hot coronal gas surrounding an accretion disk, which itself shields the primary X-ray source from the line of sight during the low state. The spectral hardening within the X-ray pulse was indicative of the beaming mechanism at the neutron star surface. The hardest spectrum by pulse phase was identified with the line of sight close to the Her x-1 magnetic dipole axis, and the X-ray pencil beam become harder with decreasing angle between the line of sight and the dipole axis.
NASA Astrophysics Data System (ADS)
Lenhart, Joseph L.; Fischer, Daniel; Sambasivan, Sharadha; Lin, Eric K.; Wu, Wen-Li; Guerrero, Douglas J.; Wang, Yubao; Puligadda, Rama
2007-02-01
Interactions between a bottom anti-reflective coating (BARC) and a photoresist can critically impact lithographic patterns. For example, a lithographic pattern can shrink or spread near a BARC interface, a process called undercutting or footing respectively, due to incompatibility between the two materials. Experiments were conducted on two industrial BARC coatings in an effort to determine the impact of BARC surface chemistry on the footing and undercutting phenomena. The BARC coatings were characterized by near edge X-ray absorption fine structure (NEXAFS), contact angle measurements, and neutron and X-ray reflectivity. Contact angle measurement using a variety of fluids showed that the fluid contact angles were independent of the type of BARC coating or the BARC processing temperature. NEXAFS measurements showed that the surface chemistry of each BARC was also independent of the processing temperature. These results suggest that acid-base interactions at the BARC-resist interface are not the cause of the footing-undercutting phenomena encountered in lithographic patterns.
NASA Astrophysics Data System (ADS)
Allured, Ryan; Okajima, Takashi; Soufli, Regina; Fernández-Perea, Mónica; Daly, Ryan O.; Marlowe, Hannah; Griffiths, Scott T.; Pivovaroff, Michael J.; Kaaret, Philip
2012-10-01
The Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission is designed to measure the linear polarization of astrophysical sources in a narrow band centered at about 500 eV. X-rays are focused by Wolter I mirrors through a 4.5 m focal length to a time projection chamber (TPC) polarimeter, sensitive between 2{10 keV. In this optical path lies the BRP multilayer reflector at a nominal 45 degree incidence angle. The reflector reflects soft X-rays to the BRP detector and transmits hard X-rays to the TPC. As the spacecraft rotates about the optical axis, the reflected count rate will vary depending on the polarization of the incident beam. However, false polarization signals may be produced due to misalignments and spacecraft pointing wobble. Monte-Carlo simulations have been carried out, showing that the false modulation is below the statistical uncertainties for the expected focal plane offsets of < 2 mm.
Simulation of X-ray transient absorption for following vibrations in coherently ionized F2 molecules
NASA Astrophysics Data System (ADS)
Dutoi, Anthony D.; Leone, Stephen R.
2017-01-01
Femtosecond and attosecond X-ray transient absorption experiments are becoming increasingly sophisticated tools for probing nuclear dynamics. In this work, we explore and develop theoretical tools needed for interpretation of such spectra,in order to characterize the vibrational coherences that result from ionizing a molecule in a strong IR field. Ab initio data for F2 is combined with simulations of nuclear dynamics, in order to simulate time-resolved X-ray absorption spectra for vibrational wavepackets after coherent ionization at 0 K and at finite temperature. Dihalogens pose rather difficult electronic structure problems, and the issues encountered in this work will be reflective of those encountered with any core-valence excitation simulation when a bond is breaking. The simulations reveal a strong dependence of the X-ray absorption maximum on the locations of the vibrational wave packets. A Fourier transform of the simulated signal shows features at the overtone frequencies of both the neutral and the cation, which reflect spatial interferences of the vibrational eigenstates. This provides a direct path for implementing ultrafast X-ray spectroscopic methods to visualize coherent nuclear dynamics.
Borgese, L; Salmistraro, M; Gianoncelli, A; Zacco, A; Lucchini, R; Zimmerman, N; Pisani, L; Siviero, G; Depero, L E; Bontempi, E
2012-01-30
This work is presented as an improvement of a recently introduced method for airborne particulate matter (PM) filter analysis [1]. X-ray standing wave (XSW) and total reflection X-ray fluorescence (TXRF) were performed with a new dedicated laboratory instrumentation. The main advantage of performing both XSW and TXRF, is the possibility to distinguish the nature of the sample: if it is a small droplet dry residue, a thin film like or a bulk sample. Another advantage is related to the possibility to select the angle of total reflection to make TXRF measurements. Finally, the possibility to switch the X-ray source allows to measure with more accuracy lighter and heavier elements (with a change in X-ray anode, for example from Mo to Cu). The aim of the present study is to lay the theoretical foundation of the new proposed method for airborne PM filters quantitative analysis improving the accuracy and efficiency of quantification by means of an external standard. The theoretical model presented and discussed demonstrated that airborne PM filters can be considered as thin layers. A set of reference samples is prepared in laboratory and used to obtain a calibration curve. Our results demonstrate that the proposed method for quantitative analysis of air PM filters is affordable and reliable without the necessity to digest filters to obtain quantitative chemical analysis, and that the use of XSW improve the accuracy of TXRF analysis. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mallick, L.; Alston, W. N.; Parker, M. L.; Fabian, A. C.; Pinto, C.; Dewangan, G. C.; Markowitz, A.; Gandhi, P.; Kembhavi, A. K.; Misra, R.
2018-06-01
We present the first results from a detailed spectral-timing analysis of a long (˜130 ks) XMM-Newton observation and quasi-simultaneous NuSTAR and Swift observations of the highly-accreting narrow-line Seyfert 1 galaxy Mrk 1044. The broadband (0.3-50 keV) spectrum reveals the presence of a strong soft X-ray excess emission below ˜1.5 keV, iron Kα emission complex at ˜6 -7 keV and a `Compton hump' at ˜15 -30 keV. We find that the relativistic reflection from a high-density accretion disc with a broken power-law emissivity profile can simultaneously explain the soft X-ray excess, highly ionized broad iron line and the Compton hump. At low frequencies ([2 - 6] × 10-5 Hz), the power-law continuum dominated 1.5-5 keV band lags behind the reflection dominated 0.3-1 keV band, which is explained with a combination of propagation fluctuation and Comptonization processes, while at higher frequencies ([1 - 2] × 10-4 Hz), we detect a soft lag which is interpreted as a signature of X-ray reverberation from the accretion disc. The fractional root-mean-squared (rms) variability of the source decreases with energy and is well described by two variable components: a less variable relativistic disc reflection and a more variable direct coronal emission. Our combined spectral-timing analyses suggest that the observed broadband X-ray variability of Mrk 1044 is mainly driven by variations in the location or geometry of the optically thin, hot corona.
Is there a UV/X-ray connection in IRAS 13224-3809?
NASA Astrophysics Data System (ADS)
Buisson, D. J. K.; Lohfink, A. M.; Alston, W. N.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; De Marco, B.; Fabian, A. C.; Gallo, L. C.; García, J. A.; Jiang, J.; Kara, E.; Middleton, M. J.; Miniutti, G.; Parker, M. L.; Pinto, C.; Uttley, P.; Walton, D. J.; Wilkins, D. R.
2018-04-01
We present results from the optical, ultraviolet, and X-ray monitoring of the NLS1 galaxy IRAS 13224-3809 taken with Swift and XMM-Newton during 2016. IRAS 13224-3809 is the most variable bright AGN in the X-ray sky and shows strong X-ray reflection, implying that the X-rays strongly illuminate the inner disc. Therefore, it is a good candidate to study the relationship between coronal X-ray and disc UV emission. However, we find no correlation between the X-ray and UV flux over the available ˜40 d monitoring, despite the presence of strong X-ray variability and the variable part of the UV spectrum being consistent with irradiation of a standard thin disc. This means either that the X-ray flux which irradiates the UV emitting outer disc does not correlate with the X-ray flux in our line of sight and/or that another process drives the majority of the UV variability. The former case may be due to changes in coronal geometry, absorption or scattering between the corona and the disc.
NASA Astrophysics Data System (ADS)
Ro, Hyun Wook; Jones, Ronald L.; Peng, Huagen; Lee, Hae-Jeong; Lin, Eric K.; Karim, Alamgir; Yoon, Do Y.; Gidley, David W.; Soles, Christopher L.
2008-03-01
Direct patterning of low-dielectric constant (low-k) materials via nanoimprint lithography (NIL) has the potential to simplify fabrication processes and significantly reduce the manufacturing costs for semiconductor devices. We report direct imprinting of sub-100 nm features into a high modulus methylsilsesquioxane-based organosilicate glass (OSG) material. An excellent fidelity of the pattern transfer process is quantified with nm precision using critical dimension small angle X-ray scattering (CD-SAXS) and specular X-ray reflectivity (SXR). X-ray porosimetry (XRP) and positron annihilation lifetime spectroscopy (PALS) measurements indicate that imprinting increases the inherent microporosity of the methylsilsequioxane-based OSG material. When a porogen (pore generating material) is added, imprinting decreases the population of mesopores associated with the porogen while retaining the enhanced microporosity. The net effect is a decrease the pore interconnectivity. There is also evidence for a sealing effect that is interpreted as an imprint induced dense skin at the surface of the porous pattern.
Zheng, S; Strzalka, J; Ma, C; Opella, S J; Ocko, B M; Blasie, J K
2001-01-01
Vpu is an 81 amino acid integral membrane protein encoded by the HIV-1 genome with a N-terminal hydrophobic domain and a C-terminal hydrophilic domain. It enhances the release of virus from the infected cell and triggers degradation of the virus receptor CD4. Langmuir monolayers of mixtures of Vpu and the phospholipid 1,2-dilignoceroyl-sn-glycero-3-phosphocholine (DLgPC) at the water-air interface were studied by synchrotron radiation-based x-ray reflectivity over a range of mole ratios at constant surface pressure and for several surface pressures at a maximal mole ratio of Vpu/DLgPC. Analysis of the x-ray reflectivity data by both slab model-refinement and model-independent box-refinement methods firmly establish the monolayer electron density profiles. The electron density profiles as a function of increasing Vpu/DLgPC mole ratio at a constant, relatively high surface pressure indicated that the amphipathic helices of the cytoplasmic domain lie on the surface of the phospholipid headgroups and the hydrophobic transmembrane helix is oriented approximately normal to the plane of monolayer within the phospholipid hydrocarbon chain layer. At maximal Vpu/DLgPC mole ratio, the tilt of the transmembrane helix with respect to the monolayer normal decreases with increasing surface pressure and the conformation of the cytoplasmic domain varies substantially with surface pressure. PMID:11259297
An Iwasawa-Taniguchi effect for Compton-thick active galactic nuclei
NASA Astrophysics Data System (ADS)
Boorman, Peter G.; Gandhi, Poshak; Baloković, Mislav; Brightman, Murray; Harrison, Fiona; Ricci, Claudio; Stern, Daniel
2018-07-01
We present the first study of an Iwasawa-Taniguchi/`X-ray Baldwin' effect for Compton-thick active galactic nuclei (AGN). We report a statistically significant anticorrelation between the rest-frame equivalent width (EW) of the narrow core of the neutral Fe Kα fluorescence emission line, ubiquitously observed in the reflection spectra of obscured AGN, and the mid-infrared 12 μ m continuum luminosity (taken as a proxy for the bolometric AGN luminosity). Our sample consists of 72 Compton-thick AGN selected from pointed and deep-field observations covering a redshift range of z ˜ 0.0014-3.7. We employ a Monte Carlo-based fitting method, which returns a Spearman's Rank correlation coefficient of ρ = - 0.28 ± 0.12, significant to 98.7 per cent confidence. The best-fitting found is log(EW_{Fe Kα }) ∝ -0.08± 0.04 log(L_{12 {μ } m}), which is consistent with multiple studies of the X-ray Baldwin effect for unobscured and mildly obscured AGN. This is an unexpected result, as the Fe Kα line is conventionally thought to originate from the same region as the underlying reflection continuum, which together constitute the reflection spectrum. We discuss the implications this could have if confirmed on larger samples, including a systematic underestimation of the line-of-sight X-ray obscuring column density and hence the intrinsic luminosities and growth rates for the most luminous AGN.
Layer-by-layer design method for soft-X-ray multilayers
NASA Technical Reports Server (NTRS)
Yamamoto, Masaki; Namioka, Takeshi
1992-01-01
A new design method effective for a nontransparent system has been developed for soft-X-ray multilayers with the aid of graphic representation of the complex amplitude reflectance in a Gaussian plane. The method provides an effective means of attaining the absolute maximum reflectance on a layer-by-layer basis and also gives clear insight into the evolution of the amplitude reflectance on a multilayer as it builds up. An optical criterion is derived for the selection of a proper pair of materials needed for designing a high-reflectance multilayer. Some examples are given to illustrate the usefulness of this design method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Chia-Ying; Cackett, Edward M.; Miller, Jon M.
Broad Fe K emission lines have been widely observed in the X-ray spectra of black hole systems as well as in neutron star systems. The intrinsically narrow Fe K fluorescent line is generally believed to be part of the reflection spectrum originating in an illuminated accretion disk which is broadened by strong relativistic effects. However, the nature of the lines in neutron star low-mass X-ray binaries (LMXBs) has been a matter of debate. We therefore obtained the longest, high-resolution X-ray spectrum of a neutron star LMXB to date with a 300 ks Chandra High Energy Transmission Grating Spectrometer (HETGS) observationmore » of Serpens X-1. The observation was taken under the “continuous clocking” mode, and thus was free of photon pile-up effects. We carry out a systematic analysis and find that the blurred reflection model fits the Fe line of Serpens X-1 significantly better than a broad Gaussian component does, implying that the relativistic reflection scenario is much preferred. Chandra HETGS also provides a highest spectral resolution view of the Fe K region and we find no strong evidence for additional narrow lines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.
We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spinmore » $$a\\gt 0.9$$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.« less
NASA Astrophysics Data System (ADS)
Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Dauser, T.; Elvis, M.; Fabian, A. C.; Fuerst, F.; García, J.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Madejski, G.; Marinucci, A.; Matt, G.; Reynolds, C. S.; Stern, D.; Walton, D. J.; Zoghbi, A.
2015-06-01
We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin a\\gt 0.9 accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.
The broad-band x ray spectral variability of Mkn 841
NASA Technical Reports Server (NTRS)
George, I. M.; Nandra, K.; Fabian, A. C.; Turner, T. J.; Done, C.; Day, C. S. R.
1992-01-01
The results of a detailed spectral analysis of four X-ray observations of the luminous Seyfert 1.5 galaxy Mkn 841 performed using the EXOSAT and Ginga satellites over the period June 1984 to July 1990 are reported. Preliminary results from a short ROSAT PSPC observation of Mkn 841 in July 1990 are also presented. Variability is apparent in both the soft (0.1-1.0 keV) and medium (1-20 keV) energy bands. Above 1 keV, the spectra are adequately modelled by a power-law with a strong emission line of equivalent width approximately 450 eV. The energy of the line (approximately 6.4 keV) is indicative of K-shell fluorescence from neutral iron, leading to the interpretation that the line arises via X-ray illumination of cold material surrounding the source. In addition to the flux variability, the continuum shape also changes in a dramatic fashion, with variations in the apparent photon index Delta(Gamma) approximately 0.6. The large equivalent width of the emission line clearly indicates a strongly enhanced reflection component in the source, compared to other Seyferts observed with Ginga. The spectral changes are interpreted in terms of a variable power-law continuum superimposed on a flatter reflection component. For one Ginga observation, the reflected flux appears to dominate the medium energy X-ray emission, resulting in an unusually flat slope (Gamma approximately 1.0). The soft X-ray excess is found to be highly variable by a factor approximately 10. These variations are not correlated with the hard flux, but it seems likely that the soft component arises via reprocessing of the hard X-rays. We find no evidence for intrinsic absorption, with the equivalent hydrogen column density constrained to be less than or equal to few x 10(exp 20) cm(exp -2). The implications of these results for physical models for the emission regions in this and other X-ray bright Seyferts are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mou, Q.; Benmore, C. J.; Yarger, J. L.
2015-06-01
XISF is a MATLAB program developed to separate intermolecular structure factors from total X-ray scattering structure factors for molecular liquids and amorphous solids. The program is built on a trust-region-reflective optimization routine with the r.m.s. deviations of atoms physically constrained. XISF has been optimized for performance and can separate intermolecular structure factors of complex molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mou, Q.; Benmore, C. J.; Yarger, J. L.
2015-05-09
XISFis a MATLAB program developed to separate intermolecular structure factors from total X-ray scattering structure factors for molecular liquids and amorphous solids. The program is built on a trust-region-reflective optimization routine with the r.m.s. deviations of atoms physically constrained.XISFhas been optimized for performance and can separate intermolecular structure factors of complex molecules.
Development and production of a multilayer-coated x-ray reflecting stack for the Athena mission
NASA Astrophysics Data System (ADS)
Massahi, S.; Ferreira, D. D. M.; Christensen, F. E.; Shortt, B.; Girou, D. A.; Collon, M.; Landgraf, B.; Barriere, N.; Krumrey, M.; Cibik, L.; Schreiber, S.
2016-07-01
The Advanced Telescope for High-Energy Astrophysics, Athena, selected as the European Space Agency's second large-mission, is based on the novel Silicon Pore Optics X-ray mirror technology. DTU Space has been working for several years on the development of multilayer coatings on the Silicon Pore Optics in an effort to optimize the throughput of the Athena optics. A linearly graded Ir/B4C multilayer has been deposited on the mirrors, via the direct current magnetron sputtering technique, at DTU Space. This specific multilayer, has through simulations, been demonstrated to produce the highest reflectivity at 6 keV, which is a goal for the scientific objectives of the mission. A critical aspect of the coating process concerns the use of photolithography techniques upon which we will present the most recent developments in particular related to the cleanliness of the plates. Experiments regarding the lift-off and stacking of the mirrors have been performed and the results obtained will be presented. Furthermore, characterization of the deposited thin-films was performed with X-ray reflectometry at DTU Space and in the laboratory of the Physikalisch-Technische Bundesanstalt at the synchrotron radiation facility BESSY II.
Compton Reflection in AGN with Simbol-X
NASA Astrophysics Data System (ADS)
Beckmann, V.; Courvoisier, T. J.-L.; Gehrels, N.; Lubiński, P.; Malzac, J.; Petrucci, P. O.; Shrader, C. R.; Soldi, S.
2009-05-01
AGN exhibit complex hard X-ray spectra. Our current understanding is that the emission is dominated by inverse Compton processes which take place in the corona above the accretion disk, and that absorption and reflection in a distant absorber play a major role. These processes can be directly observed through the shape of the continuum, the Compton reflection hump around 30 keV, and the iron fluorescence line at 6.4 keV. We demonstrate the capabilities of Simbol-X to constrain complex models for cases like MCG-05-23-016, NGC 4151, NGC 2110, and NGC 4051 in short (10 ksec) observations. We compare the simulations with recent observations on these sources by INTEGRAL, Swift and Suzaku. Constraining reflection models for AGN with Simbol-X will help us to get a clear view of the processes and geometry near to the central engine in AGN, and will give insight to which sources are responsible for the Cosmic X-ray background at energies >20 keV.
Complex optical/UV and X-ray variability of the Seyfert 1 galaxy 1H 0419-577
NASA Astrophysics Data System (ADS)
Pal, Main; Dewangan, Gulab C.; Kembhavi, Ajit K.; Misra, Ranjeev; Naik, Sachindra
2018-01-01
We present detailed broad-band UV/optical to X-ray spectral variability of the Seyfert 1 galaxy 1H 0419-577 using six XMM-Newton observations performed during 2002-2003. These observations covered a large amplitude variability event in which the soft X-ray (0.3-2 keV) count rate increased by a factor of ∼4 in six months. The X-ray spectra during the variability are well described by a model consisting of a primary power law, blurred and distant reflection. The 2-10 keV power-law flux varied by a factor of ∼7 while the 0.3-2 keV soft X-ray excess flux derived from the blurred reflection component varied only by a factor of ∼2. The variability event was also observed in the optical and UV bands but the variability amplitudes were only at the 6-10 per cent level. The variations in the optical and UV bands appear to follow the variations in the X-ray band. During the rising phase, the optical bands appear to lag behind the UV band but during the declining phase, the optical bands appear to lead the UV band. Such behaviour is not expected in the reprocessing models where the optical/UV emission is the result of reprocessing of X-ray emission in the accretion disc. The delayed contribution of the broad emission lines in the UV band or the changes in the accretion disc/corona geometry combined with X-ray reprocessing may give rise to the observed behaviour of the variations.
Development of High Resolution Hard X-Ray Telescope with Multilayer Coatings
NASA Technical Reports Server (NTRS)
Brinton, John C. (Technical Monitor); Gorenstein, Paul
2004-01-01
The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i .e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well.
Hard x-ray characterization of a HEFT single-reflection prototype
NASA Astrophysics Data System (ADS)
Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Jimenez-Garate, Mario A.; Windt, David L.; Harrison, Fiona A.; Mao, Peter H.; Ziegler, Eric; Honkimaki, Veijo; Sanchez del Rio, Manuel; Freund, Andreas K.; Ohler, M.
2000-07-01
We have measured the hard X-ray reflectivity and imaging performance from depth graded W/Si multilayer coated mirror segments mounted in a single reflection cylindrical prototype for the hard X-ray telescopes to be flown on the High Energy Focusing Telescope (HEFT) balloon mission. Data have been obtained in the energy range from 18 - 170 keV at the European Synchrotron Radiation Facility and at the Danish Space Research Institute at 8 keV. The modeling of the reflectivity data demonstrate that the multilayer structure can be well described by the intended power law distribution of the bilayer thicknesses optimized for the telescope performance and we find that all the data is consistent with an interfacial width of 4.5 angstroms. We have also demonstrated that the required 5% uniformity of the coatings is obtained over the mirror surface and we have shown that it is feasible to use similar W/Si coatings for much higher energies than the nominal energy range of HEFT leading the way for designing Gamma-ray telescopes for future astronomical applications. Finally we have demonstrate 35 arcsecond Half Power Diameter imaging performance of the one bounce prototype throughout the energy range of the HEFT telescopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brummer, Gordie, E-mail: gbrummer@bu.edu; Photonics Center, Boston University, Boston, Massachusetts 02215; Nothern, Denis
Distributed Bragg reflectors (DBRs) with peak reflectivity at approximately 280 nm, based on compositionally graded Al{sub x}Ga{sub 1−x}N alloys, were grown on 6H-SiC substrates by plasma-assisted molecular beam epitaxy. DBRs with square, sinusoidal, triangular, and sawtooth composition profiles were designed with the transfer matrix method. The crystal structure of these DBRs was studied with high-resolution x-ray diffraction of the (1{sup ¯}015) reciprocal lattice point. The periodicity of the DBR profiles was confirmed with cross-sectional Z-contrast scanning transmission electron microscopy. The peak reflectance of these DBRs with 15.5 periods varies from 77% to 56% with corresponding full width at half maximum ofmore » 17–14 nm. Coupled mode analysis was used to explain the dependence of the reflectivity characteristics on the profile of the graded composition.« less
Abe, Hiroshi; Hamaya, Nozomu; Koyama, Yoshihiro; Kishimura, Hiroaki; Takekiyo, Takahiro; Yoshimura, Yukihiro; Wakabayashi, Daisuke; Funamori, Nobumasa; Matsuishi, Kiyoto
2018-04-23
The Bragg reflections of 1-decyl-3-methylimidazolium chloride ([C 10 mim][Cl]), a room-temperature ionic liquid, are observed in a lowly scattered wavevector (q) region using high-pressure (HP) small-angle X-ray scattering methods. The HP crystal of [C 10 mim][Cl] was characterized by an extremely long periodic structure. The peak position at the lowest q (1.4 nm -1 ) was different from that of the prepeak observed in the liquid state (2.3 nm -1 ). Simultaneously, Bragg reflections at high-q were detected using HP wide-angle X-ray scattering. The longest lattice constant was estimated to be 4.3 nm using structural analysis. The crystal structure of HP differed from that of the low-temperature (LT) crystal and the LT liquid crystal. With increasing pressure, Bragg reflections in the high-q component became much broader, and were accompanied by phase transition, although those in the low-q component were observed to be relatively sharp. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bergese, P.; Bontempi, E.; Depero, L. E.
2006-10-01
X-ray reflectivity (XRR) is a non-destructive, accurate and fast technique for evaluating film density. Indeed, sample-goniometer alignment is a critical experimental factor and the overriding error source in XRR density determination. With commercial single-wavelength X-ray reflectometers, alignment is difficult to control and strongly depends on the operator. In the present work, the contribution of misalignment on density evaluation error is discussed, and a novel procedure (named XRR-density evaluation or XRR-DE method) to minimize the problem will be presented. The method allows to overcome the alignment step through the extrapolation of the correct density value from appropriate non-specular XRR data sets. This procedure is operator independent and suitable for commercial single-wavelength X-ray reflectometers. To test the XRR-DE method, single crystals of TiO 2 and SrTiO 3 were used. In both cases the determined densities differed from the nominal ones less than 5.5%. Thus, the XRR-DE method can be successfully applied to evaluate the density of thin films for which only optical reflectivity is today used. The advantage is that this method can be considered thickness independent.
The evolving corona and evidence for jet launching from the supermassive black hole in Markarian 335
NASA Astrophysics Data System (ADS)
Wilkins, Daniel; Gallo, Luigi C.
2015-01-01
Through detailed analysis of the X-rays that are reflected from the accretion disc, it is possible to probe structures right down to the innermost stable circular orbit and event horizon around the supermassive black holes in AGN. By measuring the illumination pattern of the accretion disc, along with reverberation time lags between variability in the X-ray continuum and reflection, unprecedented detail of the geometry and spatial extent of the corona that produces the X-ray continuum has emerged when the observed data are combined with insight gained from general relativistic ray tracing simulations.We conducted detailed analysis of both the X-ray continuum and its reflection from the accretion disc in the narrow line Seyfert 1 galaxy Markarian 335, over observations spanning nearly a decade to measure the underlying changes in the structure of the X-ray emitting corona that gave rise to more than an order of magnitude variation in luminosity.Underlying this long timescale variability lies much more complex patterns of behaviour on short timescales. We are, for the first time, able to observe and measure the changes in the structure of the corona that give rise to transient phenomena including a flare in the X-ray emission seen during a low flux state by Suzaku in July 2013. This flaring event was found to mark a reconfiguration of the corona while there is evidence that the flare itself was cased by an aborted jet-launching event. More recently, detailed analysis of a NuSTAR target of opportunity observation is letting us understand the sudden increase in X-ray flux by a factor of 15 in Markarian 335 seen in September 2014.These observations allow us to trace, from observations, the evolution of the X-ray emitting corona that gives rise to not only the extreme variability seen in the X-ray emission from AGN, but also the processes by which jets and other outflow are launched from the extreme environments around black holes. This gives us important insight into the physical processes by which energy is liberated from black hole accretion flows and allows observational constraints to be placed upon theoretical models of how these extreme objects are powered.
Chandra X-Ray Observatory Image of Black Hole
NASA Technical Reports Server (NTRS)
2000-01-01
This Chandra X-Ray Observatory (CXO) image is a spectrum of a black hole, which is similar to the colorful spectrum of sunlight produced by a prism. The x-rays of interest are shown here recorded in bright stripes that run rightward and leftward from the center of the image. These x-rays are sorted precisely according to their energy with the highest-energy x-rays near the center of the image and the lower-energy x-rays farther out. The spectrum was obtained by using the Low Energy Transmission Grating (LETG), which intercepts x-rays and changes their direction by the amounts that depend sensitively on the x-ray energy. The assembly holds 540 gold transmission gratings. When in place behind the mirrors, the gratings intercept the x-rays reflected from the telescope. The bright spot at the center is due to a fraction of the x-ray radiation that is not deflected by the LETG. The spokes that intersect the central spot and the faint diagonal rays that flank the spectrum itself are artifacts due to the structure that supports the LETG grating elements. (Photo credit: NASA Cfa/J. McClintock et al)
History of Chandra X-Ray Observatory
2000-04-01
This Chandra X-Ray Observatory (CXO) image is a spectrum of a black hole, which is similar to the colorful spectrum of sunlight produced by a prism. The x-rays of interest are shown here recorded in bright stripes that run rightward and leftward from the center of the image. These x-rays are sorted precisely according to their energy with the highest-energy x-rays near the center of the image and the lower-energy x-rays farther out. The spectrum was obtained by using the Low Energy Transmission Grating (LETG), which intercepts x-rays and changes their direction by the amounts that depend sensitively on the x-ray energy. The assembly holds 540 gold transmission gratings. When in place behind the mirrors, the gratings intercept the x-rays reflected from the telescope. The bright spot at the center is due to a fraction of the x-ray radiation that is not deflected by the LETG. The spokes that intersect the central spot and the faint diagonal rays that flank the spectrum itself are artifacts due to the structure that supports the LETG grating elements. (Photo credit: NASA Cfa/J. McClintock et al)
2012-12-01
acoustics One begins with Eikonal equation for the acoustic phase function S(t,x) as derived from the geometric acoustics (high frequency) approximation to...zb(x) is smooth and reasonably approximated as piecewise linear. The time domain ray (characteristic) equations for the Eikonal equation are ẋ(t)= c...travel time is affected, which is more physically relevant than global error in φ since it provides the phase information for the Eikonal equation (2.1
Multiwavelength campaign on Mrk 509. XIII. Testing ionized-reflection models on Mrk 509
NASA Astrophysics Data System (ADS)
Boissay, R.; Paltani, S.; Ponti, G.; Bianchi, S.; Cappi, M.; Kaastra, J. S.; Petrucci, P.-O.; Arav, N.; Branduardi-Raymont, G.; Costantini, E.; Ebrero, J.; Kriss, G. A.; Mehdipour, M.; Pinto, C.; Steenbrugge, K. C.
2014-07-01
Active galactic nuclei (AGN) are the most luminous persistent objects in the universe. The X-ray domain is particularly important because the X-ray flux represents a significant fraction of the bolometric emission from such objects and probes the innermost regions of accretion disks, where most of this power is generated. An excess of X-ray emission below ~2 keV, called soft-excess, is very common in Type 1 AGN spectra. The origin of this feature remains debated. Originally modeled with a blackbody, there are now several possibilities to model the soft-excess, including warm Comptonization and blurred ionized reflection. In this paper, we test ionized-reflection models on Mrk 509, a bright Seyfert 1 galaxy for which we have a unique data set, in order to determine whether it can be responsible for the strong soft-excess. We use ten simultaneous XMM-Newton and INTEGRAL observations performed every four days. We present here the results of the spectral analysis, the evolution of the parameters, and the variability properties of the X-ray emission. The application of blurred ionized-reflection models leads to a very strong reflection and an extreme geometry, but fails to reproduce the broad-band spectrum of Mrk 509. Two different scenarios for blurred ionized reflection are discussed: stable geometry and lamp-post configuration. In both cases we find that the model parameters do not follow the expected relations, indicating that the model is fine-tuned to fit the data without physical justification. A large, slow variation in the soft-excess without a counterpart in the hard X-rays could be explained by a change in ionization of the reflector. However, such a change does not naturally follow from the assumed geometrical configuration. Warm Comptonization remains the most probable origin of the soft-excess in this object. Nevertheless, it is possible that both ionized reflection and warm Comptonization mechanisms can explain the soft-excess in all objects, one dominating the other one, depending on the physical conditions of the disk and the corona.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugimoto, Yasunobu; Takezawa, Yasunori; Matsuo, Tatsuhito
2008-04-25
In order to clarify the structural changes related to the regulation mechanism in skeletal muscle contraction, the intensity changes of thin filament-based reflections were investigated by X-ray fiber diffraction. The time course and extent of intensity changes of the first to third order troponin (TN)-associated meridional reflections with a basic repeat of 38.4 nm were different for each of these reflections. The intensity of the first and second thin filament layer lines changed in a reciprocal manner both during initial activation and during the force generation process. The axial spacings of the TN-meridional reflections decreased by {approx}0.1% upon activation relativemore » to the relaxing state and increased by {approx}0.24% in the force generation state, in line with that of the 2.7-nm reflection. Ca{sup 2+}-binding to TN triggered the shortening and a change in the helical symmetry of the thin filaments. Modeling of the structural changes using the intensities of the thin filament-based reflections suggested that the conformation of the globular core domain of TN altered upon activation, undergoing additional conformational changes at the tension plateau. The tail domain of TN moved together with tropomyosin during contraction. The results indicate that the structural changes of regulatory proteins bound to the actin filaments occur in two steps, the first in response to the Ca{sup 2+}-binding and the second induced by actomyosin interaction.« less
X ray, extreme and far ultraviolet optical thin films for space applications
NASA Technical Reports Server (NTRS)
Zukic, Muamer; Torr, Douglas G.; Kim, Jongmin
1993-01-01
Far and extreme ultraviolet optical thin film filters find many uses in space astronomy, space astrophysics, and space aeronomy. Spacebased spectrographs are used for studying emission and absorption features of the earth, planets, sun, stars, and the interstellar medium. Most of these spectrographs use transmission or reflection filters. This requirement has prompted a search for selective filtering coatings with high throughput in the FUV and EUV spectral region. Important progress toward the development of thin film filters with improved efficiency and stability has been made in recent years. The goal for this field is the minimization of absorption to get high throughput and enhancement of wavelength selection. The Optical Aeronomy Laboratory (OAL) at the University of Alabama in Huntsville has recently developed the technology to determine optical constants of bulk and film materials for wavelengths extending from x-rays (0.1 nm) to the FUV (200 nm), and several materials have been identified that were used for designs of various optical devices which previously have been restricted to space application in the visible and near infrared. A new design concept called the Pi-multilayer was introduced and applied to the design of optical coatings for wavelengths extending from x-rays to the FUV. Section 3 of this report explains the Pi-multilayer approach and demonstrates its application for the design and fabrication of the FUV coatings. Two layer Pi-stacks have been utilized for the design of reflection filters in the EUV wavelength range from 70 - 100 nm. In order to eliminate losses due to the low reflection of the imaging optics and increase throughput and out-of-band rejection of the EUV instrumentation we introduced a self-filtering camera concept. In the FUV region, MgF2 and LiF crystals are known to be birefringent. Transmission polarizers and quarterwave retarders made of MgF2 or LiF crystals are commercially available but the performances are poor. New techniques for the design of the EUV and FUV polarizers and quarterwave retarders are described in Section 5. X- and gamma-ray detectors rely on a measurement of the electron which is effected when a ray interacts with matter. The design of an x- and gamma-ray telescope to operate in a particular region of the spectrum is, therefore, largely dictated by the mechanism through which the rays interact. Energy selection and the focusing of the incident high energy rays can be achieved with spectrally selective high reflective multilayers. The design and spectral performance of narrowband reflective x-ray Pi-multilayers are presented in section 6.
Time-dependent nonequilibrium soft x-ray response during a spin crossover
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Veenendaal, Michel
The rapid development of high-brilliance pulsed X-ray sources with femtosecond time resolution has created a need for a better theoretical understanding of the time-dependent soft-X-ray response of dissipative many-body quantum systems. It is demonstrated how soft-X-ray spectroscopies, such as X-ray absorption and resonant inelastic X-ray scattering at transition-metal L-edges, can provide insight into intersystem crossings, such as a spin crossover. The photoinduced doublet-to-quartet spin crossover on cobalt in Fe-Co Prussian blue analogues is used as an example to demonstrate how the X-ray response is affected by the dissipative nonequilibrium dynamics. The time-dependent soft-X-ray spectra provide a wealth of information thatmore » reflect the changes in the nonequilibrium initial state via continuously changing spectral lineshapes that cannot be decomposed into initial photoexcited and final metastable spectra, strong broadenings, a collapse of clear selection rules during the intersystem crossing, strong fluctuations in the isotropic branching ratio in X-ray absorption, and crystal-field collapse/oscillations and strongly time-dependent anti-Stokes processes in RIXS.« less
Physics of reflective optics for the soft gamma-ray photon energy range
Fernandez-Perea, Monica; Descalle, Marie -Anne; Soufli, Regina; ...
2013-07-12
Traditional multilayer reflective optics that have been used in the past for imaging at x-ray photon energies as high as 200 keV are governed by classical wave phenomena. However, their behavior at higher energies is unknown, because of the increasing effect of incoherent scattering and the disagreement between experimental and theoretical optical properties of materials in the hard x-ray and gamma-ray regimes. Here, we demonstrate that multilayer reflective optics can operate efficiently and according to classical wave physics up to photon energies of at least 384 keV. We also use particle transport simulations to quantitatively determine that incoherent scattering takesmore » place in the mirrors but it does not affect the performance at the Bragg angles of operation. Furthermore, our results open up new possibilities of reflective optical designs in a spectral range where only diffractive optics (crystals and lenses) and crystal monochromators have been available until now.« less
Formation of silicides in annealed periodic multilayers
NASA Astrophysics Data System (ADS)
Maury, H.; Jonnard, P.; Le Guen, K.; André, J.-M.
2009-05-01
Periodic multilayers of nanometric period are widely used as optical components for the X-ray and extreme UV (EUV) ranges, in X-ray space telescopes, X-ray microscopes, EUV photolithography or synchrotron beamlines for example. Their optical performances depend on the quality of the interfaces between the various layers: chemical interdiffusion or mechanical roughness shifts the application wavelength and can drastically decrease the reflectance. Since under high thermal charge interdiffusion is known to get enhanced, the study of the thermal stability of such structures is essential to understand how interfacial compounds develop. We have characterized X-ray and EUV siliconcontaining multilayers (Mo/Si, Sc/Si and Mg/SiC) as a function of the annealing temperature (up to 600°C) using two non-destructive methods. X-ray emission from the silicon atoms, describing the Si valence states, is used to determine the chemical nature of the compounds present in the interphases while X-ray reflectivity in the hard and soft X-ray ranges can be related to the optical properties. In the three cases, interfacial metallic (Mo, Sc, Mg) silicides are evidenced and the thickness of the interphase increases with the annealing temperature. For Mo/Si and Sc/Si multilayers, silicides are even present in the as-prepared multilayers. Characteristic parameters of the stacks are determined: composition of the interphases, thickness and roughness of the layers and interphases if any. Finally, we have evidenced the maximum temperature of application of these multilayers to minimize interdiffusion.
A Compact X-Ray System for Macromolecular Crystallography. 5
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Joy, Marshall
2000-01-01
We describe the design and performance of a high flux x-ray system for macromolecular crystallography that combines a microfocus x-ray generator (40 gm FWHM spot size at a power level of 46.5Watts) and a 5.5 mm focal distance polycapillary optic. The Cu K(sub alpha) X-ray flux produced by this optimized system is 7.0 times above the X-ray flux previously reported. The X-ray flux from the microfocus system is also 3.2 times higher than that produced by the rotating anode generator equipped with a long focal distance graded multilayer monochromator (Green optic; CMF24-48-Cu6) and 30% less than that produced by the rotating anode generator with the newest design of graded multilayer monochromator (Blue optic; CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 Watts, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42,540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym) 5.0% for the data extending to 1.7A, and 4.8% for the complete set of data to 1.85A. The amplitudes of the reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.
The Symbiotic System SS73 17 seen with Suzaku
NASA Technical Reports Server (NTRS)
Smith, Randall K.; Mushotzky, Richard; Kallman, Tim; Tueller, Jack; Mukai, Koji; Markwardt, Craig
2007-01-01
We observed with Suzaku the symbiotic star SS73 17, motivated by the discovery by the INTEGRAL satellite and the Swift BAT survey that it emits hard X-rays. Our observations showed a highly-absorbed X-ray spectrum with NH > loz3 emp2, equivalent to Av > 26, although the source has B magnitude 11.3 and is also bright in UV. The source also shows strong, narrow iron lines including fluorescent Fe K as well as Fe xxv and Fe XXVI. The X-ray spectrum can be fit with a thermal model including an absorption component that partially covers the source. Most of the equivalent width of the iron fluorescent line in this model can be explained as a combination of reprocessing in a dense absorber plus reflection off a white dwarf surface, but it is likely that the continuum is partially seen in reflection as well. Unlike other symbiotic systems that show hard X-ray emission (CH Cyg, RT Cru, T CrB, GX1+4), SS73 17 is not known to have shown nova-like optical variability, X-ray flashes, or pulsations, and has always shown faint soft X-ray emission. As a result, although it is likely a white dwarf, the nature of the compact object in SS73 17 is still uncertain. SS73 17 is probably an extreme example of the recently discovered and relatively small class of hard X-ray emitting symbiotic systems.
Imaging crystal/spectral line search
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, J.A.
1998-02-16
The following table is a compilation of chance coincidences between x- ray line wavelengths and crystal planes which will reflect those wavelengths near normal incidence. The motivation is to explore the possibilities for expanding the range of choices for near normal incidence x-ray crystal imaging.
NASA Astrophysics Data System (ADS)
Wang, Xia; Li, Zongbao; Jia, Lichao; Xing, Xiaobo
2018-05-01
A simple strategy to greatly increase the photocatalytic ability of nanocrystalline anatase has been put forward to fabricate efficient TiO2-based photocatalysts under visible irradiation. By surface modification with V ion, samples with different ratios were synthesized by using an incipient wetness impregnation method. The as-prepared specimens were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectroscopy. The photocatalytic activities were evaluated by using methylene blue degradations. Meanwhile, the optimized loading structure and electronic structures were calculated by using the density function theory (DFT). This work should provide a practical route to reasonably design and synthesize high-performance TiO2-based nanostructured photocatalysts.
Low-energy ion beam-based deposition of gallium nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasquez, M. R., E-mail: mrvasquez@coe.upd.edu.ph; Wada, M.
2016-02-15
An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substratemore » was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies.« less
1993-12-01
of the films. One is x - ray diffraction which is used to determine the crystallographic orientation of the films. No phases other than the YBa 2Cu3O 7...x were observed in any of the films. The x - ray data for the films with high critical current densities show strong peaks of reflections indicating a...Solving for x ca = (p/2 Now, if we look at a close-up of the prism face at the input ray (FIGURE 7), we want to solve for the angle between the rays
History of Chandra X-Ray Observatory
2001-01-10
This Chandra image, the first x-ray image ever made of Venus, shows a half crescent due to the relative orientation of the Sun, Earth, and Venus. The x-rays are produced by fluorescent radiation from oxygen and other atoms in the atmosphere between 120 and 140 kilometers above the surface of the planet. In contrast, the optical light from Venus is caused by the reflection from clouds 50 to 70 kilometers above the surface.
X-Ray Standing Waves on Surfaces
1993-01-01
dependent distributional changes of iodine on Pt 6.3 X-ray standing wave study of a Langmuir - Blodgett multilayer film 7. Conclusions 8. Acknowledgments...4B. 6.3 X-ray standing wave study of a Langmuir - Blodgett multilayer film As mentioned previously the total external reflection condition occurs...for a Zn atom layer embedded in the top arachidate bilayer of a Langmuir - Blodgett (LB) multilayer film which was deposited on the surface of a gold
Higher-harmonics suppressor for soft x rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waki, I.; Hirai, Y.; Momose, A.
We have developed an apparatus for suppressing higher harmonics contained in the soft x-ray output beam of grazing-incidence grating monochromators. It consists of eight pairs of total-reflection mirrors. Each pair serves as a low-pass filter with the cutoff energy different from one another. The eight pairs are designed to cover an energy range of 80--1600 eV with an efficiency of harmonic suppression better than 97%, while transmitting more than 50% of the fundamental photons. We have tested its preliminary performance on the soft x-ray beamline BL-8A at the Photon Factory. We present the observed transmission efficiencies and the effects ofmore » the harmonic suppressor on measurements of reflectivity and fluorescence spectra.« less
Performance testing of an off-plane reflection grating and silicon pore optic spectrograph at PANTER
NASA Astrophysics Data System (ADS)
Marlowe, Hannah; McEntaffer, Randall L.; Allured, Ryan; DeRoo, Casey T.; Donovan, Benjamin D.; Miles, Drew M.; Tutt, James H.; Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.; Smith, Randall K.; Cheimets, Peter; Hertz, Edward; Bookbinder, Jay A.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo
2015-10-01
An x-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for Extraterrestrial Physics PANTER x-ray test facility. SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with an SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development.
Surface and interface analysis of nanomaterials at microfocus beamline (BL-16) of Indus-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Gangadhar, E-mail: rnrrsgangadhar@gmail.com; Tiwari, M. K., E-mail: mktiwati@rrcat.gov.in; Homi Bhabha National Institute, RRCAT
2016-05-06
Analysis of chemical nature and electronic structure at the interface of a thin film medium is important in many technological applications as well as to understand overall efficiency of a thin film device. Synchrotron radiation based x-ray spectroscopy is a promising technique to study interface nature of the nanomaterials with atomic resolutions. A combined x-ray reflectivity and grazing incidence x-ray fluorescence measurement facility has been recently constructed at the BL-16 microfocus beamline of Indus-2 synchrotron facility to accomplish surface-interface microstructural characterization of thin layered materials. It is also possible to analyze contaminates or adsorbed ad-atoms on the surface of themore » thin nanostructure materials. The BL-16 beamline also provides an attractive platform to perform a variety of analytical research activities especially in the field of micro x-ray fluorescence and ultra-trace elements analysis using Synchrotron radiation. We describe various salient features of the BL-16 reflectometer experimental station and the detailed description of its capabilities through the measured results, obtained for various thin layered nanomaterials.« less
Sharma, Diksha; Badano, Aldo
2013-03-01
hybridMANTIS is a Monte Carlo package for modeling indirect x-ray imagers using columnar geometry based on a hybrid concept that maximizes the utilization of available CPU and graphics processing unit processors in a workstation. The authors compare hybridMANTIS x-ray response simulations to previously published MANTIS and experimental data for four cesium iodide scintillator screens. These screens have a variety of reflective and absorptive surfaces with different thicknesses. The authors analyze hybridMANTIS results in terms of modulation transfer function and calculate the root mean square difference and Swank factors from simulated and experimental results. The comparison suggests that hybridMANTIS better matches the experimental data as compared to MANTIS, especially at high spatial frequencies and for the thicker screens. hybridMANTIS simulations are much faster than MANTIS with speed-ups up to 5260. hybridMANTIS is a useful tool for improved description and optimization of image acquisition stages in medical imaging systems and for modeling the forward problem in iterative reconstruction algorithms.
Analysis of Ti and TiO2 nanolayers by total reflection X-ray photoelectron spectroscopy
NASA Astrophysics Data System (ADS)
Kubala-Kukuś, A.; Banaś, D.; Stabrawa, I.; Szary, K.; Sobota, D.; Majewska, U.; Wudarczyk-Moćko, J.; Braziewicz, J.; Pajek, M.
2018-07-01
Total reflection X-ray photoelectron spectroscopy (TRXPS) is applied in the analysis of Ti and TiO2 nanolayers deposited on silicon and silicon dioxide substrates. The idea of application of total-reflection phenomenon for exciting X-ray used in the XPS technique is briefly discussed. The experimental setup and measurement conditions for the studied Ti and TiO2 layers are presented. The XPS spectra were registered both for the non-total and total reflection regimes. The survey spectra and C1s, N1s, Ti2p and O1s photoelectron peaks are shown. For energy calibration, the position of C1s photoelectron peak was applied (C-C component, binding energy 284.8 eV). The peak to background ratios are discussed as regards the dependence of the excitation angle. An increase of this ratio for the glancing angle 1°, being below critical angle of the X-ray beam and sample material, results in an improvement of XPS detection limit by factor up to 2. In the case of the Ti nanolayer, additionally, the thickness of the overlayer TiO2 is determined. As an example of applying the TRXPS technique, the analysis of Ti nanolayers implanted by highly charged Xe35+ ions of 280 keV energy is discussed. The Xe3d and O1s photoelectron peaks are presented and discussed.
X-ray microbeam three-dimensional topography for dislocation strain-field analysis of 4H-SiC
NASA Astrophysics Data System (ADS)
Tanuma, R.; Mori, D.; Kamata, I.; Tsuchida, H.
2013-07-01
This paper describes the strain-field analysis of threading edge dislocations (TEDs) and basal-plane dislocations (BPDs) in 4H-SiC using x-ray microbeam three-dimensional (3D) topography. This 3D topography enables quantitative strain-field analysis, which measures images of effective misorientations (Δω maps) around the dislocations. A deformation-matrix-based simulation algorithm is developed to theoretically evaluate the Δω mapping. Systematic linear calculations can provide simulated Δω maps (Δωsim maps) of dislocations with different Burgers vectors, directions, and reflection vectors for the desired cross-sections. For TEDs and BPDs, Δω maps are compared with Δωsim maps, and their excellent correlation is demonstrated. Two types of asymmetric reflections, high- and low-angle incidence types, are compared. Strain analyses are also conducted to investigate BPD-TED conversion near an epilayer/substrate interface in 4H-SiC.
NASA Technical Reports Server (NTRS)
Zdziarski, Andrzej A.; Coppi, Paolo S.
1991-01-01
In the present study of the formation of steep soft X-ray excesses that are superposed on flatter, hard X-ray power-law spectra in nonthermal electron-positron pair cascade sources, the soft excess in pair-cascade AGN models appears as a steep power law superposed on the tail of the UV bump and the flat nonthermal (hard X-ray) power law. The model-parameter space in which an excess in soft X-rays is visible is ascertained, and the time-variability of soft excesses in pair cascade models is examined. It is established that the parameter space in which soft excesses appear encompasses the range of preferred input parameters for a recently development Compton reflection model of UV and X-ray emission from the central engine of an AGN.
Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source
Reddy, Hemanth K.N.; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A.; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Kurta, Ruslan P.; Larsson, Daniel S.D.; Duane Loh, N.; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A.; Song, Changyong; Spence, John C.H.; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A.; Williams, Garth J.; Xavier, P. Lourdu
2017-01-01
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency. PMID:28654088
Ultrafast cavitation induced by an X-ray laser in water drops
NASA Astrophysics Data System (ADS)
Stan, Claudiu; Willmott, Philip; Stone, Howard; Koglin, Jason; Liang, Mengning; Aquila, Andrew; Robinson, Joseph; Gumerlock, Karl; Blaj, Gabriel; Sierra, Raymond; Boutet, Sebastien; Guillet, Serge; Curtis, Robin; Vetter, Sharon; Loos, Henrik; Turner, James; Decker, Franz-Josef
2016-11-01
Cavitation in pure water is determined by an intrinsic heterogeneous cavitation mechanism, which prevents in general the experimental generation of large tensions (negative pressures) in bulk liquid water. We developed an ultrafast decompression technique, based on the reflection of shock waves generated by an X-ray laser inside liquid drops, to stretch liquids to large negative pressures in a few nanoseconds. Using this method, we observed cavitation in liquid water at pressures below -100 MPa. These large tensions exceed significantly those achieved previously, mainly due to the ultrafast decompression. The decompression induced by shock waves generated by an X-ray laser is rapid enough to continue to stretch the liquid phase after the heterogeneous cavitation occurs in water, despite the rapid growth of cavitation nanobubbles. We developed a nucleation-and-growth hydrodynamic cavitation model that explains our results and estimates the concentration of heterogeneous cavitation nuclei in water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikova, N. N., E-mail: nn_novikova@ns.crys.ras.ru; Zheludeva, S. I.; Koval'chuk, M. V.
Protein-lipid films based on the enzyme alkaline phosphatase were subjected to the action of chelating drugs, which are used for accelerating the removal of heavy metals from the human body, and the elemental composition of the resulting films was investigated. Total-reflection X-ray fluorescence measurements were performed at the Berlin Electron Storage Ring Company for Synchrotron Radiation (BESSY) in Germany. A comparative estimation of the protective effect of four drugs (EDTA, succimer, xydiphone, and mediphon) on membrane-bound enzymes damaged by lead ions was made. The changes in the elemental composition of the protein-lipid films caused by high doses of chelating drugsmore » were investigated. It was shown that state-of-the-art X-ray techniques can, in principle, be used to develop new methods for the in vitro evaluation of the efficiency of drugs, providing differential data on their actions.« less
A Bragg beam splitter for hard x-ray free-electron lasers.
Osaka, Taito; Yabashi, Makina; Sano, Yasuhisa; Tono, Kensuke; Inubushi, Yuichi; Sato, Takahiro; Matsuyama, Satoshi; Ishikawa, Tetsuya; Yamauchi, Kazuto
2013-02-11
We report a Bragg beam splitter developed for utilization of hard x-ray free-electron lasers. The splitter is based on an ultrathin silicon crystal operating in the symmetric Bragg geometry to provide high reflectivity and transmissivity simultaneously. We fabricated frame-shaped Si(511) and (110) crystals with thicknesses below 10 μm by a reactive dry etching method using atmospheric-pressure plasma. The thickness variation over an illuminated area is less than 300 nm peak-to-valley. High crystalline perfection was verified by topographic and diffractometric measurements. The crystal thickness was evaluated from the period of the Pendellösung beats measured with a highly monochromatic and collimated x-ray probe. The crystals provide two replica pulses with uniform wavefront [(<1/50)λ] and low spatial intensity variation (<5%). These Bragg beam splitters will play an important role in innovating XFEL applications.
Capillary optics for radiation focusing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peurrung, A.J.; Reeder, P.L.; Bliss, M.
Capillary lens technology may ultimately bring benefits to neutron and x-ray-based science like conventional lenses with visible light. Although the technology is not yet 10 years old, these lenses have already had a significant impact in engineering, science, and medicine. Capillary lenses are advantageous when it is desirable to increase the radiation flux at a location without regard to its angular divergence. PNNL has worked to improve the technology in several ways. A single, optimally tapered capillary was manufactured, which allows intensity gains of a factor of 270 for an initially parallel, incident x-ray beam. Feasibility of constructing neutron lensesmore » using {sup 58}Ni (particularly effective at reflecting neutrons) has been explored. Three applications for capillary optics have been identified and studied: neutron telescope, Gandolphi x-ray diffractometry, and neutron radiotherapy. A brief guide is given for determining which potential applications are likely to be helped by capillary optics.« less
Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source
Reddy, Hemanth K. N.; Yoon, Chun Hong; Aquila, Andrew; ...
2017-06-27
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. As a result, themore » data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.« less
Shot-noise limited throughput of soft x-ray ptychography for nanometrology applications
NASA Astrophysics Data System (ADS)
Koek, Wouter; Florijn, Bastiaan; Bäumer, Stefan; Kruidhof, Rik; Sadeghian, Hamed
2018-03-01
Due to its potential for high resolution and three-dimensional imaging, soft x-ray ptychography has received interest for nanometrology applications. We have analyzed the measurement time per unit area when using soft x-ray ptychography for various nanometrology applications including mask inspection and wafer inspection, and are thus able to predict (order of magnitude) throughput figures. Here we show that for a typical measurement system, using a typical sampling strategy, and when aiming for 10-15 nm resolution, it is expected that a wafer-based topology (2.5D) measurement takes approximately 4 minutes per μm2 , and a full three-dimensional measurement takes roughly 6 hours per μm2 . Due to their much higher reflectivity EUV masks can be measured considerably faster; a measurement speed of 0.1 seconds per μm2 is expected. However, such speeds do not allow for full wafer or mask inspection at industrially relevant throughput.
NASA Astrophysics Data System (ADS)
Singh, Arvind; Sinha, A. S. K.
2018-09-01
Active ternary graphite and alumina-supported cadmium sulphide (CdS) composite was synthesized by impregnation method followed by high-temperature solid-gas reaction and characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. The ternary CdS-graphite-alumina composite exhibited superior catalytic activity compared with the binary CdS-alumina composite due to its better visible-light absorption and higher charge separation. The ternary composite has a bed-type structure. It permits a greater interaction at the interface due to intimate contact between CdS and graphite in the ternary composite. This composite has a highly efficient visible light-driven photocatalytic activity for sustainable hydrogen production. It is also capable of degrading organic dyes in wastewater.
Solution to the Phase Problem Using Multibeam X-Ray Diffraction.
NASA Astrophysics Data System (ADS)
Shen, Qun
Multi-beam x-ray diffraction, especially the asymmetry effect in the virtual Bragg scattering case, has been proved to provide useful phase information on the structure factors that are involved in the scattering process. A perturbation theory has been developed to provide an analytical expression for the diffracted wave field in virtual Bragg scattering situations, which explains the physical origin of the asymmetry effect. Two experiments on the (202) reflection of benzil, using 3.5 keV x-rays, have shown that the asymmetry effect is visible in a mosaic non-centrosymmetric organic crystal. The results do not depend on the shape of the crystal, hence proving that the method is universally applicable. A practical method to obtain arbitrary values of the phase triplet, based on the perturbation theory, has been developed and shown to work in the case of non-centrosymmetric crystals like benzil.
Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source.
Reddy, Hemanth K N; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Kurta, Ruslan P; Larsson, Daniel S D; Duane Loh, N; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A; Song, Changyong; Spence, John C H; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A; Williams, Garth J; Xavier, P Lourdu
2017-06-27
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65-70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Ying; Reiprich, Thomas H.; Schneider, Peter; Clerc, Nicolas; Merloni, Andrea; Schwope, Axel; Borm, Katharina; Andernach, Heinz; Caretta, César A.; Wu, Xiang-Ping
2017-03-01
We present the relation of X-ray luminosity versus dynamical mass for 63 nearby clusters of galaxies in a flux-limited sample, the HIghest X-ray FLUx Galaxy Cluster Sample (HIFLUGCS, consisting of 64 clusters). The luminosity measurements are obtained based on 1.3 Ms of clean XMM-Newton data and ROSAT pointed observations. The masses are estimated using optical spectroscopic redshifts of 13647 cluster galaxies in total. We classify clusters into disturbed and undisturbed based on a combination of the X-ray luminosity concentration and the offset between the brightest cluster galaxy and X-ray flux-weighted center. Given sufficient numbers (I.e., ≥45) of member galaxies when the dynamical masses are computed, the luminosity versus mass relations agree between the disturbed and undisturbed clusters. The cool-core clusters still dominate the scatter in the luminosity versus mass relation even when a core-corrected X-ray luminosity is used, which indicates that the scatter of this scaling relation mainly reflects the structure formation history of the clusters. As shown by the clusters with only few spectroscopically confirmed members, the dynamical masses can be underestimated and thus lead to a biased scaling relation. To investigate the potential of spectroscopic surveys to follow up high-redshift galaxy clusters or groups observed in X-ray surveys for the identifications and mass calibrations, we carried out Monte Carlo resampling of the cluster galaxy redshifts and calibrated the uncertainties of the redshift and dynamical mass estimates when only reduced numbers of galaxy redshifts per cluster are available. The resampling considers the SPIDERS and 4MOST configurations, designed for the follow-up of the eROSITA clusters, and was carried out for each cluster in the sample at the actual cluster redshift as well as at the assigned input cluster redshifts of 0.2, 0.4, 0.6, and 0.8. To follow up very distant clusters or groups, we also carried out the mass calibration based on the resampling with only ten redshifts per cluster, and redshift calibration based on the resampling with only five and ten redshifts per cluster, respectively. Our results demonstrate the power of combining upcoming X-ray and optical spectroscopic surveys for mass calibration of clusters. The scatter in the dynamical mass estimates for the clusters with at least ten members is within 50%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jianqiu; Yang, Yu; Wu, Fangzhen
Synchrotron X-ray Topography is a powerful technique to study defects structures particularly dislocation configurations in single crystals. Complementing this technique with geometrical and contrast analysis can enhance the efficiency of quantitatively characterizing defects. In this study, the use of Synchrotron White Beam X-ray Topography (SWBXT) to determine the line directions of threading dislocations in 4H–SiC axial slices (sample cut parallel to the growth axis from the boule) is demonstrated. This technique is based on the fact that the projected line directions of dislocations on different reflections are different. Another technique also discussed is the determination of the absolute Burgers vectorsmore » of threading mixed dislocations (TMDs) using Synchrotron Monochromatic Beam X-ray Topography (SMBXT). This technique utilizes the fact that the contrast from TMDs varies on SMBXT images as their Burgers vectors change. By comparing observed contrast with the contrast from threading dislocations provided by Ray Tracing Simulations, the Burgers vectors can be determined. Thereafter the distribution of TMDs with different Burgers vectors across the wafer is mapped and investigated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Saurabh; Department of Applied Physics & Opto-Electronics, Shri Govindram Seksaria Institute of Technology and Science, Indore 452 003; Gupta, R. K.
2016-05-23
Reflectivity beamline at Indus-1 synchrotron source is used to determine optical constants of a platinum thin film in the soft x-ray wavelength region of 40-200Å by applying Kramers-Kronig (KK) technique on R vs wavelength data. Upto 150Å wavelength region the results of KK analysis are found in good agreement with the Henke’s optical constants and also with those obtained by the angle dependent reflectivity technique. A significant mismatch is observed above 150Å wavelength region which could be due to the presence of higher harmonics in the toroidal grating spectra of the reflectivity beamline.
Thorough small-angle X-ray scattering analysis of the instability of liquid micro-jets in air.
Marmiroli, Benedetta; Cacho-Nerin, Fernando; Sartori, Barbara; Pérez, Javier; Amenitsch, Heinz
2014-01-01
Liquid jets are of interest, both for their industrial relevance and for scientific applications (more important, in particular for X-rays, after the advent of free-electron lasers that require liquid jets as sample carrier). Instability mechanisms have been described theoretically and by numerical simulation, but confirmed by few experimental techniques. In fact, these are mainly based on cameras, which is limited by the imaging resolution, and on light scattering, which is hindered by absorption, reflection, Mie scattering and multiple scattering due to complex air/liquid interfaces during jet break-up. In this communication it is demonstrated that synchrotron small-angle X-ray scattering (SAXS) can give quantitative information on liquid jet dynamics at the nanoscale, by detecting time-dependent morphology and break-up length. Jets ejected from circular tubes of different diameters (100-450 µm) and speeds (0.7-21 m s(-1)) have been explored to cover the Rayleigh and first wind-induced regimes. Various solvents (water, ethanol, 2-propanol) and their mixtures have been examined. The determination of the liquid jet behaviour becomes essential, as it provides background data in subsequent studies of chemical and biological reactions using SAXS or X-ray diffraction based on synchrotron radiation and free-electron lasers.
Study of the grazing-incidence X-ray scattering of strongly disturbed fractal surfaces
NASA Astrophysics Data System (ADS)
Roshchin, B. S.; Chukhovsky, F. N.; Pavlyuk, M. D.; Opolchentsev, A. M.; Asadchikov, V. E.
2017-03-01
The applicability of different approaches to the description of hard X-ray scattering from rough surfaces is generally limited by a maximum surface roughness height of no more than 1 nm. Meanwhile, this value is several times larger for the surfaces of different materials subjected to treatment, especially in the initial treatment stages. To control the roughness parameters in all stages of surface treatment, a new approach has been developed, which is based on a series expansion of wavefield over the plane eigenstate-function waves describing the small-angle scattering of incident X-rays in terms of plane q-waves propagating through the interface between two media with a random function of relief heights. To determine the amplitudes of reflected and transmitted plane q-waves, a system of two linked integral equations was derived. The solutions to these equations correspond (in zero order) to the well-known Fresnel expressions for a smooth plane interface. Based on these solutions, a statistical fractal model of an isotropic rough interface is built in terms of root-mean-square roughness σ, two-point correlation length l, and fractal surface index h. The model is used to interpret X-ray scattering data for polished surfaces of single-crystal cadmium telluride samples.
Study of the grazing-incidence X-ray scattering of strongly disturbed fractal surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roshchin, B. S., E-mail: ross@crys.ras.ru; Chukhovsky, F. N.; Pavlyuk, M. D.
2017-03-15
The applicability of different approaches to the description of hard X-ray scattering from rough surfaces is generally limited by a maximum surface roughness height of no more than 1 nm. Meanwhile, this value is several times larger for the surfaces of different materials subjected to treatment, especially in the initial treatment stages. To control the roughness parameters in all stages of surface treatment, a new approach has been developed, which is based on a series expansion of wavefield over the plane eigenstate-function waves describing the small-angle scattering of incident X-rays in terms of plane q-waves propagating through the interface betweenmore » two media with a random function of relief heights. To determine the amplitudes of reflected and transmitted plane q-waves, a system of two linked integral equations was derived. The solutions to these equations correspond (in zero order) to the well-known Fresnel expressions for a smooth plane interface. Based on these solutions, a statistical fractal model of an isotropic rough interface is built in terms of root-mean-square roughness σ, two-point correlation length l, and fractal surface index h. The model is used to interpret X-ray scattering data for polished surfaces of single-crystal cadmium telluride samples.« less
Tailoring optical properties of TiO2-Cr co-sputtered films using swift heavy ions
NASA Astrophysics Data System (ADS)
Gupta, Ratnesh; Sen, Sagar; Phase, D. M.; Avasthi, D. K.; Gupta, Ajay
2018-05-01
Effect of 100 MeV Au7+ ion irradiation on structure and optical properties of Cr-doped TiO2 films has been studied using X-ray photoelectron spectroscopy, soft X-ray absorption spectroscopy, UV-Visible spectroscopy, X-ray reflectivity, and atomic force microscopy. X-ray reflectivity measurement implied that film thickness reduces as a function of ion fluence while surface roughness increases. The variation in surface roughness is well correlated with AFM results. Ion irradiation decreases the band gap energy of the film. Swift heavy ion irradiation enhances the oxygen vacancies in the film, and the extra electrons in the vacancies act as donor-like states. In valence band spectrum, there is a shift in the Ti3d peak towards lower energies and the shift is equivalent to the band gap energy obtained from UV spectrum. Evidence for band bending is also provided by the corresponding Ti XPS peak which exhibits a shift towards lower energy due to the downward band bending. X-ray absorption studies on O Kand Cr L3,2 edges clearly indicate that swift heavy ion irradiation induces formation of Cr-clusters in TiO2 matrix.
Determination of surface morphology of TiO2 nanostructure using synchrotron radiation
NASA Astrophysics Data System (ADS)
Das, Gangadhar; Kumar, Manoj; Biswas, A. K.; Khooha, Ajay; Mondal, Puspen; Tiwari, M. K.
2017-05-01
Nanostructures of Titanium oxide (TiO2) are being studied for many promising applications, e.g., solar photovoltaics, solar water splitting for H2 fuel generation etc., due to their excellent photo-catalytic properties. We have synthesized low-dimensional TiO2 nanoparticles by gas phase CW CO2 laser pyrolysis. The laser synthesis process has been optimized for the deposition of highly pure, nearly mono-dispersed TiO2 nanoparticles on silicon substrates. Hard x-ray standing wave-field (XSW) measurements in total reflection geometry were carried out on the BL-16 beamline of Indus-2 synchrotron radiation facility in combination with x-ray reflectivity and grazing incidence x-ray fluorescence measurements for the determination of surface morphology of the deposited TiO2 nanostructures. The average particle size of TiO2 nanostructure estimated using transmission electron microscopy (TEM) was found to closely agree with the XSW and grazing incidence x-ray diffraction (GIXRD) results.
NASA Astrophysics Data System (ADS)
Heilmann, Ralf K.; Bruccoleri, Alexander R.; Song, Jungki; Kolodziejczak, Jeffery; Gaskin, Jessica A.; O'Dell, Stephen L.; Cheimetz, Peter; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; La Caria, Marlis-Madeleine; Schattenburg, Mark L.
2017-08-01
Soft x-ray spectroscopy with high resolving power (R = λ/Δλ) and large effective area (A) addresses numerous unanswered science questions about the physical laws that lead to the structure of our universe. In the soft x-ray band R > 1000 can currently only be achieved with diffraction grating-based spectroscopy. Criticalangle transmission (CAT) gratings combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (relaxed alignment tolerances and temperature requirements, transparent at higher energies, low mass), resulting in minimal mission resource requirements, while greatly improving figures of merit. Diffraction efficiency > 33% and R > 10, 000 have been demonstrated for CAT gratings. Last year the technology has been certified at Technology Readiness Level 4 based on a probe class mission concept. The Explorer-scale (A > 450 cm2 , R > 2500) grating spectroscopy Arcus mission can be built with today's CAT grating technology and has been selected in the current Explorer round for a Phase A concept study. Its figure of merit for the detection of weak absorption lines will be an order of magnitude larger than current instruments on Chandra and XMM-Newton. Further CAT grating technology development and improvements in the angular resolution of x-ray optics can provide another order of magnitude improvement in performance, as is envisioned for the X-ray Surveyor/Lynx mission concept currently under development for input into the 2020 Decadal Survey. For Arcus we have tested CAT gratings in a spectrometer setup in combination with silicon pore optics (SPO) and obtained resolving power results that exceed Arcus requirements before and after environmental testing of the gratings. We have recently fabricated the largest (32 mm x 32 mm) CAT gratings to date, and plan to increase grating size further. We mounted two of these large gratings to frames and aligned them in the roll direction using a laser-based technique. Simultaneous x-ray illumination of both gratings with an SPO module demonstrated that we can exceed Arcus grating-to-grating alignment requirements without x rays.
XMM-Newton study of the supersoft symbiotic system Draco C1
NASA Astrophysics Data System (ADS)
Saeedi, Sara; Sasaki, Manami; Ducci, Lorenzo
2018-01-01
We present the results of the analysis of thirty-one XMM-Newton observations of the symbiotic star Draco C1 located in the Draco dwarf spheroidal galaxy. This object had been identified as a supersoft source based on ROSAT data. We analysed X-ray, ultraviolet (UV) and optical data taken with XMM-Newton in order to obtain the physical parameters and the geometry of the system. We have also performed the first X-ray timing analysis of Draco C1. The X-ray spectrum is well fitted with a blackbody model with a temperature of (1.8 ± 0.3) × 105 K. We obtained a bolometric luminosity of ≳1038 erg s-1 for the white dwarf. The X-ray spectrum and luminosity suggest stable nuclear burning on the surface of the white dwarf. The low column density derived from the X-ray spectrum is consistent with the lack of nebular lines found in previous UV studies. The long-term variability in the optical and the UV suggests that the system is not observed face-on and that the variability is caused by the reflection effect. For the red giant companion, we estimate a radius of ∼110 R⊙ and an upper limit ≲1.5 M⊙ for its mass assuming Roche lobe overflow.
A comparative study of scintillator combining methods for flat-panel X-ray image sensors
NASA Astrophysics Data System (ADS)
Kim, M. S.; Lim, K. T.; Kim, G.; Cho, G.
2018-02-01
An X-ray transmission imaging based on scintillation detection method is the most widely used radiation technique particularly in the medical and industrial areas. As the name suggests, scintillation detection uses a scintillator as an intermediate material to convert incoming radiation into visible-light particles. Among different types of scintillators, CsI(Tl) in a columnar configuration is the most popular type used for applications that require an energy less than 150 keV due to its capability in obtaining a high spatial resolution with a reduced light spreading effect. In this study, different methods in combining a scintillator with a light-receiving unit are investigated and their relationships are given in terms of the image quality. Three different methods of combining a scintillator with a light-receiving unit are selected to investigate their performance in X-ray imaging: upward or downward oriented needles structure of CsI(Tl), coating layer deposition around CsI(Tl), and insertion of FOP. A charge-coupled device was chosen to serve as the light-receiving unit for the proposed system. From the result, the difference of needle directions in CsI(Tl) had no significant effects in the X-ray image. In contrast, deposition of the coating material around CsI(Tl) showed 17.3% reduction in the DQE. Insertion of the FOP increased the spatial resolution by 38%, however, it decreased the light yield in the acquired image by 56%. In order to have the maximum scintillation performance in X-ray imaging, not only the reflection material but also the bonding method must be considered when combining the scintillator with the light-receiving unit. In addition, the use of FOP should be carefully decided based on the purpose of X-ray imaging, e.g., image sharpness or SNR.
Ogawa, Tomohiro; Ezoe, Yuichiro; Moriyama, Teppei; Mitsuishi, Ikuyuki; Kakiuchi, Takuya; Ohashi, Takaya; Mitsuda, Kazuhisa; Putkonen, Matti
2013-08-20
To enhance x-ray reflectivity of silicon micropore optics using dry etching of silicon (111) wafers, iridium coating is tested by use of atomic layer deposition. An iridium layer is successfully formed on sidewalls of tiny micropores with a pore width of 20 μm and depth of 300 μm. The film thickness is ∼20 nm. An enhanced x-ray reflectivity compared to that of silicon is confirmed at Ti Kα 4.51 keV, for what we believe to be the first time, with this type of optics. Some discrepancies from a theoretical reflectivity curve of iridium-coated silicon are noticed at small incident angles <1.3°. When a geometrical shadowing effect due to occultation by a ridge existing on the sidewalls is taken into account, the observed reflectivity becomes well represented by the modified theoretical curve. An estimated surface micro roughness of ∼1 nm rms is consistent with atomic force microscope measurements of the sidewalls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, P. N., E-mail: pnrao@rrcat.gov.in; Rai, S. K.; Srivastava, A. K.
2016-06-28
Microstructure and composition analysis of periodic multilayer structure consisting of a low electron density contrast (EDC) material combination by grazing incidence hard X-ray reflectivity (GIXR), resonant soft X-ray reflectivity (RSXR), and transmission electron microscopy (TEM) are presented. Measurements of reflectivity at different energies allow combining the sensitivity of GIXR data to microstructural parameters like layer thicknesses and interfacing roughness, with the layer composition sensitivity of RSXR. These aspects are shown with an example of 10-period C/B{sub 4}C multilayer. TEM observation reveals that interfaces C on B{sub 4}C and B{sub 4}C on C are symmetric. Although GIXR provides limited structural informationmore » when EDC between layers is low, measurements using a scattering technique like GIXR with a microscopic technique like TEM improve the microstructural information of low EDC combination. The optical constants of buried layers have been derived by RSXR. The derived optical constants from the measured RSXR data suggested the presence of excess carbon into the boron carbide layer.« less
NASA Astrophysics Data System (ADS)
Heard, Victoria; Warwick, Robert
2012-09-01
We report a study of the extended X-ray emission observed in the Galactic Centre (GC) region based on archival XMM-Newton data. The GC diffuse emission can be decomposed into three distinct components: the emission from low-luminosity point sources; the fluorescence of (and reflection from) dense molecular material; and soft (kT ~1 keV), diffuse thermal plasma emission most likely energised by supernova explosions. Here, we examine the emission due to unresolved point sources. We show that this source component accounts for the bulk of the 6.7-keV and 6.9-keV line emission. We fit the surface brightness distribution evident in these lines with an empirical 2-d model, which we then compare with a prediction derived from a 3-d mass model for the old stellar population in the GC region. We find that the X-ray surface brightness declines more rapidly with angular offset from Sgr A* than the mass-model prediction. One interpretation is that the X-ray luminosity per solar mass characterising the GC source population is increasing towards the GC. Alternatively, some refinement of the mass-distribution within the nuclear stellar disc may be required. The unresolved X-ray source population is most likely dominated by magnetic CVs. We use the X-ray observations to set constraints on the number density of such sources in the GC region. Our analysis does not support the premise that the GC is pervaded by very hot (~ 7.5 keV) thermal plasma, which is truly diffuse in nature.
Distinct oxygen hole doping in different layers of Sr₂CuO 4-δ/La₂CuO₄ superlattices
Smadici, S.; Lee, J. C. T.; Rusydi, A.; ...
2012-03-28
X-ray absorption in Sr₂CuO 4-δ/La₂CuO₄ (SCO/LCO) superlattices shows a variable occupation with doping of a hole state different from holes doped for x≲x optimal in bulk La 2-xSr xCuO₄ and suggests that this hole state is on apical oxygen atoms and polarized in the a-b plane. Considering the surface reflectivity gives a good qualitative description of the line shapes of resonant soft x-ray scattering. The interference between superlattice and surface reflections was used to distinguish between scatterers in the SCO and the LCO layers, with the two hole states maximized in different layers of the superlattice.
Software to model AXAF-I image quality
NASA Technical Reports Server (NTRS)
Ahmad, Anees; Feng, Chen
1995-01-01
A modular user-friendly computer program for the modeling of grazing-incidence type x-ray optical systems has been developed. This comprehensive computer software GRAZTRACE covers the manipulation of input data, ray tracing with reflectivity and surface deformation effects, convolution with x-ray source shape, and x-ray scattering. The program also includes the capabilities for image analysis, detector scan modeling, and graphical presentation of the results. A number of utilities have been developed to interface the predicted Advanced X-ray Astrophysics Facility-Imaging (AXAF-I) mirror structural and thermal distortions with the ray-trace. This software is written in FORTRAN 77 and runs on a SUN/SPARC station. An interactive command mode version and a batch mode version of the software have been developed.
Multilayer X-ray imaging systems
NASA Astrophysics Data System (ADS)
Shealy, D. L.; Hoover, R. B.; Gabardi, D. R.
1986-01-01
An assessment of the imaging properties of multilayer X-ray imaging systems with spherical surfaces has been made. A ray trace analysis was performed to investigate the effects of using spherical substrates (rather than the conventional paraboloidal/hyperboloidal contours) for doubly reflecting Cassegrain telescopes. These investigations were carried out for mirrors designed to operate at selected soft X-ray/XUV wavelengths that are of significance for studies of the solar corona/transition region from the Stanford/MSFC Rocket X-Ray Telescope. The effects of changes in separation of the primary and secondary elements were also investigated. These theoretical results are presented as well as the results of ray trace studies to establish the resolution and vignetting effects as a function of field angle and system parameters.
Störmer, M; Gabrisch, H; Horstmann, C; Heidorn, U; Hertlein, F; Wiesmann, J; Siewert, F; Rack, A
2016-05-01
X-ray mirrors are needed for beam shaping and monochromatization at advanced research light sources, for instance, free-electron lasers and synchrotron sources. Such mirrors consist of a substrate and a coating. The shape accuracy of the substrate and the layer precision of the coating are the crucial parameters that determine the beam properties required for various applications. In principal, the selection of the layer materials determines the mirror reflectivity. A single layer mirror offers high reflectivity in the range of total external reflection, whereas the reflectivity is reduced considerably above the critical angle. A periodic multilayer can enhance the reflectivity at higher angles due to Bragg reflection. Here, the selection of a suitable combination of layer materials is essential to achieve a high flux at distinct photon energies, which is often required for applications such as microtomography, diffraction, or protein crystallography. This contribution presents the current development of a Ru/C multilayer mirror prepared by magnetron sputtering with a sputtering facility that was designed in-house at the Helmholtz-Zentrum Geesthacht. The deposition conditions were optimized in order to achieve ultra-high precision and high flux in future mirrors. Input for the improved deposition parameters came from investigations by transmission electron microscopy. The X-ray optical properties were investigated by means of X-ray reflectometry using Cu- and Mo-radiation. The change of the multilayer d-spacing over the mirror dimensions and the variation of the Bragg angles were determined. The results demonstrate the ability to precisely control the variation in thickness over the whole mirror length of 500 mm thus achieving picometer-precision in the meter-range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenter, P.; Lee, S. S.; Park, C.
2010-01-01
The role of electrolyte ions in the dissolution of orthoclase (0 0 1) in 0.01 m NaOH (pOH {approx} 2) at 84 {+-} 1 C is studied using a combination of in-situ X-ray reflectivity (XR) and ex-situ X-ray reflection interface microscopy (XRIM). The real-time XR measurements show characteristic intensity oscillations as a function of time indicative of the successive removal of individual layers. The dissolution rate in 0.01 m NaOH increases approximately linearly with increasing NaCl concentration up to 2 m NaCl. XRIM measurements of the lateral interfacial topography/structure were made for unreacted surfaces and those reacted in 0.01 mmore » NaOH/1.0 m NaCl solution for 15, 30 and 58 min. The XRIM images reveal that the dissolution reaction leads to the formation of micron-scale regions that are characterized by intrinsically lower reflectivity than the unreacted regions, and appears to be nucleated at steps and defect sites. The reflectivity signal from these reacted regions in the presence of NaCl in solution is significantly lower than that calculated from an idealized layer-by-layer dissolution process, as observed previously in 0.1 m NaOH in the absence of added electrolyte. This difference suggests that dissolved NaCl results in a higher terrace reactivity leading to a more three-dimensional process, consistent with the real-time XR measurements. These observations demonstrate the feasibility of XRIM to gain new insights into processes that control interfacial reactivity, specifically the role of electrolytes in feldspar dissolution at alkaline conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Störmer, M., E-mail: michael.stoermer@hzg.de; Gabrisch, H.; Horstmann, C.
2016-05-15
X-ray mirrors are needed for beam shaping and monochromatization at advanced research light sources, for instance, free-electron lasers and synchrotron sources. Such mirrors consist of a substrate and a coating. The shape accuracy of the substrate and the layer precision of the coating are the crucial parameters that determine the beam properties required for various applications. In principal, the selection of the layer materials determines the mirror reflectivity. A single layer mirror offers high reflectivity in the range of total external reflection, whereas the reflectivity is reduced considerably above the critical angle. A periodic multilayer can enhance the reflectivity atmore » higher angles due to Bragg reflection. Here, the selection of a suitable combination of layer materials is essential to achieve a high flux at distinct photon energies, which is often required for applications such as microtomography, diffraction, or protein crystallography. This contribution presents the current development of a Ru/C multilayer mirror prepared by magnetron sputtering with a sputtering facility that was designed in-house at the Helmholtz-Zentrum Geesthacht. The deposition conditions were optimized in order to achieve ultra-high precision and high flux in future mirrors. Input for the improved deposition parameters came from investigations by transmission electron microscopy. The X-ray optical properties were investigated by means of X-ray reflectometry using Cu- and Mo-radiation. The change of the multilayer d-spacing over the mirror dimensions and the variation of the Bragg angles were determined. The results demonstrate the ability to precisely control the variation in thickness over the whole mirror length of 500 mm thus achieving picometer-precision in the meter-range.« less
NASA Technical Reports Server (NTRS)
Ghandi, P.; Annuar, A.; Lansbury, G. B.; Stern, D.; Alexander, D. M.; Bauer, F. E.; Bianchi, S.; Boggs, S. E.; Boorman, P. G.; Brandt, W. N.;
2017-01-01
We present NuSTAR X-ray observations of the active galactic nucleus (AGN) in NGC7674.The source shows a flat X-ray spectrum, suggesting that it is obscured by Compton-thick gas columns. Based upon long-term flux dimming, previous work suggested the alternate possibility that the source is a recently switched-off AGN with the observed X-rays being the lagged echo from the torus. Our high-quality data show the source to be reflection-dominated in hard X-rays, but with a relatively weak neutral Fe K(alpha) emission line (equivalent width [EW] of approximately 0.4 keV) and a strong Fe XXVI ionized line (EW approximately 0.2 keV).We construct an updated long-term X-ray light curve of NGC7674 and find that the observed 2-10 keV flux has remained constant for the past approximately 20 yr, following a high-flux state probed by Ginga. Light travel time arguments constrain the minimum radius of the reflector to be approximately 3.2 pc under the switched-off AGN scenario, approximately 30 times larger than the expected dust sublimation radius, rendering this possibility unlikely. A patchy Compton-thick AGN (CTAGN) solution is plausible, requiring a minimum line-of-sight column density (N(sub H)) of 3 x 10(exp 24) cm(exp -2) at present, and yields an intrinsic 2-10 keV luminosity of (3-5) x 10(exp 43) erg s(exp -1). Realistic uncertainties span the range of approximately (1-13) x 10(exp 43) erg s1. The source has one of the weakest fluorescence lines amongst bona fide CTAGN, and is potentially a local analogue of bolometrically luminous systems showing complex neutral and ionized Fe emission. It exemplifies the difficulty of identification and proper characterization of distant CTAGN based on the strength of the neutral Fe K line
SPECTRAL SURVEY OF X-RAY BRIGHT ACTIVE GALACTIC NUCLEI FROM THE ROSSI X-RAY TIMING EXPLORER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard, E-mail: erivers@ucsd.edu
2011-03-15
Using long-term monitoring data from the Rossi X-ray Timing Explorer (RXTE), we have selected 23 active galactic nuclei (AGNs) with sufficient brightness and overall observation time to derive broadband X-ray spectra from 3 to {approx}>100 keV. Our sample includes mainly radio-quiet Seyferts, as well as seven radio-loud sources. Given the longevity of the RXTE mission, the greater part of our data is spread out over more than a decade, providing truly long-term average spectra and eliminating inconsistencies arising from variability. We present long-term average values of absorption, Fe line parameters, Compton reflection strengths, and photon indices, as well as fluxesmore » and luminosities for the hard and very hard energy bands, 2-10 keV and 20-100 keV, respectively. We find tentative evidence for high-energy rollovers in three of our objects. We improve upon previous surveys of the very hard X-ray energy band in terms of accuracy and sensitivity, particularly with respect to confirming and quantifying the Compton reflection component. This survey is meant to provide a baseline for future analysis with respect to the long-term averages for these sources and to cement the legacy of RXTE, and especially its High Energy X-ray Timing Experiment, as a contributor to AGN spectral science.« less
Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; ...
2015-06-15
We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spinmore » $$a\\gt 0.9$$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. As a result, we discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.
We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spinmore » $$a\\gt 0.9$$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. As a result, we discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.« less
Noncontacting devices to indicate deflection and vibration of turbopump internal rotating parts
NASA Technical Reports Server (NTRS)
Hamilton, D. B.; Ensminger, D.; Grieser, D. R.; Plummer, A. M.; Saccocio, E. J.; Kissel, J. W.
1973-01-01
The research is reported which was conducted to develop devices for measuring vibrations and deflections of parts, such as impellers, shafts, turbine wheels, and inducers in operating turbopumps. Three devices were developed to the breadboard stage: ultrasonic Doppler transducer, flash X-rays, and light-pipe reflectance. It was found that the X-ray technique is applicable to the shaft assembly and the turbine seal of the J-2 pump, and the light-pipe-reflectance device appears to be ideal for cryogenic pump sections.
ARE THE kHz QPO LAGS IN NEUTRON STAR 4U 1608–52 DUE TO REVERBERATION?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cackett, Edward M., E-mail: ecackett@wayne.edu
2016-08-01
X-ray reverberation lags have recently been discovered in both active galactic nuclei (AGNs) and black hole X-ray binaries. A recent study of the neutron star low-mass X-ray binary (LMXB) 4U 1608 52 has also shown significant lags, whose properties hint at a reverberation origin. Here, we adapt general relativistic ray tracing impulse response functions used to model X-ray reverberation in AGNs for neutron star LMXBs. Assuming that relativistic reflection forms the broad iron line and associated reflection continuum, we use reflection fits to the energy spectrum along with the impulse response functions to calculate the expected lags as a functionmore » of energy over the range of observed kHz quasi-periodic oscillation (QPO) frequencies in 4U 1608 52. We find that the lag energy spectrum is expected to increase with increasing energy above 8 keV, while the observed lags in 4U 1608 52 show the opposite behavior. This demonstrates that the lags in the lower kHz QPO of 4U 1608 52 are not solely due to reverberation. We do note, however, that the models appear to be more consistent with the much flatter lag energy spectrum observed in the upper kHz QPO of several neutron star LMXBs, suggesting that lower and upper kHz QPOs may have different origins.« less
Gong, Zhiliang; Kerr, Daniel; Hwang, Hyeondo Luke; Henderson, J Michael; Suwatthee, Tiffany; Slaw, Benjamin R; Cao, Kathleen D; Lin, Binhua; Bu, Wei; Lee, Ka Yee C
2017-03-01
Total reflection x-ray fluorescence (TXRF) is a widely applicable experimental technique for studying chemical element distributions across finely layered structures at extremely high sensitivity. To promote and facilitate scientific discovery using TXRF, we developed a MATLAB-based software package with a graphical user interface, named XeRay, for quick, accurate, and intuitive data analysis. XeRay lets the user model any layered system, each layer with its independent chemical composition and thickness, and enables fine-tuned data fitting. The accuracy of XeRay has been tested in the analysis of TXRF data from both air/liquid interface and liquid/liquid interfacial studies and has been compared to literature results. In an air/liquid interface study, Ca 2+ sequestration was measured at a Langmuir monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidic acid (SOPA) on a buffer solution of 1 mM CaCl 2 at pH 7.5. Data analysis with XeRay reveals that each 1 nm 2 of interfacial area contains 2.38 ± 0.06 Ca 2+ ions, which corresponds to a 1:1 ratio between SOPA headgroups and Ca 2+ ions, consistent with several earlier reports. For the liquid/liquid interface study of Sr 2+ enrichment at the dodecane/surfactant/water interface, analysis using XeRay gives a surface enrichment of Sr 2+ at 68 -5 +6 Å 2 per ion, consistent with the result published for the same dataset.
NASA Astrophysics Data System (ADS)
Gong, Zhiliang; Kerr, Daniel; Hwang, Hyeondo Luke; Henderson, J. Michael; Suwatthee, Tiffany; Slaw, Benjamin R.; Cao, Kathleen D.; Lin, Binhua; Bu, Wei; Lee, Ka Yee C.
2017-03-01
Total reflection x-ray fluorescence (TXRF) is a widely applicable experimental technique for studying chemical element distributions across finely layered structures at extremely high sensitivity. To promote and facilitate scientific discovery using TXRF, we developed a MATLAB-based software package with a graphical user interface, named XeRay, for quick, accurate, and intuitive data analysis. XeRay lets the user model any layered system, each layer with its independent chemical composition and thickness, and enables fine-tuned data fitting. The accuracy of XeRay has been tested in the analysis of TXRF data from both air/liquid interface and liquid/liquid interfacial studies and has been compared to literature results. In an air/liquid interface study, Ca2+ sequestration was measured at a Langmuir monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidic acid (SOPA) on a buffer solution of 1 mM CaCl2 at pH 7.5. Data analysis with XeRay reveals that each 1 nm2 of interfacial area contains 2.38 ± 0.06 Ca2+ ions, which corresponds to a 1:1 ratio between SOPA headgroups and Ca2+ ions, consistent with several earlier reports. For the liquid/liquid interface study of Sr2+ enrichment at the dodecane/surfactant/water interface, analysis using XeRay gives a surface enrichment of Sr2+ at 68-5+6 Å2 per ion, consistent with the result published for the same dataset.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Zhiliang; Kerr, Daniel; Hwang, Hyeondo Luke
Total reflection x-ray fluorescence (TXRF) is a widely applicable experimental technique for studying chemical element distributions across finely layered structures at extremely high sensitivity. To promote and facilitate scientific discovery using TXRF, we developed a MATLAB-based software package with a graphical user interface, named XeRay, for quick, accurate, and intuitive data analysis. XeRay lets the user model any layered system, each layer with its independent chemical composition and thickness, and enables fine-tuned data fitting. The accuracy of XeRay has been tested in the analysis of TXRF data from both air/liquid interface and liquid/liquid interfacial studies and has been compared tomore » literature results. In an air/liquid interface study, Ca2+ sequestration was measured at a Langmuir monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidic acid (SOPA) on a buffer solution of 1 mM CaCl2 at pH 7.5. Data analysis with XeRay reveals that each 1 nm2 of interfacial area contains 2.38 ± 0.06 Ca2+ ions, which corresponds to a 1:1 ratio between SOPA headgroups and Ca2+ ions, consistent with several earlier reports. For the liquid/liquid interface study of Sr2+ enrichment at the dodecane/surfactant/water interface, analysis using XeRay gives a surface enrichment of Sr2+ at 68+6-568-5+6 Å2 per ion, consistent with the result published for the same dataset.« less
ROSAT implementation of a proposed multi-mission x ray data format
NASA Technical Reports Server (NTRS)
Corcoran, M.; Pence, W.; White, R.; Conroy, M.
1992-01-01
Until recently little effort has been made to ensure that data from X-ray telescopes are delivered in a format that reflects the common characteristics that most X-ray datasets share. Instrument-specific data-product design hampers the comparison of X-ray measurements made by different detectors and should be avoided whenever possible. The ROSAT project and the High Energy Astrophysics Science Archive Research Center (HEASARC) have defined a set of X-ray data products ('rationalized files') for ROSAT data that can be used for distribution and archiving of data from other X-ray missions. This set of 'rationalized files' has been defined to isolate instrument-independent and instrument-specific quantities using standards FITS constructs to ensure portability. We discuss the usage of the 'rationalized files' by ROSAT for data distribution and archiving, with particular emphasis on discrimination between instrument-independent and instrument-specific quantities, and discuss application of this format to data from other X-ray missions.
Time-dependent nonequilibrium soft x-ray response during a spin crossover
NASA Astrophysics Data System (ADS)
van Veenendaal, Michel
2018-03-01
A theoretical framework is developed for better understanding the time-dependent soft-x-ray response of dissipative quantum many-body systems. It is shown how x-ray absorption and resonant inelastic x-ray scattering (RIXS) at transition-metal L edges can provide insight into ultrafast intersystem crossings of importance for energy conversion, ultrafast magnetism, and catalysis. The photoinduced doublet-to-quartet spin crossover on cobalt in Fe-Co Prussian blue analogs is used as a model system to demonstrate how the x-ray response is affected by the nonequilibrium dynamics on a femtosecond time scale. Changes in local spin and symmetry and the underlying mechanism are reflected in strong broadenings, a collapse of clear selection rules during the intersystem crossing, fluctuations in the isotropic branching ratio in x-ray absorption, crystal-field collapse and/or oscillations, and time-dependent anti-Stokes processes in RIXS.
X-ray mirror development and testing for the ATHENA mission
NASA Astrophysics Data System (ADS)
Della Monica Ferreira, Desiree; Jakobsen, Anders C.; Massahi, Sonny; Christensen, Finn E.; Shortt, Brian; Garnæs, Jørgen; Torras-Rosell, Antoni; Krumrey, Michael; Cibik, Levent; Marggraf, Stefanie
2016-07-01
This study reports development and testing of coatings on silicon pore optics (SPO) substrates including pre and post coating characterisation of the x-ray mirrors using Atomic Force Microscopy (AFM) and X-ray reflectometry (XRR) performed at the 8 keV X-ray facility at DTU Space and with synchrotron radiation in the laboratory of PTB at BESSY II. We report our findings on surface roughness and coating reflectivity of Ir/B4C coatings considering the grazing incidence angles and energies of ATHENA and long term stability of Ir/B4C, Pt/B4C, W/Si and W/B4C coatings.
Normal-incidence reflectance of optimized W/B4C x-ray multilayers in the range 1.4 nm < λ < 2.4 nm
NASA Astrophysics Data System (ADS)
Windt, David L.; Gullikson, Eric M.; Walton, Christopher C.
2002-12-01
We have fabricated W/B4C multilayers having periods in the range d = 0.8-1.2 nm and measured their soft-x-ray performance near normal incidence in the wavelength range 1.4 < λ < 2.4 nm. By adjusting the fractional layer thickness of W we have produced structures having interface widths σ ~ 0.29 nm (i.e., as determined from normal-incidence reflectometry), thus having optimal soft-x-ray performance. We describe our results and discuss their implications, particularly with regard to the development of short-wavelength normal-incidence x-ray optics.
Diffraction imaging for in situ characterization of double-crystal X-ray monochromators
Stoupin, Stanislav; Liu, Zunping; Heald, Steve M.; ...
2015-10-30
In this paper, imaging of the Bragg-reflected X-ray beam is proposed and validated as an in situ method for characterization of the performance of double-crystal monochromators under the heat load of intense synchrotron radiation. A sequence of images is collected at different angular positions on the reflectivity curve of the second crystal and analyzed. The method provides rapid evaluation of the wavefront of the exit beam, which relates to local misorientation of the crystal planes along the beam footprint on the thermally distorted first crystal. The measured misorientation can be directly compared with the results of finite element analysis. Finally,more » the imaging method offers an additional insight into the local intrinsic crystal quality over the footprint of the incident X-ray beam.« less
A Compact X-Ray System for Macromolecular Crystallography
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall
2000-01-01
We describe the design and performance of a high flux x-ray system for a macromolecular crystallography that combines a microfocus x-ray generator (40 micrometer full width at half maximum spot size at a power level of 46.5 W) and a collimating polycapillary optic. The Cu Ka lpha x-ray flux produced by this optimized system through a 500,um diam orifice is 7.0 times greater than the x-ray flux previously reported by Gubarev et al. [M. Gubarev et al., J. Appl. Crystallogr. 33, 882 (2000)]. The x-ray flux from the microfocus system is also 2.6 times higher than that produced by a rotating anode generator equipped with a graded multilayer monochromator (green optic, Osmic Inc. CMF24-48-Cu6) and 40% less than that produced by a rotating anode generator with the newest design of graded multilayer monochromator (blue optic, Osmic, Inc. CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 W, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42 540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym)=5.0% for data extending to 1.70 A, and 4.8% for the complete set of data to 1.85 A. The amplitudes of the observed reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.
Electron-positron pairs, Compton reflection, and the X-ray spectra of active galactic nuclei
NASA Technical Reports Server (NTRS)
Zdziarski, Andrzej A.; Ghisellini, Gabriele; George, Ian M.; Fabian, A. C.; Svensson, Roland; Done, Chris
1990-01-01
It is shown here that reprocessing of radiation fron nonthermal pair cascades by cold material in the central parts of active galactic nuclei (AGN) gives rise to X-ray and gamma-ray spectra that satisfy current observational constraints. An average 1-30 keV X-ray spectral index alpha(x) of about 0.7 in the compact range 30-300 is obtained for a wide range of Lorentz factors of the injected electrons. The gamma-ray spectra are steep, with alpha(gamma) about two, and satisfy the observational constraints. Radiation from pair cascades exhibits steep power law decreases in soft X-rays similar to those observed in AGN. The overall picture is consistent with AGN having an accretion disk which intercepts and reprocesses a substantial fraction of the nonthermal continuum incident upon it from above and below.
High efficiency replicated x-ray optics and fabrication method
Barbee, Jr., Troy W.; Lane, Stephen M.; Hoffman, Donald E.
2001-01-01
Replicated x-ray optics are fabricated by sputter deposition of reflecting layers on a super-polished reusable mandrel. The reflecting layers are strengthened by a supporting multilayer that results in stronger stress-relieved reflecting surfaces that do not deform during separation from the mandrel. The supporting multilayer enhances the ability to part the replica from the mandrel without degradation in surface roughness. The reflecting surfaces are comparable in smoothness to the mandrel surface. An outer layer is electrodeposited on the supporting multilayer. A parting layer may be deposited directly on the mandrel before the reflecting surface to facilitate removal of the layered, tubular optic device from the mandrel without deformation. The inner reflecting surface of the shell can be a single layer grazing reflection mirror or a resonant multilayer mirror. The resulting optics can be used in a wide variety of applications, including lithography, microscopy, radiography, tomography, and crystallography.
NASA Astrophysics Data System (ADS)
Wrobel, P. M.; Bogovac, M.; Sghaier, H.; Leani, J. J.; Migliori, A.; Padilla-Alvarez, R.; Czyzycki, M.; Osan, J.; Kaiser, R. B.; Karydas, A. G.
2016-10-01
A new synchrotron beamline end-station for multipurpose X-ray spectrometry applications has been recently commissioned and it is currently accessible by end-users at the XRF beamline of Elettra Sincrotrone Trieste. The end-station consists of an ultra-high vacuum chamber that includes as main instrument a seven-axis motorized manipulator for sample and detectors positioning, different kinds of X-ray detectors and optical cameras. The beamline end-station allows performing measurements in different X-ray spectrometry techniques such as Microscopic X-Ray Fluorescence analysis (μXRF), Total Reflection X-Ray Fluorescence analysis (TXRF), Grazing Incidence/Exit X-Ray Fluorescence analysis (GI-XRF/GE-XRF), X-Ray Reflectometry (XRR), and X-Ray Absorption Spectroscopy (XAS). A LabVIEW Graphical User Interface (GUI) bound with Tango control system consisted of many custom made software modules is utilized as a user-friendly tool for control of the entire end-station hardware components. The present work describes this advanced Tango and LabVIEW software platform that utilizes in an optimal synergistic manner the merits and functionality of these well-established programming and equipment control tools.
The peculiar optical-UV X-ray spectra of the X-ray weak quasar PG 0043+039
NASA Astrophysics Data System (ADS)
Kollatschny, W.; Schartel, N.; Zetzl, M.; Santos-Lleó, M.; Rodríguez-Pascual, P. M.; Ballo, L.; Talavera, A.
2016-01-01
Context. The object PG 0043+039 has been identified as a broad absorption line (BAL) quasar based on its UV spectra. However, this optical luminous quasar has not been detected before in deep X-ray observations, making it the most extreme X-ray weak quasar known today. Aims: This study aims to detect PG 0043+039 in a deep X-ray exposure. The question is what causes the extreme X-ray weakness of PG 0043+039? Does PG 0043+039 show other spectral or continuum peculiarities? Methods: We took simultaneous deep X-ray spectra with XMM-Newton, far-ultraviolet (FUV) spectra with the Hubble Space Telescope (HST), and optical spectra of PG 0043+039 with the Hobby-Eberly Telescope (HET) and Southern African Large Telescope (SALT) in July, 2013. Results: We have detected PG 0043+039 in our X-ray exposure taken in 2013. We presented our first results in a separate paper (Kollatschny et al. 2015). PG 0043+039 shows an extreme αox gradient (αox = -2.37). Furthermore, we were able to verify an X-ray flux of this source in a reanalysis of the X-ray data taken in 2005. At that time, it was fainter by a factor of 3.8 ±0.9 with αox = -2.55. The X-ray spectrum is compatible with a normal quasar power-law spectrum (Γ = 1.70-0.45+0.57) with moderate intrinsic absorption (NH = 5.5-3.9+6.9 × 1021 cm-2) and reflection. The UV/optical flux of PG 0043+039 has increased by a factor of 1.8 compared to spectra taken in the years 1990-1991. The FUV spectrum is highly peculiar and dominated by broad bumps besides Lyα. There is no detectable Lyman edge associated with the BAL absorbing gas seen in the CIV line. PG 0043+039 shows a maximum in the overall continuum flux at around λ ≈ 2500 Å in contrast to most other AGN where the maximum is found at shorter wavelengths. All the above is compatible with an intrinsically X-ray weak quasar, rather than an absorbed X-ray emission. Besides strong FeII multiplets and broad Balmer and HeI lines in the optical band we only detect a narrow [O II]λ3727 emission line and a BAL system in the CaH λ3968, CaK λ3934 lines (blueshifted by 4900 km s-1) and in the He I λ3889 line (blueshifted by 5600 km s-1). Based on observations obtained with XMM-Newton, the Hubble Space Telescope (HST), Southern African Large Telescope (SALT), and Hobby-Eberly Telescope (HET).
Desborough, G.A.; Foord, E.E.
1992-01-01
A mineral with the approximate composition of Au94Hg6 - Au88Hg12 (atomic %) has been identified in Pleistocene Snake River alluvial deposits. The gold-mercury mineral occurs as very small grains or as polycrystalline masses composed of subhedral to nearly euhedral attached crystals. Vibratory cold-polishing techniques with 0.05-??m alumina abrasive for polished sections revealed a porous internal texture for most subhedral crystals after 48-72 hours of treatment. Thus, optical character (isotropic or anisotropic) could not be determined by reflected-light microscopy, and pore-free areas were too small for measurement of reflectance. X-ray-diffraction lines rather than individual reflections (spots), on powder camera X-ray films of unrotated spindles of single grains that morphologically appear to be single crystals, indicate that individual subhedral or euhedral crystals are composed of domains in random orientation. Thus, no material was found suitable for single-crystal X-ray diffraction studies. -from Authors
X-rays across the galaxy population - I. Tracing the main sequence of star formation
NASA Astrophysics Data System (ADS)
Aird, J.; Coil, A. L.; Georgakakis, A.
2017-03-01
We use deep Chandra imaging to measure the distribution of X-ray luminosities (LX) for samples of star-forming galaxies as a function of stellar mass and redshift, using a Bayesian method to push below the nominal X-ray detection limits. Our luminosity distributions all show narrow peaks at LX ≲ 1042 erg s-1 that we associate with star formation, as opposed to AGN that are traced by a broad tail to higher LX. Tracking the luminosity of these peaks as a function of stellar mass reveals an 'X-ray main sequence' with a constant slope ≈0.63 ± 0.03 over 8.5 ≲ log {M}_{ast }/M_{⊙} ≲ 11.5 and 0.1 ≲ z ≲ 4, with a normalization that increases with redshift as (1 + z)3.79 ± 0.12. We also compare the peak X-ray luminosities with UV-to-IR tracers of star formation rates (SFRs) to calibrate the scaling between LX and SFR. We find that LX ∝ SFR0.83 × (1 + z)1.3, where the redshift evolution and non-linearity likely reflect changes in high-mass X-ray binary populations of star-forming galaxies. Using galaxies with a broader range of SFR, we also constrain a stellar-mass-dependent contribution to LX, likely related to low-mass X-ray binaries. Using this calibration, we convert our X-ray main sequence to SFRs and measure a star-forming main sequence with a constant slope ≈0.76 ± 0.06 and a normalization that evolves with redshift as (1 + z)2.95 ± 0.33. Based on the X-ray emission, there is no evidence for a break in the main sequence at high stellar masses, although we cannot rule out a turnover given the uncertainties in the scaling of LX to SFR.
X-ray reflectivity study of formation of multilayer porous anodic oxides of silicon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Y.; Fenollosa, R.; Parkhutik, V.
1999-07-21
The paper reports data on the kinetics of anodic oxide films growth on silicon in aqueous solutions of phosphoric acids as well as a study of the morphology of the oxides grown in a special regime of the oscillating anodic potential. X-ray reflectivity measurements were performed on the samples of anodic oxides using an intense synchrotron radiation source. They have a multilayer structure as revealed by theoretical fitting of the reflectivity data. The oscillations of the anodic potential are explained in terms of synchronized oxidation/dissolution reactions at the silicon surface and accumulation of mechanic stress in the oxide film.
NASA Astrophysics Data System (ADS)
Marlowe, Hannah; McEntaffer, Randall L.; Allured, Ryan; DeRoo, Casey; Miles, Drew M.; Donovan, Benjamin D.; Tutt, James H.; Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.; Smith, Randall K.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo
2015-05-01
An X-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for extraterrestrial Physics PANTER X-ray test facility. The SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with a SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowarik, S.; Hinderhofer, A.; Wang, C.
Highly crystalline and stable molecular superlattices are grown with the smallest possible stacking period using monolayers (MLs) of the organic semiconductors pentacene (PEN) and perfluoro-pentacene (PFP). Superlattice reflections in X-ray reflectivity and their energy dependence in resonant soft X-ray reflectivity measurements show that PFP and PEN MLs indeed alternate even though the coherent ordering is lost after ~ 4 ML. The observed lattice spacing of 15.9 Å in the superlattice is larger than in pure PEN and PFP films, presumably because of more upright standing molecules and lack of interdigitation between the incommensurate crystalline PEN and PFP layers. The findingsmore » are important for the development of novel organic quantum optoelectronic devices.« less
X-ray emission from a plasma mirror of a neodymium glass laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalal, M.; Pina, L.; Vrbova, M.
1984-11-01
An investigation was made of the optical and x-ray characteristics of the radiation emitted by a plasma mirror in a neodymium glass laser. The optical reflection coefficient of the mirror was found to be nonlinear and the plasma temperature was about 300 eV.
Development study of the X-ray scattering properties of a group of optically polished flat samples
NASA Technical Reports Server (NTRS)
Froechtenigt, J. F.
1973-01-01
A group of twelve optically polished flat samples were used to study the scattering of X-rays. The X-ray beam reflected from the twelve optical flat samples was analyzed by means of a long vacuum system of special design for these tests. The scattering measurements were made at 8.34A and 0.92 deg angle of incidence. The results for ten of the samples are comparable, the two exceptions being the fire polished samples.
Magnetic x-ray scattering studies of holmium using synchro- tron radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, D.; Moncton, D.E.; D'Amico, K.L.
1985-07-08
We present the results of magnetic x-ray scattering experiments on the rare-earth metal holmium using synchrotron radiation. Direct high-resolution measurements of the nominally incommensurate magnetic satellite reflections reveal new lock-in behavior which we explain within a simple spin-discommensuration model. As a result of magnetoelastic coupling, the spin-discommensuration array produces additional x-ray diffraction satellites. Their observation further substantiates the model and demonstrates additional advantages of synchrotron radiation for magnetic-structure studies.
2011-07-01
dosimeter program. Unfortunately, this limited personnel monitoring program did not address the case of an individual who may have performed...and forearms; feet and ankles 18 ¾ Skin of whole body 7 ½ The USCG does maintain a small radiation personnel dosimeter monitoring program for x...ray technicians at USCG medical clinics (USCG, 2006). This medical clinic dosimeter program reflects a civilian standard of practice, where the x-ray
Breakthroughs in photonics 2013: X-ray optics
Soufli, Regina
2014-04-01
Here, this review discusses the latest advances in extreme ultraviolet/X-ray optics development, which are motivated by the availability and demands of new X-ray sources and scientific and industrial applications. Among the breakthroughs highlighted are the following: i) fabrication, metrology, and mounting technologies for large-area optical substrates with improved figure, roughness, and focusing properties; ii) multilayer coatings with especially optimized layer properties, achieving improved reflectance, stability, and out-of-band suppression; and iii) nanodiffractive optics with improved efficiency and resolution.
Multislice does it all—calculating the performance of nanofocusing X-ray optics
Li, Kenan; Wojcik, Michael; Jacobsen, Chris
2017-01-23
Here, we describe an approach to calculating the optical performance of a wide range of nanofocusing X-ray optics using multislice scalar wave propagation with a complex X-ray refractive index. This approach produces results indistinguishable from methods such as coupled wave theory, and it allows one to reproduce other X-ray optical phenomena such as grazing incidence reflectivity where the direction of energy flow is changed significantly. Just as finite element analysis methods allow engineers to compute the thermal and mechanical responses of arbitrary structures too complex to model by analytical approaches, multislice propagation can be used to understand the properties ofmore » the real-world optics of finite extent and with local imperfections, allowing one to better understand the limits to nanoscale X-ray imaging.« less
The Water Recovery X-ray Rocket (WRX-R)
NASA Astrophysics Data System (ADS)
Miles, Drew
2017-08-01
The Water Recovery X-ray Rocket (WRX-R) is a diffuse soft X-ray spectrometer that will launch on a sounding rocket from the Kwajalein Atoll. WRX-R has a field of view of >10 deg2 and will observe the Vela supernova remnant. A mechanical collimator, state-of-the-art off-plane reflection grating array and hybrid CMOS detector will allow WRX to achieve the most highly-resolved spectrum of the Vela SNR ever recorded. In addition, this payload will fly a hard X-ray telescope that is offset from the soft X-ray spectrometer in order to observe the pulsar at the center of the remnant. We present here an introduction to the instrument, the expected science return, and an update on the state of the payload as we work towards launch.
Element Selectivity in Second-Harmonic Generation of GaFeO3 by a Soft-X-Ray Free-Electron Laser
NASA Astrophysics Data System (ADS)
Yamamoto, Sh.; Omi, T.; Akai, H.; Kubota, Y.; Takahashi, Y.; Suzuki, Y.; Hirata, Y.; Yamamoto, K.; Yukawa, R.; Horiba, K.; Yumoto, H.; Koyama, T.; Ohashi, H.; Owada, S.; Tono, K.; Yabashi, M.; Shigemasa, E.; Yamamoto, S.; Kotsugi, M.; Wadati, H.; Kumigashira, H.; Arima, T.; Shin, S.; Matsuda, I.
2018-06-01
Nonlinear optical frequency conversion has been challenged to move down to the extreme ultraviolet and x-ray region. However, the extremely low signals have allowed researchers to only perform transmission experiments of the gas phase or ultrathin films. Here, we report second harmonic generation (SHG) of the reflected beam of a soft x-ray free-electron laser from a solid, which is enhanced by the resonant effect. The observation revealed that the double resonance condition can be met by absorption edges for transition metal oxides in the soft x-ray range, and this suggests that the resonant SHG technique can be applicable to a wide range of materials. We discuss the possibility of element-selective SHG spectroscopy measurements in the soft x-ray range.
Chandra Captures Venus In A Whole New Light
NASA Astrophysics Data System (ADS)
2001-11-01
Scientists have captured the first X-ray view of Venus using NASA's Chandra X-ray Observatory. The observations provide new information about the atmosphere of Venus and open a new window for examining Earth's sister planet. Venus in X-rays looks similar to Venus in visible light, but there are important differences. The optically visible Venus is due to the reflection of sunlight and, for the relative positions of Venus, Earth and Sun during these observations, shows a uniform half-crescent that is brightest toward the middle. The X-ray Venus is slightly less than a half-crescent and brighter on the limbs. The differences are due to the processes by which Venus shines in visible and X-ray light. The X-rays from Venus are produced by fluorescence, rather than reflection. Solar X-rays bombard the atmosphere of Venus, knock electrons out of the inner parts of the atoms, and excite the atoms to a higher energy level. The atoms almost immediately return to their lower energy state with the emission of a fluorescent X-ray. A similar process involving ultraviolet light produces the visible light from fluorescent lamps. For Venus, most of the fluorescent X-rays come from oxygen and carbon atoms between 120 and 140 kilometers (74 to 87 miles) above the planet's surface. In contrast, the optical light is reflected from clouds at a height of 50 to 70 kilometers (31 to 43 miles). As a result, Venus' Sun-lit hemisphere appears surrounded by an almost-transparent luminous shell in X-rays. Venus looks brightest at the limb since more luminous material is there. Venus X-ray/Optical Composite of Venus Credit: Xray: NASA/CXC/MPE/K.Dennerl et al., Optical: Konrad Dennerl "This opens up the exciting possibility of using X-ray observations to study regions of the atmosphere of Venus that are difficult to investigate by other means," said Konrad Dennerl of the Max Planck Institute for Extraterrestrial Physics in Garching, Germany, leader of an international team of scientists that conducted the research. The Chandra observation of Venus was also a technological tour de force. The angular separation of Venus from the Sun, as seen from Earth, never exceeds 48 degrees. This relative proximity has prevented star trackers and cameras on other X-ray astronomy satellites from locking onto guide stars and pointing steadily in the direction of Venus to perform such an observation. Venus was observed on Jan. 10, 2001, with the Advanced CCD Imaging Spectrometer (ACIS) detector plus the Low Energy Transmission Grating and on Jan. 13, 2001, with the ACIS alone. Other members of the team were Vadim Burwitz and Jakob Engelhauser, Max Planck Institute; Carey Lisse, University of Maryland, College Park; and Scott Wolk, Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass. These results were presented at this week's "New Visions of X-ray universe in the XMM-Newton and Chandra Era" symposium in Noordwijk, Netherlands. The Low Energy Transmission Grating was built by the Space Research Organization of the Netherlands and the Max Planck Institute, and the ACIS instrument was developed for NASA by The Pennsylvania State University, University Park, and the Massachusetts Institute of Technology (MIT), Cambridge. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.
Grid-enhanced X-ray coded aperture microscopy with polycapillary optics
Sowa, Katarzyna M.; Last, Arndt; Korecki, Paweł
2017-01-01
Polycapillary devices focus X-rays by means of multiple reflections of X-rays in arrays of bent glass capillaries. The size of the focal spot (typically 10–100 μm) limits the resolution of scanning, absorption and phase-contrast X-ray imaging using these devices. At the expense of a moderate resolution, polycapillary elements provide high intensity and are frequently used for X-ray micro-imaging with both synchrotrons and X-ray tubes. Recent studies have shown that the internal microstructure of such an optics can be used as a coded aperture that encodes high-resolution information about objects located inside the focal spot. However, further improvements to this variant of X-ray microscopy will require the challenging fabrication of tailored devices with a well-defined capillary microstructure. Here, we show that submicron coded aperture microscopy can be realized using a periodic grid that is placed at the output surface of a polycapillary optics. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics does not rely on the specific microstructure of the optics but rather takes advantage only of its focusing properties. Hence, submicron X-ray imaging can be realized with standard polycapillary devices and existing set-ups for micro X-ray fluorescence spectroscopy. PMID:28322316
Grid-enhanced X-ray coded aperture microscopy with polycapillary optics.
Sowa, Katarzyna M; Last, Arndt; Korecki, Paweł
2017-03-21
Polycapillary devices focus X-rays by means of multiple reflections of X-rays in arrays of bent glass capillaries. The size of the focal spot (typically 10-100 μm) limits the resolution of scanning, absorption and phase-contrast X-ray imaging using these devices. At the expense of a moderate resolution, polycapillary elements provide high intensity and are frequently used for X-ray micro-imaging with both synchrotrons and X-ray tubes. Recent studies have shown that the internal microstructure of such an optics can be used as a coded aperture that encodes high-resolution information about objects located inside the focal spot. However, further improvements to this variant of X-ray microscopy will require the challenging fabrication of tailored devices with a well-defined capillary microstructure. Here, we show that submicron coded aperture microscopy can be realized using a periodic grid that is placed at the output surface of a polycapillary optics. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics does not rely on the specific microstructure of the optics but rather takes advantage only of its focusing properties. Hence, submicron X-ray imaging can be realized with standard polycapillary devices and existing set-ups for micro X-ray fluorescence spectroscopy.
NASA Astrophysics Data System (ADS)
Tanimoto, Atsushi; Ueda, Yoshihiro; Kawamuro, Taiki; Ricci, Claudio; Awaki, Hisamitsu; Terashima, Yuichi
2018-02-01
We present a uniform broadband X-ray (0.5–100.0 keV) spectral analysis of 12 Swift/Burst Alert Telescope selected Compton-thick ({log}{N}{{H}}/{{cm}}-2≥slant 24) active galactic nuclei (CTAGNs) observed with Suzaku. The Suzaku data of three objects are published here for the first time. We fit the Suzaku and Swift spectra with models utilizing an analytic reflection code and those utilizing the Monte-Carlo-based model from an AGN torus by Ikeda et al. The main results are as follows: (1) The estimated intrinsic luminosity of a CTAGN strongly depends on the model; applying Compton scattering to the transmitted component in an analytic model may largely overestimate the intrinsic luminosity at large column densities. (2) Unabsorbed reflection components are commonly observed, suggesting that the tori are clumpy. (3) Most of CTAGNs show small scattering fractions (<0.5%), implying a buried AGN nature. (4) Comparison with the results obtained for Compton-thin AGNs suggests that the properties of these CTAGNs can be understood as a smooth extension from Compton-thin AGNs with heavier obscuration; we find no evidence that the bulk of the population of hard-X-ray-selected CTAGNs are different from less obscured objects.
In situ X-ray measurements of MOVPE growth of InxGa1-xN single quantum wells
NASA Astrophysics Data System (ADS)
Ju, Guangxu; Fuchi, Shingo; Tabuchi, Masao; Takeda, Yoshikazu
2013-05-01
GaN/InxGa1-xN/GaN single quantum wells (SQWs) have been grown on c-plane GaN/sapphire substrates using MOVPE system. PL (photoluminescence) and AFM (atomic force microscope) measurements demonstrate good quality of after-growth thermal-annealed SQWs. In situ XRD (X-ray diffraction), XRR (X-ray reflectivity), and X-ray CTR (crystal truncation rod) scattering measurements were successfully conducted on the SQWs under the NH3+N2 ambient at 1103 K. The analysis results of the XRR and the X-ray CTR spectra at 1103 K and at 300 K on the same sample matched well. It demonstrated that In0.09Ga0.91N SQW structure with several ML (monolayer) InGaN thicknesses was successfully investigated using the XRR and CTR scattering measurements at 1103 K.
2015-12-31
image from NURP annual report. in X The ray -cone code simulates the CAS signal received after being reflected form two different targets, and...Cm where m, m, ... , 1fn are X ’s parents, and nodes C1, C1, ... , C,, are X ’s children. Image based on (Duda, Hart, & Stork, 2001). The first...Sorenson, 1970). Using the reference (Welch & Bishop, 2006), the procedure for estimating the real state x , of a discrete-time controlled process , will
NASA Astrophysics Data System (ADS)
Ballantyne, D. R.
2014-01-01
The broad-band X-ray spectra of active galactic nuclei (AGNs) contains information about the nuclear environment from Schwarzschild radii scales (where the primary power law is generated in a corona) to distances of ˜1 pc (where the distant reflector may be located). In addition, the average shape of the X-ray spectrum is an important input into X-ray background synthesis models. Here, local (z ≈ 0) AGN luminosity functions (LFs) in five energy bands are used as a low-resolution, luminosity-dependent X-ray spectrometer in order to constrain the average AGN X-ray spectrum between 0.5 and 200 keV. The 15-55 keV LF measured by Swift-BAT is assumed to be the best determination of the local LF, and then a spectral model is varied to determine the best fit to the 0.5-2 keV, 2-10 keV, 3-20 keV and 14-195 keV LFs. The spectral model consists of a Gaussian distribution of power laws with a mean photon-index <Γ> and cutoff energy Ecut, as well as contributions from distant and disc reflection. The reflection strength is parametrized by varying the Fe abundance relative to solar, AFe, and requiring a specific Fe Kα equivalent width (EW). In this way, the presence of the X-ray Baldwin effect can be tested. The spectral model that best fits the four LFs has <Γ> = 1.85 ± 0.15, E_{cut}=270^{+170}_{-80} keV, A_{Fe}=0.3^{+0.3}_{-0.15}. The sub-solar AFe is unlikely to be a true measure of the gas-phase metallicity, but indicates the presence of strong reflection given the assumed Fe Kα EW. Indeed, parametrizing the reflection strength with the R parameter gives R=1.7^{+1.7}_{-0.85}. There is moderate evidence for no X-ray Baldwin effect. Accretion disc reflection is included in the best-fitting model, but it is relatively weak (broad iron Kα EW < 100 eV) and does not significantly affect any of the conclusions. A critical result of our procedure is that the shape of the local 2-10 keV LF measured by HEAO-1 and MAXI is incompatible with the LFs measured in the hard X-rays by Swift-BAT and RXTE. We therefore present a new determination of the local 2-10 keV LF that is consistent with all other energy bands, as well as the de-evolved 2-10 keV LF estimated from the XMM-Newton Hard Bright Survey. This new LF should be used to revise current measurements of the evolving AGN LF in the 2-10 keV band. Finally, the suggested absence of the X-ray Baldwin effect points to a possible origin for the distant reflector in dusty gas not associated with the AGN obscuring medium. This may be the same material that produces the compact 12 μm source in local AGNs.
Determination of a Two-Phase Structure of Nanocrystals: GaN and SiC
NASA Technical Reports Server (NTRS)
Palosz, W.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Lojkowski, W.; Bismayer, U.; Neuefeind, J.; Weber, H.-P.; Janik, J. F.;
2001-01-01
The properties of nano-crystalline materials are critically dependent on the structure of the constituent grains. Experimental conditions necessary to perform structural analysis of nanocrystalline materials as a two-phase core-surface shell system are discussed. It is shown, that a standard X-ray diffraction measurements and analysis are insufficient and may lead to incorrect conclusions as to the real structure of the materials. A new method of evaluation of powder diffraction data based on the analysis of the shift of the Bragg reflections from their perfect-lattice positions was developed. "Apparent lattice parameters" quantity, alp, was introduced and calculated from the actual positions of each individual Bragg reflection. The alp values plotted versus diffraction vector (Q) show characteristic features that are used for evaluation of the experimental results. The study was based on modeling of nano-grains and simulations of theoretical intensity profiles using the Debye functions. The method was applied to the analysis of synchrotron X-ray diffraction data of GaN and SiC nanocrystals. A presence of strained surface shell and a considerable internal pressure (GaN) in the nanoparticles was concluded.
NASA Astrophysics Data System (ADS)
Moore, Christopher Samuel
2017-11-01
Advances in technology and instrumentation open new windows for observing astrophysical objects. The first half of my dissertation involves the development of atomic layer deposition (ALD) coatings to create high reflectivity UV mirrors for future satellite astronomical telescopes. Aluminum (Al) has intrinsic reflectance greater than 80% from 90 – 2,000 nm, but develops a native aluminum oxide (Al2O3) layer upon exposure to air that readily absorbs light below 250 nm. Thus, Al based UV mirrors must be protected by a transmissive overcoat. Traditionally, metal-fluoride overcoats such as MgF2 and LiF are used to mitigate oxidation but with caveats. We utilize a new metal fluoride (AlF3) to protect Al mirrors deposited by ALD. ALD allows for precise thickness control, conformal and near stoichiometric thin films. We prove that depositing ultra-thin ( 3 nm) ALD ALF3 to protect Al mirrors after removing the native oxide layer via atomic layer etching (ALE) enhances the reflectance near 90 nm from 5% to 30%.X-ray detector technology with high readout rates are necessary for the relatively bright Sun, particularly during large flares. The hot plasma in the solar corona generates X-rays, which yield information on the physical conditions of the plasma. The second half of my dissertation includes detector testing, characterization and solar science with the Miniature X-ray Solar Spectrometer (MinXSS) CubeSats. The MinXSS CubeSats employ Silicon Drift Diode (SDD) detectors called X123, which generate full sun spectrally resolved ( 0.15 FWHM at 5.9 keV) measurements of the sparsely measured, 0.5 – 12 keV range. The absolute radiometric calibration of the MinXSS instrument suite was performed at the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive sources. I used MinXSS along with data from the Geostationary Operational Environmental Satellites (GOES), Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Hinode X-ray Telescope (XRT), Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) and Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) to study the solar corona. This resulted in new insights on the coronal temperature distribution and elemental abundance variations for quiescence, active regions and during solar flares.
Observing the Fast X-ray Spectral Variability of NLS1 1H1934-063 with XMM-Newton and NuSTAR
NASA Astrophysics Data System (ADS)
Frederick, Sara; Kara, Erin; Reynolds, Christopher S.
2017-08-01
The most variable active galactic nuclei (AGN), taken together, are a compelling wellspring of interesting accretion-related phenomena. They can exhibit dramatic variability in the X-ray band on a range of timescales down to a few minutes. We present the exemplifying case study of 1H1934-063 (z = 0.0102), a narrow-line Seyfert I (NLS1) that is among the most variable AGN ever observed with XMM-Newton. We present spectral and temporal analyses of a concurrent XMM-Newton and NuSTAR observation taken in 2015 and lasting 120 ks, during which the source exhibited a steep (factor of 1.5) plummet and subsequent full recovery of flux that we explore in detail here. Combined spectral and timing results point to a dramatic change in the continuum on timescales as short as a few ks. Similar to other highly variable Seyfert 1s, this AGN is quite X-ray bright and displays strong reflection spectral features. We find agreement with a change in the continuum, and we rule out absorption as the cause for this dramatic variability observed even at NuSTAR energies. We compare detailed time-resolved spectral fitting with Fourier-based timing analysis in order to constrain coronal geometry, dynamics, and emission/absorption processes dictating the nature of this variability. We also announce the discovery of a Fe-K time lag between the hard X-ray continuum emission (1 - 4 keV) and its relativistically-blurred reflection off the inner accretion flow (0.3 - 1 keV).
Interfacial binding of divalent cations to calixarene-based Langmuir monolayers
Tulli, Ludovico G.; Wang, Wenjie; Lindemann, William R.; ...
2015-02-20
The interactions of Langmuir monolayers produced through the self-assembly of an amphiphilic p-carboxycalix[4]arene with a series of divalent, fourth-period transition metals, at the air-water interface, were investigated. Changes in the interfacial behavior of 1 in response to the presence of CuCl 2, CoCl 2, MnCl 2, and NiCl 2 were studied by means of Langmuir compression isotherms and Brewster angle microscopy (BAM). The measurements revealed that the self-assembly properties of 1 are significantly affected by Cu 2+ ions. The interactions of 1-based monolayers with Co 2+ and Cu 2+ ions were further investigated by means of synchrotron radiation-based X-ray reflectivitymore » (XRR), X-ray near-total-reflection fluorescence (XNTRF), and grazing incidence X-ray diffraction (GIXD). XNTRF and XRR analyses revealed that the monolayer of 1 binds more strongly to Cu 2+ than Co 2+ ions. In the presence of relatively high concentrations of Cu 2+ ions in the subphase (1.4 × 10 -3 M), XNTRF exhibited anomalous depth profile behavior and GIXD measurements showed considerably strong diffuse scattering. Furthermore, both measurements suggest the formation of Cu 2+ clusters contiguous to the monolayer of 1.« less
Hot Dust Obscured Galaxies with Excess Blue Light: Dual AGN or Single AGN Under Extreme Conditions?
NASA Astrophysics Data System (ADS)
Assef, R. J.; Walton, D. J.; Brightman, M.; Stern, D.; Alexander, D.; Bauer, F.; Blain, A. W.; Diaz-Santos, T.; Eisenhardt, P. R. M.; Finkelstein, S. L.; Hickox, R. C.; Tsai, C.-W.; Wu, J. W.
2016-03-01
Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (I) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (II) a second unobscured AGN in the system; or (III) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13-050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M⊙ yr-1. Deep polarimetry observations could confirm the reflection hypothesis.
HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assef, R. J.; Diaz-Santos, T.; Walton, D. J.
Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGsmore » that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M{sub ⊙} yr{sup −1}. Deep polarimetry observations could confirm the reflection hypothesis.« less
Resonant magnetic scattering of polarized soft x rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sacchi, M.; Hague, C.F.; Gullikson, E.M.
1997-04-01
Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of themore » first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.« less
Black hole accretion rings revealed by future X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Sochora, V.; Karas, V.; Svoboda, J.; Dovčiak, M.
2011-11-01
Spectral features can arise by reflection of coronal X-rays on a black hole accretion disc. The resulting profile bears various imprints of a strong gravitational field acting on the light-emitting gas. The observed shape of the reflection line is formed by integrating contributions over a range of radii across the accretion disc plane, where the individual photons experience a different level of energy shifts, boosting and amplification by relativistic effects. These have to be convolved with the intrinsic emissivity of the line, which is a function of radius and the emission angle in the local frame. We study if the currently discussed instruments on-board X-ray satellites will be able to reveal the departure of the line radial emissivity from a simple smooth power-law function, which is often assumed in data fitting and its interpretation. Such a departure can be a result of excess emission occurring at a certain distance. This could be used to study variations with a radius of the line production or to constrain the position of the inner edge of the accretion disc. By simulating artificial data from a bright active galactic nucleus of a type 1 Seyfert galaxy (inclination ≃30°, X-ray flux ≃1-2 mCrab in a keV energy band) we show that the required sensitivity and energy resolution could be reached with a large area detector of the proposed Large Observatory for X-ray Timing mission. Galactic black holes will provide another category of potentially suitable targets if the relativistic spectral features are indeed produced by reflection from their accretion discs.
Two-dimensional ultrahigh-density X-ray optical memory.
Bezirganyan, Hakob P; Bezirganyan, Siranush E; Bezirganyan, Hayk H; Bezirganyan, Petros H
2007-01-01
Most important aspect of nanotechnology applications in the information ultrahigh storage is the miniaturization of data carrier elements of the storage media with emphasis on the long-term stability. Proposed two-dimensional ultrahigh-density X-ray optical memory, named X-ROM, with long-term stability is an information carrier basically destined for digital data archiving. X-ROM is a semiconductor wafer, in which the high-reflectivity nanosized X-ray mirrors are embedded. Data are encoded due to certain positions of the mirrors. Ultrahigh-density data recording procedure can e.g., be performed via mask-less zone-plate-array lithography (ZPAL), spatial-phase-locked electron-beam lithography (SPLEBL), or focused ion-beam lithography (FIB). X-ROM manufactured by nanolithography technique is a write-once memory useful for terabit-scale memory applications, if the surface area of the smallest recording pits is less than 100 nm2. In this case the X-ROM surface-storage capacity of a square centimetre becomes by two orders of magnitude higher than the volumetric data density really achieved for three-dimensional optical data storage medium. Digital data read-out procedure from proposed X-ROM can e.g., be performed via glancing-angle incident X-ray micro beam (GIX) using the well-developed X-ray reflectometry technique. In presented theoretical paper the crystal-analyser operating like an image magnifier is added to the set-up of X-ROM data handling system for the purpose analogous to case of application the higher numerical aperture objective in optical data read-out system. We also propose the set-up of the X-ROM readout system based on more the one incident X-ray micro beam. Presented scheme of two-beam data handling system, which operates on two mutually perpendicular well-collimated monochromatic incident X-ray micro beams, essentially increases the reliability of the digital information read-out procedure. According the graphs of characteristic functions presented in paper, one may choose optimally the incident radiation wavelength, as well as the angle of incidence of X-ray micro beams, appropriate for proposed digital data read-out procedure.
2006-11-01
NON DESTRUCTIVE 3D X-RAY IMAGING OF NANO STRUCTURES & COMPOSITES AT SUB-30 NM RESOLUTION, WITH A NOVEL LAB BASED X- RAY MICROSCOPE S H Lau...article we describe a 3D x-ray microscope based on a laboratory x-ray source operating at 2.7, 5.4 or 8.0 keV hard x-ray energies. X-ray computed...tomography (XCT) is used to obtain detailed 3D structural information inside optically opaque materials with sub-30 nm resolution. Applications include
NASA Astrophysics Data System (ADS)
Yamanaka, Eiji; Taniguchi, Rikiya; Itoh, Masamitsu; Omote, Kazuhiko; Ito, Yoshiyasu; Ogata, Kiyoshi; Hayashi, Naoya
2016-05-01
Nanoimprint lithography (NIL) is one of the most potential candidates for the next generation lithography for semiconductor. It will achieve the lithography with high resolution and low cost. High resolution of NIL will be determined by a high definition template. Nanoimprint lithography will faithfully transfer the pattern of NIL template to the wafer. Cross-sectional profile of the template pattern will greatly affect the resist profile on the wafer. Therefore, the management of the cross-sectional profile is essential. Grazing incidence small angle x-ray scattering (GI-SAXS) technique has been proposed as one of the method for measuring cross-sectional profile of periodic nanostructure pattern. Incident x-rays are irradiated to the sample surface with very low glancing angle. It is close to the critical angle of the total reflection of the x-ray. The scattered x-rays from the surface structure are detected on a two-dimensional detector. The observed intensity is discrete in the horizontal (2θ) direction. It is due to the periodicity of the structure, and diffraction is observed only when the diffraction condition is satisfied. In the vertical (β) direction, the diffraction intensity pattern shows interference fringes reflected to height and shape of the structure. Features of the measurement using x-ray are that the optical constant for the materials are well known, and it is possible to calculate a specific diffraction intensity pattern based on a certain model of the cross-sectional profile. The surface structure is estimated by to collate the calculated diffraction intensity pattern that sequentially while changing the model parameters with the measured diffraction intensity pattern. Furthermore, GI-SAXS technique can be measured an object in a non-destructive. It suggests the potential to be an effective tool for product quality assurance. We have developed a cross-sectional profile measurement of quartz template pattern using GI-SAXS technique. In this report, we will report the measurement capabilities of GI-SAXS technique as a cross-sectional profile measurement tool of NIL quartz template pattern.
In Situ Study of Silicon Electrode Lithiation with X-ray Reflectivity
Cao, Chuntian; Steinrück, Hans-Georg; Shyam, Badri; ...
2016-10-26
Surface sensitive X-ray reflectivity (XRR) measurements were performed to investigate the electrochemical lithiation of a native oxide terminated single crystalline silicon (100) electrode in real time during the first galvanostatic discharge cycle. This allows us to gain nanoscale, mechanistic insight into the lithiation of Si and the formation of the solid electrolyte interphase (SEI). We describe an electrochemistry cell specifically designed for in situ XRR studies and have determined the evolution of the electron density profile of the lithiated Si layer (Li xSi) and the SEI layer with subnanometer resolution. We propose a three-stage lithiation mechanism with a reaction limited,more » layer-by-layer lithiation of the Si at the Li xSi/Si interface.« less
The interpretation of optical light variations of Centaurus X-3
NASA Technical Reports Server (NTRS)
Mauder, H.
1976-01-01
The interpretation of optical light variations of X-ray binaries is discussed for the case of negligible reflection effect. The limiting cases of synchronous rotation of the visible star (Roche configuration) and of no rotation (pure tidal deformation) are considered. The theoretical results are compared with the available light curves of Cen X-3. X-ray data of the Copernicus satellite are used to get an impression of the atmospheric structure of the outer layers of the visible component. It is shown, that the X-ray eclipse duration is in good agreement with the mass ration derived from the optical variations. The X-ray eclipse duration is discussed with respect to the extended low states, and a possible correlation of the extended lows with the appearance of the optical light curves is considered.
NASA Technical Reports Server (NTRS)
Zycki, Piotr T.; Zdziarski, Andrzej A.; Svensson, Roland
1991-01-01
We reconsider the recent model for the origin in the cosmic X-ray and gamma-ray background by Rogers and Field. The background in the model is due to an unresolved population of AGNs. An individual AGN spectrum contains three components: a power law with the energy index of alpha = 1.1, an enhanced reflection component, and a component from Compton scattering by relativistic electrons with a low energy cutoff at some minimum Lorentz factor, gamma(sub min) much greater than 1. The MeV bump seen in the gamma-ray background is then explained by inverse Compton emission by the electrons. We show that the model does not reproduce the shape of the observed X-ray and gamma-ray background below 10 MeV and that it overproduces the background at larger energies. Furthermore, we find the assumptions made for the Compton component to be physically inconsistent. Relaxing the inconsistent assumptions leads to model spectra even more different from that of the observed cosmic background. Thus, we can reject the hypothesis that the high-energy cosmic background is due to the described model.
NASA Technical Reports Server (NTRS)
Krivonos, Roman A.; Tomsick, John A.; Bauer, Franz E.; Baganoff, Frederick K.; Barriere, Nicolas M.; Bodaghee, Arash; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Grefenstette, Brian W.;
2014-01-01
The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe K(alpha) line emission at 6.4 keV from material that is neutral or in a low ionization state can be produced either by X-ray photoionization or by cosmic-ray particle bombardment or both. In this paper, we report on the first detection of the extended emission around the Arches cluster above 10 keV with the NuSTAR mission, and present results on its morphology and spectrum. The spatial distribution of the hard X-ray emission is found to be consistent with the broad region around the cluster where the 6.4 keV line is observed. The interpretation of the hard X-ray emission within the context of the X-ray reflection model puts a strong constraint on the luminosity of the possible illuminating hard X-ray source. The properties of the observed emission are also in broad agreement with the low-energy cosmic-ray proton excitation scenario. Key words: cosmic rays - Galaxy: center - ISM: general - X-rays: individual (Arches cluster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubeck, J., E-mail: janin.lubeck@ptb.de; Fliegauf, R.; Holfelder, I.
A novel type of ultra-high vacuum instrument for X-ray reflectometry and spectrometry-related techniques for nanoanalytics by means of synchrotron radiation (SR) has been constructed and commissioned at BESSY II. This versa-tile instrument was developed by the PTB, Germany’s national metrology institute, and includes a 9-axis manipulator that allows for an independent alignment of the samples with respect to all degrees of freedom. In addition, it integrates a rotational and translational movement of several photodiodes as well as a translational movement of a beam-geometry-defining aperture system. Thus, the new instrument enables various analytical techniques based on energy dispersive X-ray detectors suchmore » as reference-free X-Ray Fluorescence (XRF) analysis, total-reflection XRF, grazing-incidence XRF, in addition to optional X-Ray Reflectometry (XRR) measurements or polarization-dependent X-ray absorption fine structure analyses (XAFS). Samples having a size of up to (100 × 100) mm{sup 2}; can be analyzed with respect to their mass deposition, elemental, spatial or species composition. Surface contamination, nanolayer composition and thickness, depth pro-file of matrix elements or implants, nanoparticles or buried interfaces as well as molecular orientation of bonds can be accessed. Three technology transfer projects of adapted instruments have enhanced X-Ray Spectrometry (XRS) research activities within Europe at the synchrotron radiation facilities ELETTRA (IAEA) and SOLEIL (CEA/LNE-LNHB) as well as at the X-ray innovation laboratory BLiX (TU Berlin) where different laboratory sources are used. Here, smaller chamber requirements led PTB in cooperation with TU Berlin to develop a modified instrument equipped with a 7-axis manipulator: reduced freedom in the choice of experimental geometry modifications (absence of out-of-SR-plane and reference-free XRS options) has been compensated by encoder-enhanced angular accuracy for GIXRF and XRR.« less
Quasi-mosaicity of (311) planes in silicon and its use in a Laue lens with high-focusing power
NASA Astrophysics Data System (ADS)
Camattari, Riccardo; Paternò, Gianfranco; Bellucci, Valerio; Guidi, Vincenzo
2014-12-01
(311) curved planes can be exploited for efficiently focus hard X-rays. With this purpose, a self-standing bent crystal was manufactured at the Sensor and Semiconductor Laboratory of Ferrara (Italy). The crystal was designed as an optical component for a X-ray concentrator such as a Laue lens. The curvature of (311) planes was obtained through the quasi-mosaic effect. The diffraction efficiency of the sample was tested at the Institut Laue Langevin of Grenoble (France) by using a collimated monochromatic X-ray beam. This was the first prove of the diffraction properties of (311) quasi-mosaic planes. Diffraction efficiency resulted 35 % with a 182 keV X-ray beam, in agreement with the theoretical expectation. It corresponded to a reflectivity of 33 %. While the chosen orientation is not the most performing lying of planes, it can be used, in addition to smaller-index planes, in order to raise the total effective area of a Laue lens. To quantify it, a Laue lens based on quasi-mosaic silicon and germanium crystals, exploiting (111), (422) and (311) diffracting planes, was achieved and simulated with the LaueGen code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Diksha; Badano, Aldo
2013-03-15
Purpose: hybridMANTIS is a Monte Carlo package for modeling indirect x-ray imagers using columnar geometry based on a hybrid concept that maximizes the utilization of available CPU and graphics processing unit processors in a workstation. Methods: The authors compare hybridMANTIS x-ray response simulations to previously published MANTIS and experimental data for four cesium iodide scintillator screens. These screens have a variety of reflective and absorptive surfaces with different thicknesses. The authors analyze hybridMANTIS results in terms of modulation transfer function and calculate the root mean square difference and Swank factors from simulated and experimental results. Results: The comparison suggests thatmore » hybridMANTIS better matches the experimental data as compared to MANTIS, especially at high spatial frequencies and for the thicker screens. hybridMANTIS simulations are much faster than MANTIS with speed-ups up to 5260. Conclusions: hybridMANTIS is a useful tool for improved description and optimization of image acquisition stages in medical imaging systems and for modeling the forward problem in iterative reconstruction algorithms.« less
Effect of reflection and refraction on NEXAFS spectra measured in TEY mode
2018-01-01
The evolution of near-edge X-ray absorption fine structure in the vicinity of the K-absorption edge of oxygen for HfO2 over a wide range of incidence angles is analyzed by simultaneous implementation of the total-electron-yield (TEY) method and X-ray reflection spectroscopy. It is established that the effect of refraction on the TEY spectrum is greater than that of reflection and extends into the angular region up to angles 2θc. Within angles that are less than the critical angle, both the reflection and refraction strongly distort the shape of the TEY spectrum. Limitations of the technique for the calculation of optical constants from the reflection spectra using the Kramers–Kronig relation in the limited energy region in the vicinity of thresholds are discussed in detail. PMID:29271772
Nondispersive neutron focusing method beyond the critical angle of mirrors
Ice, Gene E.
2008-10-21
This invention extends the Kirkpatrick-Baez (KB) mirror focusing geometry to allow nondispersive focusing of neutrons with a convergence on a sample much larger than is possible with existing KB optical schemes by establishing an array of at least three mirrors and focusing neutrons by appropriate multiple deflections via the array. The method may be utilized with supermirrors, multilayer mirrors, or total external reflection mirrors. Because high-energy x-rays behave like neutrons in their absorption and reflectivity rates, this method may be used with x-rays as well as neutrons.
NASA Astrophysics Data System (ADS)
Klapper, H.; Hahn, Th
2012-01-01
Crystallographic face forms {hkl} are interpreted as sets of symmetry-equivalent X-ray reflections. Extending an earlier paper on twinning by merohedry [ [Sigma] = 1, Klapper & Hahn (2010). Acta Cryst. A66, 327-346], the eigensymmetry of these forms is used to derive general relations between the diffraction intensities of overlapping twin-related reflections. The following twins by reticular merohedry are treated: [Sigma] 3 twins of rhombohedral and cubic, [Sigma] 5 twins of tetragonal and [Sigma] 7 twins of hexagonal crystals.
No signatures of black hole spin in the X-ray spectrum of the Seyfert 1 galaxy Fairall 9
NASA Astrophysics Data System (ADS)
Yaqoob, T.; Turner, T. J.; Tatum, M. M.; Trevor, M.; Scholtes, A.
2016-11-01
Fairall 9 is one of several type 1 active galactic nuclei for which it has been claimed that the angular momentum (or spin) of the supermassive black hole can be robustly measured, using the Fe Kα emission line and Compton-reflection continuum in the X-ray spectrum. The method rests upon the interpretation of the Fe Kα line profile and associated Compton-reflection continuum in terms of relativistic broadening in the strong gravity regime in the innermost regions of an accretion disc, within a few gravitational radii of the black hole. Here, we re-examine a Suzaku X-ray spectrum of Fairall 9 and show that a face-on toroidal X-ray reprocessor model involving only non-relativistic and mundane physics provides an excellent fit to the data. The Fe Kα line emission and Compton-reflection continuum are calculated self-consistently, the iron abundance is solar, and an equatorial column density of ˜ 1024 cm- 2 is inferred. In this scenario, neither the Fe Kα line nor the Compton-reflection continuum provides any information on the black hole spin. Whereas previous analyses have assumed an infinite column density for the distant-matter reprocessor, the shape of the reflection spectrum from matter with a finite column density eliminates the need for a relativistically broadened Fe Kα line. We find a 90 per cent confidence range in the Fe Kα line full width at half-maximum of 1895-6205 km s- 1, corresponding to a distance of ˜3100 to 33 380 gravitational radii from the black hole, or 0.015-0.49 pc for a black hole mass of ˜1-3 × 108 M⊙.
Calibration of a High Resolution X-ray Spectrometer for High-Energy-Density Plasmas on NIF
NASA Astrophysics Data System (ADS)
Kraus, B.; Gao, L.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Beiersdorfer, P.; Liedahl, D.; Macphee, A. G.; Thorn, D. B.; Bettencourt, R.; Kauffman, R.; Le, H.; Nelson, D.
2017-10-01
A high-resolution, DIM-based (Diagnostic Instrument Manipulator) x-ray crystal spectrometer has been calibrated for and deployed at the National Ignition Facility (NIF) to diagnose plasma conditions and mix in ignition capsules near stagnation times. Two conical crystals in the Hall geometry focus rays from the Kr He- α, Ly- α, and He- β complexes onto a streak camera for time-resolved spectra, in order to measure electron density and temperature by observing Stark broadening and relative intensities of dielectronic satellites. Signals from these two crystals are correlated with a third crystal that time-integrates the intervening energy range. The spectrometer has been absolutely calibrated using a microfocus x-ray source, an array of CCD and single-photon-counting detectors, and K- and L-absorption edge filters. Measurements of the integrated reflectivity, energy range, and energy resolution for each crystal will be presented. The implications of the calibration on signal levels from NIF implosions and x-ray filter choices will be discussed. This work was performed under the auspices of the U.S. DoE by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Ingerle, D.; Meirer, F.; Pepponi, G.; Demenev, E.; Giubertoni, D.; Wobrauschek, P.; Streli, C.
2014-01-01
The continuous downscaling of the process size for semiconductor devices pushes the junction depths and consequentially the implantation depths to the top few nanometers of the Si substrate. This motivates the need for sensitive methods capable of analyzing dopant distribution, total dose and possible impurities. X-ray techniques utilizing the external reflection of X-rays are very surface sensitive, hence providing a non-destructive tool for process analysis and control. X-ray reflectometry (XRR) is an established technique for the characterization of single- and multi-layered thin film structures with layer thicknesses in the nanometer range. XRR spectra are acquired by varying the incident angle in the grazing incidence regime while measuring the specular reflected X-ray beam. The shape of the resulting angle-dependent curve is correlated to changes of the electron density in the sample, but does not provide direct information on the presence or distribution of chemical elements in the sample. Grazing Incidence XRF (GIXRF) measures the X-ray fluorescence induced by an X-ray beam incident under grazing angles. The resulting angle dependent intensity curves are correlated to the depth distribution and mass density of the elements in the sample. GIXRF provides information on contaminations, total implanted dose and to some extent on the depth of the dopant distribution, but is ambiguous with regard to the exact distribution function. Both techniques use similar measurement procedures and data evaluation strategies, i.e. optimization of a sample model by fitting measured and calculated angle curves. Moreover, the applied sample models can be derived from the same physical properties, like atomic scattering/form factors and elemental concentrations; a simultaneous analysis is therefore a straightforward approach. This combined analysis in turn reduces the uncertainties of the individual techniques, allowing a determination of dose and depth profile of the implanted elements with drastically increased confidence level. Silicon wafers implanted with Arsenic at different implantation energies were measured by XRR and GIXRF using a combined, simultaneous measurement and data evaluation procedure. The data were processed using a self-developed software package (JGIXA), designed for simultaneous fitting of GIXRF and XRR data. The results were compared with depth profiles obtained by Secondary Ion Mass Spectrometry (SIMS). PMID:25202165
Ballistic Deposition of Nanoclusters.
NASA Astrophysics Data System (ADS)
Ulbrandt, Jeffrey; Li, Yang; Headrick, Randall
Nanoporous thin-films are an important class of materials, possessing a large surface area to volume ratio, with applications ranging from thermoelectric and photovoltaic materials to supercapacitors. In-Situ X-ray Reflectivity and Grazing Incidence Small Angle X-Ray Scattering (GISAXS) were used to monitor thin-films grown from Tungsten Silicide (WSi2) and Copper (Cu) nanoclusters. The nanoclusters ranged in size from 2 nm to 6 nm diameter and were made by high-pressure magnetron sputtering via plasma gas condensation (PGC). X-Ray Reflectivity (XRR) measurements of the films at various stages of growth reveal that the resulting films exhibit very low density, approaching 15% of bulk density. This is consistent with a simple off-lattice ballistic deposition model where particles stick at the point of first contact without further restructuring. DOE Office of Basic Energy Sciences under contract DE-FG02-07ER46380.
Fluid synthesis and structure of a new polymorphic modification of boron nitride
NASA Astrophysics Data System (ADS)
Pokropivny, V. V.; Smolyar, A. S.; Ovsiannikova, L. I.; Pokropivny, A. V.; Kuts, V. A.; Lyashenko, V. I.; Nesterenko, Yu. V.
2013-04-01
A new previously unknown phase of boron nitride with a hardness of 0.41-0.63 GPa has been pre-pared by the supercritical fluid synthesis. The presence of a new phase is confirmed by the X-ray spectra and IR absorption spectra, where new reflections and bands are distinguished. The fundamental reflection of the X-ray diffraction pattern is d = 0.286-0.291 nm, and the characteristic band in the infrared absorption spectrum is observed at 704 cm-1. The X-ray diffraction pattern and the experimental and theoretical infrared absorption spectra show that a new synthesized boron nitride phase can be a cluster crystal (space group 211) with a simple cubic lattice. Cage clusters of a fullerene-like morphology B24N24 with point symmetry O are arranged in lattice sites.
High efficiency spectrographs for the EUV and soft X-rays
NASA Technical Reports Server (NTRS)
Cash, W.
1983-01-01
The use of grazing incidence optics and reflection grating designs is shown to be a method that improves the performance of spectrographs at wavelengths shorter than 1200 A. Emphasis is laid on spectroscopic designs for X ray and EUV astronomy, with sample designs for an objective reflection grating spectrograph (ORGS) and an echelle spectrograph for wavelengths longer than 100 A. Conical diffraction allows operations at grazing incidence in the echelle spectrograph. In ORGS, the extreme distance of X ray objects aids in collimating the source radiation, which encounters conical diffraction within the instrument, proceeds parallel to the optical axis, and arrives at the detector. A series of gratings is used to achieve the effect. A grazing echelle is employed for EUV observations, and offers a resolution of 20,000 over a 300 A bandpass.
Influence of oxygen on growth of carbon thin films
NASA Astrophysics Data System (ADS)
Kumar, Prabhat; Gupta, Mukul; Phase, D. M.; Stahn, Jochen
2018-04-01
In this work we studied the influence of oxygen gas on growth of carbon thin films in a magnetron sputtering process. X-ray absorption spectroscopy (XAS), x-ray and neutron reflectivity techniques were used to probe carbon thin films deposited with and without oxygen at room temperature. XAS in particularly x-ray absorption near edge spectroscopy (XANES) is powerful technique to identify the nature of hybridization of carbon atoms with other elements. In a XANES pattern, presence of C=O and C-O bonds is generally observed in spite of the fact that oxygen has not been deliberately included in the growth process. In order to confirm the presence of such features, we introduced a small amount of oxygen at 1% during the growth of carbon thin films. Though such additions do not affect the number density as observed by x-ray and neutron reflectivity, they severally affect the C K-edge spectra as evidenced by an enhancement in carbon-oxygen hybridization. Observed results are helpful in analyzing the C K-edge spectra more confidently.
Direct method for imaging elemental distribution profiles with long-period x-ray standing waves
NASA Astrophysics Data System (ADS)
Kohli, Vaibhav; Bedzyk, Michael J.; Fenter, Paul
2010-02-01
A model-independent Fourier-inversion method for imaging elemental profiles from multilayer and total-external reflection x-ray standing wave (XSW) data is developed for the purpose of understanding the assembly of atoms, ions, and molecules at well-defined interfaces in complex environments. The direct-method formalism is derived for the case of a long-period XSW generated by low-angle specular reflection in an attenuating overlayer medium. It is validated through comparison with simulated and experimental data to directly obtain an elemental distribution contained within the overlayer. We demonstrate this formalism by extracting the one-dimensional profile of Ti normal to the surface for a TiO2/Si/Mo trilayer deposited on a Si substrate using the TiKα fluorescence yield measured in air and under an aqueous electrolyte. The model-independent results demonstrate reduced coherent fractions for the in situ results associated with an incoherency of the x-ray beam (which are attributed to fluorescence excitation by diffusely or incoherently scattered x-rays). The uniqueness and limitations of the approach are discussed.
Narrow-line Seyfert 1 galaxies at hard X-rays
NASA Astrophysics Data System (ADS)
Panessa, F.; de Rosa, A.; Bassani, L.; Bazzano, A.; Bird, A.; Landi, R.; Malizia, A.; Miniutti, G.; Molina, M.; Ubertini, P.
2011-11-01
Narrow-line Seyfert 1 (NLSy1) galaxies are a peculiar class of type 1 active galactic nuclei (broad-line Seyfert 1 galaxies, hereinafter BLSy1). The X-ray properties of individual objects belonging to this class are often extreme and associated with accretion at high Eddington ratios. Here, we present a study on a sample of 14 NLSy1 galaxies selected at hard X-rays (>20 keV) from the fourth INTEGRAL/IBIS catalogue. The 20-100 keV IBIS spectra show hard-X-ray photon indices flatly distributed (Γ20-100 keV ranging from ˜1.3 to ˜3.6) with an average value of <Γ20-100 keV>= 2.3 ± 0.7, compatible with a sample of hard-X-ray BLSy1 average slopes. Instead, NLSy1 galaxies show steeper spectral indices with respect to BLSy1 galaxies when broad-band spectra are considered. Indeed, we combine XMM-Newton and Swift/XRT with INTEGRAL/IBIS data sets to obtain a wide energy spectral coverage (0.3-100 keV). A constraint on the high energy cut-off and on the reflection component is achieved only in one source, SWIFT J2127.4+5654 (Ecut-off˜ 50 keV, R= 1.0+0.5- 0.4). Hard-X-ray-selected NLSy1 galaxies do not display particularly strong soft excess emission, while absorption fully or partially covering the continuum is often measured as well as Fe line emission features. Variability is a common trait in this sample, both at X-rays and at hard X-rays. The fraction of NLSy1 galaxies in the hard-X-ray sky is likely to be ˜15 per cent, in agreement with estimates derived in optically selected NLSy1 samples. We confirm the association of NLSy1 galaxies with small black hole masses with a peak at 107 M⊙ in the distribution; however, hard-X-ray NLSy1 galaxies seem to occupy the lower tail of the Eddington ratio distribution of classical NLSy1 galaxies. Based on observations obtained with the INTEGRAL/IBIS, XMM-Newton and Swift/XRT.
Accretion torques in X-ray pulsars
NASA Technical Reports Server (NTRS)
Rappaport, S.; Joss, P. C.
1977-01-01
An analysis of the accretion process in an X-ray pulsar, whereby angular momentum is transferred to the star and its rotation period is changed, is presented, and an expression for the fractional rate of change of the pulse period in terms of X-ray luminosity and other star parameters is derived. It is shown that observed characteristic spin-up time scales for seven X-ray pulsars strongly support the view that in every source (1) the pulse period reflects the rotation period of a compact object, (2) the accretion is mediated by a disk surrounding the compact object and rotating in the same sense, and (3) the compact object is a neutron star rather than a white dwarf.
Pushing the Boundaries of X-ray Grating Spectroscopy in a Suborbital Rocket
NASA Technical Reports Server (NTRS)
McEntaffer, Randall L.; DeRoo, Casey; Schultz, Ted; Zhang, William W.; Murray, Neil J.; O'Dell, Stephen; Cash, Webster
2013-01-01
Developments in grating spectroscopy are paramount for meeting the soft X-ray science goals of future NASA X-ray Observatories. While developments in the laboratory setting have verified the technical feasibility of using off-plane reflection gratings to reach this goal, flight heritage is a key step in the development process toward large missions. To this end we have developed a design for a suborbital rocket payload employing an Off-Plane X-ray Grating Spectrometer. This spectrometer utilizes slumped glass Wolter-1 optics, an array of gratings, and a CCD camera. We discuss the unique capabilities of this design, the expected performance, the science return, and the perceived impact to future missions.
Hirano, Takashi; Osaka, Taito; Sano, Yasuhisa; Inubushi, Yuichi; Matsuyama, Satoshi; Tono, Kensuke; Ishikawa, Tetsuya; Yabashi, Makina; Yamauchi, Kazuto
2016-06-01
We have developed a method of fabricating speckle-free channel-cut crystal optics with plasma chemical vaporization machining, an etching method using atmospheric-pressure plasma, for coherent X-ray applications. We investigated the etching characteristics to silicon crystals and achieved a small surface roughness of less than 1 nm rms at a removal depth of >10 μm, which satisfies the requirements for eliminating subsurface damage while suppressing diffuse scattering from rough surfaces. We applied this method for fabricating channel-cut Si(220) crystals for a hard X-ray split-and-delay optical system and confirmed that the crystals provided speckle-free reflection profiles under coherent X-ray illumination.
Terahertz imaging for subsurface investigation of art paintings
NASA Astrophysics Data System (ADS)
Locquet, A.; Dong, J.; Melis, M.; Citrin, D. S.
2017-08-01
Terahertz (THz) reflective imaging is applied to the stratigraphic and subsurface investigation of oil paintings, with a focus on the mid-20th century Italian painting, `After Fishing', by Ausonio Tanda. THz frequency-wavelet domain deconvolution, which is an enhanced deconvolution technique combining frequency-domain filtering and stationary wavelet shrinkage, is utilized to resolve the optically thin paint layers or brush strokes. Based on the deconvolved terahertz data, the stratigraphy of the painting including the paint layers is reconstructed and subsurface features are clearly revealed. Specifically, THz C-scans and B-scans are analyzed based on different types of deconvolved signals to investigate the subsurface features of the painting, including the identification of regions with more than one paint layer, the refractive-index difference between paint layers, and the distribution of the paint-layer thickness. In addition, THz images are compared with X-ray images. The THz image of the thickness distribution of the paint exhibits a high degree of correlation with the X-ray transmission image, but THz images also reveal defects in the paperboard that cannot be identified in the X-ray image. Therefore, our results demonstrate that THz imaging can be considered as an effective tool for the stratigraphic and subsurface investigation of art paintings. They also open up the way for the use of non-ionizing THz imaging as a potential substitute for ionizing X-ray analysis in nondestructive evaluation of art paintings.
Development of low-stress Iridium coatings for astronomical x-ray mirrors
NASA Astrophysics Data System (ADS)
Döhring, Thorsten; Probst, Anne-Catherine; Stollenwerk, Manfred; Wen, Mingwu; Proserpio, Laura
2016-07-01
Previously used mirror technologies are not suitable for the challenging needs of future X-ray telescopes. This is why the required high precision mirror manufacturing triggers new technical developments around the world. Some aspects of X-ray mirrors production are studied within the interdisciplinary project INTRAAST, a German acronym for "industry transfer of astronomical mirror technologies". The project is embedded in a cooperation of Aschaffenburg University of Applied Sciences and the Max-Planck-Institute for extraterrestrial Physics. One important task is the development of low-stress Iridium coatings for X-ray mirrors based on slumped thin glass substrates. The surface figure of the glass substrates is measured before and after the coating process by optical methods. Correlating the surface shape deformation to the parameters of coating deposition, here especially to the Argon sputtering pressure, allows for an optimization of the process. The sputtering parameters also have an influence on the coating layer density and on the micro-roughness of the coatings, influencing their X-ray reflection properties. Unfortunately the optimum coating process parameters seem to be contrarious: low Argon pressure resulted in better micro-roughness and higher density, whereas higher pressure leads to lower coating stress. Therefore additional measures like intermediate coating layers and temperature treatment will be considered for further optimization. The technical approach for the low-stress Iridium coating development, the experimental equipment, and the obtained first experimental results are presented within this paper.
NASA Technical Reports Server (NTRS)
Wriston, R. S.; Froechtenigt, J. F.
1972-01-01
A soft X-ray glancing incidence telescope mirror and a group of twelve optical flat samples were used to study the scattering of X-rays. The mirror was made of Kanigen coated beryllium and the images produced were severely limited by scattering of X-rays. The best resolution attained was about fifteen arc seconds. The telescope efficiency was found to be 0.0006. The X-ray beam reflected from the twelve optical flat samples was analyzed by means of a long vacuum system of special design for these tests. The scattering then decreased with increasing angle of incidence until a critical angle was passed. At larger angles the scattering increased again. The samples all scattered more at 44 A than at 8 A. Metal samples were found to have about the same scattering at 44 A but greater scattering at 8 A than glass samples.
Reflectivity Around the Gold M-Edges of X-ray Reflector of the Soft X-Ray Telescope Onboard ASTRO-H
NASA Technical Reports Server (NTRS)
Kurashimaa, Sho; Furuzawa, Akihiro; Sato, Toshiki; Kikuchia, Naomichi; Nakaniwaa, Nozomi; Maeda, Yoshitomo; Ishida, Manabu; Izuka, Ryo; Okajima, Takashi; Mori, Hideyuki;
2016-01-01
The X-ray astronomy satellite ASTRO-H are equipped with two equivalent soft X-ray telescopes (SXT-I and SXT-S) which cover the energy band 0.3-12 keV. The X-ray reflectors of the SXTs are coated with a gold monolayer by means of the replication technique. A series of gold M absorption edges in the 2-4 keV band causes complex structures in the energy response of the SXTs. In the same band, there are astrophysically important emission lines from Si, Ar and S. Since the SXS has unprecedentedly high spectral resolution, we have measured the reflectivity around the gold M-edges in an extremely fine energy pitch at the synchrotron radiation facility KEK PF BL11-B, with the 2 eV pitch in 2100 eV to 4100 eV band that covers the entire series of the absorption edges (M-I through M-V) at grazing incident angles to the reflectors of 0.5, 0.8, 1.0, 1.2, 1.4 degree, and with a finer pitch of 0.25 eV in the 2200 eV to 2350 eV band where the two deepest M-IV and M-V edges are included. In the resultant reflectivity curves, we have clearly identified the fine structures associated with all the M-edges. Using these data, we calculated atomic scattering factor f1 as a function of X-ray energy, with which we have built the mirror response function which can be applied to the Suzaku spectra. As a result, we have found that discrepancy of the spectral model to the Suzaku data of 4U1630-472 (a black hole transient) and the Crab nebula around the M-edges are significantly reduced from those with the official Suzaku response.
Time Resolved X-Ray Diffraction Study of Acoustoelectrically Amplified Phonons.
NASA Astrophysics Data System (ADS)
Chapman, Leroy Dean
X-rays diffracted by nearly perfect crystals of n-type InSb have been investigated in the presence of intense acoustoelectrically (A.E.) amplified phonons. The fact that these phonons are nearly monochromatic and have a well defined propagation and polarization direction presents an excellent opportunity to investigate the nature of x -ray photon-phonon scattering in a diffracting crystal. The Debye-Waller factor which accounts for the attenuation of diffracted x-ray intensities due to thermal phonons is reflection dependent owing to its sin (theta)/(lamda) dependence. We have performed experiments comparing the (004) and (008) anomalously transmitted intensities as a function of A.E. amplified flux. The attenuation of both reflections due to the amplified phonons was the same in direct contradiction to an expected sin (theta)/(lamda) dependence. Some possible reasons for this failure are discussed. In a Bragg reflection scattering geometry, the intense monochromatic amplified phonons give rise to satellite peaks symmetrically located about the central elastic Brag peak in a rocking profile. We report in this thesis on the first observation of satellites in a thin crystal Laue transmission geometry. We have theoretically simulated the rocking profiles with some success. The A.E. amplification process in InSb is strongly favored for {110} propagation fast transverse (FT) phonons. In earlier experiments it was found that non-{110} FT phonons were also produced during the amplification process. We have developed a time resolved x-ray counting system which, in conjunction with a spatially resolved x-ray beam and a localized, traveling A.E. phonon distribution, allow the time evolution of the amplified distribution to be followed. We report on time resolved measurements for both the symmetric Bragg and Laue geometries from which we can determine when and where non-{110 } FT flux is generated and restrict the possible mechanisms for its generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowarik, S.; Weber, C.; Hinderhofer, A.
Highly crystalline and stable molecular superlattices are grown with the smallest possible stacking period using monolayers (MLs) of the organic semiconductors pentacene (PEN) and perfluoro-pentacene (PFP). Superlattice reflections in X-ray reflectivity and their energy dependence in resonant soft X-ray reflectivity measurements show that PFP and PEN MLs indeed alternate even though the coherent ordering is lost after ∼ 4 ML. The observed lattice spacing of 15.9 Å in the superlattice is larger than in pure PEN and PFP films, presumably because of more upright standing molecules and lack of interdigitation between the incommensurate crystalline PEN and PFP layers. The findingsmore » are important for the development of novel organic quantum optoelectronic devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmermann, M. V.; Grenier, S.; Nelson, C. S.
2003-09-01
The interpretation given in our recent x-ray scattering study of Pr{sub 1-x}Ca{sub x}MnO{sub 3} in terms of charge and orbital ordering is questioned in the preceding Comment by Garcia and Subias. They argue that anisotropy of the charge distribution induced by local distortions gives rise to the so-called charge order reflections. In this Reply we suggest that the two different pictures are reconcilable.
NASA Technical Reports Server (NTRS)
Schattenburg, Mark L.
2003-01-01
This Grant covers MIT support for the technology development of x-ray reflection gratings for the Constellation-X Reflection Grating Spectrometer (RGS). Since the start of the Grant MIT has extended its previously-developed patterning and super-smooth, blazed grating fabrication technology to ten-times smaller grating periods and ten-times larger blaze angles to demonstrate feasibility and performance in the off-plane grating geometry. In the past year we successfully developed several nanoimprint grating replication methods that achieved very high fidelity replication of master silicon gratings. Grating geometry on the nano and macro scales were faithfully replicated, demonstrating the viability of the process for manufacturing the thousands of gratings required for the RGS. We also successfully developed an improved metrology truss for holding test grating substrates during metrology. The flatness goal of grating substrates is under 500 nm. In the past, grating holders would cause non-repeatable distortion of >> 500 nm to the substrates due to friction and gravity sag. The new holder has a repeatability of under 50 nm which is adequate for the proposed RGS grating substrates.
NASA Astrophysics Data System (ADS)
Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.
2016-09-01
Analyzer-based X-ray phase contrast imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray imaging modalities. Unlike the conventional X-ray radiography, which measures only X-ray absorption, in PC imaging one can also measures the X-rays deflection induced by the object refractive properties. It has been shown that refraction imaging provides better contrast when imaging the soft tissue, which is of great interest in medical imaging applications. In this paper, we introduce a simulation tool specifically designed to simulate the analyzer-based X-ray phase contrast imaging system with a conventional polychromatic X-ray source. By utilizing ray tracing and basic physical principles of diffraction theory our simulation tool can predicting the X-ray beam profile shape, the energy content, the total throughput (photon count) at the detector. In addition we can evaluate imaging system point-spread function for various system configurations.
Structural characterization of nano-oxide layers in PtMn based specular spin valves
NASA Astrophysics Data System (ADS)
Zhou, Min; Chen, Lifan; Diao, Zhitao; Park, Chang-Man; Huai, Yiming
2005-05-01
A systematic structure characterization of nano-oxide layers (NOLs) and specular spin valves using x-ray diffraction and high-resolution transmission electron microscopy (HRTEM) has been studied. High-angle x-ray diffraction data show almost identical fcc textures for both natural and plasma NOL spin-valves. Low-angle x-ray reflectivity spectrum shows more deteriorated Kiessig fringes at high incident angles for natural oxide sample, indicating rougher interfaces in natural oxidation than in plasma oxidation. Oxygen exposure plays an important role in NOLs process. Fabricating NOLs without any crystal structure degradation is critical to obtain high MR ratio. HRTEM reveals that oxide clusters mixing with insufficiently oxidized CoFe layers prevailed in natural NOL, and the natural oxidation was inhomogeneous. In contrast, plasma NOL has a thinner, more homogeneously oxidized CoFe layers with sharp interfaces. In plasma NOLs, the structures still maintain CoFe crystal structure. The structures and magnetic correlation of the NOL specular spin valves are discussed.
Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals
NASA Astrophysics Data System (ADS)
Zhou, Cailong; Li, Yufeng; Chen, Yiwen; Lin, Jing
2018-01-01
Tungsten doped tin dioxide (WTO) nanocrystals were synthesized through a one-step hydrothermal method. The structure, composition and morphology of WTO nanocrystals were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, UV-vis diffuse reflectance spectra, zeta potential analysis and high-resolution transmission electron microscopy. Results show that the as-prepared WTO nanocrystals were rutile-type structure with the size near 13 nm. Compared with the undoped tin dioxide nanocrystals, the WTO nanocrystals possessed better dispersity in ethanol phase and formed transparent sol.
Electroform replication used for multiple X-ray mirror production
NASA Technical Reports Server (NTRS)
Kowalski, M. P.; Ulmer, M. P.; Purcell, W. R., Jr.; Loughlin, J. E. A.
1984-01-01
The electroforming technique for producing X-ray mirrors is described, and results of X-ray tests performed on copies made from a simple conical mandrel are reported. The design of the mandrel is depicted and the total reflectivity as well as the full-wave half modulation resolution are shown as a function of energy. The reported work has improved on previous studies by providing smaller grazing angles, making measurements at higher energies, producing about four times as many replicas from one mandrel, and obtaining better angular resolution.
Epitaxial graphene-encapsulated surface reconstruction of Ge(110)
NASA Astrophysics Data System (ADS)
Campbell, Gavin P.; Kiraly, Brian; Jacobberger, Robert M.; Mannix, Andrew J.; Arnold, Michael S.; Hersam, Mark C.; Guisinger, Nathan P.; Bedzyk, Michael J.
2018-04-01
Understanding and engineering the properties of crystalline surfaces has been critical in achieving functional electronics at the nanoscale. Employing scanning tunneling microscopy, surface x-ray diffraction, and high-resolution x-ray reflectivity experiments, we present a thorough study of epitaxial graphene (EG)/Ge(110) and report a Ge(110) "6 × 2" reconstruction stabilized by the presence of epitaxial graphene unseen in group-IV semiconductor surfaces. X-ray studies reveal that graphene resides atop the surface reconstruction with a 0.34 nm van der Waals (vdW) gap and provides protection from ambient degradation.
Yamanaka; Ino
2000-05-08
In L x-ray emissions from a Si(111)-sqrt[3]xsqrt[3]-In surface induced by electron beam irradiation were measured as functions of the incident glancing angle. Under surface wave resonance conditions, anomalous x-ray intensities were clearly observed. Using dynamical calculations, these intensities are well explained as changes in density of the electron wave field at adatom positions. From these intensities, the adatom site was analyzed, and it was found that the T4 model is better than the H3 model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunimura, Shinsuke; Hatakeyama, So; Sasaki, Nobuharu
A portable total reflection X-ray fluorescence (TXRF) spectrometer that we have developed is applied to trace elemental analysis of water solutions. Although a 5 W X-ray tube is used in the portable TXRF spectrometer, detection limits of several ppb are achieved for 3d transition metal elements and trace elements in a leaching solution of soils, a leaching solution of solder, and alcoholic beverages are detected. Portable X-ray fluorescence (XRF) spectromicroscopes with a 1 W X-ray tube and an 8 W X-ray tube are also presented. Using the portable XRF spectromicroscope with the 1 W X-ray tube, 93 ppm of Crmore » is detected with an about 700 {mu}m spatial resolution. Spatially resolved elemental analysis of a mug painted with blue, red, green, and white is performed using the two portable spectromicroscopes, and the difference in elemental composition at each paint is detected.« less
NASA Astrophysics Data System (ADS)
McAfee, Terry Richard
Due to the growing global need for cheap, flexible, and portable electronics, numerous research groups from mechanical and electrical engineering, material science, chemistry, and physics have increasingly turned to organic electronics research over the last ˜5--10 years. Largely, the focus of researchers in this growing field have sought to obtain the next record holding device, allowing a heuristic approach of trial and error to become dominant focus of research rather than a fundamental understanding. Rather than working with the latest high performance organic semiconducting materials and film processing techniques, I have chosen to investigate and control the fundamental self-assembly interactions of organic photovoltaic thin films using simplified systems. Specifically, I focus on organic photovoltaic research using two of the oldest and well studies semiconducting materials, namely "sphere-like" electron donor material Buckminsterfullerene C60 and "disklike" electron acceptor material Copper(II) Phthalocyanine. I manufactured samples using the well-known technique of physical vapor deposition using a high vacuum chamber that I designed and built to accommodate my need of precise material deposition control, with codeposition capability. Films were characterized using microscopy and spectroscopy techniques locally at NCSU, including Atomic Force Microscopy, scanning tunneling microscopy, X-ray photoelectron spectroscopy, and Ultraviolet-visible spectroscopy, as well as at National Laboratory based synchrotron x-ray techniques, including Carbon and Nitrogen k-edge Total Electron Yield and Transmission Near Edge X-ray absorption fine structure spectroscopy, Carbon k-edge Resonant Soft x-ray Microscopy, Resonant Soft x-ray reflectivity, and Grazing Incidence Wide-Angle X-ray scattering.
Structural and Optical Properties of La1−xSrxTiO3+δ
Gao, Lihong; Ma, Zhuang; Wang, Song; Wang, Fuchi; Yang, Cai
2014-01-01
La1−xSrxTiO3+δ has attracted much attention as an important perovskite oxide. However, there are rare reports on its optical properties, especially reflectivity. In this paper, its structural and optical properties were studied. The X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and spectrophotometer were used to characterize the sample. The results show that with increasing Sr concentration, the number of TiO6 octahedral layers in each “slab” increases and the crystal structure changes from layered to cubic structure. A proper Sr doping (x = 0.1) can increase the reflectivity, reaching 95% in the near infrared range, which is comparable with metal Al measured in the same condition. This indicates its potential applications as optical protective coatings or anti-radiation materials at high temperatures. PMID:28788115
REDSoX: Monte-Carlo ray-tracing for a soft x-ray spectroscopy polarimeter
NASA Astrophysics Data System (ADS)
Günther, Hans M.; Egan, Mark; Heilmann, Ralf K.; Heine, Sarah N. T.; Hellickson, Tim; Frost, Jason; Marshall, Herman L.; Schulz, Norbert S.; Theriault-Shay, Adam
2017-08-01
X-ray polarimetry offers a new window into the high-energy universe, yet there has been no instrument so far that could measure the polarization of soft X-rays (about 17-80 Å) from astrophysical sources. The Rocket Experiment Demonstration of a Soft X-ray Polarimeter (REDSoX Polarimeter) is a proposed sounding rocket experiment that uses a focusing optic and splits the beam into three channels. Each channel has a set of criticalangle transmission (CAT) gratings that disperse the x-rays onto a laterally graded multilayer (LGML) mirror, which preferentially reflects photons with a specific polarization angle. The three channels are oriented at 120 deg to each other and thus measure the three Stokes parameters: I, Q, and U. The period of the LGML changes with position. The main design challenge is to arrange the gratings so that they disperse the spectrum in such a way that all rays are dispersed onto the position on the multi-layer mirror where they satisfy the local Bragg condition despite arriving on the mirror at different angles due to the converging beam from the focusing optics. We present a polarimeteric Monte-Carlo ray-trace of this design to assess non-ideal effects from e.g. mirror scattering or the finite size of the grating facets. With mirror properties both simulated and measured in the lab for LGML mirrors of 80-200 layers we show that the reflectivity and the width of the Bragg-peak are sufficient to make this design work when non-ideal effects are included in the simulation. Our simulations give us an effective area curve, the modulation factor and the figure of merit for the REDSoX polarimeter. As an example, we simulate an observation of Mk 421 and show that we could easily detect a 20% linear polarization.
Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection.
Sartore, Luciana; Barbaglio, Marzia; Borgese, Laura; Bontempi, Elza
2011-07-20
A flow type quartz crystal microbalance (QCM) chemical sensor was developed for monitoring of heavy metal ions in aqueous solutions (that is suitable for environmental monitoring). The sensor is based upon surface chelation of the metal ions at multifunctional polymer modified gold electrodes on 9 MHz AT-cut quartz resonators, functioning as a QCM. New processes have been developed which enable to obtain surface-modified gold electrodes with high heavy metal ions complexing ability. These polymer grafted QCM sensors can selectively adsorb heavy metal ions, such as copper lead chrome and cadmium, from solution over a wide range from 0.01 to 1000 ppm concentration by complexation with functional groups in the polymers. Cations typically present in natural water did not interfere with the detection of heavy metals. X-Ray Reflectivity (XRR) and Total Reflection X-ray Fluorescence (TXRF) were carried out to characterise the unmodified and modified gold surfaces as well as to verify the possibility to selectively bond and remove metal ions.
The high-energy x-ray diffraction and scattering beamline at the Canadian Light Source
NASA Astrophysics Data System (ADS)
Gomez, A.; Dina, G.; Kycia, S.
2018-06-01
The optical design for the high-energy x-ray diffraction and scattering beamline of the Brockhouse sector at the Canadian Light Source is described. The design is based on a single side-bounce silicon focusing monochromator that steers the central part of a high-field permanent magnet wiggler beam into the experimental station. Two different configurations are proposed: a higher energy resolution with vertical focusing and a lower energy resolution with horizontal and vertical focusing. The monochromator will have the possibility of mounting three crystals: one crystal optimized for 35 keV that focuses in the horizontal and vertical directions using reflection (1,1,1) and two other crystals both covering the energies above 40 keV: one with only vertical focusing and another one with horizontal and vertical focusing. The geometry of the last two monochromator crystals was optimized to use reflections (4,2,2) and (5,3,3) to cover the broad energy range from 40 to 95 keV.
An X-Ray Spectral Model for Clumpy Tori in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Liu, Yuan; Li, Xiaobo
2014-05-01
We construct an X-ray spectral model for the clumpy torus in an active galactic nucleus (AGN) using Geant4, which includes the physical processes of the photoelectric effect, Compton scattering, Rayleigh scattering, γ conversion, fluorescence line, and Auger process. Since the electrons in the torus are expected to be bounded instead of free, the deviation of the scattering cross section from the Klein-Nishina cross section has also been included, which changes the X-ray spectra by up to 25% below 10 keV. We have investigated the effect of the clumpiness parameters on the reflection spectra and the strength of the fluorescent line Fe Kα. The volume filling factor of the clouds in the clumpy torus only slightly influences the reflection spectra, however, the total column density and the number of clouds along the line of sight significantly change the shapes and amplitudes of the reflection spectra. The effect of column density is similar to the case of a smooth torus, while a small number of clouds along the line of sight will smooth out the anisotropy of the reflection spectra and the fluorescent line Fe Kα. The smoothing effect is mild in the low column density case (N H = 1023 cm-2), whereas it is much more evident in the high column density case (N H = 1025 cm-2). Our model provides a quantitative tool for the spectral analysis of the clumpy torus. We suggest that the joint fits of the broad band spectral energy distributions of AGNs (from X-ray to infrared) should better constrain the structure of the torus.
A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro
NASA Astrophysics Data System (ADS)
Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph
2015-01-01
Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called spatial frequency heterodyne imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of hepatocellular carcinoma labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and magnetic resonance imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.
Teymurazyan, A; Pang, G
2012-03-01
Most electronic portal imaging devices (EPIDs) developed so far use a thin Cu plate/phosphor screen to convert x-ray energies into light photons, while maintaining a high spatial resolution. This results in a low x-ray absorption and thus a low quantum efficiency (QE) of approximately 2-4% for megavoltage (MV) x-rays. A significant increase of QE is desirable for applications such as MV cone-beam computed tomography (MV-CBCT). Furthermore, the Cu plate/phosphor screen contains high atomic number (high-Z) materials, resulting in an undesirable over-response to low energy x-rays (due to photoelectric effect) as well as high energy x-rays (due to pair production) when used for dosimetric verification. Our goal is to develop a new MV x-ray detector that has a high QE and uses low-Z materials to overcome the obstacles faced by current MV x-ray imaging technologies. A new high QE and low-Z EPID is proposed. It consists of a matrix of plastic scintillating fibers embedded in a water-equivalent medium and coupled to an optically sensitive 2D active matrix flat panel imager (AMFPI) for image readout. It differs from the previous approach that uses segmented crystalline scintillators made of higher density and higher atomic number materials to detect MV x-rays. The plastic scintillating fibers are focused toward the x-ray source to avoid image blurring due to oblique incidence of off-axis x-rays. When MV x-rays interact with the scintillating fibers in the detector, scintillation light will be produced. The light photons produced in a fiber core and emitted within the acceptance angle of the fiber will be guided toward the AMFPI by total internal reflection. A Monte Carlo simulation has been used to investigate imaging and dosimetric characteristics of the proposed detector under irradiation of MV x-rays. Properties, such as detection efficiency, modulation transfer function, detective quantum efficiency (DQE), energy dependence of detector response, and water-equivalence of dose response have been investigated. It has been found that the zero frequency DQE of the proposed detector can be up to 37% at 6 MV. The detector, also, is water-equivalent with a relatively uniform response to different energy x-rays as compared to current EPIDs. The results of our simulations show that, using plastic scintillating fibers, it is possible to construct a water-equivalent EPID that has a better energy response and a higher detection efficiency than current flat panel based EPIDs.
A NuSTAR Observation of the Reflection Spectrum of the Low-Mass X-Ray Binary 4U 1728-34
NASA Technical Reports Server (NTRS)
Sleator, Clio C.; Tomsick, John A.; King, Ashley L.; Miller, Jon M.; Boggs, Steven E.; Bachetti, Matteo; Barret, Didier; Chenevez, Jerome; Christensen, Finn E.; Craig, William W.;
2016-01-01
We report on a simultaneous NuSTAR and Swift observation of the neutron star low-mass X-ray binary 4U 1728-34. We identified and removed four Type I X-ray bursts during the observation in order to study the persistent emission. The continuum spectrum is hard and described well by a blackbody with kT=1.5 keV and a cutoff power law with Lambda = 1.5, and a cutoff temperature of 25 keV. Residuals between 6 and 8 keV provide strong evidence of a broad Fe K(alpha) line. By modeling the spectrum with a relativistically blurred reflection model, we find an upper limit for the inner disk radius of R(sub in) < or = 2R(sub ISCO). Consequently, we find that R(sub NS) < or = 23 km, assuming M = 1.4 Stellar Mass and a = 0.15. We also find an upper limit on the magnetic field of B < or =2 x 10(exp 8) G.
Micropore x-ray optics using anisotropic wet etching of (110) silicon wafers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezoe, Yuichiro; Koshiishi, Masaki; Mita, Makoto
2006-12-10
To develop x-ray mirrors for micropore optics, smooth silicon (111)sidewalls obtained after anisotropic wet etching of a silicon (110) wafer were studied. A sample device with 19 {mu}m wide (111) sidewalls was fabricated using a 220 {mu}m thick silicon (110) wafer and potassium hydroxide solution. For what we believe to be the first time,x-ray reflection on the (111) sidewalls was detected in the angular response measurement. Compared to ray-tracing simulations, the surface roughness of the sidewalls was estimated to be 3-5 nm, which is consistent with the atomic force microscope and the surface profiler measurements.
Micropore x-ray optics using anisotropic wet etching of (110) silicon wafers.
Ezoe, Yuichiro; Koshiishi, Masaki; Mita, Makoto; Mitsuda, Kazuhisa; Hoshino, Akio; Ishisaki, Yoshitaka; Yang, Zhen; Takano, Takayuki; Maeda, Ryutaro
2006-12-10
To develop x-ray mirrors for micropore optics, smooth silicon (111) sidewalls obtained after anisotropic wet etching of a silicon (110) wafer were studied. A sample device with 19 microm wide (111) sidewalls was fabricated using a 220 microm thick silicon (110) wafer and potassium hydroxide solution. For what we believe to be the first time, x-ray reflection on the (111) sidewalls was detected in the angular response measurement. Compared to ray-tracing simulations, the surface roughness of the sidewalls was estimated to be 3-5 nm, which is consistent with the atomic force microscope and the surface profiler measurements.
Multiwavelength Study of Active Galaxies
NASA Astrophysics Data System (ADS)
Singh, Veeresh
2010-08-01
Seyfert galaxies are a subclass of active galaxies and are categorized as nearby, low luminosity, radio-quiet Active Galactic Nuclei (AGN) hosted in spiral or lenticular galaxies. Demographically, Seyfert galaxies may account for ~ 10% of the entire population of active galaxies in the nearby universe. Seyfert galaxies are classified mainly into two subclasses named as `type 1' and `type 2' Seyferts, based on the presence and absence of broad permitted emission lines in their optical spectra, respectively. Detection of broad permitted emission lines in some Seyfert type 2s observed in the polarized light laid the foundation of the Seyfert unification scheme, which hypothesizes that Seyfert type 1s and type 2s belong to the same parent population and appear different solely due to the differing orientations of the obscuring material having a torus-like geometry around the AGN (Antonucci and Miller 1985; Antonucci 1993). The primary objective of this thesis work is to examine the validity and limitations of the orientation and obscuration based Seyfert unification scheme using multiwavelength (mainly X-ray and radio) observations. The key issue in testing the Seyfert unification scheme has been acquiring a well defined rigorously selected Seyfert sample. I have argued that the Seyfert samples based on flux limited surveys at optical, IR, UV and X-ray are likely to be biased against obscured and faint sources. In order to test the predictions of Seyfert unification scheme I use a sample based on properties (i.e., cosmological redshift, [OIII] emission line luminosity, absolute bulge magnitude, absolute stellar magnitude of the host galaxy and the Hubble stage of the host galaxy) that are independent to the orientation of the obscuring torus, host galaxy and the AGN axis. Furthermore, two Seyfert subtypes of our sample have matched distributions in the orientation-independent properties and this ensures the intrinsic similarity between two Seyfert subtypes within the framework of the unification scheme. In other words, it is ensured that the two subtypes being compared are not selected from entirely different parts of the evolution function (redshift, luminosity, bulge magnitude, stellar luminosity of the host galaxy and Hubble type of the host galaxy). To study the X-ray spectral properties of two Seyfert subtypes I use the XMM-Newton pn data. The 0.5 - 10 keV X-ray spectra of Seyfert galaxies are generally best fitted with a model consists of: an absorbed power law with exponential cut-off which contains cold absorption from the Galactic hydrogen column density together with absorption from neutral gas at the redshift of the source; a narrow Gaussian line fitted to the Fe K_alpha line at 6.4 keV; a soft excess component characterized by either a steep power law and/or a thermal plasma model with temperature kT and in some cases, reflection component characterized by the reflection from an isotropically illuminated cold slab, (model `pexrav' in XSPEC) is required. Partial covering of the primary AGN power law component is also required for the best fit in some sources. There are several type 2 sources in our sample in which the hard (2.0 - 10.0 keV) part of the X-ray spectrum is best fitted with a reflection component alone (`pexrav' model). The statistical comparisons of the X-ray spectral properties show that in compared to Seyfert type 1s, the type 2s exhibit lower X-ray luminosities in soft (0.5 - 2.0 keV) and hard (2.0 - 10.0) X-ray bands, higher X-ray absorbing column densities, higher equivalent widths of Fe K line, and lower flux ratios of hard X-ray (2.0 - 10.0 keV) to [OIII]. In both the Seyfert subtypes, the X-ray luminosity is moderately correlated with the pc-scale, kpc-scale radio luminosities and [OIII] line luminosity, in a similar fashion. A large fraction ~ 60 - 70% of type 2 Seyferts of our sample are likely to be Compton-thick and as a case study of a Compton-thick AGN, we studied the broad-band 0.5 - 50 keV X-ray spectral properties of NGC 5135 using Suzaku (XIS and HID) data to unveil the nature and geometry of obscuring torus. To test the predictions of the Seyfert unification scheme in the radio regime, I studied the radio properties of Seyfert galaxies using Giant Meterwave Radio Telescope (GMRT) observations carried out at 240 MHz/610 MHz, and NRAO VLA Sky Survey observations at 1.4 GHz and VLA 5 GHz observations from the literature. The four point (240 MHz, 610 MHz, 1.4 GHz, 5.0 GHz) integrated radio spectra of the two Seyfert subtypes are similar and fairly steep (i.e., spectral index ~ -0.7). Radio luminosity distributions at 240 MHz, 610 MHz, 1.4 GHz and 5.0 GHz are also similar for the Seyfert type 1s and type 2s. The study on radio - IR luminosity correlations shows that for both the Seyfert subtypes, the total 610 MHz and 240 MHz radio luminosities are moderately correlated with near-IR, mid-IR luminosities while the correlation becomes poorer with far-IR luminosities. Furthermore, the 12 micron, 25 micron, 60 micron and 100 micron IR luminosity distributions are also statistically simil! ar for the Seyfert type 1s and type 2s. I conclude that the statistical comparisons of the X-ray, radio and IR properties of the two Seyfert subtypes of our sample are consistent with the obscuration and orientation based unification scheme.
Peculiarities of section topograms for the multiple diffraction of X rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohn, V. G., E-mail: kohnvict@yandex.ru; Smirnova, I. A.
The distortion of interference fringes on the section topograms of single crystal due to the multiple diffraction of X rays has been investigated. The cases of the 220 and 400 reflections in a silicon crystal in the form of a plate with a surface oriented normally to the [001] direction are considered both theoretically and experimentally. The same section topogram exhibits five cases of multiple diffraction at small azimuthal angles for the 400 reflection and MoK{sub α} radiation, while the topogram for the 220 reflection demonstrates two cases of multiple diffraction. All these cases correspond to different combinations of reciprocalmore » lattice vectors. Exact theoretical calculations of section topograms for the aforementioned cases of multiple diffraction have been performed for the first time. The section topograms exhibit two different distortion regions. The distortions in the central region of the structure are fairly complex and depend strongly on the azimuthal angle. In the tails of the multiple diffraction region, there is a shift of two-beam interference fringes, which can be observed even with a laboratory X-ray source.« less
The Accretion Disk and the Boundary Layer of the Symbiotic Recurrent Nova T Corona Borealis
NASA Astrophysics Data System (ADS)
Mukai, Koji; Luna, Gerardo; Nelson, Thomas; Sokoloski, Jennifer L.; Lucy, Adrian; Nuñez, Natalia
2017-08-01
T Corona Borealis is one of four known Galactic recurrent symbiotic novae, red giant-white dwarf binaries from which multiple thermonuclear runaway (TNR) events, or nova eruptions, have been observed. TNR requires high pressure at the base of the accreted envelope, and a recurrence time of less than a century almost certainly requires both high white dwarf mass and high accretion rate. The eruptions of T CrB were observed in 1866 and 1946; if the 80 year interval is typical, the next eruption would be expected within the next decade or two. Optical observations show that T CrB has entered a super-active state starting in 2015, similar to that seen in 1938, 8 years before the last eruption. In quiescence, T CrB is a known, bright hard X-ray source that has been detected in the Swift/BAT all-sky survey. Here we present the result of our NuSTAR observation of T CrB in 2015, when it had started to brighten but had not yet reached the peak of the super-active state. We were able to fit the spectrum with an absorbed cooling flow model with reflection, with a reflection amplitude of 1.0. We also present recent Swift and XMM-Newton observations during the peak of the super-active state, when T CrB had faded dramatically in the BAT band. T CrB is found to be much more luminous in the UV, while the X-ray spectrum became complex including a soft, optically thick component. We present our interpretation of the overall variability as due to instability of a large disk, and of the X-rays as due to emission from the boundary layer. In our view, the NuSTAR observation was performed when the boundary layer was optically thin, and the reflection was only from the white dwarf surface that subtended 2π steradian of the sky as seen from the emission region. With these assumptions, we infer the white dwarf in the T CrB system to have a mass of ~1.2 Msun. During the very active state, the boundary layer had turned partially optically thick and produced the soft X-ray component, while drastically reducing the hard X-ray luminosity. We will discuss the implication of variable accretion on the total mass accumulated since the last eruption.
The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER
NASA Astrophysics Data System (ADS)
Izenberg, Noam R.; Klima, Rachel L.; Murchie, Scott L.; Blewett, David T.; Holsclaw, Gregory M.; McClintock, William E.; Malaret, Erick; Mauceri, Calogero; Vilas, Faith; Sprague, Ann L.; Helbert, Jörn; Domingue, Deborah L.; Head, James W.; Goudge, Timothy A.; Solomon, Sean C.; Hibbitts, Charles A.; Dyar, M. Darby
2014-01-01
The MESSENGER spacecraft's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) obtained more than 1.6 million reflectance spectra of Mercury's surface from near-ultraviolet to near-infrared wavelengths during the first year of orbital operations. A global analysis of spectra in the wavelength range 300-1450 nm shows little regional variation in absolute reflectance or spectral slopes and a lack of mineralogically diagnostic absorptions. In particular, reflectance spectra show no clear evidence for an absorption band centered near 1 μm that would be associated with the presence of ferrous iron in silicates. There is, however, evidence for an ultraviolet absorption possibly consistent with a very low iron content (2-3 wt% FeO or less) in surface silicates and for the presence of small amounts of metallic iron or other opaque minerals in the form of nano- or micrometer-sized particles. These findings are consistent with MESSENGER X-ray and gamma-ray measurements of Mercury's surface iron abundance. Although X-ray and gamma-ray observations indicate higher than expected quantities of sulfur on the surface, reflectance spectra show no absorption bands diagnostic of sulfide minerals. Whereas there is strong evidence of water ice in permanently shadowed craters near Mercury's poles, MASCS spectra provide no evidence for hydroxylated materials near permanently shadowed craters.
Design and development of the SIMBOL-X hard x-ray optics
NASA Astrophysics Data System (ADS)
Pareschi, G.; Attinà, P.; Basso, S.; Borghi, G.; Burkert, W.; Buzzi, R.; Citterio, O.; Civitani, M.; Conconi, P.; Cotroneo, V.; Cusumano, G.; Dell'Orto, E.; Freyberg, M.; Hartner, G. D.; Gorenstein, P.; Mattaini, E.; Mazzoleni, F.; Parodi, G.; Romaine, S.; Spiga, D.; Tagliaferri, G.; Valtolina, R.; Valsecchi, G.; Vernani, D.
2008-07-01
The SIMBOL-X formation-flight X-ray mission will be operated by ASI and CNES in 2014, with a large participation of the French and Italian high energy astrophysics scientific community. Also German and US Institutions are contributing in the implementation of the scientific payload. Thanks to the formation-flight architecture, it will be possible to operate a long (20 m) focal length grazing incidence mirror module, formed by 100 confocal multilayer-coated Wolter I shells. This system will allow us to focus X-rays over a very broad energy band, from 0.5 keV up to 80 keV and beyond, with more than two orders of magnitude improvement in angular resolution (20 arcsec HEW) and sensitivity (0.5 µCrab on axis @30 keV) compared to non focusing detectors used so far. The X-ray mirrors will be realized by Ni electroforming replication, already successfully used for BeppoSAX, XMM-Newton, and JET-X/SWIFT; the thickness trend will be about two times less than for XMM, in order to save mass. Multilayer reflecting coatings will be implemented, in order to improve the reflectivity beyond 10 keV and to increase the field of view 812 arcmin at 30 keV). In this paper, the SIMBOL-X optics design, technology and implementation challenges will be discussed; it will be also reported on recent results obtained in the context of the SIMBOL-X optics development activities.
Synchrotron X-ray topography of electronic materials.
Tuomi, T
2002-05-01
Large-area transmission, transmission section, large-area back-reflection, back-reflection section and grazing-incidence topography are the geometries used when recording high-resolution X-ray diffraction images with synchrotron radiation from a bending magnet, a wiggler or an undulator of an electron or a positron storage ring. Defect contrast can be kinematical, dynamical or orientational even in the topographs recorded on the same film at the same time. In this review article limited to static topography experiments, examples of defect studies on electronic materials cover the range from voids and precipitates in almost perfect float-zone and Czochralski silicon, dislocations in gallium arsenide grown by the liquid-encapsulated Czochralski technique, the vapour-pressure controlled Czochralski technique and the vertical-gradient freeze technique, stacking faults and micropipes in silicon carbide to misfit dislocations in epitaxic heterostructures. It is shown how synchrotron X-ray topographs of epitaxic laterally overgrown gallium arsenide layer structures are successfully explained by orientational contrast.
A novel X-ray diffractometer for studies of liquid-liquid interfaces.
Murphy, Bridget M; Greve, Matthais; Runge, Benjamin; Koops, Christian T; Elsen, Annika; Stettner, Jochim; Seeck, Oliver H; Magnussen, Olaf M
2014-01-01
The study of liquid-liquid interfaces with X-ray scattering methods requires special instrumental considerations. A dedicated liquid surface diffractometer employing a tilting double-crystal monochromator in Bragg geometry has been designed. This diffractometer allows reflectivity and grazing-incidence scattering measurements of an immobile mechanically completely decoupled liquid sample, providing high mechanical stability. The available energy range is from 6.4 to 29.4 keV, covering many important absorption edges. The instrument provides access in momentum space out to 2.54 Å(-1) in the surface normal and out to 14.8 Å(-1) in the in-plane direction at 29.4 keV. Owing to its modular design the diffractometer is also suitable for heavy apparatus such as vacuum chambers. The instrument performance is described and examples of X-ray reflectivity studies performed under in situ electrochemical control and on biochemical model systems are given.
Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity
Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman; ...
2014-01-20
Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less
Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman
Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less
Local atomic structure of Fe/Cr multilayers: Depth-resolved method
NASA Astrophysics Data System (ADS)
Babanov, Yu. A.; Ponomarev, D. A.; Devyaterikov, D. I.; Salamatov, Yu. A.; Romashev, L. N.; Ustinov, V. V.; Vasin, V. V.; Ageev, A. L.
2017-10-01
A depth-resolved method for the investigation of the local atomic structure by combining data of X-ray reflectivity and angle-resolved EXAFS is proposed. The solution of the problem can be divided into three stages: 1) determination of the element concentration profile with the depth z from X-ray reflectivity data, 2) determination of the X-ray fluorescence emission spectrum of the element i absorption coefficient μia (z,E) as a function of depth and photon energy E using the angle-resolved EXAFS data Iif (E , ϑl) , 3) determination of partial correlation functions gij (z , r) as a function of depth from μi (z , E) . All stages of the proposed method are demonstrated on a model example of a multilayer nanoheterostructure Cr/Fe/Cr/Al2O3. Three partial pair correlation functions are obtained. A modified Levenberg-Marquardt algorithm and a regularization method are applied.
An introduction to the water recovery x-ray rocket
NASA Astrophysics Data System (ADS)
Miles, Drew M.; McEntaffer, Randall L.; Schultz, Ted B.; Donovan, Benjamin D.; Tutt, James H.; Yastishock, Daniel; Steiner, Tyler; Hillman, Christopher R.; McCoy, Jake A.; Wages, Mitchell; Hull, Sam; Falcone, Abe; Burrows, David N.; Chattopadhyay, Tanmoy; Anderson, Tyler; McQuaide, Maria
2017-08-01
The Water Recovery X-ray Rocket (WRXR) is a sounding rocket payload that will launch from the Kwajalein Atoll in April 2018 and seeks to be the first astrophysics sounding rocket payload to be water recovered by NASA. WRXR's primary instrument is a grating spectrometer that consists of a mechanical collimator, X-ray reflection gratings, grazing-incidence mirrors, and a hybrid CMOS detector. The instrument will obtain a spectrum of the diffuse soft X-ray emission from the northern part of the Vela supernova remnant and is optimized for 3rd and 4th order OVII emission. Utilizing a field of view of 3.25° × 3.25° and resolving power of λ/δλ ≍40-50 in the lines of interest, the WRXR spectrometer aims to achieve the most highly-resolved spectrum of Vela's diffuse soft X-ray emission. This paper presents introductions to the payload and the science target.
NASA Astrophysics Data System (ADS)
Bautz, Mark W.; Kissel, S. E.; Ryu, K.; Suntharalingam, V.
2014-01-01
Silicon X-ray detectors require optical blocking filters to prevent out-of-band (UV, visible and near-IR) radiation from corrupting the X-ray signal. Traditionally, blocking filters have been deposited on thin, free-standing membranes suspended over the detector. Free-standing filters are fragile, however, and in past instruments have required heavy and complex vacuum housings to protect them from acoustic loads during ground operations and launch. A directly-deposited blocking filter greatly simplifies the instrument and in principle permits better soft X-ray detection efficiency than a traditional free-standing filter. Directly-deposited filters have flown in previous generation instruments (e.g. the XMM/Newton Reflection Grating Spectrometer) but none has yet been demonstrated on a modern, high-performance back-illuminated X-ray CCD. We report here on the status of our NASA-funded Strategic Astrophysics Technology program to demonstrate such filters.
NASA Technical Reports Server (NTRS)
Hakim, M. B.; Muney, W. S.; Fowler, W. B.; Woodgate, B. E.
1988-01-01
A three-crystal laboratory X-ray spectrometer is used to measure the Bragg reflection from concave cylindrically curved crystals to be used in the high-resolution X-ray spectrometer of the NASA Advanced X-ray Astrophysics Facility (AXAF). The first two crystals, in the dispersive (1.1) arrangement, select a narrow collimated monochromatic beam in the Cu K-alpha(1) line at 1.5 A (8.1 keV), which illuminates the test crystal. The angular centroids of rocking curves measured along the surface provide a measure of the conformity of the crystal to the desired radius of curvature. Individual and combined rocking-curve widths and areas provide a measure of the resolution and efficiency at 1.54 A. The crystals analyzed included LiF(200), PET, and acid phthalates such as TAP.
Relativistic effects on x-ray structure factors
NASA Astrophysics Data System (ADS)
Batke, Kilian; Eickerling, Georg
2016-04-01
Today, combined experimental and theoretical charge density studies based on quantum chemical calculations and x-ray diffraction experiments allow for the investigation of the topology of the electron density at subatomic resolution. When studying compounds containing transition metal elements, relativistic effects need to be adequately taken into account not only in quantum chemical calculations of the total electron density ρ ({r}), but also for the atomic scattering factors employed to extract ρ ({r}) from experimental x-ray diffraction data. In the present study, we investigate the magnitude of relativistic effects on x-ray structure factors and for this purpose {F}({{r}}*) have been calculated for the model systems M(C2H2) (M = Ni, Pd, Pt) from four-component molecular wave functions. Relativistic effects are then discussed by a comparison to structure factors obtained from a non-relativistic reference and different quasi-relativistic approximations. We show, that the overall effects of relativity on the structure factors on average amount to 0.81%, 1.51% and 2.78% for the three model systems under investigation, but that for individual reflections or reflection series the effects can be orders of magnitude larger. Employing the quasi-relativistic Douglas-Kroll-Hess second order or the zeroth order regular approximation Hamiltonian takes these effects into account to a large extend, reducing the differences between the (quasi-)relativistic and the non-relativistic result by one order of magnitude. In order to further determine the experimental significance of the results, the magnitude of the relativistic effects is compared to the changes of the model structure factor data when charge transfer and chemical bonding is taken into account by a multipolar expansion of {F}({{r}}*).
NASA Astrophysics Data System (ADS)
Finnie, Kim S.; Zhang, Zhaoming; Vance, Eric R.; Carter, Melody L.
2003-04-01
The valence state of uranium doped into a f 0 thorium analog of brannerite (i.e., thorutite) has been examined using near-infrared (NIR) diffuse reflectance (DRS) and X-ray photoelectron (XPS) spectroscopies. NIR transitions of U 4+, which are not observed in spectra of brannerite, have been detected in the samples of U xTh 1- xTi 2O 6, and we propose that strong specular reflectance is responsible for the lack of U 4+ features in UTi 2O 6. Characteristic U 5+ bands have been identified in samples in which sufficient Ca 2+ has been added to nominally effect complete oxidation to U 5+. XPS results support the assignments of U 4+ and U 5+ by DRS. The presence of residual U 4+ bands in the spectra of the Ca-doped samples is consistent with segregation of Ca 2+ to the grain boundaries during high temperature sintering.
Soft X-Ray Irradiation of Silicates: Implications for Dust Evolution in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Ciaravella, A.; Cecchi-Pestellini, C.; Chen, Y.-J.; Muñoz Caro, G. M.; Huang, C.-H.; Jiménez-Escobar, A.; Venezia, A. M.
2016-09-01
The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol-gel technique. Its chemical composition reflects the Mg2SiO4 stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may have relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.
Multiple-channel, total-reflection optic with controllable divergence
Gibson, David M.; Downing, Robert G.
1997-01-01
An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence.
Multiple-channel, total-reflection optic with controllable divergence
Gibson, D.M.; Downing, R.G.
1997-02-18
An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence. 11 figs.
Thermal gradient crystals as tuneable monochromator for high energy X-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruett, U.; Schulte-Schrepping, H.; Heuer, J.
2010-06-23
At the high energy synchrotron radiation beamline BW5 at DORIS III at DESY a new monochromator providing broad energy bandwidth and high reflectivity is in use. On a small 10x10x5 mm{sup 3} silicon crystal scattering at the (311) reflection a thermal gradient is applied, which tunes the scattered energy bandwidth. The (311) reflection strongly suppresses the higher harmonics allowing the use of an image plate detector for crystallography. The monochromator can be used at photon energies above 60 keV.
NASA Astrophysics Data System (ADS)
Gandhi, P.; Annuar, A.; Lansbury, G. B.; Stern, D.; Alexander, D. M.; Bauer, F. E.; Bianchi, S.; Boggs, S. E.; Boorman, P. G.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Comastri, A.; Craig, W. W.; Del Moro, A.; Elvis, M.; Guainazzi, M.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Lamperti, I.; Malaguti, G.; Masini, A.; Matt, G.; Puccetti, S.; Ricci, C.; Rivers, E.; Walton, D. J.; Zhang, W. W.
2017-06-01
We present NuSTAR X-ray observations of the active galactic nucleus (AGN) in NGC 7674. The source shows a flat X-ray spectrum, suggesting that it is obscured by Compton-thick gas columns. Based upon long-term flux dimming, previous work suggested the alternate possibility that the source is a recently switched-off AGN with the observed X-rays being the lagged echo from the torus. Our high-quality data show the source to be reflection-dominated in hard X-rays, but with a relatively weak neutral Fe Kα emission line (equivalent width [EW] of ≈ 0.4 keV) and a strong Fe xxvi ionized line (EW ≈ 0.2 keV). We construct an updated long-term X-ray light curve of NGC 7674 and find that the observed 2-10 keV flux has remained constant for the past ≈ 20 yr, following a high-flux state probed by Ginga. Light travel time arguments constrain the minimum radius of the reflector to be ˜ 3.2 pc under the switched-off AGN scenario, ≈ 30 times larger than the expected dust sublimation radius, rendering this possibility unlikely. A patchy Compton-thick AGN (CTAGN) solution is plausible, requiring a minimum line-of-sight column density (NH) of 3 × 1024 cm-2 at present, and yields an intrinsic 2-10 keV luminosity of (3-5) × 1043 erg s-1. Realistic uncertainties span the range of ≈ (1-13) × 1043 erg s-1. The source has one of the weakest fluorescence lines amongst bona fide CTAGN, and is potentially a local analogue of bolometrically luminous systems showing complex neutral and ionized Fe emission. It exemplifies the difficulty of identification and proper characterization of distant CTAGN based on the strength of the neutral Fe Kα line.
Magnetic properties of strained multiferroic CoC r2O4 : A soft x-ray study
NASA Astrophysics Data System (ADS)
Windsor, Y. W.; Piamonteze, C.; Ramakrishnan, M.; Scaramucci, A.; Rettig, L.; Huever, J. A.; Bothschafter, E. M.; Bingham, N. S.; Alberca, A.; Avula, S. R. V.; Noheda, B.; Staub, U.
2017-06-01
Using resonant soft x-ray techniques we follow the magnetic behavior of a strained epitaxial film of CoC r2O4 , a type-II multiferroic. The film is [110] oriented, such that both the ferroelectric and ferromagnetic moments can coexist in-plane. X-ray magnetic circular dichroism (XMCD) is used in scattering and in transmission modes to probe the magnetization of Co and Cr separately. The transmission measurements utilized x-ray excited optical luminescence from the substrate. Resonant soft x-ray diffraction (RXD) was used to study the magnetic order of the low temperature phase. The XMCD signals of Co and Cr appear at the same ordering temperature TC≈90 K , and are always opposite in sign. The coercive field of the Co and of Cr moments is the same, and is approximately two orders of magnitude higher than in bulk. Through sum rules analysis an enlarged C o2 + orbital moment (mL) is found, which can explain this hardening. The RXD signal of the (q q 0) reflection appears below TS, the same ordering temperature as the conical magnetic structure in bulk, indicating that this phase remains multiferroic under strain. To describe the azimuthal dependence of this reflection, a slight modification is required to the spin model proposed by the conventional Lyons-Kaplan-Dwight-Menyuk theory for magnetic spinels.
SARS E protein in phospholipid bilayers: an anomalous X-ray reflectivity study
NASA Astrophysics Data System (ADS)
Khattari, Z.; Brotons, G.; Arbely, E.; Arkin, I. T.; Metzger, T. H.; Salditt, T.
2005-02-01
We report on an anomalous X-ray reflectivity study to locate a labelled residue of a membrane protein with respect to the lipid bilayer. From such experiments, important constraints on the protein or peptide conformation can be derived. Specifically, our aim is to localize an iodine-labelled phenylalanine in the SARS E protein, incorporated in DMPC phospholipid bilayers, which are deposited in the form of thick multilamellar stacks on silicon surfaces. Here, we discuss the experimental aspects and the difficulties associated with the Fourier synthesis analysis that gives the electron density profile of the membranes.
NASA Astrophysics Data System (ADS)
Nakatani, Y.; Aratani, H.; Fujiwara, H.; Mori, T.; Tsuruta, A.; Tachibana, S.; Yamaguchi, T.; Kiss, T.; Yamasaki, A.; Yasui, A.; Yamagami, H.; Miyawaki, J.; Ebihara, T.; Saitoh, Y.; Sekiyama, A.
2018-03-01
We present clear experimental evidence for the momentum-dependent heavy fermionic electronic structures of the 4 f -based strongly correlated system CeNi2Ge2 by soft x-ray angle-resolved photoemission spectroscopy. A comparison between the experimental three-dimensional quasiparticle dispersion of LaNi2Ge2 and CeNi2Ge2 has revealed that heavy fermionic electronic structures are seen in the region surrounding a specific momentum. Furthermore, the wave vectors between the observed "heavy spots" are consistent with a result of neutron scattering reflecting magnetic correlations, which could be a trigger for the superconductivity in CeNi2Ge2 .
A Highly Sensitive X-ray Imaging Modality for Hepatocellular Carcinoma Detection in Vitro
Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph
2015-01-01
Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities. PMID:25559398
A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro
Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; ...
2015-01-05
Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. Here in this study we use numerical processing to produce x-ray scatter images ofmore » Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. Lastly, as x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.« less
NASA Astrophysics Data System (ADS)
Bhattacharya, Debarati; Basu, Saibal; Singh, Surendra; Roy, Sumalay; Dev, Bhupendra Nath
2012-12-01
Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni-Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.
NASA Astrophysics Data System (ADS)
Townsley, Leisa K.; Broos, Patrick S.; Feigelson, Eric D.; Garmire, Gordon P.; Getman, Konstantin V.
2006-04-01
We have studied the X-ray point-source population of the 30 Doradus (30 Dor) star-forming complex in the Large Magellanic Cloud using high spatial resolution X-ray images and spatially resolved spectra obtained with the Advanced CCD Imaging Spectrometer (ACIS) on board the Chandra X-Ray Observatory. Here we describe the X-ray sources in a 17'×17' field centered on R136, the massive star cluster at the center of the main 30 Dor nebula. We detect 20 of the 32 Wolf-Rayet stars in the ACIS field. The cluster R136 is resolved at the subarcsecond level into almost 100 X-ray sources, including many typical O3-O5 stars, as well as a few bright X-ray sources previously reported. Over 2 orders of magnitude of scatter in LX is seen among R136 O stars, suggesting that X-ray emission in the most massive stars depends critically on the details of wind properties and the binarity of each system, rather than reflecting the widely reported characteristic value LX/Lbol~=10-7. Such a canonical ratio may exist for single massive stars in R136, but our data are too shallow to confirm this relationship. Through this and future X-ray studies of 30 Dor, the complete life cycle of a massive stellar cluster can be revealed.
Surface modification of platinum by laser-produced X-rays
NASA Astrophysics Data System (ADS)
Latif, Hamid; Shahid Rafique, M.; Khaleeq-ur-Rahaman, M.; Sattar, Abdul; Anjum, S.; Usman, A.; Zaheer, S.; Rawat, R. S.
2014-11-01
Laser-induced plasma is used as an X-ray source for the growth of hillocks like nanostructures on platinum surface. To generate X-rays, plasma is produced by Nd:YAG laser, which is operated at second harmonics (λ = 532 nm, E = 400 mJ). Analytical grade 5 N pure Al, Cu and W are used as laser targets for X-rays production. X-rays produced from Al, Cu and W plasmas are used to irradiate three analytical grade (5 N pure) platinum substrates, respectively, under the vacuum ∼10-4 torr. XRD analysis shows considerable structural changes in the exposed platinum. The decrement in reflection intensities, increment in dislocation line density, change in d-spacing and disturbance in the periodicity of planes evidently prove these structural changes. Atomic force microscope AFM topographic analysis of the platinum exposed to X-rays emitted from Al, Cu and W targets showed that nanometer-size hillocks are produced on the platinum surface irrespective of the source. It has also been observed that due to these hillocks, the roughness of the surface has increased. Conductivity of hillocks produced from X-rays produced by Al, Cu and W targets is compared and it is shown that the hillocks produced by Al target X-rays have better conductivity compared to the hillocks produced by X-rays from Cu and W targets.
Investigating broadband variability of the TeV blazar 1ES 1959+650
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliu, E.; Archambault, S.; Arlen, T.
We summarize broadband observations of the TeV-emitting blazar 1ES 1959 650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift UVOT, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that the parameters requiredmore » to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.« less
INVESTIGATING BROADBAND VARIABILITY OF THE TeV BLAZAR 1ES 1959+650
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliu, E.; Archambault, S.; Arlen, T.
We summarize broadband observations of the TeV-emitting blazar 1ES 1959+650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift Ultraviolet and Optical Telescope, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that themore » parameters required to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected emission model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.« less
INVESTIGATING BROADBAND VARIABILITY OF THE TeV BLAZAR 1ES 1959+650
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliu, E.; Archambault, S.; Arlen, T.
We summarize broadband observations of the TeV-emitting blazar 1ES 1959+650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift Ultraviolet and Optical Telescope, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that themore » parameters required to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected emission model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.« less
Investigating broadband variability of the TeV blazar 1ES 1959+650
Aliu, E.; Archambault, S.; Arlen, T.; ...
2014-12-03
We summarize broadband observations of the TeV-emitting blazar 1ES 1959 650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift UVOT, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that the parameters requiredmore » to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.« less
Fabrication of high-resolution x-ray diffractive optics at King's College London
NASA Astrophysics Data System (ADS)
Charalambous, Pambos S.; Anastasi, Peter A. F.; Burge, Ronald E.; Popova, Katia
1995-09-01
The fabrication of high resolution x-ray diffractive optics, and Fresnel zone plates (ZPs) in particular, is a very demanding multifaceted technological task. The commissioning of more (and brighter) synchrotron radiation sources, has increased the number of x-ray imaging beam lines world wide. The availability of cheaper and more effective laboratory x-ray sources, has further increased the number of laboratories involved in x-ray imaging. The result is an ever increasing demand for x-ray optics with a very wide range of specifications, reflecting the particular type of x-ray imaging performed at different laboratories. We have been involved in all aspects of high resolution nanofabrication for a number of years, and we have explored many different methods of lithography, which, although unorthodox, open up possibilities, and increase our flexibility for the fabrication of different diffractive optical elements, as well as other types of nanostructures. The availability of brighter x-ray sources, means that the diffraction efficiency of the ZPs is becoming of secondary importance, a trend which will continue in the future. Resolution, however, is important and will always remain so. Resolution is directly related to the accuracy af pattern generation, as well as the ability to draw fine lines. This is the area towards which we have directed most of our efforts so far.
Small Angle X-ray Scattering for Nanoparticle Research
Li, Tao; Senesi, Andrew J.; Lee, Byeongdu
2016-04-07
X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and ångström length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution,more » shape, and organization into hierarchal structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well the combination of SAXS with other X-ray and non-X ray characterization tools. Furthermore, we conclude with an examination of several key areas of research where X-rays scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and in operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.« less
The iron complex in high mass X-ray binaries
NASA Astrophysics Data System (ADS)
Giménez-García, A.; Torrejón, J. M.; Martínez-Núñez, S.; Rodes-Rocas, J. J.; Bernabéu, G.
2013-05-01
An X-ray binary system consists of a compact object (a white dwarf, a neutron star or a black hole) accreting material from an optical companion star. The spectral type of the optical component strongly affects the mass transfer to the compact object. This is the reason why X-ray binary systems are usually divided in High Mass X-ray Binaries (companion O or B type, denoted HMXB) and Low Mass X-ray Binaries (companion type A or later). The HMXB are divided depending on the partner's luminosity class in two main groups: the Supergiant X-ray Binaries (SGXB) and Be X-ray Binaries (BeXB). We introduce the spectral characterization of a sample of 9 High Mass X-ray Binaries in the iron complex (˜ 6-7 keV). This spectral range is a fundamental tool in the study of the surrounding material of these systems. The sources have been divided into three main groups according to their current standard classification: SGXB, BeXB and γ Cassiopeae-like. The purpose of this work is to look for qualitative patterns in the iron complex, around 6-7 keV, in order to discern between current different classes that make up the group of HMXB. We find significant spectral patterns for each of the sets, reflecting differences in accretion physics thereof.
Small Angle X-ray Scattering for Nanoparticle Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tao; Senesi, Andrew J.; Lee, Byeongdu
X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and ångström length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution,more » shape, and organization into hierarchal structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well the combination of SAXS with other X-ray and non-X ray characterization tools. Furthermore, we conclude with an examination of several key areas of research where X-rays scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and in operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.« less
Comparison of Mg-based multilayers for solar He II radiation at 30.4 nm wavelength
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Jingtao; Zhou Sika; Li Haochuan
2010-07-10
Mg-based multilayers, including SiC/Mg, Co/Mg, B4C/Mg, and Si/Mg, are investigated for solar imaging and a He II calibration lamp at a 30.4 nm wavelength. These multilayers were fabricated by a magnetron sputtering method and characterized by x-ray reflection. The reflectivities of these multilayers were measured by synchrotron radiation. Near-normal-incidence reflectivities of Co/Mg and SiC/Mg multilayer mirrors are as high as 40.3% and 44.6%, respectively, while those of B4C/Mg and Si/Mg mirrors are too low for application. The measured results suggest that SiC/Mg, Co/Mg multilayers are promising for a 30.4 nm wavelength.
NASA Astrophysics Data System (ADS)
Del Moro, A.; Alexander, D. M.; Aird, J. A.; Bauer, F. E.; Civano, F.; Mullaney, J. R.; Ballantyne, D. R.; Brandt, W. N.; Comastri, A.; Gandhi, P.; Harrison, F. A.; Lansbury, G. B.; Lanz, L.; Luo, B.; Marchesi, S.; Puccetti, S.; Ricci, C.; Saez, C.; Stern, D.; Treister, E.; Zappacosta, L.
2017-11-01
We present a study of the average X-ray spectral properties of the sources detected by the NuSTAR extragalactic survey, comprising observations of the Extended Chandra Deep Field South (E-CDFS), Extended Groth Strip (EGS), and the Cosmic Evolution Survey (COSMOS). The sample includes 182 NuSTAR sources (64 detected at 8-24 keV), with 3-24 keV fluxes ranging between {f}3{--24{keV}}≈ {10}-14 and 6 × 10-13 erg cm-2 s-1 ({f}8{--24{keV}}≈ 3× {10}-14{--}3× {10}-13 erg cm-2 s-1) and redshifts in the range of z=0.04{--}3.21. We produce composite spectra from the Chandra + NuSTAR data (E≈ 2{--}40 {keV}, rest frame) for all the sources with redshift identifications (95%) and investigate the intrinsic, average spectra of the sources, divided into broad-line (BL) and narrow-line (NL) active galactic nuclei (AGNs), and also in different bins of X-ray column density and luminosity. The average power-law photon index for the whole sample is {{Γ }}={1.65}-0.03+0.03, flatter than the {{Γ }}≈ 1.8 typically found for AGNs. While the spectral slope of BL and X-ray unabsorbed AGNs is consistent with the typical values ({{Γ }}={1.79}-0.01+0.01), a significant flattening is seen in NL AGNs and heavily absorbed sources ({{Γ }}={1.60}-0.05+0.08 and {{Γ }}={1.38}-0.12+0.12, respectively), likely due to the effect of absorption and to the contribution from the Compton reflection component to the high-energy flux (E> 10 keV). We find that the typical reflection fraction in our spectra is R≈ 0.5 (for {{Γ }}=1.8), with a tentative indication of an increase of the reflection strength with X-ray column density. While there is no significant evidence for a dependence of the photon index on X-ray luminosity in our sample, we find that R decreases with luminosity, with relatively high levels of reflection (R≈ 1.2) for {L}10{--40{keV}}< {10}44 erg s-1 and R≈ 0.3 for {L}10{--40{keV}}> {10}44 erg s-1 AGNs, assuming a fixed spectral slope of {{Γ }}=1.8.
Use of capillary optics as a beam intensifier for a Compton x-ray source.
Tompkins, P A; Abreu, C C; Carroll, F E; Xiao, Q F; MacDonald, C A
1994-11-01
The use of Kumakhov capillary optics will significantly enhance the performance of near-monochromatic, Compton backscattered x-ray programs. The Vanderbilt University Medical Free-Electron Laser Center is developing the capability to create these tunable x rays for medical imaging. The present transport has only reflection optics, and the beam is quite large in diameter at the laboratory. Low loss collimation of this beam would allow higher x-ray intensities after transport. This article describes experimental and computer simulation results which predict the expected performance for a multifiber Kumakhov collimator for use in the x-ray beam transport. Estimates from our research are that a multifiber optic formed of individual polycapillary fibers could be used to capture the full 7 mrad of the Vanderbilt x-ray beam and collimate it to a 1-2 mrad divergence with approximately 40%-50% transmission efficiency. This optic should increase the x-ray intensity at the laboratory level by a factor of > or = 5 by decreasing the beam divergence and subsequent spot size. Additionally, analysis of monolithic optics of fused multicapillary fibers predicts an increase in the intensity of the x rays at the laboratory by a factor of 55. These optics can have tapered channels that greatly decrease their exit divergence. This will greatly enhance the capabilities of this unique x-ray source. This article reports the initial results from a collaboration between Vanderbilt, The Center for X-Ray Optics at University at Albany, SUNY, and X-Ray Optical Systems in Albany, NY.
TESTING RELATIVISTIC REFLECTION AND RESOLVING OUTFLOWS IN PG 1211+143 WITH XMM-NEWTON AND NuSTAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobban, A. P.; Pounds, K.; Vaughan, S.
We analyze the broad-band X-ray spectrum (0.3–50 keV) of the luminous Seyfert 1/quasar PG 1211+143—the archetypal source for high-velocity X-ray outflows—using near-simultaneous XMM-Newton and NuSTAR observations. We compare pure relativistic reflection models with a model including the strong imprint of photoionized emission and absorption from a high-velocity wind, finding a spectral fit that extrapolates well over the higher photon energies covered by NuSTAR . Inclusion of the high signal-to-noise ratio XMM-Newton spectrum provides much tighter constraints on the model parameters, with a much harder photon index/lower reflection fraction compared to that from the NuSTAR data alone. We show that puremore » relativistic reflection models are not able to account for the spectral complexity of PG 1211+143 and that wind absorption models are strongly required to match the data in both the soft X-ray and Fe K spectral regions. In confirming the significance of previously reported ionized absorption features, the new analysis provides a further demonstration of the power of combining the high throughput and resolution of long-look XMM-Newton observations with the unprecedented spectral coverage of NuSTAR .« less
The X-Ray Reflection Spectrum of the Radio-Loud Quasar 4C 74.26
NASA Technical Reports Server (NTRS)
Lohfink, Ann M.; Fabian, Andrew C.; Ballantyne, David R.; Boggs, S. E.; Boorman, Peter; Christensen, F. E.; Craig, W. W.; Farrah, Duncan; Garcia, Javier; Hailey, C. J.;
2017-01-01
The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in the immediate vicinity of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Here, we present the hard X-ray NuSTAR observations of the radio-loud quasar 4C 74.26 in a joint analysis with quasi-simultaneous, soft X-ray Swift observations. Our spectral analysis reveals a high-energy cutoff of -183+3551 keV and confirms the presence of ionized reflection in the source. From the average spectrum we detect that the accretion disk is mildly recessed, with an inner radius of Rin4180 Rg. However, no significant evolution of the inner radius is seen during the three months covered by our NuSTAR campaign. This lack of variation could mean that the jet formation in this radio-loud quasar differs from what is observed in broad-line radio galaxies.
Multispectral variable magnification glancing incidence x ray telescope
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Inventor)
1992-01-01
A multispectral, variable magnification, glancing incidence, x-ray telescope capable of broadband, high resolution imaging of solar and stellar x-ray and extreme ultraviolet radiation sources is discussed. The telescope includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable mirror carriers, each providing a different magnification, are positioned behind the primary focus at an inclination to the optical axis. Each carrier has a series of ellipsoidal mirrors, and each mirror has a concave surface covered with a multilayer (layered synthetic microstructure) coating to reflect a different desired wavelength. The mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A detector such as an x-ray sensitive photographic film is positioned at the second respective focus of each mirror so that each mirror may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected mirror on the second carrier to receive the radiation.
The X-Ray Reflection Spectrum of the Radio-loud Quasar 4C 74.26
NASA Astrophysics Data System (ADS)
Lohfink, Anne M.; Fabian, Andrew C.; Ballantyne, David R.; Boggs, S. E.; Boorman, Peter; Christensen, F. E.; Craig, W. W.; Farrah, Duncan; García, Javier; Hailey, C. J.; Harrison, F. A.; Ricci, Claudio; Stern, Daniel; Zhang, W. W.
2017-06-01
The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in the immediate vicinity of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Here, we present the hard X-ray NuSTAR observations of the radio-loud quasar 4C 74.26 in a joint analysis with quasi-simultaneous, soft X-ray Swift observations. Our spectral analysis reveals a high-energy cutoff of {183}-35+51 keV and confirms the presence of ionized reflection in the source. From the average spectrum we detect that the accretion disk is mildly recessed, with an inner radius of R in = 4-180 R g. However, no significant evolution of the inner radius is seen during the three months covered by our NuSTAR campaign. This lack of variation could mean that the jet formation in this radio-loud quasar differs from what is observed in broad-line radio galaxies.
NASA Astrophysics Data System (ADS)
Coti Zelati, F.; Campana, S.; Braito, V.; Baglio, M. C.; D'Avanzo, P.; Rea, N.; Torres, D. F.
2018-03-01
We report on the first simultaneous XMM-Newton, NuSTAR, and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.
The soft x-ray beamline at Frascati Labs
NASA Astrophysics Data System (ADS)
Cinque, Gianfelice; Burattini, Emilio; Grilli, Antonio; Dabagov, Sultan
2005-08-01
DAΦNE-Light is the Synchrotron Radiation laboratory at the Laboratori Nazionali di Frascati (LNF)1. Three beamlines were commissioned since spring 2003 to exploit parasitically the intense photon emission from DAΦNE, the 0.5 1 GeV storage ring routinely circulating over 1 A of electrons. The soft X-ray beamline utilizes a wiggler source and, by a double-crystal fixed-exit monochromator, it is operational in the distinguishing energy window 1.5 - 4 keV range to be extended from the "water window" toward 6 keV. At present, the research activity is focused on X-ray Absorption Spectroscopy (XAS): precisely, X-ray Absorption Near Edge Spectroscopy (XANES) on the inner electronic levels of light elements and transition metals from Al to Ge and both d- and f-shells of higher Z atoms. Preliminary tests of X-ray imaging have been performed in view of applying different focusing optics, namely policapillary systems in trasmission and/or bent mica diffractor in back-reflection, for X-ray microscopy and spectromicroscopy experiments. The use of polycapillary systems (lenses, halflenses, capillaries) for studying features of radiation transportation by such structures (X-ray channelling, focusing, bending, etc.) has been planned.
Focused Study of Thermonuclear Bursts on Neutron Stars
NASA Astrophysics Data System (ADS)
Chenevez, Jérôme
2009-05-01
X-ray bursters form a class of Low Mass X-Ray Binaries where accreted material from a donor star undergoes rapid thermonuclear burning in the surface layers of a neutron star. The flux released can temporarily exceed the Eddington limit and drive the photosphere to large radii. Such photospheric radius expansion bursts likely eject nuclear burning ashes into the interstellar medium, and may make possible the detection of photoionization edges. Indeed, theoretical models predict that absorption edges from 58Fe at 9.2 keV, 60Zn and 62Zn at 12.2 keV should be detectable by the future missions Simbol-X and NuSTAR. A positive detection would thus probe the nuclear burning as well as the gravitational redshift from the neutron star. Moreover, likely observations of atomic X-ray spectral components reflected from the inner accretion disk have been reported. The high spectral resolution capabilities of the focusing X-ray telescopes may therefore make possible to differentiate between the potential interpretations of the X-ray bursts spectral features.
The AXAF technology program: The optical flats tests
NASA Technical Reports Server (NTRS)
Williams, A. C.; Harper, J. D.; Reily, J. C.; Weisskopf, M. C.; Wyman, C. L.; Zombeck, M.
1984-01-01
The results of a technology program aimed at determining the limits of surface polishing for reflecting X-ray telescopes is presented. This program is part of the major task of developing the Advanced X-ray Astrophysical Facility (AXAF). By studying the optical properties of state-of-the-art polished flat surfaces, conclusions were drawn as to the potential capability of AXAF. Surface microtopography of the flats as well as their figure are studied by X-ray, visual, and mechanical techniques. These techniques and their results are described. The employed polishing techniques are more than adequate for the specifications of the AXAF mirrors.
Examination of Painting on Metal Support by Terahertz Time-Domain Imaging
NASA Astrophysics Data System (ADS)
Koch Dandolo, C. L.; Gomez-Sepulveda, A. M.; Hernandez-Serrano, A. I.; Castro-Camus, E.
2017-10-01
Two paintings on metal support have been imaged by terahertz time-domain imaging (THz-TDI) in a reflection setup and the X-ray radiographs were also recorded. The study was performed for testing the terahertz radiation (THz) as an imaging method alternative to X-ray radiography, which suffers several limitations in imaging paint layers on metal support. While the information regarding the paint layers of the paintings was almost lost in the records provided by the X-ray radiography, THz-TDI demonstrates the ability to provide important information about them, despite the presence of the underlying metal.
NASA Astrophysics Data System (ADS)
Choudhury, Kishalay; García, Javier A.; Steiner, James F.; Bambi, Cosimo
2017-12-01
The reflection spectroscopic model RELXILL is commonly implemented in studying relativistic X-ray reflection from accretion disks around black holes. We present a systematic study of the model’s capability to constrain the dimensionless spin and ionization parameters from ∼6000 Nuclear Spectroscopic Telescope Array (NuSTAR) simulations of a bright X-ray source employing the lamp-post geometry. We employ high-count spectra to show the limitations in the model without being confused with limitations in signal-to-noise. We find that both parameters are well-recovered at 90% confidence with improving constraints at higher reflection fraction, high spin, and low source height. We test spectra across a broad range—first at 106–107 and then ∼105 total source counts across the effective 3–79 keV band of NuSTAR, and discover a strong dependence of the results on how fits are performed around the starting parameters, owing to the complexity of the model itself. A blind fit chosen over an approach that carries some estimates of the actual parameter values can lead to significantly worse recovery of model parameters. We further stress the importance to span the space of nonlinear-behaving parameters like {log} ξ carefully and thoroughly for the model to avoid misleading results. In light of selecting fitting procedures, we recall the necessity to pay attention to the choice of data binning and fit statistics used to test the goodness of fit by demonstrating the effect on the photon index Γ. We re-emphasize and implore the need to account for the detector resolution while binning X-ray data and using Poisson fit statistics instead while analyzing Poissonian data.
Effect of dry air on interface smoothening in reactive sputter deposited Co/Ti multilayer
NASA Astrophysics Data System (ADS)
Biswas, A.; Porwal, A.; Bhattacharya, Debarati; Prajapat, C. L.; Ghosh, Arnab; Nand, Mangla; Nayak, C.; Rai, S.; Jha, S. N.; Singh, M. R.; Bhattacharyya, D.; Basu, S.; Sahoo, N. K.
2017-09-01
Top surface roughness and interface roughness are one of the key elements which determine the performance of X-ray and neutron thin film multilayer devices. It has been observed that by mixing air with argon in sputtering ambience during deposition of Co layers, polarized neutron reflectivity (PNR) of Co/Ti supermirror polarizers can be improved substantially. Cross-sectional HRTEM measurement reveals that sharper interfaces in the supermirror can be achieved in case of deposition of the multilayer under mixed ambience of argon and air. In order to investigate this interface modification mechanism further, in this communication two sets of tri-layer Co/Ti/Co samples and 20-layer Co/Ti periodic multilayer samples have been prepared; in one set all the layers are deposited only under argon ambience and in the other set, Co layers are deposited under a mixed ambience of argon and air. These samples have been characterized by measuring specular and non-specular X-ray reflectivities (GIXR) with X-rays of 1.54 Å wavelength and polarized neutron reflectivity (PNR) with neutron of 2.5 Å wavelength at grazing angle of incidence. It has been observed that the X-ray and neutron specular reflectivities at Bragg peaks of 20 layer periodic multilayer increase when Co layers are deposited under mixed ambience of argon and air. The detail information regarding the effect of air on the interfaces and magnetic properties has been obtained by fitting the measured spectra. The above information has subsequently been supplemented by XRD and magnetic measurements on the samples. XPS and XANES measurements have also been carried out to investigate whether cobalt oxide or cobalt nitride layers are being formed due to use of air in sputtering ambience.
Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics
Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore
2016-08-09
A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.
XMM-Newton reveals a Seyfert-like X-ray spectrum in the z = 3.6 QSO B1422+231
NASA Astrophysics Data System (ADS)
Dadina, M.; Vignali, C.; Cappi, M.; Lanzuisi, G.; Ponti, G.; De Marco, B.; Chartas, G.; Giustini, M.
2016-08-01
Context. Matter flows from the central regions of quasi-stellar objects (QSOs) during their active phases are probably responsible for the properties of the super-massive black holes and those of the bulges of host galaxies. To understand how this mechanism works, we need to characterize the geometry and the physical state of the accreting matter at cosmological redshifts, when QSO activity is at its peak. Aims: We aim to use X-ray data to probe the matter inflow at the very center of a QSO at z = 3.62. While complex absorption, the iron K emission line, reflection hump, and high-energy cutoff are known to be almost ubiquitous in nearby active galactic nuclei (AGN), only a few distant objects are known to exhibit some of them. Methods: The few high-quality spectra of distant QSO were collected by adding sparse pointings of single objects obtained during X-ray monitoring campaigns. This could have introduced spurious spectral features due to source variability and/or microlensing. To avoid such problems, we decided to collect a single-epoch and high-quality X-ray spectrum of a distant AGN. We thus picked up the z = 3.62 QSO B1422+231, whose flux, enhanced by gravitationally lensing, is proven to be among the brightest lensed QSOs in X-rays (F2-10 keV ~ 10-12 erg s-1 cm-2). Results: The X-ray spectrum of B1422+231 is found to be very similar to the one of a typical nearby Seyfert galaxy. Neutral absorption is clearly detected (NH ~ 5 × 1021 cm-2 at the redshift of the source), while a strong absorption edge is measured at E ~ 7.5 keV with an optical depth of τ ~ 0.14. We also find hints of the FeKα line in emission at E ~ 6.4 keV line (EW ≲ 70 eV), and a hump is detected in the E ~ 15 - 20 keV energy band (rest frame) in excess of what is predicted by a simple absorbed power-law. Conclusions: The spectrum can best be modeled with two rather complex models; one assumes ionized and partially covering matter along the line of sight, the other is characterized by a reflection component. We argue that reflection seems more plausible here on a statistical basis. In this scenario, the primary emission of B1422+231 is most probably dominated by the thermal Comptonization of UV seed photons in a corona with kT ~ 40 keV. We also detected a reflection component with relative direct-to-reflect normalization r ~ 1. These findings confirm that gravitational lensing is suitable for obtaining good-quality X-ray spectral information of QSOs at high-z, moreover, they support the idea that the same general picture characterizing AGN in the nearby Universe is also valid at high redshift.
Performance of NICER flight x-ray concentrator
NASA Astrophysics Data System (ADS)
Okajima, Takashi; Soong, Yang; Balsamo, Erin R.; Enoto, Teruaki; Olsen, Larry; Koenecke, Richard; Lozipone, Larry; Kearney, John; Fitzsimmons, Sean; Numata, Ai; Kenyon, Steven J.; Arzoumanian, Zaven; Gendreau, Keith
2016-07-01
Neutron star Interior Composition ExploreR (NICER) is a NASA instrument to be onboard International Space Station, which is equipped with 56 pairs of an X-ray concentrator (XRC) and a silicon drift detector for high timing observations. The XRC is based on an epoxy replicated thin aluminum foil X-ray mirror, similar to those of Suzaku and ASTRO-H (Hitomi), but only a single stage parabolic grazing incidence optic. Each has a focal length of 1.085m and a diameter of 105 mm, with 24 confocally aligned parabolic shells. Grazing incident angles to individual shells range from 0.4 to 1.4 deg. The flight 56 XRCs have been completed and successfully delivered to the payload integration. All the XRC was characterized at the NASA/GSFC 100-m X-ray beamline using 1.5 keV X-rays (some of them are also at 4.5 keV). The XRC performance, effective area and point spread function, was measured by a CCD camera and a proportional counter. The average effective area is about 44 cm2 at 1.5 keV and about 18 cm2 at 4.5 keV, which is consistent with a micro-roughness of 0.5nm from individual shell reflectivity measurements. The XRC focuses about 91% of X-rays into a 2mm aperture at the focal plane, which is the NICER detector window size. Each XRC weighs only 325 g. These performance met the project requirement. In this paper, we will present summary of the flight XRC performance as well as co-alignment results of the 56 XRCs on the flight payload as it is important to estimate the total effective for astronomical observations.
First experiences with in-vivo x-ray dark-field imaging of lung cancer in mice
NASA Astrophysics Data System (ADS)
Gromann, Lukas B.; Scherer, Kai; Yaroshenko, Andre; Bölükbas, Deniz A.; Hellbach, Katharina; Meinel, Felix G.; Braunagel, Margarita; Eickelberg, Oliver; Reiser, Maximilian F.; Pfeiffer, Franz; Meiners, Silke; Herzen, Julia
2017-03-01
Purpose: The purpose of the present study was to evaluate if x-ray dark-field imaging can help to visualize lung cancer in mice. Materials and Methods: The experiments were performed using mutant mice with high-grade adenocarcinomas. Eight animals with pulmonary carcinoma and eight control animals were imaged in radiography mode using a prototype small-animal x-ray dark-field scanner and three of the cancerous ones additionally in CT mode. After imaging, the lungs were harvested for histological analysis. To determine their diagnostic value, x-ray dark-field and conventional attenuation images were analyzed by three experienced readers in a blind assessment. Results radiographic imaging: The lung nodules were much clearer visualized on the dark-field radiographs compared to conventional radiographs. The loss of air-tissue interfaces in the tumor leads to a significant loss of x-ray scattering, reflected in a strong dark-field signal change. The difference between tumor and healthy tissue in terms of x-ray attenuation is significantly less pronounced. Furthermore, the signal from the overlaying structures on conventional radiographs complicates the detection of pulmonary carcinoma. Results CT imaging: The very first in-vivo CT-imaging results are quite promising as smaller tumors are often better visible in the dark-field images. However the imaging quality is still quite low, especially in the attenuation images due to un-optimized scanning parameters. Conclusion: We found a superior diagnostic performance of dark-field imaging compared to conventional attenuation based imaging, especially when it comes to the detection of small lung nodules. These results support the motivation to further develop this technique and translate it towards a clinical environment.
Determination of fluorine by total reflection X-ray fluorescence spectrometry
NASA Astrophysics Data System (ADS)
Tarsoly, G.; Óvári, M.; Záray, Gy.
2010-04-01
There is a growing interest in determination of low Z elements, i.e. carbon to phosphorus, in various samples. Total reflection X-ray fluorescence spectrometry (TXRF) has been already established as a suitable trace element analytical method with low sample demand and quite good quantification limits. Recently, the determinable element range was extended towards Z = 6 (carbon). In this study, the analytical performance of the total reflection X-ray fluorescence spectrometry for determination of fluorine was investigated applying a spectrometer equipped with Cr-anode X-ray tube, multilayer monochromator, vacuum chamber, and a silicon drift detector (SDD) with ultra thin window was used. The detection limit for fluorine was found to be 5 mg L - 1 (equivalent to 10 ng absolute) in aqueous matrix. The linear range of the fluorine determination is between 15 and 500 mg L - 1 , within this range the precision is below 10%. The matrix effects of the other halogens (chlorine, bromine and iodine), and sulfate were also investigated. It has been established that the upper allowed concentration limit of the above interfering elements is 100, 200, 50 and 100 mg L - 1 for Cl, Br, I and sulfate, respectively. Moreover, the role of the pre-siliconization of the quartz carrier plate was investigated. It was found, that the presence of the silicone results in poorer analytical performance, which can be explained by the thicker sample residue and stronger self-absorption of the fluorescent radiation.
NASA Technical Reports Server (NTRS)
1976-01-01
Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.
Evaluation of alignment error of micropore X-ray optics caused by hot plastic deformation
NASA Astrophysics Data System (ADS)
Numazawa, Masaki; Ishi, Daiki; Ezoe, Yuichiro; Takeuchi, Kazuma; Terada, Masaru; Fujitani, Maiko; Ishikawa, Kumi; Nakajima, Kazuo; Morishita, Kohei; Ohashi, Takaya; Mitsuda, Kazuhisa; Nakamura, Kasumi; Noda, Yusuke
2018-06-01
We report on the evaluation and characterization of micro-electromechanical system (MEMS) X-ray optics produced by silicon dry etching and hot plastic deformation. Sidewalls of micropores formed by etching through a silicon wafer are used as X-ray reflecting mirrors. The wafer is deformed into a spherical shape to focus parallel incidence X-rays. We quantitatively evaluated a mirror alignment error using an X-ray pencil beam (Al Kα line at 1.49 keV). The deviation angle caused only by the deformation was estimated from angular shifts of the X-ray focusing point before and after the deformation to be 2.7 ± 0.3 arcmin on average within the optics. This gives an angular resolution of 12.9 ± 1.4 arcmin in half-power diameter (HPD). The surface profile of the deformed optics measured using a NH-3Ns surface profiler (Mitaka Kohki) also indicated that the resolution was 11.4 ± 0.9 arcmin in HPD, suggesting that we can simply evaluate the alignment error caused by the hot plastic deformation.
Stoupin, S.; Terentyev, S. A.; Blank, V. D.; Shvyd’ko, Yu. V.; Goetze, K.; Assoufid, L.; Polyakov, S. N.; Kuznetsov, M. S.; Kornilov, N. V.; Katsoudas, J.; Alonso-Mori, R.; Chollet, M.; Feng, Y.; Glownia, J. M.; Lemke, H.; Robert, A.; Sikorski, M.; Song, S.; Zhu, D.
2014-01-01
A double-crystal diamond (111) monochromator recently implemented at the Linac Coherent Light Source (LCLS) enables splitting of the primary X-ray beam into a pink (transmitted) and a monochromatic (reflected) branch. The first monochromator crystal, with a thickness of ∼100 µm, provides sufficient X-ray transmittance to enable simultaneous operation of two beamlines. This article reports the design, fabrication and X-ray characterization of the first and second (300 µm-thick) crystals utilized in the monochromator and the optical assemblies holding these crystals. Each crystal plate has a region of about 5 × 2 mm with low defect concentration, sufficient for use in X-ray optics at the LCLS. The optical assemblies holding the crystals were designed to provide mounting on a rigid substrate and to minimize mounting-induced crystal strain. The induced strain was evaluated using double-crystal X-ray topography and was found to be small over the 5 × 2 mm working regions of the crystals. PMID:25242912
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceglio, N.M.; George, E.V.; Brooks, K.M.
The first successful demonstration of high resolution, tomographic imaging of a laboratory plasma using coded imaging techniques is reported. ZPCI has been used to image the x-ray emission from laser compressed DT filled microballoons. The zone plate camera viewed an x-ray spectral window extending from below 2 keV to above 6 keV. It exhibited a resolution approximately 8 ..mu..m, a magnification factor approximately 13, and subtended a radiation collection solid angle at the target approximately 10/sup -2/ sr. X-ray images using ZPCI were compared with those taken using a grazing incidence reflection x-ray microscope. The agreement was excellent. In addition,more » the zone plate camera produced tomographic images. The nominal tomographic resolution was approximately 75 ..mu..m. This allowed three dimensional viewing of target emission from a single shot in planar ''slices''. In addition to its tomographic capability, the great advantage of the coded imaging technique lies in its applicability to hard (greater than 10 keV) x-ray and charged particle imaging. Experiments involving coded imaging of the suprathermal x-ray and high energy alpha particle emission from laser compressed microballoon targets are discussed.« less
Current and Future X-ray Studies of High-Redshift AGNs and the First Supermassive Black Holes
NASA Astrophysics Data System (ADS)
Brandt, Niel
2016-01-01
X-ray observations of high-redshift AGNs at z = 4-7 have played a critical role in understanding the physical processes at work inthese objects as well as their basic demographics. Since 2000, Chandra and XMM-Newton have provided new X-ray detections for more than 120 such objects, and well-defined samples of z > 4 AGNs now allow reliable X-ray population studies. Once luminosity effectsare considered, the basic X-ray continuum properties of most high-redshift AGNs appear remarkably similar to those of local AGNs, although there are some notable apparent exceptions (e.g., highly radio-loud quasars). Furthermore, the X-ray absorption found in some objects has been used as a diagnostic of outflowing winds and circumnuclear material. Demographically, the X-ray data now support an exponential decline in the number density of luminous AGNs above z ~ 3, and quantitative space-density comparisons for optically selected and X-ray selected quasars indicate basic statistical agreement.The current X-ray discoveries point the way toward the future breakthroughs that will be possible with, e.g., Athena and the X-raySurveyor. These missions will execute powerful blank-field surveys to elucidate the demographics of the first growing supermassive black holes (SMBHs), including highly obscured systems, up to z ~ 10. They will also carry out complementary X-ray spectroscopic and variability investigations of high-redshift AGNs by targeting the most-luminous z = 7-10 quasars found in wide-field surveys by, e.g., Euclid, LSST, and WFIRST. X-ray spectroscopic and variability studies of the X-ray continuum and reflection signatures will help determine Eddington ratios and disk/corona properties; measuring these will clarify how the first quasars grew so quickly. Furthermore, absorption line/edge studies will reveal how outflows from the first SMBHs influenced the growth of the first galaxies. I will suggest some efficient observational strategies for Athena and the X-ray Surveyor.