NASA Astrophysics Data System (ADS)
McCallum, Lucia; Mayer, David; Le Bail, Karine; Schartner, Matthias; McCallum, Jamie; Lovell, Jim; Titov, Oleg; Shu, Fengchun; Gulyaev, Sergei
2017-11-01
The International Celestial Reference Frame suffers from significantly less observations in the southern hemisphere compared to the northern one. One reason for this is the historically low number of very long baseline interferometry radio telescopes in the south. The AuScope very long baseline interferometry array with three new telescopes on the Australian continent and an identical antenna in New Zealand were built to address this issue. While the overall number of observations in the south has greatly improved since then, a closer look reveals that this improvement is only true for strong radio sources (source flux densities >0.6 Jy). The new array of small very long baseline interferometry antennas has a relatively low baseline sensitivity so that only strong sources can be observed within a short integration time. A new observing strategy, the star scheduling mode, was developed to enable efficient observations of weak sources during geodetic sessions, through the addition of a single more sensitive antenna to the network. This scheduling mode was implemented in the Vienna very long baseline interferometry Software and applied in four 24-h sessions in 2016. These observations provide updated positions and source flux densities for 42 weak southern radio sources and significantly reduce the formal uncertainties for these sources. The star scheduling mode now allows the AuScope very long baseline interferometry array to undertake greater responsibility in monitoring sources in the southern sky, without significantly weakening the session for geodetic purposes.
VizieR Online Data Catalog: VLBA observations of the COSMOS field (Herrera Ruiz+, 2017)
NASA Astrophysics Data System (ADS)
Herrera Ruiz, N.; Middelberg, E.; Deller, A.; Norris, R. P.; Best, P. N.; Brisken, W.; Schinnerer, E.; Smolcic, V.; Delvecchio, I.; Momjian, E.; Bomans, D.; Scoville, N. Z.; Carilli, C.
2017-07-01
Wide-field Very Long Baseline Interferometry observations were made of all known radio sources in the COSMOS field at 1.4GHz using the Very Long Baseline Array (VLBA). We also collected complementary multiwavelength information from the literature for the VLBA detected sources. (2 data files).
First light from a kilometer-baseline Scintillation Auroral GPS Array.
Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G
2015-05-28
We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.
First light from a kilometer-baseline Scintillation Auroral GPS Array
Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G
2015-01-01
We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100–1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. Key Points A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed PMID:26709318
NASA Astrophysics Data System (ADS)
Liu, Xin; Lazio, T. Joseph W.; Shen, Yue; Strauss, Michael A.
2018-02-01
This paper presents Very Long Baseline Array (VLBA) observations of 13 double-peaked [O III] emission-line type-2 active galactic nuclei (AGNs) at redshifts 0.06 < z < 0.41 (with a median redshift of z ∼ 0.15) identified in the Sloan Digital Sky Survey. Such double-peaked emission-line objects may result from jets or outflows from the central engine or from a dual AGN. The VLBA provides an angular resolution of ≲10 pc at the distance of many of these galaxies, sufficient to resolve the radio emission from extremely close dual AGNs and to contribute to understanding the origin of double-peaked [O III] emission lines. Of the 13 galaxies observed at 3.6 cm (8.4 GHz), we detect six at a 1σ sensitivity level of ∼0.15 mJy beam‑1, two of which show clear jet structures on scales ranging from a few milliarcseconds to tens of milliarcseconds (corresponding to a few pc to tens of pc at a median redshift of 0.15). We suggest that radio-loud, double-peaked emission-line type-2 AGNs may be indicative of jet produced structures, but a larger sample of double-peaked [O III] AGNs with high angular resolution radio observations will be required to confirm this suggestion. Based, in part, on observations made with the Very Long Baseline Array, obtained at the Long Baseline Observatory. The Long Baseline Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
Remote observations with FLUOR and the CHARA Array
NASA Astrophysics Data System (ADS)
Merand, Antoine; Birlan, Mirel; Lelu de Brach, Remi; Coudé du Foresto, Vincent
2004-10-01
Two years ago, the FLUOR interferometric beam combiner moved from IOTA (Infrared Optical Telescopes Array, Mount Hopkins, AZ) to the Center for High Angular Resolution Astronomy (CHARA) Array (Mount Wilson, CA). Apart from offering the largest baselines in the northern hemisphere, this array can be fully operated remotely to allow observations from a distant place. We present here the automations added to the FLUOR hardware, as well as software modifications made in order to allow us to observe from Paris Observatory. We required the remote service to be as reactive as local observations, implying frequent communications between the instrument and the remote observer. We took particular attention to the available bandwidth and reactivity imposed by the secured connection (Virtual Private Network). The first tests are presented.
Next-generation Event Horizon Telescope developments: new stations for enhanced imaging
NASA Astrophysics Data System (ADS)
Palumbo, Daniel; Johnson, Michael; Doeleman, Sheperd; Chael, Andrew; Bouman, Katherine
2018-01-01
The Event Horizon Telescope (EHT) is a multinational Very Long Baseline Interferometry (VLBI) network of dishes joined to resolve general relativistic behavior near a supermassive black hole. The imaging quality of the EHT is largely dependent upon the sensitivity and spatial frequency coverage of the many baselines between its constituent telescopes. The EHT already contains many highly sensitive dishes, including the crucial Atacama Large Millimeter/Submillimeter Array (ALMA), making it viable to add smaller, cheaper telescopes to the array, greatly improving future capabilities of the EHT. We develop tools for optimizing the positions of new dishes in planned arrays. We also explore the feasibility of adding small orbiting dishes to the EHT, and develop orbital optimization tools for space-based VLBI imaging. Unlike the Millimetron mission planned to be at L2, we specifically treat near-earth orbiters, and find rapid filling of spatial frequency coverage across a large range of baseline lengths. Finally, we demonstrate significant improvement in image quality when adding small dishes to planned arrays in simulated observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.
2011-07-10
Recent investigations reveal an important new class of transient radio phenomena that occur on submillisecond timescales. Often, transient surveys' data volumes are too large to archive exhaustively. Instead, an online automatic system must excise impulsive interference and detect candidate events in real time. This work presents a case study using data from multiple geographically distributed stations to perform simultaneous interference excision and transient detection. We present several algorithms that incorporate dedispersed data from multiple sites, and report experiments with a commensal real-time transient detection system on the Very Long Baseline Array. We test the system using observations of pulsar B0329+54.more » The multiple-station algorithms enhanced sensitivity for detection of individual pulses. These strategies could improve detection performance for a future generation of geographically distributed arrays such as the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array.« less
NASA Astrophysics Data System (ADS)
Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.
2015-08-01
Context. A long-held vision has been to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, and reveal interacting gas flows in binary systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and also used for intensity interferometry. Second-order spatial coherence of light is obtained by cross correlating intensity fluctuations measured in different pairs of telescopes. With no optical links between them, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are approximately one meter, making the method practically immune to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Aims: Previous theoretical modeling has shown that full images should be possible to retrieve from observations with such telescope arrays. This project aims at verifying diffraction-limited imaging experimentally with groups of detached and independent optical telescopes. Methods: In a large optics laboratory, artificial stars (single and double, round and elliptic) were observed by an array of small telescopes. Using high-speed photon-counting solid-state detectors and real-time electronics, intensity fluctuations were cross-correlated over up to 180 baselines between pairs of telescopes, producing coherence maps across the interferometric Fourier-transform plane. Results: These interferometric measurements were used to extract parameters about the simulated stars, and to reconstruct their two-dimensional images. As far as we are aware, these are the first diffraction-limited images obtained from an optical array only linked by electronic software, with no optical connections between the telescopes. Conclusions: These experiments serve to verify the concepts for long-baseline aperture synthesis in the optical, somewhat analogous to radio interferometry.
NASA Astrophysics Data System (ADS)
Zhang, B.; Reid, M. J.; Menten, K. M.; Zheng, X. W.
2012-01-01
We report astrometric results of phase-referencing very long baseline interferometry observations of 43 GHz SiO maser emission toward the red hypergiant VY Canis Majoris (VY CMa) using the Very Long Baseline Array (VLBA). We measured a trigonometric parallax of 0.83 ± 0.08 mas, corresponding to a distance of 1.20+0.13 -0.10 kpc. Compared to previous studies, the spatial distribution of SiO masers has changed dramatically, while its total extent remains similar. The internal motions of the maser spots are up to 1.4 mas yr-1, corresponding to 8 km s-1, and show a tendency for expansion. After modeling the expansion of maser spots, we derived an absolute proper motion for the central star of μ x = -2.8 ± 0.2 and μ y = 2.6 ± 0.2 mas yr-1 eastward and northward, respectively. Based on the maser distribution from the VLBA observations, and the relative position between the radio photosphere and the SiO maser emission at 43 GHz from the complementary Very Large Array observations, we estimate the absolute position of VY CMa at mean epoch 2006.53 to be αJ2000 = 07h22m58.s3259 ± 0.s0007, δJ2000 = -25°46'03farcs063 ± 0farcs010. The position and proper motion of VY CMa from the VLBA observations differ significantly with values measured by the Hipparcos satellite. These discrepancies are most likely associated with inhomogeneities and dust scattering the optical light in the circumstellar envelope. The absolute proper motion measured with VLBA suggests that VY CMa may be drifting out of the giant molecular cloud to the east of it.
THE FIRST VERY LONG BASELINE INTERFEROMETRIC SETI EXPERIMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rampadarath, H.; Morgan, J. S.; Tingay, S. J.
2012-08-15
The first Search for Extra-Terrestrial Intelligence (SETI) conducted with very long baseline interferometry (VLBI) is presented. By consideration of the basic principles of interferometry, we show that VLBI is efficient at discriminating between SETI signals and human generated radio frequency interference (RFI). The target for this study was the star Gliese 581, thought to have two planets within its habitable zone. On 2007 June 19, Gliese 581 was observed for 8 hr at 1230-1544 MHz with the Australian Long Baseline Array. The data set was searched for signals appearing on all interferometer baselines above five times the noise limit. Amore » total of 222 potential SETI signals were detected and by using automated data analysis techniques were ruled out as originating from the Gliese 581 system. From our results we place an upper limit of 7 MW Hz{sup -1} on the power output of any isotropic emitter located in the Gliese 581 system within this frequency range. This study shows that VLBI is ideal for targeted SETI including follow-up observations. The techniques presented are equally applicable to next-generation interferometers, such as the long baselines of the Square Kilometre Array.« less
VizieR Online Data Catalog: Study of protostars in the Perseus molecular cloud (Tobin+, 2016)
NASA Astrophysics Data System (ADS)
Tobin, J. J.; Looney, L. W.; Li, Z.-Y.; Chandler, C. J.; Dunham, M. M.; Segura-Cox, D.; Sadavoy, S. I.; Melis, C.; Harris, R. J.; Kratter, K.; Perez, L.
2018-01-01
We conducted observations with the VLA in B-configuration between 2013 September 28 and 2013 November 20 and in A-configuration during 2014 February 24 to 2014 May 31 and 2015 June 19 to 2015 September 21. The B-configuration (also referred to as B-array) has a maximum baseline (antenna separation) of 11.1 km and at 8 mm provides a resolution of ~0.2" (46 au). The A-configuration (A-array) has a maximum baseline of 36.4 km, providing a resolution of ~0.065" (15 au). (2 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, B.; Reid, M. J.; Menten, K. M.
2012-01-01
We report astrometric results of phase-referencing very long baseline interferometry observations of 43 GHz SiO maser emission toward the red hypergiant VY Canis Majoris (VY CMa) using the Very Long Baseline Array (VLBA). We measured a trigonometric parallax of 0.83 {+-} 0.08 mas, corresponding to a distance of 1.20{sup +0.13}{sub -0.10} kpc. Compared to previous studies, the spatial distribution of SiO masers has changed dramatically, while its total extent remains similar. The internal motions of the maser spots are up to 1.4 mas yr{sup -1}, corresponding to 8 km s{sup -1}, and show a tendency for expansion. After modeling themore » expansion of maser spots, we derived an absolute proper motion for the central star of {mu}{sub x} = -2.8 {+-} 0.2 and {mu}{sub y} = 2.6 {+-} 0.2 mas yr{sup -1} eastward and northward, respectively. Based on the maser distribution from the VLBA observations, and the relative position between the radio photosphere and the SiO maser emission at 43 GHz from the complementary Very Large Array observations, we estimate the absolute position of VY CMa at mean epoch 2006.53 to be {alpha}{sub J2000} = 07{sup h}22{sup m}58.{sup s}3259 {+-} 0.{sup s}0007, {delta}{sub J2000} = -25 Degree-Sign 46'03.''063 {+-} 0.''010. The position and proper motion of VY CMa from the VLBA observations differ significantly with values measured by the Hipparcos satellite. These discrepancies are most likely associated with inhomogeneities and dust scattering the optical light in the circumstellar envelope. The absolute proper motion measured with VLBA suggests that VY CMa may be drifting out of the giant molecular cloud to the east of it.« less
The Atacama Large Millimeter/submillimeter Array - from Early Science to Full Operations.
NASA Astrophysics Data System (ADS)
Remijan, Anthony
2017-06-01
The Atacama Large Millimeter/Submillimeter Array (ALMA) is now entering its 6th cycle of scientific observations. Starting with Cycle 3, science observations were no longer considered "Early Science" or "best efforts". Cycle 5 is now the third cycle of "steady state" observations and Cycle 7 is advertised to begin ALMA "full science" operations. ALMA Full Science Operations will include all the capabilities that were agreed upon by the international consortium after the ALMA re-baselining effort. In this talk, I will detail the upcoming ALMA Cycle 5 observing capabilities, describe the process of selecting new observing modes for upcoming cycles and provide an update on the status of the ALMA Full Science capabilities.
Spudich, P.; Fletcher, Joe B.
2008-01-01
The 28 September 2004 Parkfield, California, earthquake (Mw 6.0) and four aftershocks (Mw 4.7-5.1) were recorded on 12 accelerograph stations of the U.S. Geological Survey Parkfield seismic array (UPSAR), an array of three-component accelerographs occupying an area of about 1 km2 located 8.8 km from the San Andreas fault. Peak horizontal acceleration and velocity at UPSAR during the mainshock were 0.45g and 27 cm/sec, respectively. We determined both time-varying and peak values of ground dilatations, shear strains, torsions, tilts, torsion rates, and tilt rates by applying a time-dependent geodetic analysis to the observed array displacement time series. Array-derived dilatations agree fairly well with point measurements made on high sample rate recordings of the Parkfield-area dilatometers (Johnston et al., 2006). Torsion Fourier amplitude spectra agree well with ground velocity spectra, as expected for propagating plane waves. A simple predictive relation, using the predicted peak velocity from the Boore-Atkinson ground-motion prediction relation (Boore and Atkinson, 2007) scaled by a phase velocity of 1 km/sec, predicts observed peak Parkfield and Chi-Chi rotations (Huang, 2003) well. However, rotation rates measured during Mw 5 Ito, Japan, events observed on a gyro sensor (Takeo, 1998) are factors of 5-60 greater than those predicted by our predictive relation. This discrepancy might be caused by a scale dependence in rotation, with rotations measured over a short baseline exceeding those measured over long baselines. An alternative hypothesis is that events having significant non-double-couple mechanisms, like the Ito events, radiate much stronger rotations than double-couple events. If this is true, then rotational observations might provide an important source of new information for monitoring seismicity in volcanic areas.
Design of the Longitudinal Dispersion Compensation System for the CHARA Array
NASA Astrophysics Data System (ADS)
Berger, D. H.; Bagnuolo, W. G.
2001-05-01
In recent years, the baselines of optical and infrared interferometers have been approaching half of a kilometer in length. With increased spatial layout comes new and challenging problems to solve. One common hurdle occurs when observing objects not perpendicular to the baseline. The result is one beam with added path length that must be added to the non-delayed beam such that identical phase fronts are combined together to produce fringes. For several interferometers without the addition of costly and logistically difficult evacuated delay lines, path length equalization occurs in long buildings through the ambient air medium. This causes a beam which is spectrally dispersed along the optical axis. The undesirable consequence is decreased fringe contrast. A solution is to disperse the uncompensated beam by inserting a block of glass to match the optical path lengths for all wavelengths within the observing waveband. A single glass solution is presented for the CHARA Array. Modeling, design and fabrication methods are also considered. The CHARA Array, a six-telescope O/IR interferometric array operated by Georgia State University on Mt. Wilson, California, was funded by the National Science Foundation, the W.M. Keck Foundation, the David and Lucile Packard Foundation, and Georgia State University. This research is also funded in part by the Michelson Fellowship Program sponsored by Jet Propulsion Laboratory.
Proceedings of a workshop: Multidisciplinary Use of the Very Long Baseline Array
NASA Technical Reports Server (NTRS)
1984-01-01
The National Research Council organized a workshop to gather together experts in very long baseline interometry, astronomy, space navigation, general relativity and the earth sciences. The purpose of the workshop was to provide a forum for consideration of the various possible multi-disciplinary uses of the very long baseline array. Geophysical investigations received major attention. Geodesic uses of the very long baseline array were identified as were uses for fundamental astronomy investigations. Numerous specialized uses were identified.
NASA Astrophysics Data System (ADS)
Gies, Douglas R.
2017-11-01
Most massive stars are so distant that their angular diameters are too small for direct resolution. However, the observational situation is now much more favorable, thanks to new opportunities available with optical/IR long-baseline interferometry. The Georgia State University Center for High Angular Resolution Astronomy Array at Mount Wilson Observatory is a six-telescope instrument with a maximum baseline of 330 meters, which is capable of resolving stellar disks with diameters as small as 0.2 milliarcsec. The distant stars are no longer out of range, and many kinds of investigations are possible. Here we summarize a number of studies involving angular diameter measurements and effective temperature estimates for OB stars, binary and multiple stars (including the σ Orionis system), and outflows in Luminous Blue Variables. An enlarged visitors program will begin in 2017 that will open many opportunities for new programs in high angular resolution astronomy.
Dynamical Imaging with Interferometry
NASA Astrophysics Data System (ADS)
Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy; Chael, Andrew A.; Rosen, Julian; Shiokawa, Hotaka; Roelofs, Freek; Akiyama, Kazunori; Fish, Vincent L.; Doeleman, Sheperd S.
2017-12-01
By linking widely separated radio dishes, the technique of very long baseline interferometry (VLBI) can greatly enhance angular resolution in radio astronomy. However, at any given moment, a VLBI array only sparsely samples the information necessary to form an image. Conventional imaging techniques partially overcome this limitation by making the assumption that the observed cosmic source structure does not evolve over the duration of an observation, which enables VLBI networks to accumulate information as Earth rotates and changes the projected array geometry. Although this assumption is appropriate for nearly all VLBI, it is almost certainly violated for submillimeter observations of the Galactic center supermassive black hole, Sagittarius A* (Sgr A*), which has a gravitational timescale of only ∼ 20 s and exhibits intrahour variability. To address this challenge, we develop several techniques to reconstruct dynamical images (“movies”) from interferometric data. Our techniques are applicable to both single-epoch and multiepoch variability studies, and they are suitable for exploring many different physical processes including flaring regions, stable images with small time-dependent perturbations, steady accretion dynamics, or kinematics of relativistic jets. Moreover, dynamical imaging can be used to estimate time-averaged images from time-variable data, eliminating many spurious image artifacts that arise when using standard imaging methods. We demonstrate the effectiveness of our techniques using synthetic observations of simulated black hole systems and 7 mm Very Long Baseline Array observations of M87, and we show that dynamical imaging is feasible for Event Horizon Telescope observations of Sgr A*.
Very Long Baseline Array Astrometric Observations of the Cassini Spacecraft at Saturn
NASA Astrophysics Data System (ADS)
Jones, Dayton L.; Fomalont, Ed; Dhawan, Vivek; Romney, Jon; Folkner, William M.; Lanyi, Gabor; Border, James; Jacobson, Robert A.
2011-02-01
The planetary ephemeris is an essential tool for interplanetary spacecraft navigation, studies of solar system dynamics (including, for example, barycenter corrections for pulsar timing ephemerides), the prediction of occultations, and tests of general relativity. We are carrying out a series of astrometric very long baseline interferometry observations of the Cassini spacecraft currently in orbit around Saturn, using the Very Long Baseline Array (VLBA). These observations provide positions for the center of mass of Saturn in the International Celestial Reference Frame (ICRF) with accuracies ~0.3 mas (1.5 nrad) or about 2 km at the average distance of Saturn. This paper reports results from eight observing epochs between 2006 October and 2009 April. These data are combined with two VLBA observations by other investigators in 2004 and a Cassini-based gravitational deflection measurement by Fomalont et al. in 2009 to constrain a new ephemeris (DE 422). The DE 422 post-fit residuals for Saturn with respect to the VLBA data are generally 0.2 mas, but additional observations are needed to improve the positions of all of our phase reference sources to this level. Over time we expect to be able to improve the accuracy of all three coordinates in the Saturn ephemeris (latitude, longitude, and range) by a factor of at least three. This will represent a significant improvement not just in the Saturn ephemeris but also in the link between the inner and outer solar system ephemerides and in the link to the inertial ICRF.
Thermal cycle testing of Space Station Freedom solar array blanket coupons
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Schieman, David A.
1991-01-01
Lewis Research Center is presently conducting thermal cycle testing of solar array blanket coupons that represent the baseline design for Space Station Freedom. Four coupons were fabricated as part of the Photovoltaic Array Environment Protection (PAEP) Program, NAS 3-25079, at Lockheed Missile and Space Company. The objective of the testing is to demonstrate the durability or operational lifetime of the solar array welded interconnect design within the durability or operational lifetime of the solar array welded interconnect design within a low earth orbit (LEO) thermal cycling environment. Secondary objectives include the observation and identification of potential failure modes and effects that may occur within the solar array blanket coupons as a result of thermal cycling. The objectives, test articles, test chamber, performance evaluation, test requirements, and test results are presented for the successful completion of 60,000 thermal cycles.
Integrated Solar Array and Reflectarray Antenna for High Bandwidth Cubesats
NASA Technical Reports Server (NTRS)
Lewis, Dorothy; Agasid, Elwood Floyd; Ardila, David R.; Hunter, Roger C.; Baker, Christopher E.
2017-01-01
The Integrated Solar Array and Reflectarray Antenna (ISARA) mission will demonstrate a reflectarray antenna that increases downlink data rates for CubeSats from the existing baseline rate of 9.6 kilobits per second (kbps) to more than100 megabits per second (Mbps). A secondary payload called the CubeSat Multispectral Observation System (CUMULOS), is an experimental remote sensing payload also being demonstrated on this mission. A launch date for the ISARA spacecraft is currently pending.
NASA Astrophysics Data System (ADS)
Barry, N.; Beardsley, A.; Bowman, J.; Briggs, F.; Byrne, R.; Carroll, P.; Hazelton, B.; Jacobs, D.; Jordan, C.; Kittiwisit, P.; Lanman, A.; Lenc, E.; Li, W.; Line, J.; McKinley, B.; Mitchell, D.; Morales, M.; Murray, S.; Paul, S.; Pindor, B.; Pober, J.; Rahimi, M.; Riding, J.; Sethi, S.; Shankar, U.; Subrahmanyan, R.; Sullivan, I.; Takahashi, K.; Thyagarajan, N.; Tingay, S.; Trott, C.; Wayth, R.; Webster, R.; Wyithe, S.
2017-01-01
The Murchison Widefield Array is designed to measure the fluctuations in the 21cm emission from neutral hydrogen during the Epoch of Reionisation. The new hex configuration is explicitly designed to test the predicted increase in sensitivity of redundant baselines. However the challenge of the new array is to understand calibration with the new configuration. We have developed two new pipelines to reduce the hex data, and will compare the results with previous datasets from the Phase 1 array. We have now processed 80 hours of data refining the data analysis through our two established Phase 1 pipelines. This proposal requests as much observing time as possible in semester 2017-A to (1) obtain a comparable hex dataset to test the sensitivity and systematic limits with redundant arrays, (2) establish the optimal observing strategy for an EoR detection, and (3) continue to explore observational strategies in the three EoR fields to advise the design of SKA-low experiments. Due to the proposed changes in the array during the upcoming semester, we have not requested a specific number of hours, but will optimise our observing program as availability of the telescope becomes clear. We note that this observing proposal implements the key scientific program that can benefit from the new hex configuration.
NASA Technical Reports Server (NTRS)
Fisher, Edward M., Jr.
1991-01-01
Additional power is required to support Space Station Freedom (SSF) evolution. Boeing Defense and Space Group, LeRC, and Entech Corporation have participated in the development of efficiency gallium arsenide and gallium antimonide solar cells make up the solar array tandem cell stacks. Entech's Mini-Dome Fresnel Lens Concentrators focus solar energy onto the active area of the solar cells at 50 times one solar energy flux. Development testing for a flight array, to be launched in Nov. 1992 is under way with support from LeRC. The tandem cells, interconnect wiring, concentrator lenses, and structure were integrated into arrays subjected to environmental testing. A tandem concentrator array can provide high mass and area specific power and can provide equal power with significantly less array area and weight than the baseline array design. Alternatively, for SSF growth, an array of twice the baseline power can be designed which still has a smaller drag area than the baseline.
Gallium arsenide solar array subsystem study
NASA Technical Reports Server (NTRS)
Miller, F. Q.
1982-01-01
The effects on life cycle costs of a number of technology areas are examined for a gallium arsenide space solar array. Four specific configurations were addressed: (1) a 250 KWe LEO mission - planer array; (2) a 250 KWe LEO mission - with concentration; (3) a 50 KWe GEO mission planer array; (4) a 50 KWe GEO mission - with concentration. For each configuration, a baseline system conceptual design was developed and the life cycle costs estimated in detail. The baseline system requirements and design technologies were then varied and their relationships to life cycle costs quantified. For example, the thermal characteristics of the baseline design are determined by the array materials and masses. The thermal characteristics in turn determine configuration, performance, and hence life cycle costs.
Subarray Processing for Projection-based RFI Mitigation in Radio Astronomical Interferometers
NASA Astrophysics Data System (ADS)
Burnett, Mitchell C.; Jeffs, Brian D.; Black, Richard A.; Warnick, Karl F.
2018-04-01
Radio Frequency Interference (RFI) is a major problem for observations in Radio Astronomy (RA). Adaptive spatial filtering techniques such as subspace projection are promising candidates for RFI mitigation; however, for radio interferometric imaging arrays, these have primarily been used in engineering demonstration experiments rather than mainstream scientific observations. This paper considers one reason that adoption of such algorithms is limited: RFI decorrelates across the interferometric array because of long baseline lengths. This occurs when the relative RFI time delay along a baseline is large compared to the frequency channel inverse bandwidth used in the processing chain. Maximum achievable excision of the RFI is limited by covariance matrix estimation error when identifying interference subspace parameters, and decorrelation of the RFI introduces errors that corrupt the subspace estimate, rendering subspace projection ineffective over the entire array. In this work, we present an algorithm that overcomes this challenge of decorrelation by applying subspace projection via subarray processing (SP-SAP). Each subarray is designed to have a set of elements with high mutual correlation in the interferer for better estimation of subspace parameters. In an RFI simulation scenario for the proposed ngVLA interferometric imaging array with 15 kHz channel bandwidth for correlator processing, we show that compared to the former approach of applying subspace projection on the full array, SP-SAP improves mitigation of the RFI on the order of 9 dB. An example of improved image synthesis and reduced RFI artifacts for a simulated image “phantom” using the SP-SAP algorithm is presented.
NASA Astrophysics Data System (ADS)
Lu, Ru-Sen; Krichbaum, Thomas P.; Roy, Alan L.; Fish, Vincent L.; Doeleman, Sheperd S.; Johnson, Michael D.; Akiyama, Kazunori; Psaltis, Dimitrios; Alef, Walter; Asada, Keiichi; Beaudoin, Christopher; Bertarini, Alessandra; Blackburn, Lindy; Blundell, Ray; Bower, Geoffrey C.; Brinkerink, Christiaan; Broderick, Avery E.; Cappallo, Roger; Crew, Geoffrey B.; Dexter, Jason; Dexter, Matt; Falcke, Heino; Freund, Robert; Friberg, Per; Greer, Christopher H.; Gurwell, Mark A.; Ho, Paul T. P.; Honma, Mareki; Inoue, Makoto; Kim, Junhan; Lamb, James; Lindqvist, Michael; Macmahon, David; Marrone, Daniel P.; Martí-Vidal, Ivan; Menten, Karl M.; Moran, James M.; Nagar, Neil M.; Plambeck, Richard L.; Primiani, Rurik A.; Rogers, Alan E. E.; Ros, Eduardo; Rottmann, Helge; SooHoo, Jason; Spilker, Justin; Stone, Jordan; Strittmatter, Peter; Tilanus, Remo P. J.; Titus, Michael; Vertatschitsch, Laura; Wagner, Jan; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H.; Zensus, J. Anton; Ziurys, Lucy M.
2018-05-01
We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230 GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, California, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional uv coverage in the N–S direction, and leads to a spatial resolution of ∼30 μas (∼3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of ∼4%–13% of the total flux density. We argue that such flux densities cannot result from interstellar refractive scattering alone, but indicate the presence of compact intrinsic source structure on scales of ∼3 Schwarzschild radii. The measured nonzero closure phases rule out point-symmetric emission. We discuss our results in the context of simple geometric models that capture the basic characteristics and brightness distributions of disk- and jet-dominated models and show that both can reproduce the observed data. Common to these models are the brightness asymmetry, the orientation, and characteristic sizes, which are comparable to the expected size of the black hole shadow. Future 1.3 mm VLBI observations with an expanded array and better sensitivity will allow more detailed imaging of the horizon-scale structure and bear the potential for a deep insight into the physical processes at the black hole boundary.
The Southwest Configuration for the Next Generation Very Large Array
NASA Astrophysics Data System (ADS)
Irwin Kellermann, Kenneth; Carilli, Chris; Condon, James; Cotton, William; Murphy, Eric Joseph; Nyland, Kristina
2018-01-01
We discuss the planned array configuration for the Next Generation Very Large Array (ngVLA). The configuration, termed the "Southwest Array," consists of 214 antennas each 18 m in diameter, distributed over the Southwest United States and Northern Mexico. The antenna locations have been set applying rough real-world constraints, such as road, fiber, and power access. The antenna locations will be fixed, with roughly 50% of the antennas in a "core" of 2 km diameter, located at the site of the JVLA. Another 30% of the antennas will be distributed over the Plains of San Augustin to a diameter of 30 km, possibly along, or near, the current JVLA arms. The remaining 20% of the antennas will be distributed in a rough two-arm spiral pattern to the South and East, out to a maximum distance of 500 km, into Texas, Arizona, and Chihuahua. Years of experience with the VLA up to 50 GHz, plus intensive antenna testing up to 250 GHz for the ALMA prototype antennas, verify the VLA site as having very good observing conditions (opacity, phase stability), up to 115 GHz (ngVLA Memo No. 1). Using a suite of tools implemented in CASA, we have made extensive imaging simulations with this configuration. We find that good imaging performance can be obtained through appropriate weighting of the visibilities, for resolutions ranging from that of the core of the array (1" at 30 GHz), out to the longest baselines (10 mas at 30 GHz), with a loss of roughly a factor of two in sensitivity relative to natural weighting (ngVLA Memo No. 16). The off-set core, located on the northern edge of the long baseline configuration, provides excellent sensitivity even on the longest baselines. We are considering, in addition, a compact configuration of 16 close-packed 6 m antennas to obtain uv-coverage down to baselines ~ 10 m for imaging large scale structure, as well as a configuration including 9 stations distributed to continental scales.
Analysis of surface EMG baseline for detection of hidden muscle activity
NASA Astrophysics Data System (ADS)
Zhang, Xu; Zhou, Ping
2014-02-01
Objective. This study explored the feasibility of detecting hidden muscle activity in surface electromyogram (EMG) baseline. Approach. Power spectral density (PSD) analysis and multi-scale entropy (MSE) analysis were used. Both analyses were applied to computer simulations of surface EMG baseline with the presence (representing activity data) or absence (representing reference data) of hidden muscle activity, as well as surface electrode array EMG baseline recordings of healthy control and amyotrophic lateral sclerosis (ALS) subjects. Main results. Although the simulated reference data and the activity data yielded no distinguishable difference in the time domain, they demonstrated a significant difference in the frequency and signal complexity domains with the PSD and MSE analyses. For a comparison using pooled data, such a difference was also observed when the PSD and MSE analyses were applied to surface electrode array EMG baseline recordings of healthy control and ALS subjects, which demonstrated no distinguishable difference in the time domain. Compared with the PSD analysis, the MSE analysis appeared to be more sensitive for detecting the difference in surface EMG baselines between the two groups. Significance. The findings implied the presence of a hidden muscle activity in surface EMG baseline recordings from the ALS subjects. To promote the presented analysis as a useful diagnostic or investigatory tool, future studies are necessary to assess the pathophysiological nature or origins of the hidden muscle activity, as well as the baseline difference at the individual subject level.
Analysis of Surface EMG Baseline for Detection of Hidden Muscle Activity
Zhang, Xu; Zhou, Ping
2014-01-01
Objective This study explored the feasibility of detecting hidden muscle activity in surface electromyogram (EMG) baseline. Approach Power spectral density (PSD) analysis and multi-scale entropy (MSE) analysis were used respectively. Both analyses were applied to computer simulations of surface EMG baseline with presence (representing activity data) or absence (representing reference data) of hidden muscle activity, as well as surface electrode array EMG baseline recordings of healthy control and amyotrophic lateral sclerosis (ALS) subjects. Main results Although the simulated reference data and the activity data yielded no distinguishable difference in the time domain, they demonstrated a significant difference in the frequency and signal complexity domains with the PSD and MSE analyses. For a comparison using pooled data, such a difference was also observed when the PSD and MSE analyses were applied to surface electrode array EMG baseline recordings of healthy control and ALS subjects, which demonstrated no distinguishable difference in the time domain. Compared with the PSD analysis, the MSE analysis appeared to be more sensitive for detecting the difference in surface EMG baselines between the two groups. Significance The findings implied presence of hidden muscle activity in surface EMG baseline recordings from the ALS subjects. To promote the presented analysis as a useful diagnostic or investigatory tool, future studies are necessary to assess the pathophysiological nature or origins of the hidden muscle activity, as well as the baseline difference at the individual subject level. PMID:24445526
Observing APOD with the AuScope VLBI Array
Sun, Jing; Cao, Jianfeng
2018-01-01
The possibility to observe satellites with the geodetic Very Long Baseline Interferometry (VLBI) technique is vividly discussed in the geodetic community, particularly with regard to future co-location satellite missions. The Chinese APOD-A nano satellite can be considered as a first prototype—suitable for practical observation tests—combining the techniques Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS) and VLBI on a single platform in a Low Earth Orbit (LEO). Unfortunately, it has hardly been observed by VLBI, so major studies towards actual frame ties could not be performed. The main reason for the lack of observations was that VLBI observations of satellites are non-standard, and suitable observing strategies were not in place for this mission. This work now presents the first serious attempt to observe the satellite with a VLBI network over multiple passes. We introduce a series of experiments with the AuScope geodetic VLBI array which were carried out in November 2016, and describe all steps integrated in the established process chain: the experiment design and observation planning, the antenna tracking and control scheme, correlation and derivation of baseline-delays, and the data analysis yielding delay residuals on the level of 10 ns. The developed procedure chain can now serve as reference for future experiments, hopefully enabling the global VLBI network to be prepared for the next co-location satellite mission. PMID:29772732
Observing APOD with the AuScope VLBI Array.
Hellerschmied, Andreas; McCallum, Lucia; McCallum, Jamie; Sun, Jing; Böhm, Johannes; Cao, Jianfeng
2018-05-16
The possibility to observe satellites with the geodetic Very Long Baseline Interferometry (VLBI) technique is vividly discussed in the geodetic community, particularly with regard to future co-location satellite missions. The Chinese APOD-A nano satellite can be considered as a first prototype-suitable for practical observation tests-combining the techniques Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS) and VLBI on a single platform in a Low Earth Orbit (LEO). Unfortunately, it has hardly been observed by VLBI, so major studies towards actual frame ties could not be performed. The main reason for the lack of observations was that VLBI observations of satellites are non-standard, and suitable observing strategies were not in place for this mission. This work now presents the first serious attempt to observe the satellite with a VLBI network over multiple passes. We introduce a series of experiments with the AuScope geodetic VLBI array which were carried out in November 2016, and describe all steps integrated in the established process chain: the experiment design and observation planning, the antenna tracking and control scheme, correlation and derivation of baseline-delays, and the data analysis yielding delay residuals on the level of 10 ns. The developed procedure chain can now serve as reference for future experiments, hopefully enabling the global VLBI network to be prepared for the next co-location satellite mission.
Performance highlights of the ALMA correlators
NASA Astrophysics Data System (ADS)
Baudry, Alain; Lacasse, Richard; Escoffier, Ray; Webber, John; Greenberg, Joseph; Platt, Laurence; Treacy, Robert; Saez, Alejandro F.; Cais, Philippe; Comoretto, Giovanni; Quertier, Benjamin; Okumura, Sachiko K.; Kamazaki, Takeshi; Chikada, Yoshihiro; Watanabe, Manabu; Okuda, Takeshi; Kurono, Yasutake; Iguchi, Satoru
2012-09-01
Two large correlators have been constructed to combine the signals captured by the ALMA antennas deployed on the Atacama Desert in Chile at an elevation of 5050 meters. The Baseline correlator was fabricated by a NRAO/European team to process up to 64 antennas for 16 GHz bandwidth in two polarizations and another correlator, the Atacama Compact Array (ACA) correlator, was fabricated by a Japanese team to process up to 16 antennas. Both correlators meet the same specifications except for the number of processed antennas. The main architectural differences between these two large machines will be underlined. Selected features of the Baseline and ACA correlators as well as the main technical challenges met by the designers will be briefly discussed. The Baseline correlator is the largest correlator ever built for radio astronomy. Its digital hybrid architecture provides a wide variety of observing modes including the ability to divide each input baseband into 32 frequency-mobile sub-bands for high spectral resolution and to be operated as a conventional 'lag' correlator for high time resolution. The various observing modes offered by the ALMA correlators to the science community for 'Early Science' are presented, as well as future observing modes. Coherently phasing the array to provide VLBI maps of extremely compact sources is another feature of the ALMA correlators. Finally, the status and availability of these large machines will be presented.
The SiO Masers of TX Camelopardalis
NASA Astrophysics Data System (ADS)
Marvel, Kevin B.; Diamond, P.; Kemball, A.
2001-06-01
Observations of evolved stars with the Very Long Baseline Array have shown that silicon monoxide masers are found just above the photospheres of these interesting objects. By observing many times over a few pulsation periods, researchers are now discovering complex motions in the extended photospheres of these bloated, old stars. We will present several dramatic "movies" of these sources and speculate on wat such observations can tell us about the physical conditions near the star.
Unlocking Sensitivity for Visibility-based Estimators of the 21 cm Reionization Power Spectrum
NASA Astrophysics Data System (ADS)
Zhang, Yunfan Gerry; Liu, Adrian; Parsons, Aaron R.
2018-01-01
Radio interferometers designed to measure the cosmological 21 cm power spectrum require high sensitivity. Several modern low-frequency interferometers feature drift-scan antennas placed on a regular grid to maximize the number of instantaneously coherent (redundant) measurements. However, even for such maximum-redundancy arrays, significant sensitivity comes through partial coherence between baselines. Current visibility-based power-spectrum pipelines, though shown to ease control of systematics, lack the ability to make use of this partial redundancy. We introduce a method to leverage partial redundancy in such power-spectrum pipelines for drift-scan arrays. Our method cross-multiplies baseline pairs at a time lag and quantifies the sensitivity contributions of each pair of baselines. Using the configurations and beams of the 128-element Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER-128) and staged deployments of the Hydrogen Epoch of Reionization Array, we illustrate how our method applies to different arrays and predict the sensitivity improvements associated with pairing partially coherent baselines. As the number of antennas increases, we find partial redundancy to be of increasing importance in unlocking the full sensitivity of upcoming arrays.
The self-calibration method for multiple systems at the CHARA Array
NASA Astrophysics Data System (ADS)
O'Brien, David
The self-calibration method, a new interferometric technique at the CHARA Array, has been used to derive orbits for several spectroscopic binaries. This method uses the wide component of a hierarchical triple system to calibrate visibility measurements of the triple's close binary system. At certain baselines and separations, the calibrator in one of these systems can be observed quasi-simultaneously with the target. Depending on the orientation of the CHARA observation baseline relative to the orientation of the wide orbit of the triple system, separated fringe packets may be observed. A sophisticated observing scheme must be put in place to ensure the existence of separated fringe packets on nights of observation. Prior to the onset of this project, the reduction of separated fringe packet data had never included the goal of deriving visibilities for both fringe packets, so new data reduction software has been written. Visibilities obtained with separated fringe packet data for the target close binary are run through both Monte Carlo simulations and grid search programs in order to determine the best-fit orbital elements of the close binary. Several targets have been observed in this fashion, and orbits have been derived for seven targets, including three new orbits. Derivation of the orbit of the close pair in a triple system allows for the calculation of the mutual inclination, which is the angle between the planes of the wide and close orbit. Knowledge of this quantity may give insight into the formation processes that create multiple star systems. INDEX WORDS: Long-baseline interferometry, Self calibration, Separated fringe packets, Triple systems, Close binaries, Multiple systems, Orbital parameters, Near-infrared interferometry
The Event Horizon Telescope: Future Polarimetric Capabilities
NASA Astrophysics Data System (ADS)
Fish, Vincent L.; Doeleman, S. S.; EHT Collaboration
2010-01-01
The Event Horizon Telescope (EHT) is a (sub)mm wavelength VLBI network that will achieve angular resolutions sufficient to resolve and image the Event Horizons of the nearest supermassive black holes. Recent millimeter observations with the initial three stations of the EHT (located in Hawaii, Arizona, and California) have constrained the size of the emitting region of Sgr A*, the Galactic Center radio/infrared/X-ray source associated with a supermassive black hole, to be no more than a few Schwarzschild radii. While EHT observations have heretofore focused on detecting Sgr A* in total intensity, theoretical models predict large polarization signatures well in excess of the few percent linear polarization detected by low resolution arrays (e.g., SMA). Here, we generalize our previous total intensity simulations of future EHT observations to include full polarimetric quantities. Ratios of polarimetric visibilities provide baseline-based observables that are robust against most calibration errors. We find that the shortest VLBI baselines track the integrated polarization fraction and position angle, as presently observed by connected-element arrays, while longer VLBI baselines are sensitive to highly-polarized substructures that are beam-diluted at lower angular resolution. Ratios of polarized visibilities may be even more sensitive to detecting periodic structural changes, as might be expected from a hot spot near the innermost stable circular orbit of the black hole, than closure quantities obtained from total intensity quantities. These results suggest that high priority should be given to upgrading telescopes in the EHT collaboration in order to allow full polarimetric observations of Sgr A* and other supermassive black hole sources. This research is made possible thanks to funding provided by the National Science Foundation.
Integrated residential photovoltaic array development
NASA Astrophysics Data System (ADS)
Shepard, N. F., Jr.
1981-02-01
An optimum integrated residential photovoltaic array/module is addressed. Nineteen existing or proposed systems intended for residential applications are described. Each of these systems is rated against a comprehensive set of evaluation criteria in an effort to formulate three module design concepts for further study and analysis. This evaluation led to a number of observations which are enumerated and should be considered in future module and array designs. Three module concepts are presented as baseline design approaches to be further analyzed and optimized. These options include: (1) a rectangular, direct mounted, shingle type module; (2) an integrally mounted module with nonconductive exposed elements; and (3) an aluminum framed, stand off module. Preliminary design drawings are presented for each of these module configurations.
Integrated residential photovoltaic array development
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.
1981-01-01
An optimum integrated residential photovoltaic array/module is addressed. Nineteen existing or proposed systems intended for residential applications are described. Each of these systems is rated against a comprehensive set of evaluation criteria in an effort to formulate three module design concepts for further study and analysis. This evaluation led to a number of observations which are enumerated and should be considered in future module and array designs. Three module concepts are presented as baseline design approaches to be further analyzed and optimized. These options include: (1) a rectangular, direct mounted, shingle type module; (2) an integrally mounted module with nonconductive exposed elements; and (3) an aluminum framed, stand off module. Preliminary design drawings are presented for each of these module configurations.
18 centimeter VLBI observations of the quasar NRAO 140 during and after a low-frequency outburst
NASA Astrophysics Data System (ADS)
Marscher, Alan P.; Broderick, John J.; Padrielli, Lucia; Bartel, Norbert; Romney, Jonathan D.
1987-08-01
The authors have observed the quasar NRAO 140 using an eight station very long baseline array at 18 cm in 1984 April and a seven station array at 6 cm in 1984 May. They compare both the map and the data at 18 cm with those obtained by Marscher and Broderick in 1981 October. The latter coincided with a ≡25% outburst in flux density at wavelengths greater than ≡30 cm. The analysis indicates that a component ≡5 milli-arc seconds southeast of the "core" dropped significantly in brightness between 1981 October and 1984 April. The authors identify this component as the likely site of the low-frequency variations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rioja, M.; Dodson, R., E-mail: maria.rioja@icrar.org
2011-04-15
We describe a new method which achieves high-precision very long baseline interferometry (VLBI) astrometry in observations at millimeter (mm) wavelengths. It combines fast frequency-switching observations, to correct for the dominant non-dispersive tropospheric fluctuations, with slow source-switching observations, for the remaining ionospheric dispersive terms. We call this method source-frequency phase referencing. Provided that the switching cycles match the properties of the propagation media, one can recover the source astrometry. We present an analytic description of the two-step calibration strategy, along with an error analysis to characterize its performance. Also, we provide observational demonstrations of a successful application with observations using themore » Very Long Baseline Array at 86 GHz of the pairs of sources 3C274 and 3C273 and 1308+326 and 1308+328 under various conditions. We conclude that this method is widely applicable to mm-VLBI observations of many target sources, and unique in providing bona fide astrometrically registered images and high-precision relative astrometric measurements in mm-VLBI using existing and newly built instruments, including space VLBI.« less
Concentrator enhanced solar arrays design study
NASA Technical Reports Server (NTRS)
Lott, D. R.
1978-01-01
The analysis and preliminary design of a 25 kW concentrator enhanced lightweight flexible solar array are presented. The study was organized into five major tasks: (1) assessment and specification of design requirements; (2) mechanical design; (3) electric design; (4) concentrator design; and (5) cost projection. The tasks were conducted in an iterative manner so as to best derive a baseline design selection. The objectives of the study are discussed and comparative configurations and mass data on the SEP (Solar Electric Propulsion) array design, concentrator design options and configuration/mass data on the selected concentrator enhanced solar array baseline design are presented. Design requirements supporting design analysis and detailed baseline design data are discussed. The results of the cost projection analysis and new technology are also discussed.
Fundamental Stellar Properties of M-Dwarfs from the CHARA Array
NASA Astrophysics Data System (ADS)
Berger, D. H.; Gies, D. R.; McAlister, H. A.; ten Brummelaar, T. A.; Henry, T. J.; Sturmann, J.; Sturmann, L.; Turner, N. H.; Ridgway, S. T.; Aufdenberg, J. P.; Mérand, A. M.
2005-12-01
We report the angular diameters of six M dwarfs ranging in spectral type from M1.0 V to M3.0 V measured with Georgia State University's CHARA Array, a long-baseline optical interferometer located at Mount Wilson Observatory. Observations were made with the longest baselines in the near infrared K'-band and yielded angular diameters less than one milliarcsecond. Using an iterative process combining parallaxes from the NStars program and photometrically-derived bolometric luminosities and masses, we calculated effective temperatures, surface gravities, and stellar radii. Our results are consistent with other empirical measurements of M-dwarf radii, but found that current models underestimate the true stellar radii by up to 15-20%. We suggest that theoretical models for low mass stars may be lacking an opacity source that alters the computed stellar radii. Science operations at the Array are supported by the National Science Foundation through NSF Grant AST--0307562 and by Georgia State University through the College of Arts and Sciences and the Office of the Vice President for Research. Financial support for DHB was provided by the National Science Foundation through grant AST--0205297.
Long-term monitoring of Sgr A* at 7 mm with VERA and KaVA
NASA Astrophysics Data System (ADS)
Akiyama, K.; Kino, M.; Sohn, B.; Lee, S.; Trippe, S.; Honma, M.
2014-05-01
We present the results of radio monitoring observations of Sgr A* at 7 mm (i.e. 43 GHz) with the VLBI Exploration of Radio Astrometry (VERA), which is a VLBI array in Japan. VERA provides angular resolution on millisecond scales, resolving structures within 100 Schwarzschild radii of Sgr A* , similar to the Very Large Baseline Array (VLBA). We performed multi-epoch observations of Sgr A* in 2005 - 2008, and started monitoring it again with VERA from 2013 January to trace the current G2 encounter event. Our preliminary results in 2013 show that Sgr A* on mas scales has been in an ordinary state as of August 2013, although some fraction of the G2 cloud already passed the pericenter of Sgr A* in April 2013. We will continue monitoring Sgr A* with VERA and the newly developed KaVA (KVN and VERA Array).
Source Identification and Location Techniques
NASA Technical Reports Server (NTRS)
Weir, Donald; Bridges, James; Agboola, Femi; Dougherty, Robert
2001-01-01
Mr. Weir presented source location results obtained from an engine test as part of the Engine Validation of Noise Reduction Concepts program. Two types of microphone arrays were used in this program to determine the jet noise source distribution for the exhaust from a 4.3 bypass ratio turbofan engine. One was a linear array of 16 microphones located on a 25 ft. sideline and the other was a 103 microphone 3-D "cage" array in the near field of the jet. Data were obtained from a baseline nozzle and from numerous nozzle configuration using chevrons and/or tabs to reduce the jet noise. Mr. Weir presented data from two configurations: the baseline nozzle and a nozzle configuration with chevrons on both the core and bypass nozzles. This chevron configuration had achieved a jet noise reduction of 4 EPNdB in small scale tests conducted at the Glenn Research Center. IR imaging showed that the chevrons produced significant improvements in mixing and greatly reduced the length of the jet potential core. Comparison of source location data from the 1-D phased array showed a shift of the noise sources towards the nozzle and clear reductions of the sources due to the noise reduction devices. Data from the 3-D array showed a single source at a frequency of 125 Hz. located several diameters downstream from the nozzle exit. At 250 and 400 Hz., multiple sources, periodically spaced, appeared to exist downstream of the nozzle. The trend of source location moving toward the nozzle exit with increasing frequency was also observed. The 3-D array data also showed a reduction in source strength with the addition of chevrons. The overall trend of source location with frequency was compared for the two arrays and with classical experience. Similar trends were observed. Although overall trends with frequency and addition of suppression devices were consistent between the data from the 1-D and the 3-D arrays, a comparison of the details of the inferred source locations did show differences. A flight test is planned to determine if the hardware tested statically will achieve similar reductions in flight.
Implementing the concurrent operation of sub-arrays in the ALMA correlator
NASA Astrophysics Data System (ADS)
Amestica, Rodrigo; Perez, Jesus; Lacasse, Richard; Saez, Alejandro
2016-07-01
The ALMA correlator processes the digitized signals from 64 individual antennas to produce a grand total of 2016 correlated base-lines, with runtime selectable lags resolution and integration time. The on-line software system can process a maximum of 125M visibilities per second, producing an archiving data rate close to one sixteenth of the former (7.8M visibilities per second with a network transfer limit of 60 MB/sec). Mechanisms in the correlator hardware design make it possible to split the total number of antennas in the array into smaller subsets, or sub-arrays, such that they can share correlator resources while executing independent observations. The software part of the sub-system is responsible for configuring and scheduling correlator resources in such a way that observations among independent subarrays occur simultaneously while internally sharing correlator resources under a cooperative arrangement. Configuration of correlator modes through its CAN-bus interface and periodic geometric delay updates are the most relevant activities to schedule concurrently while observations happen at the same time among a number of sub-arrays. For that to work correctly, the software interface to sub-arrays schedules shared correlator resources sequentially before observations actually start on each sub-array. Start times for specific observations are optimized and reported back to the higher level observing software. After that initial sequential phase has taken place then simultaneous executions and recording of correlated data across different sub-arrays move forward concurrently, sharing the local network to broadcast results to other software sub-systems. The present paper presents an overview of the different hardware and software actors within the correlator sub-system that implement some degree of concurrency and synchronization needed for seamless and simultaneous operation of multiple sub-arrays, limitations stemming from the resource-sharing nature of the correlator, limitations intrinsic to the digital technology available in the correlator hardware, and milestones so far reached by this new ALMA feature.
VizieR Online Data Catalog: Optically Bright extragalactic Radio Sources II (Petrov, 2013)
NASA Astrophysics Data System (ADS)
Petrov, L.
2014-06-01
The first VLBI (Very Long Baseline Interferometry) observing campaign in 2007 resulted in the detection of 398 targets with the European VLBI Network (EVN; Bourda et al., 2010, cat. J/A+A/520/A113). During the second observing campaign, a subset of 105 sources detected in the previous campaign was observed (Bourda et al., 2011, cat. J/A+A/526/A102). Their positions were derived by Petrov (2011, cat. J/AJ/142/105) and formed the OBRS-1 (Optically Bright extragalactic Radio Sources) catalog. The remaining sources were observed in the third campaign, called OBRS-2. During the OBRS-2 campaign, there were three observing sessions with 10 VLBA (Very Long Baseline Array) stations and 5-6 EVN stations from this list: EFLSBERG, MEDICINA, ONSALA60, YEBES40M, DSS63, HARTRAO, and NOTO. Observations were made on 2010 Mar 23 (session ID gc034a), on 2011 Nov 8 (gc034bcd), and on 2011 Mar 15 (gc034ef). The OBRS-2 catalog presents precise positions of the 295 extragalactic radio sources as well as median correlated flux densities at 8.4 and 2.2GHz at baseline lengths shorter than 900km and at baseline lengths longer than 5000km. (1 data file).
THE KCAL VERA 22 GHz CALIBRATOR SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrov, L.; Honma, M.; Shibata, S. M., E-mail: Leonid.Petrov@lpetrov.net
2012-02-15
We observed a sample of 1536 sources with correlated flux densities brighter than 200 mJy at 8 GHz with the very long baseline interferometry (VLBI) array VLBI Exploration of Radio Astrometry at 22 GHz. One half of the target sources has been detected. The detection limit was around 200 mJy. We derived the correlated flux densities of 877 detected sources in three ranges of projected baseline lengths. The objective of these observations was to determine the suitability of given sources as phase calibrators for dual-beam and phase-referencing observations at high frequencies. Preliminary results indicate that the number of compact extragalacticmore » sources at 22 GHz brighter than a given correlated flux density level is two times less than that at 8 GHz.« less
Multi-baseline bootstrapping at the Navy precision optical interferometer
NASA Astrophysics Data System (ADS)
Armstrong, J. T.; Schmitt, H. R.; Mozurkewich, D.; Jorgensen, A. M.; Muterspaugh, M. W.; Baines, E. K.; Benson, J. A.; Zavala, Robert T.; Hutter, D. J.
2014-07-01
The Navy Precision Optical Interferometer (NPOI) was designed from the beginning to support baseline boot- strapping with equally-spaced array elements. The motivation was the desire to image the surfaces of resolved stars with the maximum resolution possible with a six-element array. Bootstrapping two baselines together to track fringes on a third baseline has been used at the NPOI for many years, but the capabilities of the fringe tracking software did not permit us to bootstrap three or more baselines together. Recently, both a new backend (VISION; Tennessee State Univ.) and new hardware and firmware (AZ Embedded Systems and New Mexico Tech, respectively) for the current hybrid backend have made multi-baseline bootstrapping possible.
VizieR Online Data Catalog: Gould's Belt Distances Survey (GOBELINS). II. OMC (Kounkel+, 2017)
NASA Astrophysics Data System (ADS)
Kounkel, M.; Hartmann, L.; Loinard, L.; Ortiz-Leon, G. N.; Mioduszewski, A. J.; Rodriguez, L. F.; Dzib, S. A.; Torres, R. M.; Pech, G.; Galli, P. A. B.; Rivera, J. L.; Boden, A. F.; Evans, N. J., II; Briceno, C.; Tobin, J. J.
2017-07-01
The observations presented in this paper were made with the National Radio Astronomy Observatory's Very Long Baseline Array (VLBA) at 5GHz with a 256MHz bandwidth (spanning the range of 4.852-5.076GHz). They span a period of two years from 2014 to 2016 March. (2 data files).
NASA Astrophysics Data System (ADS)
Nunhokee, C. D.; Bernardi, G.; Kohn, S. A.; Aguirre, J. E.; Thyagarajan, N.; Dillon, J. S.; Foster, G.; Grobler, T. L.; Martinot, J. Z. E.; Parsons, A. R.
2017-10-01
A critical challenge in the observation of the redshifted 21 cm line is its separation from bright Galactic and extragalactic foregrounds. In particular, the instrumental leakage of polarized foregrounds, which undergo significant Faraday rotation as they propagate through the interstellar medium, may harmfully contaminate the 21 cm power spectrum. We develop a formalism to describe the leakage due to instrumental widefield effects in visibility-based power spectra measured with redundant arrays, extending the delay-spectrum approach presented in Parsons et al. We construct polarized sky models and propagate them through the instrument model to simulate realistic full-sky observations with the Precision Array to Probe the Epoch of Reionization. We find that the leakage due to a population of polarized point sources is expected to be higher than diffuse Galactic polarization at any k mode for a 30 m reference baseline. For the same reference baseline, a foreground-free window at k > 0.3 h Mpc-1 can be defined in terms of leakage from diffuse Galactic polarization even under the most pessimistic assumptions. If measurements of polarized foreground power spectra or a model of polarized foregrounds are given, our method is able to predict the polarization leakage in actual 21 cm observations, potentially enabling its statistical subtraction from the measured 21 cm power spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Kurt; James, Scott C.; Roberts, Jesse D.
A modelling framework identifies deployment locations for current-energy-capture devices that maximise power output while minimising potential environmental impacts. The framework, based on the Environmental Fluid Dynamics Code, can incorporate site-specific environmental constraints. Over a 29-day period, energy outputs from three array layouts were estimated for: (1) the preliminary configuration (baseline), (2) an updated configuration that accounted for environmental constraints, (3) and an improved configuration subject to no environmental constraints. Of these layouts, array placement that did not consider environmental constraints extracted the most energy from flow (4.38 MW-hr/day), 19% higher than output from the baseline configuration (3.69 MW-hr/day). Array placementmore » that considered environmental constraints removed 4.27 MW-hr/day of energy (16% more than baseline). In conclusion, this analysis framework accounts for bathymetry and flow-pattern variations that typical experimental studies cannot, demonstrating that it is a valuable tool for identifying improved array layouts for field deployments.« less
Optical aperture synthesis with electronically connected telescopes
Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.
2015-01-01
Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705
Brazilian Decimetric Array (BDA) project - Phase II
NASA Astrophysics Data System (ADS)
Faria, C.; Stephany, S.; Sawant, H. S.; Cecatto, J. R.; Fernandes, F. C. R.
2010-02-01
The configuration of the second phase of the Brazilian Decimetric Array (BDA), installed at Cachoeira Paulista, Brazil (Longitude 45° 0‧ 20″ W and Latitude 22° 41‧ 19″ S), is a T-shaped array where 21 antennas are being added to existing 5 antennas of the first phase. In the third phase, in each arm of the T array, four more antennas will be added and baselines will be increased to 2.5 × 1.25 km in east-west and south directions, respectively. The antennas will be equally spaced at the distances of 250 meters from the central antenna of the T-array. Also, the frequency range will be increased to 1.2-1.7, 2.8 and 5.6 GHz. The Second phase of the BDA should be operational by the middle of 2010 and will operate in the frequency range of (1.2-1.7) GHz for solar and non solar observations. Here, we present the characteristics of the second phase of the BDA project, details of the array configuration, the u-v coverage, the synthesized beam obtained for the proposed configuration.
NASA Astrophysics Data System (ADS)
Farrington, C. D.; ten Brummelaar, T. A.; Mason, B. D.; Hartkopf, W. I.; McAlister, H. A.; Raghavan, D.; Turner, N. H.; Sturmann, L.; Sturmann, J.; Ridgway, S. T.
2010-06-01
We present the modification of the orbits of χ Draconis and HD 184467, and a completely new orbit for HD 198084, including data taken at the Center for High Angular Resolution Astronomy (CHARA) Array. These data were obtained using a modification of the technique of separated fringe packets (SFPs). The accuracy of the SFP data surpasses that of data taken by speckle, but the technique is much more time and labor intensive. Additionally, using SFPs with the CHARA Array, it is possible to obtain separations below the detection range of speckle interferometry (>=30 mas) above the range in "classic" long-baseline interferometry where fringes from a binary overlap are no longer separated (<=10 mas). Using spectroscopic binary systems with published speckle orbits, we are able to test our new measurements against their ephemerides to calibrate the method as well as produce entirely new orbits for systems with no current astrometric observations.
NASA Astrophysics Data System (ADS)
Benefo, Roshan; Gallardo, Samavarti; Aguirre, James; La Plante, Paul; HERA Collaboration
2018-01-01
The Hydrogen Epoch of Reionization Array (HERA) is a radio telescope situated in South Africa designed to observe the universe from redshifts 13 through 6, in order to detect the emission of the 21 cm line from the hydrogen spin-flip transition. We perform 21 cm cosmology due to its relation with reionization; by detecting this emission line, we can identify the timing of reionization, and understand more about the nature of the universe during the birth of the first stars and galaxies. With that, we can understand the heating conditions of the initial universe, providing us a larger picture of the conditions that created the large-scale structure of the universe we observe today. The HERA array currently consists of 19 antennas, spaced in a hexagonal grid pattern. We consider a robust observable, the time-averaged visibility (TAV), which is in principle sensitive to variations in the beam pattern between antenna elements and is easier to measure than the beam pattern itself. We use this TAV to explore the non-redundancy of baselines in the HERA array due either to cross-coupling between antennas (probed by antenna location in the array) or non-uniformity in their manufacture. The TAV may provide a simple way of verifying improvements in antenna element redundancy.
Polarization structure of six gamma-ray quasars at 5 and 15 GHz
NASA Astrophysics Data System (ADS)
Vetukhnovskaya, Yu. N.; Gabuzda, D. C.; Yakimov, V. E.
2011-05-01
The results of 5 and 15 GHz polarization observations of the six blazars 1222+216, 1406-076, 1606+106, 1611+343, 17415-038, and 2022-077 obtained on the American Very Long Baseline Array are presented. The degrees of polarization in the cores and jets of these six gamma-ray quasars do not differ from those for other blazars.
Multiwavelength Observations of the Blazar BL Lacertae: A New Fast TeV Gamma-Ray Flare
NASA Astrophysics Data System (ADS)
Abeysekara, A. U.; Benbow, W.; Bird, R.; Brantseg, T.; Brose, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Connolly, M. P.; Cui, W.; Daniel, M. K.; Falcone, A.; Feng, Q.; Finley, J. P.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Gunawardhana, I.; Hütten, M.; Hanna, D.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Krennrich, F.; Lang, M. J.; Lin, T. T. Y.; McArthur, S.; Moriarty, P.; Mukherjee, R.; O’Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Petrashyk, A.; Pohl, M.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Wakely, S. P.; Weinstein, A.; Wells, R. M.; Wilcox, P.; Williams, D. A.; Zitzer, B.; The VERITAS Collaboration; Jorstad, S. G.; Marscher, A. P.; Lister, M. L.; Kovalev, Y. Y.; Pushkarev, A. B.; Savolainen, T.; Agudo, I.; Molina, S. N.; Gómez, J. L.; Larionov, V. M.; Borman, G. A.; Mokrushina, A. A.; Tornikoski, M.; Lähteenmäki, A.; Chamani, W.; Enestam, S.; Kiehlmann, S.; Hovatta, T.; Smith, P. S.; Pontrelli, P.
2018-04-01
Combined with measurements made by very-long-baseline interferometry, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL Lacertae observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). with a rise time of ∼2.3 hr and a decay time of ∼36 min. The peak flux above 200 GeV is (4.2 ± 0.6) × 10‑6 photon m‑2 s‑1 measured with a 4-minute-binned light curve, corresponding to ∼180% of the flux that is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in Very Long Baseline Array observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models that invoke relativistic plasma passing stationary shocks.
NASA Astrophysics Data System (ADS)
Herzog, A.; Middelberg, E.; Norris, R. P.; Spitler, L. R.; Deller, A. T.; Collier, J. D.; Parker, Q. A.
2015-06-01
Context. Infrared-faint radio sources (IFRS) form a new class of galaxies characterised by radio flux densities between tenths and tens of mJy and faint or absent infrared counterparts. It has been suggested that these objects are radio-loud active galactic nuclei (AGNs) at significant redshifts (z ≳ 2). Aims: Whereas the high redshifts of IFRS have been recently confirmed based on spectroscopic data, the evidence for the presence of AGNs in IFRS is mainly indirect. So far, only two AGNs have been unquestionably confirmed in IFRS based on very long baseline interferometry (VLBI) observations. In this work, we test the hypothesis that IFRS contain AGNs in a large sample of sources using VLBI. Methods: We observed 57 IFRS with the Very Long Baseline Array (VLBA) down to a detection sensitivity in the sub-mJy regime and detected compact cores in 35 sources. Results: Our VLBA detections increase the number of VLBI-detected IFRS from 2 to 37 and provide strong evidence that most - if not all - IFRS contain AGNs. We find that IFRS have a marginally higher VLBI detection fraction than randomly selected sources with mJy flux densities at arcsec-scales. Moreover, our data provide a positive correlation between compactness - defined as the ratio of milliarcsec- to arcsec-scale flux density - and redshift for IFRS, but suggest a decreasing mean compactness with increasing arcsec-scale radio flux density. Based on these findings, we suggest that IFRS tend to contain young AGNs whose jets have not formed yet or have not expanded, equivalent to very compact objects. We found two IFRS that are resolved into two components. The two components are spatially separated by a few hundred milliarcseconds in both cases. They might be components of one AGN, a binary black hole, or the result of gravitational lensing.
ALMA observations towards G023.01-00.41 .
NASA Astrophysics Data System (ADS)
Sanna, A.; Moscadelli, L.; Cesaroni, R.; Caratti o Garatti, A.; Menten, K. M.; Kölligan, A.; Kuiper, R.
We want to understand whether or not young stars, with masses of tens of Solar masses, can form in the disk accretion scenario. This challenge requires to resolve the spatial morphology of gas and dust within a few 1000 au of a massive young stellar object, and to measure the gas kinematics with respect to the star. Also, because the gas kinematics near the young star can be a mixture of rotating, expanding, and infalling motions all together, to separate each velocity component it is necessary to map the emission of various gas tracers, as well as to image the circumstellar gas at different distances from the star. With this in mind, we made use of the Atacama Large Millimeter Array (ALMA) at wavelengths near 1 mm, with the aim to image the dense molecular gas in the vicinity of a well-known O-type young star. We previously observed this source with the Submillimeter Array (SMA), at scales of about 0.1 pc, with the Karl G. Jansky Very Large Array (VLA), at scales of the order of 1000 au, and with the Very Long Baseline Array (VLBA) and European VLBI Network (EVN), at scales of a few au.
Large-N correlator systems for low frequency radio astronomy
NASA Astrophysics Data System (ADS)
Foster, Griffin
Low frequency radio astronomy has entered a second golden age driven by the development of a new class of large-N interferometric arrays. The low frequency array (LOFAR) and a number of redshifted HI Epoch of Reionization (EoR) arrays are currently undergoing commission and regularly observing. Future arrays of unprecedented sensitivity and resolutions at low frequencies, such as the square kilometer array (SKA) and the hydrogen epoch of reionization array (HERA), are in development. The combination of advancements in specialized field programmable gate array (FPGA) hardware for signal processing, computing and graphics processing unit (GPU) resources, and new imaging and calibration algorithms has opened up the oft underused radio band below 300 MHz. These interferometric arrays require efficient implementation of digital signal processing (DSP) hardware to compute the baseline correlations. FPGA technology provides an optimal platform to develop new correlators. The significant growth in data rates from these systems requires automated software to reduce the correlations in real time before storing the data products to disk. Low frequency, widefield observations introduce a number of unique calibration and imaging challenges. The efficient implementation of FX correlators using FPGA hardware is presented. Two correlators have been developed, one for the 32 element BEST-2 array at Medicina Observatory and the other for the 96 element LOFAR station at Chilbolton Observatory. In addition, calibration and imaging software has been developed for each system which makes use of the radio interferometry measurement equation (RIME) to derive calibrations. A process for generating sky maps from widefield LOFAR station observations is presented. Shapelets, a method of modelling extended structures such as resolved sources and beam patterns has been adapted for radio astronomy use to further improve system calibration. Scaling of computing technology allows for the development of larger correlator systems, which in turn allows for improvements in sensitivity and resolution. This requires new calibration techniques which account for a broad range of systematic effects.
ALMA specifications and results: report at mid-cycle 3
NASA Astrophysics Data System (ADS)
Dent, W. R. F.
2016-07-01
ALMA is now nearing the end of its third cycle of operations, and is transitioning from `early science' to regular PI-driven observing. The array has been operated over the complete range of available baseline lengths, from <10m with the ACA out to the maximum of 16km in the long-baseline configuration. Typically 40 12m-diameter antennas are now used at any one time. In this paper, we summarise the advertised capabilities and how they have evolved in the first 5 years, the proposal pressure and `hot spots', and describe some of the issues with the real measured system performance. We also outline the observing statistics, project completion rates, and papers from ALMA. Finally we highlight some of the new transformational science coming from this facility.
The NRAO Observing for University Classes Program
NASA Astrophysics Data System (ADS)
Cannon, John M.; Van Moorsel, Gustaaf A.
2017-01-01
The NRAO "Observing for University Classes" program is a tremendous resource for instructors of courses in observational astronomy. As a service to the astronomical and educational communities, the NRAO offers small amounts of observing time on the Very Large Array (VLA) and the Very Long Baseline Array to such instructors. The data can be used by students and faculty to demonstrate radio astronomy theory with modern data products. Further, the results may lead to publication; this is a unique opportunity for faculty members to integrate research into the classroom. Previous experience with NRAO facilities is required for instructors; individuals without radio astronomy experience can take advantage of other NRAO educational opportunities (e.g., the Synthesis Imaging Workshop) prior to using the program. No previous experience with radio astronomy data is required for students; this is the primary target audience of the program. To demonstrate concept, this poster describes three different VLA observing programs that have been completed using the "Observing for University Classes" resource at Macalester College; undergraduate students have published the results of all three of these programs. Other recent "Observing for University Classes" programs are also described.
Code of Federal Regulations, 2013 CFR
2013-10-01
... vicinity of radio astronomy service (RAS) observatories observing in the 14.47-14.5 GHz band are subject to... RAS site, its location, and the applicable coordination zone. Table 1—Applicable Radio Astronomy... Radio Astronomy Observatory, Stinchfield Woods, MI 42°23′56″ 83°56′11″ 160. Very Long Baseline Array...
Configuration Considerations for Low Frequency Arrays
NASA Astrophysics Data System (ADS)
Lonsdale, C. J.
2005-12-01
The advance of digital signal processing capabilities has spurred a new effort to exploit the lowest radio frequencies observable from the ground, from ˜10 MHz to a few hundred MHz. Multiple scientifically and technically complementary instruments are planned, including the Mileura Widefield Array (MWA) in the 80-300 MHz range, and the Long Wavelength Array (LWA) in the 20-80 MHz range. The latter instrument will target relatively high angular resolution, and baselines up to a few hundred km. An important practical question for the design of such an array is how to distribute the collecting area on the ground. The answer to this question profoundly affects both cost and performance. In this contribution, the factors which determine the anticipated performance of any such array are examined, paying particular attention to the viability and accuracy of array calibration. It is argued that due to the severity of ionospheric effects in particular, it will be difficult or impossible to achieve routine, high dynamic range imaging with a geographically large low frequency array, unless a large number of physically separate array stations is built. This conclusion is general, is based on the need for adequate sampling of ionospheric irregularities, and is independent of the calibration algorithms and techniques that might be employed. It is further argued that array configuration figures of merit that are traditionally used for higher frequency arrays are inappropriate, and a different set of criteria are proposed.
Nelson, Kurt; James, Scott C.; Roberts, Jesse D.; ...
2017-06-05
A modelling framework identifies deployment locations for current-energy-capture devices that maximise power output while minimising potential environmental impacts. The framework, based on the Environmental Fluid Dynamics Code, can incorporate site-specific environmental constraints. Over a 29-day period, energy outputs from three array layouts were estimated for: (1) the preliminary configuration (baseline), (2) an updated configuration that accounted for environmental constraints, (3) and an improved configuration subject to no environmental constraints. Of these layouts, array placement that did not consider environmental constraints extracted the most energy from flow (4.38 MW-hr/day), 19% higher than output from the baseline configuration (3.69 MW-hr/day). Array placementmore » that considered environmental constraints removed 4.27 MW-hr/day of energy (16% more than baseline). In conclusion, this analysis framework accounts for bathymetry and flow-pattern variations that typical experimental studies cannot, demonstrating that it is a valuable tool for identifying improved array layouts for field deployments.« less
The X-IFU end-to-end simulations performed for the TES array optimization exercise
NASA Astrophysics Data System (ADS)
Peille, Philippe; Wilms, J.; Brand, T.; Cobo, B.; Ceballos, M. T.; Dauser, T.; Smith, S. J.; Barret, D.; den Herder, J. W.; Piro, L.; Barcons, X.; Pointecouteau, E.; Bandler, S.; den Hartog, R.; de Plaa, J.
2015-09-01
The focal plane assembly of the Athena X-ray Integral Field Unit (X-IFU) includes as the baseline an array of ~4000 single size calorimeters based on Transition Edge Sensors (TES). Other sensor array configurations could however be considered, combining TES of different properties (e.g. size). In attempting to improve the X-IFU performance in terms of field of view, count rate performance, and even spectral resolution, two alternative TES array configurations to the baseline have been simulated, each combining a small and a large pixel array. With the X-IFU end-to-end simulator, a sub-sample of the Athena core science goals, selected by the X-IFU science team as potentially driving the optimal TES array configuration, has been simulated for the results to be scientifically assessed and compared. In this contribution, we will describe the simulation set-up for the various array configurations, and highlight some of the results of the test cases simulated.
NASA Astrophysics Data System (ADS)
Smith, D. M. P.; Young, A.; Davidson, D. B.
2017-07-01
Radio telescopes with baselines that span thousands of kilometres and with fields of view that span tens of degrees have been recently deployed, such as the Low Frequency Array, and are currently being developed, such as the Square Kilometre Array. Additionally, there are proposals for space-based instruments with all-sky imaging capabilities, such as the Orbiting Low Frequency Array. Such telescopes produce observations with three-dimensional visibility distributions and curved image domains. In most work to date, the visibility distribution has been converted to a planar form to compute the brightness map using a two-dimensional Fourier transform. The celestial sphere is faceted in order to counter pixel distortion at wide angles, with each such facet requiring a unique planar form of the visibility distribution. Under the above conditions, the computational and storage complexities of this approach can become excessive. On the other hand, when using the direct Fourier transform approach, which maintains the three-dimensional shapes of the visibility distribution and celestial sphere, the non-coplanar visibility component requires no special attention. Furthermore, as the celestial samples are placed directly on the curved surface of the celestial sphere, pixel distortion at wide angles is avoided. In this paper, a number of examples illustrate that under these conditions (very long baselines and very wide fields of view) the costs of the direct Fourier transform may be comparable to (or even lower than) methods that utilise the two-dimensional fast Fourier transform.
LIMITS ON THE EVENT RATES OF FAST RADIO TRANSIENTS FROM THE V-FASTR EXPERIMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayth, Randall B.; Tingay, Steven J.; Deller, Adam T.
2012-07-10
We present the first results from the V-FASTR experiment, a commensal search for fast transient radio bursts using the Very Long Baseline Array (VLBA). V-FASTR is unique in that the widely spaced VLBA antennas provide a discriminant against non-astronomical signals and a mechanism for the localization and identification of events that is not possible with single dishes or short baseline interferometers. Thus, far V-FASTR has accumulated over 1300 hr of observation time with the VLBA, between 90 cm and 3 mm wavelength (327 MHz-86 GHz), providing the first limits on fast transient event rates at high radio frequencies (>1.4 GHz).more » V-FASTR has blindly detected bright individual pulses from seven known pulsars but has not detected any single-pulse events that would indicate high-redshift impulsive bursts of radio emission. At 1.4 GHz, V-FASTR puts limits on fast transient event rates comparable with the PALFA survey at the Arecibo telescope, but generally at lower sensitivities, and comparable to the 'fly's eye' survey at the Allen Telescope Array, but with less sky coverage. We also illustrate the likely performance of the Phase 1 SKA dish array for an incoherent fast transient search fashioned on V-FASTR.« less
SWARM: A 32 GHz Correlator and VLBI Beamformer for the Submillimeter Array
NASA Astrophysics Data System (ADS)
Primiani, Rurik A.; Young, Kenneth H.; Young, André; Patel, Nimesh; Wilson, Robert W.; Vertatschitsch, Laura; Chitwood, Billie B.; Srinivasan, Ranjani; MacMahon, David; Weintroub, Jonathan
2016-03-01
A 32GHz bandwidth VLBI capable correlator and phased array has been designed and deployeda at the Smithsonian Astrophysical Observatory’s Submillimeter Array (SMA). The SMA Wideband Astronomical ROACH2 Machine (SWARM) integrates two instruments: a correlator with 140kHz spectral resolution across its full 32GHz band, used for connected interferometric observations, and a phased array summer used when the SMA participates as a station in the Event Horizon Telescope (EHT) very long baseline interferometry (VLBI) array. For each SWARM quadrant, Reconfigurable Open Architecture Computing Hardware (ROACH2) units shared under open-source from the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) are equipped with a pair of ultra-fast analog-to-digital converters (ADCs), a field programmable gate array (FPGA) processor, and eight 10 Gigabit Ethernet (GbE) ports. A VLBI data recorder interface designated the SWARM digital back end, or SDBE, is implemented with a ninth ROACH2 per quadrant, feeding four Mark6 VLBI recorders with an aggregate recording rate of 64 Gbps. This paper describes the design and implementation of SWARM, as well as its deployment at SMA with reference to verification and science data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moin, A.; Wang, Z.; Chandra, P.
We present the results of our radio observational campaign of gamma-ray burst (GRB) 100418a, for which we used the Australia Telescope Compact Array, the Very Large Array, and the Very Long Baseline Array. GRB 100418a was a peculiar GRB with unusual X-ray and optical afterglow profiles featuring a plateau phase with a very shallow rise. This observed plateau phase was believed to be due to a continued energy injection mechanism that powered the forward shock, giving rise to an unusual and long-lasting afterglow. The radio afterglow of GRB 100418a was detectable several weeks after the prompt emission. We conducted long-termmore » monitoring observations of the afterglow and attempted to test the energy injection model advocating that the continuous energy injection is due to shells of material moving at a wide range of Lorentz factors. We obtained an upper limit of γ < 7 for the expansion rate of the GRB 100418a radio afterglow, indicating that the range-of-Lorentz factor model could only be applicable for relatively slow-moving ejecta. A preferred explanation could be that continued activity of the central engine may have powered the long-lasting afterglow.« less
Imaging with New Classic and Vision at the NPOI
NASA Astrophysics Data System (ADS)
Jorgensen, Anders
2018-04-01
The Navy Precision Optical Interferometer (NPOI) is unique among interferometric observatories for its ability to position telescopes in an equally-spaced array configuration. This configuration is optimal for interferometric imaging because it allows the use of bootstrapping to track fringes on long baselines with signal-to-noise ratio less than one. When combined with coherent integration techniques this can produce visibilities with acceptable SNR on baselines long enough to resolve features on the surfaces of stars. The stellar surface imaging project at NPOI combines the bootstrapping array configuration of the NPOI array, real-time fringe tracking, baseline- and wavelength bootstrapping with Earth rotation to provide dense coverage in the UV plane at a wide range of spatial frequencies. In this presentation, we provide an overview of the project and an update of the latest status and results from the project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Naoko; Hirota, Tomoya; Honma, Mareki
2014-07-01
We have carried out the first very long baseline interferometry (VLBI) imaging of a 44 GHz class I methanol maser (7{sub 0}-6{sub 1} A {sup +}) associated with a millimeter core MM2 in a massive star-forming region IRAS 18151–1208 with KaVA (KVN and VERA Array), which is a newly combined array of KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry). We have succeeded in imaging compact maser features with a synthesized beam size of 2.7 milliarcseconds × 1.5 milliarcseconds (mas). These features are detected at a limited number of baselines within the length of shorter than ≈ 650 km corresponding to 100 Mλ in the uv-coverage.more » The central velocity and the velocity width of the 44 GHz methanol maser are consistent with those of the quiescent gas rather than the outflow traced by the SiO thermal line. The minimum component size among the maser features is ∼5 mas × 2 mas, which corresponds to the linear size of ∼15 AU × 6 AU assuming a distance of 3 kpc. The brightness temperatures of these features range from ∼3.5 × 10{sup 8} to 1.0 × 10{sup 10} K, which are higher than the estimated lower limit from a previous Very Large Array observation with the highest spatial resolution of ∼50 mas. The 44 GHz class I methanol maser in IRAS 18151–1208 is found to be associated with the MM2 core, which is thought to be less evolved than another millimeter core MM1 associated with the 6.7 GHz class II methanol maser.« less
The Gould's Belt very large array survey. III. The Orion region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kounkel, Marina; Hartmann, Lee; Loinard, Laurent
2014-07-20
We present results from a high-sensitivity (60 μJy), large-scale (2.26 deg{sup 2}) survey obtained with the Karl G. Jansky Very Large Array as part of the Gould's Belt Survey program. We detected 374 and 354 sources at 4.5 and 7.5 GHz, respectively. Of these, 148 are associated with previously known young stellar objects (YSOs). Another 86 sources previously unclassified at either optical or infrared wavelengths exhibit radio properties that are consistent with those of young stars. The overall properties of our sources at radio wavelengths such as their variability and radio to X-ray luminosity relation are consistent with previous resultsmore » from the Gould's Belt Survey. Our detections provide target lists for follow-up Very Long Baseline Array radio observations to determine their distances as YSOs are located in regions of high nebulosity and extinction, making it difficult to measure optical parallaxes.« less
The Gould's Belt Very Large Array Survey. III. The Orion Region
NASA Astrophysics Data System (ADS)
Kounkel, Marina; Hartmann, Lee; Loinard, Laurent; Mioduszewski, Amy J.; Dzib, Sergio A.; Ortiz-León, Gisela N.; Rodríguez, Luis F.; Pech, Gerardo; Rivera, Juana L.; Torres, Rosa M.; Boden, Andrew F.; Evans, Neal J., II; Briceño, Cesar; Tobin, John
2014-07-01
We present results from a high-sensitivity (60 μJy), large-scale (2.26 deg2) survey obtained with the Karl G. Jansky Very Large Array as part of the Gould's Belt Survey program. We detected 374 and 354 sources at 4.5 and 7.5 GHz, respectively. Of these, 148 are associated with previously known young stellar objects (YSOs). Another 86 sources previously unclassified at either optical or infrared wavelengths exhibit radio properties that are consistent with those of young stars. The overall properties of our sources at radio wavelengths such as their variability and radio to X-ray luminosity relation are consistent with previous results from the Gould's Belt Survey. Our detections provide target lists for follow-up Very Long Baseline Array radio observations to determine their distances as YSOs are located in regions of high nebulosity and extinction, making it difficult to measure optical parallaxes.
Parametric study of two planar high power flexible solar array concepts
NASA Technical Reports Server (NTRS)
Garba, J. A.; Kudija, D. A.; Zeldin, B.; Costogue, E. N.
1978-01-01
The design parameters examined were: frequency, aspect ratio, packaging constraints, and array blanket flatness. Specific power-to-mass ratios for both solar arrays as a function of array frequency and array width were developed and plotted. Summaries of the baseline design data, developed equations, the computer program operation, plots of the parameters, and the process for using the information as a design manual are presented.
VizieR Online Data Catalog: 22GHz image of 3C 273 (Bruni+, 2017)
NASA Astrophysics Data System (ADS)
Bruni, G.; Gomez, J. L.; Casadio, C.; Lobanov, A.; Kovalev, Y. Y.; Sokolovsky, K. V.; Lisakov, M. M.; Bach, U.; Marscher, A.; Jorstad, S.; Anderson, J. M.; Krichbaum, T. P.; Savolainen, T.; Vega-Garcia, L.; Fuentes, A.; Zensus, J. A.; Alberdi, A.; Lee, S.-S.; Lu, R.-S.; Perez-Torres, M.; Ros, E.
2017-07-01
A global ground array of 22 antennas was used to perform observations, including VLBA (Sc, Hn, Nl, Fd, La, Kp, Pt, Ov, Br, Mk), EVN (Hh, Mc, Nt, Tr, Jb, Ef, Ys), Long Baseline Array (-LBA- At, Mp, Ho, Cd), and two Kvazar antennas (Sv, Zc), plus Kalyazin (managed by ASC, Russia), and Green Bank (NRAO, USA). The observations took place on January 18-19, 2014, for a total of 16.8 hours, and at three different frequencies: 15GHz, 22GHz, and 43GHz. RA was involved only for the 22GHz part, while for the other bands only the VLBA was used. Both the Green Bank and Pushchino tracking station took part in the experiment. A RA-compatible total bandwidth of 32MHz, split into two 16-MHz IFs, was used. RA was scheduled to observe three consecutive 9.5 minute scans every 1.25 hours, to allow for antenna cooling. (2 data files).
The First Year of Robotic Science with MINERVA
NASA Astrophysics Data System (ADS)
McCrady, Nate; Johnson, John A.; Wright, Jason; Wittenmyer, Robert; Eastman, Jason; Beatty, Thomas G.; Bottom, Michael; Johnson, Samson
2016-01-01
Detection of low-mass exoplanets orbiting Sun-like stars requires high cadence, long time-baseline observations that are impossible to obtain on shared large telescopes. MINERVA is a dedicated observatory for exoplanet detection that consists of four robotic 0.7-meter PlaneWave telescopes located at Whipple Observatory on Mt Hopkins, Arizona. First light science began in May 2015 with photometric monitoring of transit and microlensing events. The four telescopes can observe different targets, or provide simultaneous multi-color light curves of a single event. We will add a purpose-built, temperature-stabilized, high precision iodine cell spectrometer from Callaghan Innovation in 2016 to facilitate velocimetric search for low-mass exoplanets around nearby stars. The flexibility of the MINERVA array provides a natural avenue for educational and public outreach activities. One telescope in the array can break formation to observe targets from a queue or respond to remote operations from astronomy courses at a partner institution. MINERVA is a collaboration among Harvard U., Penn State U., U. Montana, and U. New South Wales.
MERI: an ultra-long-baseline Moon-Earth radio interferometer.
NASA Astrophysics Data System (ADS)
Burns, J. O.
Radiofrequency aperture synthesis, pioneered by Ryle and his colleagues at Cambridge in the 1960's, has evolved to ever longer baselines and larger arrays in recent years. The limiting resolution at a given frequency for modern ground-based very-long-baseline interferometry is simply determined by the physical diameter of the Earth. A second-generation, totally space-based VLB network was proposed recently by a group at the Naval Research Laboratory. The next logical extension of space-based VLBI would be a station or stations on the Moon. The Moon could serve as an outpost or even the primary correlator station for an extended array of space-based antennas.
Local Group dSph radio survey with ATCA - II. Non-thermal diffuse emission
NASA Astrophysics Data System (ADS)
Regis, Marco; Richter, Laura; Colafrancesco, Sergio; Profumo, Stefano; de Blok, W. J. G.; Massardi, Marcella
2015-04-01
Our closest neighbours, the Local Group dwarf spheroidal (dSph) galaxies, are extremely quiescent and dim objects, where thermal and non-thermal diffuse emissions lack, so far, of detection. In order to possibly study the dSph interstellar medium, deep observations are required. They could reveal non-thermal emissions associated with the very low level of star formation, or to particle dark matter annihilating or decaying in the dSph halo. In this work, we employ radio observations of six dSphs, conducted with the Australia Telescope Compact Array in the frequency band 1.1-3.1 GHz, to test the presence of a diffuse component over typical scales of few arcmin and at an rms sensitivity below 0.05 mJy beam-1. We observed the dSph fields with both a compact array and long baselines. Short spacings led to a synthesized beam of about 1 arcmin and were used for the extended emission search. The high-resolution data mapped background sources, which in turn were subtracted in the short-baseline maps, to reduce their confusion limit. We found no significant detection of a diffuse radio continuum component. After a detailed discussion on the modelling of the cosmic ray (CR) electron distribution and on the dSph magnetic properties, we present bounds on several physical quantities related to the dSphs, such that the total radio flux, the angular shape of the radio emissivity, the equipartition magnetic field, and the injection and equilibrium distributions of CR electrons. Finally, we discuss the connection to far-infrared and X-ray observations.
Few millimeter precision for baselines in the California Permanent GPS Geodetic Array
NASA Technical Reports Server (NTRS)
Lindqwister, Ulf J.; Zumberge, James F.; Webb, Frank H.; Blewitt, Geoffrey
1991-01-01
Geodetic measurements with Rogue GPS receivers from sites in the California Permanent GPS geodetic Array (PGGA) have been analyzed using the GIPSY orbit-determination and baseline-estimation software. Based on an unbiased selection of 23 daily measurements spanning 8 months, the LF contributions to the long-term repeatabilities of baseline measurements are approximately 5, 3, and 8 mm for the east, north, and vertical components. Short-term contributions to the long-term repeatabilities were evaluated by examining data from the week of October 21, 1990, which showed the lowest short-term scatter. For this week, daily repeatabilities of 2-3 mm in the horizontal and 4 mm in the vertical have been achieved for the 172-km JPL-Pinyon baseline, consistent with carrier phase date noise of about 6 mm. High quality (less than about 5 mm) repeatabilities have been achieved for all components of the other baselines as well.
Planned improvements to the Owens Valley frequency-agile interferometer
NASA Technical Reports Server (NTRS)
Hurford, Gordon J.; Gary, D. E.
1988-01-01
Three small antennas will be added to the OVRO interferometer to form a five-element solar-dedicated array. This would provide up to 7 or 10 baselines (compared to the present 1 or 3). This would be sufficient to apply microwave diagnostics to most active region and burst sources. By using frequency-synthesis it would also provide an imaging capability comparable to that of an approximately 100 baseline interferometer. Expansion of the array is discussed.
Physical properties and astrometry of radio-emitting brown dwarf TVLM 513-46546 revisited
NASA Astrophysics Data System (ADS)
Gawroński, Marcin P.; Goździewski, Krzysztof; Katarzyński, Krzysztof
2017-04-01
We present multi-epoch astrometric observations of the M9 ultracool dwarf TVLM513-46546 that is placed at the brown dwarf boundary. The new observations have been performed with the European Very Large Baseline Interferometry Network at 6 cm band. The target has been detected at seven epochs spanning three years, with measured quiescent emission flux in the range 180-300 μJy. We identified four short-duration flaring events (0.5-2 mJy) with very high circular polarization (˜75 per cent-100 per cent). Properties of the observed radio flares support the physical model of the source that is characterized by the electron cyclotron maser instability responsible for outbursts of radio emission. Combined with Very Long Baseline Array earlier data, our detections make it possible to refine the absolute parallax π =93.27^{+0.18}_{-0.17} mas. Our measurements rule out TVLM513-46546 companions more massive than Jupiter in orbits with periods longer than ˜1 yr.
LOLA: Lunar Optical Long-baseline Array. 1992-1993 space design
NASA Technical Reports Server (NTRS)
Bronte, Daniel; Chaney, Joanne; Curran, Christine; Ferguson, Keith; Flint, Eric; Giunta, Tony; Knill, Duane; Levesque, Daniel; Lyon, Donald; Murphy, Sean
1993-01-01
In the fall of 1992, the design and analysis of a lunar-based optical interferometer telescope array was initiated by a group of students in the Department of Aerospace Engineering at Virginia Tech. This project was undertaken at the suggestion of the Space Exploration Initiative Office at the NASA Langley Research Center. The original array design requirements, listed below, centered on the primary objective of resolving earth-type planets about stars out to a distance of ten parsecs: spectrum coverage spanning wavelengths from five nm to five mm, with a primary operating mode in the visible spectrum; a total collecting area providing a signal-to-noise ratio (SNR) of no less than 10.0 for a median wavelength of 500 nm; the individual array elements must be identical and have a maximum optical diameter of 2.0 m; and lunar site selection is limited to ten degrees north and south of the lunar equator on the lunar far side while not closer than 15 degrees to either near-side limb. Following construction by astronaut crews, array operation will be conducted from earth and astronomical observations will not be conducted during the lunar day. The entire system is designed for minimum achievable mass. The majority of the original design requirements for the telescope array were met.
Clinical implementation of photon beam flatness measurements to verify beam quality.
Goodall, Simon; Harding, Nicholas; Simpson, Jake; Alexander, Louise; Morgan, Steve
2015-11-08
This work describes the replacement of Tissue Phantom Ratio (TPR) measurements with beam profile flatness measurements to determine photon beam quality during routine quality assurance (QA) measurements. To achieve this, a relationship was derived between the existing TPR15/5 energy metric and beam flatness, to provide baseline values and clinically relevant tolerances. The beam quality was varied around two nominal beam energy values for four matched Elekta linear accelerators (linacs) by varying the bending magnet currents and reoptimizing the beam. For each adjusted beam quality the TPR15/5 was measured using an ionization chamber and Solid Water phantom. Two metrics of beam flatness were evaluated using two identical commercial ionization chamber arrays. A linear relationship was found between TPR15/5 and both metrics of flatness, for both nominal energies and on all linacs. Baseline diagonal flatness (FDN) values were measured to be 103.0% (ranging from 102.5% to 103.8%) for 6 MV and 102.7% (ranging from 102.6% to 102.8%) for 10 MV across all four linacs. Clinically acceptable tolerances of ± 2% for 6 MV, and ± 3% for 10 MV, were derived to equate to the current TPR15/5 clinical tolerance of ± 0.5%. Small variations in the baseline diagonal flatness values were observed between ionization chamber arrays; however, the rate of change of TPR15/5 with diagonal flatness was found to remain within experimental uncertainty. Measurements of beam flatness were shown to display an increased sensitivity to variations in the beam quality when compared to TPR measurements. This effect is amplified for higher nominal energy photons. The derivation of clinical baselines and associated tolerances has allowed this method to be incorporated into routine QA, streamlining the process whilst also increasing versatility. In addition, the effect of beam adjustment can be observed in real time, allowing increased practicality during corrective and preventive maintenance interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rampadarath, H.; Morgan, J. S.; Tingay, S. J.
2014-01-01
The results of multi-epoch observations of the southern starburst galaxy, NGC 253, with the Australian Long Baseline Array at 2.3 GHz are presented. As with previous radio interferometric observations of this galaxy, no new sources were discovered. By combining the results of this survey with Very Large Array observations at higher frequencies from the literature, spectra were derived and a free-free absorption model was fitted of 20 known sources in NGC 253. The results were found to be consistent with previous studies. The supernova remnant, 5.48-43.3, was imaged with the highest sensitivity and resolution to date, revealing a two-lobed morphology.more » Comparisons with previous observations of similar resolution give an upper limit of 10{sup 4} km s{sup –1} for the expansion speed of this remnant. We derive a supernova rate of <0.2 yr{sup –1} for the inner 300 pc using a model that improves on previous methods by incorporating an improved radio supernova peak luminosity distribution and by making use of multi-wavelength radio data spanning 21 yr. A star formation rate of SFR(M ≥ 5 M {sub ☉}) < 4.9 M {sub ☉} yr{sup –1} was also estimated using the standard relation between supernova and star formation rates. Our improved estimates of supernova and star formation rates are consistent with studies at other wavelengths. The results of our study point to the possible existence of a small population of undetected supernova remnants, suggesting a low rate of radio supernova production in NGC 253.« less
NASA Astrophysics Data System (ADS)
Jenness, Tim; Currie, Malcolm J.; Tilanus, Remo P. J.; Cavanagh, Brad; Berry, David S.; Leech, Jamie; Rizzi, Luca
2015-10-01
With the advent of modern multidetector heterodyne instruments that can result in observations generating thousands of spectra per minute it is no longer feasible to reduce these data as individual spectra. We describe the automated data reduction procedure used to generate baselined data cubes from heterodyne data obtained at the James Clerk Maxwell Telescope (JCMT). The system can automatically detect baseline regions in spectra and automatically determine regridding parameters, all without input from a user. Additionally, it can detect and remove spectra suffering from transient interference effects or anomalous baselines. The pipeline is written as a set of recipes using the ORAC-DR pipeline environment with the algorithmic code using Starlink software packages and infrastructure. The algorithms presented here can be applied to other heterodyne array instruments and have been applied to data from historical JCMT heterodyne instrumentation.
New Optimizations of Microcalorimeter Arrays for High-Resolution Imaging X-ray Spectroscopy
NASA Astrophysics Data System (ADS)
Kilbourne, Caroline
We propose to continue our successful research program in developing arrays of superconducting transition-edge sensors (TES) for x-ray astrophysics. Our standard 0.3 mm TES pixel achieves better than 2.5-eV resolution, and we now make 32x32 arrays of such pixels. We have also achieved better than 1-eV resolution in smaller pixels, and promising performance in a range of position-sensitive designs. We propose to continue to advance the designs of both the single-pixel and position-sensitive microcalorimeters so that we can produce arrays suitable for several x-ray spectroscopy observatories presently in formulation. We will also investigate various array and pixel optimizations such as would be needed for large arrays for surveys, large- pixel arrays for diffuse soft x-ray measurements, or sub-arrays of fast pixels optimized for neutron-star burst spectroscopy. In addition, we will develop fabrication processes for integrating sub-arrays with very different pixel designs into a monolithic focal-plane array to simplify the design of the focal-plane assembly and make feasible new detector configurations such as the one currently baselined for AXSIO. Through a series of measurements on test devices, we have improved our understanding of the weak-link physics governing the observed resistive transitions in TES detectors. We propose to build on that work and ultimately use the results to improve the immunity of the detector to environmental magnetic fields, as well as its fundamental performance, in each of the targeted optimizations we are developing.
Limb-brightened jet of 3C 84 revealed by the 43 GHz very-long-baseline-array observation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagai, H.; Hada, K.; Haga, T.
2014-04-10
We present a study of the sub-parsec scale radio structure of the radio galaxy 3C 84/NGC 1275 based on the Very Long Baseline Array data at 43 GHz. We discover a limb brightening in the 'restarted' jet that is associated with the 2005 radio outburst. In the 1990s, the jet structure was ridge brightening rather than limb brightening, despite the observations being done with similar angular resolutions. This indicates that the transverse jet structure has recently changed. This change in the morphology reveals an interesting agreement with the γ-ray flux increase, i.e., the γ-ray flux in the 1990s was atmore » least seven times lower than the current one. One plausible explanation for the limb brightening is that the velocity structure of the jet is in the context of the stratified jet, which is a successful scenario that explains the γ-ray emission in some active galactic nuclei. If this is the case, then the change in apparent transverse structure might be caused by the change in the transverse velocity structure. We argue that the transition from ridge brightening to limb brightening is related to the γ-ray time variability on the timescale of decades. We also discuss the collimation profile of the jet.« less
VizieR Online Data Catalog: Main-sequence A, F, G, and K stars photometry (Boyajian+, 2013)
NASA Astrophysics Data System (ADS)
Boyajian, T. S.; von Braun, K.; van Belle, G.; Farrington, C.; Schaefer, G.; Jones, J.; White, R.; McAlister, H. A.; Ten Brummelaar, T. A.; Ridgway, S.; Gies, D.; Sturmann, L.; Sturmann, J.; Turner, N. H.; Goldfinger, P. J.; Vargas, N.
2016-07-01
Akin to the observing outlined in DT1 and DT2, observations for this project were made with the CHARA Array, a long-baseline optical/infrared interferometer located on Mount Wilson Observatory in southern California. The target stars were selected based on their approximate angular size (a function of their intrinsic linear size and distance to the observer). We limit the selection to stars with angular sizes >0.45mas, in order to adequately resolve their sizes to a few percent precision with the selected instrument setup. Note that all stars that meet this requirement are brighter than the instrumental limits of our detector by several magnitudes. The stars also have no known stellar companion within 3-arcsec to avoid contamination of incoherent light in the interferometers' field of view. From 2008 to 2012, we used the CHARA Classic beam combiner operating in the H band (λH=1.67um) and the K' band (λK'=2.14um) to collect observations of 23 stars using CHARA's longest baseline combinations. (5 data files).
Characterization of Flap Edge Noise Radiation from a High-Fidelity Airframe Model
NASA Technical Reports Server (NTRS)
Humphreys, William M., Jr.; Khorrami, Mehdi R.; Lockard, David P.; Neuhart, Dan H.; Bahr, Christopher J.
2015-01-01
The results of an experimental study of the noise generated by a baseline high-fidelity airframe model are presented. The test campaign was conducted in the open-jet test section of the NASA Langley 14- by 22-foot Subsonic Tunnel on an 18%-scale, semi-span Gulfstream airframe model incorporating a trailing edge flap and main landing gear. Unsteady surface pressure measurements were obtained from a series of sensors positioned along the two flap edges, and far field acoustic measurements were obtained using a 97-microphone phased array that viewed the pressure side of the airframe. The DAMAS array deconvolution method was employed to determine the locations and strengths of relevant noise sources in the vicinity of the flap edges and the landing gear. A Coherent Output Power (COP) spectral method was used to couple the unsteady surface pressures measured along the flap edges with the phased array output. The results indicate that outboard flap edge noise is dominated by the flap bulb seal cavity with very strong COP coherence over an approximate model-scale frequency range of 1 to 5 kHz observed between the array output and those unsteady pressure sensors nearest the aft end of the cavity. An examination of experimental COP spectra for the inboard flap proved inconclusive, most likely due to a combination of coherence loss caused by decorrelation of acoustic waves propagating through the thick wind tunnel shear layer and contamination of the spectra by tunnel background noise at lower frequencies. Directivity measurements obtained from integration of DAMAS pressure-squared values over defined geometric zones around the model show that the baseline flap and landing gear are only moderately directional as a function of polar emission angle.
VizieR Online Data Catalog: 2FGL sources observed between 5-9GHz (Schinzel+, 2015)
NASA Astrophysics Data System (ADS)
Schinzel, F. K.; Petrov, L.; Taylor, G. B.; Mahony, E. K.; Edwards, P. G.; Kovalev, Yu. Y.
2015-04-01
A list of 216 target fields were observed with the Very Large Array (VLA). The instantaneous bandwidth was split into two parts, with one half centered at 5.0GHz (4.5-5.5GHz) and the other centered at 7.3GHz (6.8-7.8GHz); on 2012 October 26 and 2012 November 3. See section 2.1 During the first campaign with the Australia Telescope Compact Array (ATCA), from 2012 September 19-20, we observed 411 2FGL unassociated sources in a decl. range of [-90°, +10°] at 5.5 and 9GHz. The details of that observing campaign and results have been reported by Petrov et al. (2013, J/MNRAS/432/1294). We detected a total of 424 point sources. In a second ATCA campaign on 2013 September 25-28, we re-observed sources that were detected at 5GHz, but were not detected at 9GHz. See section 2.2. Follow-up observations of 149 targets selected from the VLA and ATCA survey above -30° decl. were conducted with the Very Long Baseline Array (VLBA) between 2013 Feb-Aug (VCS7 project; 4.128-4.608 and 7.392-7.872GHz simultaneously) and in 2013 Jun-Dec (campaign S5272; 7.392-7.872GHz only). See section 2.3. For sources with decl. below -30° we added 21 objects to the on-going LCS campaign (Petrov et al. 2011, J/MNRAS/414/2528) in 2013 Mar-2013 Jun at 8.200-8.520GHz. See section 2.4. (7 data files).
NASA Astrophysics Data System (ADS)
Imai, M.; Lecacheux, A.; Higgins, C. A.; Clarke, T.; Panchenko, M.; Brazhenko, A. I.; Frantsuzenko, A. V.; Konovalenko, A. A.; Imai, K.
2015-12-01
From December 2014 to March 2015, Jupiter's decametric (DAM) radio observations were carried out by using simultaneously three powerful low-frequency radio telescopes: Long Wavelength Array One (LWA1), Socorro, USA; Nançay Decameter Array (NDA), Nançay, France; and URAN2 telescope, Poltava, Ukraine. Baselines are 10000, 8600, and 2400 kilometers for LWA1-URAN2, NDA-LWA1, and URAN2-NDA, respectively. One Io-B and two Io-A emissions were simultaneously observed. Using cross-correlation analysis of obtained spectrograms, it was found that, as a function of lag time in a pair of two stations, Io-B (mainly S-bursts) and Io-A (L-bursts) show different kinds of cross-correlation coefficients, with sharp and broad peaks, respectively. By measuring lag times between LWA1-URAN2, NDA-LWA1, and URAN2-NDA pairs, it can be tested if either flashlight- or beacon-like beaming is emanated from Jupiter. Measurements of beaming width are also analyzed. Most probable beaming scenarios for Io-B and -A events are suggested.
NASA Astrophysics Data System (ADS)
Barry, R. K.; Danchi, W. C.
2008-12-01
We review observations of nova RS Ophiuchi using long-baseline near-infrared and mid-infrared interferometry at three observatories: the Keck Interferometer in the Nulling mode (KIN), the Palomar Testbed Interferometer (PTI), and the Infrared and Optical Telescope Array (IOTA). We discuss these observations in the context of a unifying model of the system that includes an increase in density in the plane of the orbit of the two stars created by a spiral shock wave caused by the motion of the stars through the cool wind of the red giant star. We discuss how recent observations using the Spitzer Space Telescope and the VLTI support this proposed model.
NASA Technical Reports Server (NTRS)
1977-01-01
A slotted waveguide planar array was established as the baseline design for the spaceborne transmitter antenna. Key aspects of efficient energy conversion at both ends of the power transfer link were analyzed and optimized alternate approaches in the areas of antenna and tube design are discussed. An integrated design concept was developed which meets design requirements, observes structural and thermal constraints, exhibits good performance and was developed in adequate depth to permit cost estimating at the subsystem/component level.
Microsat and Lunar-Based Imaging of Radio Bursts
NASA Technical Reports Server (NTRS)
MacDowall, R. J.; Gopalswamy, N.; Kaiser, M. L.; Demaio, L. D.; Bale, S. D.; Kasper, J. C.; Lazarus, A. J.; Howard, R. E.; Jones, D. L.; Reiner, M. J.;
2005-01-01
No present or approved spacecraft mission has the capability to provide high angular resolution imaging of solar or magnetospheric radio bursts or of the celestial sphere at frequencies below the ionospheric cutoff. Here, we describe a MIDEX-class mission to perform such imaging in the frequency range approx. 30 kHz to 15 MHz. This mission, the Solar Imaging Radio Array (SIRA), is solar and exploration-oriented, with emphasis on improved understanding and application of radio bursts associated with solar energetic particle (SEP) events and on tracking shocks and other components of coronal mass ejections (CMEs). SIRA will require 12 to 16 micro-satellites to establish a sufficient number of baselines with separations on the order of kilometers. The constellation consists of microsats located quasi-randomly on a spherical shell, initially of approx. 10 km diameter. The baseline microsat is 3-axis stabilized with body-mounted solar arrays and an articulated, earth pointing high gain antenna. The constellation will likely be placed at L1, which is the preferred location for full-time solar observations. We also discuss briefly follow-on missions that would be lunar-based with of order 10,000 dipole antennas.
THE CELESTIAL REFERENCE FRAME AT 24 AND 43 GHz. I. ASTROMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanyi, G. E.; Jacobs, C. S.; Naudet, C. J.
2010-05-15
We present astrometric results for compact extragalactic objects observed with the Very Long Baseline Array at radio frequencies of 24 and 43 GHz. Data were obtained from ten 24 hr observing sessions made over a five-year period. These observations were motivated by the need to extend the International Celestial Reference Frame (ICRF) to higher radio frequencies to enable improved deep space navigation after 2016 and to improve state-of-the-art astrometry. Source coordinates for 268 sources were estimated at 24 GHz and for 131 sources at 43 GHz. The median formal uncertainties of right ascension and declination at 24 GHz are 0.08more » and 0.15 mas, respectively. Median formal uncertainties at 43 GHz are 0.20 and 0.35 mas, respectively. Weighted root-mean-square differences between the 24 and 43 GHz positions and astrometric positions based on simultaneous 2.3 and 8.4 GHz Very Long Baseline Interferometry observations, such as the ICRF, are less than about 0.3 mas in both coordinates. With observations over five years we have achieved a precision at 24 GHz approaching that of the ICRF but unaccounted systematic errors limit the overall accuracy of the catalogs.« less
The behavioural response of migrating humpback whales to a full seismic airgun array.
Dunlop, Rebecca A; Noad, Michael J; McCauley, Robert D; Kniest, Eric; Slade, Robert; Paton, David; Cato, Douglas H
2017-12-20
Despite concerns on the effects of noise from seismic survey airguns on marine organisms, there remains uncertainty as to the biological significance of any response. This study quantifies and interprets the response of migrating humpback whales ( Megaptera novaeangliae ) to a 3130 in 3 (51.3l) commercial airgun array. We compare the behavioural responses to active trials (array operational; n = 34 whale groups), with responses to control trials (source vessel towing the array while silent; n = 33) and baseline studies of normal behaviour in the absence of the vessel ( n = 85). No abnormal behaviours were recorded during the trials. However, in response to the active seismic array and the controls , the whales displayed changes in behaviour. Changes in respiration rate were of a similar magnitude to changes in baseline groups being joined by other animals suggesting any change group energetics was within their behavioural repertoire. However, the reduced progression southwards in response to the active treatments, for some cohorts, was below typical migratory speeds. This response was more likely to occur within 4 km from the array at received levels over 135 dB re 1 µPa 2 s. © 2017 The Author(s).
The first VLBI image of an infrared-faint radio source
NASA Astrophysics Data System (ADS)
Middelberg, E.; Norris, R. P.; Tingay, S.; Mao, M. Y.; Phillips, C. J.; Hotan, A. W.
2008-11-01
Context: We investigate the joint evolution of active galactic nuclei and star formation in the Universe. Aims: In the 1.4 GHz survey with the Australia Telescope Compact Array of the Chandra Deep Field South and the European Large Area ISO Survey - S1 we have identified a class of objects which are strong in the radio but have no detectable infrared and optical counterparts. This class has been called Infrared-Faint Radio Sources, or IFRS. 53 sources out of 2002 have been classified as IFRS. It is not known what these objects are. Methods: To address the many possible explanations as to what the nature of these objects is we have observed four sources with the Australian Long Baseline Array. Results: We have detected and imaged one of the four sources observed. Assuming that the source is at a high redshift, we find its properties in agreement with properties of Compact Steep Spectrum sources. However, due to the lack of optical and infrared data the constraints are not particularly strong.
Weeren, R. J. van; Williams, W. L.; Hardcastle, M. J.; ...
2016-03-07
LOFAR, the Low-Frequency Array, is a powerful new radio telescope operating between 10 and 240 MHz. LOFAR allows detailed sensitive high-resolution studies of the low-frequency radio sky. At the same time LOFAR also provides excellent short baseline coverage to map di use extended emission. However, producing high-quality deep images is challenging due to the presence of direction dependent calibration errors, caused by imperfect knowledge of the station beam shapes and the ionosphere. Furthermore, the large data volume and presence of station clock errors present additional di culties. In this paper we present a new calibration scheme, which we name facetmore » calibration, to obtain deep high-resolution LOFAR High Band Antenna images using the Dutch part of the array. This scheme solves and corrects the direction dependent errors in a number of facets that cover the observed eld of view. Facet calibration provides close to thermal noise limited images for a typical 8 hr observing run at ~5'' resolution, meeting the speci cations of the LOFAR Tier-1 northern survey.« less
An MF/HF radio array for radio and radar imaging of the ionosphere
NASA Astrophysics Data System (ADS)
Isham, Brett; Gustavsson, Bjorn; Belyey, Vasyl; Bullett, Terrence
2016-07-01
The Aguadilla Radio Array will be installed at the Interamerican University Aguadilla Campus, located in northwestern Puerto Rico. The array is intended for broad-band medium and high-frequency (MF/HF, roughly 2 to 25 MHz) radio and bistatic radar observations of the ionosphere. The main array consists of 20 antenna elements, arranged in a semi-random pattern providing a good distribution of baseline vectors, with 6-meter minimum spacing to eliminate spacial aliasing. A relocatable 6-element array is also being developed, in which each element consists of a crossed pair of active electric dipoles and all associated electronics for phase-coherent radio measurements. A primary scientific goal of the array is to create images of the region of ionospheric radio emissions stimulated by the new Arecibo Observatory high-power high-frequency radio transmitter. A second primary goal is the study of ionospheric structure and dynamics via coherent radar imaging of the ionosphere in collaboration with the University of Colorado / NOAA Versatile Interferometric Pulsed Ionospheric Radar (VIPIR), located at the USGS San Juan Observatory in Cayey, Puerto Rico. In addition to ionospheric research in collaboration with the Cayey and Arecibo Observatories, the goals of the project include the development of radio sounding, polarization, interferometry, and imaging techniques, and training of students at the university and high school levels.
Status of a Novel 4-Band Submm/mm Camera for the Caltech Submillimeter Observatory
NASA Astrophysics Data System (ADS)
Noroozian, Omid; Day, P.; Glenn, J.; Golwala, S.; Kumar, S.; LeDuc, H. G.; Mazin, B.; Nguyen, H. T.; Schlaerth, J.; Vaillancourt, J. E.; Vayonakis, A.; Zmuidzinas, J.
2007-12-01
Submillimeter observations are important to the understanding of galaxy formation and evolution. Determination of the spectral energy distribution in the millimeter and submillimeter regimes allows important and powerful diagnostics. To this end, we are undertaking the construction of a 4-band (750, 850, 1100, 1300 microns) 8-arcminute field of view camera for the Caltech Submillimeter Observatory. The focal plane will make use of three novel technologies: photolithographic phased array antennae, on-chip band-pass filters, and microwave kinetic inductance detectors (MKID). The phased array antenna design obviates beam-defining feed horns. On-chip band-pass filters eliminate band-defining metal-mesh filters. Together, the antennae and filters enable each spatial pixel to observe in all four bands simultaneously. MKIDs are highly multiplexable background-limited photon detectors. Readout of the MKID array will be done with software-defined radio (See poster by Max-Moerbeck et al.). This camera will provide an order-of-magnitude larger mapping speed than existing instruments and will be comparable to SCUBA 2 in terms of the detection rate for dusty sources, but complementary to SCUBA 2 in terms of wavelength coverage. We present results from an engineering run with a demonstration array, the baseline design for the science array, and the status of instrument design, construction, and testing. We anticipate the camera will be available at the CSO in 2010. This work has been supported by NASA ROSES APRA grants NNG06GG16G and NNG06GC71G, the NASA JPL Research and Technology Development Program, and the Gordon and Betty Moore Foundation.
NASA Astrophysics Data System (ADS)
D'Andrea, M.; Lotti, S.; Macculi, C.; Piro, L.; Argan, A.; Gatti, F.
2017-12-01
ATHENA is a large X-ray observatory, planned to be launched by ESA in 2028 towards an L2 orbit. One of the two instruments of the payload is the X-IFU: a cryogenic spectrometer based on a large array of TES microcalorimeters, able to perform integral field spectrography in the 0.2-12 keV band (2.5 eV FWHM at 6 keV). The X-IFU sensitivity is highly degraded by the particle background expected in the L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the particle background level and enable the mission science goals, the instrument incorporates a Cryogenic AntiCoincidence detector (CryoAC). It is a 4 pixel TES based detector, placed < 1 mm below the main array. In this paper we report a scientific assessment of the CryoAC observational capabilities in the hard X-ray band (E > 10 keV). The aim of the study has been to understand if the present detector design can be improved in order to enlarge the X-IFU scientific capability on an energy band wider than the TES array. This is beyond the CryoAC baseline, being this instrument aimed to operate as anticoincidence particle detector and not conceived to perform X-ray observations.
Radio synthesis imaging during the GRO solar campaign
NASA Technical Reports Server (NTRS)
Gary, Dale E.
1992-01-01
The Owens Valley (OVRO) Solar Array was recently expanded to 5 antennas. Using frequency synthesis, the 5-element OVRO Solar Array has up to 450 effective baselines, which can be employed as necessary to make maps at frequencies in the range 1 to 18 GHz. Fortuitously, the last of the 5 antennas was completed and brought into operation on 7 Jun., just in time for the Gamma Ray Observatory (GRO)/Max 1991 observing campaign. Many events were observed jointly with OVRO and the BATSE experiment on GRO, including the six larger events that are presented in tabular form. Unfortunately, the X flares that occurred during the campaign all occurred outside the OVRO time range. The UV coverage of the newly expanded solar array, combined with frequency synthesis, should give a more complete view of solar flares in the microwave range by providing simultaneous spatial and spectral resolution. A promising application of MEM (maximum entropy) is also being pursued that will use smoothness criteria in both the spatial and spectral domains to give brightness temperature maps at each observed frequency (up to 45 frequencies every 10 s). Such maps can be compared directly with the theory of microwave emission to yield plasma parameters in the source - notably the number and energy distribution of electrons, for comparison with the x ray and gamma ray results from GRO.
Definition study for photovoltaic residential prototype system
NASA Technical Reports Server (NTRS)
Imamura, M. S.; Hulstrom, R. L.; Cookson, C.; Waldman, B. H.; Lane, R. A.
1976-01-01
A parametric sensitivity study and definition of the conceptual design is presented. A computer program containing the solar irradiance, solar array, and energy balance models was developed to determine the sensitivities of solar insolation and the corresponding solar array output at five sites selected for this study as well as the performance of several solar array/battery systems. A baseline electrical configuration was chosen, and three design options were recommended. The study indicates that the most sensitive parameters are the solar insolation and the inverter efficiency. The baseline PST selected is comprised of a 133 sg m solar array, 250 ampere hour battery, one to three inverters, and a full shunt regulator to limit the upper solar array voltage. A minicomputer controlled system is recommended to provide the overall control, display, and data acquisition requirements. Architectural renderings of two photovoltaic residential concepts, one above ground and the other underground, are presented. The institutional problems were defined in the areas of legal liabilities during and after installation of the PST, labor practices, building restrictions and architectural guides, and land use.
The VLA Low-band Ionosphere and Transient Experiment (VLITE)
NASA Astrophysics Data System (ADS)
Clarke, Tracy; Peters, Wendy; Brisken, Walter; Giacintucci, Simona; Kassim, Namir; Polisensky, Emil; Helmboldt, Joseph; Richards, Emily E.; Erickson, Alan; Ray, Paul S.; Kerr, Matthew T.; Deneva, Julia; Coburn, William; Huber, Robert; Long, Jeff
2018-01-01
The VLA Low-band Ionosphere and Transient Experiment (VLITE, http://vlite.nrao.edu/ ) is a commensal low-frequency observing system that has been operational on the National Radio Astronomy Observatory's Karl G. Jansky Very Large Array (VLA) since late 2014. The separate optical paths of the prime-focus sub-GHz dipole feeds and the Cassegrain-focus 1-50 GHz feeds allow both systems to operate simultaneously with independent correlators. The initial 2.5 years of VLITE operation provided real-time correlation of 10 antennas across the 320-384 MHz band with a total observing time approaching 12,000 hours. During the summer of 2017, VLITE was upgraded to a total of 16 antennas (more than doubling the number of baselines) with enhanced correlator capabilities to enable correlation of the on-the-fly observing mode being used for the new NRAO VLA Sky Survey (VLASS).We present an overview of the VLITE system, including highlights of the complexities of a commensal observing program, sparse-array challenges, and scientific capabilities from our science-ready data pipeline. In the longer term, we seek a path to broadband expansion across all VLA antennas to develop a powerful new LOw Band Observatory (LOBO).
NRAO Teams With NASA Gamma-Ray Satellite
NASA Astrophysics Data System (ADS)
2007-06-01
The National Radio Astronomy Observatory (NRAO) is teaming with NASA's upcoming Gamma-ray Large Area Space Telescope (GLAST) to allow astronomers to use both the orbiting facility and ground-based radio telescopes to maximize their scientific payoff. Under the new, streamlined process, astronomers can compete for coordinated observing time and support from both GLAST and NRAO's radio telescopes. GLAST satellite Artist's rendering of the GLAST spacecraft in orbit above the Earth. CREDIT: General Dynamics C4 Systems Click on Image for Larger File Images of NRAO Telescopes Robert C. Byrd Green Bank Telescope Very Long Baseline Array Very Large Array Atacama Large Millimeter/submillimeter Array GLAST is scheduled for launch no earlier than December 14. It will perform a survey of the entire sky at gamma-ray wavelengths every 3 hours using its primary instrument, the Large Area Telescope (LAT). NRAO operates the Very Large Array (VLA) in New Mexico, the continent-wide Very Long Baseline Array (VLBA), and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The NRAO is a research facility of the National Science Foundation (NSF). "Coordinated gamma-ray and radio observations of celestial objects will greatly enhance the ability to fully understand those objects. Astronomy today requires such multiwavelength studies, and this agreement paves the way for exciting, cutting-edge research," said Fred K.Y. Lo, NRAO Director. GLAST will be vastly more capable than previous gamma-ray satellites, and will carry an instrument, the GLAST Burst Monitor, specifically designed to detect gamma-ray bursts. GLAST observers will study objects such as active galaxies, pulsars, and supernova remnants, which are also readily studied with radio telescopes. By working together, NASA's GLAST mission and NSF's NRAO facilities can study flares from blazars over the widest possible range of energies, which is crucial to understanding how black holes, notorious for drawing matter in, can accelerate jets of material to nearly light speed. "The gamma-ray and radio observations will show scientists different aspects of many still-mysterious objects and processes. By providing a simple procedure for astronomers to win observing time on radio telescopes to follow up on our new gamma-ray discoveries, we're ensuring that we get the maximum scientific return from both," said GLAST project scientist Steve Ritz of NASA's Goddard Space Flight Center in Greenbelt, Md. "The importance of this coordinated approach has been highlighted by a recent two-day workshop at Goddard, in which we discussed the scientific benefits and coordination of radio Very Long Baseline Interferometry observations made in conjunction with GLAST." NRAO's radio telescopes have been used for many years as part of multiwavelength observing programs in conjunction with both ground-based and space-based observatories. Usually, however, astronomers had to submit separate observing proposals to two or more review committees, with no guarantee that they would win observing time on all desired telescopes. For its part, NASA spacecraft such as the Compton Gamma-Ray Observatory and the Chandra X-ray Observatory have opened wide new windows on the high-energy universe. Astronomers, including those on a recent NSF Senior Review panel, have urged reductions in administrative barriers to gaining observing time at multiple wavelengths. "This NRAO-GLAST agreement eases the process of winning observing time on NRAO telescopes to complement the GLAST all-sky gamma-ray survey. In particular, the continent-wide VLBA is the only existing radio telescope that can image and monitor the sites of extreme gamma-ray flares in distant galaxies," said Jim Ulvestad, NRAO's Director for VLA-VLBA Operations. "We expect to see arrangements like this become much more common in the future, to the benefit of the science." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. NASA's GLAST mission is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the U.S.
Detector characterization, optimization, and operation for ACTPol
NASA Astrophysics Data System (ADS)
Grace, Emily Ann
2016-01-01
Measurements of the temperature anisotropies of the Cosmic Microwave Background (CMB) have provided the foundation for much of our current knowledge of cosmology. Observations of the polarization of the CMB have already begun to build on this foundation and promise to illuminate open cosmological questions regarding the first moments of the universe and the properties of dark energy. The primary CMB polarization signal contains the signature of early universe physics including the possible imprint of inflationary gravitational waves, while a secondary signal arises due to late-time interactions of CMB photons which encode information about the formation and evolution of structure in the universe. The Atacama Cosmology Telescope Polarimeter (ACTPol), located at an elevation of 5200 meters in Chile and currently in its third season of observing, is designed to probe these signals with measurements of the CMB in both temperature and polarization from arcminute to degree scales. To measure the faint CMB polarization signal, ACTPol employs large, kilo-pixel detector arrays of transition edge sensor (TES) bolometers, which are cooled to a 100 mK operating temperature with a dilution refrigerator. Three such arrays are currently deployed, two with sensitivity to 150 GHz radiation and one dichroic array with 90 GHz and 150 GHz sensitivity. The operation of these large, monolithic detector arrays presents a number of challenges for both assembly and characterization. This thesis describes the design and assembly of the ACTPol polarimeter arrays and outlines techniques for their rapid characterization. These methods are employed to optimize the design and operating conditions of the detectors, select wafers for deployment, and evaluate the baseline array performance. The results of the application of these techniques to wafers from all three ACTPol arrays is described, including discussion of the measured thermal properties and time constants. Finally, aspects of the characterization and calibration of the deployed detectors during field operations are discussed.
Ge, Yiping; Guo, Lifang; Wu, Qiuju; Zhang, Mengli; Zeng, Rong; Lin, Tong
2016-11-01
A 755nm picosecond alexandrite laser with a diffractive lens array has been reported for the treatment of acne scar and photoaging with clinical ef cacy. In this study, we evaluated the application of the 755nm picosecond alexandrite laser with a diffractive lens array for facial photoaging in Chinese. Ten subjects with moderate facial photoaging were enrolled in a prospective, evaluator-blinded, open-label, and split-face trial to assess the ef cacy and safety of the 755nm picosecond alexandrite laser with a diffractive lens array for facial photoaging. Each subject received a series of four treatment sessions on the right side of the face at two-week intervals. The left side of the face served as the control side. Blinded evaluation of baseline, pre-treatment, and two-month follow-up visit was performed by two independent dermatologists on a 5-point global photoaging scale (GPS) and a 6/8-point Asian photographic scale (APS). Adverse events and discomfort associated with the treatment were also assessed. Signi cant improvement in photoaged tissue was observed on the treated side of the face, with a mean GPS score decrease from 2.67 to 1.44 at the two-month follow-up visit. A greater improvement in wrinkles was observed (2.78 vs 1.89; P less than 0.05) when com- pared to the improvement in pigmentation (2.67 vs 2.11; P less than 0.05). No changes were observed on the control side. Treatment results improved gradually throughout the treatment program and continued to the two-month follow up. In addition, skin tightening was perceived in all subjects, and shallower nasolabial folds were observed in 60% of the subjects on the treated side of face. Moderate pain and transient erythema were observed as the two main discomforts associated with the treatment. The 755nm picosecond alexandrite laser with a diffractive lens array is efficacious and safe for rejuvenation of photodamaged facial tissue in Chinese. J Drugs Dermatol. 2016;15(11):1390-1396..
500-MHz x-ray counting with a Si-APD and a fast-pulse processing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishimoto, Shunji; Taniguchi, Takashi; Tanaka, Manobu
2010-06-23
We introduce a counting system of up to 500 MHz for synchrotron x-ray high-rate measurements. A silicon avalanche photodiode detector was used in the counting system. The fast-pulse circuit of the amplifier was designed with hybrid ICs to prepare an ASIC system for a large-scale pixel array detector in near future. The fast amplifier consists of two cascading emitter-followers using 10-GHz band transistors. A count-rate of 3.25x10{sup 8} s{sup -1} was then achieved using the system for 8-keV x-rays. However, a baseline shift by adopting AC-coupling in the amplifier disturbed us to observe the maximum count of 4.49x10{sup 8} s{supmore » -1}, determined by electron-bunch filling into a ring accelerator. We also report that an amplifier with a baseline restorer was tested in order to keep the baseline level to be 0 V even at high input rates.« less
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Anderson, Robert C.; Tedder, Sarah A.; Tacina, Kathleen M.
2015-01-01
This paper presents results obtained during testing in optically-accessible, JP8-fueled, flame tube combustors using swirl-venturi lean direct injection (LDI) research hardware. The baseline LDI geometry has 9 fuel/air mixers arranged in a 3 x 3 array within a square chamber. 2-D results from this 9-element array are compared to results obtained in a cylindrical combustor using a 7-element array and a single element. In each case, the baseline element size remains the same. The effect of air swirler angle, and element arrangement on the presence of a central recirculation zone are presented. Only the highest swirl number air swirler produced a central recirculation zone for the single element swirl-venturi LDI and the 9-element LDI, but that same swirler did not produce a central recirculation zone for the 7-element LDI, possibly because of strong interactions due to element spacing within the array.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trott, Cathryn M.; Tingay, Steven J.; Wayth, Randall B.
2013-04-10
We define a framework for determining constraints on the detection rate of fast transient events from a population of underlying sources, with a view to incorporate beam shape, frequency effects, scattering effects, and detection efficiency into the metric. We then demonstrate a method for combining independent data sets into a single event rate constraint diagram, using a probabilistic approach to the limits on parameter space. We apply this new framework to present the latest results from the V-FASTR experiment, a commensal fast transients search using the Very Long Baseline Array (VLBA). In the 20 cm band, V-FASTR now has themore » ability to probe the regions of parameter space of importance for the observed Lorimer and Keane fast radio transient candidates by combining the information from observations with differing bandwidths, and properly accounting for the source dispersion measure, VLBA antenna beam shape, experiment time sampling, and stochastic nature of events. We then apply the framework to combine the results of the V-FASTR and Allen Telescope Array Fly's Eye experiments, demonstrating their complementarity. Expectations for fast transients experiments for the SKA Phase I dish array are then computed, and the impact of large differential bandwidths is discussed.« less
Distributed sensing of ionospheric irregularities with a GNSS receiver array
NASA Astrophysics Data System (ADS)
Su, Yang; Datta-Barua, Seebany; Bust, Gary S.; Deshpande, Kshitija B.
2017-08-01
We present analysis methods for studying the structuring and motion of ionospheric irregularities at the subkilometer scale sizes that produce L band scintillations. Spaced-receiver methods are used for Global Navigation Satellite System (GNSS) receivers' phase measurements over approximately subkilometer to kilometer length baselines for the first time. The quantities estimated by these techniques are plasma drift velocity, diffraction anisotropy magnitude and orientation, and characteristic velocity. Uncertainties are quantified by ensemble simulation of noise on the phase signals carried through to the observations of the spaced-receiver linear system. These covariances are then propagated through to uncertainties on drifts through linearization about the estimated values of the state. Five receivers of SAGA, the Scintillation Auroral Global Positioning System (GPS) Array, provide 100 Hz power and phase data for each channel at L1 frequency. The array is sited in the auroral zone at Poker Flat Research Range, Alaska. A case study of a single scintillating satellite observed by the array is used to demonstrate the spaced-receiver and uncertainty estimation process. A second case study estimates drifts as measured by multiple scintillating channels. These scintillations are correlated with auroral activity, based on all-sky camera images. Measurements and uncertainty estimates made over a 30 min period are compared to a collocated incoherent scatter radar and show good agreement in horizontal drift speed and direction during periods of scintillation for which the characteristic velocity is less than the drift velocity.
VizieR Online Data Catalog: Southern H II Region Discovery Survey: pilot survey (Brown+, 2017)
NASA Astrophysics Data System (ADS)
Brown, C.; Jordan, C.; Dickey, J. M.; Anderson, L. D.; Armentrout, W. P.; Balser, D. S.; Bania, T. M.; Dawson, J. R.; Mc Clure-Griffiths, N. M.; Wenger, T. V.
2018-05-01
The Southern H II Region Discovery Survey (SHRDS) is a multi-year project using the Australia Telescope Compact Array (ATCA) to complement the GBT and Arecibo HRDS by extending the survey area into the southern sky (δ<-45°). This area includes the Southern end of the Galactic Bar, the Near and Far 3 kpc Arms, the Norma/Cygnus Arm, the Scutum/Crux Arm, the Sagitttarius/Carina Arm, and outside the solar circle, the Perseus Arm, and the Outer Arm. All pilot SHRDS observations used the ATCA in the five antenna H75 array configuration, giving a nominal maximum baseline of 75 m and a beam size of FWHM ~65" at 7.8 GHz depending on the declination and hour angles of the observations. The SHRDS pilot observations were done in two sessions. Epoch I, observed 2013 June 30, focused on candidates that were expected to show bright radio recombination line (RRL) detections, which they did. Epoch II, observed 2014 June 26 and 27, used a list of candidates with expected flux densities typical of the SHRDS catalog as a whole. The two epochs also used different longitude ranges in order to generate samples of H II regions with different Galactic radii. (3 data files).
Launch Will Create a Radio Telescope Larger than Earth
NASA Astrophysics Data System (ADS)
NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long Baseline Interferometry project at JPL. "Observations of cosmic masers -- naturally-occurring microwave radio amplifiers -- will tell us new things about the process of star formation and activity in the heart of other galaxies." "By the 1980s, radio astronomers were observing the universe with assemblages of radio telescopes whose resolving power was limited only by the size of the Earth. Now, through a magnificent international effort, we will be able to break this barrier and see fine details of celestial objects that are beyond the reach of a purely ground-based telescope array. We anticipate a rich harvest of new scientific knowledge from VSOP," said Dr. Paul Vanden Bout, Director of NRAO. In the first weeks after launch, scientists and engineers will "test the deployment of the reflecting mesh telescope in orbit, the wide-band data link from the satellite to the ground, the performance of the low noise amplifiers in orbit, and the high-precision orbit determination and attitude control necessary for VLBI observations with an orbiting telescope," according to Dr. Joel Smith, manager of the U.S. Space VLBI project at JPL. Scientific observations are expected to begin in May. The 26-foot diameter orbiting radio telescope will observe celestial radio sources in concert with a number of the world's ground-based radio telescopes. The 1,830-pound satellite will be launched from ISAS' Kagoshima Space Center, at the southern tip of Kyushu, one of Japan's main islands, and will be the first launch with ISAS' new M-5 series rocket. The satellite will go into an elliptical orbit, varying between 620 to 12,400 miles above the Earth's surface. This orbit provides a wide range of distances between the satellite and ground-based telescopes, which is important for producing a high-quality image of the radio source being observed. One orbit of the Earth will take about six hours. The satellite's observations will concentrate on some of the most distant and intriguing objects in the universe, where the extremely sharp radio "vision" of the new system can provide much-needed information about a number of astronomical mysteries. For years, astronomers have known that powerful "engines" in the hearts of quasars and many galaxies are pouring out tremendous amounts of energy. They suspect that supermassive black holes, with gravitational fields so strong that not even light can escape them, lie in the centers of these "engines." The mechanism at work in the centers of quasars and active galaxies, however, remains a mystery. Ground-based radio telescopes, notably NRAO's Very Long Baseline Array (VLBA), have revealed fascinating new details in recent years, and VSOP is expected to add a wealth of new information on these objects, millions or billions of light-years distant from Earth. Many of these same objects act as super-powerful particle accelerators to eject "jets" of subatomic particles at nearly the speed of light. Scientists plan to use VSOP to monitor the changes and motions in these jets to learn more about how they originate and interact with their surroundings. The satellite also will aim at regions in the sky where giant collections of water and other molecules act as natural amplifiers of radio emission much as lasers amplify light. These regions, called cosmic masers, are found in areas where new stars are forming and near the centers of galaxies. Observations can provide the detail needed to measure motions of individual maser "spots" within these regions, and provide exciting new information about the star-forming regions and the galaxies where the masers reside. In addition, high-resolution studies of cosmic masers can allow astronomers to calculate distances to them with unprecedented accuracy, and thus help resolve continuing questions about the size and age of the universe. The project is a major international undertaking, with about 40 radio telescopes from more than 15 countries having committed time to co-observe with the satellite. This includes the National Science Foundation's Very Long Baseline Array (VLBA), an array of 10 telescopes spanning the United States from Hawaii to Saint Croix; NASA's Deep Space Network (DSN) sites in California, Spain, and Australia; the European VLBI Network, more than a dozen telescopes ranging from the United Kingdom to China; a Southern Hemisphere array of telescopes stretching from eastern Australia to South Africa; and Japan's network of domestic radio telescopes. In the United States, NASA is funding critical roles in the VSOP mission at both JPL and NRAO. JPL has built an array of three new tracking stations at its DSN sites in Goldstone, CA; Madrid, Spain; and near Canberra, Australia. A large existing tracking station at each of these sites has also been converted to an extremely sensitive radio telescope for simultaneous observations with the satellite. JPL also is providing precision orbit determination, scientific and operational planning support to the Japanese, and advice to U.S. astronomers who wish to observe with the satellite. NRAO is building a new tracking station at Green Bank, WV; contributing observing time on the VLBA array of telescopes; modifying existing data analysis hardware and software, and aiding astronomers with the analysis of the VSOP data. Much of the observational data will be processed at NRAO's facility in Socorro, NM, using the VLBA Correlator, a special purpose high-performance computer designed to process VLBI data. VSOP is the culmination of many years of planning and work by scientists and engineers around the world. Tests using NASA's Tracking and Data Relay Satellite System (TDRSS) proved the feasibility of space VLBI in 1986. Just last year, those old data were used again to test successfully the data-reduction facilities for VSOP. JPL manages the U.S. Space Very Long Baseline Interferometry project for NASA's Office of Space Science, Washington, DC. The VLBA, headquartered in Socorro, NM, is part of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
NASA Astrophysics Data System (ADS)
Hunter, Todd R.; Lucas, Robert; Broguière, Dominique; Fomalont, Ed B.; Dent, William R. F.; Phillips, Neil; Rabanus, David; Vlahakis, Catherine
2016-07-01
In a radio interferometer, the geometrical antenna positions are determined from measurements of the observed delay to each antenna from observations across the sky of many point sources whose positions are known to high accuracy. The determination of accurate antenna positions relies on accurate calibration of the dry and wet delay of the atmosphere above each antenna. For the Atacama Large Millimeter/Submillimeter Array (ALMA), with baseline lengths up to 15 kilometers, the geography of the site forces the height above mean sea level of the more distant antenna pads to be significantly lower than the central array. Thus, both the ground level meteorological values and the total water column can be quite different between antennas in the extended configurations. During 2015, a network of six additional weather stations was installed to monitor pressure, temperature, relative humidity and wind velocity, in order to test whether inclusion of these parameters could improve the repeatability of antenna position determinations in these configurations. We present an analysis of the data obtained during the ALMA Long Baseline Campaign of October through November 2015. The repeatability of antenna position measurements typically degrades as a function of antenna distance. Also, the scatter is more than three times worse in the vertical direction than in the local tangent plane, suggesting that a systematic effect is limiting the measurements. So far we have explored correcting the delay model for deviations from hydrostatic equilibrium in the measured air pressure and separating the partial pressure of water from the total pressure using water vapor radiometer (WVR) data. Correcting for these combined effects still does not provide a good match to the residual position errors in the vertical direction. One hypothesis is that the current model of water vapor may be too simple to fully remove the day-to-day variations in the wet delay. We describe possible new avenues of improvement, which include recalibrating the baseline measurement datasets using the contemporaneous measurements of the water vapor scale height and temperature lapse rate from the oxygen sounder, and applying more accurate measurements of the sky coupling of the WVRs.
VLBA Observations of Strong Anisotripic Radio Scattering Toward the Orion Nebula
NASA Astrophysics Data System (ADS)
Kounkel, Marina; Hartmann, Lee; Loinard, Laurent; Mioduszewski, Amy J.; Rodríguez, Luis F.; Ortiz-León, Gisela N.; Johnson, Michael D.; Torres, Rosa M.; Briceño, Cesar
2018-05-01
We present observations of VLBA 20, a radio source found toward the edge of the Orion Nebula Cluster (ONC). Nonthermal emission dominates the spectral energy distribution of this object from the radio to mid-infrared regime, suggesting that VLBA 20 is extragalactic. This source is heavily scattered in the radio regime. Very Long Baseline Array observations resolve it to ∼34 × 19 mas at 5 GHz, and the wavelength dependence of the scattering disk is consistent with ν ‑2 at other frequencies. The origin of the scattering is most likely the ionized X-ray emitting gas from the winds of the most massive stars of the ONC. The scattering is highly anisotropic, with the axis ratio of 2:1, higher than what is typically observed toward other sources.
Global e-VLBI observations of the gamma-ray narrow line Seyfert 1 PMN J0948+0022
NASA Astrophysics Data System (ADS)
Giroletti, M.; Paragi, Z.; Bignall, H.; Doi, A.; Foschini, L.; Gabányi, K. É.; Reynolds, C.; Blanchard, J.; Campbell, R. M.; Colomer, F.; Hong, X.; Kadler, M.; Kino, M.; van Langevelde, H. J.; Nagai, H.; Phillips, C.; Sekido, M.; Szomoru, A.; Tzioumis, A. K.
2011-04-01
Context. There is growing evidence of relativistic jets in radio-loud narrow-line Seyfert 1 (RL-NLS1) galaxies. Aims: We constrain the observational properties of the radio emission in the first RL-NLS1 galaxy ever detected in gamma-rays, PMN J0948+0022, i.e., its flux density and structure in both total intensity and polarization, its compactness, and variability. Methods: We performed three real-time e-VLBI observations of PMN J0948+0022 at 22 GHz, using a global array including telescopes in Europe, East Asia, and Australia. These are the first e-VLBI science observations ever carried out with a global array, reaching a maximum baseline length of 12 458 km. The observations were part of a large multiwavelength campaign in 2009. Results: The source is detected at all three epochs. The structure is dominated by a bright component, more compact than 55 μas, with a fainter component at a position angle θ ~ 35°. Relativistic beaming is required by the observed brightness temperature of 3.4 × 1011 K. Polarization is detected at a level of about 1%. Conclusions: The parameters derived by the VLBI observations, in addition to the broad-band properties, confirm that PMN J0948+0022 is similar to flat spectrum radio quasars. Global e-VLBI is a reliable and promising technique for future studies.
Joint Meteorological Statistics of Observing Sites for the Event Horizon Telescope
NASA Astrophysics Data System (ADS)
Lope Córdova Rosado, Rodrigo Eduardo; Doeleman, Sheperd; Paine, Scott; Johnson, Michael; Event Horizon Telescope (EHT)
2018-01-01
The Event Horizon Telescope (EHT) aims to resolve the general relativistic shadow of Sgr A*, the supermassive black hole at the center of our galaxy, via Very Long Baseline Interferometry (VLBI) measurements with a multinational array of radio observatories. In order to optimize the scheduling of future observations, we have developed tools to model the atmospheric opacity at each EHT site using the past 10 years of Global Forecast System (GFS) data describing the atmospheric state. These tools allow us to determine the ideal observing windows for EHT observations and to assess the suitability and impact of new EHT sites. We describe our modeling framework, compare our models to in-situ measurements at EHT sites, and discuss the implications of weather limitations for planned extensions of the EHT to higher frequencies, as well as additional sites and observation windows.
Atmospheric phase characteristics of the ALMA long baseline
NASA Astrophysics Data System (ADS)
Matsushita, Satoki; Asaki, Yoshiharu; Fomalont, Edward B.; Barkats, Denis; Corder, Stuartt A.; Hills, Richard E.; Kawabe, Ryohei; Maud, Luke T.; Morita, Koh-Ichiro; Nikolic, Bojan; Tilanus, Remo P. J.; Vlahakis, Catherine
2016-07-01
Atacama Large Millimeter/submillimeter Array (ALMA) is the world's largest millimeter/ submillimeter (mm / Submm) interferometer. Along with science observations, ALMA has performed several long baseline campaigns in the last 6 years to characterize and optimize its long baseline capabilities. To achieve full long baseline capability of ALMA, it is important to understand the characteristics of atmospheric phase fluctuation at long baselines, since it is believed to be the main cause of mm/submm image degradation. For the first time, we present detailed properties of atmospheric phase fluctuation at mm/submm wavelength from baselines up to 15 km in length. Atmospheric phase fluctuation increases as a function of baseline length with a power-law slope close to 0.6, and many of the data display a shallower slope (02.-03) at baseline length greater than about 15 km. Some of the data, on the other hand, show a single slope up to the maximum baseline length of around 15 km. The phase correction method based on water vapor radiometers (WVRs) works well, especially for cases with precipitable water vapor (PWV) greater than 1 mm, typically yielding a 50% decrease or more in the degree of phase fluctuation. However, signicant amount of atmospheric phase fluctuation still remains after the WVR phase correction: about 200 micron in rms excess path length (rms phase fluctuation in unit of length) even at PWV less than 1 mm. This result suggests the existence of other non-water-vapor sources of phase fluctuation. and emphasizes the need for additional phase correction methods, such as band-to-band and/or fast switching.
Synthesizing SMOS Zero-Baselines with Aquarius Brightness Temperature Simulator
NASA Technical Reports Server (NTRS)
Colliander, A.; Dinnat, E.; Le Vine, D.; Kainulainen, J.
2012-01-01
SMOS [1] and Aquarius [2] are ESA and NASA missions, respectively, to make L-band measurements from the Low Earth Orbit. SMOS makes passive measurements whereas Aquarius measures both passive and active. SMOS was launched in November 2009 and Aquarius in June 2011.The scientific objectives of the missions are overlapping: both missions aim at mapping the global Sea Surface Salinity (SSS). Additionally, SMOS mission produces soil moisture product (however, Aquarius data will eventually be used for retrieving soil moisture too). The consistency of the brightness temperature observations made by the two instruments is essential for long-term studies of SSS and soil moisture. For resolving the consistency, the calibration of the instruments is the key. The basis of the SMOS brightness temperature level is the measurements performed with the so-called zero-baselines [3]; SMOS employs an interferometric measurement technique which forms a brightness temperature image from several baselines constructed by combination of multiple receivers in an array; zero-length baseline defines the overall brightness temperature level. The basis of the Aquarius brightness temperature level is resolved from the brightness temperature simulator combined with ancillary data such as antenna patterns and environmental models [4]. Consistency between the SMOS zero-baseline measurements and the simulator output would provide a robust basis for establishing the overall comparability of the missions.
Geophysical Monitoring at the CO2SINK Site: Combining Seismic and Geoelectric Data
NASA Astrophysics Data System (ADS)
Giese, R.; Lüth, S.; Cosma, C.; Juhlin, C.; Kiessling, D.; Schütt, H.; Schöbel, B.; Schmidt-Hattenberger, C.; Schilling, F.; Co2SINK Group
2009-04-01
The CO2SINK project at the German town of Ketzin (near Berlin), is aimed at a pilot storage of CO2, and at developing and testing efficient integrated monitoring procedures (physical, chemical, and biological observations) for assessing the processes triggered within the reservoir by a long term injection operation. In particular, geophysical methods as seismic and geoelectric measurements have delivered the structural framework, and they enable to observe the reaction of the reservoir and the caprock to CO2 propagation at locations which are not accessible for direct observations. We report on the seismic monitoring program of the CO2SINK project which comprises baseline and repeat observations at different scales in time and space, combined with comprehensive geoelectrical monitoring performed in the Ketzin wells and on the surface. The main objectives of the 3D seismic survey (carried out in spring 2005) were to provide the structural model around the location of the Ketzin wells, to verify earlier geologic interpretations of structure based on vintage 2D seismic and borehole data, as well as providing a baseline for future seismic surveys. The uppermost 1000 m are well imaged and show an anticlinal structure with an east-west striking central graben on its top. The 3D baseline survey was extended by VSP (vertical seismic profiling), MSP (moving source profiling) on 7 profiles, and crosshole tomographic measurements. 2D "star" measurements were carried out on the 7 MSP profiles in order to tie-in the down-hole surveys with the 3D baseline survey. These measurements provide enhanced resolution in time (faster and more cost effective than a full 3D survey) and space (higher source and receiver frequencies). Three crosshole measurements were performed, one baseline survey in May 2008, and two repeats in July and August 2008, respectively. A third crosshole repeat is planned for a later stage in the project when a steady state situation has been reached in the reservoir between the two observation boreholes Ktzi 200 and Ktzi 202. The interpretation of the time lapse crosshole seismic measurements is still work in progress. A time lapse effect can be recognized on cross correlations of baseline and repeat data indicating that considering the full wave form of the recordings does have the potential to locate subtle changes in the seismic properties of the reservoir due to CO2 injection. In addition, we show the results of the site-specific geoelectrical monitoring concept VERA (Vertical Electrical Resistivity Array), which covers electrical resistivity measurements in all three Ketzin wells. The array consists of 45 permanent electrodes (15 in each well), placed on the electrically insulated casings of the wells in the 600 m to 750 m depth range with a spacing of 10 m. This layout has been designed according to numerical forward modeling assuming electrical properties of pre- and post-injection scenarios. In addition to the geoelectric downhole measurement setup, surface to surface, and surface to downhole measurements are added in order to enlarge the area of observation between the three Ketzin wells to a hemispherical area (with a radius of about 1.5 km) around the wells. First results of the Electrical Resistivity Tomography (ERT) fit the expected reservoir behaviour. Higher resistivity values (presently up to factor 3 compared to other horizons) represent the intervals of the sandstone reservoir as preferred pathways of the CO2 propagation.
NASA Technical Reports Server (NTRS)
Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.;
2016-01-01
The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of approximately 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 kiloelectronvolts. The instrument will provide unprecedented spectral resolution of approximately 2.5 electronvolts at energies of up to 7 kiloelectronvolts and will accommodate photon fluxes of 1 milliCrab (90 counts per second) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28 arcseconds pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 by × 18 small pixel array (SPA) of 2 arcseconds pixels in the central approximately 36 arcseconds region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 milliCrabs (900 counts per second) or alternately for improved spectral performance (less than 1.5 electronvolts) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.
NASA Astrophysics Data System (ADS)
Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Miniussi, A. R.; Porter, F. S.; Sadleir, J. E.; Sakai, K.; Wakeham, N. A.; Wassell, E. J.; Yoon, W.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Morgan, K. M.; Pappas, C. G.; Reintsema, C. N.; Swetz, D. S.; Ullom, J. N.; Irwin, K. D.; Akamatsu, H.; Gottardi, L.; den Hartog, R.; Jackson, B. D.; van der Kuur, J.; Barret, D.; Peille, P.
2016-07-01
The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 keV. The instrument will provide unprecedented spectral resolution of 2.5 eV at energies of up to 7 keV and will accommodate photon fluxes of 1 mCrab (90 cps) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28" pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 × 18 small pixel array (SPA) of 2" pixels in the central 36" region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 mCrab (900 cps) or alternately for improved spectral performance (< 1.5 eV) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.
X-ray performance of 0.18 µm CMOS APS test arrays for solar observation
NASA Astrophysics Data System (ADS)
Dryer, B. J.; Holland, A. D.; Jerram, P.; Sakao, Taro
2012-07-01
Solar-C is the third generation solar observatory led by JAXA. The accepted ‘Plan-B’ payload calls for a radiation-hard solar-staring photon-counting x-ray spectrometer. CMOS APS technology offers advantages over CCDs for such an application such as increased radiation hardness and high frame rate (instrument target of 1000 fps). Looking towards the solution of a bespoke CMOS APS, this paper reports the x-ray spectroscopy performance, concentrating on charge collection efficiency and split event analysis, of two baseline e2v CMOS APSs not designed for x-ray performance, the EV76C454 and the Ocean Colour Imager (OCI) test array. The EV76C454 is an industrial 5T APS designed for machine vision, available back and front illuminated. The OCI test arrays have varying pixel design across the chips, but are 4T, back illuminated and have thin low-resistivity and thick high-resistivity variants. The OCI test arrays’ pixel variants allow understanding of how pixel design can affect x-ray performance.
Magdalena Ridge Observatory Interferometer - New Path to First Light
NASA Astrophysics Data System (ADS)
Creech-Eakman, Michelle J.; Payne, Ifan; Haniff, Chris; Buscher, David; Young, John; Romero, Van; Magdalena Ridge Observatory Interferometer Team
2016-01-01
The Magdalena Ridge Observatory Interferometer (MROI), a 10-telescope optical/near-IR interferometer with baselines ranging from 7.8 to 343 meters, has been conceived to be the most ambitious optical/NIR interferometric array under construction to date. U.S. Congressional, N.M. State and university funding (from NM Tech and partner funding at the University of Cambridge) attained from 2000-13 provided for a nearly complete system design, installation of a large portion of the physical infrastructure at the Magdalena Ridge, the first telescope, delay line, fringe tracker and many other necessary sub-systems. New funding has recently been obtained under a cooperative agreement between NM Tech and the Air Force Research Lab (AFRL) to bring the facility to three fully operational telescopes and associated hardware such that first fringes and closure phase will be realized within 5 years. The completed facility will be able to provide support for observing geosynchronous satellites as well as many exciting observations of astronomical targets. An update on the MROI status, plans moving forward for the next 5 years, and some examples of observational applications feasible at different phases of the array's completion will be presented.
The Impact of the AuScope VLBI Observations and the Regional AUSTRAL Sessions on the TRF
NASA Astrophysics Data System (ADS)
Plank, L.; Lovell, J.; McCallum, J.; Boehm, J.; Shabala, S.; Mayer, D.; Sun, J.; Titov, O.; Weston, S.; Quick, J.; Rastorgueva-Foi, E.
2014-12-01
The AuScope VLBI array was built with the purpose to improve the terrestrial (TRF) and celestial reference frames in the southern hemisphere. Since 2010 the three 12-m antennas in Hobart (Tasmania), Katherine (Northern Territory) and Yarragadee (Western Australia) heavily contribute to the global VLBI observations coordinated by the International VLBI Service for Geodesy and Astrometry. In 2011, the AUSTRAL VLBI program was started, with more than 40 sessions being observed so far. In the AUSTRALs, the three AuScope antennas observe together with the new 15-m dish in Hartebeesthoek (South Africa) and the 12-m antenna in Warkworth (New Zealand). Recently, the planned observations have been expanded again, with 50 additional sessions scheduled until mid-2015, along with 3 continuous campaigns covering 15 days each. All AUSTRALs are recorded with an increased data rate of 1 Gbps, allowing to compensate for the reduced sensitivity of the generally smaller dish size. We evaluate the positive impact of the AuScope VLBI program on the global TRF. This is due to the increased number of observations and the improved homogeneity of the global VLBI network. All data collected within this intense observing program is analysed and geodetic results are presented. This includes time series of baseline lengths and station coordinates of the contributing stations. We compare the results obtained within the regional AUSTRAL sessions with the ones of the classical global VLBI networks and identify superiorities and shortcomings of both. The high number of sessions gives high accuracies and good repeatabilities of the determined parameters. Additionally, remaining variations of baseline lengths can be identified and are compared against by default un-modelled station motions due to hydrology and atmosphere loading. Finally, we give an outlook on future plans for the AuScope antennas and the AUSTRAL observing program: on future operations, expected improvements through hardware upgrades as well as research on the use of sibling telescopes available at two sites within the AUSTRAL array (Hobart and Hartebeesthoek).
NASA Technical Reports Server (NTRS)
Krabill, W. B.; Hoge, F. E.; Martin, C. F.
1982-01-01
The use of aircraft laser ranging for the determination of baselines between ground based retroreflectors was investigated via simulations and with tests at Wallops Flight Center using the Airborne Oceanographic Lidar (AOL) on the Wallops C-54 aircraft ranging to a reflector array deployed around one of the Wallops runways. The aircraft altitude and reflector spacing were chosen on the basis of scaled down modeling of spacecraft tracking from 1000 km of reflectors separated by some 52 km, or of high altitude (10 km) aircraft tracking of reflectors separated by some 500 m. Aircraft altitudes flown for different passes across the runway reflector array varied from 800 m to 1350 m, with 32 reflectors deployed over an approximtely 300 m x 500 m ground pattern. The AOL transmitted 400 pulses/sec with a scan rate of 5/sec in a near circular pattern, so that the majority of the pulses were reflected by the runway surface or its environs rather than by retroreflectors. The return pulse characteristics clearly showed the high reflectivity of portions of the runway, with several returns indistinguishable in amplitude from reflector returns. For each pass across the reflector field, typically six to ten reflector hits were identified, consistent with that predicted by simulations and the observed transmitted elliptical pulse size.
Zhang, Mingsha; Wang, Xiaolan; Goldberg, Michael E.
2014-01-01
We recorded the activity of neurons in the lateral intraparietal area of two monkeys while they performed two similar visual search tasks, one difficult, one easy. Each task began with a period of fixation followed by an array consisting of a single capital T and a number of lowercase t’s. The monkey had to find the capital T and report its orientation, upright or inverted, with a hand movement. In the easy task the monkey could explore the array with saccades. In the difficult task the monkey had to continue fixating and find the capital T in the visual periphery. The baseline activity measured during the fixation period, at a time in which the monkey could not know if the impending task would be difficult or easy or where the target would appear, predicted the monkey’s probability of success or failure on the task. The baseline activity correlated inversely with the monkey's recent history of success and directly with the intensity of the response to the search array on the current trial. The baseline activity was unrelated to the monkey’s spatial locus of attention as determined by the location of the cue in a cued visual reaction time task. We suggest that rather than merely reflecting the noise in the system, the baseline signal reflects the cortical manifestation of modulatory state, motivational, or arousal pathways, which determine the efficiency of cortical sensorimotor processing and the quality of the monkey’s performance. PMID:24889623
Subparsec-scale structure and evolution of Centaurus A (NGC5128).
Jauncey, D L; Tingay, S J; Preston, R A; Reynolds, J E; Lovell, J E; McCulloch, P M; Tzioumis, A K; Costa, M E; Murphy, D W; Meier, D L; Jones, D L; Amy, S W; Biggs, J D; Blair, D G; Clay, R W; Edwards, P G; Ellingsen, S P; Ferris, R H; Gough, R G; Harbison, P; Jones, P A; King, E A; Kemball, A J; Migenes, V; Nicolson, G D; Sinclair, M W; Van Ommen, T; Wark, R M; White, G L
1995-01-01
We present a series of 8.4-GHz very-long-baseline radio interferometry images of the nucleus of Centaurus A (NGC5128) made with a Southern Hemisphere array, representing a 3.3-year monitoring effort. The nuclear radio jet is approximately 50 milliarcseconds in extent, or at the 3.5-megaparsec distance of NGC5128, approximately 1 parsec in length. Subluminal motion is seen and structural changes are observed on time scales shorter than 4 months. High-resolution observations at 4.8 and 8.4 GHz made in November 1992 reveal a complex morphology and allow us to unambiguously identify the self-absorbed core located at the southwestern end of the jet. PMID:11607599
Subparsec-scale structure and evolution of Centaurus A (NGC5128).
Jauncey, D L; Tingay, S J; Preston, R A; Reynolds, J E; Lovell, J E; McCulloch, P M; Tzioumis, A K; Costa, M E; Murphy, D W; Meier, D L; Jones, D L; Amy, S W; Biggs, J D; Blair, D G; Clay, R W; Edwards, P G; Ellingsen, S P; Ferris, R H; Gough, R G; Harbison, P; Jones, P A; King, E A; Kemball, A J; Migenes, V; Nicolson, G D; Sinclair, M W; Van Ommen, T; Wark, R M; White, G L
1995-12-05
We present a series of 8.4-GHz very-long-baseline radio interferometry images of the nucleus of Centaurus A (NGC5128) made with a Southern Hemisphere array, representing a 3.3-year monitoring effort. The nuclear radio jet is approximately 50 milliarcseconds in extent, or at the 3.5-megaparsec distance of NGC5128, approximately 1 parsec in length. Subluminal motion is seen and structural changes are observed on time scales shorter than 4 months. High-resolution observations at 4.8 and 8.4 GHz made in November 1992 reveal a complex morphology and allow us to unambiguously identify the self-absorbed core located at the southwestern end of the jet.
Detection of the Intrinsic Size of Sagittarius A* Through Closure Amplitude Imaging
NASA Astrophysics Data System (ADS)
Bower, Geoffrey C.; Falcke, Heino; Herrnstein, Robeson M.; Zhao, Jun-Hui; Goss, W. M.; Backer, Donald C.
2004-04-01
We have detected the intrinsic size of Sagittarius A*, the Galactic center radio source associated with a supermassive black hole, showing that the short-wavelength radio emission arises from very near the event horizon of the black hole. Radio observations with the Very Long Baseline Array show that the source has a size of 24 +/- 2 Schwarzschild radii at 7-millimeter wavelength. In one of eight 7-millimeter epochs, we also detected an increase in the intrinsic size of 60+25
NASA Technical Reports Server (NTRS)
Tsou, P.; Stolte, W.
1978-01-01
The paper examines the impact of module and array designs on the balance-of-plant costs for flat-plate terrestrial central station power applications. Consideration is given to the following types of arrays: horizontal, tandem, augmented, tilt adjusted, and E-W tracking. The life-cycle cost of a 20-year plant life serves as the costing criteria for making design and cost tradeoffs. A tailored code of accounts is developed for determining consistent photovoltaic power plant costs and providing credible photovoltaic system cost baselines for flat-plate module and array designs by costing several varying array design approaches.
H I observations of the nearest starburst galaxy NGC 253 with the SKA precursor KAT-7
NASA Astrophysics Data System (ADS)
Lucero, D. M.; Carignan, C.; Elson, E. C.; Randriamampandry, T. H.; Jarrett, T. H.; Oosterloo, T. A.; Heald, G. H.
2015-07-01
We present H I observations of the Sculptor group starburst spiral galaxy NGC 253, obtained with the Karoo Array Telescope (KAT-7). KAT-7 is a pathfinder for the Square Kilometre Array precursor MeerKAT, under construction. The short baselines and low system temperature of the telescope make it very sensitive to large-scale, low-surface-brightness emission. The KAT-7 observations detected 33 per cent more flux than previous Very Large Array observations, mainly in the outer parts and in the halo for a total H I mass of 2.1 ± 0.1 × 109 M⊙. H I can be found at large distances perpendicular to the plane out to projected distances of ˜9-10 kpc away from the nucleus and ˜13-14 kpc at the edge of the disc. A novel technique, based on interactive profile fitting, was used to separate the main disc gas from the anomalous (halo) gas. The rotation curve (RC) derived for the H I disc confirms that it is declining in the outer parts, as seen in previous optical Fabry-Perot measurements. As for the anomalous component, its RC has a very shallow gradient in the inner parts and turns over at the same radius as the disc, kinematically lagging by 100 km s-1. The kinematics of the observed extra-planar gas is compatible with an outflow due to the central starburst and galactic fountains in the outer parts. However, the gas kinematics shows no evidence for inflow. Analysis of the near-IR WISE data, shows clearly that the star formation rate is compatible with the starburst nature of NGC 253.
Noise Spectra and Directivity For a Scale-Model Landing Gear
NASA Technical Reports Server (NTRS)
Humphreys, William M., Jr.; Brooks, Thomas F.
2007-01-01
An extensive experimental study has been conducted to acquire detailed noise spectra and directivity data for a high-fidelity, 6.3%-scale, Boeing 777 main landing gear. The measurements were conducted in the NASA Langley Quiet Flow Facility using a 41-microphone directional array system positioned at a range of polar and azimuthal observer angles with respect to the model. DAMAS (Deconvolution Approach for the Mapping of Acoustic Sources) array processing as well as straightforward individual microphone processing were employed to compile unique flyover and sideline directivity databases for a range of freestream Mach numbers (0.11 - 0.17) covering typical approach conditions. Comprehensive corrections were applied to the test data to account for shear layer ray path and amplitude variations. This allowed proper beamforming at different measurement orientations, as well as directivity presentation in free-field emission coordinates. Four different configurations of the landing gear were tested: a baseline configuration with and without an attached side door, and a noise reduction concept "toboggan" truck fairing with and without side door. DAMAS noise source distributions were determined. Spectral analyses demonstrated that individual microphones could establish model spectra. This finding permitted the determination of unique, spatially-detailed directivity contours of spectral band levels over a hemispherical surface. Spectral scaling for the baseline model confirmed that the acoustic intensity scaled with the expected sixth-power of the Mach number. Finally, comparison of spectra and directivity between the baseline gear and the gear with an attached toboggan indicated that the toboggan fairing may be of some value in reducing gear noise over particular frequency ranges.
The LBA Calibrator Survey of Southern Compact Extragalactic Radio Sources - LCS1
NASA Technical Reports Server (NTRS)
Petrov, Leonid; Phillips, Chris; Bertarini, Alessandra; Murphy, Tara; Sadler, Elaine M.
2011-01-01
We present a catalogue of accurate positions and correlated flux densities for 410 flat-spectrum, compact extragalactic radio sources previously detected in the Australia Telescope 20 GHz (AT20G) survey. The catalogue spans the declination range [-90deg, -40deg] and was constructed from four 24-h very long baseline interferometry (VLBI) observing sessions with the Australian Long Baseline Array at 8.3 GHz. The VLBI detection rate in these experiments is 97 per cent, the median uncertainty of the source positions is 2.6 mas and the median correlated flux density on projected baselines longer than 1000 km is 0.14 Jy. The goals of this work are (1) to provide a pool of southern sources with positions accurate to a few milliarcsec, which can be used for phase-referencing observations, geodetic VLBI and space navigation; (2) to extend the complete flux-limited sample of compact extragalactic sources to the Southern hemisphere; and (3) to investigate the parsec-scale properties of high-frequency selected sources from the AT20G survey. As a result of this VLBI campaign, the number of compact radio sources south of declination -40deg which have measured VLBI correlated flux densities and positions known to milliarcsec accuracy has increased by a factor of 3.5.
Report of the Working Group on Space/Lunar Tradeoffs
NASA Technical Reports Server (NTRS)
1992-01-01
The group discussed the advantages and disadvantages of five locations for an optical/infrared array: low-Earth orbit (LEO), Sun-synchronous Earth-orbit, geosynchronous orbit (GEO), Lagrangian points (L4 and L5), and the lunar surface. The factors affecting an array and our assessments of them are given and briefly discussed. In the discussions, two axioms are assumed: (1) Human expansion into space and to the Moon will occur; and (2) The Space Station will be constructed and operational. The major conclusion reached is that baselines of moderate size (greater than 300 m) are best done on the Moon and that large baselines (greater than 10 km) can be done only on the Moon. Three areas needing additional research were identified as follows. (1) Studies are needed on methods to steer long-baseline systems in orbit. This involves learning how to control free-flyers. It is not clear how the difficulty of control varies with orbital elevation. (2) More work is needed on the internal metrology of array systems, both orbital and lunar-surface systems.(3) We need to understand the radiation effects on detectors and electronics and learn how to mitigate them.
NASA Astrophysics Data System (ADS)
Imai, Masafumi; Lecacheux, Alain; Clarke, Tracy E.; Higgins, Charles A.; Panchenko, Mykhaylo; Dowell, Jayce; Imai, Kazumasa; Brazhenko, Anatolii I.; Frantsuzenko, Anatolii V.; Konovalenko, Alexandr A.
2016-08-01
On 2015 February 21, simultaneous observations of Jupiter's decametric radio emission between 10 and 33 MHz were carried out using three powerful low-frequency radio telescopes: the Long Wavelength Array Station One in the USA, the Nançay Decameter Array in France, and the URAN2 telescope in Ukraine. We measured the lag times of short-bursts (S-bursts) for 105 minutes of data over effective baselines of up to 8460 km by using cross-correlation analysis of the spectrograms from each instrument. Of particular interest is the measurement of the beaming thickness of S-bursts, testing if either flashlight- or beacon-like beaming is emanating from Jupiter. We find that the lag times for all pairs drift slightly as time elapses, in agreement with expectations from the flashlight-like beaming model. This leads to a new constraint of the minimum beaming thickness of 2.″66. Also, we find that most of the analyzed data abound with S-bursts, whose occurrence probability peaks at 17-18 MHz.
Gas hydrate environmental monitoring program in the Ulleung Basin, East Sea of Korea
NASA Astrophysics Data System (ADS)
Ryu, Byong-Jae; Chun, Jong-Hwa; McLean, Scott
2013-04-01
As a part of the Korean National Gas Hydrate Program, the Korea Institute of Geoscience and Mineral Resources (KIGAM) has been planned and conducted the environmental monitoring program for the gas hydrate production test in the Ulleung Basin, East Sea of Korea in 2014. This program includes a baseline survey using a KIGAM Seafloor Observation System (KISOS) and R/V TAMHAE II of KIGAM, development of a KIGAM Seafloor Monitoring System (KIMOS), and seafloor monitoring on various potential hazards associated with the dissociated gas from gas hydrates during the production test. The KIGAM also plans to conduct the geophysical survey for determining the change of gas hydrate reservoirs and production-efficiency around the production well before and after the production test. During production test, release of gas dissociated from the gas hydrate to the water column, seafloor deformation, changes in chemical characteristics of bottom water, changes in seafloor turbidity, etc. will be monitored by using the various monitoring instruments. The KIMOS consists of a near-field observation array and a far-field array. The near-field array is constructed with four remote sensor platforms each, and cabled to the primary node. The far-field sensor array will consists of four autonomous instrument pods. A scientific Remotely Operated Vehicle (ROV) will be used to deploy the sensor arrays, and to connect the cables to each field instrument package and a primary node. A ROV will also be tasked to collect the water and/or gas samples, and to identify any gas (bubble) plumes from the seafloor using a high-frequency sector scanning sonar. Power to the near-field instrument packages will be supplied by battery units located on the seafloor near the primary node. Data obtained from the instruments on the near-field array will be logged and downloaded in-situ at the primary node, and transmitted real-time to the support vessel using a ROV. These data will also be transmitted real-time to the drilling vessel via satellite.
Mechanical design of a low concentration ratio solar array for a space station application
NASA Technical Reports Server (NTRS)
Biss, M. S.; Hsu, L.
1983-01-01
This paper describes a preliminary study and conceptual design of a low concentration ratio solar array for a space station application with approximately a 100 kW power requirement. The baseline design calls for a multiple series of inverted, truncated, pyramidal optical elements with a geometric concentration ratio (GCR) of 6. It also calls for low life cycle cost, simple on-orbit maintainability, 1984 technology readiness date, and gallium arsenide (GaAs) of silicon (Si) solar cell interchangeability. Due to the large area needed to produce the amount of power required for the baseline space station, a symmetrical wing design, making maximum use of the commonality of parts approach, was taken. This paper will describe the mechanical and structural design of a mass-producible solar array that is very easy to tailor to the needs of the individual user requirement.
Hydrogen Epoch of Reinozation Array (HERA) Calibrated FFT Correlator Simulation
NASA Astrophysics Data System (ADS)
Salazar, Jeffrey David; Parsons, Aaron
2018-01-01
The Hydrogen Epoch of Reionization Array (HERA) project is an astronomical radio interferometer array with a redundant baseline configuration. Interferometer arrays are being used widely in radio astronomy because they have a variety of advantages over single antenna systems. For example, they produce images (visibilities) closely matching that of a large antenna (such as the Arecibo observatory), while both the hardware and maintenance costs are significantly lower. However, this method has some complications; one being the computational cost of correlating data from all of the antennas. A correlator is an electronic device that cross-correlates the data between the individual antennas; these are what radio astronomers call visibilities. HERA, being in its early stages, utilizes a traditional correlator system. The correlator cost scales as N2, where N is the number of antennas in the array. The purpose of a redundant baseline configuration array setup is for the use of a more efficient Fast Fourier Transform (FFT) correlator. FFT correlators scale as Nlog2N. The data acquired from this sort of setup, however, inherits geometric delay and uncalibrated antenna gains. This particular project simulates the process of calibrating signals from astronomical sources. Each signal “received” by an antenna in the simulation is given random antenna gain and geometric delay. The “linsolve” Python module was used to solve for the unknown variables in the simulation (complex gains and delays), which then gave a value for the true visibilities. This first version of the simulation only mimics a one dimensional redundant telescope array detecting a small amount of sources located in the volume above the antenna plane. Future versions, using GPUs, will handle a two dimensional redundant array of telescopes detecting a large amount of sources in the volume above the array.
IEA Wind Task 26: Offshore Wind Farm Baseline Documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smart, Gavin; Smith, Aaron; Warner, Ethan
This document has been produced to provide the definition and rationale for the Baseline Offshore Wind Farm established within IEA Wind Task 26--Cost of Wind Energy. The Baseline has been developed to provide a common starting point for country comparisons and sensitivity analysis on key offshore wind cost and value drivers. The baseline project reflects an approximate average of the characteristics of projects installed between 2012 and 2014, with the project life assumed to be 20 years. The baseline wind farm is located 40 kilometres (km) from construction and operations and maintenance (O&M) ports and from export cable landfall. Themore » wind farm consists of 100 4-megawatt (MW) wind turbines mounted on monopile foundations in an average water depth of 25 metres (m), connected by 33-kilovolt (kV) inter-array cables. The arrays are connected to a single offshore substation (33kV/220kV) mounted on a jacket foundation, with the substation connected via a single 220kV export cable to an onshore substation, 10km from landfall. The wind farm employs a port-based O&M strategy using crew-transfer vessels.« less
Space-Time Adaptive Processing for Airborne Radar
1994-12-13
horizontal plane Uniform linear antenna array (possibly columns of a planar array) Identical element patterns 13 14 15 9 7 7,33 7 7 Target Model ...Parameters for Example Scenario 31 3 Assumptions Made for Radar System and Signal Model 52 4 Platform and Interference Scenario for Baseline Scenario. 61 5...pulses, is addressed first. Fully adaptive STAP requires the solution to a system of linear equations of size MN, where N is the number of array
NASA Astrophysics Data System (ADS)
Myers, Steven T.
2013-01-01
The Jansky Very Large Array is a recently completed upgrade to the VLA that has significantly expanded its capabilities through replacement of the receivers, electronics, signal paths, and correlator with cutting-edge technology. This enhancement provides significantly increased continuum sensitivity and spectral survey speeds (by factors of 100 or more in select cases) from 1-50 GHz and in key bands below 1 GHz. Concurrently, we are greatly enhancing the sensitivity of the Very Long Baseline Array. A suite of ever more ambitious radio sky survey programs undertaken with these new instruments address science goals central to answering the questions posed by Astro2010, and will undoubtedly incite new inquiries. The science themes of the Jansky VLA and the VLBA are: illuminating the obscured, probing the magnetic, sounding the transient, and charting the evolving Universe. New observations will allow us to image young stars in massive black holes in dust enshrouded environments, measure the strength and topology of the cosmic magnetic field, follow the rapid evolution of energetic phenomena, and to study the formation and evolution of stars, galaxies, AGN, and the Universe itself. We can follow the evolution of gas and galaxies and particles and fields through cosmic time to bridge the eras from cosmic dawn to the dawn of new worlds. I will describe the salient features of the Jansky VLA and the VLBA for cosmological survey work, and summarize the multi-wavelength aspects in regard to those with ALMA and next generation optical, infrared, X-ray and Gamma-ray telescopes. Example data taken from Janksy VLA and upgraded VLBA commissioning tests and early science will illustrate these features. I also describe evolution of the VLA and VLBA and their capabilities for future surveys that will lead towards the next decade, into the era of the LSST and the SKA.
Second Epoch VLBA Calibrator Survey Observations: VCS-II
NASA Astrophysics Data System (ADS)
Gordon, David; Jacobs, Christopher; Beasley, Anthony; Peck, Alison; Gaume, Ralph; Charlot, Patrick; Fey, Alan; Ma, Chopo; Titov, Oleg; Boboltz, David
2016-06-01
Six very successful Very Long Baseline Array (VLBA) calibrator survey campaigns were run between 1994 and 2007 to build up a large list of compact radio sources with positions precise enough for use as very long baseline interferometry (VLBI) phase reference calibrators. We report on the results of a second epoch VLBA Calibrator Survey campaign (VCS-II) in which 2400 VCS sources were re-observed in the X and S bands in order to improve the upcoming third realization of the International Celestial Reference Frame (ICRF3) as well as to improve their usefulness as VLBI phase reference calibrators. In this survey, some 2062 previously detected sources and 324 previously undetected sources were detected and revised positions are presented. Average position uncertainties for the re-observed sources were reduced from 1.14 and 1.98 mas to 0.24 and 0.41 mas in R.A. and decl., respectively, or by nearly a factor of 5. Minimum detected flux values were approximately 15 and 28 mJy in the X and S bands, respectively, and median total fluxes are approximately 230 and 280 mJy. The vast majority of these sources are flat-spectrum sources, with ˜82% having spectral indices greater than -0.5.
The Effect of Antenna Position Errors on Redundant-Baseline Calibration of HERA
NASA Astrophysics Data System (ADS)
Orosz, Naomi; Dillon, Joshua; Ewall-Wice, Aaron; Parsons, Aaron; HERA Collaboration
2018-01-01
HERA (the Hydrogen Epoch of Reionization Array) is a large, highly-redundant radio interferometer in South Africa currently being built out to 350 14-m dishes. Its mission is to probe large scale structure during and prior to the epoch of reionization using the 21 cm hyperfine transition of neutral hydrogen. The array is designed to be calibrated using redundant baselines of known lengths. However, the dishes can deviate from ideal positions, with errors on the order of a few centimeters. This potentially increases foreground contamination of the 21 cm power spectrum in the cleanest part of Fourier space. The calibration algorithm treats groups of baselines that should be redundant, but are not due to position errors, as if they actually are. Accurate, precise calibration is critical because the foreground signals are 100,000 times stronger than the reionization signal. We explain the origin of this effect and discuss weighting strategies to mitigate it.
Array Detector Modules for Spent Fuel Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotnikov, Aleksey
Brookhaven National Laboratory (BNL) proposes to evaluate the arrays of position-sensitive virtual Frisch-grid (VFG) detectors for passive gamma-ray emission tomography (ET) to verify the spent fuel in storage casks before storing them in geo-repositories. Our primary objective is to conduct a preliminary analysis of the arrays capabilities and to perform field measurements to validate the effectiveness of the proposed array modules. The outcome of this proposal will consist of baseline designs for the future ET system which can ultimately be used together with neutrons detectors. This will demonstrate the usage of this technology in spent fuel storage casks.
NASA Astrophysics Data System (ADS)
Nyland, Kristina; Harwood, Jeremy; Jagannathan, Preshanth; Mukherjee, Dipanjan; Lacy, Mark; Morabito, Leah; Maksym, W. Peter; Kimball, Amy; Alatalo, Katherine; Bicknell, Geoff; Patil, Pallavi; Emonts, Bjorn
2018-01-01
Energetic feedback by Active Galactic Nuclei (AGNs) likely plays an important evolutionary role in the regulation of star formation (SF) on galactic scales. However, the effects of this feedback under different host galaxy conditions and environments remain unknown due to the scarcity of observational examples of this process in action given the limitations of current telescopes. The Next Generation Very Large Array (ngVLA) will serve as a transformational new tool in our understanding of how radio jets affect their surroundings. Current plans for the ngVLA consist of an array of 214 18m antennas with baselines out to 500 km operating over a frequency range of 1-115 GHz. By combining deep, broadband continuum data with measurements of the atomic and/or molecular gas content and kinematics, the ngVLA will quantify the energetic impact of radio jets hosted by gas-rich galaxies as the jets interact with the star-forming gas reservoirs of their hosts. Here, we evaluate the progress in our understanding of AGN feedback and its connection to galaxy evolution that may be accomplished with the unique capabilities of the ngVLA. Our analysis includes simulations of ngVLA observations of redshifted analogs of nearby AGNs with diverse properties, along with examples of opportunities for multiwavelength synergies with current and future next-generation instruments that are currently under development.
The systems impact of a concentrated solar array on a Jupiter orbiter
NASA Technical Reports Server (NTRS)
Rockey, D. E.; Bamford, R.; Hollars, M. G.; Klemetson, R. W.; Koerner, T. W.; Marsh, E. L.; Price, H.; Uphoff, C.
1981-01-01
Results of a study are presented suggesting that a Galileo Jupiter orbiting mission could be performed with a concentrated solar array power source. A baseline spacecraft design using concentrated arrays is given, and the overall spacecraft implications for attitude control, propulsion, power conditioning and the resultant spacecraft mass are examined. It is noted that while the concentrated array concept still requires extensive development effort, no insurmountable system level barriers preclude the use of a concentrated solar array on this difficult mission, with its stressing radiation environment, its lengthy periods of spacecraft shadowing as it passes behind Jupiter, and, finally, its large delta v burn required for orbital insertion.
Development of lightweight aluminum hollowcore solar cell array technology
NASA Technical Reports Server (NTRS)
Carlson, J. A.
1971-01-01
A baseline configuration for a three section folding array, with retraction capability, was developed which would utilize electroformed aluminum hollowcore substrates and beryllium frames. The three section array was not fabricated because of difficulties with impurities in the aluminum electroforming bath. A procedure was developed for etching the copper mandrel from virtually any size of aluminum hollowcore panel in approximately one hour. Procedures were developed for analyzing the content of peroxide, water, total aluminum, and lithium-aluminum-hydride in an aluminum electroforming solution.
Noise Budget for the X-Ray Microcalorimeter Spectrometer (XMS) Core Array
NASA Technical Reports Server (NTRS)
Kilbourne, Caroline Anne
2010-01-01
The purpose of this document is to present and archive the noise budget for the XMS detector, in order, at this stage in mission planning, to learn the scale of the requirements placed on the other instrument subsystems. This document mainly concerns the core array, specifically the baseline version that emerged from the trade studies associated with the ESA Phase A study report. Qualitative extension to the Hydra approach to the outer array is included at the end.
Integrated Solar Array and Reflectarray Antenna for High Bandwidth Cubesats
NASA Technical Reports Server (NTRS)
Lewis, Dorothy; Martinez, Andres; Petro, Andrew
2015-01-01
The Integrated Solar Array and Reflectarray Antenna (ISARA) mission will demonstrate a reflectarray antenna that increases downlink data rates for Cube- Sats from the existing baseline rate of 9.6 kilobits per second (kbps) to more than 100 megabits per second (Mbps). The ISARA spacecraft is slated for launch no earlier than Dec. 1, 2015.
Radio Observations of the Ionosphere From an Imaging Array and a CubeSat
NASA Astrophysics Data System (ADS)
Isham, B.; Gustavsson, B.; Bullett, T. W.; Bergman, J. E. S.; Rincón-Charris, A.; Bruhn, F.; Funk, P.
2017-12-01
The ionosphere is a source of many radio emissions in the various low-frequency, medium-frequency, and high-frequency bands (0 to 30 MHz). In addition to natural radio emissions, artificial emissions can be stimulated using high-power radiowave ionospheric modification facilities. Two complementary projects are underway for the purpose of improving our knowledge of the processes of radio emissions from the ionosphere. One project is the Aguadilla radio array, located in northwestern Puerto Rico. The Aguadilla array is intended to produce 2 to 25 MHz radio images of the ionosphere, as well as to perform bistatic radar imaging of the ionosphere over Puerto Rico. The array will consist of multiple antenna elements, each of which is a single active (electromagnetically short) crossed electric dipole. The elements are arranged within a roughly 200 by 300-meter core array, in a semi-random pattern providing an optimal distribution of baseline vectors, with 6-meter minimum spacing to eliminate spacial aliasing. In addition, several elements are arranged in a partial ring around the central core, providing a roughly four times expanded region in u-v space for improved image resolution and quality. Phase is maintained via cabled connections to a central location. A remote array is also being developed, in which phase is maintained between elements by through the use of GPS-disciplined rubidium clocks. The other project involves the GimmeRF radio instrument, designed for 0.3 to 30 MHz vector observation of the radio electric field, and planned for launch in 2020 on a CubeSat. The data rate that can be sustained by GimmeRF far exceeds any available communication strategy. By exploiting fast on-board computing and efficient artificial intelligence (AI) algorithms for analysis and data selection, the usage of the telemetry link can be optimized and value added to the mission. Radio images recorded by the radio array from below the ionosphere can be directly compared with the radio data received by GimmeRF in the topside ionosphere, with the goal of better understanding the geometry and therefore the mechanisms of the radio emission processes.
Revealing two radio-active galactic nuclei extremely near PSR J0437-4715
NASA Astrophysics Data System (ADS)
Li, Zhixuan; Yang, Jun; An, Tao; Paragi, Zsolt; Deller, Adam; Reynolds, Cormac; Hong, Xiaoyu; Wang, Jiancheng; Ding, Hao; Xia, Bo; Yan, Zhen; Guo, Li
2018-05-01
Newton's gravitational constant G may vary with time at an extremely low level. The time variability of G will affect the orbital motion of a millisecond pulsar in a binary system and cause a tiny difference between the orbital period-dependent measurement of the kinematic distance and the direct measurement of the annual parallax distance. PSR J0437-4715 is the nearest millisecond pulsar and the brightest at radio wavelengths. To explore the feasibility of achieving a parallax distance accuracy of one light-year, comparable to the recent timing result, with the technique of differential astrometry, we searched for compact radio sources quite close to PSR J0437-4715. Using existing data from the Very Large Array and the Australia Telescope Compact Array, we detected two sources with flat spectra, relatively stable flux densities of 0.9 and 1.0 mJy at 8.4 GHz and separations of 13 and 45 arcsec. With a network consisting of the Long Baseline Array and the Kunming 40-m radio telescope, we found that both sources have a point-like structure and a brightness temperature of ≥107 K. According to these radio inputs and the absence of counterparts in other bands, we argue that they are most likely the compact radio cores of extragalactic active galactic nuclei, rather than Galactic radio stars. The finding of these two radio active galactic nuclei will enable us to achieve a sub-pc distance accuracy with in-beam phase-referencing very-long-baseline interferometric observations and provide one of the most stringent constraints on the time variability of G in the near future.
Two-year solid hydrogen cooler for the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument
NASA Technical Reports Server (NTRS)
Naes, L. G.; Nast, T. C.; Roche, A. E.; Forney, P. B.
1983-01-01
The Cryogenic Limb Array Etalon Spectrometer (CLAES) will be one of thirteen instruments on board the Upper Atmospheric Research Satellite (UARS) in late 1988. CLAES is to be employed for the measurement of stratospheric trace species concentrations affecting the ozone layer balance. It is an earth-limb viewing instrument which requires cryogenic cooling in order to obtain the necessary performance sensitivity. The present investigation is concerned with the solid hydrogen cryogen subsystem which provides the instrument temperature needed. Attention is given to the studies which led to the selection of solid hydrogen as cooling agent, the baseline cooler system, aspects of baseline performance sensitivity, and nominal cooler operations.
The Most Compact Bright Radio-loud AGNs. II. VLBA Observations of 10 Sources at 43 and 86 GHz
NASA Astrophysics Data System (ADS)
Cheng, X.-P.; An, T.; Hong, X.-Y.; Yang, J.; Mohan, P.; Kellermann, K. I.; Lister, M. L.; Frey, S.; Zhao, W.; Zhang, Z.-L.; Wu, X.-C.; Li, X.-F.; Zhang, Y.-K.
2018-01-01
Radio-loud active galactic nuclei (AGNs), hosting powerful relativistic jet outflows, provide an excellent laboratory for studying jet physics. Very long baseline interferometry (VLBI) enables high-resolution imaging on milli-arcsecond (mas) and sub-mas scales, making it a powerful tool to explore the inner jet structure, shedding light on the formation, acceleration, and collimation of AGN jets. In this paper, we present Very Long Baseline Array observations of 10 radio-loud AGNs at 43 and 86 GHz that were selected from the Planck catalog of compact sources and are among the brightest in published VLBI images at and below 15 GHz. The image noise levels in our observations are typically 0.3 and 1.5 mJy beam‑1 at 43 and 86 GHz, respectively. Compared with the VLBI data observed at lower frequencies from the literature, our observations with higher resolutions (with the highest resolution being up to 0.07 mas at 86 GHz and 0.18 mas at 43 GHz) and at higher frequencies detected new jet components at sub-parsec scales, offering valuable data for studies of the physical properties of the innermost jets. These include the compactness factor of the radio structure (the ratio of core flux density to total flux density), and core brightness temperature ({T}{{b}}). In all these sources, the compact core accounts for a significant fraction (> 60 % ) of the total flux density. Their correlated flux density at the longest baselines is higher than 0.16 Jy. The compactness of these sources make them good phase calibrators of millimeter-wavelength ground-based and space VLBI.
Feasibility study of an optically coherent telescope array in space
NASA Technical Reports Server (NTRS)
Traub, W. A.
1983-01-01
Numerical methods of image construction which can be used to produce very high angular resolution images at optical wavelengths of astronomical objects from an orbiting array of telescopes are discussed and a concept is presented for a phase-coherent optical telescope array which may be deployed by space shuttle in the 1990's. The system would start as a four-element linear array with a 12 m baseline. The initial module is a minimum redundant array with a photon-counting collecting area three times larger than space telescope and a one dimensional resolution of better than 0.01 arc seconds in the visible range. Later additions to the array would build up facility capability. The advantages of a VLBI observatory in space are considered as well as apertures for the telescopes.
NASA Astrophysics Data System (ADS)
Bracken, Colm P.; Lightfoot, John; O'Sullivan, Creidhe; Murphy, J. Anthony; Donohoe, Anthony; Savini, Giorgio; Juanola-Parramon, Roser; The Fisica Consortium, On Behalf Of
2018-01-01
In the absence of 50-m class space-based observatories, subarcsecond astronomy spanning the full far-infrared wavelength range will require space-based long-baseline interferometry. The long baselines of up to tens of meters are necessary to achieve subarcsecond resolution demanded by science goals. Also, practical observing times command a field of view toward an arcminute (1‧) or so, not achievable with a single on-axis coherent detector. This paper is concerned with an application of an end-to-end instrument simulator PyFIInS, developed as part of the FISICA project under funding from the European Commission's seventh Framework Programme for Research and Technological Development (FP7). Predicted results of wide field of view spatio-spectral interferometry through simulations of a long-baseline, double-Fourier, far-infrared interferometer concept are presented and analyzed. It is shown how such an interferometer, illuminated by a multimode detector can recover a large field of view at subarcsecond angular resolution, resulting in similar image quality as that achieved by illuminating the system with an array of coherent detectors. Through careful analysis, the importance of accounting for the correct number of higher-order optical modes is demonstrated, as well as accounting for both orthogonal polarizations. Given that it is very difficult to manufacture waveguide and feed structures at sub-mm wavelengths, the larger multimode design is recommended over the array of smaller single mode detectors. A brief note is provided in the conclusion of this paper addressing a more elegant solution to modeling far-infrared interferometers, which holds promise for improving the computational efficiency of the simulations presented here.
Navy Prototype Optical Interferometer observations of geosynchronous satellites.
Hindsley, Robert B; Armstrong, J Thomas; Schmitt, Henrique R; Andrews, Jonathan R; Restaino, Sergio R; Wilcox, Christopher C; Vrba, Frederick J; Benson, James A; DiVittorio, Michael E; Hutter, Donald J; Shankland, Paul D; Gregory, Steven A
2011-06-10
Using a 15.9 m baseline at the Navy Prototype Optical Interferometer (NPOI), we have successfully detected interferometric fringes in observations of the geosynchronous satellite (geosat) DirecTV-9S while it glinted on two nights in March 2009. The fringe visibilities can be fitted by a model consisting of two components, one resolved (≳3.7 m) and one unresolved (∼1.1 m). Both the length of the glint and the specular albedos are consistent with the notion that the glinting surfaces are not completely flat and scatter reflected sunlight into an opening angle of roughly 15°. Enhancements to the NPOI that would improve geosat observations include adding an infrared capability, which could extend the glint season, and adding larger, adaptive-optics equipped telescopes. Future work may test the feasibility of observing geosats with aperture-masked large telescopes and of developing an array of six to nine elements.
The Low-Power Nucleus of PKS 1246-410 in the Centaurus Cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, G.B.; /KIPAC, Menlo Park /NRAO, Socorro /New Mexico U.; Sanders, J.S.
2005-10-21
We present Chandra, Very Large Array (VLA), and Very Long Baseline Array (VLBA) observations of the nucleus of NGC 4696, a giant elliptical in the Centaurus cluster of galaxies. Like M87 in the Virgo cluster, PKS 1246-410 in the Centaurus cluster is a nearby example of a radio galaxy in a dense cluster environment. In analyzing the new X-ray data we have found a compact X-ray feature coincident with the optical and radio core. While nuclear emission from the X-ray source is expected, its luminosity is low, < 10{sup 40} erg s{sup -1}. We estimate the Bondi accretion radius tomore » be 30 pc and the accretion rate to be 0.01 M{sub {circle_dot}} y{sup -1} which under the canonical radiative efficiency of 10% would overproduce by 3.5 orders of magnitude the radiative luminosity. Much of this energy can be directed into the kinetic energy of the jet, which over time inflates the observed cavities seen in the thermal gas. The VLBA observations reveal a weak nucleus and a broad, one-sided jet extending over 25 parsecs in position angle -150 degrees. This jet is deflected on the kpc-scale to a more east-west orientation (position angle of -80 degrees).« less
NASA Astrophysics Data System (ADS)
Kittiwisit, Piyanat; Bowman, Judd D.; Jacobs, Daniel C.; Beardsley, Adam P.; Thyagarajan, Nithyanandan
2018-03-01
We present a baseline sensitivity analysis of the Hydrogen Epoch of Reionization Array (HERA) and its build-out stages to one-point statistics (variance, skewness, and kurtosis) of redshifted 21 cm intensity fluctuation from the Epoch of Reionization (EoR) based on realistic mock observations. By developing a full-sky 21 cm light-cone model, taking into account the proper field of view and frequency bandwidth, utilizing a realistic measurement scheme, and assuming perfect foreground removal, we show that HERA will be able to recover statistics of the sky model with high sensitivity by averaging over measurements from multiple fields. All build-out stages will be able to detect variance, while skewness and kurtosis should be detectable for HERA128 and larger. We identify sample variance as the limiting constraint of the measurements at the end of reionization. The sensitivity can also be further improved by performing frequency windowing. In addition, we find that strong sample variance fluctuation in the kurtosis measured from an individual field of observation indicates the presence of outlying cold or hot regions in the underlying fluctuations, a feature that can potentially be used as an EoR bubble indicator.
Precise Absolute Astrometry from the VLBA Imaging and Polarimetry Survey at 5 GHz
NASA Technical Reports Server (NTRS)
Petrov, L.; Taylor, G. B.
2011-01-01
We present accurate positions for 857 sources derived from the astrometric analysis of 16 eleven-hour experiments from the Very Long Baseline Array imaging and polarimetry survey at 5 GHz (VIPS). Among the observed sources, positions of 430 objects were not previously determined at milliarcsecond-level accuracy. For 95% of the sources the uncertainty of their positions ranges from 0.3 to 0.9 mas, with a median value of 0.5 mas. This estimate of accuracy is substantiated by the comparison of positions of 386 sources that were previously observed in astrometric programs simultaneously at 2.3/8.6 GHz. Surprisingly, the ionosphere contribution to group delay was adequately modeled with the use of the total electron content maps derived from GPS observations and only marginally affected estimates of source coordinates.
ALMA long baseline phase calibration using phase referencing
NASA Astrophysics Data System (ADS)
Asaki, Yoshiharu; Matsushita, Satoki; Fomalont, Edward B.; Corder, Stuartt A.; Nyman, Lars-Åke; Dent, William R. F.; Philips, Neil M.; Hirota, Akihiko; Takahashi, Satoko; Vila-Vilaro, Baltasar; Nikolic, Bojan; Hunter, Todd R.; Remijan, Anthony; Vlahakis, Catherine
2016-08-01
The Atacama Large Millimeter/submillimeter Array (ALMA) is the world's largest millimeter/submillimeter telescope and provides unprecedented sensitivities and spatial resolutions. To achieve the highest imaging capabilities, interferometric phase calibration for the long baselines is one of the most important subjects: The longer the baselines, the worse the phase stability becomes because of turbulent motions of the Earth's atmosphere, especially, the water vapor in the troposphere. To overcome this subject, ALMA adopts a phase correction scheme using a Water Vapor Radiometer (WVR) to estimate the amount of water vapor content along the antenna line of sight. An additional technique is phase referencing, in which a science target and a nearby calibrator are observed by turn by quickly changing the antenna pointing. We conducted feasibility studies of the hybrid technique with the WVR phase correction and the antenna Fast Switching (FS) phase referencing (WVR+FS phase correction) for the ALMA 16 km longest baselines in cases that (1) the same observing frequency both for a target and calibrator is used, and (2) higher and lower frequencies for a target and calibrator, respectively, with a typical switching cycle time of 20 s. It was found that the phase correction performance of the hybrid technique is promising where a nearby calibrator is located within roughly 3◦ from a science target, and that the phase correction with 20 s switching cycle time significantly improves the performance with the above separation angle criterion comparing to the 120 s switching cycle time. The currently trial phase calibration method shows the same performance independent of the observing frequencies. This result is especially important for the higher frequency observations because it becomes difficult to find a bright calibrator close to an arbitrary sky position. In the series of our experiments, it is also found that phase errors affecting the image quality come from not only the water vapor content in the lower troposphere but also a large structure of the atmosphere with a typical cell scale of a few tens of kilometers.
Conceptual approach study of a 200 watt per kilogram solar array
NASA Technical Reports Server (NTRS)
Stanhouse, R. W.; Fox, D.; Wilson, W.
1976-01-01
Solar array candidate configurations (flexible rollup, flexible flat-pact, semi-rigid panel, semi-rigid flat-pack) were analyzed with particular attention to the specific power (W/kg) requirement. Two of these configurations (flexible rollup and flexible flat-pack) are capable of delivering specific powers equal to or exceeding the baseline requirement of 200 W/kg. Only the flexible rollup is capable of in-flight retraction and subsequent redeployment. The wrap-around contact photovoltaic cell configuration has been chosen over the conventional cell. The demand for ultra high specific power forces the selection of ultra-thin cells and cover material. Based on density and mass range considerations, it was concluded that 13 micrometers of FEP Teflon is sufficient to protect the cell from a total proton fluency of 2(10 to the 12th power) particles/sq cm over a three-year interplanetary mission. The V-stiffened, lattice boom deployed, flexible substrate rollup array holds the greatest promise of meeting the baseline requirements set for this study.
Simulating 3D Spacecraft Constellations for Low Frequency Radio Imaging
NASA Astrophysics Data System (ADS)
Hegedus, A. M.; Amiri, N.; Lazio, J.; Belov, K.; Kasper, J. C.
2016-12-01
Constellations of small spacecraft could be used to realize a low-frequency phased array for either heliophysics or astrophysics observations. However, there are issues that arise with an orbiting array that do not occur on the ground, thus rendering much of the existing radio astronomy software inadequate for data analysis and simulation. In this work we address these issues and consider the performance of two constellation concepts. The first is a 32-spacecraft constellation for astrophysical observations, and the second is a 5-element concept for pointing to the location of radio emission from coronal mass ejections (CMEs). For the first, we fill the software gap by extending the APSYNSIM software to simulate the aperture synthesis for a radio interferometer in orbit. This involves using the dynamic baselines from the relative motion of the individual spacecraft as well as the capability to add galactic noise. The ability to simulate phase errors corresponding to positional uncertainty of the antennas was also added. The upgraded software was then used to model the imaging of a 32 spacecraft constellation that would orbit the moon to image radio galaxies like Cygnus A at .3-30 MHz. Animated images showing the improvement of the dirty image as the orbits progressed were made. RMSE plots that show how well the dirty image matches the input image as a function of integration time were made. For the second concept we performed radio interferometric simulations of the Sun Radio Interferometer Space Experiment (SunRISE) using the Common Astronomy Software Applications (CASA) package. SunRISE is a five spacecraft phased array that would orbit Earth to localize the low frequency radio emission from CMEs. This involved simulating the array in CASA, creating truth images for the CMEs over the entire frequency band of SunRISE, and observing them with the simulated array to see how well it could localize the true position of the CME. The results of our analysis show that we can localize the radio emission originating from the head or flanks of the CMEs in spite of the phase errors introduced by uncertainties in orbit and clock estimation.
The Search for Stellar Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Villadsen, Jacqueline; Hallinan, Gregg; Monroe, Ryan; Bourke, Stephen; Starburst Program Team
2017-01-01
Coronal mass ejections (CMEs) may dramatically impact habitability and atmospheric composition of planets around magnetically active stars, including young solar analogs and many M dwarfs. Theoretical predictions of such effects are limited by the lack of observations of stellar CMEs. My thesis addresses this gap through a search for the spectral and spatial radio signatures of CMEs on active M dwarfs.Solar CMEs produce radio bursts with a distinctive spectral signature, narrow-band plasma emission that drifts to lower frequency as a CME expands outward. To search for analogous events on nearby stars, I worked on system design, software, and commissioning for the Starburst project, a wideband single-baseline radio interferometry backend dedicated to stellar observations. In addition, I led a survey of nearby active M dwarfs with the Karl G. Jansky Very Large Array (JVLA), detecting 12 bright (>10 mJy) radio bursts in 58 hours. This survey’s ultra-wide bandwidth (0.23-6.0 GHz) dynamic spectroscopy, unprecedented for stellar observations, revealed diverse behavior in the time-frequency plane. Flare star UV Ceti produced complex, luminous events reminiscent of brown dwarf aurorae; AD Leo sustained long-duration, intense, narrow-band "storms"; and YZ CMi emitted a burst with substructure with rapid frequency drift, resembling solar Type III bursts, which are attributed to electrons moving at speeds of order 10% of the speed of light.To search for the spatial signature of CMEs, I led 8.5-GHz observations with the Very Long Baseline Array simultaneous to 24 hours of the JVLA survey. This program detected non-thermal continuum emission from the stars in all epochs, as well as continuum flares on AD Leo and coherent bursts on UV Ceti, enabling measurement of the spatial offset between flaring and quiescent emission.These observations demonstrate the diversity of stellar transients that can be expected in time-domain radio surveys, especially with the advent of large low-frequency radio telescopes. Wide bandwidth radio dynamic spectroscopy, complemented by high-resolution imaging of the radio corona, is a powerful technique for detecting stellar eruptions and characterizing dynamic processes in the stellar corona.
The Search for Stellar Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Villadsen, Jacqueline Rose
2017-05-01
Coronal mass ejections (CMEs) may dramatically impact habitability and atmospheric composition of planets around magnetically active stars, including young solar analogs and many M dwarfs. Theoretical predictions of such effects are limited by the lack of observations of stellar CMEs. This thesis addresses this gap through a search for the spectral and spatial radio signatures of CMEs on active M dwarfs. Solar CMEs produce radio bursts with a distinctive spectral signature, narrow-band plasma emission that drifts to lower frequency as a CME expands outward. To search for analogous events on nearby stars, I worked on system design, software, and commissioning for the Starburst project, a wideband single-baseline radio interferometry backend dedicated to stellar observations. In addition, I led a survey of nearby active M dwarfs with the Karl G. Jansky Very Large Array (VLA), detecting coherent radio bursts in 13 out of 23 epochs, over a total of 58 hours. This survey's ultra-wide bandwidth (0.23-6.0 GHz) dynamic spectroscopy, unprecedented for stellar observations, revealed diverse behavior in the time-frequency plane. Flare star UV Ceti produced complex, luminous events reminiscent of brown dwarf aurorae; AD Leo sustained long-duration, intense, narrow-band "storms"; and YZ CMi emitted a burst with substructure with rapid frequency drift, resembling solar Type III bursts, which are attributed to electrons moving at speeds of order 10% of the speed of light. To search for the spatial signature of CMEs, I led 8.5-GHz observations with the Very Long Baseline Array simultaneous to 24 hours of the VLA survey. This program detected non-thermal continuum emission from the stars in all epochs, as well as continuum flares on AD Leo and coherent bursts on UV Ceti, enabling measurement of the spatial offset between flaring and quiescent emission. These observations demonstrate the diversity of stellar transients that can be expected in time-domain radio surveys, especially with the advent of large low-frequency radio telescopes. Wide bandwidth radio dynamic spectroscopy, complemented by high-resolution imaging of the radio corona, is a powerful technique for detecting stellar eruptions and characterizing dynamic processes in the stellar corona.
Demonstration of transparent solar array module design
NASA Technical Reports Server (NTRS)
Pack, G. J.
1984-01-01
This report discusses the design, development, fabrication and testing of IR transparent solar array modules. Three modules, consisting of a baseline design using back surface reflector cells, and two modules using gridded back contact, IR transparent cells, were subjected to vacuum thermal balance testing to verify analytical predictions of lower operating emperature and increased efficiency. As a result of this test program, LMSC has verified that a significant degree of IR transparency can be designed into a flexible solar array. Test data correlates with both steady state and transient thermal analysis.
NASA Astrophysics Data System (ADS)
Weston, S. D.
2008-04-01
This thesis presents the design and development of a process to model Very Long Base Line Interferometry (VLBI) aperture synthesis antenna arrays. In line with the Auckland University of Technology (AUT) Institute for Radiophysics and Space Research (IRSR) aims to develop the knowledge, skills and experience within New Zealand, extensive use of existing radio astronomical software has been incorporated into the process namely AIPS (Astronomical Imaging Processing System), MIRIAD (a radio interferometry data reduction package) and DIFMAP (a program for synthesis imaging of visibility data from interferometer arrays of radio telescopes). This process has been used to model various antenna array configurations for two proposed New Zealand sites for antenna in a VLBI array configuration with existing Australian facilities and a passable antenna at Scott Base in Antarctica; and the results are presented in an attempt to demonstrate the improvement to be gained by joint trans-Tasman VLBI observation. It is hoped these results and process will assist the planning and placement of proposed New Zealand radio telescopes for cooperation with groups such as the Australian Long Baseline Array (LBA), others in the Pacific Rim and possibly globally; also potential future involvement of New Zealand with the SKA. The developed process has also been used to model a phased building schedule for the SKA in Australia and the addition of two antennas in New Zealand. This has been presented to the wider astronomical community via the Royal Astronomical Society of New Zealand Journal, and is summarized in this thesis with some additional material. A new measure of quality ("figure of merit") for comparing the original model image and final CLEAN images by utilizing normalized 2-D cross correlation is evaluated as an alternative to the existing subjective visual operator image comparison undertaken to date by other groups. This new unit of measure is then used ! in the presentation of the results to provide a quantative comparison of the different array configurations modelled. Included in the process is the development of a new antenna array visibility program which was based on a Perl code script written by Prof Steven Tingay to plot antenna visibilities for the Australian Square Kilometre Array (SKA) proposal. This has been expanded and improved removing the hard coded fixed assumptions for the SKA configuration, providing a new useful and flexible program for the wider astronomical community. A prototype user interface using html/cgi/perl was developed for the process so that the underlying software packages can be served over the web to a user via an internet browser. This was used to demonstrate how easy it is to provide a friendlier interface compared to the existing cumbersome and difficult command line driven interfaces (although the command line can be retained for more experienced users).
NASA Astrophysics Data System (ADS)
Parsons, Aaron Robert
Low-frequency interferometry provides us with the possibility of directly observing, via red-shifted 21cm emission, the ionization of the primordial intergalactic medium by radiation from the first stars and black holes. Building such interferometers presents daunting technical challenges related to the cross-correlation, calibration, and analysis of data from large antenna arrays with wide fields-of-view in an observing band below 200 MHz. Addressing cross-correlation data processing, I present a general-purpose correlator architecture that uses standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable Gate Array chips. These chips are programmed using open-source signal processing libraries developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a wide range of signal processing systems, and facilitates upgrading to new generations of processing technology. This correlator architecture is supporting the incremental build-out of the Precision Array for Probing the Epoch of Reionization. Targeting calibration concerns, I present a filtering technique that can be applied to individual baselines of wide-bandwidth, wide-field interferometric data to geometrically select regions on the celestial sphere that contain primary calibration sources. The technique relies on the Fourier transformation of wide-band frequency spectra from a given baseline to obtain one-dimensional "delay images", and then the transformation of a time-series of delay images to obtain two-dimensional "delay/delayrate images." These filters are augmented by a one-dimensional, complex CLEAN algorithm has been developed to compensate for data-excision effects related to the removal of radio frequency interference. This approach allows CLEANed, source-isolated data to be used to isolate bandpass and primary beam gain functions. These techniques are applied to PAPER data as a demonstration of their value in calibrating a new generation of low-frequency radio interferometers with wide relative bandwidths and large fields-of-view. Finally, I describe PAPER's overall architecture and summarize two PAPER deployments: a 4-antenna array in of Western Australia and an 8-antenna array in Green Bank, WV. After reporting on system characterization and data analysis techniques, I present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 steradians at 154 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. I calculate angular power spectra (Cℓ) in a cold patch and determine them to be dominated by point sources. Although the sample variance of foregrounds dominates errors in these power spectra, I measure a thermal noise level of 310 mK at ℓ = 100 for a 1.46-MHz band centered at 164.5 MHz. This sensitivity level is approximately three orders of magnitude in temperature above the expected level of 21cm fluctuations associated with reionization.
2013-09-01
of baselines than would a pattern with equal spacing . Nevertheless, many of the telescope pairs have equivalent baselines resulting in...magnitude to a spatial domain representation of the object, sparse and irregular spacing of the measurements in the Fourier plane, and low SNR...any particular geometry of the telescope array configuration. Its inputs are a list of measurements, each
Advanced photovoltaic solar array - Design and performance
NASA Technical Reports Server (NTRS)
Kurland, Richard; Stella, Paul
1992-01-01
This paper reports on the development of an ultralightweight flexible blanket, flatpack, foldout solar array design that can provide 3- to 4-fold improvement on specific power performance of current rigid panel arrays and a factor of two improvement over a first-generation flexible blanket array developed as a forerunner to the Space Station Freedom array. To date a prototype wing has been built with a projected specific power performance of about 138 W/kg at beginning-of-life (BOL) and 93 W/kg end-of-life (EOL) at 12 kW (BOL) for a 10-year geosynchronous (GEO) mission. The prototype wing hardware has been subjected to a series of system-level tests to demonstrate design feasibility. The design of the array is summarized. The major trade studies that led to the selection of the baseline design are discussed. Key system-level and component-level testing are described. Array-level performance projections are presented as a function of existing and advanced solar array component technology for various mission applications.
Thermal mapping of Ceres at 1.2 mm with ALMA
NASA Astrophysics Data System (ADS)
Moullet, Arielle; Li, Jian-Yang; Titus, Timothy N.; Sykes, Mark V.; Ip, Wing-Huen; Lai, Ian-Lin
2016-10-01
Ceres' thermal emission distribution, which can be characterized through observations at IR and longer wavelengths, is indicative of radiative and physical properties of its surface such as thermal inertia and roughness. High-resolution maps from the Dawn mission now provide an exquisite geographic and geological context for the interpretation of temperature features, which are at large not accessible to the spacecraft's instruments. In particular, the presence of hydrated minerals and distinctive geological features suggest the existence of ice water reservoirs near the surface, which may be characterized through the analysis of thermal inertia distributions.We report on observations obtained in Fall 2015 at the Atacama Large Millimeter Array (ALMA), sampling most of the rotation of Ceres and hence allowing one to disentangle local-hour effects from geographical thermal features. The observations were performed during the 2015 Long Baseline Campaign, offering baselines as long as 10 km and yielding a spatial resolution down to 30 mas (~45 km at the equator). At the observed wavelength of 1.2 mm, the thermal emission probes both the emission from the surface and from deeper layers, down to the level of the diurnal skin depth, hence accessing regions where water ice could be stable.We will describe the diurnal and latitudinal temperature variations derived from our observations as well as preliminary results from thermal modeling in terms of subsurface thermal inertia and ice table latitudinal extent. This work is supported by the NASA Solar System Observations Program grant NNX15AE02G.
MR-compatibility of a high-resolution small animal PET insert operating inside a 7 T MRI.
Thiessen, J D; Shams, E; Stortz, G; Schellenberg, G; Bishop, D; Khan, M S; Kozlowski, P; Retière, F; Sossi, V; Thompson, C J; Goertzen, A L
2016-11-21
A full-ring PET insert consisting of 16 PET detector modules was designed and constructed to fit within the 114 mm diameter gradient bore of a Bruker 7 T MRI. The individual detector modules contain two silicon photomultiplier (SiPM) arrays, dual-layer offset LYSO crystal arrays, and high-definition multimedia interface (HDMI) cables for both signal and power transmission. Several different RF shielding configurations were assessed prior to construction of a fully assembled PET insert using a combination of carbon fibre and copper foil for RF shielding. MR-compatibility measurements included field mapping of the static magnetic field (B 0 ) and the time-varying excitation field (B 1 ) as well as acquisitions with multiple pulse sequences: spin echo (SE), rapid imaging with refocused echoes (RARE), fast low angle shot (FLASH) gradient echo, and echo planar imaging (EPI). B 0 field maps revealed a small degradation in the mean homogeneity (+0.1 ppm) when the PET insert was installed and operating. No significant change was observed in the B 1 field maps or the image homogeneity of various MR images, with a 9% decrease in the signal-to-noise ratio (SNR) observed only in EPI images acquired with the PET insert installed and operating. PET detector flood histograms, photopeak amplitudes, and energy resolutions were unchanged in individual PET detector modules when acquired during MRI operation. There was a small baseline shift on the PET detector signals due to the switching amplifiers used to power MRI gradient pulses. This baseline shift was observable when measured with an oscilloscope and varied as a function of the gradient duty cycle, but had no noticeable effect on the performance of the PET detector modules. Compact front-end electronics and effective RF shielding led to minimal cross-interference between the PET and MRI systems. Both PET detector and MRI performance was excellent, whether operating as a standalone system or a hybrid PET/MRI.
MR-compatibility of a high-resolution small animal PET insert operating inside a 7 T MRI
NASA Astrophysics Data System (ADS)
Thiessen, J. D.; Shams, E.; Stortz, G.; Schellenberg, G.; Bishop, D.; Khan, M. S.; Kozlowski, P.; Retière, F.; Sossi, V.; Thompson, C. J.; Goertzen, A. L.
2016-11-01
A full-ring PET insert consisting of 16 PET detector modules was designed and constructed to fit within the 114 mm diameter gradient bore of a Bruker 7 T MRI. The individual detector modules contain two silicon photomultiplier (SiPM) arrays, dual-layer offset LYSO crystal arrays, and high-definition multimedia interface (HDMI) cables for both signal and power transmission. Several different RF shielding configurations were assessed prior to construction of a fully assembled PET insert using a combination of carbon fibre and copper foil for RF shielding. MR-compatibility measurements included field mapping of the static magnetic field (B 0) and the time-varying excitation field (B 1) as well as acquisitions with multiple pulse sequences: spin echo (SE), rapid imaging with refocused echoes (RARE), fast low angle shot (FLASH) gradient echo, and echo planar imaging (EPI). B 0 field maps revealed a small degradation in the mean homogeneity (+0.1 ppm) when the PET insert was installed and operating. No significant change was observed in the B 1 field maps or the image homogeneity of various MR images, with a 9% decrease in the signal-to-noise ratio (SNR) observed only in EPI images acquired with the PET insert installed and operating. PET detector flood histograms, photopeak amplitudes, and energy resolutions were unchanged in individual PET detector modules when acquired during MRI operation. There was a small baseline shift on the PET detector signals due to the switching amplifiers used to power MRI gradient pulses. This baseline shift was observable when measured with an oscilloscope and varied as a function of the gradient duty cycle, but had no noticeable effect on the performance of the PET detector modules. Compact front-end electronics and effective RF shielding led to minimal cross-interference between the PET and MRI systems. Both PET detector and MRI performance was excellent, whether operating as a standalone system or a hybrid PET/MRI.
PEP solar array definition study
NASA Technical Reports Server (NTRS)
1979-01-01
The power extension package (PEP) is a solar array system that will be used on the space transportation system to augment the power of the Orbiter vehicle and to extend the time the vehicle may stay in orbit. The baseline configuration of the PEP is reviewed. The programmatic aspects of the design covering the development plan, the manufacturing facility plan and the estimated costs and risks are presented.
High-resolution VLBA Observations of Three 7 mm SiO Masers toward VX Sgr at Five Epochs
NASA Astrophysics Data System (ADS)
Su, J. B.; Shen, Z.-Q.; Chen, X.; Yi, Jiyune; Jiang, D. R.; Yun, Y. J.
2012-07-01
VX Sgr is a red supergiant at an adopted distance of 1.6 kpc with intense 43 GHz SiO maser emission. In this paper, we present the high-resolution very long baseline interferometry (VLBI) observations of SiO masers toward VX Sgr at five epochs. We used the Very Long Baseline Array to map the J = 1→0 (v = 1, 2) 28SiO masers and confirmed a ring-like structure. In the first two epochs, the v = 1 masers form a ring, but v = 2 maser spots residing only in the southern and northern regions do not form a complete ring. In the third epoch, the two masers are distributed in a ring structure and the v = 2 masers are a bit closer to the central star. In the last two epochs, many new maser spots appear and overlap each other. These overlapping maser spots can be related to the shock waves and reflect the collisional pumping. We compare the observations with the pumping models and speculate that the real pumping mechanism may be complex in VX Sgr and vary with time. The J = 1→0 (v = 0) 29SiO line emission is also detected, but is too weak to produce any VLBI map.
Recent results from advanced research on space solar cells at NASA
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1990-01-01
The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 pm) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.
NASA advanced space photovoltaic technology-status, potential and future mission applications
NASA Technical Reports Server (NTRS)
Flood, Dennis J.; Piszczor, Michael, Jr.; Stella, Paul M.; Bennett, Gary L.
1989-01-01
The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 micrometer) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.
Mineral resources of the Cabinet Mountains Wilderness, Lincoln and Sanders Counties, Montana
Lindsey, David A.; Wells, J.D.; Van Loenen, R. E.; Banister, D.P.; Welded, R.D.; Zilka, N.T.; Schmauch, S.W.
1978-01-01
This report describes the differential array, of seismometers recently installed at the Hollister, California, Municipal Airport. Such an array of relatively closely spaced seismometers has already been installed in El Centro and provided useful information for both engineering and seismological applications from the 1979 Imperial Valley earthquake. Differential ground motions, principally due to horizontally propagating surface waves, are important in determining the stresses in such extended structures as large mat foundations for nuclear power stations, dams, bridges and pipelines. Further, analyses of the records of the 1979 Imperial Valley earthquake from the differential array have demonstrated the utility of short-baseline array data in tracking the progress of the rupture wave front of an earthquake.
Facilities for US Radioastronomy.
ERIC Educational Resources Information Center
Thaddeus, Patrick
1982-01-01
Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Kenta; Nagai, Hiroshi; Kino, Motoki
2012-02-20
Following the discovery of a new radio component right before the GeV {gamma}-ray detection since 2008 August by the Fermi Gamma-ray Space Telescope, we present a detailed study of the kinematics and light curve on the central sub-parsec scale of 3C 84 using the archival Very Long Baseline Array 43 GHz data covering the period between 2002 January and 2008 November. We find that the new component 'C3', previously reported by the observations with the Very Long Baseline Interferometer Exploration of Radio Astrometry, was already formed in 2003. The flux density of C3 increases moderately until 2008, and then itmore » becomes brighter rapidly after 2008. The radio core, C1, also shows a similar trend. The apparent speed of C3 with reference to the core C1 shows moderate acceleration from 0.10c to 0.47c between 2003 November and 2008 November, but is still sub-relativistic. We further try to fit the observed broadband spectrum by the one-zone synchrotron self-Compton model using the measured apparent speed of C3. The fit can reproduce the observed {gamma}-ray emission, but does not agree with the observed radio spectral index between 22 and 43 GHz.« less
PKS 1954-388: RadioAstron Detection on 80,000 km Baselines and Multiwavelength Observations
NASA Astrophysics Data System (ADS)
Edwards, P. G.; Kovalev, Y. Y.; Ojha, R.; An, H.; Bignall, H.; Carpenter, B.; Hovatta, T.; Stevens, J.; Voytsik, P.; Andrianov, A. S.; Dutka, M.; Hase, H.; Horiuchi, S.; Jauncey, D. L.; Kadler, M.; Lisakov, M.; Lovell, J. E. J.; McCallum, J.; Müller, C.; Phillips, C.; Plötz, C.; Quick, J.; Reynolds, C.; Schulz, R.; Sokolovsky, K. V.; Tzioumis, A. K.; Zuga, V.
2017-04-01
We present results from a multiwavelength study of the blazar PKS 1954-388 at radio, UV, X-ray, and gamma-ray energies. A RadioAstron observation at 1.66 GHz in June 2012 resulted in the detection of interferometric fringes on baselines of 6.2 Earth-diameters. This suggests a source frame brightness temperature of greater than 2 × 1012 K, well in excess of both equipartition and inverse Compton limits and implying the existence of Doppler boosting in the core. An 8.4-GHz TANAMI VLBI image, made less than a month after the RadioAstron observations, is consistent with a previously reported superluminal motion for a jet component. Flux density monitoring with the Australia Telescope Compact Array confirms previous evidence for long-term variability that increases with observing frequency. A search for more rapid variability revealed no evidence for significant day-scale flux density variation. The ATCA light-curve reveals a strong radio flare beginning in late 2013, which peaks higher, and earlier, at higher frequencies. Comparison with the Fermi gamma-ray light-curve indicates this followed 9 months after the start of a prolonged gamma-ray high-state-a radio lag comparable to that seen in other blazars. The multiwavelength data are combined to derive a Spectral Energy Distribution, which is fitted by a one-zone synchrotron-self-Compton (SSC) model with the addition of external Compton (EC) emission.
Operator Interface for the ALMA Observing System
NASA Astrophysics Data System (ADS)
Grosbøl, P.; Schilling, M.
2009-09-01
The Atacama Large Millimeter/submillimeter Array (ALMA) is a major new ground-based radio-astronomical facility being constructed in Chile in an international collaboration between Europe, Japan and North America in cooperation with the Republic of Chile. The facility will include 54 12m and 12 7m antennas at the Altiplano de Chajnantor and be operated from the Operations Support Facilities (OSF) near San Pedro. This paper describes design and baseline implementation of the Graphical User Interface (GUI) used by operators to monitor and control the observing facility. It is written in Java and provides a simple plug-in interface which allows different subsystems to add their own panels to the GUI. The design is based on a client/server concept and supports multiple operators to share or monitor operations.
Millimetron and Earth-Space VLBI
NASA Astrophysics Data System (ADS)
Likhachev, S.
2014-01-01
The main scientific goal of the Millimetron mission operating in Space VLBI (SVLBI) mode will be the exploration of compact radio sources with extremely high angular resolution (better than one microsecond of arc). The space-ground interferometer Millimetron has an orbit around L2 point of the Earth - Sun system and allows operating with baselines up to a hundred Earth diameters. SVLBI observations will be accomplished by space and ground-based radio telescopes simultaneously. At the space telescope the received baseband signal is digitized and then transferred to the onboard memory storage (up to 100TB). The scientific and service data transfer to the ground tracking station is performed by means of both synchronization and communication radio links (1 GBps). Then the array of the scientific data is processed at the correlation center. Due to the (u,v) - plane coverage requirements for SVLBI imaging, it is necessary to propose observations at two different frequencies and two circular polarizations simultaneously with frequency switching. The total recording bandwidth (2x2x4 GHz) defines of the on-board memory size. The ground based support of the Millimetron mission in the VLBI-mode could be Atacama Large Millimeter Array (ALMA), Pico Valletta (Spain), Plateau de Bure interferometer (France), SMT telescope in the US (Arizona), LMT antenna (Mexico), SMA array, (Mauna Kea, USA), as well as the Green Bank and Effelsberg 100 m telescopes (for 22 GHz observations). We will present simulation results for Millimetron-ALMA interferometer. The sensitivity estimate of the space-ground interferometer will be compared to the requirements of the scientific goals of the mission. The possibility of multi-frequency synthesis (MFS) to obtain high quality images will also be considered.
Polarization Observations with the Cosmic Background Imager
NASA Astrophysics Data System (ADS)
Cartwright, J. K.; Padin, S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Taylor, G. B.
2001-05-01
We describe polarization observations of the CMBR with the Cosmic Background Imager, a 13 element interferometer which operates in the 26-36 GHz band from a site at 5000m in northern Chile. The array consists of 90-cm Cassegrain antennas mounted on a single, fully steerable platform; this platform can be rotated about the optical axis to facilitate polarization observations. The CBI employs single mode circularly polarized receivers, of which 12 are configured for LCP and one is configured for RCP. The 12 cross polarized baselines sample multipoles from l 600 to l 3500. The instrumental polarization of the CBI was calibrated with observations of 3C279, a bright polarized source which is unresolved by the CBI. Because the centimeter flux of 3C279 is variable, it was monitored twice per month for 8 months in 2000 with the VLA at 22 and 43 GHz. These observations also established the stability of the polarization characteristics of the CBI. This work was made possible by NSF grant AST-9802989
Kinematic Age Estimates for Four Compact Symmetric Objects from the Pearson-Readhead Survey
NASA Astrophysics Data System (ADS)
Taylor, G. B.; Marr, J. M.; Pearson, T. J.; Readhead, A. C. S.
2000-09-01
Based on multiepoch observations at 15 and 43 GHz with the Very Long Baseline Array (VLBA), we detect significant angular expansions between the two hot spots of four compact symmetric objects (CSOs). From these relative motions we derive kinematic ages of between 300 and 1200 yr for the radio emission. These ages lend support to the idea that CSOs are produced in a recent phase of activity. These observations also allow us to study the evolution of the hot spots dynamically in individual sources. In all four sources the hot spots are separating along the source axis, but in 1031+567 the tip of the hot spot appears to be moving almost orthogonally to the source axis. Jet components, seen in three of the four sources observed, are found to be moving relativistically outward from the central engines toward the more slowly moving hot spots.
The Parsec-Scale Morphology of Southern GPS Sources
NASA Astrophysics Data System (ADS)
Edwards, P. G.; Tingay, S. J.
2016-12-01
Multi-frequency, multi-epoch ATCA observations of a sample of AGN resulted in the identification of nine new candidate Giga-hertz Peaked Spectrum sources. Here, we present Long Baseline Array observations at 4.8 GHz of the four candidates with no previously published VLBI image, and consider these together with previously published VLBI images of the other five sources. We find core-jet or compact double morphologies dominate, with further observations required to distinguish between these two possibilities for some sources. One of the nine candidates, PKS 1831-711, displays appreciable variability, suggesting its GPS spectrum is more ephemeral in nature. We focus in particular on the apparent relationship between a narrow spectral width and `compact double' parsec-scale morphology, finding further examples, but also exceptions to this trend. An examination of the VLBI morphologies high-redshift (z > 3) sub-class of GPS sources suggests that core-jet morphologies predominate in this class.
Using Optical Interferometry for GEO Satellites Imaging: An Update
2016-05-27
of a geostationary satellite using the Navy Precision Optical Inter- ferometer (NPOI) during the glint season of March 2015. We succeeded in detecting...night. These baseline lengths correspond to a resolution of ∼4 m at geostationary altitude. This is the first multiple-baseline interferometric...detection of a satellite. Keywords: geostationary satellites, optical interferometry, imaging, telescope arrays 1. INTRODUCTION Developing the ability to
An Analysis Method for Superconducting Resonator Parameter Extraction with Complex Baseline Removal
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe
2014-01-01
A new semi-empirical model is proposed for extracting the quality (Q) factors of arrays of superconducting microwave kinetic inductance detectors (MKIDs). The determination of the total internal and coupling Q factors enables the computation of the loss in the superconducting transmission lines. The method used allows the simultaneous analysis of multiple interacting discrete resonators with the presence of a complex spectral baseline arising from reflections in the system. The baseline removal allows an unbiased estimate of the device response as measured in a cryogenic instrumentation setting.
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Heath, Christopher M.; Anderson, Robert C.; Tacina, Kathleen M.
2012-01-01
This paper explores recent results obtained during testing in an optically-accessible, JP8-fueled, flame tube combustor using baseline Lean Direct Injection (LDI) research hardware. The baseline LDI geometry has nine fuel/air mixers arranged in a 3 x 3 array. Results from this nine-element array include images of fuel and OH speciation via Planar Laser-Induced Fluorescence (PLIF), which describe fuel spray pattern and reaction zones. Preliminary combustion temperatures derived from Stokes/Anti-Stokes Spontaneous Raman Spectroscopy are also presented. Other results using chemiluminescence from major combustion radicals such as CH* and C2* serve to identify the primary reaction zone, while OH PLIF shows the extent of reaction further downstream. Air and fuel velocities and fuel drop size results are also reported.
NASA Astrophysics Data System (ADS)
Lapshev, Stepan; Hasan, S. M. Rezaul
2017-04-01
This paper presents the approach of using complex multiplier-accumulators (CMACs) with multiple accumulators to reduce the total number of memory operations in an input-buffered architecture for the X part of an FX correlator. A processing unit of this architecture uses an array of CMACs that are reused for different groups of baselines. The disadvantage of processing correlations in this way is that each input data sample has to be read multiple times from the memory because each input signal is used in many of these baseline groups. While a one-accumulator CMAC cannot switch to a different baseline until it is finished integrating the current one, a multiple-accumulator CMAC can. Thus, the array of multiple-accumulator CMACs can switch between processing different baselines that share some input signals at any moment to reuse the current data in the processing buffers. In this way significant reductions in the number of memory read operations are achieved with only a few accumulators per CMAC. For example, for a large number of input signals three-accumulator CMACs reduce the total number of memory operations by more than a third. Simulated energy measurements of four VLSI designs in a high-performance 28 nm CMOS technology are presented in this paper to demonstrate that using multiple accumulators can also lead to reduced power dissipation of the processing array. Using three accumulators as opposed to one has been found to reduce the overall energy of 8-bit CMACs by 1.4% through the reduction of the switching activity within their circuits, which is in addition to a more than 30% reduction in the memory.
Mapping lightning in the sky with a mini array
NASA Astrophysics Data System (ADS)
Füllekrug, Martin; Liu, Zhongjian; Koh, Kuang; Mezentsev, Andrew; Pedeboy, Stéphane; Soula, Serge; Enno, Sven-Erik; Sugier, Jacqueline; Rycroft, Michael J.
2016-10-01
Mini arrays are commonly used for infrasonic and seismic studies. Here we report for the first time the detection and mapping of distant lightning discharges in the sky with a mini array. The array has a baseline to wavelength ratio ˜4.2·10-2 to record very low frequency electromagnetic waves from 2 to 18 kHz. It is found that the mini array detects ˜69 lightning pulses per second from cloud-to-ground and in-cloud discharges, even though the parent thunderstorms are ˜900-1100 km away and a rigorous selection criterion based on the quality of the wavefront across the array is used. In particular, lightning pulses that exhibit a clockwise phase progression are found at larger elevation angles in the sky as the result of a birefringent subionospheric wave propagation attributed to ordinary and extraordinary waves. These results imply that long range lightning detection networks might benefit from an exploration of the wave propagation conditions with mini arrays.
The first simultaneous mapping of four 7 mm SiO maser lines using the OCTAVE system
NASA Astrophysics Data System (ADS)
Oyama, Tomoaki; Kono, Yusuke; Suzuki, Syunsaku; Kanaguchi, Masahiro; Nishikawa, Takashi; Kawaguchi, Noriyuki; Hirota, Tomoya; Nagayama, Takumi; Kobayashi, Hideyuki; Imai, Hiroshi; Kuwahara, Sho; Kano, Amane; Oyadomari, Miyako; Chong, Sze Ning
2016-12-01
We report on simultaneous very long baseline interferometry (VLBI) mapping of 28SiO v = 1, 2, 3, and 29SiO v = 0 J = 1 → 0 maser lines at the 7 mm band toward the semi-regular variable star, W Hydrae (W Hya), using the new data acquisition system (OCTAVE-DAS), installed in the VLBI Exploration of Radio Astrometry (VERA) array and temporarily operated in the 45 m telescope of the Nobeyama Radio Observatory. Although these masers were spatially resolved, their compact maser spots were fortunately detected in the 1000 km baselines of VERA. We found the locations of the v = 3 maser emission which are unexpected from the currently proposed maser pumping models. Mapping of the 29SiO maser line in W Hya is the third result after those in WX Psc and R Leo. This paper shows the scientific implication of simultaneous VLBI observations of multiple SiO maser lines as realized by using the OCTAVE system.
Directly connecting the Very Long Baseline Array
NASA Astrophysics Data System (ADS)
Hunt, Gareth; Romney, Jonathan D.; Walker, R. Craig
2002-11-01
At present, the signals received by the 10 antennas of the Very Long Baseline Array (VLBA) are recorded on instrumentation tapes. These tapes are then shipped from the antenna locations - distributed across the mainland USA, the US Virgin Islands, and Hawaii - to the processing center in Socorro, New Mexico. The Array operates today at a mean sustained data rate of 128 Mbps per antenna, but peak rates of 256 Mbps and 512 Mbps are also used. Transported tapes provide the cheapest method of attaining these bit rates. The present tape system derives from wideband recording techniques dating back to the late 1960s, and has been in use since the commissioning of the VLBA in 1993. It is in need of replacement on a time scale of a few years. Further, plans are being developed which would increase the required data rates to 1 Gbps in 5 years and 100 Gbps in 10 years. With the advent of higher performance networks, it should be possible to transmit the data directly to the processing center. However, achieving this connectivity is complicated by the remoteness of the antennas -
NASA Astrophysics Data System (ADS)
Avrorin, A. D.; Avrorin, A. V.; Aynutdinov, V. M.; Bannash, R.; Belolaptikov, I. A.; Brudanin, V. B.; Budnev, N. M.; Danilchenko, I. A.; Demidov, S. V.; Domogatsky, G. V.; Doroshenko, A. A.; Dvornicky, R.; Dyachok, A. N.; Dzhilkibaev, Zh.-A. M.; Fajt, L.; Fialkovsky, S. V.; Gafarov, A. R.; Gaponenko, O. N.; Golubkov, K. V.; Gress, T. I.; Honz, Z.; Kebkal, K. G.; Kebkal, O. G.; Konischev, K. V.; Korobchenko, A. V.; Koshechkin, A. P.; Koshel, F. K.; Kozhin, A. V.; Kulepov, V. F.; Kuleshov, D. A.; Milenin, M. B.; Mirgazov, R. A.; Osipova, E. R.; Panfilov, A. I.; Pan'kov, L. V.; Pliskovsky, E. N.; Rozanov, M. I.; Rjabov, E. V.; Shamakhov, F. A.; Shaybonov, B. A.; Sheifler, A. A.; Shelepov, M. D.; Simkovic, F.; Skurihin, A. V.; Smagina, A. A.; Stekl, I.; Suvorova, O. V.; Tabolenko, V. A.; Tarashansky, B. A.; Yakovlev, S. A.; Zagorodnikov, A. V.; Zurbanov, V. L.
2017-03-01
We present the status of the Gigaton Volume Detector in Lake Baikal (Baikal-GVD) designed for the detection of high energy neutrinos of astrophysical origin. The telescope consists of functionally independent clusters, sub-arrays of optical modules (OMs), which are connected to shore by individual electro-optical cables. During 2015 the GVD demonstration cluster, comprising 192 OMs, has been successfully operated in Lake Baikal. In 2016 this array was upgraded to baseline configuration of GVD cluster with 288 OMs arranged on eight vertical strings. Thus the instrumented water volume has been increased up to about 5.9 Mtons. The array was commissioned in early April 2016 and takes data since then. We describe the configuration and design of the 2016 array. Preliminary results obtained with data recorded in 2015 are also discussed.
FOUR DUAL AGN CANDIDATES OBSERVED WITH THE VLBA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabányi, K. É.; Frey, S.; An, T.
According to hierarchical structure formation models, merging galaxies are expected to be seen in different stages of coalescence. However, there are currently no straightforward observational methods to either select or to confirm a large number of dual active galactic nucleus (AGN) candidates. Most attempts involve obtaining a better understanding of double-peaked narrow emission line sources, in order to distinguish the objects for which the emission lines originate from narrow-line kinematics or jet-driven outflows, from those which might harbor dual AGNs. We observed four such candidate sources with the Very Long Baseline Array (VLBA), at 1.5 GHz with a ∼10 masmore » angular resolution, for which the spectral profiles of AGN optical emission suggested the existence of dual AGNs. In SDSS J210449.13–000919.1 and SDSS J23044.82–093345.3 the radio structures are aligned with the optical emission features, thus the double-peaked emission lines might be the results of jet-driven outflows. In the third detected source SDSS J115523.74+150756.9, the radio structure is less extended and is oriented nearly perpendicular to the position angle derived from optical spectroscopy. The fourth source remained undetected with the VLBA, but it was imaged with the Very Large Array at arcsec resolution a few months before our observations, suggesting the existence of an extended radio structure. We did not detect two radio-emitting cores in any of the four sources, a convincing signature of duality.« less
Project PARAS: Phased array radio astronomy from space
NASA Technical Reports Server (NTRS)
Nuss, Kenneth; Hoffmann, Christopher; Dungan, Michael; Madden, Michael; Bendakhlia, Monia
1992-01-01
An orbiting radio telescope is proposed which, when operated in a very long baseline interferometry (VLBI) scheme, would allow higher than currently available angular resolution and dynamic range in the maps and the ability to observe rapidly changing astronomical sources. Using passive phased array technology, the proposed design consists of 656 hexagonal modules forming a 150-m diameter antenna dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data are transmitted to telemetry stations on the ground. The truss frame supporting each observatory panel is a novel hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and the bottom triangle. Attitude control and station keeping functions will be performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and four hydrazine arcjets, the latter supported by either a photovoltaic array or a radioisotope thermoelectric generator. The total mass of the spacecraft is about 20,500 kg.
NASA Technical Reports Server (NTRS)
1972-01-01
The work performed to arrive at a baseline astronomy sortie mission concept is summarized. The material includes: (1) definition of the telescopes and arrays; (2) preliminary definition of mission and systems; (3) identification, definition, and evaluation of alternative sortie programs; (4) the recommended astronomy sortie program; and (5) the astronomy sortie program concept that was approved as a baseline for the remainder of the project.
NASA Astrophysics Data System (ADS)
Burke-Spolaor, Sarah; Lazio, Joseph; Nyland, Kristina; Blecha, Laura; Bogdanovic, Tamara; Comerford, Julie; Liu, Xin; Taylor, Gregory; Shen, Yue; Maccarone, T. J.; Chomiuk, Laura; Reines, Amy
2018-01-01
Dual ( < ˜1 kpc separation) and binary (< ˜10 pc separation) supermassive black holes are formed during the merger of two massive galaxies. Their formation and subsequent evolution is controlled by interactions with their environment and, at close separations, the emission of gravitational waves. If we can determine the occurrance rate of dual active nuclei in galaxy mergers, we can directly measure merger-induced active nucleus activity, supermassive black hole growth, and the physical processes that drive both the remnant's dynamics and the inspiral of the black hole pair. A systematic census of the dual supermassive black hole population will also directly constrain the strength and distribution of objects emitting gravitational waves that will be detected by pulsar timing arrays and future space-based laser interferometers. Although the population of dual supermassive black holes in galaxy merger products is central to these topics and others, few have yet been discovered.A suite of radio, visible-infrared, and X-ray telescopes have just begun to reveal the population of kiloparsec-separation dual active nuclei. This poster will present the unique capability of radio observations to explore the dual and binary population of supermassive black hole binaries, and will highlight the observational techniques and discoveries expected for the Next-Generation Very Large Array.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The NANOGrav project receives support from NSF Physics Frontier Center award number 1430284.
NASA Astrophysics Data System (ADS)
Kounkel, Marina; Hartmann, Lee; Loinard, Laurent; Ortiz-León, Gisela N.; Mioduszewski, Amy J.; Rodríguez, Luis F.; Dzib, Sergio A.; Torres, Rosa M.; Pech, Gerardo; Galli, Phillip A. B.; Rivera, Juana L.; Boden, Andrew F.; Evans, Neal J., II; Briceño, Cesar; Tobin, John J.
2017-01-01
We present the results of the Gould’s Belt Distances Survey of young star-forming regions toward the Orion Molecular Cloud Complex. We detected 36 young stellar objects (YSOs) with the Very Large Baseline Array, 27 of which have been observed in at least three epochs over the course of two years. At least half of these YSOs belong to multiple systems. We obtained parallax and proper motions toward these stars to study the structure and kinematics of the Complex. We measured a distance of 388 ± 5 pc toward the Orion Nebula Cluster, 428 ± 10 pc toward the southern portion L1641, 388 ± 10 pc toward NGC 2068, and roughly ˜420 pc toward NGC 2024. Finally, we observed a strong degree of plasma radio scattering toward λ Ori.
A Multi-Baseline 12 GHz Atmospheric Phase Interferometer with One Micron Path Length Sensitivity
NASA Astrophysics Data System (ADS)
Kimberk, Robert S.; Hunter, Todd R.; Leiker, Patrick S.; Blundell, Raymond; Nystrom, George U.; Petitpas, Glen R.; Test, John; Wilson, Robert W.; Yamaguchi, Paul; Young, Kenneth H.
2012-12-01
We have constructed a five station 12 GHz atmospheric phase interferometer (API) for the Submillimeter Array (SMA) located near the summit of Mauna Kea, Hawaii. Operating at the base of unoccupied SMA antenna pads, each station employs a commercial low noise mixing block coupled to a 0.7 m off-axis satellite dish which receives a broadband, white noise-like signal from a geostationary satellite. The signals are processed by an analog correlator to produce the phase delays between all pairs of stations with projected baselines ranging from 33-261 m. Each baseline's amplitude and phase is measured continuously at a rate of 8 kHz, processed, averaged and output at 10 Hz. Further signal processing and data reduction is accomplished with a Linux computer, including the removal of the diurnal motion of the target satellite. The placement of the stations below ground level with an environmental shield combined with the use of low temperature coefficient, buried fiber optic cables provides excellent system stability. The sensitivity in terms of rms path length is 1.3 microns which corresponds to phase deviations of about 1° of phase at the highest operating frequency of the SMA. The two primary data products are: (1) standard deviations of observed phase over various time scales, and (2) phase structure functions. These real-time statistical data measured by the API in the direction of the satellite provide an estimate of the phase front distortion experienced by the concurrent SMA astronomical observations. The API data also play an important role, along with the local opacity measurements and weather predictions, in helping to plan the scheduling of science observations on the telescope.
Saito, Masahide; Sano, Naoki; Shibata, Yuki; Kuriyama, Kengo; Komiyama, Takafumi; Marino, Kan; Aoki, Shinichi; Ashizawa, Kazunari; Yoshizawa, Kazuya; Onishi, Hiroshi
2018-05-01
The purpose of this study was to compare the MLC error sensitivity of various measurement devices for VMAT pre-treatment quality assurance (QA). This study used four QA devices (Scandidos Delta4, PTW 2D-array, iRT systems IQM, and PTW Farmer chamber). Nine retrospective VMAT plans were used and nine MLC error plans were generated for all nine original VMAT plans. The IQM and Farmer chamber were evaluated using the cumulative signal difference between the baseline and error-induced measurements. In addition, to investigate the sensitivity of the Delta4 device and the 2D-array, global gamma analysis (1%/1, 2%/2, and 3%/3 mm), dose difference (1%, 2%, and 3%) were used between the baseline and error-induced measurements. Some deviations of the MLC error sensitivity for the evaluation metrics and MLC error ranges were observed. For the two ionization devices, the sensitivity of the IQM was significantly better than that of the Farmer chamber (P < 0.01) while both devices had good linearly correlation between the cumulative signal difference and the magnitude of MLC errors. The pass rates decreased as the magnitude of the MLC error increased for both Delta4 and 2D-array. However, the small MLC error for small aperture sizes, such as for lung SBRT, could not be detected using the loosest gamma criteria (3%/3 mm). Our results indicate that DD could be more useful than gamma analysis for daily MLC QA, and that a large-area ionization chamber has a greater advantage for detecting systematic MLC error because of the large sensitive volume, while the other devices could not detect this error for some cases with a small range of MLC error. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Use of Very Long Baseline Array Interferometric Data for Spacecraft Navigation
NASA Technical Reports Server (NTRS)
Martin-Mur, Tomas J.; Antreasian, P.; Border, J.; Benson, J.; Dhawan, V.; Fomalont, E.; Graat, E.; Jacobson, R.; Lanyi, G.; McElrath, T.;
2006-01-01
The main VLBI technique that is used at JPL is known as the Delta Differential One-way Ranging ((Delta)DOR). Two DSN antennas simultaneously track a source, and alternate between sources. The signals recorded at the antennas from each source are correlated to obtain the delay in arrival to the two antennas, and the delays are differenced to remove common-source errors. An alternative technique is to use carrier phase differences between antennas. This is routinely done by the Very Large Baseline Array (VLBA) as part of source imaging. The VLBA capabilities are used for scientific research, but also have the potential to be used for navigation. Two main experiments were performed with the VLBA and JPL spacecraft. This paper describes and analyzes these experiments and discusses the possible uses of VLBA tracking for spacecraft navigation.
Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas
NASA Technical Reports Server (NTRS)
Galofaro, J.; Vayner, B.; Ferguson, D.
2003-01-01
The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.
HIGH-RESOLUTION VLBA OBSERVATIONS OF THREE 7 mm SiO MASERS TOWARD VX Sgr AT FIVE EPOCHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, J. B.; Shen, Z.-Q.; Chen, X.
2012-07-20
VX Sgr is a red supergiant at an adopted distance of 1.6 kpc with intense 43 GHz SiO maser emission. In this paper, we present the high-resolution very long baseline interferometry (VLBI) observations of SiO masers toward VX Sgr at five epochs. We used the Very Long Baseline Array to map the J = 1{yields}0 (v = 1, 2) {sup 28}SiO masers and confirmed a ring-like structure. In the first two epochs, the v = 1 masers form a ring, but v = 2 maser spots residing only in the southern and northern regions do not form a complete ring.more » In the third epoch, the two masers are distributed in a ring structure and the v = 2 masers are a bit closer to the central star. In the last two epochs, many new maser spots appear and overlap each other. These overlapping maser spots can be related to the shock waves and reflect the collisional pumping. We compare the observations with the pumping models and speculate that the real pumping mechanism may be complex in VX Sgr and vary with time. The J = 1{yields}0 (v = 0) {sup 29}SiO line emission is also detected, but is too weak to produce any VLBI map.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunhokee, C. D.; Bernardi, G.; Foster, G.
A critical challenge in the observation of the redshifted 21 cm line is its separation from bright Galactic and extragalactic foregrounds. In particular, the instrumental leakage of polarized foregrounds, which undergo significant Faraday rotation as they propagate through the interstellar medium, may harmfully contaminate the 21 cm power spectrum. We develop a formalism to describe the leakage due to instrumental widefield effects in visibility-based power spectra measured with redundant arrays, extending the delay-spectrum approach presented in Parsons et al. We construct polarized sky models and propagate them through the instrument model to simulate realistic full-sky observations with the Precision Arraymore » to Probe the Epoch of Reionization. We find that the leakage due to a population of polarized point sources is expected to be higher than diffuse Galactic polarization at any k mode for a 30 m reference baseline. For the same reference baseline, a foreground-free window at k > 0.3 h Mpc{sup −1} can be defined in terms of leakage from diffuse Galactic polarization even under the most pessimistic assumptions. If measurements of polarized foreground power spectra or a model of polarized foregrounds are given, our method is able to predict the polarization leakage in actual 21 cm observations, potentially enabling its statistical subtraction from the measured 21 cm power spectrum.« less
High precision pulsar timing and spin frequency second derivatives
NASA Astrophysics Data System (ADS)
Liu, X. J.; Bassa, C. G.; Stappers, B. W.
2018-05-01
We investigate the impact of intrinsic, kinematic and gravitational effects on high precision pulsar timing. We present an analytical derivation and a numerical computation of the impact of these effects on the first and second derivative of the pulsar spin frequency. In addition, in the presence of white noise, we derive an expression to determine the expected measurement uncertainty of a second derivative of the spin frequency for a given timing precision, observing cadence and timing baseline and find that it strongly depends on the latter (∝t-7/2). We show that for pulsars with significant proper motion, the spin frequency second derivative is dominated by a term dependent on the radial velocity of the pulsar. Considering the data sets from three Pulsar Timing Arrays, we find that for PSR J0437-4715 a detectable spin frequency second derivative will be present if the absolute value of the radial velocity exceeds 33 km s-1. Similarly, at the current timing precision and cadence, continued timing observations of PSR J1909-3744 for about another eleven years, will allow the measurement of its frequency second derivative and determine the radial velocity with an accuracy better than 14 km s-1. With the ever increasing timing precision and observing baselines, the impact of the, largely unknown, radial velocities of pulsars on high precision pulsar timing can not be neglected.
PKS 1954–388: RadioAstron detection on 80,000 km baselines and multiwavelength observations
Edwards, P. G.; Kovalev, Y. Y.; Ojha, R.; ...
2017-04-26
Here, we present results from a multiwavelength study of the blazar PKS 1954–388 at radio, UV, X-ray, and gamma-ray energies. A RadioAstron observation at 1.66 GHz in June 2012 resulted in the detection of interferometric fringes on baselines of 6.2 Earth-diameters. This suggests a source frame brightness temperature of greater than 2 × 10 12 K, well in excess of both equipartition and inverse Compton limits and implying the existence of Doppler boosting in the core. An 8.4-GHz TANAMI VLBI image, made less than a month after the RadioAstron observations, is consistent with a previously reported superluminal motion for amore » jet component. Flux density monitoring with the Australia Telescope Compact Array confirms previous evidence for long-term variability that increases with observing frequency. A search for more rapid variability revealed no evidence for significant day-scale flux density variation. The ATCA light-curve reveals a strong radio flare beginning in late 2013, which peaks higher, and earlier, at higher frequencies. Comparison with the Fermi gamma-ray light-curve indicates this followed ~ 9 months after the start of a prolonged gamma-ray high-state—a radio lag comparable to that seen in other blazars. The multiwavelength data are combined to derive a Spectral Energy Distribution, which is fitted by a one-zone synchrotron-self-Compton (SSC) model with the addition of external Compton (EC) emission.« less
High Efficiency mm-Wave Transmitter Array
2016-09-01
SECURITY CLASSIFICATION OF: High efficiency, high power transmitters integrated in silicon at 45, 94 and 138 GHz were developed. Our approach...employs CMOS-SOI and SiGe HBT unit amplifiers, power -combined in free-space using antenna arrays to attain high power levels. In the baseline approach...the-art were made. At 45GHz, a single CMOS chip produced an RF power of 630mW, which yielded an EIRP of 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND
NASA Astrophysics Data System (ADS)
Kurien, Binoy G.; Tarokh, Vahid; Rachlin, Yaron; Shah, Vinay N.; Ashcom, Jonathan B.
2016-10-01
We provide new results enabling robust interferometric image reconstruction in the presence of unknown aperture piston variation via the technique of redundant spacing calibration (RSC). The RSC technique uses redundant measurements of the same interferometric baseline with different pairs of apertures to reveal the piston variation among these pairs. In both optical and radio interferometry, the presence of phase-wrapping ambiguities in the measurements is a fundamental issue that needs to be addressed for reliable image reconstruction. In this paper, we show that these ambiguities affect recently developed RSC phasor-based reconstruction approaches operating on the complex visibilities, as well as traditional phase-based approaches operating on their logarithm. We also derive new sufficient conditions for an interferometric array to be immune to these ambiguities in the sense that their effect can be rendered benign in image reconstruction. This property, which we call wrap-invariance, has implications for the reliability of imaging via classical three-baseline phase closures as well as generalized closures. We show that wrap-invariance is conferred upon arrays whose interferometric graph satisfies a certain cycle-free condition. For cases in which this condition is not satisfied, a simple algorithm is provided for identifying those graph cycles which prevent its satisfaction. We apply this algorithm to diagnose and correct a member of a pattern family popular in the literature.
Image Reconstruction in Radio Astronomy with Non-Coplanar Synthesis Arrays
NASA Astrophysics Data System (ADS)
Goodrick, L.
2015-03-01
Traditional radio astronomy imaging techniques assume that the interferometric array is coplanar, with a small field of view, and that the two-dimensional Fourier relationship between brightness and visibility remains valid, allowing the Fast Fourier Transform to be used. In practice, to acquire more accurate data, the non-coplanar baseline effects need to be incorporated, as small height variations in the array plane introduces the w spatial frequency component. This component adds an additional phase shift to the incoming signals. There are two approaches to account for the non-coplanar baseline effects: either the full three-dimensional brightness and visibility model can be used to reconstruct an image, or the non-coplanar effects can be removed, reducing the three dimensional relationship to that of the two-dimensional one. This thesis describes and implements the w-projection and w-stacking algorithms. The aim of these algorithms is to account for the phase error introduced by non-coplanar synthesis arrays configurations, making the recovered visibilities more true to the actual brightness distribution model. This is done by reducing the 3D visibilities to a 2D visibility model. The algorithms also have the added benefit of wide-field imaging, although w-stacking supports a wider field of view at the cost of more FFT bin support. For w-projection, the w-term is accounted for in the visibility domain by convolving it out of the problem with a convolution kernel, allowing the use of the two-dimensional Fast Fourier Transform. Similarly, the w-Stacking algorithm applies a phase correction in the image domain to image layers to produce an intensity model that accounts for the non-coplanar baseline effects. This project considers the KAT7 array for simulation and analysis of the limitations and advantages of both the algorithms. Additionally, a variant of the Högbom CLEAN algorithm was used which employs contour trimming for extended source emission flagging. The CLEAN algorithm is an iterative two-dimensional deconvolution method that can further improve image fidelity by removing the effects of the point spread function which can obscure source data.
Astronomy sortie missions definition study. Volume 2, book 2: Appendix
NASA Technical Reports Server (NTRS)
1972-01-01
An updated and coordinated baseline experiment definition document is presented for each of the candidate astronomy sortie mission telescopes and arrays. The experiment objectives, requirements, interfaces, timelines, and programmatic considerations are included.
CMOS gate array characterization procedures
NASA Astrophysics Data System (ADS)
Spratt, James P.
1993-09-01
Present procedures are inadequate for characterizing the radiation hardness of gate array product lines prior to personalization because the selection of circuits to be used, from among all those available in the manufacturer's circuit library, is usually uncontrolled. (Some circuits are fundamentally more radiation resistant than others.) In such cases, differences in hardness can result between different designs of the same logic function. Hardness also varies because many gate arrays feature large custom-designed megacells (e.g., microprocessors and random access memories-MicroP's and RAM's). As a result, different product lines cannot be compared equally. A characterization strategy is needed, along with standardized test vehicle(s), methodology, and conditions, so that users can make informed judgments on which gate arrays are best suited for their needs. The program described developed preferred procedures for the radiation characterization of gate arrays, including a gate array evaluation test vehicle, featuring a canary circuit, designed to define the speed versus hardness envelope of the gate array. A multiplier was chosen for this role, and a baseline multiplier architecture is suggested that could be incorporated into an existing standard evaluation circuit chip.
Interferometry in the era of time-domain astronomy
NASA Astrophysics Data System (ADS)
Schaefer, Gail H.; Cassan, Arnaud; Gallenne, Alexandre; Roettenbacher, Rachael M.; Schneider, Jean
2018-04-01
The physical nature of time variable objects is often inferred from photometric light-curves and spectroscopic variations. Long-baseline optical interferometry has the power to resolve the spatial structure of time variable sources directly in order to measure their physical properties and test the physics of the underlying models. Recent interferometric studies of variable objects include measuring the angular expansion and spatial structure during the early stages of novae outbursts, studying the transits and tidal distortions of the components in eclipsing and interacting binaries, measuring the radial pulsations in Cepheid variables, monitoring changes in the circumstellar discs around rapidly rotating massive stars, and imaging starspots. Future applications include measuring the image size and centroid displacements in gravitational microlensing events, and imaging the transits of exoplanets. Ongoing and upcoming photometric surveys will dramatically increase the number of time-variable objects detected each year, providing many potential targets to observe interferometrically. For short-lived transient events, it is critical for interferometric arrays to have the flexibility to respond rapidly to targets of opportunity and optimize the selection of baselines and beam combiners to provide the necessary resolution and sensitivity to resolve the source as its brightness and size change. We discuss the science opportunities made possible by resolving variable sources using long baseline optical interferometry.
Using the VLBA to Uncover AGN in Dwarf Galaxies Exhibiting Nuclear Radio Emission
NASA Astrophysics Data System (ADS)
Dieck, Christopher; Johnson, Megan; Reines, Amy; Greene, Jenny
2018-01-01
The formation mechanism of billion solar mass black holes found in massive galaxies in the early universe is not yet understood. Investigation of black holes in dwarf galaxies in the local universe can help to constrain theoretical formation mechanisms and masses of black hole seeds for these supermassive black holes. The pilot study discussed herein used the Very Long Baseline Array (VLBA) to observe three nearby low mass (~109 M⊙) dwarf galaxies detected with the Jansky Very Large Array (JVLA). However, the JVLA does not have sufficient spatial resolution to discriminate between emission from various processes (e.g. supernova remnants and active galactic nuclei). Due to the high spatial resolution of the VLBA and the proximity of the targets, the physical scales probed are on the order of unity parsecs. Imaging of this small physical region should allow us to differentiate the source of the JVLA detected emission between a single nuclear source and multiple discreet sources, depending on whether the emission is resolved by the VLBA or not. Here we present preliminary results of our VLBA imaging and future plans.
Deciphering Debris Disk Structure with the Submillimeter Array
NASA Astrophysics Data System (ADS)
MacGregor, Meredith Ann
2018-01-01
More than 20% of nearby main sequence stars are surrounded by dusty disks continually replenished via the collisional erosion of planetesimals, larger bodies similar to asteroids and comets in our own Solar System. The material in these ‘debris disks’ is directly linked to the larger bodies such as planets in the system. As a result, the locations, morphologies, and physical properties of dust in these disks provide important probes of the processes of planet formation and subsequent dynamical evolution. Observations at millimeter wavelengths are especially critical to our understanding of these systems, since they are dominated by larger grains that do not travel far from their origin and therefore reliably trace the underlying planetesimal distribution. The Submillimeter Array (SMA) plays a key role in advancing our understanding of debris disks by providing sensitivity at the short baselines required to determine the structure of wide-field disks, such as the HR 8799 debris disk. Many of these wide-field disks are among the closest systems to us, and will serve as cornerstone templates for the interpretation of more distant, less accessible systems.
The Brazilian decimetric array and space weather
NASA Astrophysics Data System (ADS)
Sawant, Hanumant S.; Gopalswamy, Natchimuthuk; Rosa, Reinaldo R.; Sych, Robert A.; Anfinogentov, Sergey A.; Fernandes, Francisco C. R.; Cecatto, José R.; Costa, Joaquim E. R.
2011-07-01
We report on the development and current status of the Brazilian Decimetric Array (BDA), which will play a vital role in filling the existing gaps in imaging the Sun at decimetric wavelengths. The BDA will operate in the following radio bands: 1.2-1.7, 2.8, and 5.6 GHz with high spatial and temporal resolutions. BDA can observe flares and coronal mass ejections (CMEs) in a spectral range poorly covered in the past, thus providing important information to space weather science. The smallest baseline of 9 m employed by the BDA combined with high sensitivity will readily identify large-scale structures such as coronal holes and provide information on wave flows from them. New methods are being developed to analyze the solar-disk data with high time resolution by using tomographic and spatial PWF techniques that can readily identify coronal holes in their initial stage. Efforts are also being made to analyze the BDA data in real time in conjunction with SOHO data for a better understanding of CMEs and coronal holes. This paper provides a brief description of the BDA, and the new techniques of data analysis.
Interferometric imaging using Si3N4 photonic integrated circuits for a SPIDER imager.
Su, Tiehui; Liu, Guangyao; Badham, Katherine E; Thurman, Samuel T; Kendrick, Richard L; Duncan, Alan; Wuchenich, Danielle; Ogden, Chad; Chriqui, Guy; Feng, Shaoqi; Chun, Jaeyi; Lai, Weicheng; Yoo, S J B
2018-05-14
This paper reports design, fabrication, and experimental demonstration of a silicon nitride photonic integrated circuit (PIC). The PIC is capable of conducting one-dimensional interferometric imaging with twelve baselines near λ = 1100-1600 nm. The PIC consists of twelve waveguide pairs, each leading to a multi-mode interferometer (MMI) that forms broadband interference fringes or each corresponding pair of the waveguides. Then an 18 channel arrayed waveguide grating (AWG) separates the combined signal into 18 signals of different wavelengths. A total of 103 sets of fringes are collected by the detector array at the output of the PIC. We keep the optical path difference (OPD) of each interferometer baseline to within 1 µm to maximize the visibility of the interference measurement. We also constructed a testbed to utilize the PIC for two-dimension complex visibility measurement with various targets. The experiment shows reconstructed images in good agreement with theoretical predictions.
TES-Based X-Ray Microcalorimeter Performances Under AC Bias and FDM for Athena
NASA Technical Reports Server (NTRS)
Akamatsu, H.; Gottardi, L.; de Vries, C. P.; Adams, J. S.; Bandler, S. R.; Bruijn, M. P.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Gao, J. R.;
2016-01-01
Athena is a European X-ray observatory, scheduled for launch in 2028. Athena will employ a high-resolution imaging spectrometer called X-ray integral field unit (X-IFU), consisting of an array of 4000 transition edge sensor (TES) microcalorimeter pixels. For the readout of X-IFU, we are developing frequency domain multiplexing, which is the baseline readout system. In this paper, we report on the performance of a TES X-ray calorimeter array fabricated at Goddard Space Flight Center (GSFC) at MHz frequencies for the baseline of X-IFU detector. During single-pixel AC bias characterization, we measured X-ray energy resolutions (at 6 keV) of about 2.9 eV at both 2.3 and 3.7 MHz. Furthermore, in the multiplexing mode, we measured X-ray energy resolutions of about 2.9 eV at 1.3 and 1.7 MHz.
NASA Technical Reports Server (NTRS)
Tucker, T. K.
1989-01-01
Presented here are the results obtained from performance evaluation of a pair of Sigma Tau Standards Corporation Model VLBA-112 active hydrogen maser frequency standards. These masers were manufactured for the National Radio Astronomy Observatory (NRAO) for use on the Very Long Baseline Array (VLBA) project and were furnished to the Jet Propulsion Laboratory (JPL) for the purpose of these tests. Tests on the two masers were performed in the JPL Frequency Standards Laboratory (FSL) and included the characterization of output frequency stability versus environmental factors such as temperature, humidity, magnetic field, and barometric pressure. The performance tests also included the determination of phase noise and Allan variance using both FSL and Sigma Tau masers as references. All tests were conducted under controlled laboratory conditions, with only the desired environmental and operational parameters varied to determine sensitivity to external environment.
Design tradeoffs for a Multispectral Linear Array (MLA) instrument
NASA Technical Reports Server (NTRS)
Mika, A. M.
1982-01-01
The heart of the multispectral linear array (MLA) design problem is to develop an instrument concept which concurrently provides a wide field-of-view with high resolution, spectral separation with precise band-to band registration, and excellent radiometric accuracy. Often, these requirements have conflicting design implications which can only be resolved by careful tradeoffs that consider performance, cost, fabrication feasibility and development risk. The key design tradeoffs for an MLA instrument are addressed, and elements of a baseline instrument concept are presented.
Spatial Light Rebroadcaster Architecture Study
1992-12-01
specifications on the lenslet arrays described in [ Borelli ] and summarized 3 here: Lenslet diameter: 70,m < D < 1000/Am Lenslet spacing: 151m < Delta Focal...which leads to k2 < 1/3. We will use as our baseline, a lenslet array with D, = 300 um and3 A1 = 45 14m which is within the specifications of [ Borelli ...Target Recognizer Working Group), "Automatic Target Recognizer Component Definitions," ATRWG Report No. 87-002, April 1987. Borelli , N., et al
The Pearson-Readhead Survey of Compact Extragalactic Radio Sources from Space. I. The Images
NASA Astrophysics Data System (ADS)
Lister, M. L.; Tingay, S. J.; Murphy, D. W.; Piner, B. G.; Jones, D. L.; Preston, R. A.
2001-06-01
We present images from a space-VLBI survey using the facilities of the VLBI Space Observatory Programme (VSOP), drawing our sample from the well-studied Pearson-Readhead survey of extragalactic radio sources. Our survey has taken advantage of long space-VLBI baselines and large arrays of ground antennas, such as the Very Long Baseline Array and European VLBI Network, to obtain high-resolution images of 27 active galactic nuclei and to measure the core brightness temperatures of these sources more accurately than is possible from the ground. A detailed analysis of the source properties is given in accompanying papers. We have also performed an extensive series of simulations to investigate the errors in VSOP images caused by the relatively large holes in the (u,v)-plane when sources are observed near the orbit normal direction. We find that while the nominal dynamic range (defined as the ratio of map peak to off-source error) often exceeds 1000:1, the true dynamic range (map peak to on-source error) is only about 30:1 for relatively complex core-jet sources. For sources dominated by a strong point source, this value rises to approximately 100:1. We find the true dynamic range to be a relatively weak function of the difference in position angle (P.A.) between the jet P.A. and u-v coverage major axis P.A. For regions with low signal-to-noise ratios, typically located down the jet away from the core, large errors can occur, causing spurious features in VSOP images that should be interpreted with caution.
Meremonte, M.; Frankel, A.; Cranswick, E.; Carver, D.; Worley, D.
1996-01-01
We deployed portable digital seismographs in the San Fernando Valley (SFV), the Los Angeles basin (LAB), and surrounding hills to record aftershocks of the 17 January 1994 Northridge California earthquake. The purpose of the deployment was to investigate factors relevant to seismic zonation in urban areas, such as site amplification, sedimentary basin effects, and the variability of ground motion over short baselines. We placed seismographs at 47 sites (not all concurrently) and recorded about 290 earthquakes with magnitudes up to 5.1 at five stations or more. We deployed widely spaced stations for profiles across the San Fernando Valley, as well as five dense arrays (apertures of 200 to 500 m) in areas of high damage, such as the collapsed Interstate 10 overpass, Sherman Oaks, and the collapsed parking garage at CalState Northridge. Aftershock data analysis indicates a correlation of site amplification with mainshock damage. We found several cases where the site amplification depended on the azimuth of the aftershock, possibly indicating focusing from basin structures. For the parking garage array, we found large ground-motion variabilities (a factor of 2) over 200-m distances for sites on the same mapped soil unit. Array analysis of the aftershock seismograms demonstrates that sizable arrivals after the direct 5 waves consist of surface waves traveling from the same azimuth as that of the epicenter. These surface waves increase the duration of motions and can have frequencies as high as about 4 Hz. For the events studied here, we do not observe large arrivals reflected from the southern edge of the San Fernando Valley.
NASA Technical Reports Server (NTRS)
Li, Zhenlong; Hu, Fei; Schnase, John L.; Duffy, Daniel Q.; Lee, Tsengdar; Bowen, Michael K.; Yang, Chaowei
2016-01-01
Climate observations and model simulations are producing vast amounts of array-based spatiotemporal data. Efficient processing of these data is essential for assessing global challenges such as climate change, natural disasters, and diseases. This is challenging not only because of the large data volume, but also because of the intrinsic high-dimensional nature of geoscience data. To tackle this challenge, we propose a spatiotemporal indexing approach to efficiently manage and process big climate data with MapReduce in a highly scalable environment. Using this approach, big climate data are directly stored in a Hadoop Distributed File System in its original, native file format. A spatiotemporal index is built to bridge the logical array-based data model and the physical data layout, which enables fast data retrieval when performing spatiotemporal queries. Based on the index, a data-partitioning algorithm is applied to enable MapReduce to achieve high data locality, as well as balancing the workload. The proposed indexing approach is evaluated using the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. The experimental results show that the index can significantly accelerate querying and processing (10 speedup compared to the baseline test using the same computing cluster), while keeping the index-to-data ratio small (0.0328). The applicability of the indexing approach is demonstrated by a climate anomaly detection deployed on a NASA Hadoop cluster. This approach is also able to support efficient processing of general array-based spatiotemporal data in various geoscience domains without special configuration on a Hadoop cluster.
Estimating sizes of faint, distant galaxies in the submillimetre regime
NASA Astrophysics Data System (ADS)
Lindroos, L.; Knudsen, K. K.; Fan, L.; Conway, J.; Coppin, K.; Decarli, R.; Drouart, G.; Hodge, J. A.; Karim, A.; Simpson, J. M.; Wardlow, J.
2016-10-01
We measure the sizes of redshift ˜2 star-forming galaxies by stacking data from the Atacama Large Millimeter/submillimeter Array (ALMA). We use a uv-stacking algorithm in combination with model fitting in the uv-domain and show that this allows for robust measures of the sizes of marginally resolved sources. The analysis is primarily based on the 344 GHz ALMA continuum observations centred on 88 submillimetre galaxies in the LABOCA ECDFS Submillimeter Survey (ALESS). We study several samples of galaxies at z ≈ 2 with M* ≈ 5 × 1010 M⊙, selected using near-infrared photometry (distant red galaxies, extremely red objects, sBzK-galaxies, and galaxies selected on photometric redshift). We find that the typical sizes of these galaxies are ˜0.6 arcsec which corresponds to ˜5 kpc at z = 2, this agrees well with the median sizes measured in the near-infrared z band (˜0.6 arcsec). We find errors on our size estimates of ˜0.1-0.2 arcsec, which agree well with the expected errors for model fitting at the given signal-to-noise ratio. With the uv-coverage of our observations (18-160 m), the size and flux density measurements are sensitive to scales out to 2 arcsec. We compare this to a simulated ALMA Cycle 3 data set with intermediate length baseline coverage, and we find that, using only these baselines, the measured stacked flux density would be an order of magnitude fainter. This highlights the importance of short baselines to recover the full flux density of high-redshift galaxies.
Adapting a Planetary Science Observational Facility for Space Situational Awareness
NASA Astrophysics Data System (ADS)
Bland, P.; DFN Team
2016-09-01
The Desert Fireball Network (DFN) is designed to track meteoroids entering the atmosphere, determine pre-entry orbits (their origin in the solar system), and pinpoint fall positions for recovery by field teams. Fireball observatories are sited at remote dark-sky sites across Australia - logistics for power, sensor platforms, and data connection are in place. Each observatory is a fully autonomous unit, taking 36MP all-sky images (with fisheye lenses) throughout the night, capable of operating for 12 months in a harsh environment, and storing all imagery collected over that period. They are intelligent imaging systems, using neural network algorithms to recognize and report fireball events. An automated data reduction pipeline delivers orbital data and meteorite fall positions. Currently the DFN stands at 50 observing stations covering 2.5 million km2. A sub-set of the existing stations will be upgraded with a parallel camera package using 50mm prime lenses. Paired stations will allow triangulation. The high resolution array would deliver a Gpixel tiled image of the visible sky every 10 sec, at 20 arcsec resolution, with a limiting magnitude of 13 in a 10 sec snapshot. There are benefits in transient astronomy (optical flashes associated with gamma-ray bursts; flares from sources that generate ultra-high energy cosmic rays), and space situational awareness. The hardware upgrade would extend the resolution of the DFN into the V=11-12 magnitude range for objects in LEO, allowing us to observe significant activity during the terminator period. The result would be a wide field array, capable of triangulation, with a 3500km baseline enabling a larger terminator observing window.
Development testing of the advanced photovoltaic solar array
NASA Technical Reports Server (NTRS)
Stella, P. M.; Kurland, R. M.
1991-01-01
The latest design, fabrication and testing details of a prototype wing are discussed. Estimates of array-level performance are presented as a function of power level and solar cell technology for geosynchronous orbit (GEO) missions and solar electric propulsion missions through the Van Allen radiation belts. Design concepts are discussed that would allow the wing to be self-retractable and restowable. To date all testing has verified the feasibility and mechanical/electrical integrity of the baseline design. The beginning-of-life (BOL) specific power estimate for a nominal 10-kW (BOL) array is about 138 W/kg, with corresponding end-of-life (EOL) performance of about 93 W/kg for a 10-year GEO mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kounkel, Marina; Hartmann, Lee; Loinard, Laurent
We present the results of the Gould’s Belt Distances Survey of young star-forming regions toward the Orion Molecular Cloud Complex. We detected 36 young stellar objects (YSOs) with the Very Large Baseline Array, 27 of which have been observed in at least three epochs over the course of two years. At least half of these YSOs belong to multiple systems. We obtained parallax and proper motions toward these stars to study the structure and kinematics of the Complex. We measured a distance of 388 ± 5 pc toward the Orion Nebula Cluster, 428 ± 10 pc toward the southern portion L1641, 388 ± 10 pc towardmore » NGC 2068, and roughly ∼420 pc toward NGC 2024. Finally, we observed a strong degree of plasma radio scattering toward λ Ori.« less
Searching for Super Massive Binary Black Holes in the VLBA Calibrator Survey
NASA Astrophysics Data System (ADS)
High, Brittney C.; Peck, Alison B.; Beasley, Anthony J.
2016-01-01
Due to its incredible resolving power, the Very Long Baseline Array (VLBA) allows astronomers to view radio emission from celestial objects in incredible detail. This makes the VLBA the best instrument for studying the dynamics of active galactic nuclei, or compact regions at the centers of galaxies where black holes are thought to reside. Since most galaxies harbor supermassive black holes at their centers, and some galaxies merge with others, supermassive binary black hole systems arise. Though a number of these systems have been found, only one system contains black holes within 10 pc apart. During the summer, we analyzed new observations from the VLBA Calibrator Survey (VCS) on approximately 2200 sources in the hopes of detecting more close supermassive binary black hole candidates. Here we present the results from reducing and categorizing these sources. We also discuss the importance of the VCS and its role in enabling observations of the most distant celestial objects.
RADIO ASTROMETRY OF THE CLOSE ACTIVE BINARY HR 5110
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbuhl, E.; Mutel, R. L.; Lynch, C.
2015-09-20
The close active binary HR 5110 was observed at six epochs over 26 days using a global very long baseline interferometry array at 15.4 GHz. We used phase referencing to determine the position of the radio centroid at each epoch with an uncertainty significantly smaller than the component separation. After correcting for proper motion and parallax, we find that the centroid locations of all six epochs have barycenter separations consistent with an emission source located on the KIV secondary, and not in an interaction region between the stars or on the F primary. We used a homogeneous power-law gyrosynchrotron emissionmore » model to reproduce the observed flux densities and fractional circular polarization. The resulting ranges of mean magnetic field strength and relativistic electron densities are of the order of 10 G and 10{sup 5} cm{sup −3}, respectively, in the source region.« less
VizieR Online Data Catalog: MOJAVE. VIII. Faraday rotation in AGN jets. (Hovatta+, 2012)
NASA Astrophysics Data System (ADS)
Hovatta, T.; Lister, M. L.; Aller, M. F.; Aller, H. D.; Homan, D. C.; Kovalev, Yu. Y.; Pushkarev, A. B.; Savolainen, T.
2013-10-01
Our sample consists of 191 AGNs observed within the MOJAVE Very Long Baseline Array (VLBA) survey (Lister et al., 2009, cat. J/AJ/137/3718, Paper V). It includes 134 sources of the complete flux density-limited MOJAVE-1 sample. The rest of the sources belong to the MOJAVE-2 sample (http://www.physics.purdue.edu/astro/MOJAVE/allsources.html), which includes sources from the 2cm survey (Kellermann et al. 2004, cat. J/ApJ/609/539), gamma-ray blazars, and other sources with unusual jet properties. The sources were observed with VLBA in 2006 over 12 epochs with about monthly separation, each epoch containing 18 sources (except for epoch 2006 February 12, which included only 14 sources and epoch 2006 April 28, which included 17 sources). The observations were made in dual polarization mode using frequencies centered at 8.104, 8.424 (X band), 12.119, and 15.369GHz (U band). (2 data files).
Stable statistical representations facilitate visual search.
Corbett, Jennifer E; Melcher, David
2014-10-01
Observers represent the average properties of object ensembles even when they cannot identify individual elements. To investigate the functional role of ensemble statistics, we examined how modulating statistical stability affects visual search. We varied the mean and/or individual sizes of an array of Gabor patches while observers searched for a tilted target. In "stable" blocks, the mean and/or local sizes of the Gabors were constant over successive displays, whereas in "unstable" baseline blocks they changed from trial to trial. Although there was no relationship between the context and the spatial location of the target, observers found targets faster (as indexed by faster correct responses and fewer saccades) as the global mean size became stable over several displays. Building statistical stability also facilitated scanning the scene, as measured by larger saccadic amplitudes, faster saccadic reaction times, and shorter fixation durations. These findings suggest a central role for peripheral visual information, creating context to free resources for detailed processing of salient targets and maintaining the illusion of visual stability.
VizieR Online Data Catalog: Radio obs. of NGC 6251 jet (Tseng+, 2016)
NASA Astrophysics Data System (ADS)
Tseng, C.-Y.; Asada, K.; Nakamura, M.; Pu, H.-Y.; Algaba, J.-C.; Lo, W.-P.
2017-05-01
We conducted European VLBI Network (EVN) observations of NGC 6251 on 2013 March 10 at 1.6GHz with the stations at Badary, Svetloe, Zelenchukskaya (Russia), Effelsberg (Germany), Jodrell Bank (UK), Medicina, Noto (Italy), Onsala (Sweden), Shanghai, Urumqi (China), Torun (Poland), and Westerbork (Netherlands). Archival Very Long Baseline Array (VLBA) data at 5GHz are used and calibrated in the same manner as the EVN data. Also, 12 epochs of the VLBA data at 15GHz are obtained from the MOJAVE database (Lister+ 2009, J/AJ/137/3718). Observations were conducted during 1998-2013. We also use a published VLA image of NGC 6251 at 1.4GHz to compare with the VLBI measurements in Section 4.1. The image, as well as the calibration processes, is shown in Sambruna+ (2004A&A...414..885S). Observations were conducted on 1995 August 15 using the full VLA in its A-configuration. The beam is restored to be circular with an FWHM of 2". (1 data file).
Seafloor geodesy: Measuring surface deformation and strain-build up
NASA Astrophysics Data System (ADS)
Kopp, Heidrun; Lange, Dietrich; Hannemann, Katrin; Petersen, Florian
2017-04-01
Seafloor deformation is intrinsically related to tectonic processes, which potentially may evolve into geohazards, including earthquakes and tsunamis. The nascent scientific field of seafloor geodesy provides a way to monitor crustal deformation at high resolution comparable to the satellite-based GPS technique upon which terrestrial geodesy is largely based. The measurements extract information on stress and elastic strain stored in the oceanic crust. Horizontal seafloor displacement can be obtained by acoustic/GPS combination to provide absolute positioning or by long-term acoustic telemetry between different beacons fixed on the seafloor. The GeoSEA (Geodetic Earthquake Observatory on the SEAfloor) array uses acoustic telemetry for relative positioning at mm-scale resolution. The transponders within an array intercommunicate via acoustic signals for a period of up to 3.5 years. The seafloor acoustic transponders are mounted on 4 m high tripod steel frames to ensure clear line-of-sight between the stations. The transponders also include high-precision pressure sensors to monitor vertical movements and dual-axis inclinometers in order to measure their level as well as any tilt of the seafloor. Sound velocity sensor measurements are used to correct for water sound speed variations. A further component of the network is GeoSURF, a self-steering autonomous surface vehicle (Wave Glider), which monitors system health and is able to upload the seafloor data to the sea surface and to transfer it via satellite. The GeoSEA array is capable of both continuously monitoring horizontal and vertical ground displacement rates along submarine fault zones and characterizing their behavior (locked or aseismically creeping). Seafloor transponders are currently installed along the Siliviri segment of the North Anatolian Fault offshore Istanbul for measurements of strain build-up along the fault. The first 18 month of baseline ranging were analyzed by a joint-least square inversion and forward modeling for across-fault baseline changes. The initial results of the long-term observation period preclude fault-displacement at rates larger than a few millimeters-per-year, suggesting a locked state for the Istanbul-Siliviri segment, indicating that this portion of the fault is accumulating stress rather than continuously creeping at a slip-rate higher than 10 mm/yr during the observation period. In addition, three arrays are currently deployed on the marine forearc and outer rise of the South American subduction system around 21°S. This segment of the Nazca-South American plate boundary has last ruptured in an earthquake in 1877 and was identified as a seismic gap prior to the 2014 Iquique/Pisagua earthquake (Mw=8.1). The southern portion of the segment remains unbroken by a recent earthquake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neben, Abraham R.; Hewitt, Jacqueline N.; Dillon, Joshua S.
2016-03-20
Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21 cm spectral line emission from the Dark Ages and the Epoch of Reionization (EOR) and unlock the scientific potential of 21 cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of the order of ±10%–20% near the edges of the main lobe and in themore » sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100 m baseline and find that using an otherwise perfect foreground model, unmodeled beam-forming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the “wedge”). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beam-forming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the “EOR window”), showing that foreground avoidance remains a viable strategy.« less
Deformation offshore Northern Chile monitored by a seafloor geodetic network (GeoSEA)
NASA Astrophysics Data System (ADS)
Hannemann, Katrin; Lange, Dietrich; Kopp, Heidrun; Petersen, Florian; Contreras-Reyes, Eduardo
2017-04-01
The Nazca-South American plate boundary around 21°S has last ruptured in an earthquake in 1877 and was identified as a seismic gap prior to the 2014 Iquique earthquake (Mw=8.1). The southern portion of this segment is still unbroken. The geodetic monitoring of the Chilean subduction zone is crucial to understand the deformation processes in this area. Most geodetic measurements rely on GPS and are therefore limited to onshore campaigns. In December 2015, we installed the GeoSEA (Geodetic Earthquake Observatory on the SEAfloor) array around 21°S of the Nazca-South American plate boundary with RV SONNE to extend the geodetic observations to the offshore areas. The GeoSEA array consists of autonomous acoustic seafloor transponders mounted on 4 m high tripods. These transponders are able to continuously measure the two-way travel time of acoustic signals between station pairs (baselines) and the properties of the sea water (sound speed, temperature and pressure) at each transponder. These measurements are used to retrieve the distances between the transponders and give insights into the deformation of the seafloor. At the Chilean subduction zone, we installed in total 23 transponders in 3 subarrays with interstation distances of up to 2500 m. On the middle continental slope in 2300 m water depth, an array consisting of 8 transponders measures across crustal faults seen in AUV mapping. A second array of 5 stations located on the outer rise monitors extension across normal plate-bending faults. The deepest deployment in 5000 m water depth located on the lower continental slope with 10 stations is designed to measure diffuse strain build-up. The transponders are intended to monitor the seafloor deformation for 3.5 years. In November 2016 during a cruise of RV Langseth, the first 11 months of data were successfully uploaded via an acoustic modem. Furthermore, an additional component of the network, GeoSURF, a self-steering autonomous vehicle (wave glider), was successfully used to monitor system health and to upload parts of the data from the seafloor stations. The first 11 months of data show a good signal quality and the baseline precision is ± 5 mm. The data reveals no deformation above the resolution limits of the individual distance measurements.
EARLY SCIENCE WITH THE KOREAN VLBI NETWORK: THE QCAL-1 43 GHz CALIBRATOR SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrov, Leonid; Lee, Sang-Sung; Kim, Jongsoo
2012-11-01
This paper presents the catalog of correlated flux densities in three ranges of baseline projection lengths of 637 sources from a 43 GHz (Q band) survey observed with the Korean VLBI Network. Of them, 14 objects used as calibrators were previously observed, but 623 sources have not been observed before in the Q band with very long baseline interferometry (VLBI). The goal of this work in the early science phase of the new VLBI array is twofold: to evaluate the performance of the new instrument that operates in a frequency range of 22-129 GHz and to build a list ofmore » objects that can be used as targets and as calibrators. We have observed the list of 799 target sources with declinations down to -40 Degree-Sign . Among them, 724 were observed before with VLBI at 22 GHz and had correlated flux densities greater than 200 mJy. The overall detection rate is 78%. The detection limit, defined as the minimum flux density for a source to be detected with 90% probability in a single observation, was in the range of 115-180 mJy depending on declination. However, some sources as weak as 70 mJy have been detected. Of 623 detected sources, 33 objects are detected for the first time in VLBI mode. We determined their coordinates with a median formal uncertainty of 20 mas. The results of this work set the basis for future efforts to build the complete flux-limited sample of extragalactic sources at frequencies of 22 GHz and higher at 3/4 of the celestial sphere.« less
NASA Astrophysics Data System (ADS)
Woodcock, Gordon; Wingo, Dennis
2006-01-01
A modular design for a solar-electric tug was analyzed to establish flight control requirements and methods. Thrusters are distributed around the periphery of the solar array. This design enables modules to be berthed together to create a larger system from smaller modules. It requires a different flight mode than traditional design and a different thrust direction scheme, to achieve net thrust in the desired direction, observe thruster pointing constraints that avoid plume impingement on the tug, and balance moments. The array is perpendicular to the Sun vector for maximum electric power. The tug may maintain a constant inertial attitude or rotate around the Sun vector once per orbit. Either non-rotating or constant angular velocity rotation offers advantages over the conventional flight mode, which has highly variable roll rates. The baseline single module has 12 thrusters: two 2-axis gimbaling main thrusters, one at each ``end'', and two back-to-back Z axis thrusters at each corner of the array. Thruster pointing and throttling were optimized to maximize net thrust effectiveness while observing constraints. Control design used a spread sheet with Excel Solver to calculate nominal thruster pointing and throttling. These results are used to create lookup tables. A conventional control system generates a thruster pointing and throttling overlay on the nominals to maintain active attitude control. Gravity gradients can cause major attitude perturbations during occultation periods if thrust is off during these periods. Thrust required to maintain attitude is about 4% of system rated power. This amount of power can be delivered by a battery system, avoiding the performance penalty if chemical propulsion thrusters were used to maintain attitude.
Imaging the Surfaces of Stars from Space
NASA Astrophysics Data System (ADS)
Carpenter, Kenneth; Rau, Gioia
2018-04-01
Imaging of Stellar Surfacess has been dominated to-date by ground-based observations, but space-based facilities offer tremendous potential for extending the wavelength coverage and ultimately the resolution of such efforts. We review the imaging accomplished so far from space and then talk about exciting future prospects. The earliest attempts from space indirectly produced surface maps via the Doppler Imaging Technique, using UV spectra obtained with the International Ultraviolet Explorer (IUE). Later, the first direct UV images were obtained with the Hubble Space Telescope (HST), of Mira and Betelgeuse, using the Faint Object Camera (FOC). We will show this work and then investigate prospects for IR imaging with the James Webb Space Telescope (JWST). The real potential of space-based Imaging of Stellar Surfacess, however, lies in the future, when large-baseline Fizeau interferometers, such as the UV-optical Stellar Imager (SI) Vision Mission, with a 30-element array and 500m max baseline, are flown. We describe SI and its science goals, which include 0.1 milli-arcsec spectral Imaging of Stellar Surfacess and the probing of internal structure and flows via asteroseismology.
The first VLBI detection of a spiral DRAGN core
NASA Astrophysics Data System (ADS)
Mao, Minnie Y.; Blanchard, Jay M.; Owen, Frazer; Sjouwerman, Loránt O.; Singh, Vikram; Scaife, Anna; Paragi, Zsolt; Norris, Ray P.; Momjian, Emmanuel; Johnson, Gia; Browne, Ian
2018-07-01
We present the first observation of 0313-192, the archetypal spiral DRAGN, at very long baseline interferometry (VLBI) resolutions. Spiral DRAGNs are Double-lobed Radio sources Associated with Galactic Nuclei (DRAGNs) that are hosted by spiral galaxies. 0313-192 is an edge-on spiral galaxy that appears to host a 360 kpc double-lobed radio source. The core of this galaxy is clearly detected at L, S, and X bands using the Very Long Baseline Array, signifying an ongoing active nucleus in the galaxy. This rules out the possibility that the spiral DRAGN is merely a chance alignment. The radio core has L1.4 GHz ˜ 3.0 × 1023 W Hz-1. Radio components are detected to the south-west of the core, but there are no detections of a counterjet. Assuming a symmetric, relativistic jet, we estimate an upper limit to the inclination angle of θ ≲ 72 deg. The VLBI-detected radio jet components are extremely well aligned with the larger scale radio source suggesting little to no jet disruption or interaction with the interstellar medium of the host galaxy.
Supermassive Black Hole Binary Candidates from the Pan-STARRS1 Medium Deep Survey
NASA Astrophysics Data System (ADS)
Liu, Tingting; Gezari, Suvi
2018-01-01
Supermassive black hole binaries (SMBHBs) should be a common product of the hierarchal growth of galaxies and gravitational wave sources at nano-Hz frequencies. We have performed a systematic search in the Pan-STARRS1 Medium Deep Survey for periodically varying quasars, which are predicted manifestations of SMBHBs, and identified 26 candidates that are periodically varying on the timescale of ~300-1000 days over the 4-year baseline of MDS. We continue to monitor them with the Discovery Channel Telescope and the LCO network telescopes and thus are able to extend the baseline to 3-8 cycles and break false positive signals due to stochastic, normal quasar variability. From our imaging campaign, five candidates show persistent periodic variability and remain strong SMBHB candidates for follow-up observations. We calculate the cumulative number rate of SMBHBs and compare with previous work. We also compare the gravitational wave strain amplitudes of the candidates with the capability of pulsar timing arrays and discuss the future capabilities to detect periodic quasar and SMBHB candidates with the Large Synoptic Survey Telescope.
NASA Technical Reports Server (NTRS)
1983-01-01
A preliminary design effort directed toward a low concentration ratio photovoltaic array system capable of delivering multihundred kilowatts (300 kW to 1000 kW range) in low earth orbit is described. The array system consists of two or more array modules each capable of delivering between 113 kW to 175 kW using silicon solar cells or gallium arsenide solar cells, respectively. The array module deployed area is 1320 square meters and consists of 4356 pyramidal concentrator elements. The module, when stowed in the Space Shuttle's payload bay, has a stowage volume of a cube with 3.24 meters on a side. The concentrator elements are sized for a geometric concentration ratio (GCR) of six with an aperture area of .25 sq. m. The structural analysis and design trades leading to the baseline design are discussed. It describes the configuration, as well as optical, thermal and electrical performance analyses that support the design and overall performance estimates for the array are described.
Low concentration ratio solar array for low Earth orbit multi-100 kW application
NASA Technical Reports Server (NTRS)
Nalbandian, S. J.
1982-01-01
An ongoing preliminary design effort directed toward a low-concentration-ratio photovoltaic array system based on 1984 technology and capable of delivering multi-hundred kilowatts (300 kW to 1000 kW range) in low earth orbit is described. The array system consists of two or more array modules each capable of delivering between 80 kW to 172 kW using silicon solar cells or gallium arsenide solar cells respectively. The array module deployed area is 1320 square meters and consists of 4356 pryamidal concentrator elements. The module, when stowed in the Space Shuttle's payload bay, has a stowage volume of a cube with 3.24 meters on a side. The concentrator elements are sized for a geometric concentration ratio (GCR) of six with an aperture area of 0.5 meters x 0.5 meters. The structural analysis and design trades leading to the baseline design are discussed. The configuration, as well as optical, thermal and electrical performance analyses that support the design and overall performance estimates for the array are described.
VizieR Online Data Catalog: Parallaxes of high mass star forming regions (Reid+, 2014)
NASA Astrophysics Data System (ADS)
Reid, M. J.; Menten, K. M.; Brunthaler, A.; Zheng, X. W.; Dame, T. M.; Xu, Y.; Wu, Y.; Zhang, B.; Sanna, A.; Sato, M.; Hachisuka, K.; Choi, Y. K.; Immer, K.; Moscadelli, L.; Rygl, K. L. J.; Bartkiewicz, A.
2016-04-01
Table1 lists the parallaxes and proper motions of 103 regions of high-mass star formation measured with Very Long Baseline Interferometry (VLBI) techniques, using the National Radio Astronomy Observatory's Very Long Baseline Array (VLBA), the Japanese VLBI Exploration of Radio Astrometry (VERA; http://veraserver.mtk.nao.ac.jp) project, and the European VLBI Network (EVN). We have include three red supergiants (NML Cyg, S Per, VY CMa) as indicative of high-mass star forming regions. (2 data files).
An Interferometry Imaging Beauty Contest
NASA Technical Reports Server (NTRS)
Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Monnier, John D.; Zhaod, Ming; Young, John S.; Thorsteinsson, Hrobjartur; Meimon, Serge C.; Mugnier, Laurent; LeBesnerais, Guy;
2004-01-01
We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Six different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formated in the interferometry Data Exchange Standard and is designed to simulate a specific problem relevant to long-baseline imaging. The data are calibrated power spectra and bispectra measured with a ctitious array, intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.
Radio Sources in the NCP Region Observed with the 21 Centimeter Array
NASA Astrophysics Data System (ADS)
Zheng, Qian; Wu, Xiang-Ping; Johnston-Hollitt, Melanie; Gu, Jun-hua; Xu, Haiguang
2016-12-01
We present a catalog of 624 radio sources detected around the North Celestial Pole (NCP) with the 21 Centimeter Array (21CMA), a radio interferometer dedicated to the statistical measurement of the epoch of reionization (EoR). The data are taken from a 12 hr observation made on 2013 April 13, with a frequency coverage from 75 to 175 MHz and an angular resolution of ˜4‧. The catalog includes flux densities at eight sub-bands across the 21CMA bandwidth and provides the in-band spectral indices for the detected sources. To reduce the complexity of interferometric imaging from the so-called “w” term and ionospheric effects, the present analysis is restricted to the east-west baselines within 1500 m only. The 624 radio sources are found within 5° around the NCP down to ˜0.1 Jy. Our source counts are compared, and also exhibit a good agreement, with deep low-frequency observations made recently with the GMRT and MWA. In particular, for fainter radio sources below ˜1 Jy, we find a flattening trend of source counts toward lower frequencies. While the thermal noise (˜0.4 mJy) is well controlled to below the confusion limit, the dynamical range (˜104) and sensitivity of current 21CMA imaging are largely limited by calibration and deconvolution errors, especially the grating lobes of very bright sources, such as 3C061.1, in the NCP field, which result from the regular spacings of the 21CMA. We note that particular attention should be paid to the extended sources, and their modeling and removal may constitute a large technical challenge for current EoR experiments. Our analysis may serve as a useful guide to the design of next generation low-frequency interferometers like the Square Kilometre Array.
Roadmap for Navy Civilian Personnel Research
1984-05-10
productivity and Equal Employment Opportunity objectives for Navy civilian personnel programs. Each research array is broken down into sequential phases; each...93 Equal Employment Opportunity ................... 98 Overview .......................................... 98...Phase I: Establish Baseline Measures ................ 98 Phase II: Analyze Issues Affecting Equal Employ- ment Opportunity
NASA Astrophysics Data System (ADS)
Collier, J. D.; Tingay, S. J.; Callingham, J. R.; Norris, R. P.; Filipović, M. D.; Galvin, T. J.; Huynh, M. T.; Intema, H. T.; Marvil, J.; O'Brien, A. N.; Roper, Q.; Sirothia, S.; Tothill, N. F. H.; Bell, M. E.; For, B.-Q.; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; Morgan, J.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.; Heywood, I.; Popping, A.
2018-06-01
We present very long baseline interferometry observations of a faint and low-luminosity (L1.4 GHz < 1027 W Hz-1) gigahertz-peaked spectrum (GPS) and compact steep-spectrum (CSS) sample. We select eight sources from deep radio observations that have radio spectra characteristic of a GPS or CSS source and an angular size of θ ≲ 2 arcsec, and detect six of them with the Australian Long Baseline Array. We determine their linear sizes, and model their radio spectra using synchrotron self-absorption (SSA) and free-free absorption (FFA) models. We derive statistical model ages, based on a fitted scaling relation, and spectral ages, based on the radio spectrum, which are generally consistent with the hypothesis that GPS and CSS sources are young and evolving. We resolve the morphology of one CSS source with a radio luminosity of 10^{25} W Hz^{-1}, and find what appear to be two hotspots spanning 1.7 kpc. We find that our sources follow the turnover-linear size relation, and that both homogeneous SSA and an inhomogeneous FFA model can account for the spectra with observable turnovers. All but one of the FFA models do not require a spectral break to account for the radio spectrum, while all but one of the alternative SSA and power-law models do require a spectral break to account for the radio spectrum. We conclude that our low-luminosity sample is similar to brighter samples in terms of their spectral shape, turnover frequencies, linear sizes, and ages, but cannot test for a difference in morphology.
Intercepted signals for ionospheric science
NASA Astrophysics Data System (ADS)
Lind, F. D.; Erickson, P. J.; Coster, A. J.; Foster, J. C.; Marchese, J. R.; Berkowitz, Z.; Sahr, J. D.
2013-05-01
The ISIS array (Intercepted Signals for Ionospheric Science) is a distributed, coherent software radio array designed for the study of geospace phenomena by observing the scatter of ambient radio frequency (RF) signals. ISIS data acquisition and analysis is performed using the MIDAS-M platform (Millstone Data Acquisition System - Mobile). Observations of RF signals can be performed between HF and L-band using the Array nodes and appropriate antennas. The deployment of the Array focuses on observations of the plasmasphere boundary layer. We discuss the concept of the coherent software radio array, describe the ISIS hardware, and give examples of data from the system for selected applications. In particular, we include the first observations of E region irregularities using the Array. We also present single-site passive radar observations of both meteor trails and E region irregularities using adaptive filtering techniques.
7 Millimeter VLBA Observations of Sagittarius A*
NASA Astrophysics Data System (ADS)
Bower, Geoffrey C.; Backer, Donald C.
1998-04-01
We present 7 mm Very Long Baseline Array observations of the compact nonthermal radio source in the Galactic center, Sagittarius A*. These observations confirm the hypothesis that the image of Sgr A* is a resolved elliptical Gaussian caused by the scattering of an intervening thermal plasma. The measured major axis of Sgr A* is 0.76+/-0.04 mas, consistent with the predicted scattering size of 0.67+/-0.03. We find an axial ratio of 0.73+/-0.10 and a position angle of 77.0d +/- 7.4d. These results are fully consistent with VLBI observations at longer wavelengths and at 3 mm. We find no evidence for any additional compact structure to a limit of 35 mJy. The underlying radio source must be smaller than 4.1 AU for a Galactocentric distance of 8.5 kpc. This result is consistent with the conclusion that the radio emission from Sgr A* results from synchrotron or cyclo-synchrotron radiation of gas in the vicinity of a black hole with a mass near 106 Msolar.
Bi-layer kinetic inductance detectors for space observations between 80-120 GHz
NASA Astrophysics Data System (ADS)
Catalano, A.; Goupy, J.; le Sueur, H.; Benoit, A.; Bourrion, O.; Calvo, M.; D'addabbo, A.; Dumoulin, L.; Levy-Bertrand, F.; Macías-Pérez, J.; Marnieros, S.; Ponthieu, N.; Monfardini, A.
2015-08-01
We have developed lumped element kinetic inductance detectors (LEKIDs) that are sensitive in the frequency band from 80 to 120 GHz. In this work, we take advantage of the so-called proximity effect to reduce the superconducting gap of aluminium (Al), otherwise strongly suppressing the LEKID response for frequencies smaller than 100 GHz. We designed, produced, and optically tested various fully multiplexed arrays based on multi-layer combinations of Al and titanium (Ti). Their sensitivities were measured using a dedicated closed-circle 100 mK dilution cryostat and a sky simulator, which allowed us to reproduce realistic observation conditions. The spectral response was characterised with a Martin-Puplett interferometer up to THz frequencies and had a resolution of 3 GHz. We demonstrate that Ti-Al LEKID can reach an optical sensitivity of about 1.4 × 10-17 W/Hz0.5 (best pixel), or 2.2 × 10-17 W/Hz0.5 when averaged over the whole array. The optical background was set to roughly 0.4 pW per pixel, which is typical for future space observatories in this particular band. The performance is close to a sensitivity of twice the CMB photon noise limit at 100 GHz, which drove the design of the Planck HFI instrument. This figure remains the baseline for the next generation of millimetre-wave space satellites.
The Effects of Linear Microphone Array Changes on Computed Sound Exposure Level Footprints
NASA Technical Reports Server (NTRS)
Mueller, Arnold W.; Wilson, Mark R.
1997-01-01
Airport land planning commissions often are faced with determining how much area around an airport is affected by the sound exposure levels (SELS) associated with helicopter operations. This paper presents a study of the effects changing the size and composition of a microphone array has on the computed SEL contour (ground footprint) areas used by such commissions. Descent flight acoustic data measured by a fifteen microphone array were reprocessed for five different combinations of microphones within this array. This resulted in data for six different arrays for which SEL contours were computed. The fifteen microphone array was defined as the 'baseline' array since it contained the greatest amount of data. The computations used a newly developed technique, the Acoustic Re-propagation Technique (ART), which uses parts of the NASA noise prediction program ROTONET. After the areas of the SEL contours were calculated the differences between the areas were determined. The area differences for the six arrays are presented that show a five and a three microphone array (with spacing typical of that required by the FAA FAR Part 36 noise certification procedure) compare well with the fifteen microphone array. All data were obtained from a database resulting from a joint project conducted by NASA and U.S. Army researchers at Langley and Ames Research Centers. A brief description of the joint project test design, microphone array set-up, and data reduction methodology associated with the database are discussed.
JPL Electronic Nose: From Sniffing Brain Cancer to Trouble in Space
NASA Technical Reports Server (NTRS)
Homer, Margie L.
2011-01-01
What Is An Electronic Nose? An array of non-specific chemical sensors, controlled and analyzed electronically, which mimics the action of the mammalian nose by recognizing patterns of response. An Enose: (1.) ENose measures background resistance in each sensor and establishes a baseline. (2.) Contaminant comes in contact with sensors on the sensing head. (3.) The sensing films, change physical properties, such as thickness or color, as air composition changes. (4.) Sensor response is recorded by a computer, the change in resistance is computed, and the distributed response pattern of the sensor array is used to identify gases and mixtures of gases. (5. Responses of the sensor array are analyzed and quantified using software developed for the task.
Deployment/retraction ground testing of a large flexible solar array
NASA Technical Reports Server (NTRS)
Chung, D. T.
1982-01-01
The simulated zero-gravity ground testing of the flexible fold-up solar array consisting of eighty-four full-size panels (.368 m x .4 m each) is addressed. Automatic, hands-off extension, retraction, and lockup operations are included. Three methods of ground testing were investigated: (1) vertical testing; (2) horizontal testing, using an overhead water trough to support the panels; and (3) horizontal testing, using an overhead track in conjunction with a counterweight system to support the panels. Method 3 was selected as baseline. The wing/assembly vertical support structure, the five-tier overhead track, and the mast-element support track comprise the test structure. The flexible solar array wing assembly was successfully extended and retracted numerous times under simulated zero-gravity conditions.
NASA Astrophysics Data System (ADS)
Royer, J. Y.; Deschamps, A.; Piete, H.; Sakic, P.; Ballu, V.; Apprioual, R.; Kopp, H.; Lange, D.; Ruffine, L.; Géli, L.
2015-12-01
Located in the Marmara Sea, the Istanbul-Silivri segment of the North Anatolian Fault (NAF) is known to be a seismic gap since 1766, although, in the last century, the NAF has caused major devastating earthquakes over most of its extent. This fault segment, void of seismicity, may be either creeping aseismically or blocked and accumulating enough strain to produce an earthquake of magnitude 7 or greater. This section of the NAF may thus represent a major seismic and tsunamigenic hazard for the Istanbul megalopolis, located only 40 km away. The objective of the MARSITE project, funded by the European Union and coordinated by the Observatory of the University of Kandilli (KOERI), is to determine the blocking state of the Istanbul-Silivri fault segment. In this context, an array of 10 acoustic transponders has been deployed on either sides of the fault, in the eastern part of the Kumburgaz Basin, to measure the displacements of the fault over a period of 3 to 5 years. The telemetric beacons (4 from the University of Brest and 6 from the GEOMAR Institute in Kiel) form two arrays fitted in one another. The principle of the experiment is to repeatedly measure the distance (ie two-way-travel time of acoustic pings) between pairs of beacons and thus to monitor the deformation of an array of 9 baselines, 500m to 3000m long, of which 5 cross obliquely the assumed fault trace. The French and German arrays are independent but ensure a redundancy of rangings along common baselines. Each acoustic transponder also monitors the temperature, pressure, sound-velocity and attitude (tiltmeters), every one or two hours. Data are stored in each beacon and can be downloaded from the surface using an acoustic modem. We present here the first 6 months of recording by the French array, from November 1st, 2014 to April 25, 2015. All acoustic transponders worked nominally for 6 months and appear to have remained stable on the seafloor. Recorded sea-bottom temperatures provide evidence for transient changes likely due to episodic flows of deep colder water across the Kumburgaz Basin. Pressure records display diurnal variations related to the tides. Both parameters affect the sound-velocity and thus the acoustic ranges, and are used to correct the baselines.
Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.
Kang, Dongyel; Kupinski, Matthew A
2011-06-20
We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.
Radio interferometer measurements of turbulence in the inner solar wind
NASA Technical Reports Server (NTRS)
Spangler, S. R.; Sakurai, T.; Coles, William A.; Grall, R. R.; Harmon, J. K.
1995-01-01
Measurements can be made of Very Long Baseline Interferometer (VLBI) phase scintillations due to plasma turbulence in the solar corona and solar wind. These measurements provide information on the spectrum and intensity of density fluctuations with scale sizes of a few hundred to several thousand kilometers. If we model the spatial power spectrum of the density fluctuations as P(sub delta n)(q) = C(sup 2)(sub N) q(sup -alpha), where q is the spatial wavenumber, these observations yield both alpha and the path-integrated value of C(sup 2)(sub N). The recently completed Very Long Baseline Array (VLBA) is capable of making such measurements over the heliocentric distance range from a few solar radii to 60 solar radii and beyond. This permits the determination with the same technique and instrument of the radial evolution of turbulent characteristics, as well as their dependence on solar wind transients, sector structure, etc. In this paper we present measurements of 13 sources observed at a wide range of solar elongations, and at different times. These observations show that the coefficient C(sup 2(sub N), depends on heliocentric distance as approximately C(sup 2)(sub N) varies as (R/Solar Radius)(sup -3.7). The radio derived power spectral characteristics are in agreement with in situ measurements by the Helios spacecraft for regions of slow solar wind, but fast solar wind does not have large enough density fluctuations to account for the magnitude of the observed scintillations. The observed radial dependence is consistent with a WKB-type evolution of the turbulence with heliocentric distance. Our data also show indication of turbulence enhancement associated with solar wind transients.
Application of Adaptive Beamforming to Signal Observations at the Mt. Meron Array, Israel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, D. B.
2010-06-07
The Mt. Meron array consists of 16 stations spanning an aperture of 3-4 kilometers in northern Israel. The array is situated in a region of substantial topographic relief, and is surrounded by settlements at close range (Figure 1). Consequently the level of noise at the array is high, which requires efforts at mitigation if distant regional events of moderate magnitude are to be observed. This note describes an initial application of two classic adaptive beamforming algorithms to data from the array to observe P waves from 5 events east of the array ranging in distance from 1100- 2150 kilometers.
NASA Astrophysics Data System (ADS)
Williams, Westin B.; Michaels, Thomas E.; Michaels, Jennifer E.
2018-04-01
Composite materials used for aerospace applications are highly susceptible to impacts, which can result in barely visible delaminations. Reliable and fast detection of such damage is needed before structural failures occur. One approach is to use ultrasonic guided waves generated from a sparse array consisting of permanently mounted or embedded transducers for performing structural health monitoring. This array can detect introduction of damage after baseline subtraction, and also provide localization and characterization information via the minimum variance imaging algorithm. Imaging performance can vary considerably depending upon where damage is located with respect to the array; however, prior work has shown that knowledge of expected scattering can improve imaging consistency for artificial damage at various locations. In this study, anisotropic material attenuation and wave speed are estimated as a function of propagation angle using wavefield data recorded along radial lines at multiple angles with respect to an omnidirectional guided wave source. Additionally, full wavefield data are recorded before and after the introduction of artificial and impact damage so that wavefield baseline subtraction may be applied. 3-D filtering techniques are then used to reduce noise and isolate scattered waves. A model for estimating scattering of a circular defect is developed and scattering estimates for both artificial and impact damage are presented and compared.
The AuScope geodetic VLBI array
NASA Astrophysics Data System (ADS)
Lovell, J. E. J.; McCallum, J. N.; Reid, P. B.; McCulloch, P. M.; Baynes, B. E.; Dickey, J. M.; Shabala, S. S.; Watson, C. S.; Titov, O.; Ruddick, R.; Twilley, R.; Reynolds, C.; Tingay, S. J.; Shield, P.; Adada, R.; Ellingsen, S. P.; Morgan, J. S.; Bignall, H. E.
2013-06-01
The AuScope geodetic Very Long Baseline Interferometry array consists of three new 12-m radio telescopes and a correlation facility in Australia. The telescopes at Hobart (Tasmania), Katherine (Northern Territory) and Yarragadee (Western Australia) are co-located with other space geodetic techniques including Global Navigation Satellite Systems (GNSS) and gravity infrastructure, and in the case of Yarragadee, satellite laser ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) facilities. The correlation facility is based in Perth (Western Australia). This new facility will make significant contributions to improving the densification of the International Celestial Reference Frame in the Southern Hemisphere, and subsequently enhance the International Terrestrial Reference Frame through the ability to detect and mitigate systematic error. This, combined with the simultaneous densification of the GNSS network across Australia, will enable the improved measurement of intraplate deformation across the Australian tectonic plate. In this paper, we present a description of this new infrastructure and present some initial results, including telescope performance measurements and positions of the telescopes in the International Terrestrial Reference Frame. We show that this array is already capable of achieving centimetre precision over typical long-baselines and that network and reference source systematic effects must be further improved to reach the ambitious goals of VLBI2010.
Directly Connecting the Very Long Baseline Array
NASA Astrophysics Data System (ADS)
Hunt, Gareth; Romney, Jonathan D.; Walker, R. Craig
At present, the signals received by the 10 antennas of the Very Long Baseline Array (VLBA) are recorded on instrumentation tapes. These tapes are then shipped from the antenna locations --- distributed across the mainland USA, the US Virgin Islands, and Hawaii --- to the processing center in Socorro, New Mexico. The Array operates today at a mean sustained data rate of 128 Mbps per antenna, but peak rates of 256 Mbps and 512 Mbps are also used. Transported tapes provide the cheapest method of attaining these bit rates. The present tape system derives from wideband recording techniques dating back to the late 1970s, and has been in use since the commissioning of the VLBA in 1993. It is in need of replacement on a time scale of a few years. Further, plans are being developed which would increase the required data rates to 1 Gbps in five years and 100 Gbps in ten years. With the advent of higher performance networks, it should be possible to transmit the data directly to the processing center. However, achieving this connectivity is severely complicated by the remoteness of the antennas --- ``the last mile problem.'' In addition, it is not clear that the data rates involved can be obtained at a reasonable cost.
Noise Simulations of the High-Lift Common Research Model
NASA Technical Reports Server (NTRS)
Lockard, David P.; Choudhari, Meelan M.; Vatsa, Veer N.; O'Connell, Matthew D.; Duda, Benjamin; Fares, Ehab
2017-01-01
The PowerFLOW(TradeMark) code has been used to perform numerical simulations of the high-lift version of the Common Research Model (HL-CRM) that will be used for experimental testing of airframe noise. Time-averaged surface pressure results from PowerFLOW(TradeMark) are found to be in reasonable agreement with those from steady-state computations using FUN3D. Surface pressure fluctuations are highest around the slat break and nacelle/pylon region, and synthetic array beamforming results also indicate that this region is the dominant noise source on the model. The gap between the slat and pylon on the HL-CRM is not realistic for modern aircraft, and most nacelles include a chine that is absent in the baseline model. To account for those effects, additional simulations were completed with a chine and with the slat extended into the pylon. The case with the chine was nearly identical to the baseline, and the slat extension resulted in higher surface pressure fluctuations but slightly reduced radiated noise. The full-span slat geometry without the nacelle/pylon was also simulated and found to be around 10 dB quieter than the baseline over almost the entire frequency range. The current simulations are still considered preliminary as changes in the radiated acoustics are still being observed with grid refinement, and additional simulations with finer grids are planned.
NASA Astrophysics Data System (ADS)
Matsushita, Satoki; Asaki, Yoshiharu; Fomalont, Edward B.; Morita, Koh-Ichiro; Barkats, Denis; Hills, Richard E.; Kawabe, Ryohei; Maud, Luke T.; Nikolic, Bojan; Tilanus, Remo P. J.; Vlahakis, Catherine; Whyborn, Nicholas D.
2017-03-01
We present millimeter- and submillimeter-wave phase characteristics measured between 2012 and 2014 of Atacama Large Millimeter/submillimeter Array long baseline campaigns. This paper presents the first detailed investigation of the characteristics of phase fluctuation and phase correction methods obtained with baseline lengths up to ˜15 km. The basic phase fluctuation characteristics can be expressed with the spatial structure function (SSF). Most of the SSFs show that the phase fluctuation increases as a function of baseline length, with a power-law slope of ˜0.6. In many cases, we find that the slope becomes shallower (average of ˜0.2-0.3) at baseline lengths longer than ˜1 km, namely showing a turn-over in SSF. These power law slopes do not change with the amount of precipitable water vapor (PWV), but the fitted constants have a weak correlation with PWV, so that the phase fluctuation at a baseline length of 10 km also increases as a function of PWV. The phase correction method using water vapor radiometers (WVRs) works well, especially for the cases where PWV > 1 {mm}, which reduces the degree of phase fluctuations by a factor of two in many cases. However, phase fluctuations still remain after the WVR phase correction, suggesting the existence of other turbulent constituent that cause the phase fluctuation. This is supported by occasional SSFs that do not exhibit any turn-over; these are only seen when the PWV is low (i.e., when the WVR phase correction works less effectively) or after WVR phase correction. This means that the phase fluctuation caused by this turbulent constituent is inherently smaller than that caused by water vapor. Since in these rare cases there is no turn-over in the SSF up to the maximum baseline length of ˜15 km, this turbulent constituent must have scale height of 10 km or more, and thus cannot be water vapor, whose scale height is around 1 km. Based on the characteristics, this large scale height turbulent constituent is likely to be water ice or a dry component. Excess path length fluctuation after the WVR phase correction at a baseline length of 10 km is large (≳ 200 μ {{m}}), which is significant for high frequency (> 450 {GHz} or < 700 μ {{m}}) observations. These results suggest the need for an additional phase correction method to reduce the degree of phase fluctuation, such as fast switching, in addition to the WVR phase correction. We simulated the fast switching phase correction method using observations of single quasars, and the result suggests that it works well, with shorter cycle times linearly improving the coherence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, X.M.; Carlos, R.C.; Kirkland, M.W.
1999-07-01
At microwave frequencies, each centimeter of precipitable water vapor (PWV) causes about 6.45 cm of extra electrical path length relative to the {open_quotes}dry{close_quotes} air. The fluctuations of the water vapor dominate the changes of the effective path length through the atmosphere in a relatively short time period of a few hours. In this paper we describe a microwave interferometer developed for water vapor investigations and present the observation results. The interferometer consists of 10 antennas along two orthogonal 400-m arms that form many baselines (antenna pairs) ranging from 100 to 400 m. All the antennas receive a common CW signalmore » (11.7 GHz) from a geostationary television satellite, and phase differences between pairs of antennas are measured. The phase differences reflect the column-integrated water vapor differences from the top of the atmosphere to the spatially separated antennas at the ground. The interferometric, baseline-differential measurements allow us to study the statistical properties of the PWV fluctuations, as well as the turbulent activity of the convective boundary layer (CBL). Structure function analysis of the interferometer measurements shows good agreement with results obtained from the Very Large Array (VLA) and with a theoretical model developed for radio astronomical very long baseline interferometry (VLBI), reported previously by other investigators. The diurnally varying structure constant correlates remarkably well with the combination of the latent and sensible heat fluxes measured simultaneously from a 10-m meteorological tower. The average drift velocity of the PWV over the interferometer was also derived from the measurements. The derived velocity agrees well during the morning hours with the wind measured by an anemometer at the center of the interferometer. {copyright} 1999 American Geophysical Union« less
Path Length Fluctuations Derived from Site Testing Interferometer Data
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Nessel, James A.; Morse, Jacquelynne R.
2010-01-01
To evaluate possible sites for NASA's proposed Ka-band antenna array, the NASA Glenn Research Center has constructed atmospheric phase monitors (APM) which directly measure the tropospheric phase stability. These instruments observe an unmodulated 20.2 GHz beacon signal broadcast from a geostationary satellite (Anik F2) and measure the phase difference between the signals received by the two antennas. Two APM's have been deployed, one at the NASA Deep Space Network (DSN) Tracking Complex in Goldstone, California, and the other at the NASA White Sands Complex, in Las Cruces, New Mexico. Two station-years of atmospheric phase fluctuation data have been collected at Goldstone since operations commenced in May 2007 and 0.5 station-years of data have been collected at White Sands since operations began February 2009. With identical instruments operating simultaneously, we can directly compare the phase stability at the two sites. Phase stability is analyzed statistically in terms of the root-mean-square (rms) of the tropospheric path length fluctuations over 10 min blocks. Correlation between surface wind speed and relative humidity with interferometer phase are discussed. For 2 years, the path length fluctuations at the DSN site in Goldstone, California, have been better than 757 micrometer (with reference to a 300 m baseline and to Zenith) for 90 percent of the time. For the 6 months of data collected at White Sands, New Mexico, the path length fluctuations have been better than 830 micrometers (with reference to a 300 m baseline and to Zenith) for 90 percent of the time. This type of data analysis, as well as many other site quality characteristics (e.g., rain attenuation, infrastructure, etc.), will be used to determine the suitability of both sites for NASA s future communication services at Ka-band using an array of antennas.
The ordinary life of the γ-ray emitting narrow-line Seyfert 1 galaxy PKS 1502+036
D'Ammando, F.; Orienti, M.; Doi, A.; ...
2013-06-03
In this paper, we report on multifrequency observations of the γ-ray emitting narrow-line Seyfert 1 galaxy PKS 1502+036 performed from radio to γ-rays during 2008 August–2012 November by Fermi-Large Area Telescope (LAT), Swift (X-ray Telescope and Ultraviolet/Optical Telescope), Owens Valley Radio Observatory, Very Long Baseline Array (VLBA) and Very Large Array. No significant variability has been observed in γ-rays, with 0.1–100 GeV flux that ranged between (3–7) × 10 –8 ph cm –2 s –1 using 3-month time bins. The photon index of the LAT spectrum (Γ = 2.60 ± 0.06) and the apparent isotropic γ-ray luminosity (L0.1-100 GeV =more » 7.8 × 10 45 erg s –1) over 51 months are typical of a flat spectrum radio quasar. The radio spectral variability and the one-sided structure, in addition to the observed γ-ray luminosity, suggest a relativistic jet with a high Doppler factor. In contrast to SBS 0846+513, the VLBA at 15 GHz did not observe superluminal motion for PKS 1502+036. Despite having the optical characteristics typical of a narrow-line Seyfert 1 galaxy, radio and γ-ray properties of PKS 1502+036 are found to be similar to those of a blazar at the low end of the black hole mass distribution for blazars. As a result, this is in agreement with what has been found in the case of the other γ-ray emitting narrow-line Seyfert 1 SBS 0846+513.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cseh, David; Corbel, Stephane; Kaaret, Philip
We present new radio, optical, and X-ray observations of three ultraluminous X-ray sources (ULXs) that are associated with large-scale nebulae. We report the discovery of a radio nebula associated with the ULX IC 342 X-1 using the Very Large Array (VLA). Complementary VLA observations of the nebula around Holmberg II X-1, and high-frequency Australia Telescope Compact Array and Very Large Telescope spectroscopic observations of NGC 5408 X-1 are also presented. We study the morphology, ionization processes, and the energetics of the optical/radio nebulae of IC 342 X-1, Holmberg II X-1, and NGC 5408 X-1. The energetics of the optical nebulamore » of IC 342 X-1 is discussed in the framework of standard bubble theory. The total energy content of the optical nebula is 6 Multiplication-Sign 10{sup 52} erg. The minimum energy needed to supply the associated radio nebula is 9.2 Multiplication-Sign 10{sup 50} erg. In addition, we detected an unresolved radio source at the location of IC 342 X-1 at the VLA scales. However, our Very Long Baseline Interferometry (VLBI) observations using the European VLBI Network likely rule out the presence of any compact radio source at milliarcsecond (mas) scales. Using a simultaneous Swift X-ray Telescope measurement, we estimate an upper limit on the mass of the black hole in IC 342 X-1 using the 'fundamental plane' of accreting black holes and obtain M{sub BH} {<=} (1.0 {+-} 0.3) Multiplication-Sign 10{sup 3} M{sub Sun }. Arguing that the nebula of IC 342 X-1 is possibly inflated by a jet, we estimate accretion rates and efficiencies for the jet of IC 342 X-1 and compare with sources like S26, SS433, and IC 10 X-1.« less
South African Student Constructed Indlebe Radio Telescope
NASA Astrophysics Data System (ADS)
McGruder, Charles H.; MacPherson, Stuart; Janse Van Vuuren, Gary Peter
2017-01-01
The Indlebe Radio Telescope (IRT) is a small transit telescope with a 5 m diameter parabolic reflector working at 21 cm. It was completely constructed by South African (SA) students from the Durban University of Technology (DUT), where it is located. First light occurred on 28 July 2008, when the galactic center, Sagittarius A, was detected. As a contribution to the International Year of Astronomy in 2009, staff members in the Department of Electronic Engineering at DUT in 2006 decided to have their students create a fully functional radio telescope by 2009. The specific project aims are to provide a visible project that could generate interest in science and technology in high school students and to provide a real world system for research in radio astronomy in general and an optimization of low noise radio frequency receiver systems in particular. These aims must be understood in terms of the SA’s government interests in radio astronomy. SA is a partner in the Square Kilometer Array (SKA) project, has constructed the Karoo Array Telescope (KAT) and MeerKat, which is the largest and most sensitive radio telescope in the southern hemisphere. SA and its partners in Africa are investing in the construction of the African Very Long Baseline Interferometry Network (AVN), an array of radio telescopes throughout Africa as an extension of the existing global Very Long Baseline Interferometry Network (VLBI). These projects will allow SA to make significant contributions to astronomy and enable astronomy to contribute to the scientific education and development goals of the country. The IRT sees on a daily basis the transit of Sag A. The transit time is influenced by precession, nutation, polar motion, aberration, celestial pole offset, proper motion, length of the terrestrial day and variable ionospheric refraction. Of these eight factors six are either predictable or measureable. To date neither celestial pole offset nor variable ionospheric refraction are predicable. Currently, we are comparing the observed transit times of Sag A with the calculable predications in order to obtain information over these two factors, with a view to better understanding them.
Light field geometry of a Standard Plenoptic Camera.
Hahne, Christopher; Aggoun, Amar; Haxha, Shyqyri; Velisavljevic, Vladan; Fernández, Juan Carlos Jácome
2014-11-03
The Standard Plenoptic Camera (SPC) is an innovation in photography, allowing for acquiring two-dimensional images focused at different depths, from a single exposure. Contrary to conventional cameras, the SPC consists of a micro lens array and a main lens projecting virtual lenses into object space. For the first time, the present research provides an approach to estimate the distance and depth of refocused images extracted from captures obtained by an SPC. Furthermore, estimates for the position and baseline of virtual lenses which correspond to an equivalent camera array are derived. On the basis of paraxial approximation, a ray tracing model employing linear equations has been developed and implemented using Matlab. The optics simulation tool Zemax is utilized for validation purposes. By designing a realistic SPC, experiments demonstrate that a predicted image refocusing distance at 3.5 m deviates by less than 11% from the simulation in Zemax, whereas baseline estimations indicate no significant difference. Applying the proposed methodology will enable an alternative to the traditional depth map acquisition by disparity analysis.
Slater, L.E.; Burford, R.O.
1979-01-01
A comparison of creepmeter records from nine sites along a 12-km segment of the Calaveras fault near Hollister, California and long-baseline strain changes for nine lines in the Hollister multiwavelength distance-measuring (MWDM) array has established that episodes of large-scale deformation both preceded and accompanied periods of creep activity monitored along the fault trace during 1976. A concept of episodic, deep-seated aseismic slip that contributes to loading and subsequent aseismic failure of shallow parts of the fault plane seems attractive, implying that the character of aseismic slip sensed along the surface trace may be restricted to a relatively shallow (~ 1-km) region on the fault plane. Preliminary results from simple dislocation models designed to test the concept demonstrate that extending the time-histories and amplitudes of creep events sensed along the fault trace to depths of up to 10 km on the fault plane cannot simulate adequately the character and amplitudes of large-scale episodic movements observed at points more than 1 km from the fault. Properties of a 2-3-km-thick layer of unconsolidated sediments present in Hollister Valley, combined with an essentially rigid-block behavior in buried basement blocks, might be employed in the formulation of more appropriate models that could predict patterns of shallow fault creep and large-scale displacements much more like those actually observed. ?? 1979.
Complementary periodic diffracting metallic nanohole and nanodipole arrays in the mid-infrared range
NASA Astrophysics Data System (ADS)
Ye, Yong-Hong; Zhang, Jia-Yu; Feng Ma, Hui; Yao, Jie; Wang, Xudong
2012-10-01
Metallic nanohole arrays and metallic nanodipole arrays are fabricated and experimentally characterized. A complementary response is observed in both transmission and reflection. For the metallic nanohole arrays, a peak (dip) in transmission (reflection) is observed at resonance whereas the metallic nanodipole arrays display a dip (peak) in transmission (reflection). The resonant frequency of both the metallic nanohole arrays and the nanodipole arrays depends on the dipole arm length, the incident angle, and the period. The resonant position of the nanohole arrays matches that of its complement, which means that Babinet's principle nearly holds for these structures in the mid-infrared region.
Magmatic processes evidenced by borehole dilatometer data at Campi Flegrei, Italy.
NASA Astrophysics Data System (ADS)
Di Lieto, Bellina; Romano, Pierdomenico; Scarpa, Roberto; Orazi, Massimo
2017-04-01
Since spring 2004 a joint research project (AMRA, UniSa, INGV) has been developed in Italy to install borehole strainmeters aimed at enhanced INGV monitoring systems. Six Sacks-Evertson dilatometers were installed around Campi Flegrei and Vesuvius during 2004-2005, and in 2008 these were supplemented by two arrays of long-baseline underground water tube tiltmeters. Renewed activity started since 2004-2005, characterized by a low rate of vertical displacement, amounting initially to a few cm/year. Recent deformation in the Campi Flegrei caldera is dominated by aseismic inflation, interrupted by minor transient aseismic reversals in rate. These are typically below the noise level or are poorly sampled by the low sampling frequency of most geodetic techniques, but can be quantified relatively easily using high sensitivity strainmeters and tiltmeters. These instruments provide coherent views of deformation at several different time scales capturing reversals in rate with periods from minutes to months. Monotonic uplift episodes have been recorded with durations of several weeks to a few years. During the summer of 2006 a long term strain episode related to an increase of CO2 emission, evidenced by borehole tiltmeters and continuous GPS sensors, has been observed by the borehole dilatometers array. This strain episode preceded caldera microseismic activity by few months, as was also observed during the 1982 period of unrest. Other aseismic slip episodes were recorded in October 2006 and in March 2010, several minutes before the most significant seismic swarms (VT and/or LP events) occurred after the 1982-1984 uplift. The time scale of these transient strain events lasted less than one hour, putting further constraints on the origin of ground uplifts at Campi Flegrei. Their locations are compatible with the source inferred from long term deformation signals, at about 4 km depth beneath Pozzuoli. The current array provides us with a glimpse of the potential utility of a dense array of strainmeters and tiltmeters surrounding the Campi Flegrei region. An expanded array of tiltmeters and strainmeters operating continuously would permit the details of magma-transfer and the underlying cause of subsequent seismic activity to be monitored. Despite the small number of sensors, a preliminary mechanism model for aseismic strain episodes can be defined, correlating these episodes with magma growth in reservoirs with occasional pressure relief associated with the leakage of gas.
Baseline-dependent averaging in radio interferometry
NASA Astrophysics Data System (ADS)
Wijnholds, S. J.; Willis, A. G.; Salvini, S.
2018-05-01
This paper presents a detailed analysis of the applicability and benefits of baseline-dependent averaging (BDA) in modern radio interferometers and in particular the Square Kilometre Array. We demonstrate that BDA does not affect the information content of the data other than a well-defined decorrelation loss for which closed form expressions are readily available. We verify these theoretical findings using simulations. We therefore conclude that BDA can be used reliably in modern radio interferometry allowing a reduction of visibility data volume (and hence processing costs for handling visibility data) by more than 80 per cent.
MODEST - JPL GEODETIC AND ASTROMETRIC VLBI MODELING AND PARAMETER ESTIMATION PROGRAM
NASA Technical Reports Server (NTRS)
Sovers, O. J.
1994-01-01
Observations of extragalactic radio sources in the gigahertz region of the radio frequency spectrum by two or more antennas, separated by a baseline as long as the diameter of the Earth, can be reduced, by radio interferometry techniques, to yield time delays and their rates of change. The Very Long Baseline Interferometric (VLBI) observables can be processed by the MODEST software to yield geodetic and astrometric parameters of interest in areas such as geophysical satellite and spacecraft tracking applications and geodynamics. As the accuracy of radio interferometry has improved, increasingly complete models of the delay and delay rate observables have been developed. MODEST is a delay model (MOD) and parameter estimation (EST) program that takes into account delay effects such as geometry, clock, troposphere, and the ionosphere. MODEST includes all known effects at the centimeter level in modeling. As the field evolves and new effects are discovered, these can be included in the model. In general, the model includes contributions to the observables from Earth orientation, antenna motion, clock behavior, atmospheric effects, and radio source structure. Within each of these categories, a number of unknown parameters may be estimated from the observations. Since all parts of the time delay model contain nearly linear parameter terms, a square-root-information filter (SRIF) linear least-squares algorithm is employed in parameter estimation. Flexibility (via dynamic memory allocation) in the MODEST code ensures that the same executable can process a wide array of problems. These range from a few hundred observations on a single baseline, yielding estimates of tens of parameters, to global solutions estimating tens of thousands of parameters from hundreds of thousands of observations at antennas widely distributed over the Earth's surface. Depending on memory and disk storage availability, large problems may be subdivided into more tractable pieces that are processed sequentially. MODEST is written in FORTRAN 77, C-language, and VAX ASSEMBLER for DEC VAX series computers running VMS. It requires 6Mb of RAM for execution. The standard distribution medium for this package is a 1600 BPI 9-track magnetic tape in DEC VAX BACKUP format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. Instructions for use and sample input and output data are available on the distribution media. This program was released in 1993 and is a copyrighted work with all copyright vested in NASA.
Boyd, Matthew T
2017-06-01
Three grid-connected monocrystalline silicon photovoltaic arrays have been instrumented with research-grade sensors on the Gaithersburg, MD campus of the National Institute of Standards and Technology (NIST). These arrays range from 73 kW to 271 kW and have different tilts, orientations, and configurations. Irradiance, temperature, wind, and electrical measurements at the arrays are recorded, and images are taken of the arrays to monitor shading and capture any anomalies. A weather station has also been constructed that includes research-grade instrumentation to measure all standard meteorological quantities plus additional solar irradiance spectral bands, full spectrum curves, and directional components using multiple irradiance sensor technologies. Reference photovoltaic (PV) modules are also monitored to provide comprehensive baseline measurements for the PV arrays. Images of the whole sky are captured, along with images of the instrumentation and reference modules to document any obstructions or anomalies. Nearly, all measurements at the arrays and weather station are sampled and saved every 1s, with monitoring having started on Aug. 1, 2014. This report describes the instrumentation approach used to monitor the performance of these photovoltaic systems, measure the meteorological quantities, and acquire the images for use in PV performance and weather monitoring and computer model validation.
Boyd, Matthew T.
2017-01-01
Three grid-connected monocrystalline silicon photovoltaic arrays have been instrumented with research-grade sensors on the Gaithersburg, MD campus of the National Institute of Standards and Technology (NIST). These arrays range from 73 kW to 271 kW and have different tilts, orientations, and configurations. Irradiance, temperature, wind, and electrical measurements at the arrays are recorded, and images are taken of the arrays to monitor shading and capture any anomalies. A weather station has also been constructed that includes research-grade instrumentation to measure all standard meteorological quantities plus additional solar irradiance spectral bands, full spectrum curves, and directional components using multiple irradiance sensor technologies. Reference photovoltaic (PV) modules are also monitored to provide comprehensive baseline measurements for the PV arrays. Images of the whole sky are captured, along with images of the instrumentation and reference modules to document any obstructions or anomalies. Nearly, all measurements at the arrays and weather station are sampled and saved every 1s, with monitoring having started on Aug. 1, 2014. This report describes the instrumentation approach used to monitor the performance of these photovoltaic systems, measure the meteorological quantities, and acquire the images for use in PV performance and weather monitoring and computer model validation. PMID:28670044
ANATOMY OF HELICAL EXTRAGALACTIC JETS: THE CASE OF S5 0836+710
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perucho, M.; Kovalev, Y. Y.; Lobanov, A. P.
Helical structures are common in extragalactic jets. They are usually attributed in the literature to periodical phenomena in the source (e.g., precession). In this work, we use very long baseline interferometry data of the radio jet in the quasar S5 0836+710 and hypothesize that the ridgeline of helical jets like this corresponds to a pressure maximum in the jet and assume that the helically twisted pressure maximum is the result of a helical wave pattern. For our study, we use observations of the jet in S5 0836+710 at different frequencies and epochs. The results show that the structures observed aremore » physical and not generated artificially by the observing arrays. Our hypothesis that the observed intensity ridgeline can correspond to a helically twisted pressure maximum is confirmed by our observational tests. This interpretation allows us to explain jet misalignment between parsec and kiloparsec scales when the viewing angle is small, and also brings us to the conclusion that high-frequency observations may show only a small region of the jet flow concentrated around the maximum pressure ridgeline observed at low frequencies. Our work provides a potential explanation for the apparent transversal superluminal speeds observed in several extragalactic jets by means of transversal shift of an apparent core position with time.« less
Brown, Ryan; Deniz, Cem Murat; Zhang, Bei; Chang, Gregory; Sodickson, Daniel K.; Wiggins, Graham C.
2014-01-01
Objective The objective of the study was to investigate the feasibility of 7-T shoulder magnetic resonance imaging by developing transmit and receive radiofrequency (RF) coil arrays and exploring RF shim methods. Materials and Methods A mechanically flexible 8-channel transmit array and an anatomically conformable 10-channel receive array were designed and implemented. The transmit performance of various RF shim methods was assessed through local flip angle measurements in the right and left shoulders of 6 subjects. The receive performance was assessed through signal-to-noise ratio measurements using the developed 7-T coil and a baseline commercial 3-T coil. Results The 7-T transmit array driven with phase-coherent RF shim weights provided adequate B1+ efficiency and uniformity for turbo spin echo shoulder imaging. B1+ twisting that is characteristic of high-field loop coils necessitates distinct RF shim weights in the right and left shoulders. The 7-T receive array provided a 2-fold signal-to-noise ratio improvement over the 3-T array in the deep articular shoulder cartilage. Conclusions Shoulder imaging at 7-T is feasible with a custom transmit/receive array either in a single-channel transmit mode with a fixed RF shim or in a parallel transmit mode with a subject-specific RF shim. PMID:24056112
VizieR Online Data Catalog: Radio sources in the NCP region with the 21CMA (Zheng+, 2016)
NASA Astrophysics Data System (ADS)
Zheng, Q.; Wu, X.-P.; Johnston-Hollitt, M.; Gu, J.-H.; Xu, H.
2017-03-01
In the current work, we present the point radio sources observed with the 40 pods of the 21 Centimeter Array (21CMA) E-W baselines for an integration of 12hr made on 2013 April 13; centered on the North Celestial Pole (NCP). An extra deep sample with a higher sensitivity from a longer integration time of up to years will be published later. We have detected a total of 624 radio sources over the central field within 3° in a frequency range of 75-175MHz and the outer annulus of 3°-5° in the 75-125MHz bands. By performing a Monte-Carlo simulation, we have estimated a completeness of 50% at S~0.2Jy. (1 data file).
Adaptive optics and interferometry
NASA Technical Reports Server (NTRS)
Beichman, Charles A.; Ridgway, Stephen
1991-01-01
Adaptive optics and interferometry, two techniques that will improve the limiting resolution of optical and infrared observations by factors of tens or even thousands, are discussed. The real-time adjustment of optical surfaces to compensate for wavefront distortions will improve image quality and increase sensitivity. The phased operation of multiple telescopes separated by large distances will make it possible to achieve very high angular resolution and precise positional measurements. Infrared and optical interferometers that will manipulate light beams and measure interference directly are considered. Angular resolutions of single telescopes will be limited to around 10 milliarcseconds even using the adaptive optics techniques. Interferometry would surpass this limit by a factor of 100 or more. Future telescope arrays with 100-m baselines (resolution of 2.5 milliarcseconds at a 1-micron wavelength) are also discussed.
Testing General Relativity with Accretion-Flow Imaging of Sgr A^{*}.
Johannsen, Tim; Wang, Carlos; Broderick, Avery E; Doeleman, Sheperd S; Fish, Vincent L; Loeb, Abraham; Psaltis, Dimitrios
2016-08-26
The Event Horizon Telescope is a global, very long baseline interferometer capable of probing potential deviations from the Kerr metric, which is believed to provide the unique description of astrophysical black holes. Here, we report an updated constraint on the quadrupolar deviation of Sagittarius A^{*} within the context of a radiatively inefficient accretion flow model in a quasi-Kerr background. We also simulate near-future constraints obtainable by the forthcoming eight-station array and show that in this model already a one-day observation can measure the spin magnitude to within 0.005, the inclination to within 0.09°, the position angle to within 0.04°, and the quadrupolar deviation to within 0.005 at 3σ confidence. Thus, we are entering an era of high-precision strong gravity measurements.
Baseline antenna design for space exploration initiative
NASA Technical Reports Server (NTRS)
Chen, Y. L.; Nasir, M. A.; Lee, S. W.; Zaman, Afroz
1993-01-01
A key element of the future NASA Space Exploration Initiative (SEI) mission is the lunar and Mars telecommunication system. This system will provide voice, image, and data transmission to monitor unmanned missions to conduct experiments, and to provide radiometric data for navigation. In the later half of 1991, a study was conducted on antennas for the Mars Exploration Communication. Six antenna configurations were examined: three reflector and three phased array. The conclusion was that due to wide-angle scan requirement, and multiple simultaneous tracking beams, phased arrays are more suitable. For most part, this report studies phased array antenna designs for two different applications for Space Exploration Initiative. It also studies one design for a tri-reflector type antenna. These antennas will be based on a Mars orbiting satellite.
Space-Based Telemetry and Range Safety Project Ku-Band and Ka-Band Phased Array Antenna
NASA Technical Reports Server (NTRS)
Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.
2005-01-01
The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.
Ku- and Ka-Band Phased Array Antenna for the Space-Based Telemetry and Range Safety Project
NASA Technical Reports Server (NTRS)
Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.
2005-01-01
The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.
NASA Technical Reports Server (NTRS)
1982-01-01
Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated.
NASA Technical Reports Server (NTRS)
Cheung, K. M.; Vilnrotter, V.
1996-01-01
A closed-form expression for the capacity of an array of correlated Gaussian channels is derived. It is shown that when signal and noise are independent, the array of observables can be replaced with a single observable without diminishing the capacity of the array channel. Examples are provided to illustrate the dependence of channel capacity on noise correlation for two- and three-channel arrays.
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Vilnrotter, V.
1996-01-01
A closed-form expression for the capacity of an array of correlated Gaussian channels is derived. It is shown that when signal and noise are independent, the array of observables can be replaced with a single observable without diminishing the capacity of the array channel. Examples are provided to illustrate the dependence of channel capacity on noise correlation for two- and three-channel arrays.
Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array
NASA Technical Reports Server (NTRS)
Vilnrotter, V.; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.
2011-01-01
A coherent uplink array consisting of up to three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R-4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.
Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.
2011-01-01
A coherent Uplink Array consisting of two or three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.
Feasibility study of a 110 watt per kilogram lightweight solar array system
NASA Technical Reports Server (NTRS)
Shepard, N. F.; Stahle, C. V.; Schneider, A.; Hanson, K. L.
1972-01-01
An investigation of the feasibility of a solar array panel subsystem which will produce 10,000 watts of electrical output at 1 A.U. with an overall beginning-of-life power-to-weight ratio of at least 110 watt/kg is reported. A description of the current baseline configuration which meets these requirements is presented. A parametric analysis of the single boom, two blanket planar solar array system was performed to arrive at the optimum system aspect ratio. A novel concept for the stiffening of a lightweight solar array by canting the solar cell blankets at a small angle to take advantage of the inherent in-plane stiffness to increase the symmetric out-of-plane frequency is introduced along with a preliminary analysis of the stiffening effect. A comparison of welded and soldered solar cell interconnections leads to the conclusion that welding is required on this ultralightweight solar array. The use of a boron/aluminum composite material in a BI-STEM type deployable boom is investigated as a possible advancement in the state-of-the-art.
2007-12-12
REPORT DOCUMENTATION PAGE o:~r’Jo , , , , ’!’" ’ "~’’;;;, .-’ ’"",: I ~~--’ h.~ ng t I :;"O(’:,~s ) (From ~ To) . I "NO ’."" "elE I ~~A...1612 temperature (Rn with gentle shaki ng and were then scanned as described below prior to addition ofanalytes. All DNA oligonu- cleotides were added...scans. One parameter which we have recently found to be of great val ue in reduci ng baseline variations in the CARS array (Fig. 6) is purificalion
Process Development for Automated Solar Cell and Module Production. Task 4: Automated Array Assembly
NASA Technical Reports Server (NTRS)
1979-01-01
A baseline sequence for the manufacture of solar cell modules was specified. Starting with silicon wafers, the process goes through damage etching, texture etching, junction formation, plasma edge etch, aluminum back surface field formation, and screen printed metallization to produce finished solar cells. The cells were then series connected on a ribbon and bonded into a finished glass tedlar module. A number of steps required additional developmental effort to verify technical and economic feasibility. These steps include texture etching, plasma edge etch, aluminum back surface field formation, array layup and interconnect, and module edge sealing and framing.
Revisiting LS I +61°303 with VLBI astrometry
NASA Astrophysics Data System (ADS)
Wu, Y. W.; Torricelli-Ciamponi, G.; Massi, M.; Reid, M. J.; Zhang, B.; Shao, L.; Zheng, X. W.
2018-03-01
We conducted multi-epoch Very Long Baseline Array (VLBA) phase-referenced observations of LS I +61°303 in order to study its precessing radio jet. Compared to similar observations in 2006, we find that the observed elliptical trajectory of emission at 8.4 GHz repeats after the 9 yr gap. The accurate alignment of the emission patterns yields a precession period of 26.926 ± 0.005 d, which is consistent with that determined by Lomb-Scargle analysis of the radio light curve. We analytically model the projection on the sky plane of the peak position of a precessing, synchrotron-emitting jet, which traces an elliptical trajectory on the sky. Comparing the simulation with the VLBA astrometry we improve our knowledge of the geometry of the system. We measure the LS I +61°303 absolute proper motion to be -0.150 ± 0.006 mas yr-1 eastward and -0.264 ± 0.006 mas yr-1 northward. Removing Galactic rotation, this reveals a small, <20 km s-1, non-circular motion, which indicates a very low kick velocity when the black hole was formed.
High-resolution VLBA imaging of the radio source Sgr A* at the Galactic Centre
NASA Technical Reports Server (NTRS)
Lo, K. Y.; Backer, D. C.; Kellermann, K. I.; Reid, M.; Zhao, J. H.; Goss, W. M.; Moran, J. M.
1993-01-01
Images of Sgr* A with milliarcsecond resolution obtained by using five telescopes of the partially completed Very Long Baseline Array (VLBA) in conjunction with a few additional telescopes are presented. The image of Sgr A* at a wavelength of 3.6 cm confirms almost exactly the elliptical Gaussian model that has been proposed on the basis of previous data. The source size at 1.34 cm wavelength is 2.4 +/- 0.2 mas, similar to previous results. At both wavelengths, the radio source is smooth, without detectable fine structure. These observations support the suggestion that the radio emission from Sgr A* is strongly scattered by electron-density fluctuations along the line of sight. On the assumption that the emission is due to a black hole accreting stellar winds from massive stars in the central 0.5 pc, the observations are consistent with a black hole mass of less than about 2 million solar masses.
NASA Astrophysics Data System (ADS)
Ortiz-León, Gisela N.; Dzib, Sergio A.; Kounkel, Marina A.; Loinard, Laurent; Mioduszewski, Amy J.; Rodríguez, Luis F.; Torres, Rosa M.; Pech, Gerardo; Rivera, Juana L.; Hartmann, Lee; Boden, Andrew F.; Evans, Neal J., II; Briceño, Cesar; Tobin, John J.; Galli, Phillip A. B.
2017-01-01
We report on new distances and proper motions to seven stars across the Serpens/Aquila complex. The observations were obtained as part of the Gould’s Belt Distances Survey (GOBELINS) project between 2013 September and 2016 April with the Very Long Baseline Array (VLBA). One of our targets is the proto-Herbig AeBe object EC 95, which is a binary system embedded in the Serpens Core. For this system, we combined the GOBELINS observations with previous VLBA data to cover a total period of 8 years, and derive the orbital elements and an updated source distance. The individual distances to sources in the complex are fully consistent with each other, and the mean value corresponds to a distance of 436.0 ± 9.2 pc for the Serpens/W40 complex. Given this new evidence, we argue that Serpens Main, W40, and Serpens South are physically associated and form a single cloud structure.
NASA Technical Reports Server (NTRS)
Thomas, Nathan; Lucas, Richard; Itoh, Takuya; Simard, Marc; Fatoyinbo, Lucas; Bunting, Peter; Rosenqvist, Ake
2014-01-01
Between 2007 and 2010, Japan's Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar (PALSAR) captured dual polarization HH and HV data across the tropics and sub-tropics. A pan tropical dataset of Japanese Earth Resources Satellite (JERS-1) SAR (HH) data was also acquired between 1995 and 1998. The provision of these comparable cloud-free datasets provided an opportunity for observing changes in the extent of coastal mangroves over more than a decade. Focusing on nine sites distributed through the tropics, this paper demonstrates how these data can be used to backdate and update existing baseline maps of mangrove extent. The benefits of integrating dense timeseries of Landsat sensor data for both validating assessments of change and determining the causes of change are outlined. The approach is evaluated for wider application across the geographical range of mangroves in order to advance the development of JAXA's Global Mangrove Watch (GMW) program.
ORIGIN AND KINEMATICS OF THE ERUPTIVE FLOW FROM XZ TAU REVEALED BY ALMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zapata, Luis A.; Galván-Madrid, Roberto; Carrasco-González, Carlos
2015-09-20
We present high angular resolution (∼0.″94) {sup 12}CO(1-0) Atacama Large Millimeter/submillimeter Array (ALMA) observations obtained during the 2014 long baseline campaign from the eruptive bipolar flow from the multiple XZ Tau stellar system discovered by the Hubble Space Telescope (HST). These observations reveal, for the first time, the kinematics of the molecular flow. The kinematics of the different ejections close to XZ Tau reveal a rotating and expanding structure with a southeast–northwest velocity gradient. The youngest eruptive bubbles unveiled in the optical HST images are inside of this molecular expanding structure. Additionally, we report a very compact and collimated bipolarmore » outflow emanating from XZ Tau A, which indicates that the eruptive outflow is indeed originating from this object. The mass (3 × 10{sup −7} M{sub ⊙}) and energetics (E{sub kin} = 3 × 10{sup 37} erg) for the collimated outflow are comparable to those found in molecular outflows associated with young brown dwarfs.« less
NASA Astrophysics Data System (ADS)
Gabányi, K. É.; Frey, S.; An, T.
2018-05-01
Context. The Fermi Large Area Telescope revealed that the extragalactic γ-ray sky is dominated by blazars, active galactic nuclei (AGN) whose jet is seen at very small angle to the line of sight. To associate and then classify the γ-ray sources, data have been collected from lower frequency surveys and observations. Since those have superior angular resolution and positional accuracy compared to the γ-ray observations, some associations are not straightforward. Aims: The γ-ray source 3FGL J1323.0+2942 is associated with the radio source 4C+29.48 and classified as a blazar of unknown type, lacking optical spectrum and redshift. The higher-resolution radio data showed that 4C+29.48 comprises three bright radio-emitting features located within a 1'-diameter area. We aim to reveal their nature and pinpoint the origin of the γ-ray emission. Methods: We (re-)analyzed archival Very Large Array (VLA) and unpublished very long baseline interferometry (VLBI) observations conducted by the Very Long Baseline Array (VLBA) and the European VLBI Network of 4C+29.48. We also collected data form optical, infrared and X-ray surveys. Results: According to the VLBI data, the northernmost complex of 4C+29.48 contains a blazar with a high brightness temperature compact core and a steep-spectrum jet feature. The blazar is positionally coincident with an optical source at a redshift of 1.142. Its mid-infrared colors also support its association with a γ-ray emitting blazar. The two other radio complexes have steep radio spectra similar to AGN-related lobes and do not have optical or infrared counterparts in currently available surveys. Based on the radio morphology, they are unlikely to be related to the blazar. There is an optical source between the two radio features, also detected in infrared wavebands. We discuss the possibilities whether the two radio features are lobes of a radio galaxy, or gravitationally lensed images of a background source. Conclusions: We propose to associate the γ-ray source 3FGL J1323.0+2942 in subsequent versions of the Fermi catalog with the blazar residing in northernmost complex. We suggest naming this radio source J1323+2941A to avoid misinterpretation arising from the fact that the coordinates of the currently listed radio counterpart 4C+29.48 is closer to a most probably unrelated radio source.
NASA Technical Reports Server (NTRS)
Kierein, J. W.
1977-01-01
The baseline configuration defined has the SERGE antenna panel array mounted on the OFT-2 pallet sufficiently high in the bay that negligible amounts of radiation from the beam are reflected from orbiter surfaces into the shuttle payload bay. The array is symmetrically mounted to the pallet along the array long dimension with the pallet at the center. It utilizes a graphite epoxy trusswork support structure. The antenna panels are of SEASAT engineering model design and construction. The antenna array has 7 panels and a 7-way naturally tapered coax corporate feed system. The performance of the system is predicted to exceed 33 db gain, have -15 db sidelobes in the E-plane and even lower in the H-plane, and have and E-plane beamwidth less than 2.2 deg, all within performance specification. The primary support structure is predicted to exceed the specified greater than 25 hertz fundamental frequency, although individual panels will have hertz fundamental frequency.
Separated fringe packet observations with the Chara Array. II. ω Andromeda, HD 178911, and ξ Cephei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrington, C. D.; Ten Brummelaar, T. A.; Turner, N. H.
When observed with optical long-baseline interferometers, components of a binary star that are sufficiently separated produce their own interferometric fringe packets; these are referred to as separated fringe packet (SFP) binaries. These SFP binaries can overlap in angular separation with the regime of systems resolvable by speckle interferometry at single, large-aperture telescopes and can provide additional measurements for preliminary orbits lacking good phase coverage, help constrain elements of already established orbits, and locate new binaries in the undersampled regime between the bounds of spectroscopic surveys and speckle interferometry. In this process, a visibility calibration star is not needed, and themore » SFPs can provide an accurate vector separation. In this paper, we apply the SFP approach to ω Andromeda, HD 178911, and ξ Cephei with the CLIMB three-beam combiner at the CHARA Array. For these systems we determine component masses and parallax of 0.963 ± 0.049 M {sub ☉} and 0.860 ± 0.051 M {sub ☉} and 39.54 ± 1.85 mas for ω Andromeda, for HD 178911 of 0.802 ± 0.055 M {sub ☉} and 0.622 ± 0.053 M {sub ☉} with 28.26 ± 1.70 mas, and masses of 1.045 ± 0.031 M {sub ☉} and 0.408 ± 0.066 M {sub ☉} and 38.10 ± 2.81 mas for ξ Cephei.« less
2010-09-01
adds an extra dimension to both IPS and other observations. The polarization of the CME synchrotron emission observed by [3] will be of great...base funding. 8. REFERENCES 1. Kassim et al., The 74 MHz System on the Very Large Array, The Astrophysical Journal Supplement Series, Vol. 172...The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar Namir E. Kassim Naval Research
Polarization Observations with the Cosmic Background Imager
NASA Astrophysics Data System (ADS)
Cartwright, J. K.; Padin, S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Taylor, G. B.
2000-12-01
The linear polarization of the Cosmic Microwave Background Radiation is a fundamental prediction of the standard model. We report a limit on the polarization of the CMBR for l ~660. This limit was obtained with the Cosmic Background Imager, a 13 element interferometer which operates in the 26-36 GHz band from a site at 5000m in northern Chile. The array consists of 90-cm Cassegrain antennas mounted on a single, fully steerable platform; this platform can be rotated about the optical axis to facilitate polarization observations. The CBI employs single mode circularly polarized receivers, of which 12 are configured for LCP and one is configured for RCP. The 12 cross polarized baselines sample multipoles from l ~600 to l ~3500. The instrumental polarization of the CBI was calibrated with observations of 3C279, a bright polarized source which is unresolved by the CBI. Because the centimeter flux of 3C279 is variable, it was monitored twice per month for 8 months in '00 with the VLA at 22 and 43 GHz. These observations also established the stability of the polarization characteristics of the CBI. This work was made possible by NSF grant AST-9802989
NASA Astrophysics Data System (ADS)
Chak, Yew-Chung; Varatharajoo, Renuganth; Razoumny, Yury
2017-04-01
This paper investigates the combined attitude and sun-tracking control problem in the presence of external disturbances and internal disturbances, caused by flexible appendages. A new method based on Pythagorean trigonometric identity is proposed to drive the solar arrays. Using the control input and attitude output, a disturbance observer is developed to estimate the lumped disturbances consisting of the external and internal disturbances, and then compensated by the disturbance observer-based controller via a feed-forward control. The stability analysis demonstrates that the desired attitude trajectories are followed even in the presence of external disturbance and internal flexible modes. The main features of the proposed control scheme are that it can be designed separately and incorporated into the baseline controller to form the observer-based control system, and the combined attitude and sun-tracking control is achieved without the conventional attitude actuators. The attitude and sun-tracking performance using the proposed strategy is evaluated and validated through numerical simulations. The proposed control solution can serve as a fail-safe measure in case of failure of the conventional attitude actuator, which triggered by automatic reconfiguration of the attitude control components.
Identification of Young Stellar Variables with KELT for K2 . I. Taurus Dippers and Rotators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Joseph E.; Cargile, Phillip A.; Ansdell, Megan
One of the most well-studied young stellar associations, Taurus–Auriga, was observed by the extended Kepler mission, K2 , in the spring of 2017. K2 Campaign 13 (C13) is a unique opportunity to study many stars in this young association at high photometric precision and cadence. Using observations from the Kilodegree Extremely Little Telescope (KELT) survey, we identify “dippers,” aperiodic and periodic variables among K2 C13 target stars. This release of the KELT data (light curve data in e-tables) provides the community with long-time baseline observations to assist in the understanding of the more exotic variables in the association. Transient-like phenomenamore » on timescales of months to years are known characteristics in the light curves of young stellar objects, making contextual pre- and post- K2 observations critical to understanding their underlying processes. We are providing a comprehensive set of the KELT light curves for known Taurus–Auriga stars in K2 C13. The combined data sets from K2 and KELT should permit a broad array of investigations related to star formation, stellar variability, and protoplanetary environments.« less
Relationship Between Short Sleep Duration and Preseason Concussion Testing.
Silverberg, Noah D; Berkner, Paul D; Atkins, Joseph E; Zafonte, Ross; Iverson, Grant L
2016-05-01
Baseline, preseason assessment of cognition, symptoms, and balance has been recommended as part of a comprehensive sport concussion management program. We examined the relationship between sleep and baseline test results. We hypothesized that adolescents who slept fewer hours the night before would report more symptoms and perform more poorly on cognitive testing than students who had a full night sleep. Cross-sectional observation study. Preseason concussion testing for high school athletes. A large sample (n = 2928) of student athletes from Maine, USA, between the ages of 13 and 18 years completed preseason testing. Participants with developmental problems, a history of treatment for neurological or psychiatric problems, recent concussion, or 3 or more prior concussions were excluded. Athletes were divided into 4 groups based on their sleep duration the night before testing. Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT; ImPACT Applications, Inc, Pittsburgh, PA) cognitive composite scores and the embedded Post-Concussion Symptom Scale. Sleep was not related to any ImPACT cognitive composite score, after covarying for age and controlling for multiple comparisons. In contrast, there were sleep duration, sex, and sleep duration by sex effects on the Post-Concussion Symptom Scale. The effect of sleep duration on symptom reporting was more pronounced in girls. Supplementary analyses suggested that sleep insufficiency was associated with a diverse array of postconcussion-like symptoms. Poor sleep the night before baseline or postinjury testing may be an important confound when assessing postconcussion symptoms. Girls may be more vulnerable to experiencing and reporting symptoms following insufficient sleep. Clinicians should routinely ask how the athlete slept the night before preseason baseline testing and consider deferring the symptom assessment or later retesting athletes who slept poorly.
The Navy Precision Optical Interferometer: an update
NASA Astrophysics Data System (ADS)
Armstrong, J. T.; Baines, Ellyn K.; Schmitt, Henrique R.; Restaino, Sergio R.; Clark, James H.; Benson, James A.; Hutter, Donald J.; Zavala, Robert T.; van Belle, Gerard T.
2016-08-01
We describe the current status of the Navy Precision Optical Interferometer (NPOI), including developments since the last SPIE meeting. The NPOI group has added stations as far as 250m from the array center and added numerous infrastructure improvements. Science programs include stellar diameters and limb darkening, binary orbits, Be star disks, exoplanet host stars, and progress toward high-resolution stellar surface imaging. Technical and infrastructure projects include on-sky demonstrations of baseline bootstrapping with six array elements and of the VISION beam combiner, control system updates, integration of the long delay lines, and updated firmware for the Classic beam combiner. Our plans to add up to four 1.8 m telescopes are no longer viable, but we have recently acquired separate funding for adding three 1 m AO-equipped telescopes and an infrared beam combiner to the array.
Sustaining a Moored Ocean Observing System in the Tropical Pacific: The Evolution of the TAO Array
NASA Astrophysics Data System (ADS)
Grissom, K.; Kessler, W. S.; McArthur, S.
2016-12-01
The Tropical Atmosphere Ocean (TAO) array has been a major observational component of El Niño Southern Oscillation (ENSO) research and operational climate forecasting since its conception in 1984. Developed by NOAA's Pacific Marine Environmental Laboratory (PMEL) in response to the poorly-observed 1982-1983 El Niño, the moored buoy array was completed in 1994 and transitioned from PMEL to NOAA's National Data Buoy Center (NDBC) in 2005. During this transition, the TAO Refresh project was initiated to address equipment obsolescence and the need for more real-time data. Completed in 2011, the "TAO Refresh" array has new capabilities and added value. Then in 2012, federal resource shortfalls threatened the future sustainability of this array. The resulting limited maintenance caused a decline in real-time data, yet it also served as the impetus to focus international attention on the demands of sustaining an observing system capable of monitoring the tropical ocean-atmosphere interaction. To continue collecting observations at historical levels, NOAA and partners needed an alternate strategy, and to this end conceived the international TPOS 2020 project, the Tropical Pacific Observing System for 2020. At more than 30 years, the TAO array stands as one of the longest sustained in-situ ocean observing networks in the world and provides a rare long-term record of a dominant climate signal. Here we review the evolution of the TAO array, from its development at PMEL, to its transition and modernization at NDBC, and provide a preview of its future as a key element of the Tropical Pacific Observing System.
Thalhammer, Christof; Renz, Wolfgang; Winter, Lukas; Hezel, Fabian; Rieger, Jan; Pfeiffer, Harald; Graessl, Andreas; Seifert, Frank; Hoffmann, Werner; von Knobelsdorff-Brenkenhoff, Florian; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Kellman, Peter; Niendorf, Thoralf
2012-01-01
Purpose To design, evaluate and apply a two-dimensional 16 channel transmit/receive coil array tailored for cardiac MRI at 7.0 Tesla. Material and Methods The cardiac coil array consists of 2 sections each using 8 elements arranged in a 2 × 4 array. RF safety was validated by SAR simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T2* mapping and fat-water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification and overall image quality. Results RF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well in the limits of legal guidelines. The baseline SNR advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm3. The proposed coil array supports 1D acceleration factors of up to R=4 without impairing image quality significantly. Conclusions The 16 channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 Tesla. PMID:22706727
The Use of Self-scanned Silicon Photodiode Arrays for Astronomical Spectrophotometry
NASA Technical Reports Server (NTRS)
Cochran, A. L.
1984-01-01
The use of a Reticon self scanned silicon photodiode array for precision spectrophotometry is discussed. It is shown that internal errors are + or - 0.003 mag. Observations obtained with a photodiode array are compared with observations obtained with other types of detectors with agreement, from 3500 A to 10500 A, of 1%. The photometric properties of self scanned photodiode arrays are discussed. Potential pitfalls are given.
VizieR Online Data Catalog: The VLBA Extragalactic Proper Motion Catalog (Truebenbach+, 2017)
NASA Astrophysics Data System (ADS)
Truebenbach, A. E.; Darling, J.
2017-11-01
We created our catalog of extragalactic radio proper motions using the 2017a Goddard VLBI global solution. The 2017a solution is computed from more than 30 years of dual-band VLBI observations --1979 August 3 to 2017 March 27. We also observed 28 objects with either no redshift or a "questionable" Optical Characteristic of Astrometric Radio Sources (OCARS; Malkin 2016ARep...60..996M) redshift at the Apache Point Observatory (APO) 3.5m telescope and/or at Gemini North. We conducted observations on the 3.5m telescope at Apache Point Observatory with the Dual Imaging Spectrograph (DIS) from 2015 April 18 to 2016 June 30. We chose two objects for additional observations with the Gemini Multi-Object Spectrograph-North (GMOS-N) at Gemini North Observatory. 2021+317 was observed on 2016 June 26 and 28, while 0420+417 was observed on 2016 November 8 and 26. We also observed 42 radio sources with the Very Long Baseline Array (VLBA) in the X-band (3.6cm/8.3GHz). Our targets had all been previously observed by VLBI. Our VLBA observations were conducted in two campaigns from 2015 September to 2016 January and 2016 October to November. The final extragalactic proper motion catalog (created primarily from archival Goddard VLBI data, with redshifts obtained from OCARS) contains 713 proper motions with average uncertainties of 24μas/yr. (5 data files).
Bock, Y.; Wdowinski, S.; Fang, P.; Zhang, Jiahua; Williams, S.; Johnson, H.; Behr, J.; Genrich, J.; Dean, J.; Van Domselaar, M.; Agnew, D.; Wyatt, F.; Stark, K.; Oral, B.; Hudnut, K.; King, R.; Herring, T.; Dinardo, S.; Young, W.; Jackson, D.; Gurtner, W.
1997-01-01
The southern California Permanent GPS Geodetic Array (PGGA) was established in 1990 across the Pacific-North America plate boundary to continuously monitor crustal deformation. We describe the development of the array and the time series of daily positions estimated for its first 10 sites in the 19-month period between the June 28, 1992 (Mw=7.3), Landers and January 17, 1994 (Mw=6.7), Northridge earthquakes. We compare displacement rates at four site locations with those reported by Feigl et al. [1993], which were derived from an independent set of Global Positioning System (GPS) and very long baseline interferometry (VLBI) measurements collected over nearly a decade prior to the Landers earthquake. The velocity differences for three sites 65-100 km from the earthquake's epicenter are of order of 3-5 mm/yr and are systematically coupled with the corresponding directions of coseismic displacement. The fourth site, 300 km from the epicenter, shows no significant velocity difference. These observations suggest large-scale postseismic deformation with a relaxation time of at least 800 days. The statistical significance of our observations is complicated by our incomplete knowledge of the noise properties of the two data sets; two possible noise models fit the PGGA data equally well as described in the companion paper by Zhang et al. [this issue]; the pre-Landers data are too sparse and heterogeneous to derive a reliable noise model. Under a fractal white noise model for the PGGA data we find that the velocity differences for all three sites are statistically different at the 99% significance level. A white noise plus flicker noise model results in significance levels of only 94%, 43%, and 88%. Additional investigations of the pre-Landers data, and analysis of longer spans of PGGA data, could have an important effect on the significance of these results and will be addressed in future work. Copyright 1997 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Raghavan, Deepak; McAlister, H. A.
2007-12-01
We present a visual orbit for the spectroscopic binary, HD 146361, derived from observations at the CHARA Array's long baseline interferometer. The 26 calibrated visibility measurements obtained during May - July 2007 allow us to determine a full orbital solution and component masses for this known spectroscopic binary. The HD 146361 pair has a circular orbit of nearly equal-mass components with a good quality double-lined spectroscopic orbit (Dave Latham, private communication). We have adopted the well-constrained spectroscopic orbital elements and fit the angular semi-major axis, inclination, and longitude of nodes to the binary visibility curve equations. Using these elements and the Hipparcos parallax of 46.11 ± 0.98 mas, we obtain component masses of 1.046 ± 0.084 Msol and 1.000 ± 0.080 Msol. We have planned further observations of this system to reduce the mass uncertainties and may present an updated result at the meeting. This is the shortest period spectroscopic binary resolved as of yet with an interferometer. This work is being done in the context of Raghavan's thesis project, which is a survey of solar-type stars in the solar neighborhood. By completing this survey, we hope to build a comprehensive view of the environments around solar-type stars and improve our understanding of their habitats by analyzing their companions of all types - stars, brown dwarfs, and planets. We have chosen an unbiased, volume-limited sample of 455 primary stars as representatives of the solar-type stars in our Galaxy. Our effort is a modern update to the seminal work of Duquennoy & Mayor (1991) and will contribute to the broader subjects of stellar evolution and planetary system formation, evolution, and stability. Research at the CHARA Array is supported by the College of Arts and Sciences at Georgia State University and by the National Science Foundation through NSF Grant AST 0606958.
Predicting plasmonic coupling with Mie-Gans theory in silver nanoparticle arrays
NASA Astrophysics Data System (ADS)
Ranjan, M.
2013-09-01
Plasmonic coupling is observed in the self-aligned arrays of silver nanoparticles grown on ripple-patterned substrate. Large differences observed in the plasmon resonance wavelength, measured and calculated using Mie-Gans theory, predict that strong plasmonic coupling exists in the nanoparticles arrays. Even though plasmonic coupling exists both along and across the arrays, but it is found to be much stronger along the arrays due to shorter interparticle gap and particle elongation. This effect is responsible for observed optical anisotropy in such arrays. Measured red-shift even in the transverse plasmon resonance mode with the increasing nanoparticles aspect ratio in the arrays, deviate from the prediction of Mie-Gans theory. This essentially means that plasmonic coupling is dominating over the shape anisotropy. Plasmon resonance tuning is presented by varying the plasmonic coupling systematically with nanoparticles aspect ratio and ripple wavelength. Plasmon resonance red-shifts with the increasing aspect ratio along the ripple, and blue-shifts with the increasing ripple wavelength across the ripple. Therefore, reported bottom-up approach for fabricating large area-coupled nanoparticle arrays can be used for various field enhancement-based plasmonic applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... instrumentation to ensure adequate monitoring and to provide suitable baseline information. 2. Remediation Alternatives. The draft EIS will address an array of remediation alternatives that are necessary to prevent... benefits. The exact nature and extent of the remediation alternatives will be determined based on the...
Constructed-response matching to sample and spelling instruction.
Dube, W V; McDonald, S J; McIlvane, W J; Mackay, H A
1991-01-01
The development of interactive programmed instruction using a microcomputer as a teaching machine is described. The program applied a constructed-response matching-to-sample procedure to computer-assisted spelling instruction and review. On each trial, subjects were presented with a sample stimulus and a choice pool consisting of 10 individual letters. In initial training, sample stimuli were arrays of letters, and subjects were taught to construct identical arrays by touching the matching letters in the choice pool. After generalized constructed-response identity matching was established, pictures (line drawings) of common objects were presented as samples. At first, correct spelling was prompted by also presenting the printed name to be "copied" via identity matching; then the prompts were faded out. The program was implemented with 2 mentally retarded individuals. Assessment trials determined appropriate words for training. Correct spelling was established via the prompt-fading procedure; training trials were interspersed among baseline trials that reviewed and maintained spelling of previously learned words. As new words were learned, they were added to a cumulative baseline to generate an individualized review and practice battery for each subject. PMID:1890049
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Youngjoo; Cho, Se-Hyung; Kim, Jaeheon
We present the first images of the v = 1 and v = 2 J = 1 → 0 SiO maser lines taken with KaVA, i.e., the combined array of the Korean Very Long Baseline Interferometry (VLBI) Network and the VLBI Exploration of Radio Astrometry (VERA), toward the OH/IR star WX Psc. The combination of long and short antenna baselines enabled us to detect a large number of maser spots, which exhibit a typical ring-like structure in both the v = 1 and v = 2 J = 1 → 0 SiO masers as those that have been found inmore » previous VLBI observational results of WX Psc. The relative alignment of the v = 1 and v = 2 SiO maser spots are precisely derived from astrometric analysis, due to the absolute coordinates of the reference maser spot that were well determined in an independent astrometric observation with VERA. The superposition of the v = 1 and v = 2 maser spot maps shows a good spatial correlation between the v = 1 and v = 2 SiO maser features. Nevertheless, it is also shown that the v = 2 SiO maser spot is distributed in an inner region compared to the v = 1 SiO maser by about 0.5 mas on average. These results provide good support for the recent theoretical studies of the SiO maser pumping, in which both the collisional and the radiative pumping predict the strong spatial correlation and the small spatial discrepancy between the v = 1 and v = 2 SiO maser.« less
Development of a Solar Array Drive Assembly for CubeSat
NASA Technical Reports Server (NTRS)
Passaretti, Mike; Hayes, Ron
2010-01-01
Small satellites and in particular CubeSats, have increasingly become more viable as platforms for payloads typically requiring much larger bus structures. As advances in technology make payloads and instruments for space missions smaller, lighter and more power efficient, a niche market is emerging from the university community to perform rapidly developed, low-cost missions on very small spacecraft - micro, nano, and picosatellites. In just the last few years, imaging, biological and new technology demonstration missions have been either proposed or have flown using variations of the CubeSat structure as a basis. As these missions have become more complex, and the CubeSat standard has increased in both size (number of cubes) and mass, available power has become an issue. Body-mounted solar cells provide a minimal amount of power; deployable arrays improve on that baseline but are still limited. To truly achieve maximum power, deployed tracked arrays are necessary. To this end, Honeybee Robotics Spacecraft Mechanisms Corporation, along with MMA of Nederland Colorado, has developed a solar array drive assembly (SADA) and deployable solar arrays specifically for CubeSat missions. In this paper, we discuss the development of the SADA.
Camp Blanding Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Blakeslee,Richard; Christian, Hugh; Bailey, Jeffrey; Hall, John; Uman, Martin; Jordan, Doug; Krehbiel, Paul; Rison, William; Edens, Harald
2011-01-01
A seven station, short base-line Lightning Mapping Array was installed at the Camp Blanding International Center for Lightning Research and Testing (ICLRT) during April 2011. This network will support science investigations of Terrestrial Gamma-Ray Flashes (TGFs) and lightning initiation using rocket triggered lightning at the ICLRT. The network operations and data processing will be carried out through a close collaboration between several organizations, including the NASA Marshall Space Flight Center, University of Alabama in Huntsville, University of Florida, and New Mexico Tech. The deployment was sponsored by the Defense Advanced Research Projects Agency (DARPA). The network does not have real-time data dissemination. Description, status and plans will be discussed.
NASA Astrophysics Data System (ADS)
Pober, Jonathan C.
2018-05-01
The Precision Array for Probing the Epoch of Reionization (PAPER) was a first-generation 21 cm cosmology experiment with the specific goal of detecting the power spectrum of the 21 cm emission from the Epoch of Reionization. Analysis of PAPER data is still ongoing, but lessons learned from PAPER to date have played a critical role in designing the next-generation Hydrogen Epoch of Reionization Array (HERA) experiment. This article reviews five key design choices made by PAPER: use of a non-imaging configuration, redundancy, short baselines, small antenna elements, and a large instantaneous bandwidth. We describe the impact of these choices and the role they played in designing HERA.
An Overview of the Square Kilometre Array
NASA Technical Reports Server (NTRS)
Huynh, Minh T.; Lazio, Joseph
2013-01-01
The Square Kilometre Array (SKA) will be the premier instrument to study radiation at centimetre and metre wavelengths from the cosmos, and in particular hydrogen, the most abundant element in the universe. The SKA will probe the dawn of galaxy formation as well as allow advances in many other areas of astronomy, such as fundamental physics, astrobiology and cosmology. Phase 1, which will be about 10% of the full SKA collecting area, will be built in Australia and South Africa. This paper describes the key science drivers of the SKA, provides an update on recent SKA Organisation activities and summarises the baseline design for Phase 1.
Interferometric Gravity Darkening Observations of Vega with the CHARA Array
NASA Astrophysics Data System (ADS)
Aufdenberg, J. P.; Merand, A.; Coude Foresto, V.; Absil, O.; Di Folco, E.; Kervella, P.; Ridgway, S. T.; Sturmann, J.; Sturmann, L.; ten Brummelaar, T. A.; Turner, N. H.; Berger, D. H.; McAlister, H. A.
2005-12-01
We have obtained high-precision interferometric measurements of the A0 V standard star Vega with the Center for High Angular Resolution Astronomy (CHARA) Array and the Fiber Linked Unit for Optical Recombination (FLUOR) beam combiner in the K' band at projected baselines between 103 m and 273 m. The measured squared visibility amplitudes beyond the first lobe are significantly weaker than expected for a slowly rotating star and provide strong evidence for the model of Vega as a rapidly rotating star viewed very nearly pole on. We have constructed a Roche-von Zeipel gravity-darkened model atmosphere which is in generally good agreement with both our interferometric data and archival spectrophotometry. Our model indicates Vega is rotating at ˜92% of its angular break-up rate with an equatorial velocity of ˜275 km s-1. We find a polar effective temperature of ˜10150 K and a pole-to-equator effective temperature difference of ˜2500 K, much larger than the ˜300 K derived by Gulliver, Hill, and Adelman. Our model suggests that Vega's cool equatorial atmosphere may have significant convective flux and predicts a significantly cooler spectral energy distribution for Vega as seen by its surrounding debris disk. This work was performed in part under contract with the Jet Propulsion Laboratory (JPL) funded by NASA through the Michelson Fellowship Program. JPL is managed for NASA by the California Institute of Technology. The CHARA Array is operated by the Center for High Angular Resolution Astronomy with support from Georgia State University and the National Science Foundation, the Keck Foundation and the Packard Foundation.
Force sensitive carbon nanotube arrays for biologically inspired airflow sensing
NASA Astrophysics Data System (ADS)
Maschmann, Matthew R.; Dickinson, Ben; Ehlert, Gregory J.; Baur, Jeffery W.
2012-09-01
The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0-1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats.
OSSE observations of NGC 1275 in the 0.05-10.0 MeV range
NASA Astrophysics Data System (ADS)
Osako, C. Y.; Ulmer, M. P.; Grabelsky, D. A.; Purcell, W. R.; Strickman, M. S.; Johnson, W. N.; Kinzer, R. L.; Kurfess, J. D.; Jung, G. V.
1994-11-01
We made observations of NGC 1275 with the Compton Gamma-Ray Observatory's Oriented Scintillation Spectrometer Experiment (OSSE) between 1991 November 28 and December 12. We did not detect the source during this viewing period. Our 3 sigma upper limit to a detection in the approximately 50-90 keV range is 6 x 10-6 photons/sq cm/s/keV. This flux is more than 10 times lower than the 3 sigma detection in the same energy range reported by Rothschild et al. for their OSO 7 observations. Our results are discussed in comparison with radio observations and models for the X-ray emission, and we show that it is likely that most of the approx. greater than 10 keV photons come from the nuclear region of NGC 1275. We find no significant correlation between the variable radio intensity and the hard X-ray flux of the entire NGC 1275 source. Simultaneous Very Large Baseline Array and gamma-ray observations are needed to test the self-Compton synchrotron models for gamma-ray emission from the core of NGC 1275. Our results also provide a lower limit to the magnetic field of approximately 2 x 10-7 gauss for the approximately 5 min radio source centered on NGC 1275.
Prowess - A Software Model for the Ooty Wide Field Array
NASA Astrophysics Data System (ADS)
Marthi, Visweshwar Ram
2017-03-01
One of the scientific objectives of the Ooty Wide Field Array (OWFA) is to observe the redshifted H i emission from z ˜ 3.35. Although predictions spell out optimistic outcomes in reasonable integration times, these studies were based purely on analytical assumptions, without accounting for limiting systematics. A software model for OWFA has been developed with a view to understanding the instrument-induced systematics, by describing a complete software model for the instrument. This model has been implemented through a suite of programs, together called Prowess, which has been conceived with the dual role of an emulator as well as observatory data analysis software. The programming philosophy followed in building Prowess enables a general user to define an own set of functions and add new functionality. This paper describes a co-ordinate system suitable for OWFA in which the baselines are defined. The foregrounds are simulated from their angular power spectra. The visibilities are then computed from the foregrounds. These visibilities are then used for further processing, such as calibration and power spectrum estimation. The package allows for rich visualization features in multiple output formats in an interactive fashion, giving the user an intuitive feel for the data. Prowess has been extensively used for numerical predictions of the foregrounds for the OWFA H i experiment.
PARAS program: Phased array radio astronomy from space
NASA Astrophysics Data System (ADS)
Jakubowski, Antoni K.; Haynes, David A.; Nuss, Ken; Hoffmann, Chris; Madden, Michael; Dungan, Michael
1992-06-01
An orbiting radio telescope is proposed which, when operated in a Very Long Baseline Interferometry (VLBLI) scheme, would allow higher (than currently available) angular resolution and dynamic range in the maps, and the ability of observing rapidly changing astronomical sources. Using a passive phases array technology, the proposed design consists of 656 hexagonal modules forming a 150 meter diameter dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data is transmitted to telemetry stations on the ground. The truss frame supporting each observatory pane is a hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and bottom triangle. Attitude control and stationkeeping functions are performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and six hydrazine arcjets, the latter supported by a nuclear reactor. The total mass of the spacecraft is 22,060 kg.
NASA Astrophysics Data System (ADS)
Safdernejad, Morteza S.; Karpenko, Oleksii; Ye, Chaofeng; Udpa, Lalita; Udpa, Satish
2016-02-01
The advent of Giant Magneto-Resistive (GMR) technology permits development of novel highly sensitive array probes for Eddy Current (EC) inspection of multi-layer riveted structures. Multi-frequency GMR measurements with different EC pene-tration depths show promise for detection of bottom layer notches at fastener sites. However, the distortion of the induced magnetic field due to flaws is dominated by the strong fastener signal, which makes defect detection and classification a challenging prob-lem. This issue is more pronounced for ferromagnetic fasteners that concentrate most of the magnetic flux. In the present work, a novel multi-frequency mixing algorithm is proposed to suppress rivet signal response and enhance defect detection capability of the GMR array probe. The algorithm is baseline-free and does not require any assumptions about the sample geometry being inspected. Fastener signal suppression is based upon the random sample consensus (RANSAC) method, which iteratively estimates parameters of a mathematical model from a set of observed data with outliers. Bottom layer defects at fastener site are simulated as EDM notches of different length. Performance of the proposed multi-frequency mixing approach is evaluated on finite element data and experimental GMR measurements obtained with unidirectional planar current excitation. Initial results are promising demonstrating the feasibility of the approach.
PARAS program: Phased array radio astronomy from space
NASA Technical Reports Server (NTRS)
Jakubowski, Antoni K.; Haynes, David A.; Nuss, Ken; Hoffmann, Chris; Madden, Michael; Dungan, Michael
1992-01-01
An orbiting radio telescope is proposed which, when operated in a Very Long Baseline Interferometry (VLBLI) scheme, would allow higher (than currently available) angular resolution and dynamic range in the maps, and the ability of observing rapidly changing astronomical sources. Using a passive phases array technology, the proposed design consists of 656 hexagonal modules forming a 150 meter diameter dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data is transmitted to telemetry stations on the ground. The truss frame supporting each observatory pane is a hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and bottom triangle. Attitude control and stationkeeping functions are performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and six hydrazine arcjets, the latter supported by a nuclear reactor. The total mass of the spacecraft is 22,060 kg.
The Astronomical Low-Frequency Array
NASA Technical Reports Server (NTRS)
Jones, D. L.; Allen, R. J.; Blume, W. H.; Desch, M. M.; Erickson, W. C.; Kaiser, M. L.; Kassim, N. E.; Kuiper, T. B. H.; Mahoney, M. J.; Marsh, K. A.;
1996-01-01
An array of satellites is proposed to make astronomic observations in the low frequency range of a few tens of MHz down to roughly 100 kHz, a range that cannot be observed through the ionosphere. The array would be in a solar orbit to avoid radio interference from Earth and to simplify trajectory tracking and control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruwart, T M; Eldel, A
2000-01-01
The primary objectives of this project were to evaluate the performance of the SGI CXFS File System in a Storage Area Network (SAN) and compare/contrast it to the performance of a locally attached XFS file system on the same computer and storage subsystems. The University of Minnesota participants were asked to verify that the performance of the SAN/CXFS configuration did not fall below 85% of the performance of the XFS local configuration. There were two basic hardware test configurations constructed from the following equipment: Two Onyx 2 computer systems each with two Qlogic-based Fibre Channel/XIO Host Bus Adapter (HBA); Onemore » 8-Port Brocade Silkworm 2400 Fibre Channel Switch; and Four Ciprico RF7000 RAID Disk Arrays populated Seagate Barracuda 50GB disk drives. The Operating System on each of the ONYX 2 computer systems was IRIX 6.5.6. The first hardware configuration consisted of directly connecting the Ciprico arrays to the Qlogic controllers without the Brocade switch. The purpose for this configuration was to establish baseline performance data on the Qlogic controllers / Ciprico disk raw subsystem. This baseline performance data would then be used to demonstrate any performance differences arising from the addition of the Brocade Fibre Channel Switch. Furthermore, the performance of the Qlogic controllers could be compared to that of the older, Adaptec-based XIO dual-channel Fibre Channel adapters previously used on these systems. It should be noted that only raw device tests were performed on this configuration. No file system testing was performed on this configuration. The second hardware configuration introduced the Brocade Fibre Channel Switch. Two FC ports from each of the ONYX2 computer systems were attached to four ports of the switch and the four Ciprico arrays were attached to the remaining four. Raw disk subsystem tests were performed on the SAN configuration in order to demonstrate the performance differences between the direct-connect and the switched configurations. After this testing was completed, the Ciprico arrays were formatted with an XFS file system and performance numbers were gathered to establish a File System Performance Baseline. Finally, the disks were formatted with CXFS and further tests were run to demonstrate the performance of the CXFS file system. A summary of the results of these tests is given.« less
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST/AFTA
NASA Technical Reports Server (NTRS)
Gong, Qian; McElwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Hilton, George; Perrin, Marshall; Sayson, Llop; Domingo, Jorge;
2015-01-01
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a prototype lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey TelescopeAstrophysics Focused Telescope Assets (WFIRSTAFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC). We will present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the compatibility to upgrade from the current 1k x 1k detector array to 4k x 4k detector array. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.
The low-frequency array (LOFAR): opening a new window on the universe
NASA Astrophysics Data System (ADS)
Kassim, N. E.; Lazio, T. J. W.; Ray, P. S.; Crane, P. C.; Hicks, B. C.; Stewart, K. P.; Cohen, A. S.; Lane, W. M.
2004-12-01
We present an overview of the low-frequency array (LOFAR) that will open a window on one of the last and most poorly explored regions of the electromagnetic spectrum. LOFAR will be a large (baselines up to 400 km), low-frequency (ν˜10-240MHz) aperture synthesis array with large collecting area ( ˜106m2 at 15MHz) and high resolution ( ˜1.5″ at 100 MHz), and will provide sub-mJy sensitivity across much of its operating range. LOFAR will be a powerful instrument for solar system and planetary science applications as reviewed by papers in this monogram. Key astrophysical science drivers include acceleration, turbulence, and propagation in the galactic interstellar medium, exploring the high red-shift universe and transient phenomena, as well as searching for the red-shifted signature of neutral hydrogen from the cosmologically important epoch of re-ionization.
Pushing CHARA to its Limit: A Pathway Toward 80X80 Pixel Images of Stellar Surfaces
NASA Astrophysics Data System (ADS)
Norris, Ryan
2018-04-01
Imagine a future with 80x80 pixel images of stellar surfaces. With a maximum baseline of 330 m, the CHARA Array is already capable of achieving 0.5 mas resolution, sufficient for imaging the red supergiant Betelgeuse (d = 42.3 mas ) at such a scale. However several issues have hampered attempts to image the largest stars at CHARA, including a lack of baselines shorter than 34 m and instrument sensitivities unable to measure the faintest fringes. Here we discuss what is needed to achieve imaging of large stars at CHARA. We will present suggestions for future telescope placement, describing the advantages of a short baseline, while also considering the needs of other imaging targets that might benefit from additional baselines. We will also present developments in image reconstruction methods that can improve the resolution of images today, albeit of smaller targets and at a lesser scale. Of course, there will be example images, created using simulated oifits data and state of the art reconstruction techniques!
Spectroscopy, MOST photometry, and interferometry of MWC 314: is it an LBV or an interacting binary?
NASA Astrophysics Data System (ADS)
Richardson, Noel D.; Moffat, Anthony F. J.; Maltais-Tariant, Raphaël; Pablo, Herbert; Gies, Douglas R.; Saio, Hideyuki; St-Louis, Nicole; Schaefer, Gail; Miroshnichenko, Anatoly S.; Farrington, Chris; Aldoretta, Emily J.; Artigau, Étienne; Boyajian, Tabetha S.; Gordon, Kathryn; Jones, Jeremy; Matson, Rachel; McAlister, Harold A.; O'Brien, David; Raghavan, Deepak; Ramiaramanantsoa, Tahina; Ridgway, Stephen T.; Scott, Nic; Sturmann, Judit; Sturmann, Laszlo; Brummelaar, Theo ten; Thomas, Joshua D.; Turner, Nils; Vargas, Norm; Zharikov, Sergey; Matthews, Jaymie; Cameron, Chris; Guenther, David; Kuschnig, Rainer; Rowe, Jason; Rucinski, Slavek; Sasselov, Dimitar; Weiss, Werner
2016-01-01
MWC 314 is a bright candidate luminous blue variable (LBV) that resides in a fairly close binary system, with an orbital period of 60.753 ± 0.003 d. We observed MWC 314 with a combination of optical spectroscopy, broad-band ground- and space-based photometry, as well as with long baseline, near-infrared interferometry. We have revised the single-lined spectroscopic orbit and explored the photometric variability. The orbital light curve displays two minima each orbit that can be partially explained in terms of the tidal distortion of the primary that occurs around the time of periastron. The emission lines in the system are often double-peaked and stationary in their kinematics, indicative of a circumbinary disc. We find that the stellar wind or circumbinary disc is partially resolved in the K'-band with the longest baselines of the CHARA Array. From this analysis, we provide a simple, qualitative model in an attempt to explain the observations. From the assumption of Roche Lobe overflow and tidal synchronization at periastron, we estimate the component masses to be M1 ≈ 5 M⊙ and M2 ≈ 15 M⊙, which indicates a mass of the LBV that is extremely low. In addition to the orbital modulation, we discovered two pulsational modes with the MOST satellite. These modes are easily supported by a low-mass hydrogen-poor star, but cannot be easily supported by a star with the parameters of an LBV. The combination of these results provides evidence that the primary star was likely never a normal LBV, but rather is the product of binary interactions. As such, this system presents opportunities for studying mass-transfer and binary evolution with many observational techniques.
NASA Technical Reports Server (NTRS)
Mueller, C.; Kadler, M.; Ojha, R.; Wilms, J.; Boeck, M.; Edwards, P.; Fromm, C. M.; Hase, H.; Horiuchi, S.; Katz, U.;
2011-01-01
Centaurus A is the closest active galactic nucleus. High resolution imaging using Very Long Baseline Interferometry (VLBI) enables us to study the spectral and kinematic behavior of the radio jet-<:ounterjet system on sub-parsec scales, providing essential information for jet emission and formation models. Aims. Our aim is to study the structure and spectral shape of the emission from the central-parsec region of Cen A. Methods. As a target of the Southern Hemisphere VLBI monitoring program TANAMI (Tracking Active Galactic Nuclei with Millliarcsecond Interferometry), VLBI observations of Cen A are made regularly at 8.4 and 22.3 GHz with the Australian Long Baseline Array (LBA) and associated telescopes in Antarctica, Chile, and South Africa. Results. The first dual-frequency images of this source are presented along with the resulting spectral index map. An angular resolution of 0.4 mas x 0.7 mas is achieved at 8.4 GHz, corresponding to a linear scale of less than 0.013 pc. Hence, we obtain the highest resolution VLBI image of Cen A, comparable to previous space-VLBI observations. By combining with the 22.3 GHz image, we present the corresponding dual-frequency spectral index distribution along the sub-parsec scale jet revealing the putative emission regions for recently detected y-rays from the core region by Fermi/LAT. Conclusions. We resolve the innermost structure of the milliarcsecond scale jet and counter jet system of Cen A into discrete components. The simultaneous observations at two frequencies provide the highest resolved spectral index map of an AGN jet allowing us to identify up to four possible sites as the origin of the high energy emission. Key words. galaxies: active galaxies: individual (Centaurus A, NGC 5128) - galaxies: jets - techniques: high angular resolution
Chapter 12 - Mapping wildland fuel across large regions for the LANDFIRE Prototype Project
Robert E. Keane; Tracey Frescino; Matthew C. Reeves; Jennifer L. Long
2006-01-01
The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, required that the entire array of wildland fuel characteristics be mapped to provide fire and landscape managers with consistent baseline geo-spatial information to plan projects for hazardous fuel mitigation and to improve public and firefighter safety. Fuel...
Matching Faces to Photographs: Poor Performance in Eyewitness Memory (without the Memory)
ERIC Educational Resources Information Center
Megreya, Ahmed M.; Burton, A. Mike
2008-01-01
Eyewitness memory is known to be fallible. We describe 3 experiments that aim to establish baseline performance for recognition of unfamiliar faces. In Experiment 1, viewers were shown live actors or photos (targets), and then immediately presented with arrays of 10 faces (test items). Asked whether the target was present among the test items, and…
Microwave systems analysis, solar power satellite. [alignment of the antenna array
NASA Technical Reports Server (NTRS)
1979-01-01
Various alternative active approaches to achieving aand maintaining flatness for the microwave power transmission system (MPTS) were studied. A baseline active alignment scheme was developed which includes subarray attachment mechanisms, height and tilting adjustments, service corridors, a rotating laser beam reference system, monopulse pointing techniques, and the design of a beam-centering photoconductive sensor.
Research Natural Areas of the Northern Region: Status and Needs Assessment
Steve W. Chadde; Shannon F. Kimball; Angela G. Evenden
1996-01-01
A major objective of the Forest Service Research Natural Area (RNA) program is to maintain a representative array of all significant natural ecosystems as baseline areas for research and monitoring (Forest Service Manual 4063, USDA Forest Service 1991). The National Forest Management Act of 1976 directs the agency to establish research natural areas typifying important...
Feasibility study of a 110 watt per kilogram lightweight solar array system
NASA Technical Reports Server (NTRS)
Shepard, N. F.; Stahle, C. V.; Hanson, K. L.; Schneider, A.; Blomstrom, L. E.; Hansen, W. T.; Kirpich, A.
1973-01-01
The feasibility of a 10,000 watt solar array panel which has a minimum power-to-mass ratio of 110 watt/kg is discussed. The application of this ultralightweight solar array to three possible missions was investigated. With the interplanetary mission as a baseline, the constraining requirements for a geosynchronous mission and for a manned space station mission are presented. A review of existing lightweight solar array system concepts revealed that changes in the system approach are necessary to achieve the specified 110 watt/kg goal. A comprehensive review of existing component technology is presented in the areas of thin solar cells, solar cell covers, welded interconnectors, substrates and deployable booms. Advances in the state-of-the-art of solar cell and deployable boom technology were investigated. System level trade studies required to select the optimum boom bending stiffness, system aspect ratio, bus voltage level, and solar cell circuit arrangement are reported. Design analysis tasks included the thermal analysis of the solar cell blanket, thermal stress analysis of the solar cell interconnectors/substrate, and the thermostructural loading of the deployed boom.
Gregori, Ninel Z; Callaway, Natalia F; Hoeppner, Catherine; Yuan, Alex; Rachitskaya, Aleksandra; Feuer, William; Ameri, Hossein; Arevalo, J Fernando; Augustin, Albert J; Birch, David G; Dagnelie, Gislin; Grisanti, Salvatore; Davis, Janet L; Hahn, Paul; Handa, James T; Ho, Allen C; Huang, Suber S; Humayun, Mark S; Iezzi, Raymond; Jayasundera, K Thiran; Kokame, Gregg T; Lam, Byron L; Lim, Jennifer I; Mandava, Naresh; Montezuma, Sandra R; Olmos de Koo, Lisa; Szurman, Peter; Vajzovic, Lejla; Wiedemann, Peter; Weiland, James; Yan, Jiong; Zacks, David N
2018-06-22
To assess the retinal anatomy and array position in the Argus II Retinal Prosthesis recipients. Prospective, non-comparative cohort study METHODS: Setting: international multicenter study PATIENTS: Argus II recipients enrolled in the Post-Market Surveillance Studies. Spectral-domain Optical Coherence Tomography images collected for the Surveillance Studies (NCT01860092 and NCT01490827) were reviewed. Baseline and postoperative macular thickness, electrode-retina distance (gap), optic disc-array overlap, and preretinal membrane presence were recorded at 1, 3, 6, and 12 months. Axial retinal thickness and axial gap along the array's long axis (a line between the tack and handle), maximal retinal thickness and maximal gap along a B-scan near the tack, midline, and handle. Thirty-three patients from 16 surgical sites in the United States and Germany were included. Mean axial retinal thickness increased from month 1 through month 12 at each location, but reached statistical significance only at the array midline (p-value=0.007). The rate of maximal thickness increase was highest near the array midline (slope=6.02, p=0.004), compared to the tack (slope=3.60, p<0.001) or the handle (slope=1.93, p=0.368). The mean axial and maximal gaps decreased over the study period, and the mean maximal gap size decrease was significant at midline (p=0.032). Optic disc-array overlap was seen in the minority of patients. Preretinal membranes were common before and after implantation. Progressive macular thickening under the array was common and corresponded to decreased electrode-retina gap over time. By month 12, the array was completely apposed to the macula in approximately half of the eyes. Copyright © 2018. Published by Elsevier Inc.
Cheng, Heather H; Plets, Melissa; Li, Hongli; Higano, Celestia S; Tangen, Catherine M; Agarwal, Neeraj; Vogelzang, Nicholas J; Hussain, Maha; Thompson, Ian M; Tewari, Muneesh; Yu, Evan Y
2018-02-01
Previous studies suggest circulating, blood-based microRNAs (miRNAs) may serve as minimally invasive prostate cancer biomarkers, however there is limited data from prospective clinical trials. Here, we explore the role of candidate plasma miRNAs as potential biomarkers in the SWOG 0925 randomized phase II study of androgen deprivation combined with cixutumumab versus androgen deprivation alone in patients with new metastatic hormone-sensitive prostate cancer. Correlative biospecimens, including circulating tumor cells (CTCs) and plasma for miRNA analysis, were collected at baseline and after 12 weeks on treatment from 50 patients enrolled on SWOG 0925. Circulating microRNAs were quantified using real-time RT-PCR microRNA array that allowed specific analysis of previously identified candidate miRNAs (miR-141, miR-200a, miR-200b, miR-210, and miR-375) as well as discovery analysis to identify new candidate miRNAs. MiRNA levels were correlated to previously reported CTC counts using CellSearch® (Veridex) and with the primary study outcome of 28-week PSA response (≤0.2, 0.2 to ≤4.0, or >4.0 ng/mL), previously shown to correlate with overall survival. We observed a correlation between baseline circulating miR-141, miR-200a, and miR-375 levels with baseline CTCs. Baseline miR-375 levels were associated with 28-week PSA response (≤0.2, 0.2 to ≤4.0, or >4.0 ng/mL, P = 0.007). Using ROC curve analysis, there was no significant difference between baseline miR-375 and baseline CTC in predicting 28-week PSA response (≤0.2 vs >0.2 ng/mL). To discover novel candidate miRNAs, we analyzed 365 miRNAs for association with the 28-week PSA response endpoint and identified new candidate miRNAs along with the existing candidates miR-375 and miR-200b (P = 0.0012, P = 0.0046, respectively. Baseline plasma miR-141, miR-200a, and miR-375 levels are associated with baseline CTC count. Baseline miR-375 was also associated with the trial endpoint of 28-week PSA response. Our results provide evidence that circulating miRNA biomarkers may have value as prognostic biomarkers and warrant further study in larger prospective clinical trials. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Wright, Kenneth H.; Schneider, Todd; Vaughn, Jason; Hoang, Bao; Funderburk, Victor V.; Wong, Frankie; Gardiner, George
2010-01-01
A set of multi-junction GaAs/Ge solar array test coupons were subjected to a sequence of 5-year increments of combined environmental exposure tests. The test coupons capture an integrated design intended for use in a geosynchronous (GEO) space environment. A key component of this test campaign is conducting electrostatic discharge (ESD) tests in the inverted gradient mode. The protocol of the ESD tests is based on the ISO/CD 11221, the ISO standard for ESD testing on solar array panels. This standard is currently in its final review with expected approval in 2010. The test schematic in the ISO reference has been modified with Space System/Loral designed circuitry to better simulate the on-orbit operational conditions of its solar array design. Part of the modified circuitry is to simulate a solar array panel coverglass flashover discharge. All solar array coupons used in the test campaign consist of 4 cells. The ESD tests are performed at the beginning of life (BOL) and at each 5-year environment exposure point. The environmental exposure sequence consists of UV radiation, electron/proton particle radiation, thermal cycling, and ion thruster plume. This paper discusses the coverglass flashover simulation, ESD test setup, and the importance of the electrical test design in simulating the on-orbit operational conditions. Results from 5th-year testing are compared to the baseline ESD characteristics determined at the BOL condition.
Ruiz, Jorge G; Andrade, Allen D; Garcia-Retamero, Rocio; Anam, Ramanakumar; Rodriguez, Remberto; Sharit, Joseph
2013-12-01
Experts recommend that adults have their global cardiovascular risk assessed. We investigated whether icon arrays increase understanding, recall, perception of CVR, and behavioral intent as compared with numerical information. Male outpatient veterans, at an intermediate to high cardiovascular risk participated in a randomized controlled trial of a computer tutorial presenting individualized risk. Message format was presented in 3 formats: percentages, frequencies, and frequencies with icon arrays. We assessed understanding immediately (T1) and recall at 20 min (T2) and 2 weeks (T3) after the intervention. We assessed perceptions of importance/seriousness, intent to adhere, and self-efficacy at T1. Self-reported adherence was assessed at T3. One-hundred and twenty male veterans participated. Age, education, race, health literacy and numeracy were comparable at baseline. There were no differences in understanding at T1 [p = .31] and recall at T3 [p = .10]. Accuracy was inferior with frequencies with icon arrays than percentages or frequencies at T2 [p ≤ .001]. There were no differences in perception of seriousness and importance for heart disease, behavioral intent, self-efficacy, actual adherence and satisfaction. Icon arrays may impair short-term recall of CVR. Icon arrays will not necessarily result in better understanding and recall of medical risk in all patients. Published by Elsevier Ireland Ltd.
SCARLET Photovoltaic Concentrator Array Selected for Flight Under NASA's New Millennium Program
NASA Technical Reports Server (NTRS)
Piszczor, Michael F., Jr.
1997-01-01
The NASA Lewis Research Center continues to demonstrate its expertise in the development and implementation of advanced space power systems. For example, during the past year, the NASA New Millennium Program selected the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) photovoltaic array as the power system for its Deep Space-1 (DS-1) mission. This Jet Propulsion Laboratory (JPL) managed DS-1 mission, which represents the first operational flight of a photovoltaic concentrator array, will provide a baseline for the use of this technology in a variety of future government and commercial applications. SCARLET is a joint NASA Lewis/Ballistic Missile Defense Organization program to develop advanced photovoltaic array technology that uses a unique refractive concentrator design to focus sunlight onto a line of photovoltaic cells located below the optical element. The general concept is based on previous work conducted at Lewis under a Small Business Innovation Research (SBIR) contract with AEC-Able Engineering, Inc., for the Multiple Experiments to Earth Orbit and Return (METEOR) spacecraft. The SCARLET II design selected by the New Millennium Program is a direct adaptation of the smaller SCARLET I array built for METEOR. Even though SCARLET I was lost during a launch failure in October 1995, the hardware (designed, built, and flight qualified within 6 months) provided invaluable information and experience that led to the selection of this technology as the primary power source for DS-1.
Observation of Multi-TeV Gamma Rays from the Crab Nebula using the Tibet Air Shower Array.
Amenomori; Ayabe; Cao; Danzengluobu; Ding; Feng; Fu; Guo; He; Hibino; Hotta; Huang; Huo; Izu; Jia; Kajino; Kasahara; Katayose; Labaciren; Li; Lu; Lu; Luo; Meng; Mizutani; Mu; Nanjo; Nishizawa; Ohnishi; Ohta; Ouchi; Ren; Saito; Sakata; Sasaki; Shi; Shibata; Shiomi; Shirai; Sugimoto; Taira; Tan; Tateyama; Torii; Utsugi; Wang; Wang; Xu; Yamamoto; Yu; Yuan; Yuda; Zhang; Zhang; Zhang; Zhang; Zhang; Zhaxisangzhu; Zhaxiciren; Zhou; Collaboration)
1999-11-10
The Tibet experiment, operating at Yangbajing (4300 m above sea level), is the lowest energy air shower array, and the new high-density array constructed in 1996 is sensitive to gamma-ray air showers at energies as low as 3 TeV. With this new array, the Crab Nebula was observed in multi-TeV gamma-rays and a signal was detected at the 5.5 sigma level. We also obtained the energy spectrum of gamma-rays in the energy region above 3 TeV which partially overlaps those observed with imaging atmospheric Cerenkov telescopes. The Crab spectrum observed in this energy region can be represented by the power-law fit dJ&parl0;E&parr0;&solm0;dE=&parl0;4.61+/-0.90&parr0;x10-12&parl0;E&solm0;3 TeV&parr0;-2.62+/-0.17 cm-2 s-1 TeV-1. This is the first observation of gamma-ray signals from point sources with a conventional air shower array using scintillation detectors.
Spaced-antenna wind estimation using an X-band active phased-array weather radar
NASA Astrophysics Data System (ADS)
Venkatesh, Vijay
Over the past few decades, several single radar methods have been developed to probe the kinematic structure of storms. All these methods trade angular-resolution to retrieve the wind-field. To date, the spaced-antenna method has been employed for profiling the ionosphere and the precipitation free lower atmosphere. This work focuses on applying the spaced-antenna method on an X-band active phased-array radar for high resolution horizontal wind-field retrieval from precipitation echoes. The ability to segment the array face into multiple displaced apertures allows for flexible spaced-antenna implementations. The methodology employed herein comprises of Monte-Carlo simulations to optimize the spaced-antenna system design and analysis of real data collected with the designed phased-array system. The contribution that underpins this dissertation is the demonstration of qualitative agreement between spaced-antenna and Doppler beam swinging retrievals based on real data. First, simulations of backscattered electric fields at the antenna array elements are validated using theoretical expressions. Based on the simulations, the degrees of freedom in the spaced-antenna system design are optimized for retrieval of mean baseline wind. We show that the designed X-band spaced-antenna system has lower retrieval uncertainty than the existing S-band spaced-antenna implementation on the NWRT. This is because of the flexibility to synthesize small overlapping apertures and the ability to obtain statistically independent samples at a faster rate at X-band. We then demonstrate a technique to make relative phase-center displacement measurements based on simulations and real data from the phased-array spaced-antenna system. This simple method uses statistics of precipitation echoes and apriori beamwidth measurements to make field repeatable phase-center displacement measurements. Finally, we test the hypothesis that wind-field curvature effects are common to both the spaced-antenna and Doppler beam swinging methods. Based on a close-range winter storm data set, we find that the spaced-antenna and fine-resolution Doppler beam swinging retrievals are in qualitative agreement. The correlation between the spaced-antenna and fine-resolution Doppler beam swinging retrievals was 0.57. The lowered correlation coefficient was, in part, due to the high standard deviation of the DBS retrievals. At high wind-speeds, the spaced-antenna retrievals significantly departed from variational retrievals of mean baseline wind.
Holland, Wayne S.; Zmuidzinas, Jonas; Posada, Chrystian M.; ...
2016-07-19
Now, detectors for cosmic microwave background (CMB) experiments are background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. We present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonalmore » polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES's T-c is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Our results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from these research and development wafers have been incorporated into the fabrication process to get the baseline fabrication process presented here. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, Wayne S.; Zmuidzinas, Jonas; Posada, Chrystian M.
Now, detectors for cosmic microwave background (CMB) experiments are background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. We present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonalmore » polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES's T-c is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Our results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from these research and development wafers have been incorporated into the fabrication process to get the baseline fabrication process presented here. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016.« less
NASA Astrophysics Data System (ADS)
Posada, Chrystian M.; Ade, Peter A. R.; Anderson, Adam J.; Avva, Jessica; Ahmed, Zeeshan; Arnold, Kam S.; Austermann, Jason; Bender, Amy N.; Benson, Bradford A.; Bleem, Lindsey; Byrum, Karen; Carlstrom, John E.; Carter, Faustin W.; Chang, Clarence; Cho, Hsiao-Mei; Cukierman, Ari; Czaplewski, David A.; Ding, Junjia; Divan, Ralu N. S.; de Haan, Tijmen; Dobbs, Matt; Dutcher, Daniel; Everett, Wenderline; Gannon, Renae N.; Guyser, Robert J.; Halverson, Nils W.; Harrington, Nicholas L.; Hattori, Kaori; Henning, Jason W.; Hilton, Gene C.; Holzapfel, William L.; Huang, Nicholas; Irwin, Kent D.; Jeong, Oliver; Khaire, Trupti; Korman, Milo; Kubik, Donna L.; Kuo, Chao-Lin; Lee, Adrian T.; Leitch, Erik M.; Lendinez Escudero, Sergi; Meyer, Stephan S.; Miller, Christina S.; Montgomery, Joshua; Nadolski, Andrew; Natoli, Tyler J.; Nguyen, Hogan; Novosad, Valentyn; Padin, Stephen; Pan, Zhaodi; Pearson, John E.; Rahlin, Alexandra; Reichardt, Christian L.; Ruhl, John E.; Saliwanchik, Benjamin; Shirley, Ian; Sayre, James T.; Shariff, Jamil A.; Shirokoff, Erik D.; Stan, Liliana; Stark, Antony A.; Sobrin, Joshua; Story, Kyle; Suzuki, Aritoki; Tang, Qing Yang; Thakur, Ritoban B.; Thompson, Keith L.; Tucker, Carole E.; Vanderlinde, Keith; Vieira, Joaquin D.; Wang, Gensheng; Whitehorn, Nathan; Yefremenko, Volodymyr; Yoon, Ki Won
2016-07-01
Detectors for cosmic microwave background (CMB) experiments are now essentially background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. Here, we present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonal polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES's Tc is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from these research and development wafers have been incorporated into the fabrication process to get the baseline fabrication process presented here. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016.
Array analysis of electromagnetic radiation from radio transmitters for submarine communication
NASA Astrophysics Data System (ADS)
Füllekrug, Martin; Mezentsev, Andrew; Watson, Robert; Gaffet, Stéphane; Astin, Ivan; Evans, Adrian
2014-12-01
The array analyses used for seismic and infrasound research are adapted and applied here to the electromagnetic radiation from radio transmitters for submarine communication. It is found that the array analysis enables a determination of the slowness and the arrival azimuth of the wave number vectors associated with the electromagnetic radiation. The array analysis is applied to measurements of ˜20-24 kHz radio waves from transmitters for submarine communication with an array of 10 radio receivers distributed over an area of ˜1 km ×1 km. The observed slowness of the observed wave number vectors range from ˜2.7 ns/m to ˜4.1 ns/m, and the deviations between the expected arrival azimuths and the observed arrival azimuths range from ˜-9.7° to ˜14.5°. The experimental results suggest that it is possible to determine the locations of radio sources from transient luminous events above thunderclouds with an array of radio receivers toward detailed investigations of the electromagnetic radiation from sprites.
Large Torque Variations in Two Soft Gamma Repeaters
NASA Technical Reports Server (NTRS)
Woods, Peter M.; Kouveliotou, Chryssa; Gogus, Ersin; Finger, Mark H.; Swank, Jean; Markwardt, Craig B.; Hurley, Kevin; vanderKlis, Michiel; Six, N. Frank (Technical Monitor)
2001-01-01
We have monitored the pulse frequencies of the two soft gamma repeaters SGR 1806-20 and SGR 1900+14 through the beginning of year 2001 using primarily Rossi X-ray Timing Explorer Proportional Counter Array observations. In both sources, we observe large changes in the spin-down torque up to a factor of approximately 4, which persist for several months. Using long baseline phase-connected timing solutions as well as the overall frequency histories, we construct torque noise power spectra for each SGR. The power spectrum of each source is very red (power-law slope approximately -3.5). These power spectra are consistent in normalization with some accreting systems, yet much steeper in slope than any known accreting source. To the best of our knowledge, torque noise power spectra with a comparably steep frequency dependence have only been seen in young, glitching radio pulsars (e.g. Vela). The observed changes in spin-down rate do not correlate with burst activity, therefore, the physical mechanisms behind each phenomenon are also likely unrelated. Within the context of the magnetar model, seismic activity cannot account for both the bursts and the long-term torque changes unless the seismically active regions are decoupled from one another.
Extended Duration Nocturnal Hemodialysis and Changes in Plasma Metabolite Profiles.
Kalim, Sahir; Wald, Ron; Yan, Andrew T; Goldstein, Marc B; Kiaii, Mercedeh; Xu, Dihua; Berg, Anders H; Clish, Clary; Thadhani, Ravi; Rhee, Eugene P; Perl, Jeffrey
2018-03-07
In-center, extended duration nocturnal hemodialysis has been associated with variable clinical benefits, but the effect of extended duration hemodialysis on many established uremic solutes and other components of the metabolome is unknown. We determined the magnitude of change in metabolite profiles for patients on extended duration nocturnal hemodialysis. In a 52-week prospective, observational study, we followed 33 patients receiving conventional thrice weekly hemodialysis who converted to nocturnal hemodialysis (7-8 hours per session, three times per week). A separate group of 20 patients who remained on conventional hemodialysis (3-4 hours per session, three times per week) served as a control group. For both groups, we applied liquid chromatography-mass spectrometry-based metabolite profiling on stored plasma samples collected from all participants at baseline and after 1 year. We examined longitudinal changes in 164 metabolites among those who remained on conventional hemodialysis and those who converted to nocturnal hemodialysis using Wilcoxon rank sum tests adjusted for multiple comparisons (false discovery rate <0.05). On average, the nocturnal group had 9.6 hours more dialysis per week than the conventional group. Among 164 metabolites, none changed significantly from baseline to study end in the conventional group. Twenty-nine metabolites changed in the nocturnal group, 21 of which increased from baseline to study end (including all branched-chain amino acids). Eight metabolites decreased after conversion to nocturnal dialysis, including l-carnitine and acetylcarnitine. By contrast, several established uremic retention solutes, including p -cresol sulfate, indoxyl sulfate, and trimethylamine N -oxide, did not change with extended dialysis. Across a wide array of metabolites examined, extended duration hemodialysis was associated with modest changes in the plasma metabolome, with most differences relating to metabolite increases, despite increased dialysis time. Few metabolites showed reduction with more dialysis, and no change in several established uremic toxins was observed. Copyright © 2018 by the American Society of Nephrology.
NASA Astrophysics Data System (ADS)
Maud, L. T.; Tilanus, R. P. J.; van Kempen, T. A.; Hogerheijde, M. R.; Schmalzl, M.; Yoon, I.; Contreras, Y.; Toribio, M. C.; Asaki, Y.; Dent, W. R. F.; Fomalont, E.; Matsushita, S.
2017-09-01
The Atacama Large millimetre/submillimetre Array (ALMA) makes use of water vapour radiometers (WVR), which monitor the atmospheric water vapour line at 183 GHz along the line of sight above each antenna to correct for phase delays introduced by the wet component of the troposphere. The application of WVR derived phase corrections improve the image quality and facilitate successful observations in weather conditions that were classically marginal or poor. We present work to indicate that a scaling factor applied to the WVR solutions can act to further improve the phase stability and image quality of ALMA data. We find reduced phase noise statistics for 62 out of 75 datasets from the long-baseline science verification campaign after a WVR scaling factor is applied. The improvement of phase noise translates to an expected coherence improvement in 39 datasets. When imaging the bandpass source, we find 33 of the 39 datasets show an improvement in the signal-to-noise ratio (S/N) between a few to 30 percent. There are 23 datasets where the S/N of the science image is improved: 6 by <1%, 11 between 1 and 5%, and 6 above 5%. The higher frequencies studied (band 6 and band 7) are those most improved, specifically datasets with low precipitable water vapour (PWV), <1 mm, where the dominance of the wet component is reduced. Although these improvements are not profound, phase stability improvements via the WVR scaling factor come into play for the higher frequency (>450 GHz) and long-baseline (>5 km) observations. These inherently have poorer phase stability and are taken in low PWV (<1 mm) conditions for which we find the scaling to be most effective. A promising explanation for the scaling factor is the mixing of dry and wet air components, although other origins are discussed. We have produced a python code to allow ALMA users to undertake WVR scaling tests and make improvements to their data.
The End of Cassini: Final VLBA Astrometry Epochs to Improve the Saturn Ephemeris
NASA Astrophysics Data System (ADS)
Jones, Dayton; Folkner, William M.; Romney, Jonathan D.; Dhawan, Vivek
2018-01-01
During the past dozen years we have used the Very Long Baseline Array (VLBA) to measure the position of the Cassini spacecraft in orbit around Saturn. These data, combined with fits of Cassini’s orbit with respect to Saturn from Deep Space Network tracking, have provided a time series of positions for the Saturn system barycenter in the inertial International Celestial Reference Frame (ICRF). We we report results from the final observing epochs of this program obtained prior to Cassini’s intentional destruction in the atmosphere of Saturn in September 2017. We now know Saturn’s orbit to approximately 0.2 mas (1 nrad), nearly two orders of magnitude better than it was know before the Cassini mission. Our VLBA positions provide the best constraints on the orientation of Saturn’s orbit (inclination and longitude of ascending node), while ranging data provide the best constraints on the orbit semi-major axis and eccentricity. This work has been partially supported by a grant from the NASA Planetary Astronomy program to the Space Science Institute, Boulder, CO. Part of this work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The Long Baseline Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
NASA Technical Reports Server (NTRS)
Leisawitz, D,; Baker, G.; Barger, A.; Benford, D.; Blain, A; Boyle, R.; Broderick, R.; Budinoff, J.; Carpenter, J.; Caverly, R.;
2007-01-01
We report results of a recently-completed study of SPIRIT, a candidate NASA Origins Probe. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their chemical organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets form, and why some planets are ice giants and others are rocky; and (3) Learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. Observations with SPIRIT will be complementary to those of the James Webb Space Telescope and the ground-based Atacama Large Millimeter Array. All three observatories could be operational contemporaneously. SPIRIT will pave the way to the 1 km maximum baseline interferometer known as the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS). In addition to the SPIRIT mission concept, this talk will emphasize the importance of dense u-v plane coverage and describe some of the practical considerations associated with alternative interferometric baseline sampling schemes.
Determining dynamical parameters of the Milky Way Galaxy based on high-accuracy radio astrometry
NASA Astrophysics Data System (ADS)
Honma, Mareki; Nagayama, Takumi; Sakai, Nobuyuki
2015-08-01
In this paper we evaluate how the dynamical structure of the Galaxy can be constrained by high-accuracy VLBI (Very Long Baseline Interferometry) astrometry such as VERA (VLBI Exploration of Radio Astrometry). We generate simulated samples of maser sources which follow the gas motion caused by a spiral or bar potential, with their distribution similar to those currently observed with VERA and VLBA (Very Long Baseline Array). We apply the Markov chain Monte Carlo analyses to the simulated sample sources to determine the dynamical parameter of the models. We show that one can successfully determine the initial model parameters if astrometric results are obtained for a few hundred sources with currently achieved astrometric accuracy. If astrometric data are available from 500 sources, the expected accuracy of R0 and Θ0 is ˜ 1% or higher, and parameters related to the spiral structure can be constrained by an error of 10% or with higher accuracy. We also show that the parameter determination accuracy is basically independent of the locations of resonances such as corotation and/or inner/outer Lindblad resonances. We also discuss the possibility of model selection based on the Bayesian information criterion (BIC), and demonstrate that BIC can be used to discriminate different dynamical models of the Galaxy.
NASA Technical Reports Server (NTRS)
Green, Nelson W.; Dawson, Stephen F.
2015-01-01
NASA is currently considering a mission to investigate the moons of Jupiter. When designing a spacecraft for this type of mission, there are a number of engineering challenges, especially if the mission chooses to utilize solar arrays to provide the spacecraft power. In order for solar arrays to be feasible for the mission, their total mass needed to fit within the total budget for the mission, which strongly suggested the use of carbon composite facesheets on an aluminum core for the panel structure. While these composite structures are a good functional substitution for the metallic materials they replace, they present unique challenges when interacting with the harsh Jovian space environment. As a composite material, they are composed of more than one material and can show different base properties depending in differing conditions. Looking at the electrical properties, in an Earth-based environment the carbon component of the composite dominates the response of the material to external stimulus. Under these conditions, the structures strongly resembles a conductor. In the Jovian environment, with temperatures reaching 50K and under the bombardment from energetic electrons, the non-conducting pre-preg binding materials may come to the forefront and change the perceived response. Before selecting solar arrays as the baseline power source for a mission to Jupiter, the response of the carbon composites to energetic electrons while held at cryogenic temperatures needed to be determined. A series of tests were devised to exam the response of a sample solar array panel composed of an M55J carbon weave layup with an RS-3 pre-preg binder. Test coupons were fabricated and exposed to electrons ranging from 10 keV to 100 keV, at 1 nA/cm2, while being held at cryogenic temperatures. While under electron bombardment, electrical discharges were observed and recorded with the majority of discharges occurring with electron energies of 25 keV. A decrease in temperature to liquid nitrogen temperatures showed a marked increase in the magnitude of these discharges. The results indicate that dielectric discharges are primarily produced due to the presence of large regions of the non-conductive pre-preg on the surface of the carbon sheets. The frequency and magnitude of discharges decreased when layers of the pre-preg material were removed from the composite surface. These tests indicate that solar array panels may be used in the Jovian environment, but that electrostatic discharges can be expected on the carbon composite solar arrays.
NASA Technical Reports Server (NTRS)
Tanner, Alan B.; Wilson, William J.; Lambrigsten, Bjorn H.; Dinardo, Steven J.; Brown, Shannon T.; Kangaslahti, Pekka P.; Gaier, Todd C.; Ruf, C. S.; Gross, S. M.; Lim, B. H.;
2006-01-01
The design, error budget, and preliminary test results of a 50-56 GHz synthetic aperture radiometer demonstration system are presented. The instrument consists of a fixed 24-element array of correlation interferometers, and is capable of producing calibrated images with 0.8 degree spatial resolution within a 17 degree wide field of view. This system has been built to demonstrate performance and a design which can be scaled to a much larger geostationary earth imager. As a baseline, such a system would consist of about 300 elements, and would be capable of providing contiguous, full hemispheric images of the earth with 1 Kelvin of radiometric precision and 50 km spatial resolution.
Observing the Sun with micro-interferometric devices: a didactic experiment
NASA Astrophysics Data System (ADS)
Defrère, D.; Absil, O.; Hanot, C.; Riaud, P.; Magette, A.; Marion, L.; Wertz, O.; Finet, F.; Steenackers, M.; Habraken, S.; Surdej, A.; Surdej, J.
2014-04-01
Measuring the angular diameter of celestial bodies has long been the main purpose of stellar interferometry and was its historical motivation. Nowadays, stellar interferometry is widely used for various other scientific purposes that require very high angular resolution measurements. In terms of angular spatial scales probed, observing distant stars located 10 to 100~pc away with a large hectometric interferometer is equivalent to observing our Sun with a micrometric baseline. Based on this idea, we have manufactured a set of micro-interferometric devices and tested them on the sky. The micro-interferometers consist of a chrome layer deposited on a glass plate that has been drilled by laser lithography to produce micron-sized holes with configurations corresponding to proposed interferometer projects such as CARLINA, ELSA, KEOPS, and OVLA. In this paper, we describe these interferometric devices and present interferometric observations of the Sun made in the framework of Astrophysics lectures being taught at the Liège University. By means of a simple photographic camera placed behind a micro-interferometric device, we observed the Sun and derived its angular size. This experiment provides a very didactic way to easily obtain fringe patterns similar to those that will be obtained with future large imaging arrays. A program written in C also allows to reproduce the various point spread functions and fringe patterns observed with the micro-interferometric devices for different types of sources, including the Sun.
An Overview of Geodetic and Astrometric VLBI at the Hartebeesthoek Radio Astronomy Observatory
NASA Astrophysics Data System (ADS)
de Witt, A.; Gaylard, M.; Quick, J.; Combrinck, L.
2013-08-01
For astronomical Very Long Baseline Interferometry (VLBI), the Hartebeesthoek Radio Astronomy Observatory (HartRAO), in South Africa operates as part of a number of networks including the European and Australian VLBI networks, global arrays and also space VLBI. HartRAO is the only African representative in the international geodetic VLBI network and participates in regular astrometric and geodetic VLBI programmes. HartRAO will play a major role in the realization of the next generation full-sky celestial reference frame, especially the improvement of the celestial reference frame in the South. The observatory also provides a base for developing the African VLBI Network (AVN), a project to convert redundant satellite Earth-station antennas across Africa to use for radio astronomy. The AVN would greatly facilitate VLBI observations of southern objects. We present an overview of the current capabilities as well as future opportunities for astrometric and geodetic VLBI at HartRAO.
Behavioral Response of Reef Fish and Green Sea Turtles to Midfrequency Sonar.
Watwood, Stephanie L; Iafrate, Joseph D; Reyier, Eric A; Redfoot, William E
2016-01-01
There is growing concern over the potential effects of high-intensity sonar on wild fish populations and commercial fisheries. Acoustic telemetry was employed to measure the movements of free-ranging reef fish and sea turtles in Port Canaveral, FL, in response to routine submarine sonar testing. Twenty-five sheepshead (Archosargus probatocephalus), 28 gray snapper (Lutjanus griseus), and 29 green sea turtles (Chelonia mydas) were tagged, with movements monitored for a period of up to 4 months using an array of passive acoustic receivers. Baseline residency was examined for fish and sea turtles before, during, and after the test event. No mortality of tagged fish or sea turtles was evident from the sonar test event. There was a significant increase in the daily residency index for both sheepshead and gray snapper at the testing wharf subsequent to the event. No broad-scale movement from the study site was observed during or immediately after the test.
Linear Polarization Properties of Parsec-Scale AGN Jets
NASA Astrophysics Data System (ADS)
Pushkarev, Alexander; Kovalev, Yuri; Lister, Matthew; Savolainen, Tuomas; Aller, Margo; Aller, Hugh; Hodge, Mary
2017-12-01
We used 15 GHz multi-epoch Very Long Baseline Array (VLBA) polarization sensitive observations of 484 sources within a time interval 1996--2016 from the MOJAVE program, and also from the NRAO data archive. We have analyzed the linear polarization characteristics of the compact core features and regions downstream, and their changes along and across the parsec-scale active galactic nuclei (AGN) jets. We detected a significant increase of fractional polarization with distance from the radio core along the jet as well as towards the jet edges. Compared to quasars, BL Lacs have a higher degree of polarization and exhibit more stable electric vector position angles (EVPAs) in their core features and a better alignment of the EVPAs with the local jet direction. The latter is accompanied by a higher degree of linear polarization, suggesting that compact bright jet features might be strong transverse shocks, which enhance magnetic field regularity by compression.
NASA Astrophysics Data System (ADS)
Salmon, Neil A.; Mason, Ian; Wilkinson, Peter; Taylor, Chris; Scicluna, Peter
2010-10-01
The first passive millimetre wave (PMMW) imagery is presented from two proof-of-concept aperture synthesis demonstrators, developed to investigate the use of aperture synthesis for personnel security screening and all weather flying at 94 GHz, and satellite based earth observation at 183 GHz [1]. Emission from point noise sources and discharge tubes are used to examine the coherence on system baselines and to measure the point spread functions, making comparisons with theory. Image quality is examined using near field aperture synthesis and G-matrix calibration imaging algorithms. The radiometric sensitivity is measured using the emission from absorbers at elevated temperatures acting as extended sources and compared with theory. Capabilities of the latest Field Programmable Gate Arrays (FPGA) technologies for aperture synthesis PMMW imaging in all-weather and security screening applications are examined.
PRIMA: study for a dual-beam instrument for the VLT Interferometer
NASA Astrophysics Data System (ADS)
Quirrenbach, Andreas; Coudé du Foresto, Vincent; Daigne, Gerard; Hofmann, Karl H.; Hofmann, Reiner; Lattanzi, Mario; Osterbart, R.; Le Poole, Rudolf S.; Queloz, Didier; Vakili, Farrokh
1998-07-01
PRIMA is a conceptual study for a single-baseline dual-feed instrument for the very large telescope interferometer, which is under construction by the European Southern Observatory on Cerro Paranal in Chile. The goals of PRIMA include narrow-angle astrometry with a precision of 10 (mu) as over an arc of 10 inches, and imaging of faint sources with the full sensitivity of the 8m telescopes in the VLT array. Key scientific programs that can be carried out with PRIMA in imaging mode include observations of active galactic nuclei, the Galactic Center, stars, and circumstellar matter. Scientific drivers for the astrometry are searches for planets and low-mass stellar companions, binary stars, dynamics of clusters, and parallaxes. We list the main performance requirements for PRIMA, present system architectures for the dual-beam system, and discuss limitations of the interferometric field-of-view.
Hanford Site Raptor Nest Monitoring Report for Calendar Year 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nugent, John J.; Lindsey, Cole T.; Wilde, Justin W.
2014-02-13
The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and othermore » entities conducting activities on the Hanford Site are in compliance with NEPA. The Hanford Site supports a large and diverse community of raptorial birds (Fitzner et al. 1981), with 26 species of raptors observed on the Hanford Site.« less
NASA Astrophysics Data System (ADS)
Shen, Zqs
Sagittarius A* (Sgr A*), the extremely compact radio source at the Galactic center (GC), is the best candidate for the single super-massive black hole (SMBH). The accurate measurements of its mass (as a gravitational source) and size (as a radiative source) are of great importance in testing its SMBH hypothesis. Great progress has been made on determining its central dark mass of 3.7 million solar masses. Here, we will present the highest resolution VLBI imaging observations of Sgr A* made at both 7.0 and 3.5 millimeters with the Very Long Baseline Array (VLBA) plus the Green Bank Telescope (GBT) and the VLBA, respectively. Both the imaging and the model-fitting with the closure amplitudes show a consistent East-West elongated elliptical Gaussian emission. The inferred possible intrinsic emitting region is less than 1 AU at the distance of 8 kpc to GC.
Kuusela, Jukka; Larsson, Kim; Shah, Disheet; Prajapati, Chandra; Aalto-Setälä, Katriina
2017-06-15
Long QT syndrome (LQTS) is characterized by a prolonged QT-interval on electrocardiogram and by increased risk of sudden death. One of the most common and potentially life-threatening electrolyte disturbances is hypokalemia, characterized by low concentrations of K + Using a multielectrode array platform and current clamp technique, we investigated the effect of low extracellular K + concentration ([K + ] Ex ) on the electrophysiological properties of hiPSC-derived cardiomyocytes (CMs) generated from a healthy control subject (WT) and from two symptomatic patients with type 1 of LQTS carrying G589D (LQT1A) or IVS7-2A>G mutation (LQT1B) in KCNQ1 The baseline prolongations of field potential durations (FPDs) and action potential durations (APDs) were longer in LQT1-CMs than in WT-CMs. Exposure to low [K + ] Ex prolonged FPDs and APDs in a concentration-dependent fashion. LQT1-CMs were found to be more sensitive to low [K + ] Ex compared to WT-CMs. At baseline, LQT1A-CMs had more prolonged APDs than LQT1B-CMs, but low [K + ] Ex caused more pronounced APD prolongation in LQT1B-CMs. Early afterdepolarizations in the action potentials were observed in a subset of LQT1A-CMs with further prolonged baseline APDs and triangular phase 2 profiles. This work demonstrates that the hiPSC-derived CMs are sensitive to low [K + ] Ex and provide a platform to study acquired LQTS. © 2017. Published by The Company of Biologists Ltd.
Wide-bandwidth high-resolution search for extraterrestrial intelligence
NASA Technical Reports Server (NTRS)
Horowitz, Paul
1995-01-01
Research was accomplished during the third year of the grant on: BETA architecture, an FFT array, a feature extractor, the Pentium array and workstation, and a radio astronomy spectrometer. The BETA (this SETI project) system architecture has been evolving generally in the direction of greater robustness against terrestrial interference. The new design adds a powerful state-memory feature, multiple simultaneous thresholds, and the ability to integrate multiple spectra in a flexible state-machine architecture. The FFT array is reported with regards to its hardware verification, array production, and control. The feature extractor is responsible for maintaining a moving baseline, recognizing large spectral peaks, following the progress of previously identified interesting spectral regions, and blocking signals from regions previously identified as containing interference. The Pentium array consists of 21 Pentium-based PC motherboards, each with 16 MByte of RAM and an Ethernet interface. Each motherboard receives and processes the data from a feature extractor/correlator board set, passing on the results of a first analysis to the central Unix workstation (through which each is also booted). The radio astronomy spectrometer is a technological spinoff from SETI work. It is proposed to be a combined spectrometer and power-accumulator, for use at Arecibo Observatory to search for neutral hydrogen emission from condensations of neutral hydrogen at high redshift (z = 5).
Zeng, Lili; Wang, Dongxiao; Chen, Ju; Wang, Weiqiang; Chen, Rongyu
2016-04-26
In addition to the oceanographic data available for the South China Sea (SCS) from the World Ocean Database (WOD) and Array for Real-time Geostrophic Oceanography (Argo) floats, a suite of observations has been made by the South China Sea Institute of Oceanology (SCSIO) starting from the 1970s. Here, we assemble a SCS Physical Oceanographic Dataset (SCSPOD14) based on 51,392 validated temperature and salinity profiles collected from these three datasets for the period 1919-2014. A gridded dataset of climatological monthly mean temperature, salinity, and mixed and isothermal layer depth derived from an objective analysis of profiles is also presented. Comparisons with the World Ocean Atlas (WOA) and IFREMER/LOS Mixed Layer Depth Climatology confirm the reliability of the new dataset. This unique dataset offers an invaluable baseline perspective on the thermodynamic processes, spatial and temporal variability of water masses, and basin-scale and mesoscale oceanic structures in the SCS. We anticipate improvements and regular updates to this product as more observations become available from existing and future in situ networks.
NASA Technical Reports Server (NTRS)
Resch, G. M.; Hogg, D. E.; Napier, P. J.
1984-01-01
To support very long baseline interferometric experiments, a system has been developed for estimating atmospheric water vapor path delay. The system consists of dual microwave radiometers, one operating at 20.7 GHz and the other at 31.4 GHz. The measured atmospheric brightness temperatures at these two frequencies yield the estimate of the precipitable water present in both vapor and droplets. To determine the accuracy of the system, a series of observations were undertaken, comparing the outputs of two water vapor radiometers with the phase variation observed with two connected elements of the very large array (VLA). The results show that: (1) water vapor fluctuations dominate the residual VLA phase and (2) the microwave radiometers can measure and correct these effects. The rms phase error after correction is typically 15 deg at a wavelength of 6 cm, corresponding to an uncertainty in the path delay of 0.25 cm. The residual uncertainty is consistent with the stability of the microwave radiometer but is still considerably larger than the stability of the VLA. The technique is less successful under conditions of heavy cloud.
Zeng, Lili; Wang, Dongxiao; Chen, Ju; Wang, Weiqiang; Chen, Rongyu
2016-01-01
In addition to the oceanographic data available for the South China Sea (SCS) from the World Ocean Database (WOD) and Array for Real-time Geostrophic Oceanography (Argo) floats, a suite of observations has been made by the South China Sea Institute of Oceanology (SCSIO) starting from the 1970s. Here, we assemble a SCS Physical Oceanographic Dataset (SCSPOD14) based on 51,392 validated temperature and salinity profiles collected from these three datasets for the period 1919–2014. A gridded dataset of climatological monthly mean temperature, salinity, and mixed and isothermal layer depth derived from an objective analysis of profiles is also presented. Comparisons with the World Ocean Atlas (WOA) and IFREMER/LOS Mixed Layer Depth Climatology confirm the reliability of the new dataset. This unique dataset offers an invaluable baseline perspective on the thermodynamic processes, spatial and temporal variability of water masses, and basin-scale and mesoscale oceanic structures in the SCS. We anticipate improvements and regular updates to this product as more observations become available from existing and future in situ networks. PMID:27116565
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deller, A. T.; Archibald, A. M.; Kaspi, V. M.
The recently discovered transitional millisecond pulsar system J1023+0038 exposes a crucial evolutionary phase of recycled neutron stars for multiwavelength study. The system, comprising the neutron star itself, its stellar companion, and the surrounding medium, is visible across the electromagnetic spectrum from the radio to X-ray/gamma-ray regimes and offers insight into the recycling phase of millisecond pulsar evolution. Here, we report on multiple-epoch astrometric observations with the Very Long Baseline Array (VLBA) which give a system parallax of 0.731 {+-} 0.022 milliarcseconds (mas) and a proper motion of 17.98 {+-} 0.05 mas yr{sup -1}. By combining our results with previous opticalmore » observations, we are able to use the parallax distance of 1368{sup +42}{sub -{sub 39}} pc to estimate the mass of the pulsar to be 1.71 {+-} 0.16 M{sub Sun }, and we are also able to measure the three-dimensional space velocity of the system to be 126 {+-} 5 km s{sup -1}. Despite the precise nature of the VLBA measurements, the remaining {approx}3% distance uncertainty dominates the 0.16 M{sub Sun} error on our mass estimate.« less
The radio structure of the peculiar narrow-line Seyfert 1 galaxy candidate J1100+4421
NASA Astrophysics Data System (ADS)
Gabányi, K. É.; Frey, S.; Paragi, Z.; Järvelä, E.; Morokuma, T.; An, T.; Tanaka, M.; Tar, I.
2018-01-01
Narrow-line Seyfert 1 galaxies (NLS1) are an intriguing subclass of active galactic nuclei. Their observed properties indicate low central black hole mass and high accretion rate. The extremely radio-loud NLS1 sources often show relativistic beaming and are usually regarded as younger counterparts of blazars. Recently, the object SDSS J110006.07+442144.3 was reported as a candidate NLS1 source. The characteristics of its dramatic optical flare indicated its jet-related origin. The spectral energy distribution of the object was similar to that of the γ-ray detected radio-loud NLS1, PMN J0948+0022. Our high-resolution European very long baseline interferometry network observations at 1.7 and 5 GHz revealed a compact core feature with a brightness temperature of ≳1010 K. Using the lowest brightness temperature value and assuming a moderate Lorentz factor of ∼9, the jet viewing angle is ≲26°. Archival Very Large Array data show a large-scale radio structure with a projected linear size of ∼150 kpc reminiscent of double-sided morphology.
Reduced-Rank Array Modes of the California Current Observing System
NASA Astrophysics Data System (ADS)
Moore, Andrew M.; Arango, Hernan G.; Edwards, Christopher A.
2018-01-01
The information content of the ocean observing array spanning the U.S. west coast is explored using the reduced-rank array modes (RAMs) derived from a four-dimensional variational (4D-Var) data assimilation system covering a period of three decades. RAMs are an extension of the original formulation of array modes introduced by Bennett (1985) but in the reduced model state-space explored by the 4D-Var system, and reveal the extent to which this space is activated by the observations. The projection of the RAMs onto the empirical orthogonal functions (EOFs) of the 4D-Var background error correlation matrix provides a quantitative measure of the effectiveness of the measurements in observing the circulation. It is found that much of the space spanned by the background error covariance is unconstrained by the present ocean observing system. The RAM spectrum is also used to introduce a new criterion to prevent 4D-Var from overfitting the model to the observations.
Assessment study of infrared detector arrays for low-background astronomical research
NASA Technical Reports Server (NTRS)
Ando, K. J.
1978-01-01
The current state-of-the-art of infrared detector arrays employing charge coupled devices (CCD) or charge injection devices (CID) readout are assessed. The applicability, limitations and potentials of such arrays under the low-background astronomical observing conditions of interest for SIRFT (Shuttle Infrared Telescope Facility) are determined. The following are reviewed: (1) monolithic extrinsic arrays; (2) monolithic intrinsic arrays; (3) charge injection devices; and (4) hybrid arrays.
Wide-Field Imaging Interferometry Spatial-Spectral Image Synthesis Algorithms
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Leisawitz, David T.; Rinehart, Stephen A.; Memarsadeghi, Nargess; Sinukoff, Evan J.
2012-01-01
Developed is an algorithmic approach for wide field of view interferometric spatial-spectral image synthesis. The data collected from the interferometer consists of a set of double-Fourier image data cubes, one cube per baseline. These cubes are each three-dimensional consisting of arrays of two-dimensional detector counts versus delay line position. For each baseline a moving delay line allows collection of a large set of interferograms over the 2D wide field detector grid; one sampled interferogram per detector pixel per baseline. This aggregate set of interferograms, is algorithmically processed to construct a single spatial-spectral cube with angular resolution approaching the ratio of the wavelength to longest baseline. The wide field imaging is accomplished by insuring that the range of motion of the delay line encompasses the zero optical path difference fringe for each detector pixel in the desired field-of-view. Each baseline cube is incoherent relative to all other baseline cubes and thus has only phase information relative to itself. This lost phase information is recovered by having point, or otherwise known, sources within the field-of-view. The reference source phase is known and utilized as a constraint to recover the coherent phase relation between the baseline cubes and is key to the image synthesis. Described will be the mathematical formalism, with phase referencing and results will be shown using data collected from NASA/GSFC Wide-Field Imaging Interferometry Testbed (WIIT).
Acoustic Measurements of a Large Civil Transport Main Landing Gear Model
NASA Technical Reports Server (NTRS)
Ravetta, Patricio A.; Khorrami, Mehdi R.; Burdisso, Ricardo A.; Wisda, David M.
2016-01-01
Microphone phased array acoustic measurements of a 26 percent-scale, Boeing 777-200 main landing gear model with and without noise reduction fairings installed were obtained in the anechoic configuration of the Virginia Tech Stability Tunnel. Data were acquired at Mach numbers of 0.12, 0.15, and 0.17 with the latter speed used as the nominal test condition. The fully and partially dressed gear with the truck angle set at 13 degrees toe-up landing configuration were the two most extensively tested configurations, serving as the baselines for comparison purposes. Acoustic measurements were also acquired for the same two baseline configurations with the truck angle set at 0 degrees. In addition, a previously tested noise reducing, toboggan-shaped fairing was re-evaluated extensively to address some of the lingering questions regarding the extent of acoustic benefit achievable with this device. The integrated spectra generated from the acoustic source maps reconfirm, in general terms, the previously reported noise reduction performance of the toboggan fairing as installed on an isolated gear. With the recent improvements to the Virginia Tech tunnel acoustic quality and microphone array capabilities, the present measurements provide an additional, higher quality database to the acoustic information available for this gear model.
NASA Astrophysics Data System (ADS)
Rousselet-Perraut, K.; Benisty, M.; Mourard, D.; Rajabi, S.; Bacciotti, F.; Bério, Ph.; Bonneau, D.; Chesneau, O.; Clausse, J. M.; Delaa, O.; Marcotto, A.; Roussel, A.; Spang, A.; Stee, Ph.; Tallon-Bosc, I.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.
2010-06-01
Context. A crucial issue in star formation is to understand the physical mechanism by which mass is accreted onto and ejected by a young star. To derive key constraints on the launching point of the jets and on the geometry of the winds, the visible spectro-polarimeter VEGA installed on the CHARA optical array can be an efficient means of probing the structure and the kinematics of the hot circumstellar gas at sub-AU. Aims: For the first time, we observed the Herbig Ae star AB Aur in the Hα emission line, using the VEGA low spectral resolution (R = 1700) on two baselines of the array. Methods: We computed and calibrated the spectral visibilities of AB Aur between 610 nm and 700 nm in spectral bands of 20.4 nm. To simultaneously reproduce the line profile and the inferred visibility around Hα, we used a 1D radiative transfer code (RAMIDUS/PROFILER) that calculates level populations for hydrogen atoms in a spherical geometry and that produces synthetic spectro-interferometric observables. Results: We clearly resolved AB Aur in the Hα line and in a part of the continuum, even at the smallest baseline of 34 m. The small P-Cygni absorption feature is indicative of an outflow but could not be explained by a spherical stellar wind model. Instead, it favors a magneto-centrifugal X-disk or disk-wind geometry. The fit of the spectral visibilities from 610 to 700 nm could not be accounted for by a wind alone, so another component inducing a visibility modulation around Hα needed to be considered. We thus considered a brightness asymmetry possibly caused by large-scale nebulosity or by the known spiral structures. Conclusions: Thanks to the unique capabilities of VEGA, we managed to simultaneously record for the first time a spectrum at a resolution of 1700 and spectral visibilities in the visible range on a target as faint as mV = 7.1. It was possible to rule out a spherical geometry for the wind of AB Aur and provide realistic solutions to account for the Hα emission compatible with magneto-centrifugal acceleration. It was difficult, however, to determine the exact morphology of the wind because of the surrounding asymmetric nebulosity. The study illustrates the advantages of optical interferometry and motivates observations of other bright young stars in the same way to shed light on the accretion/ejection processes.
NASA Technical Reports Server (NTRS)
1981-01-01
Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated. The baseline diffusion masking and drive processes were compared with those involving direct liquid applications to the dendritic web silicon strips. Attempts were made to control the number of variables by subjecting dendritic web strips cut from a single web crystal to both types of operations. Data generated reinforced earlier conclusions that efficiency levels at least as high as those achieved with the baseline back junction formation process can be achieved using liquid diffusion masks and liquid dopants. The deliveries of dendritic web sheet material and solar cells specified by the current contract were made as scheduled.
A Spherical Harmonic Analysis of the Ooty Wide Field Array (OWFA) Visibility Signal
NASA Astrophysics Data System (ADS)
Chatterjee, Suman; Bharadwaj, Somnath
2018-04-01
Considering redshifted 21-cm intensity mapping with the upcoming OWFA whose field of view subtends ˜57° in the N-S direction, we present a formalism which relates the measured visibilities to the spherical harmonic coefficients of the sky signal. We use this to calculate window functions which relate the two-visibility correlations i.e. the correlation between the visibilities measured at two baselines and two frequencies, to different multipoles of the multi-frequency angular power spectrum Cℓ(ν1, ν2). The formalism here is validated using simulations. We also present approximate closed form analytical expressions which can be used to calculate the window functions. Comparing the widely adopted flat sky approximation, we find that its predictions match those of our spherical harmonic formalism to within 16% across the entire OWFA baseline range. The match improves at large baselines where we have <5% deviations.
Extended performance solar electric propulsion thrust system study. Volume 2: Baseline thrust system
NASA Technical Reports Server (NTRS)
Poeschel, R. L.; Hawthorne, E. I.
1977-01-01
Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30- cm engineering model thruster as the technology base. Emphasis was placed on relatively high-power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentractor solar array concept and is designed to interface with the space shuttle.
Surface Properties of the Moon, Venus and Small Bodies from Radar Observations
NASA Technical Reports Server (NTRS)
Campbell, Donald B.
1997-01-01
Studies of the moon during the period of the grant revolved around the issues of the possible presence of ice at the lunar poles and the determination of the electrical properties of the maria regoliths. The search for ice at the poles was conducted using measurements of the radar backscatter cross sections and circular polarization ratios measured from 125 m resolution Arecibo radar imagery at 13 cm wavelength obtained by Nicholas Stacy. No clear indication of the presence of ice was found in areas thought to be in permanent shadow from solar radiation. Then Cornell graduate student Greg Black modeled the radar backscattering behavior of the icy Galilean satellites using three wavelength measurements of their radar backscattering properties obtained with the Arecibo and Goldstone radars. The radar scattering properties of Europa, Ganymede, and Callisto are unlike those of any other object observed with planetary radars. They are strongly backscattering with specific radar cross sections that can exceed unity. Polarization ratios are also high, approx. 1.5, indicative of multiple scattering, and the echos follow a diffuse scattering law at all incident angles with no indication of quasi-specular reflections. 3) Most of our effort on small bodies went into developing and investigating methods for long baseline radar synthesis imaging of near-earth asteroids and comets. At X-band, the width of the synthesized beam of the Very Long Baseline Array (VLBA) is approximately 15 m at 0.03AU, a typical close approach distance for near-earth asteroids. A small amount of work was done analyzing Venus data from Arecibo and the Magellan mission.
Simplification of Caribbean reef-fish assemblages over decades of coral reef degradation.
Alvarez-Filip, Lorenzo; Paddack, Michelle J; Collen, Ben; Robertson, D Ross; Côté, Isabelle M
2015-01-01
Caribbean coral reefs are becoming structurally simpler, largely due to human impacts. The consequences of this trend for reef-associated communities are currently unclear, but expected to be profound. Here, we assess whether changes in fish assemblages have been non-random over several decades of declining reef structure. More specifically, we predicted that species that depend exclusively on coral reef habitat (i.e., habitat specialists) should be at a disadvantage compared to those that use a broader array of habitats (i.e., habitat generalists). Analysing 3727 abundance trends of 161 Caribbean reef-fishes, surveyed between 1980 and 2006, we found that the trends of habitat-generalists and habitat-specialists differed markedly. The abundance of specialists started to decline in the mid-1980s, reaching a low of ~60% of the 1980 baseline by the mid-1990s. Both the average and the variation in abundance of specialists have increased since the early 2000s, although the average is still well below the baseline level of 1980. This modest recovery occurred despite no clear evidence of a regional recovery in coral reef habitat quality in the Caribbean during the 2000s. In contrast, the abundance of generalist fishes remained relatively stable over the same three decades. Few specialist species are fished, thus their population declines are most likely linked to habitat degradation. These results mirror the observed trends of replacement of specialists by generalists, observed in terrestrial taxa across the globe. A significant challenge that arises from our findings is now to investigate if, and how, such community-level changes in fish populations affect ecosystem function.
Determining the Location of an Observer with Respect to Aerial Photographs
1988-12-01
at gradient-array (+ 1 j) (+ k I)) threshold) (mett (arot temp-array 1 k) O)M (cond (4- tarot temp-array I k) 1) Isetq sum (* sum tempt 2 (+ I (* 3 k)f...aetq num-edges (+ num-edges 1)))))) (setf taret unique-index-num-array j 1) sum) tsett tarot num-edges-array j 1) num-edges))))) 1 This function
Initial results from seismic monitoring at the Aquistore CO 2 storage site, Saskatchewan, Canada
White, D. J.; Roach, L. A.N.; Roberts, B.; ...
2014-12-31
The Aquistore Project, located near Estevan, Saskatchewan, is one of the first integrated commercial-scale CO 2 storage projects in the world that is designed to demonstrate CO 2 storage in a deep saline aquifer. Starting in 2014, CO 2 captured from the nearby Boundary Dam coal-fired power plant will be transported via pipeline to the storage site and to nearby oil fields for enhanced oil recovery. At the Aquistore site, the CO 2 will be injected into a brine-filled sandstone formation at ~3200 m depth using the deepest well in Saskatchewan. The suitability of the geological formations that will hostmore » the injected CO 2 has been predetermined through 3D characterization using high-resolution 3D seismic images and deep well information. These data show that 1) there are no significant faults in the immediate area of the storage site, 2) the regional sealing formation is continuous in the area, and 3) the reservoir is not adversely affected by knolls on the surface of the underlying Precambrian basement. Furthermore, the Aquistore site is located within an intracratonic region characterized by extremely low levels of seismicity. This is in spite of oil-field related water injection in the nearby Weyburn-Midale field where a total of 656 million m 3 of water have been injected since the 1960`s with no demonstrable related induced seismicity. A key element of the Aquistore research program is the further development of methods to monitor the security and subsurface distribution of the injected CO 2. Toward this end, a permanent areal seismic monitoring array was deployed in 2012, comprising 630 vertical-component geophones installed at 20 m depth on a 2.5x2.5 km regular grid. This permanent array is designed to provide improved 3D time-lapse seismic imaging for monitoring subsurface CO 2. Prior to the onset of CO 2 injection, calibration 3D surveys were acquired in May and November of 2013. Comparison of the data from these surveys relative to the baseline 3D survey data from 2012 shows excellent repeatability (NRMS less than 10%) which will provide enhanced monitoring sensitivity to smaller amounts of CO 2. The permanent array also provides continuous passive monitoring for injection-related microseismicity. Passive monitoring has been ongoing since the summer of 2012 in order to establish levels of background seismicity before CO 2 injection starts in 2014. Microseismic monitoring was augmented in 2013 by the installation of 3 broadband seismograph stations surrounding the Aquistore site. These surface installations should provide a detection capability of seismic events with magnitudes as low as ~0. Downhole seismic methods are also being utilized for CO 2 monitoring at the Aquistore site. Baseline crosswell tomographic images depict details (meters-scale) of the reservoir in the 150-m interval between the observation and injection wells. This level of resolution is designed to track the CO 2 migration between the wells during the initial injection period. A baseline 3D vertical seismic profile (VSP) was acquired in the fall of 2013 to provide seismic images with resolution on a scale between that provided by the surface seismic array and the downhole tomography. The 3D VSP was recorded simultaneously using both a conventional array of downhole geophones (60-levels) and an optical fibre system. The latter utilized an optical fiber cable deployed on the outside of the monitor well casing and cemented in place. A direct comparison of these two methodologies will determine the suitability of using the fiber cable for ongoing time-lapse VSP monitoring.« less
Sahakian, A V; Peterson, M S; Shkurovich, S; Hamer, M; Votapka, T; Ji, T; Swiryn, S
2001-03-01
While the recording of extracellular monophasic action potentials (MAPs) from single epicardial or endocardial sites has been performed for over a century, we are unaware of any previous successful attempt to record MAPs simultaneously from a large number of sites in vivo. We report here the design and validation of an array of MAP electrodes which records both depolarization and repolarization simultaneously at up to 16 epicardial sites in a square array on the heart in vivo. The array consists of 16 sintered Ag-AgCl electrodes mounted in a common housing with individual suspensions allowing each electrode to exert a controlled pressure on the epicardial surface. The electrodes are arranged in a square array, with each quadrant of four having an additional recessed sintered Ag-AgCl reference electrode at its center. A saline-soaked sponge establishes ionic contact between the reference electrodes and the tissue. The array was tested on six anesthetized open-chested pigs. Simultaneous diagnostic-quality MAP recordings were obtained from up to 13 out of 16 ventricular sites. Ventricular MAPs had amplitudes of 10-40 mV with uniform morphologies and stable baselines for up to 30 min. MAP duration at 90% repolarization was measured and shown to vary as expected with cycle length during sustained pacing. The relationship between MAP duration and effective refractory period was also confirmed. The ability of the array to detect local differences in repolarization was tested in two ways. Placement of the array straddling the atrioventricular (AV) junction yielded simultaneous atrial or ventricular recordings at corresponding sites during 1:1 and 2:1 AV conduction. Localized ischemia via constriction of a coronary artery branch resulted in shortening of the repolarization phase at the ischemic, but not the nonischemic, sites. In conclusion, these results indicate that the simultaneous multichannel MAP electrode array is a viable method for in vivo epicardial repolarization mapping. The array has the potential to be expanded to increase the number of sites and spatial resolution.
Brazilian Decimetre Array (Phase-1): Initial solar observations
NASA Astrophysics Data System (ADS)
Ramesh, R.; Sawant, H. S.; Cecatto, J. R.; Faria, C.; Fernandes, F. C. R.; Kathiravan, C.; Suryanarayana, G. S.
An East-West one-dimensional radio interferometer array consisting of 5 parabolic dish antennas has been set-up at Cachoeira Paulista, Brazil (Longitude: 45°0'20″W, Latitude: 22°41'19″S) for observations of Sun and some of the strong sidereal sources by the Instituto Nacional de Pesquisas Espaciais (INPE), Brazil. This is Phase-1 of the proposed Brazilian Decimetre Array (BDA) and can be operated at any frequency in the range 1.2-1.7 GHz. The instrument is functional since November 2004 onwards at 1.6 GHz. The angular and temporal resolution at the above frequency range are ˜3' and 100 ms, respectively. We present here the initial solar observations carried out with this array.
Optical Multi-Channel Intensity Interferometry - Or: How to Resolve O-Stars in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Trippe, Sascha; Kim, Jae-Young; Lee, Bangwon; Choi, Changsu; Oh, Junghwan; Lee, Taeseok; Yoon, Sung-Chul; Im, Myungshin; Park, Yong-Sun
2014-12-01
Intensity interferometry, based on the Hanbury Brown--Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25,000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as m_R≈14, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass--radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade--Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.
2016-02-10
Low-frequency observations of pulsars provide a powerful means for probing the microstructure in the turbulent interstellar medium (ISM). Here we report on high-resolution dynamic spectral analysis of our observations of the timing-array millisecond pulsar PSR J0437–4715 with the Murchison Widefield Array (MWA), enabled by our recently commissioned tied-array beam processing pipeline for voltage data recorded from the high time resolution mode of the MWA. A secondary spectral analysis reveals faint parabolic arcs akin to those seen in high-frequency observations of pulsars with the Green Bank and Arecibo telescopes. Data from Parkes observations at a higher frequency of 732 MHz revealmore » a similar parabolic feature with a curvature that scales approximately as the square of the observing wavelength (λ{sup 2}) to the MWA's frequency of 192 MHz. Our analysis suggests that scattering toward PSR J0437–4715 predominantly arises from a compact region about 115 pc from the Earth, which matches well with the expected location of the edge of the Local Bubble that envelopes the local Solar neighborhood. As well as demonstrating new and improved pulsar science capabilities of the MWA, our analysis underscores the potential of low-frequency pulsar observations for gaining valuable insights into the local ISM and for characterizing the ISM toward timing-array pulsars.« less
The Interferometric View of Lightning
NASA Astrophysics Data System (ADS)
Stock, M.; Lapierre, J. L.
2017-12-01
Recent advances in off the shelf high-speed digitizers has enabled vast improvements in broadband, digital VHF interferometers. These simple instruments consist of 3 or more VHF antennas distributed in an array which are then digitized at a speed above the Nyquist frequency of the antenna bandwidth (usually 200+ MHz). Broadband interferometers are capable of creating very detailed maps of lightning, with time resolution better than 1us, and angular resolution only limited by their baseline lengths. This is combined with high sensitivity, and the ability to locate both continuously emitting and impulsive radiation sources. They are not without their limitations though. Because the baselines are relatively short, the maps are only 2-dimensional (direction to the source), unless many antennas are used only a single VHF radiation source can be located at any instant, and because the antennas are almost always arranged in a planar array they are better suited for observing lightning at high elevation angles. Even though imperfect, VHF interferometers provide one of the most detailed views of the behavior of lightning flashes inside a cloud. This presentation will present the overall picture of in-cloud lightning as seen by VHF interferometers. Most flashes can be split into 3 general phases of activity. Phase 1 is the initiation phase, covering all activity until the negative leader completes its vertical extension, and includes both lightning initiation and initial breakdown pulses. Phase 2 is the active phase and includes all activity during the horizontal extension of the negative leader. During Phase 2, any K-processes which occur tend to be short in duration and extent. Phase 3 is the final phase, and includes all activity after the negative leader stops propagating. During Phase 3, the conductivity of the lightning channels starts to decline, and extensive K-processes are seen which traverse the entire channel structure, this is also the period in which regular pulse trains tend to be observed. Not all flashes fit this fairly simplistic structure, in particular some flashes seem to lack a vertically developing negative leader, and others seem to lack activity after the negative leader stops propagating. Still, this basic anatomy of an in-cloud flash proves useful in describing the overall structure of a lightning flash.
Seismicity of Central Asia as Observed on Three IMS Stations
2008-09-01
and BVAR are all high-quality seismic arrays . Noise levels at the stations are generally acceptable for the period reviewed, except during the...following conditions: (1) a 4.5-Hz intermittent noise source at MKAR, (2) periodic high-frequency bursts on portions of the SONM array , and (3) a...seismic events (including single station events) observable on three central Asian IMS seismic array stations: Makanchi, Kazakhstan (MKAR); Songino
The Collision Auto Repair Safety Study (CARSS): a health and safety intervention.
Parker, David L; Bejan, Anca; Brosseau, Lisa M; Skan, Maryellen; Xi, Min
2015-01-01
Collision repair employs approximately 205,500 people in 33,400 shops. Workers are exposed to a diverse array of chemical, physical, and ergonomic hazards. CARSS was based on a random and purposeful sample. Baseline and one baseline and one-year evaluations consisted of 92 questions addressing issues, such as Right-to-Know, fire protection, painting-related hazards, ergonomics, electrical safety, and personal protective equipment. Owners received a report and selected at least 30% of items found deficient for remediation. In-person and web-based services were provided. Forty-nine shops were evaluated at baseline and 45 at follow-up. At baseline, 54% of items were present. This improved to 71% at follow-up (P < 0.0001). Respiratory protection improved 37% (P < 0.0001) and Right-to-Know training increased 30% (P < 0.0001). Owners completed 61% of items they selected for remediation. Small businesses' interventions should address the lack of personnel and administrative infrastructure. Tailored information regarding hazards and easy-to-use training and administrative programs overcome many barriers to improvement. © 2014 Wiley Periodicals, Inc.
A lunar far-side very low frequency array
NASA Technical Reports Server (NTRS)
Burns, Jack O. (Editor); Duric, Nebojsa (Editor); Johnson, Stewart (Editor); Taylor, G. Jeffrey (Editor)
1989-01-01
Papers were presented to consider very low frequency (VLF) radio astronomical observations from the moon. In part 1, the environment in which a lunar VLF radio array would function is described. Part 2 is a review of previous and proposed low-frequency observatories. The science that could be conducted with a lunar VLF array is described in part 3. The design of a lunar VLF array and site selection criteria are considered, respectively, in parts 4 and 5. Part 6 is a proposal for precursor lunar VLF observations. Finally, part 7 is a summary and statement of conclusions, with suggestions for future science and engineering studies. The workshop concluded with a general consensus on the scientific goals and preliminary design for a lunar VLF array.
Development of the First Latin-American Radio Interferometer
NASA Astrophysics Data System (ADS)
Cecatto, J. R.; Sawant, H. S.; Fernandes, F. C. R.; Vilas Boas, J. W. S.
2009-05-01
First Latin-American radio interferometer is being developed at INPE, Cachoeira Paulista, Brazil, in a collaborative program between several national and international institutions coordinated by a Brazilian team of scientists and engineers. The interferometer is designated as Brazilian Decimetric Array (BDA) and its 5 element prototype of 4 m diameter antennas (Phase-I) was put into operation by November 2004 at Cachoeira Paulista (Longitude: 45° 00' 20'' W and Latitude: 22° 41' 19'' S) for engineering and operational tests with a frequency range of 1.2-1.7 GHz, baselines up to 216 m in the E-W direction, and time resolution of 0.1 second. Observations of the Sun and strong calibration sources (Cygnus-A, Taurus-A) were carried out. Unidimensional solar map at 1.6 GHz was produced with a spatial resolution less than 3 arcminutes. Also, investigation of the solar brightness temperature (T[b]) variation was possible on a day-to-day and hour-to-hour basis. This investigation show for example a steady increase on T[b] starting from 15:00 UT on December 08, 2004. Interpretations of these results will be presented. In 2005, the first phase of development has finished. Now, Phase-II has begun during which the array will have 21 additional antennas and operate with increased frequency range as well as improved spatial resolution. It is planned to finish it by March 2009. Details of this will be presented.
MARE-l in Milan: Status and Perspectives
NASA Technical Reports Server (NTRS)
Ferri, E.; Arnaboldi, C.; Ceruti, G.; Faverzani, M.; Gatti, C.; Giachero, A.; Gotti, C.; Kilbourne, C.; Kraft-Bermuth, S.; Nucciotti, A.;
2012-01-01
The international project MARE (Microcalorimeter Array for a Rhenium Experiment) aims at the direct and calorimetric measurement of the electron neutrino mass with sub-eV sensitivity. Although the baseline of the MARE project consists in a large array of rhenium based thermal detectors, a different option for the isotope is also being considered. The different option is Ho-163. The potential of using Re-187 for a calorimetric neutrino mass experiment has been already demonstrated. On the contrary, no calorimetric spectrum of Ho-163 has been so far measured with the precision required to set a useful limit on the neutrino mass. The first phase of the project (MARE-1) is a collection of activities with the aim of sorting out both the best isotope and the most suited detector technology to be used for the final experiment. One of the MARE-1 activities is carried out in Milan by the group of Milano-Bicocca in collaboration with NASA/GSFC and Wisconsin groups. The Milan MARE-l arrays are based on semiconductor thermistors, provided by the NASA/GSFC group, with dielectric silver perrhenate absorbers, AgReO4. The experiment, which is presently being assembled, is designed to host up to 8 arrays.
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST/AFTA
NASA Technical Reports Server (NTRS)
Gong, Qian; Mcelwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Stapelfeldt, Karl; Hilton, George; Sayson, Jorge Llop; Perrin, Marshall;
2015-01-01
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey Telescope/Astrophysics Focused Telescope Assets (WFIRST/AFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC) cofigurations. We discuss why the lenslet array based IFS is selected for PISCES. We present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the specific function of our pinhole mask on the back surface of the lenslet array to further suppress star light introduced speckles. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST-AFTA
NASA Technical Reports Server (NTRS)
Gong, Qian; Mcelwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Stapelfeldt, Karl; Hilton, George; Sayson, Jorge Llop; Perrin, Marshall;
2015-01-01
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey Telescope/Astrophysics Focused Telescope Assets (WFIRST-AFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory (JPL) and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC) configurations. We discuss why the lenslet array based IFS was selected for PISCES. We present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the specific function of our pinhole mask on the back surface of the lenslet array to reduce the diffraction from the edge of the lenslets. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.
Imaging of Stellar Surfacess Using Radio Facilities Including ALMA
NASA Astrophysics Data System (ADS)
O'Gorman, Eamon
2018-04-01
Until very recently, studies focusing on imaging stars at continuum radio wavelengths (here defined as submillimeter, millimeter, and centimeter wavelengths) has been scarce. These studies have mainly been carried out with the Very Large Array on a handful of evolved stars (i.e., Asymptotic Giant Branch and Red Supergiant stars) whereby their stellar disks have just about been spatially resolved. Some of these results however, have challenged our historical views on the nature of evolved star atmospheres. Now, the very long baselines of the Atacama Large Millimeter/submillimeter Array and the newly upgraded Karl G. Jansky Very Large Array provide a new opportunity to image these atmospheres at unprecedented spatial resolution and sensitivity across a much wider portion of the radio spectrum. In this talk I will first provide a history of stellar radio imaging and then discuss some recent exciting ALMA results. Finally I will present some brand new multi-wavelength ALMA and VLA results for the famous red supergiant Antares.
Alternate space station freedom configuration considerations to accommodate solar dynamic power
NASA Technical Reports Server (NTRS)
Deryder, L. J.; Cruz, J. N.; Heck, M. L.; Robertson, B. P.; Troutman, P. A.
1989-01-01
The results of a technical audit of the Space Station Freedom Program conducted by the Program Director was announced in early 1989 and included a proposal to use solar dynamic power generation systems to provide primary electrical energy for orbital flight operations rather than photovoltaic solar array systems. To generate the current program baseline power of 75 kW, two or more solar concentrators approximately 50 feet in diameter would be required to replace four pairs of solar arrays whose rectangular blanket size is approximately 200 feet by 30 feet. The photovoltaic power system concept uses solar arrays to generate electricity that is stored in nickel-hydrogen batteries. The proposed concept uses the solar concentrator dishes to reflect and focus the Sun's energy to heat helium-xenon gas to drive electricity generating turbines. The purpose here is to consider the station configuration issues for incorporation of solar dynamic power system components. Key flight dynamic configuration geometry issues are addressed and an assembly sequence scenario is developed.
Genetic algorithm optimization of a film cooling array on a modern turbine inlet vane
NASA Astrophysics Data System (ADS)
Johnson, Jamie J.
In response to the need for more advanced gas turbine cooling design methods that factor in the 3-D flowfield and heat transfer characteristics, this study involves the computational optimization of a pressure side film cooling array on a modern turbine inlet vane. Latin hypersquare sampling, genetic algorithm reproduction, and Reynolds-Averaged Navier Stokes (RANS) computational fluid dynamics (CFD) as an evaluation step are used to assess a total of 1,800 film cooling designs over 13 generations. The process was efficient due to the Leo CFD code's ability to estimate cooling mass flux at surface grid cells using a transpiration boundary condition, eliminating the need for remeshing between designs. The optimization resulted in a unique cooling design relative to the baseline with new injection angles, compound angles, cooling row patterns, hole sizes, a redistribution of cooling holes away from the over-cooled midspan to hot areas near the shroud, and a lower maximum surface temperature. To experimentally confirm relative design trends between the optimized and baseline designs, flat plate infrared thermography assessments were carried out at design flow conditions. Use of flat plate experiments to model vane pressure side cooling was justified through a conjugate heat transfer CFD comparison of the 3-D vane and flat plate which showed similar cooling performance trends at multiple span locations. The optimized flat plate model exhibited lower minimum surface temperatures at multiple span locations compared to the baseline. Overall, this work shows promise of optimizing film cooling to reduce design cycle time and save cooling mass flow in a gas turbine.
Wang, G; Doyle, E J; Peebles, W A
2016-11-01
A monostatic antenna array arrangement has been designed for the microwave front-end of the ITER low-field-side reflectometer (LFSR) system. This paper presents details of the antenna coupling coefficient analyses performed using GENRAY, a 3-D ray tracing code, to evaluate the plasma height accommodation capability of such an antenna array design. Utilizing modeled data for the plasma equilibrium and profiles for the ITER baseline and half-field scenarios, a design study was performed for measurement locations varying from the plasma edge to inside the top of the pedestal. A front-end antenna configuration is recommended for the ITER LFSR system based on the results of this coupling analysis.
Compact and high resolution virtual mouse using lens array and light sensor
NASA Astrophysics Data System (ADS)
Qin, Zong; Chang, Yu-Cheng; Su, Yu-Jie; Huang, Yi-Pai; Shieh, Han-Ping David
2016-06-01
Virtual mouse based on IR source, lens array and light sensor was designed and implemented. Optical architecture including lens amount, lens pitch, baseline length, sensor length, lens-sensor gap, focal length etc. was carefully designed to achieve low detective error, high resolution, and simultaneously, compact system volume. System volume is 3.1mm (thickness) × 4.5mm (length) × 2, which is much smaller than that of camera-based device. Relative detective error of 0.41mm and minimum resolution of 26ppi were verified in experiments, so that it can replace conventional touchpad/touchscreen. If system thickness is eased to 20mm, resolution higher than 200ppi can be achieved to replace real mouse.
Radiation characteristics of Al wire arrays on Z*
NASA Astrophysics Data System (ADS)
Coverdale, C. A.; Ampleford, D. J.; Jones, B.; Cuneo, M. E.; Hansen, S.; Jennings, C. A.; Moore, N.; Jones, S. C.; Deeney, C.
2011-10-01
Analysis of mixed material nested wire array experiments at Z have shown that the inner wire array dominates the hottest regions of the stagnated z pinch. In those experiments, substantial free-bound continuum radiation was observed when Al was fielded on the inner wire array. Experiments with Al (5% Mg) on both wire arrays have also been fielded, with variations in the free-bound continuum observed. These variations appear to be tied to the initial mass and diameter of the wire array. The results presented here will investigate the trends in the measured emission (Al and Mg K-shell and free-bound continuum) and will compare the measured output to more recent Al wire array experimental results on the refurbished Z accelerator. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. +current address: NNSA/DOE Headquarters, Washington D.C.
Alexa J. Dugan; Richard Birdsey; Sean P. Healey; Yude Pan; Fangmin Zhang; Gang Mo; Jing Chen; Christopher W. Woodall; Alexander J. Hernandez; Kevin McCullough; James B. McCarter; Crystal L. Raymond; Karen Dante-Wood
2017-01-01
Management of forest carbon stocks on public lands is critical to maintaining or enhancing carbon dioxide removal from the atmosphere. Acknowledging this, an array of federal regulations and policies have emerged that requires US National Forests to report baseline carbon stocks and changes due to disturbance and management and assess how management activities and...
Performance of charge-injection-device infrared detector arrays at low and moderate backgrounds
NASA Technical Reports Server (NTRS)
Mckelvey, M. E.; Mccreight, C. R.; Goebel, J. H.; Reeves, A. A.
1985-01-01
Three 2 x 64 element charge injection device infrared detector arrays were tested at low and moderate background to evaluate their usefulness for space based astronomical observations. Testing was conducted both in the laboratory and in ground based telescope observations. The devices showed an average readout noise level below 200 equivalent electrons, a peak responsivity of 4 A/W, and a noise equivalent power of 3x10 sq root of W/Hz. Array well capacity was measured to be significantly smaller than predicted. The measured sensitivity, which compares well with that of nonintegrating discrete extrinsic silicon photoconductors, shows these arrays to be useful for certain astronomical observations. However, the measured readout efficiency and frequency response represent serious limitations in low background applications.
Advances in Mixed Signal Processing for Regional and Teleseismic Arrays
2006-08-15
1: Mixture of signals from two earthquakes from south of Africa and the Philippines observed at USAEDS long-period seismic array in Korea. Correct...window where the detector will miss valid signals . 2 Approaches to detecting signals on arrays all focus on the basic model that expresses the observed...possible use in detecting infrasound signals . The approach is based on orthogonal- ity properties of the eigen vectors of the spectral matrix under a
Behavior of Combined Dielectric-Metallic Systems in a Charged Particle Environment
NASA Technical Reports Server (NTRS)
Gordon, W. L.; Hoffman, R. W.
1984-01-01
The charging and discharging characteristics of an electrically isolated solar array segment were studied in order to simulate discharges seen during geomagnetic substorms. A solar array segment was floated while bombarded with monoenergetic electrons at various angles of incidence. The potentials of the array surface and of the interconnects were monitored using Trek voltage probes to maintain electrical isolation. A back plate was capacitively coupled to the array to provide information on the characteristics of the transients accompanying the discharges. Several modes of discharging of the array were observed at relatively low differential and absolute potentials (a few kilovolts). A relatively slow discharge response in the array was observed, discharging over one second with currents of nanoamps. Two types of faster discharges were also seen which lasted a few hundredths of a millisecond and with currents on the order of microamps. Some results indicate an electron emission process associated with the arcs.
Calibration Test of an Interplanetary Scintillation Array in Mexico
NASA Astrophysics Data System (ADS)
Carrillo, A.; Gonzalez-Esparza, A.; Andrade, E.; Ananthakrishnan, S.; Praveen-Kumar, A.; Balasubramanian, V.
We report the calibration test of a radiotelecope to carry out interplanetary scintillation (IPS) observations in Mexico. This will be a dedicate (24 hrs) radio array for IPS observations of nearly 1000 well know radio sources in the sky to perform solar wind studies. The IPS array is located in the state of Michoacan at 350 km north-west from Mexico City, (19'48 degrees north and 101'41 degrees west, 2000 meters above the sea level). The radiotelescope operates in 140 MHz with a bandwith of 1.5 MHz. The antenna is a planar array with 64 X 64 full wavelength dipoles along 64 east-west rows of open wire transmission lines, occupying 10,000 square meters (70 x 140 m). We report the final testings of the antenna array, the matrix Butler and receivers. This work is a collaboration between the Universidad Nacional Autonoma de Mexico (UNAM) and the National Centre for Radio Astrophysics (NCRA), India. We expect to initiate the firs IPS observations by the end of this year.
On-line Machine Learning and Event Detection in Petascale Data Streams
NASA Astrophysics Data System (ADS)
Thompson, David R.; Wagstaff, K. L.
2012-01-01
Traditional statistical data mining involves off-line analysis in which all data are available and equally accessible. However, petascale datasets have challenged this premise since it is often impossible to store, let alone analyze, the relevant observations. This has led the machine learning community to investigate adaptive processing chains where data mining is a continuous process. Here pattern recognition permits triage and followup decisions at multiple stages of a processing pipeline. Such techniques can also benefit new astronomical instruments such as the Large Synoptic Survey Telescope (LSST) and Square Kilometre Array (SKA) that will generate petascale data volumes. We summarize some machine learning perspectives on real time data mining, with representative cases of astronomical applications and event detection in high volume datastreams. The first is a "supervised classification" approach currently used for transient event detection at the Very Long Baseline Array (VLBA). It injects known signals of interest - faint single-pulse anomalies - and tunes system parameters to recover these events. This permits meaningful event detection for diverse instrument configurations and observing conditions whose noise cannot be well-characterized in advance. Second, "semi-supervised novelty detection" finds novel events based on statistical deviations from previous patterns. It detects outlier signals of interest while considering known examples of false alarm interference. Applied to data from the Parkes pulsar survey, the approach identifies anomalous "peryton" phenomena that do not match previous event models. Finally, we consider online light curve classification that can trigger adaptive followup measurements of candidate events. Classifier performance analyses suggest optimal survey strategies, and permit principled followup decisions from incomplete data. These examples trace a broad range of algorithm possibilities available for online astronomical data mining. This talk describes research performed at the Jet Propulsion Laboratory, California Institute of Technology. Copyright 2012, All Rights Reserved. U.S. Government support acknowledged.
Multiwavelength Variations of 3C 454.3 during the 2010 November to 2011 January Outburst
NASA Astrophysics Data System (ADS)
Wehrle, Ann E.; Marscher, Alan P.; Jorstad, Svetlana G.; Gurwell, Mark A.; Joshi, Manasvita; MacDonald, Nicholas R.; Williamson, Karen E.; Agudo, Iván; Grupe, Dirk
2012-10-01
We present multiwavelength data of the blazar 3C 454.3 obtained during an extremely bright outburst from 2010 November through 2011 January. These include flux density measurements with the Herschel Space Observatory at five submillimeter-wave and far-infrared bands, the Fermi Large Area Telescope at γ-ray energies, Swift at X-ray, ultraviolet (UV), and optical frequencies, and the Submillimeter Array at 1.3 mm. From this data set, we form a series of 52 spectral energy distributions (SEDs) spanning nearly two months that are unprecedented in time coverage and breadth of frequency. Discrete correlation analysis of the millimeter, far-infrared, and γ-ray light curves show that the variations were essentially simultaneous, indicative of cospatiality of the emission, at these wavebands. In contrast, differences in short-term fluctuations at various wavelengths imply the presence of inhomogeneities in physical conditions across the source. We locate the site of the outburst in the parsec-scale "core," whose flux density as measured on 7 mm Very Long Baseline Array images increased by 70% during the first five weeks of the outburst. Based on these considerations and guided by the SEDs, we propose a model in which turbulent plasma crosses a conical standing shock in the parsec-scale region of the jet. Here, the high-energy emission in the model is produced by inverse Compton scattering of seed photons supplied by either nonthermal radiation from a Mach disk, thermal emission from hot dust, or (for X-rays) synchrotron radiation from plasma that crosses the standing shock. For the two dates on which we fitted the model SED to the data, the model corresponds very well to the observations at all bands except at X-ray energies, where the spectrum is flatter than observed.
NASA Astrophysics Data System (ADS)
Tonegawa, T.; Fukao, Y.; Shiobara, H.; Sugioka, H.; Ito, A.; Yamashita, M.
2018-01-01
An array of 10 absolute pressure gauges (APGs) deployed in deep water 50 km east of Aogashima, an island in southern Japan, observed several isolated signals in the infragravity wave (IGW) frequency band (0.002-0.03 Hz) during boreal summer, whereas relatively high IGW energy persisted during boreal winter. The isolated IGW shows dispersion with a delay time of 4-5 days as a function of frequency. Here we estimate the excitation locations of IGWs for the two seasons with estimated incoming direction of IGW, calculation of transoceanic IGW trajectories and propagation times, and spatiotemporal variations of significant wave heights from WAVEWATCH III. In boreal summer, the isolated IGWs are primarily caused by IGW energies excited at the shoreline of South America, based on the following three observations: IGWs observed at the array originated from the east: the easterly ray path from the array reaches South America: and an event-like IGWs were observed at the array when a storm approaches eastward to the shoreline of South America, in which the observed delay time of 4-5 days was also supported by the frequency-dependent calculation of IGW propagation times. In boreal winter, the incessant IGWs consist of transoceanic IGW energies leaked from the shoreline, primarily from North America, and secondly from South America and the western Aleutian Islands.
Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD
NASA Technical Reports Server (NTRS)
Granger, C. L.; Cyr, R. J.
2000-01-01
Microtubule organization plays an important role in plant morphogenesis; however, little is known about how microtubule arrays transit from one organized state to another. The use of a genetically incorporated fluorescent marker would allow long-term observation of microtubule behavior in living cells. Here, we have characterized a Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cell line that had been stably transformed with a gfp-mbd construct previously demonstrated to label microtubules (J. Marc et al., 1998, Plant Cell 10: 1927-1939). Fluorescence levels were low, but interphase and mitotic microtubule arrays, as well as the transitions between these arrays, could be observed in individual gfp-mbd-transformed cells. By comparing several attributes of transformed and untransformed cells it was concluded that the transgenic cells are not adversely affected by low-level expression of the transgene and that these cells will serve as a useful and accurate model system for observing microtubule reorganization in vivo. Indeed, some initial observations were made that are consistent with the involvement of motor proteins in the transition between the spindle and phragmoplast arrays. Our observations also support the role of the perinuclear region in nucleating microtubules at the end of cell division with a progressive shift of these microtubules and/or nucleating activity to the cortex to form the interphase cortical array.
NASA Astrophysics Data System (ADS)
Wang, Y.; Lin, F. C.; Allam, A. A.; Ben-Zion, Y.
2017-12-01
The San Jacinto fault is presently the most seismically active component of the San Andreas Transform system in Southern California. To study the damage zone structure, two dense linear geophone arrays (BS and RR) were deployed across the Clark segment of the San Jacinto Fault between Anza and Hemet during winter 2015 and Fall 2016, respectively. Both arrays were 2 km long with 20 m station spacing. Month-long three-component ambient seismic noise data were recorded and used to calculate multi-channel cross-correlation functions. All three-component noise records of each array were normalized simultaneously to retain relative amplitude information between different stations and different components. We observed clear Rayleigh waves and Love waves on the cross-correlations of both arrays at 0.3 - 1 s period. The phase travel times of the Rayleigh waves on both arrays were measured by frequency-time analysis (FTAN), and inverted for Rayleigh wave phase velocity profiles of the upper 500 m depth. For both arrays, we observe prominent asymmetric low velocity zones which narrow with depth. At the BS array near the Hemet Stepover, an approximately 250m wide slow zone is observed to be offset by 75m to the northeast of the surface fault trace. At the RR array near the Anza segment of the fault, a similar low velocity zone width and offset are observed, along with a 10% across-fault velocity contrast. Analyses of Rayleigh wave ellipticity (H/V ratio), Love wave phase travel times, and site amplification are in progress. By using multiple measurements from ambient noise cross-correlations, we can obtain strong constraints on the local damage zone structure of the San Jacinto Fault. The results contribute to improved understanding of rupture directivity, maximum earthquake magnitude and more generally seismic hazard associated with the San Jacinto fault zone.
The ASTRI/CTA mini-array software system
NASA Astrophysics Data System (ADS)
Tosti, Gino; Schwarz, Joseph; Antonelli, Lucio Angelo; Trifoglio, Massimo; Catalano, Osvaldo; Maccarone, Maria Concetta; Leto, Giuseppe; Gianotti, Fulvio; Canestrari, Rodolfo; Giro, Enrico; Fiorini, Mauro; La Palombara, Nicola; Pareschi, Giovanni; Stringhetti, Luca; Vercellone, Stefano; Conforti, Vito; Tanci, Claudio; Bruno, Pietro; Grillo, Alessandro; Testa, Vincenzo; di Paola, Andrea; Gallozzi, Stefano
2014-07-01
ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a Flagship Project financed by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. The main goals of the ASTRI project are the realization of an end-to-end prototype of a Small Size Telescope (SST) for the Cherenkov Telescope Array (CTA) in a dual- mirror configuration (SST-2M) and, subsequently, of a mini-array comprising seven SST-2M telescopes. The mini-array will be placed at the final CTA Southern Site, which will be part of the CTA seed array, around which the whole CTA observatory will be developed. The Mini-Array Software System (MASS) will provide a comprehensive set of tools to prepare an observing proposal, to perform the observations specified therein (monitoring and controlling all the hardware components of each telescope), to analyze the acquired data online and to store/retrieve all the data products to/from the archive. Here we present the main features of the MASS and its first version, to be tested on the ASTRI SST-2M prototype that will be installed at the INAF observing station located at Serra La Nave on Mount Etna in Sicily.
Very long baseline interferometer measurements of plasma turbulence in the solar wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takayuki Sakurai; Spangler, S.R.; Armstrong, J.W.
Turbulence in the solar wind plasma was studied using angular broadening measurements of 10 extragalactic compact radio sources (quasars) with a very long baseline interferometer (VLBI) at 4.99 GHz. Unlike other angular broadening studies, the measured broadening size was corrected for intrinsic source structures which were obtained from a separate VLBI observation. The solar elongations of the sources ranged from 18 R{sub S} to 243 R{sub S}, and five sources with elongations {<=} 60 R{sub S} showed varying degrees of broadening. The measured angular sizes are considerably less than predicted by the well-known empirical relationship of Erickson, as well asmore » two other models for strength of scattering as a function of solar elongation. However, the data are in good agreement with a model for the spatial power spectrum of the turbulence proposed by Coles and Harmon. This model consists of a Kolmogorov spectrum at large scales, but with an enhancement of power near the wavenumber corresponding o the ion inertial length. Two of these sources, 1148-001 and 1253-053 (3C279), show substantial differences in the amount of scattering, even though they are at similar solar elongations (29 versus 35 R{sub S}). Data to which the authors have access indicate that the state of the corona along the lines of sight to these sources may have been quite different. Angular broadening measurements with VLBI interferometers currently under development (primarily the very long baseline array) will allow a global view of plasma turbulence out of the ecliptic plane and thus be complementary to the point in situ measurements with Ulysses. 37 refs., 4 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Dournaux, J. L.; Gironnet, J.; Huet, J. M.; Laporte, P.; Chadwick, P.; Dumas, D.; Pech, M.; Rulten, C. B.; Sayède, F.; Schmoll, J.; Sol, H.
2016-07-01
The Cherenkov Telescope Array (CTA) project, led by an international collaboration of institutes, aims to create the world's largest next generation Very High-Energy (VHE) gamma-ray telescope array, devoted to observations in a wide band of energy, from a few tens of GeV to more than 100 TeV. The Small-Sized Telescopes (SSTs) are dedicated to the highest energy range. Seventy SSTs are planned in the baseline array design with a required lifetime of about 30 years. The GCT (Gamma-ray Cherenkov Telescope) is one of the prototypes proposed for CTA's SST sub-array. It is based on a Schwarzschild-Couder dual-mirror optical design. This configuration has the benefit of increasing the field-of-view and decreasing the masses of the telescope and of the camera. But, in spite of these many advantages, it was never implemented before in ground-based Cherenkov astronomy because of the aspherical and highly curved shape required for the mirrors. The optical design of the GCT consists of a primary 4 meter diameter mirror, segmented in six aspherical petals, a secondary monolithic 2-meter mirror and a light camera. The reduced number of segments simplifies the alignment of the telescope but complicates the shape of the petals. This, combined with the strong curvature of the secondary mirror, strongly constrains the manufacturing process. The Observatoire de Paris implemented metallic lightweight mirrors for the primary and the secondary mirrors of GCT. This choice was made possible because of the relaxed requirements of optical Cherenkov telescopes compared to optical ones. Measurements on produced mirrors show that these ones can fulfill requirements in shape, PSF and reflectivity, with a clear competition between manufacturing cost and final performance. This paper describes the design of these mirrors in the context of their characteristics and how design optimization was used to produce a lightweight design. The manufacturing process used for the prototype and planned for the large scale production is presented as well as the performance, in terms of geometric and optical properties, of the produced mirrors. The alignment procedure of the mirrors is also detailed. This technique is finally compared to other manufacturing techniques based on composite glass mirrors within the framework of GCT mirrors specificities.
Plasma and Urinary Phenolic Profiles after Acute and Repetitive Intake of Wild Blueberry.
Feliciano, Rodrigo P; Istas, Geoffrey; Heiss, Christian; Rodriguez-Mateos, Ana
2016-08-25
Recent studies have shown that blueberries may have cardiovascular and cognitive health benefits. In this work, we investigated the profile of plasma and urine (poly)phenol metabolites after acute and daily consumption of wild blueberries for 30 days in 18 healthy men. The inter-individual variability in plasma and urinary polyphenol levels was also investigated. Blood samples were collected at baseline and 2 h post-consumption on day 1 and day 30. Twenty-four-hour urine was also collected on both days. A total of 61 phenolic metabolites were quantified in plasma at baseline, of which 43 increased after acute or chronic consumption of blueberries over one month. Benzoic and catechol derivatives represented more than 80% of the changes in phenolic profile after 2 h consumption on day 1, whereas hippuric and benzoic derivatives were the major compounds that increased at 0 and 2 h on day 30, respectively. The total (poly)phenol urinary excretion remained unchanged after 30 days of wild blueberry intake. The inter-individual variability ranged between 40%-48% in plasma and 47%-54% in urine. Taken together, our results illustrate that blueberry (poly)phenols are absorbed and extensively metabolized by phase II enzymes and by the gut microbiota, leading to a whole array of metabolites that may be responsible for the beneficial effects observed after blueberry consumption.
Refining Binary Pulsar B1913+16's Gravitational Wave Test via a VLBI Parallax Measurement
NASA Astrophysics Data System (ADS)
Weisberg, Joel; Deller, Adam; Chatterjee, Shami; Nice, David
2018-01-01
The orbital decay of binary pulsar B1913+16 provided the first evidence of gravitational waves as predicted by General Relativity, and ruled out numerous previously viable alternative gravitational theories (e.g., Taylor & Weisberg, APJ, 253, 908, 1982). The gravitational wave emission and resulting orbital decay manifest themselves as an orbital period derivative. Subsequent observations (e.g., Weisberg and Huang 2016, APJ, 829, 55) have greatly refined the precision of the orbital period derivative measurement. The accuracy of the experiment is currently limited by our knowledge of the relative galactic accelerations of the binary and solar system barycenters, which make another contribution to the observed orbital period derivative. The magnitude of these accelerations depend on various galactic constants and on the pulsar distance.As our knowledge of the Galaxy and its motions has improved, the pulsar's distance has become the largest remaining source of uncertainty in the experiment.Therefore, we conducted a series of astrometric measurements of PSR B1913+16 with the Very Long Baseline Array. We report the pulsar parallax and distance derived from these measurements, and use them to correct our observed orbital period derivative for the above galactic acceleration term, thereby providing a more accurate test of gravitational radiation emission from the system.
Large Torque Variations in Two Soft Gamma Repeaters
NASA Technical Reports Server (NTRS)
Woods, Peter M.; Kouveliotou, Chryssa; Gogus, Ersin; Finger, Mark H.; Swank, Jean; Markwardt, Craig B.; Hurley, Kevin; vanderKlis, Michiel
2002-01-01
We have monitored the pulse frequencies of the two soft gamma repeaters SGR 1806-20 and SGR 1900+14 through the beginning of year 2001 using primarily Rossi X-Ray Timing Explorer Proportional Counter Array observations. In both sources, we observe large changes in the spin-down torque up to a factor of approximately 4, which persist for several months. Using long-baseline phase-connected timing solutions as well as the overall frequency histories, we construct torque noise power spectra for each SGR (Soft Gamma Repeater). The power spectrum of each source is very red (power-law slope is approximately -3.5). The torque noise power levels are consistent with some accreting systems on timescales of approximately 1 yr, yet the full power spectrum is much steeper in frequency than any known accreting source. To the best of our knowledge, torque noise power spectra with a comparably steep frequency dependence have been seen only in young, glitching radio pulsars (e.g., Vela). The observed changes in spin-down rate do not correlate with burst activity; therefore, the physical mechanisms behind each phenomenon are also likely unrelated. Within the context of the magnetar model, seismic activity can not account for both the bursts and the long-term torque changes unless the seismically active regions are decoupled from one another.
Highly Variable Cycle Exhaust Model Test (HVC10)
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Wernet, Mark; Podboy, Gary; Bozak, Rick
2010-01-01
Results from acoustic and flow-field studies using the Highly Variable Cycle Exhaust (HVC) model were presented. The model consisted of a lobed mixer on the core stream, an elliptic nozzle on the fan stream, and an ejector. For baseline comparisons, the fan nozzle was replaced with a round nozzle and the ejector doors were removed from the model. Acoustic studies showed far-field noise levels were higher for the HVC model with the ejector than for the baseline configuration. Results from Particle Image Velocimetry (PIV) studies indicated that large flow separation regions occurred along the ejector doors, thus restricting flow through the ejector. Phased array measurements showed noise sources located near the ejector doors for operating conditions where tones were present in the acoustic spectra.
Performance of the EDELWEISS-III experiment for direct dark matter searches
NASA Astrophysics Data System (ADS)
Armengaud, E.; Arnaud, Q.; Augier, C.; Benoît, A.; Bergé, L.; Bergmann, T.; Billard, J.; de Boissière, T.; Bres, G.; Broniatowski, A.; Brudanin, V.; Camus, P.; Cazes, A.; Chapellier, M.; Charlieux, F.; De Jésus, M.; Dumoulin, L.; Eitel, K.; Filosofov, D.; Foerster, N.; Fourches, N.; Garde, G.; Gascon, J.; Giuliani, A.; Grollier, M.; Gros, M.; Hehn, L.; Hervé, S.; Heuermann, G.; Humbert, V.; Jin, Y.; Juillard, A.; Kéfélian, C.; Kleifges, M.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Le-Sueur, H.; Lin, J.; Maisonobe, R.; Mancuso, M.; Marnieros, S.; Menshikov, A.; Navick, X.-F.; Nones, C.; Olivieri, E.; Pari, P.; Paul, B.; Poda, D.; Queguiner, E.; Robinson, M.; Rodenas, H.; Rozov, S.; Sanglard, V.; Schmidt, B.; Scorza, S.; Siebenborn, B.; Tcherniakhovski, D.; Vagneron, L.; Weber, M.; Yakushev, E.; Zhang, X.; Zolotarova, A.
2017-08-01
We present the results of measurements demonstrating the efficiency of the EDELWEISS-III array of cryogenic germanium detectors for direct dark matter searches. The experimental setup and the FID (Fully Inter-Digitized) detector array is described, as well as the efficiency of the double measurement of heat and ionization signals in background rejection. For the whole set of 24 FID detectors used for coincidence studies, the baseline resolutions for the fiducial ionization energy are mainly below 0.7 keVee (FHWM) whereas the baseline resolutions for heat energies are mainly below 1.5 keVee (FWHM). The response to nuclear recoils as well as the very good discrimination capability of the FID design has been measured with an AmBe source. The surface β- and α-decay rejection power of Rsurf < 4 × 10-5 per α at 90% C.L. has been determined with a 210Pb source, the rejection of bulk γ-ray events has been demonstrated using γ-calibrations with 133Ba sources leading to a value of Rγ -mis-fid < 2.5 × 10-6 at 90% C.L.. The current levels of natural radioactivity measured in the detector array are shown as the rate of single γ background. The fiducial volume fraction of the FID detectors has been measured to a weighted average value of (74.6 ± 0.4)% using the cosmogenic activation of the 65Zn and 68,71Ge isotopes. The stability and uniformity of the detector response is also discussed. The achieved resolutions, thresholds and background levels of the upgraded EDELWEISS-III detectors in their setup are thus well suited to the direct search of WIMP dark matter over a large mass range.
2006 Interferometry Imaging Beauty Contest
NASA Technical Reports Server (NTRS)
Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Ireland, Michael; Monnier, John D.; Thiebaut, Eric; Rengaswamy, Sridharan; Baron, Fabien; Young, John S.; Kraus, Stefan;
2006-01-01
We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Five different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formatted in the OI-FITS format. The data are calibrated power spectra and bispectra measured with an array intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.
Molecular Targeted Therapies of Childhood Choroid Plexus Carcinoma
2013-10-01
Microarray intensities were analyzed in PGS, using the benign human choroid plexus papilloma (CPP) samples as an expression baseline reference. This...additional human and mouse CPC genomic profiles (timeframe: months 1-5). The goal of these studies is to expand our number of genomic profiles (DNA and...mRNA arrays) of both human and mouse CPCs to provide a comprehensive dataset with which to identify key candidate oncogenes, tumor suppressor genes
Molecular Targeted Therapies of Childhood Choroid Plexus Carcinoma
2012-10-01
Microarray intensities were analyzed in PGS, using the benign human choroid plexus papilloma (CPP) samples as an expression baseline reference...identify candidate drug targets of CPC. Task 1: Generation of additional human and mouse CPC genomic profiles (timeframe: months 1-5). The goal...of these studies is to expand our number of genomic profiles (DNA and mRNA arrays) of both human and mouse CPCs to provide a comprehensive dataset
Molecular Targeted Therapies of Childhood Choroid Plexus Carcinoma
2011-10-01
were analyzed in PGS, using the benign human choroid plexus papilloma (CPP) samples as an expression baseline reference. This analysis highlights...Task 1: Generation of additional human and mouse CPC genomic profiles (timeframe: months 1-5). The goal of these studies is to expand our...number of genomic profiles (DNA and mRNA arrays) of both human and mouse CPCs to provide a comprehensive dataset with which to identify key candidate
Liang, Yujie; Ying, Rendong; Lu, Zhenqi; Liu, Peilin
2014-01-01
In the design phase of sensor arrays during array signal processing, the estimation performance and system cost are largely determined by array aperture size. In this article, we address the problem of joint direction-of-arrival (DOA) estimation with distributed sparse linear arrays (SLAs) and propose an off-grid synchronous approach based on distributed compressed sensing to obtain larger array aperture. We focus on the complex source distribution in the practical applications and classify the sources into common and innovation parts according to whether a signal of source can impinge on all the SLAs or a specific one. For each SLA, we construct a corresponding virtual uniform linear array (ULA) to create the relationship of random linear map between the signals respectively observed by these two arrays. The signal ensembles including the common/innovation sources for different SLAs are abstracted as a joint spatial sparsity model. And we use the minimization of concatenated atomic norm via semidefinite programming to solve the problem of joint DOA estimation. Joint calculation of the signals observed by all the SLAs exploits their redundancy caused by the common sources and decreases the requirement of array size. The numerical results illustrate the advantages of the proposed approach. PMID:25420150
NASA Technical Reports Server (NTRS)
Ho, S. P.; Pappas, C. G.; Austermann, J.; Beall, J. A.; Becker, D.; Choi, S. K.; Datta, R.; Duff, S. M.; Gallardo, P. A.; Grace, E.;
2016-01-01
The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-meter Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 gigahertz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 gigahertz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 meter Kelvins. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 percent, a total array sensitivity of less than 10 microns Kelvin root mean square speed, and detector time constants and saturation powers suitable for ACT CMB observations.
NASA Astrophysics Data System (ADS)
Ho, S. P.; Pappas, C. G.; Austermann, J.; Beall, J. A.; Becker, D.; Choi, S. K.; Datta, R.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Hubmayr, J.; Koopman, B. J.; Lanen, J. V.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Ward, J. T.; Wollack, E. J.; Vavagiakis, E. M.
2016-08-01
The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-m Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 GHz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 GHz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 mK. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 %, a total array sensitivity of less than 10 \\upmu K√{ {s}}, and detector time constants and saturation powers suitable for ACT CMB observations.
In situ SEM Observation of Column-like and Foam-like CNT Array Nanoindentation
2011-03-02
frompyrolization of iron(II) phthalocyanine , producing vertically aligned CNTs with a nominal outer diameter of 50 nm.11,12 The array was indented using a 40 40 μm...www.acsami.org In situ SEM Observation of Column-like and Foam-like CNT Array Nanoindentation Matthew R. Maschmann,†,‡Qiuhong Zhang,†,§ Robert Wheeler...multiple length scales. Their behavior is expected to rely heavily on the properties of individual constituent CNTs , interactions and load distribution
GaLactic and Extragalactic All-Sky MWA-eXtended (GLEAM-X) survey: Pilot observations
NASA Astrophysics Data System (ADS)
Hurley-Walker, N.; Seymour, N.; Staveley-Smith, L.; Johnston-Hollitt, M.; Kapinska, A.; McKinley, B.
2017-01-01
This proposal is a pilot study for the extension of the highly successful GaLactic and Extragalactic MWA (GLEAM) survey (Wayth et al. 2015). The aim is to test out new observing strategies and data reduction techniques suitable for exploiting the longer baselines of the extended phase 2 MWA array. Deeper and wide surveys at higher resolution will enable a legion of science capabilities pertaining to galaxy evolution, clusters and the cosmic web, whilst maintaining the advantages over LOFAR including larger field-of-view, wider frequency coverage and better sensitivity to extended emission. We will continue the successful drift scan mode observing to test the feasibility of a large-area survey in 2017-B and onward. We will also target a single deep area with a bright calibrator source to establish the utility of focussed deep observations. In both cases, we will be exploring calibrating and imaging strategies across 72-231 MHz with the new long baselines. The published extragalactic sky catalogue (Hurley-Walker et al. 2017) improves the prospects for good ionospheric calibration in this new regime, as well as trivialising flux calibration. The new Alternative Data Release of the TIFR GMRT Sky Survey (TGSS-ADR1; Intema et al. 2016), which has 30" resolution and covers the proposed observing area, allows us to test whether our calibration and imaging strategy correctly recovers the true structure of (high surface-brightness) resolved sources. GLEAM-X will have lower noise, higher surface brightness sensitivity, and have considerably wider bandwidth than TGSS. These properties will enable a wide range of science, such as: Detecting and characterising cluster relics and haloes beyond z=0.45; Accurately determining radio source counts at multiple frequencies; Measuring the low-v luminosity function to z 0.5; Performing Galactic plane science such as HII region detection and cosmic tomography; Determining the typical ionospheric diffractive scale at the MRO, feeding into SKA_Low calibration strategies. In addition the proposal is designed to be commensally used for transients science, and will also create a more accurate, higher-resolution foreground model for the EoR2 field, allowing better foreground subtraction and therefore increased sensitivity to the EoR signal.
Qualification of Laser Diode Arrays for Mercury Laser Altimeter Mission
NASA Technical Reports Server (NTRS)
Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.
2004-01-01
NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. The MESSENGER mission is flying the Mercury Laser Altimeter (MLA) which is a diode-pumped Nd:YAG laser instrument designed to map the topography of Mercury. The environment imposed on the instrument by the orbital dynamics places special requirements on the laser diode arrays. In order to limit the radiative heating of the satellite from the surface of Mercury, the satellite is designed to have a highly elliptical orbit. The satellite will heat near perigee and cool near apogee. The laser power is cycled during these orbits so that the laser is on for only 30 minutes (perigee) in a 12 hour orbit. The laser heats 10 C while powered up and cools while powered down. In order to simulate these operational conditions, we designed a test to measure the LDA performance while being temperature and power cycled. Though the mission requirements are specific to NASA and performance requirements are derived from unique operating conditions, the results are general and widely applicable. We present results on the performance of twelve LDAs operating for several hundred million pulses. The arrays are 100 watt, quasi-CW, conductively-cooled, 808 nm devices. Prior to testing, we fully characterize each device to establish a baseline for individual array performance and status. Details of this characterization can be found in reference. Arrays are divided into four groups and subjected to the temperature and power cycling matrix are shown.
Big-Data Perspective to Operating an SKA-Type Synthesis Array Radio Telescope
NASA Astrophysics Data System (ADS)
Shanmugha Sundaram, GA
2015-08-01
Of the two forerunner sites, viz. Australia and South Africa, where pioneering advancements to state-of-the-art in synthesis array radio astronomy instrumentation are being attempted in the form of pathfinders to the Square Kilometer Array (SKA), for its eventual deployment, a diversity of site-dependent topology and design metrics exists. Towards addressing some of the fundamental mysteries in physics at the micro- and macro-cosm levels, that form the Key Science Projects (KSPs) for the SKA, and interfacing them to an optimally designed array conguration, a critical evaluation of their radio imaging capabilities and metrics becomes paramount. Here, the various KSPs and instrument design specifications are discussed, for relative merits and adaptability to either site, from invoking well-founded and established array-design and optimization principles designed into a customized software tool. Since the problem of array design is one that encompasses variables on several scales such as separation distances between the radio interferometric pair (termed the baseline), factors such as redundancy, flux and phase calibration, bandwidth, integration time, clock synchronization for the correlation process at the detector, and many other ambient-defined parameters, there is a significant component of big data involved in the complex visibilities that are to be Fourier transformed from the spatial to the radio-sky domain (to generate a radio sky map) using vast computational infrastructure, with robust data connectivity and data handling facilities to support this. A crucial requirement exists to make the general public aware of the implications of such a massive scale scientific and technological venture, which shall be the focus of this presentation.
Investigation of ablation of thin foil aluminum ribbon array at 1.5 MA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Fan, E-mail: yefan1931@126.com; Li, Zhenghong; Chen, Faxin
We present experimental studies of initiation and ablation of a thin foil aluminum ribbon array at the 1.5 MA current level. In contrast to the previous work, we employ ribbon arrays with different ribbon gap parameters to investigate how this affects plasma initiation and foil ablation. Gated narrowband ultraviolet imaging indicated that the current was disorderly distributed at early period of discharge. But later on, it became axially stable and azimuthally symmetrical even for load with a gap as small as 0.1 mm. Using magnetic field probes installed inside and outside the array, we also observed that precursor current at positionsmore » with a distance of less than 2.7 mm to the central axis for 4-mm-radius arrays decreased when ribbon gap became small. Results of 0.2 mm gap ribbon array showed an evidence that ribbons can be merged. These observations imply that thin foil ribbon arrays may have potential applications in z-pinch experiments on large scale pulsed power facilities.« less
NASA Technical Reports Server (NTRS)
Crician, Brian E.; Zwart, Sara R.; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather A.; Pierson, Duane; Sams, Clarence F.; Smith, Scott M.
2013-01-01
Background: Aspects of immune system dysregulation associated with long-duration spaceflight have yet to be fully characterized, and may represent a clinical risk to crewmembers during deep space missions. Plasma cytokine concentration may serve as an indicator of in vivo physiological changes or immune system mobilization. Methods: The plasma concentrations of 22 cytokines were monitored in 28 astronauts during long-duration spaceflight onboard the International Space Station. Blood samples were collected three times before flight, 3-5 times during flight (depending on mission duration), at landing and 30 days post-landing. Analysis was performed by bead array immunoassay. Results: With few exceptions, minimal detectable mean plasma levels (<10 pg/ml) were observed at baseline (launch minus 180) for innate inflammatory cytokines or adaptive regulatory cytokines, however IL-1ra and several chemokines were constitutively present. An increase in the plasma concentration IL-8, IL-1ra, Tpo, CCL4, CXCL5, TNF(alpha), GM-CSF and VEGF was observed associated with spaceflight. Significant post-flight increases were observed for IL-6 and CCL2. No significant alterations were observed during or following spaceflight for adaptive/T-regulatory cytokines (IL-2, IFN(gamma), IL-17, IL4, IL-5, IL-10). Conclusions: This pattern of cytokine dysregulation suggests multiple physiological adaptations persist during flight, including inflammation, leukocyte recruitment, angiogenesis and thrombocyte regulation.
Interferometric Monitoring of Gamma-Ray Bright AGNs: S5 0716+714
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jee Won; Lee, Sang-Sung; Hodgson, Jeffrey A.
We present the results of very long baseline interferometry (VLBI) observations of gamma-ray bright blazar S5 0716+714 using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, as part of the Interferometric Monitoring of Gamma-ray Bright active galactic nuclei (iMOGABA) KVN key science program. Observations were conducted in 29 sessions from 2013 January 16 to 2016 March 1, with the source being detected and imaged at all available frequencies. In all epochs, the source was compact on the milliarcsecond scale, yielding a compact VLBI core dominating the synchrotron emission on these scales. Based on themore » multiwavelength data between 15 GHz (Owens Valley Radio Observatory) and 230 GHz (Submillimeter Array), we found that the source shows multiple prominent enhancements of the flux density at the centimeter (cm) and millimeter (mm) wavelengths, with mm enhancements leading cm enhancements by −16 ± 8 days. The turnover frequency was found to vary between 21 and 69 GHz during our observations. By assuming a synchrotron self-absorption model for the relativistic jet emission in S5 0716+714, we found the magnetic field strength in the mas emission region to be ≤5 mG during the observing period, yielding a weighted mean of 1.0 ± 0.6 mG for higher turnover frequencies (e.g., >45 GHz).« less
Simultaneous processing of photographic and accelerator array data from sled impact experiment
NASA Astrophysics Data System (ADS)
Ash, M. E.
1982-12-01
A Quaternion-Kalman filter model is derived to simultaneously analyze accelerometer array and photographic data from sled impact experiments. Formulas are given for the quaternion representation of rotations, the propagation of dynamical states and their partial derivatives, the observables and their partial derivatives, and the Kalman filter update of the state given the observables. The observables are accelerometer and tachometer velocity data of the sled relative to the track, linear accelerometer array and photographic data of the subject relative to the sled, and ideal angular accelerometer data. The quaternion constraints enter through perfect constraint observations and normalization after a state update. Lateral and fore-aft impact tests are analyzed with FORTRAN IV software written using the formulas of this report.
BIG MAC: A bolometer array for mid-infrared astronomy, Center Director's Discretionary Fund
NASA Technical Reports Server (NTRS)
Telesco, C. M.; Decher, R.; Baugher, C.
1985-01-01
The infrared array referred to as Big Mac (for Marshall Array Camera), was designed for ground based astronomical observations in the wavelength range 5 to 35 microns. It contains 20 discrete gallium-doped germanium bolometer detectors at a temperature of 1.4K. Each bolometer is irradiated by a square field mirror constituting a single pixel of the array. The mirrors are arranged contiguously in four columns and five rows, thus defining the array configuration. Big Mac utilized cold reimaging optics and an up looking dewar. The total Big Mac system also contains a telescope interface tube for mounting the dewar and a computer for data acquisition and processing. Initial astronomical observations at a major infrared observatory indicate that Big Mac performance is excellent, having achieved the design specifications and making this instrument an outstanding tool for astrophysics.
NASA's Spitzer Space Telescope's Operational Mission Experience
NASA Technical Reports Server (NTRS)
Wilson, Robert K.; Scott, Charles P.
2006-01-01
New Generation of Detector Arrays(100 to 10,000 Gain in Capability over Previous Infrared Space Missions). IRAC: 256 x 256 pixel arrays operating at 3.6 microns, 4.5 microns, 5.8 microns, 8.0 microns. MIPS: Photometer with 3 sets of arrays operating at 24 microns, 70 microns and 160 microns. 128 x 128; 32 x 32 and 2 x 20 arrays. Spectrometer with 50-100 micron capabilities. IRS: 4 Array (128x128 pixel) Spectrograph, 4 -40 microns. Warm Launch Architecture: All other Infrared Missions launched with both the telescope and scientific instrument payload within the cryostat or Dewar. Passive cooling used to cool outer shell to approx.40 K. Cryogenic Boil-off then cools telescope to required 5.5K. Earth Trailing Heliocentric Orbit: Increased observing efficiency, simplification of observation planning, removes earth as heat source.
Upgrade of absolute extreme ultraviolet diagnostic on J-TEXT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X. L.; Cheng, Z. F., E-mail: chengfe@hust.edu.cn; Hou, S. Y.
The absolute extreme ultraviolet (AXUV) diagnostic system is used for radiation observation on J-TEXT tokamak [J. Zhang, G. Zhuang, Z. J. Wang, Y. H. Ding, X. Q. Zhang, and Y. J. Tang, Rev. Sci. Instrum. 81, 073509 (2010)]. The upgrade of the AXUV system is aimed to improve the spatial resolution and provide a three-dimensional image on J-TEXT. The new system consists of 12 AXUV arrays (4 AXUV16ELG arrays, 8 AXUV20ELG arrays). The spatial resolution in the cross-section is 21 mm for the AXUV16ELG arrays and 17 mm for the AXUV20ELG arrays. The pre-amplifier is also upgraded for a highermore » signal to noise ratio. By upgrading the AXUV imaging system, a more accurate observation on the radiation information is obtained.« less
NASA Astrophysics Data System (ADS)
Gómez, José L.; Lobanov, Andrei P.; Bruni, Gabriele; Kovalev, Yuri Y.; Marscher, Alan P.; Jorstad, Svetlana G.; Mizuno, Yosuke; Bach, Uwe; Sokolovsky, Kirill V.; Anderson, James M.; Galindo, Pablo; Kardashev, Nikolay S.; Lisakov, Mikhail M.
2016-02-01
We present the first polarimetric space very long baseline interferometry (VLBI) imaging observations at 22 GHz. BL Lacertae was observed in 2013 November 10 with the RadioAstron space VLBI mission, including a ground array of 15 radio telescopes. The instrumental polarization of the space radio telescope is found to be less than 9%, demonstrating the polarimetric imaging capabilities of RadioAstron at 22 GHz. Ground-space fringes were obtained up to a projected baseline distance of 7.9 Earth diameters in length, allowing us to image the jet in BL Lacertae with a maximum angular resolution of 21 μas, the highest achieved to date. We find evidence for emission upstream of the radio core, which may correspond to a recollimation shock at about 40 μas from the jet apex, in a pattern that includes other recollimation shocks at approximately 100 and 250 μas from the jet apex. Polarized emission is detected in two components within the innermost 0.5 mas from the core, as well as in some knots 3 mas downstream. Faraday rotation analysis, obtained from combining RadioAstron 22 GHz and ground-based 15 and 43 GHz images, shows a gradient in rotation measure and Faraday-corrected polarization vector as a function of position angle with respect to the core, suggesting that the jet in BL Lacertae is threaded by a helical magnetic field. The intrinsic de-boosted brightness temperature in the unresolved core exceeds 3× {10}12 K, suggesting, at the very least, departure from equipartition of energy between the magnetic field and radiating particles.
Ohba, Kenji; Singh, Brijesh Kumar; Sinha, Rohit Anthony; Lesmana, Ronny; Liao, Xiao-Hui; Ghosh, Sujoy; Refetoff, Samuel
2016-01-01
Clinical symptoms may vary and not necessarily reflect serum thyroid hormone (TH) levels during acute and chronic hyperthyroidism as well as recovery from hyperthyroidism. We thus examined changes in hepatic gene expression and serum TH/TSH levels in adult male mice treated either with a single T3 (20 μg per 100 g body weight) injection (acute T3) or daily injections for 14 days (chronic T3) followed by 10 days of withdrawal. Gene expression arrays from livers harvested at these time points showed that among positively-regulated target genes, 320 were stimulated acutely and 429 chronically by T3. Surprisingly, only 69 of 680 genes (10.1%) were induced during both periods, suggesting desensitization of the majority of acutely stimulated target genes. About 90% of positively regulated target genes returned to baseline expression levels after 10 days of withdrawal; however, 67 of 680 (9.9%) did not return to baseline despite normalization of serum TH/TSH levels. Similar findings also were observed for negatively regulated target genes. Chromatin immunoprecipitation analysis of representative positively regulated target genes suggested that acetylation of H3K9/K14 was associated with acute stimulation, whereas trimethylation of H3K4 was associated with chronic stimulation. In an in vivo model of chronic intrahepatic hyperthyroidism since birth, adult male monocarboxylate transporter-8 knockout mice also demonstrated desensitization of most acutely stimulated target genes that were examined. In summary, we have identified transcriptional desensitization and incomplete recovery of gene expression during chronic hyperthyroidism and recovery. Our findings may be a potential reason for discordance between clinical symptoms and serum TH levels observed in these conditions. PMID:26866609
Orbital Elements and Stellar Parameters of the Active Binary UX Arietis
NASA Astrophysics Data System (ADS)
Hummel, C. A.; Monnier, J. D.; Roettenbacher, R. M.; Torres, G.; Henry, G. W.; Korhonen, H.; Beasley, A.; Schaefer, G. H.; Turner, N. H.; Ten Brummelaar, T.; Farrington, C. D.; Sturmann, J.; Sturmann, L.; Baron, F.; Kraus, S.
2017-08-01
Stellar activity observed as large surface spots, radio flares, or emission lines is often found in binary systems. UX Arietis exhibits these signs of activity, originating on the K0 subgiant primary component. Our aim is to resolve the binary, measure the orbital motion, and provide accurate stellar parameters such as masses and luminosities to aid in the interpretation of the observed phenomena. Using the CHARA six-telescope optical long-baseline array on Mount Wilson, California, we obtained amplitudes and phases of the interferometric visibility on baselines up to 330 m in length, resolving the two components of the binary. We reanalyzed archival Center for Astrophysics spectra to disentangle the binary component spectra and the spectrum of the third component, which was resolved by speckle interferometry. We also obtained new spectra with the Nordic Optical Telescope, and we present new photometric data that we use to model stellar surface spot locations. Both interferometric visibilities and spectroscopic radial velocities are modeled with a spotted primary stellar surface using the Wilson-Devinney code. We fit the orbital elements to the apparent orbit and radial velocity data to derive the distance (52.1 ± 0.8 pc) and stellar masses ({M}{{P}}=1.30+/- 0.06 {M}⊙ , {M}{{S}}=1.14+/- 0.06 {M}⊙ ). The radius of the primary can be determined to be {R}{{P}}=5.6+/- 0.1 {R}⊙ and that of the secondary to be {R}{{S}}=1.6+/- 0.2 {R}⊙ . The equivalent spot coverage of the primary component was found to be 62% with an effective temperature 20% below that of the unspotted surface.
Optimizing fixed observational assets in a coastal observatory
NASA Astrophysics Data System (ADS)
Frolov, Sergey; Baptista, António; Wilkin, Michael
2008-11-01
Proliferation of coastal observatories necessitates an objective approach to managing of observational assets. In this article, we used our experience in the coastal observatory for the Columbia River estuary and plume to identify and address common problems in managing of fixed observational assets, such as salinity, temperature, and water level sensors attached to pilings and moorings. Specifically, we addressed the following problems: assessing the quality of an existing array, adding stations to an existing array, removing stations from an existing array, validating an array design, and targeting of an array toward data assimilation or monitoring. Our analysis was based on a combination of methods from oceanographic and statistical literature, mainly on the statistical machinery of the best linear unbiased estimator. The key information required for our analysis was the covariance structure for a field of interest, which was computed from the output of assimilated and non-assimilated models of the Columbia River estuary and plume. The network optimization experiments in the Columbia River estuary and plume proved to be successful, largely withstanding the scrutiny of sensitivity and validation studies, and hence providing valuable insight into optimization and operation of the existing observational network. Our success in the Columbia River estuary and plume suggest that algorithms for optimal placement of sensors are reaching maturity and are likely to play a significant role in the design of emerging ocean observatories, such as the United State's ocean observation initiative (OOI) and integrated ocean observing system (IOOS) observatories, and smaller regional observatories.
A New Statistics-Based Online Baseline Restorer for a High Count-Rate Fully Digital System.
Li, Hongdi; Wang, Chao; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio; Liu, Shitao; An, Shaohui; Wong, Wai-Hoi
2010-04-01
The goal of this work is to develop a novel, accurate, real-time digital baseline restorer using online statistical processing for a high count-rate digital system such as positron emission tomography (PET). In high count-rate nuclear instrumentation applications, analog signals are DC-coupled for better performance. However, the detectors, pre-amplifiers and other front-end electronics would cause a signal baseline drift in a DC-coupling system, which will degrade the performance of energy resolution and positioning accuracy. Event pileups normally exist in a high-count rate system and the baseline drift will create errors in the event pileup-correction. Hence, a baseline restorer (BLR) is required in a high count-rate system to remove the DC drift ahead of the pileup correction. Many methods have been reported for BLR from classic analog methods to digital filter solutions. However a single channel BLR with analog method can only work under 500 kcps count-rate, and normally an analog front-end application-specific integrated circuits (ASIC) is required for the application involved hundreds BLR such as a PET camera. We have developed a simple statistics-based online baseline restorer (SOBLR) for a high count-rate fully digital system. In this method, we acquire additional samples, excluding the real gamma pulses, from the existing free-running ADC in the digital system, and perform online statistical processing to generate a baseline value. This baseline value will be subtracted from the digitized waveform to retrieve its original pulse with zero-baseline drift. This method can self-track the baseline without a micro-controller involved. The circuit consists of two digital counter/timers, one comparator, one register and one subtraction unit. Simulation shows a single channel works at 30 Mcps count-rate with pileup condition. 336 baseline restorer circuits have been implemented into 12 field-programmable-gate-arrays (FPGA) for our new fully digital PET system.
Intrafractional baseline drift during free breathing breast cancer radiation therapy.
Jensen, Christer Andre; Acosta Roa, Ana María; Lund, Jo-Åsmund; Frengen, Jomar
2017-06-01
Intrafraction motion in breast cancer radiation therapy (BCRT) has not yet been thoroughly described in the literature. It has been observed that baseline drift occurs as part of the intrafraction motion. This study aims to measure baseline drift and its incidence in free-breathing BCRT patients using an in-house developed laser system for tracking the position of the sternum. Baseline drift was monitored in 20 right-sided breast cancer patients receiving free breathing 3D-conformal RT by using an in-house developed laser system which measures one-dimensional distance in the AP direction. A total of 357 patient respiratory traces from treatment sessions were logged and analysed. Baseline drift was compared to patient positioning error measured from in-field portal imaging. The mean overall baseline drift at end of treatment sessions was -1.3 mm for the patient population. Relatively small baseline drift was observed during the first fraction; however it was clearly detected already at the second fraction. Over 90% of the baseline drift occurs during the first 3 min of each treatment session. The baseline drift rate for the population was -0.5 ± 0.2 mm/min in the posterior direction the first minute after localization. Only 4% of the treatment sessions had a 5 mm or larger baseline drift at 5 min, all towards the posterior direction. Mean baseline drift in the posterior direction in free breathing BCRT was observed in 18 of 20 patients over all treatment sessions. This study shows that there is a substantial baseline drift in free breathing BCRT patients. No clear baseline drift was observed during the first treatment session; however, baseline drift was markedly present at the rest of the sessions. Intrafraction motion due to baseline drift should be accounted for in margin calculations.
Application of Solar Electric Propulsion to a Comet Surface Sample Return Mission
NASA Technical Reports Server (NTRS)
Cupples, Mike; Coverstone, Victoria; Woo, Byoungsam
2004-01-01
Current NSTAR (planned for the Discovery Mission: Dawn) and NASA's Evolutionary Xenon Thruster based propulsion systems were compared for a comet surface sample return mission to Tempe1 1. Mission and systems analyses were conducted over a range of array power for each propulsion system with an array of 12 kW EOL at 1 AU chosen for a baseline. Engine configurations investigated for NSTAR included 4 operational engines with 1 spare and 5 operational engines with 1 spare. The NEXT configuration investigated included 2 operational engines plus 1 spare, with performance estimated for high thrust and high Isp throttling modes. Figures of merit for this comparison include Solar Electric Propulsion dry mass, average engine throughput, and net non-propulsion payload returned to Earth flyby.
Astronomical observatories on the Moon
NASA Astrophysics Data System (ADS)
Swanson, Paul N.; Cutts, James A.
1994-06-01
The Space Exploration Initiative presents an opportunity to construct astronomical telescopes on the Moon using the infrastructure provided by the lunar outpost. Small automatically deployed telescopes can be carried on the survey missions, be deployed on the lunar surface and be operated remotely from the Earth. Possibilities for early, small optical telescopes are a zenith pointed transit telescope, a student telescope, and a 0.5 to 1 meter automatic, fully steerable telescope. After the lunar outpost is established the lunar interferometers will be constructed in an evolutionary fashion. There are three lunar interferometers which have been studied. The most ambitious is the optical interferometer with a 1 to 2 -km baseline and seven 1.5 aperture elements arranged in a 'Y' configuration with a central beam combiner. The Submillimeter interferometer would use seven, 5-m reflectors in a 'Y' or circular configuration with a 1-km baseline. The Very Low Frequency (VLF) array would operate below 30 mHz with as many as 100 elements and a 200-km baseline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lave, Matthew Samuel; Stein, Joshua; Burnham, Laurie
This report provides performance data and analysis for two Stion copper indium gallium selenide (CIGS) module types, one framed, the other frameless, and installed at the New Mexico, Florida and Vermont RTCs. Sandia looked at data from both module types and compared the latter with data from an adjacent monocrystalline baseline array at each RTC. The results indicate that the Stion modules are slightly outperforming their rated power, with efficiency values above 100% of rated power, at 25degC cell temperatures. In addition, Sandia sees no significant performance differences between module types, which is expected because the modules differ only inmore » their framing. In contrast to the baseline systems, the Stion strings showed increasing efficiency with increasing irradiance, with the greatest increase between zero and 400 Wm -2 but still noticeable increases at 1000 Wm -2 . Although baseline data availability in Vermont was spotty and therefore comparative trends are difficult to discern, the Stion modules there may offer snow- shedding advantages over monocrystalline-silicon modules but these findings are preliminary.« less
Patterned synthesis of ZnO nanorod arrays for nanoplasmonic waveguide applications
NASA Astrophysics Data System (ADS)
Lamson, Thomas L.; Khan, Sahar; Wang, Zhifei; Zhang, Yun-Kai; Yu, Yong; Chen, Zhe-Sheng; Xu, Huizhong
2018-03-01
We report the patterned synthesis of ZnO nanorod arrays of diameters between 50 nm and 130 nm and various spacings. This was achieved by patterning hole arrays in a polymethyl methacrylate layer with electron beam lithography, followed by chemical synthesis of ZnO nanorods in the patterned holes using the hydrothermal method. The fabrication of ZnO nanorod waveguide arrays is also demonstrated by embedding the nanorods in a silver film using the electroplating process. Optical transmission measurement through the nanorod waveguide arrays is performed and strong resonant transmission of visible light is observed. We have found the resonance shifts to a longer wavelength with increasing nanorod diameter. Furthermore, the resonance wavelength is independent of the nanowaveguide array period, indicating the observed resonant transmission is the effect of a single ZnO nanorod waveguide. These nanorod waveguides may be used in single-molecule imaging and sensing as a result of the nanoscopic profile of the light transmitted through the nanorods and the controlled locations of these nanoscale light sources.
NASA Astrophysics Data System (ADS)
Nikzad, Shouleh; Jewell, April D.; Hoenk, Michael E.; Jones, Todd J.; Hennessy, John; Goodsall, Tim; Carver, Alexander G.; Shapiro, Charles; Cheng, Samuel R.; Hamden, Erika T.; Kyne, Gillian; Martin, D. Christopher; Schiminovich, David; Scowen, Paul; France, Kevin; McCandliss, Stephan; Lupu, Roxana E.
2017-07-01
Exciting concepts are under development for flagship, probe class, explorer class, and suborbital class NASA missions in the ultraviolet/optical spectral range. These missions will depend on high-performance silicon detector arrays being delivered affordably and in high numbers. To that end, we have advanced delta-doping technology to high-throughput and high-yield wafer-scale processing, encompassing a multitude of state-of-the-art silicon-based detector formats and designs. We have embarked on a number of field observations, instrument integrations, and independent evaluations of delta-doped arrays. We present recent data and innovations from JPL's Advanced Detectors and Systems Program, including two-dimensional doping technology, JPL's end-to-end postfabrication processing of high-performance UV/optical/NIR arrays and advanced coatings for detectors. While this paper is primarily intended to provide an overview of past work, developments are identified and discussed throughout. Additionally, we present examples of past, in-progress, and planned observations and deployments of delta-doped arrays.
Ryberg, T.; Haberland, C.H.; Fuis, G.S.; Ellsworth, W.L.; Shelly, D.R.
2010-01-01
Non-volcanic tremor (NVT) has been observed at several subduction zones and at the San Andreas Fault (SAF). Tremor locations are commonly derived by cross-correlating envelope-transformed seismic traces in combination with source-scanning techniques. Recently, they have also been located by using relative relocations with master events, that is low-frequency earthquakes that are part of the tremor; locations are derived by conventional traveltime-based methods. Here we present a method to locate the sources of NVT using an imaging approach for multiple array data. The performance of the method is checked with synthetic tests and the relocation of earthquakes. We also applied the method to tremor occurring near Cholame, California. A set of small-aperture arrays (i.e. an array consisting of arrays) installed around Cholame provided the data set for this study. We observed several tremor episodes and located tremor sources in the vicinity of SAF. During individual tremor episodes, we observed a systematic change of source location, indicating rapid migration of the tremor source along SAF. ?? 2010 The Authors Geophysical Journal International ?? 2010 RAS.
ALMA Array Operations Group process overview
NASA Astrophysics Data System (ADS)
Barrios, Emilio; Alarcon, Hector
2016-07-01
ALMA Science operations activities in Chile are responsibility of the Department of Science Operations, which consists of three groups, the Array Operations Group (AOG), the Program Management Group (PMG) and the Data Management Group (DMG). The AOG includes the Array Operators and have the mission to provide support for science observations, operating safely and efficiently the array. The poster describes the AOG process, management and operational tools.
Platform for immobilization and observation of subcellular processes
McKnight, Timothy E.; Kalluri, Udaya C.; Melechko, Anatoli V.
2014-08-26
A method of immobilizing matter for imaging that includes providing an array of nanofibers and directing matter to the array of the nanofibers. The matter is immobilized when contacting at least three nanofibers of the array of nanofibers simultaneously. Adjacent nanofibers in the array of nanofibers may be separated by a pitch as great as 100 microns. The immobilized matter on the array of nanofibers may then be imaged. In some examples, the matter may be cell matter, such as protoplasts.
NASA Technical Reports Server (NTRS)
Fowler, A. M.; Joyce, R. R.
1990-01-01
The Hughes 20 x 64 Si:As impurity band conduction arrays designed for ground-based and spaceborne astronomy observations is described together with experiments performed at NOAO to test these arrays. Special attention is given to the design and the characteristics of the test system and to the test methods. The initial tests on two columns of one array indicate that the array is easy to operate and performed satisfactorily.
Exploring the Variability of the Flat-spectrum Radio Source 1633+382. II. Physical Properties
NASA Astrophysics Data System (ADS)
Algaba, Juan-Carlos; Lee, Sang-Sung; Rani, Bindu; Kim, Dae-Won; Kino, Motoki; Hodgson, Jeffrey; Zhao, Guang-Yao; Byun, Do-Young; Gurwell, Mark; Kang, Sin-Cheol; Kim, Jae-Young; Kim, Jeong-Sook; Kim, Soon-Wook; Park, Jong-Ho; Trippe, Sascha; Wajima, Kiyoaki
2018-06-01
The flat-spectrum radio quasar 1633+382 (4C 38.41) showed a significant increase of its radio flux density during the period 2012 March–2015 August, which correlates with γ-ray flaring activity. Multi-frequency simultaneous very long baseline interferometry (VLBI) observations were conducted as part of the interferometric monitoring of gamma-ray bright active galactic nuclei (iMOGABA) program and supplemented with additional radio monitoring observations with the OVRO 40 m telescope, the Boston University VLBI program, and the Submillimeter Array. The epochs of the maxima for the two largest γ-ray flares coincide with the ejection of two respective new VLBI components. Analysis of the spectral energy distribution indicates a higher turnover frequency after the flaring events. The evolution of the flare in the turnover frequency-turnover flux density plane probes the adiabatic losses in agreement with the shock-in-jet model. The derived synchrotron self-absorption magnetic fields, of the order of 0.1 mG, do not seem to change dramatically during the flares, and are much weaker, by a factor 104, than the estimated equipartition magnetic fields, indicating that the source of the flare may be associated with a particle-dominated emitting region.
High-Resolution Observations of a Binary Black Hole Candidate
NASA Astrophysics Data System (ADS)
Tsai, Chao-Wei; Phillips, Chris; Norris, Ray; Jarrett, Thomas; Emonts, Bjorn; Cluver, Michelle; Eisenhardt, Peter; Stern, Daniel; Assef, Roberto
2012-10-01
We propose a 12-hour 2.3 GHz continuum Long Baseline Array (LBA) observation of WISE J2332-5056, a newly discovered supermassive black hole (SMBH) merger candidate that is located in the nearby universe (z = 0.3447). Our recently acquired 9 GHz ATCA map shows unusual radio morphology: a one-sided, smaller (and likely younger) FR-I jet perpendicular to a larger, Doppler-boosted FR-II jet. Follow-up Gemini-S/GMOS spectroscopy of this WISE-selected radio galaxy reveals broad emission lines blue-shifted by > 3,500 km/s with respect to the narrow lines and host galaxy, hallmarks of a dual AGN system. Combined, the optical spectroscopy and radio morphology of this object are strongly suggestive of a black hole merger system. Even in the local universe these systems are extremely difficult to identify; yet the process of supermassive blackhole growth is vital toward understanding galaxy evolution from the early to the current universe. Moreover, nearby merging SMBHs may serve as outstanding targets for gravitational wave studies. The proposed high resolution LBA map, reaching 50 pc resolution at the source redshift will allow us to investigate the SMBH merger scenario hypothesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Sean M.; Wilner, David J.; Bai, Xue-Ning
We present long baseline Atacama Large Millimeter/submillimeter Array (ALMA) observations of the 870 μm continuum emission from the nearest gas-rich protoplanetary disk, around TW Hya, that trace millimeter-sized particles down to spatial scales as small as 1 au (20 mas). These data reveal a series of concentric ring-shaped substructures in the form of bright zones and narrow dark annuli (1–6 au) with modest contrasts (5%–30%). We associate these features with concentrations of solids that have had their inward radial drift slowed or stopped, presumably at local gas pressure maxima. No significant non-axisymmetric structures are detected. Some of the observed featuresmore » occur near temperatures that may be associated with the condensation fronts of major volatile species, but the relatively small brightness contrasts may also be a consequence of magnetized disk evolution (the so-called zonal flows). Other features, particularly a narrow dark annulus located only 1 au from the star, could indicate interactions between the disk and young planets. These data signal that ordered substructures on ∼au scales can be common, fundamental factors in disk evolution and that high-resolution microwave imaging can help characterize them during the epoch of planet formation.« less
An X-Ray and Radio Study of the Varying Expansion Velocities in Tycho's Supernova Remnant
NASA Technical Reports Server (NTRS)
Williams, Brian J.; Chomiuk, Laura; Hewitt, John W.; Blondin, John M.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Petre, Robert; Reynolds, Stephen P.
2016-01-01
We present newly obtained X-ray and radio observations of Tycho's supernova remnant using Chandra and the Karl G. Jansky Very Large Array in 2015 and 2013/14, respectively. When combined with earlier epoch observations by these instruments, we now have time baselines for expansion measurements of the remnant of 12-15 year in the X-rays and 30 year in the radio. The remnant's large angular size allows for proper motion measurements at many locations around the periphery of the blast wave. We find, consistent with earlier measurements, a clear gradient in the expansion velocity of the remnant, despite its round shape. The proper motions on the western and southwestern sides of the remnant are about a factor of two higher than those in the east and northeast. We showed in an earlier work that this is related to an offset of the explosion site from the geometric center of the remnant due to a density gradient in the ISM, and using our refined measurements reported here, we find that this offset is approximately 23'' towards the northeast. An explosion center offset in such a circular remnant has implications for searches for progenitor companions in other remnants.
Discovery of a Luminous Radio Transient 460 pc from the Central Supermassive Black Hole in Cygnus A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perley, D. A.; Perley, R. A.; Dhawan, V.
2017-06-01
We report the appearance of a new radio source at a projected offset of 460 pc from the nucleus of Cygnus A. The flux density of the source (which we designate Cygnus A-2) rose from an upper limit of <0.5 mJy in 1989 to 4 mJy in 2016 ( ν = 8.5 GHz), but is currently not varying by more than a few percent per year. The radio luminosity of the source is comparable to the most luminous known supernovae, it is compact in Very Long Baseline Array observations down to a scale of 4 pc, and it is coincidentmore » with a near-infrared point source seen in pre-existing adaptive optics and HST observations. The most likely interpretation of this source is that it represents a secondary supermassive black hole in a close orbit around the Cygnus A primary, though an exotic supernova model cannot be ruled out. The gravitational influence of a secondary SMBH at this location may have played an important role in triggering the rapid accretion that has powered the Cygnus A radio jet over the past 10{sup 7} years.« less
Circumstellar Disks Around Rapidly Rotating Be-type Stars
NASA Astrophysics Data System (ADS)
Touhami, Yamina
2012-01-01
Be stars are rapidly rotating B-type stars that eject large amounts of gaseous material into a circumstellar equatorial disk. The existence of this disk has been confirmed through the presence of several observational signatures such as the strong hydrogen emission lines, the IR flux excess, and the linear polarization detected from these systems. Here we report simultaneous near-IR interferometric and spectroscopic observations of circumstellar disks around Be stars obtained with the CHARA Array long baseline interferometer and the Mimir spectrograph at Lowell observatory. The goal of this project was to measure precise angular sizes and to characterize the fundamental geometrical and physical properties of the circumstellar disks. We were able to determine spatial extensions, inclinations, and position angles, as well as the gas density profile of the circumstellar disks using an elliptical Gaussian model and a physical thick disk model, and we show that the K-band interferometric angular sizes of the circumstellar disks are correlated with the H-alpha angular sizes. By combining the projected rotational velocity of the Be star with the disk inclination derived from interferometry, we provide estimates of the equatorial rotational velocities of these rapidly rotating Be stars.
Imaging and Modeling Nearby Stellar Systems through Infrared Interferometers
NASA Astrophysics Data System (ADS)
Che, Xiao; Monnier, J. D.; Ten Brummelaar, T.; Sturmann, L.; Millan-Gabet, R.; Baron, F.; Kraus, S.; Zhao, M.; CHARA
2014-01-01
Long-baseline infrared interferometers with sub-milliarcsecond angular resolution can now resolve photospheric features and the circumstellar environments of nearby massive stars. Closure phase measurements have made model-independent imaging possible. During the thesis, I have expanded Michigan Infrared Combiner (MIRC) from a 4-beam combiner to a 6-beam combiner to improve the (u,v) coverage, and installed Photometric Channels system to reduce the RMS of data by a factor of 3. I am also in charge of the Wavefront Sensor of the CHARA Adaptive Optics project to increase the sensitivity of the telescope array to enlarge the observable Young Stellar Objects (YSOs). My scientific research has focused on using mainly MIRC at CHARA to model and image rapidly rotating stars. The results are crucial for testing the next generation of stellar models that incorporate evolution of internal angular momentum. Observations of Be stars with MIRC have resolved the innermost parts of the disks, allowing us to study the evolution of the disks and star-disk interactions. I have also adopted a semi-analytical disk model to constrain Mid-InfraRed (MIR) disks of YSOs using interferometric and spectroscopic data.
Moon-Based INSAR Geolocation and Baseline Analysis
NASA Astrophysics Data System (ADS)
Liu, Guang; Ren, Yuanzhen; Ye, Hanlin; Guo, Huadong; Ding, Yixing; Ruan, Zhixing; Lv, Mingyang; Dou, Changyong; Chen, Zhaoning
2016-07-01
Earth observation platform is a host, the characteristics of the platform in some extent determines the ability for earth observation. Currently most developing platforms are satellite, in contrast carry out systematic observations with moon based Earth observation platform is still a new concept. The Moon is Earth's only natural satellite and is the only one which human has reached, it will give people different perspectives when observe the earth with sensors from the moon. Moon-based InSAR (SAR Interferometry), one of the important earth observation technology, has all-day, all-weather observation ability, but its uniqueness is still a need for analysis. This article will discuss key issues of geometric positioning and baseline parameters of moon-based InSAR. Based on the ephemeris data, the position, liberation and attitude of earth and moon will be obtained, and the position of the moon-base SAR sensor can be obtained by coordinate transformation from fixed seleno-centric coordinate systems to terrestrial coordinate systems, together with the Distance-Doppler equation, the positioning model will be analyzed; after establish of moon-based InSAR baseline equation, the different baseline error will be analyzed, the influence of the moon-based InSAR baseline to earth observation application will be obtained.
Baseline estimation from simultaneous satellite laser tracking
NASA Technical Reports Server (NTRS)
Dedes, George C.
1987-01-01
Simultaneous Range Differences (SRDs) to Lageos are obtained by dividing the observing stations into pairs with quasi-simultaneous observations. For each of those pairs the station with the least number of observations is identified, and at its observing epochs interpolated ranges for the alternate station are generated. The SRD observables are obtained by subtracting the actually observed laser range of the station having the least number of observations from the interpolated ranges of the alternate station. On the basis of these observables semidynamic single baseline solutions were performed. The aim of these solutions is to further develop and implement the SRD method in the real data environment, to assess its accuracy, its advantages and disadvantages as related to the range dynamic mode methods, when the baselines are the only parameters of interest. Baselines, using simultaneous laser range observations to Lageos, were also estimated through the purely geometric method. These baselines formed the standards the standards of comparison in the accuracy assessment of the SRD method when compared to that of the range dynamic mode methods. On the basis of this comparison it was concluded that for baselines of regional extent the SRD method is very effective, efficient, and at least as accurate as the range dynamic mode methods, and that on the basis of a simple orbital modeling and a limited orbit adjustment. The SRD method is insensitive to the inconsistencies affecting the terrestrial reference frame and simultaneous adjustment of the Earth Rotation Parameters (ERPs) is not necessary.
NASA Technical Reports Server (NTRS)
Willis, Emily M.; Minow, Joseph I.; Parker, Linda N.; Pour, Maria Z. A.; Swenson, Charles; Nishikawa, Ken-ichi; Krause, Linda Habash
2016-01-01
The International Space Station (ISS) continues to be a world-class space research laboratory after over 15 years of operations, and it has proven to be a fantastic resource for observing spacecraft floating potential variations related to high voltage solar array operations in Low Earth Orbit (LEO). Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS floating potential are obtained from the Floating Potential Measurement Unit (FPMU). In particular, rapid variations in ISS floating potential during solar array operations on time scales of tens of milliseconds can be recorded due to the 128 Hz sample rate of the Floating Potential Probe (FPP) pro- viding interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting transient floating potential variations with mission operations. These complex variations are not reproduced by current models and require further study to understand the underlying physical processes. In this paper we present some of the floating potential transients observed over the past few years along with the relevant space environment parameters and solar array operations data.
Solar observations with the prototype of the Brazilian Decimetric Array
NASA Astrophysics Data System (ADS)
Sawant, H. S.; Ramesh, R.; Faria, C.; Cecatto, J. R.; Fernandes, F. C. R.; Madsen, F. H. R.; Subramanian, K. R.; Sundararajan, M. S.
The prototype of the Brazilian Decimetric Array BDA consists of 5 element alt-az mounted parabolic mesh type dishes of 4-meter diameter having base lines up to 220 meters in the E--W direction The array was put into regular operation at Cachoeira Paulista Brazil longitude 45 r 00 20 W and latitude 22 r 41 19 S This array operates in the frequency range of 1 2 -- 1 7 GHz Solar observations are carried at sim 1 4 GHz in transit and tracking modes Spatial fine structures superimposed on the one dimensional brightness map of the sun associated with active regions and or with solar activity and their time evolution will be presented In the second phase of the project the frequency range will be increased to 1 2 - 1 7 2 8 and 5 6 GHz Central part of the array will consist of 26 antennas with 4-meter diameter laid out randomically in the square of 256 by 256 meter with minimum and maximum base lines of 8 and 256 meters respectively Details of this array with imaging capabilities in snap shot mode for solar observations and procedure of the phase and amplitude calibrations will be presented The development of instrument will be completed by the beginning of 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aikin, R. W.; Bock, J. J.
2015-06-20
bicep2 and the Keck Array are polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. bicep2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). bicep2 and the Keck Array sharemore » a common optical design and employ the field-proven bicep1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of bicep2 and the Keck Array at 150 GHz.« less
Very long baseline interferometry applied to polar motion, relativity, and geodesy. Ph. D. thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C.
1978-01-01
The causes and effects of diurnal polar motion are described. An algorithm was developed for modeling the effects on very long baseline interferometry observables. A selection was made between two three-station networks for monitoring polar motion. The effects of scheduling and the number of sources observed on estimated baseline errors are discussed. New hardware and software techniques in very long baseline interferometry are described.
Li, Ao; Liu, Zongzhi; Lezon-Geyda, Kimberly; Sarkar, Sudipa; Lannin, Donald; Schulz, Vincent; Krop, Ian; Winer, Eric; Harris, Lyndsay; Tuck, David
2011-01-01
There is an increasing interest in using single nucleotide polymorphism (SNP) genotyping arrays for profiling chromosomal rearrangements in tumors, as they allow simultaneous detection of copy number and loss of heterozygosity with high resolution. Critical issues such as signal baseline shift due to aneuploidy, normal cell contamination, and the presence of GC content bias have been reported to dramatically alter SNP array signals and complicate accurate identification of aberrations in cancer genomes. To address these issues, we propose a novel Global Parameter Hidden Markov Model (GPHMM) to unravel tangled genotyping data generated from tumor samples. In contrast to other HMM methods, a distinct feature of GPHMM is that the issues mentioned above are quantitatively modeled by global parameters and integrated within the statistical framework. We developed an efficient EM algorithm for parameter estimation. We evaluated performance on three data sets and show that GPHMM can correctly identify chromosomal aberrations in tumor samples containing as few as 10% cancer cells. Furthermore, we demonstrated that the estimation of global parameters in GPHMM provides information about the biological characteristics of tumor samples and the quality of genotyping signal from SNP array experiments, which is helpful for data quality control and outlier detection in cohort studies. PMID:21398628
First Space VLBI Observations and Images Using the VLBA and VSOP
NASA Astrophysics Data System (ADS)
Romney, J. D.; Benson, J. M.; Claussen, M. J.; Desai, K. M.; Flatters, C.; Mioduszewski, A. J.; Ulvestad, J. S.
1997-12-01
The National Radio Astronomy Observatory (NRAO) is a participant in the VSOP Space VLBI mission, an international collaboration led by Japan's Institute of Space and Astronautical Science. NRAO has committed up to 30% of scheduled observing time on the Very Long Baseline Array (VLBA), and corresponding correlation resources, to Space VLBI observations. The NRAO Space VLBI Project, funded by NASA, has been working for several years to complete the necessary enhancements to the VLBA correlator and the AIPS image processing system. These developments were completed by the time of the successful launch of the VSOP mission's Halca spacecraft on 1997 February 12. As part of the in-orbit checkout phase, the first Space VLBI fringes from a VLBA observation were detected on 1997 June 12, and the VSOP mission's first images, in both the 1.6- and 5-GHz bands, were obtained shortly thereafter. In-orbit test observations continued through early September, with the first General Observing Time (GOT) scientific observations beginning in July. Through mid-October, a total of 20 Space VLBI observations, comprising 190 hours, had been completed at the VLBA correlator. This paper reviews the unique features of correlation and imaging of Space VLBI observations. These include, for correlation, the ephemeris for an orbiting VLBI ``station'' which is not fixed on the surface of the earth, and the requirement to close the loop on the phase-transfer process from a frequency standard on the ground to the spacecraft. Images from a number of early tests and scientific observations are presented. NRAO's user-support program, providing expert assistance in data analysis to Space VLBI observers, is also described.
Experimental demonstration of interferometric imaging using photonic integrated circuits.
Su, Tiehui; Scott, Ryan P; Ogden, Chad; Thurman, Samuel T; Kendrick, Richard L; Duncan, Alan; Yu, Runxiang; Yoo, S J B
2017-05-29
This paper reports design, fabrication, and demonstration of a silica photonic integrated circuit (PIC) capable of conducting interferometric imaging with multiple baselines around λ = 1550 nm. The PIC consists of four sets of five waveguides (total of twenty waveguides), each leading to a three-band spectrometer (total of sixty waveguides), after which a tunable Mach-Zehnder interferometer (MZI) constructs interferograms from each pair of the waveguides. A total of thirty sets of interferograms (ten pairs of three spectral bands) is collected by the detector array at the output of the PIC. The optical path difference (OPD) of each interferometer baseline is kept to within 1 µm to maximize the visibility of the interference measurement. We constructed an experiment to utilize the two baselines for complex visibility measurement on a point source and a variable width slit. We used the point source to demonstrate near unity value of the PIC instrumental visibility, and used the variable slit to demonstrate visibility measurement for a simple extended object. The experimental result demonstrates the visibility of baseline 5 and 20 mm for a slit width of 0 to 500 µm in good agreement with theoretical predictions.
Evaluation of a dense seismic array for acquisition of high quality data in the ACROSS observation
NASA Astrophysics Data System (ADS)
Tsuruga, K.; Kunitomo, T.; Hasada, Y.; Kumazawa, M.; Shigeta, N.; Kasahara, J.
2004-12-01
ACROSS is an active monitoring methodology to detect any subtle temporal change of physical properties in the Earth's interior. We demonstrate the potentiality of the ACROSS observation with a dense sensor array. We have conducted a dense seismic array observation at the distance of 1 km from the ACROSS source since 2003. The array is composed of 36 three-component velocity seismometers buried at 1.8 m deep in an area 25 m square. All the data are recorded accurately referring to a GPS clock. We derived and analyzed a transfer function (TF) from the source to a receiver by the following steps: (1) evaluating a force vector as source characteristics, (2) converting the observed data to the displacement vectors by incorporating all the corrections of the instruments, (3) stacking the observed data for an enough time to suppress the temporal noise, (4) extracting ACROSS signal and evaluating noise level, (5) representing TF in a tensor form with the estimated errors, (6) slant-stacking with variable ray parameters, (7) estimating the travel times and amplitudes of the wave arrivals by Sompi Event Analysis (Hasada et al., 2001) and representing the result by a pulse sequence, and (8) deriving the polarization vector for each arrival to identify all the wave modes. We analyzed TF of SH-wave component from 16 to 20 Hz as an example. We obtained good quality TF with S/N ratio up to 104 by stacking for 12 days at the step (3). The spatial noise originated from the local heterogeneity around the array was eliminated by the step (6). Several arrivals were recognized within the time windows from 0.6 to 1.8 s. The maximum amplitude of event traces was detected at the travel time of 1.064 s with a ray parameter of 7.9x10-4 s/m. We also found the scattered waves probably generated by the heterogeneities around the array. The ACROSS dense array observation would provide a lot of information on the underground heterogeneities. Consequently, we have the important and challenging subjects: (1) optimum designing of ACROSS array to acquire the better data and (2) development of new theoretical method to deal with the variable types of the wave.
ERRATIC FLARING OF BL LAC IN 2012–2013: MULTIWAVELENGTH OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehrle, Ann E.; Grupe, Dirk; Jorstad, Svetlana G.
2016-01-10
BL Lac, the eponymous blazar, flared to historically high levels at millimeter, infrared, X-ray, and gamma-ray wavelengths in 2012. We present observations made with Herschel, Swift, NuSTAR, Fermi, the Submillimeter Array, CARMA, and the VLBA in 2012–2013, including three months with nearly daily sampling at several wavebands. We have also conducted an intensive campaign of 30 hr with every-orbit observations by Swift and NuSTAR, accompanied by Herschel, and Fermi observations. The source was highly variable at all bands. Time lags, correlations between bands, and the changing shapes of the spectral energy distributions can be explained by synchrotron radiation and inversemore » Compton emission from nonthermal seed photons originating from within the jet. The passage of four new superluminal very long baseline interferometry knots through the core and two stationary knots about 4 pc downstream accompanied the high flaring in 2012–2013. The seed photons for inverse Compton scattering may arise from the stationary knots and from a Mach disk near the core where relatively slow-moving plasma generates intense nonthermal radiation. The 95 spectral energy distributions obtained on consecutive days form the most densely sampled, broad wavelength coverage for any blazar. The observed spectral energy distributions and multi-waveband light curves are similar to simulated spectral energy distributions and light curves generated with a model in which turbulent plasma crosses a conical shock with a Mach disk.« less
HARDI: A high angular resolution deployable interferometer for space
NASA Technical Reports Server (NTRS)
Bely, Pierre Y.; Burrows, Christopher; Roddier, Francois; Weigelt, Gerd
1992-01-01
We describe here a proposed orbiting interferometer covering the UV, visible, and near-IR spectral ranges. With a 6-m baseline and a collecting area equivalent to about a 1.4 m diameter full aperture, this instrument will offer significant improvements in resolution over the Hubble Space Telescope, and complement the new generation of ground-based interferometers with much better limiting magnitude and spectral coverage. On the other hand, it has been designed as a considerably less ambitious project (one launch) than other current proposals. We believe that this concept is feasible given current technological capabilities, yet would serve to prove the concepts necessary for the much larger systems that must eventually be flown. The interferometer is of the Fizeau type. It therefore has a much larger field (for guiding) better UV throughout (only 4 surfaces) than phased arrays. Optimize aperture configurations and ideas for the cophasing and coalignment system are presented. The interferometer would be placed in a geosynchronous or sunsynchronous orbit to minimize thermal and mechanical disturbances and to maximize observing efficiency.
Facilities for US radioastronomy
NASA Technical Reports Server (NTRS)
Thaddeus, P.
1982-01-01
An overview of the radio-astronomy field is given, and prospects ready for construction at NASA are presented. A very-long-baseline array consisting of ten 25 m antennas, with a limiting wavelength of 7 mm and an angular resolution at that wavelength of 2 x 10 to the 4th arcsec is discussed. Eighty percent of the phase information will be obtained by closure around the 36 independent triangles, and high quality aperture-synthesis maps will be produced at all wavelengths. The 25 m telescope will be capable of several applications including the discovery of new molecules in our galaxy (in particular, the envelope of the evolved carbon star IRC + 10216), the detection of CO to distances of perhaps 100 million light years, and the understanding of the events which occur as stars are formed from molecular clouds, and as energy is fed back into the molecular gas by new stars. The submillimeter-wave telescope contains the last atmospheric radio windows where astronomical observations can be made from the earth's surface. The need for funding is stressed.
Featured Image: A Gap in TW Hydrae
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-04-01
This remarkable image (click for the full view!) is a high-resolution map of the 870 m light emitted by the protoplanetary disk surrounding the young solar analog TW Hydrae. A recent study led by Sean Andrews (Harvard-Smithsonian Center for Astrophysics) presents these observations, obtained with the long-baseline configuration of the Atacama Large Millimeter/submillimeter Array (ALMA) at an unprecedented spatial resolution of ~1 AU. The data represent the distribution of millimeter-sized dust grains in this disk, revealing a beautiful concentric ring structure out to a radial distance of 60 AU from the host star. The apparent gaps in the disk could have anyof three origins:Chemical: apparent gaps can becaused by condensation fronts of volatilesMagnetic: apparent gaps can becaused by radial magnetic pressure variationsDynamic: actual gaps can becaused by the clearing of dust by young planets.For more information, check out the paper below!CitationSean M. Andrews et al 2016 ApJ 820 L40. doi:10.3847/2041-8205/820/2/L40
Wide field imaging problems in radio astronomy
NASA Astrophysics Data System (ADS)
Cornwell, T. J.; Golap, K.; Bhatnagar, S.
2005-03-01
The new generation of synthesis radio telescopes now being proposed, designed, and constructed face substantial problems in making images over wide fields of view. Such observations are required either to achieve the full sensitivity limit in crowded fields or for surveys. The Square Kilometre Array (SKA Consortium, Tech. Rep., 2004), now being developed by an international consortium of 15 countries, will require advances well beyond the current state of the art. We review the theory of synthesis radio telescopes for large fields of view. We describe a new algorithm, W projection, for correcting the non-coplanar baselines aberration. This algorithm has improved performance over those previously used (typically an order of magnitude in speed). Despite the advent of W projection, the computing hardware required for SKA wide field imaging is estimated to cost up to $500M (2015 dollars). This is about half the target cost of the SKA. Reconfigurable computing is one way in which the costs can be decreased dramatically.
Probing Jupiter's Radiation Environment with Juno-UVS
NASA Astrophysics Data System (ADS)
Kammer, J.; Gladstone, R.; Greathouse, T. K.; Hue, V.; Versteeg, M. H.; Davis, M. W.; Santos-Costa, D.; Becker, H. N.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.
2017-12-01
While primarily designed to observe photon emission from the Jovian aurora, Juno's Ultraviolet Spectrograph (Juno-UVS) has also measured background count rates associated with penetrating high-energy radiation. These background counts are distinguishable from photon events, as they are generally spread evenly across the entire array of the Juno-UVS detector, and as the spacecraft spins, they set a baseline count rate higher than the sky background rate. During eight perijove passes, this background radiation signature has varied significantly on both short (spin-modulated) timescales, as well as longer timescales ( minutes to hours). We present comparisons of the Juno-UVS data across each of the eight perijove passes, with a focus on the count rate that can be clearly attributed to radiation effects rather than photon events. Once calibrated to determine the relationship between count rate and penetrating high-energy radiation (e.g., using existing GEANT models), these in situ measurements by Juno-UVS will provide additional constraints to radiation belt models close to the planet.
NASA Astrophysics Data System (ADS)
Lucas, Richard; Carreiras, Joao; Proisy, Christophe; Buniting, Peter
2008-11-01
Research undertaken as part of the Japanese Space Exploration Agency (JAXA) Principal Investigator (PI) and Kyoto and Carbon (K&C) programs has focused on the regional characterization (growth stage as a function of biomass and structure) and mapping of forests across northern Australia and mangroves (including wetlands) in selected tropical regions (northern Australia, Belize, French Guiana and Brazil) using Advanced Land Observing Satellite (ALOS) Phased Array L-band SAR (PALSAR) data, either singularly or in conjunction with other remote sensing (e.g., optical) data. Comparison against existing baseline datasets has allowed these data to be used for detecting change in these tropical and subtropical regions. Regional products (e.g., forest growth stage, mangrove/wetland extent and change) generated from the K&C dual polarimetric strip data are anticipated to benefit conservation of these ecosystems and allow better assessments of carbon stocks and changes in these as a function of natural and anthropogenic drivers, thereby supporting key international conventions.
VLBA Determination of the Distance to Nearby Star-forming Regions. VIII. The LkHα 101 Cluster
NASA Astrophysics Data System (ADS)
Dzib, Sergio A.; Ortiz-León, Gisela N.; Loinard, L.; Mioduszewski, A. J.; Rodríguez, L. F.; Medina, S.-N. X.; Torres, R. M.
2018-02-01
The LkHα 101 cluster takes its name from its more massive member, the LkHα 101 star, which is an ∼15 M ⊙ star whose true nature is still unknown. The distance to the LkHα 101 cluster has been controversial for the last few decades, with estimated values ranging from 160 to 800 pc. We have observed members and candidate members of the LkHα 101 cluster with signs of magnetic activity, using the Very Long Baseline Array, in order to measure their trigonometric parallax and, thus, obtain a direct measurement of their distances. A young star member, LkHα 101 VLA J043001.15+351724.6, was detected at four epochs as a single radio source. The best fit to its displacement on the plane of the sky yields a distance of 535 ± 29 pc. We argue that this is the distance to the LkHα 101 cluster.
Reconciling Optical and Radio Observations of the Binary Millisecond Pulsar PSR J1640+2224
NASA Astrophysics Data System (ADS)
Vigeland, Sarah J.; Deller, Adam T.; Kaplan, David L.; Istrate, Alina G.; Stappers, Benjamin W.; Tauris, Thomas M.
2018-03-01
Previous optical and radio observations of the binary millisecond pulsar PSR J1640+2224 have come to inconsistent conclusions about the identity of its companion, with some observations suggesting that the companion is a low-mass helium-core (He-core) white dwarf (WD), while others indicate that it is most likely a high-mass carbon–oxygen (CO) WD. Binary evolution models predict PSR J1640+2224 most likely formed in a low-mass X-ray binary based on the pulsar’s short spin period and long-period, low-eccentricity orbit, in which case its companion should be a He-core WD with mass about 0.35–0.39 M ⊙, depending on metallicity. If instead it is a CO WD, it would suggest that the system has an unusual formation history. In this paper we present the first astrometric parallax measurement for this system from observations made with the Very Long Baseline Array (VLBA), from which we determine the distance to be {1520}-150+170 {pc}. We use this distance and a reanalysis of archival optical observations originally taken in 1995 with the Wide Field Planetary Camera 2 on the Hubble Space Telescope (HST) to measure the WD’s mass. We also incorporate improvements in calibration, extinction model, and WD cooling models. We find that the existing observations are not sufficient to tightly constrain the companion mass, but we conclude the WD mass is >0.4 M ⊙ with >90% confidence. The limiting factor in our analysis is the low signal-to-noise ratio of the original HST observations.
NASA Astrophysics Data System (ADS)
Tanci, Claudio; Tosti, Gino; Conforti, Vito; Schwarz, Joseph; Antolini, Elisa; Antonelli, L. A.; Bulgarelli, Andrea; Bigongiari, Ciro; Bruno, Pietro; Canestrari, Rodolfo; Capalbi, Milvia; Cascone, Enrico; Catalano, Osvaldo; Di Paola, Andrea; Di Pierro, Federico; Fioretti, Valentina; Gallozzi, Stefano; Gardiol, Daniele; Gianotti, Fulvio; Giro, Enrico; Grillo, Alessandro; La Palombara, Nicola; Leto, Giuseppe; Lombardi, Saverio; Maccarone, Maria C.; Pareschi, Giovanni; Russo, Federico; Sangiorgi, Pierluca; Scuderi, Salvo; Stringhetti, Luca; Testa, Vincenzo; Trifoglio, Massimo; Vercellone, Stefano; Zoli, Andrea
2016-08-01
The ASTRI mini-array, composed of nine small-size dual mirror (SST-2M) telescopes, has been proposed to be installed at the southern site of the Cherenkov Telescope Array (CTA), as a set of preproduction units of the CTA observatory. The ASTRI mini-array is a collaborative and international effort carried out by Italy, Brazil and South Africa and led by the Italian National Institute of Astrophysics, INAF. We present the main features of the current implementation of the Mini-Array Software System (MASS) now in use for the activities of the ASTRI SST-2M telescope prototype located at the INAF observing station on Mt. Etna, Italy and the characteristics that make it a prototype for the CTA control software system. CTA Data Management (CTADATA) and CTA Array Control and Data Acquisition (CTA-ACTL) requirements and guidelines as well as the ASTRI use cases were considered in the MASS design, most of its features are derived from the Atacama Large Millimeter/sub-millimeter Array Control software. The MASS will provide a set of tools to manage all onsite operations of the ASTRI mini-array in order to perform the observations specified in the short term schedule (including monitoring and controlling all the hardware components of each telescope and calibration device), to analyze the acquired data online and to store/retrieve all the data products to/from the onsite repository.
ngVLA Cryogenic Subsystem Concept
NASA Astrophysics Data System (ADS)
Wootten, Al; Urbain, Denis; Grammer, Wes; Durand, S.
2018-01-01
The VLA’s success over 35 years of operations stems in part from dramatically upgraded components over the years. The time has come to build a new array to lead the radio astronomical science into its next 40 years. To accomplish that, a next generation VLA (ngVLA) is envisioned to have 214 antennas with diameters of 18m. The core of the array will be centered at the current VLA location, but the arms will extend out to 1000km.The VLA cryogenic subsystem equipment and technology have remained virtually unchanged since the early 1980s. While adequate for a 27-antenna array, scaling the current system for an array of 214 antennas would be prohibitively expensive in terms of operating cost and maintenance. The overall goal is to limit operating cost to within three times the current level, despite having 8 times the number of antennas. To help realize this goal, broadband receivers and compact feeds will be utilized to reduce both the size and number of cryostats required. The current baseline front end concept calls for just two moderately-sized cryostats for the entire 1.2-116 GHz frequency range, as opposed to 8 in the VLA.For the ngVLA cryogenics, our objective is a well-optimized and efficient system that uses state-of-the-art technology to minimize per-antenna power consumption and maximize reliability. Application of modern technologies, such as variable-speed operation for the scroll compressors and cryocooler motor drives, allow the cooling capacity of the system to be dynamically matched to thermal loading in each cryostat. Significantly, power savings may be realized while the maintenance interval of the cryocoolers is also extended.Finally, a receiver designed to minimize thermal loading can produce savings directly translating to lower operating cost when variable-speed drives are used. Multi-layer insulation (MLI) on radiation shields and improved IR filters on feed windows can significantly reduce heat loading.Measurements done on existing cryogenic equipment show that the proposed baseline receiver concept with two cryostats, combined with variable-speed operation of the compressor and cryocoolers should allow the operating cost for ngVLA cryogenics to remain within a factor of two over the VLA.
1994-03-24
sources. gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding ths burden estimate...for .oration Operations and Reports. 1215 Jefferson Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget...ceramic substrate was examined. Baseline data were obtained for cooling with pure dielectric liquids. The effects of addition of high thermal
NASA Technical Reports Server (NTRS)
1977-01-01
Power levels up to 100 kWe average were baselined for the electrical power system of the space construction base, a long-duration manned facility capable of supporting manufacturing and large scale construction projects in space. Alternatives to the solar array battery systems discussed include: (1) solar concentrator/brayton; (2) solar concentrator/thermionic; (3) isotope/brayton; (4) nuclear/brayton; (5) nuclear thermoelectric; and (6) nuclear thermionic.
Dynamics of flow control in an emulated boundary layer-ingesting offset diffuser
NASA Astrophysics Data System (ADS)
Gissen, A. N.; Vukasinovic, B.; Glezer, A.
2014-08-01
Dynamics of flow control comprised of arrays of active (synthetic jets) and passive (vanes) control elements , and its effectiveness for suppression of total-pressure distortion is investigated experimentally in an offset diffuser, in the absence of internal flow separation. The experiments are conducted in a wind tunnel inlet model at speeds up to M = 0.55 using approach flow conditioning that mimics boundary layer ingestion on a Blended-Wing-Body platform. Time-dependent distortion of the dynamic total-pressure field at the `engine face' is measured using an array of forty total-pressure probes, and the control-induced distortion changes are analyzed using triple decomposition and proper orthogonal decomposition (POD). These data indicate that an array of the flow control small-scale synthetic jet vortices merge into two large-scale, counter-rotating streamwise vortices that exert significant changes in the flow distortion. The two most energetic POD modes appear to govern the distortion dynamics in either active or hybrid flow control approaches. Finally, it is shown that the present control approach is sufficiently robust to reduce distortion with different inlet conditions of the baseline flow.
NASA Technical Reports Server (NTRS)
Podboy, Gary G.; Bridges, James E.; Henderson, Brenda S.
2010-01-01
A 48-microphone planar phased array system was used to acquire jet noise source localization data on both a full-scale F404-GE-F400 engine and on a 1/4th scale model of a F400 series nozzle. The full-scale engine test data show the location of the dominant noise sources in the jet plume as a function of frequency for the engine in both baseline (no chevron) and chevron configurations. Data are presented for the engine operating both with and without afterburners. Based on lessons learned during this test, a set of recommendations are provided regarding how the phased array measurement system could be modified in order to obtain more useful acoustic source localization data on high-performance military engines in the future. The data obtained on the 1/4th scale F400 series nozzle provide useful insights regarding the full-scale engine jet noise source mechanisms, and document some of the differences associated with testing at model-scale versus fullscale.
NASA Astrophysics Data System (ADS)
Che, Xiao; Sturmann, Laszlo; Monnier, John D.; ten Brummelaar, Theo A.; Sturmann, Judit; Ridgway, Stephen T.; Ireland, Michael J.; Turner, Nils H.; McAlister, Harold A.
2014-07-01
The CHARA array is an optical interferometer with six 1-meter diameter telescopes, providing baselines from 33 to 331 meters. With sub-milliarcsecond angular resolution, its versatile visible and near infrared combiners offer a unique angle of studying nearby stellar systems by spatially resolving their detailed structures. To improve the sensitivity and scientific throughput, the CHARA array was funded by NSF-ATI in 2011 to install adaptive optics (AO) systems on all six telescopes. The initial grant covers Phase I of the AO systems, which includes on-telescope Wavefront Sensors (WFS) and non-common-path (NCP) error correction. Meanwhile we are seeking funding for Phase II which will add large Deformable Mirrors on telescopes to close the full AO loop. The corrections of NCP error and static aberrations in the optical system beyond the WFS are described in the second paper of this series. This paper describes the design of the common-path optical system and the on-telescope WFS, and shows the on-sky commissioning results.
NASA Astrophysics Data System (ADS)
Matthews, L. D.; Crew, G. B.; Doeleman, S. S.; Lacasse, R.; Saez, A. F.; Alef, W.; Akiyama, K.; Amestica, R.; Anderson, J. M.; Barkats, D. A.; Baudry, A.; Broguière, D.; Escoffier, R.; Fish, V. L.; Greenberg, J.; Hecht, M. H.; Hiriart, R.; Hirota, A.; Honma, M.; Ho, P. T. P.; Impellizzeri, C. M. V.; Inoue, M.; Kohno, Y.; Lopez, B.; Martí-Vidal, I.; Messias, H.; Meyer-Zhao, Z.; Mora-Klein, M.; Nagar, N. M.; Nishioka, H.; Oyama, T.; Pankratius, V.; Perez, J.; Phillips, N.; Pradel, N.; Rottmann, H.; Roy, A. L.; Ruszczyk, C. A.; Shillue, B.; Suzuki, S.; Treacy, R.
2018-01-01
The Atacama Millimeter/submillimeter Array (ALMA) Phasing Project (APP) has developed and deployed the hardware and software necessary to coherently sum the signals of individual ALMA antennas and record the aggregate sum in Very Long Baseline Interferometry (VLBI) Data Exchange Format. These beamforming capabilities allow the ALMA array to collectively function as the equivalent of a single large aperture and participate in global VLBI arrays. The inclusion of phased ALMA in current VLBI networks operating at (sub)millimeter wavelengths provides an order of magnitude improvement in sensitivity, as well as enhancements in u–v coverage and north–south angular resolution. The availability of a phased ALMA enables a wide range of new ultra-high angular resolution science applications, including the resolution of supermassive black holes on event horizon scales and studies of the launch and collimation of astrophysical jets. It also provides a high-sensitivity aperture that may be used for investigations such as pulsar searches at high frequencies. This paper provides an overview of the ALMA Phasing System design, implementation, and performance characteristics.
The Southern Hemisphere VLBI experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, R.A.; Meier, D.L.; Louie, A.P.
1989-07-01
Six radio telescopes were operated as the first Southern Hemisphere VLBI array in April and May 1982. Observations were made at 2.3 and 8.4 GHz. This array provided VLBI modeling and hybrid imaging of celestial radio sources in the Southern Hemisphere, high-accuracy VLBI geodesy between Southern Hemisphere sites, and subarcsecond radio astrometry of celestial sources south of declination -45 deg. The goals and implementation of the array are discussed, the methods of modeling and hybrid image production are explained, and the VLBI structure of the sources that were observed is summarized. 36 refs.
VizieR Online Data Catalog: 8 Fermi GRB afterglows follow-up (Singer+, 2015)
NASA Astrophysics Data System (ADS)
Singer, L. P.; Kasliwal, M. M.; Cenko, S. B.; Perley, D. A.; Anderson, G. E.; Anupama, G. C.; Arcavi, I.; Bhalerao, V.; Bue, B. D.; Cao, Y.; Connaughton, V.; Corsi, A.; Cucchiara, A.; Fender, R. P.; Fox, D. B.; Gehrels, N.; Goldstein, A.; Gorosabel, J.; Horesh, A.; Hurley, K.; Johansson, J.; Kann, D. A.; Kouveliotou, C.; Huang, K.; Kulkarni, S. R.; Masci, F.; Nugent, P.; Rau, A.; Rebbapragada, U. D.; Staley, T. D.; Svinkin, D.; Thone, C. C.; de Ugarte Postigo, A.; Urata, Y.; Weinstein, A.
2015-10-01
In this work, we present the GBM-iPTF (intermediate Palomar Transient Factory) afterglows from the first 13 months of this project. Follow-up observations include R-band photometry from the P48, multicolor photometry from the P60, spectroscopy (acquired with the P200, Keck, Gemini, APO, Magellan, Very Large Telescope (VLT), and GTC), and radio observations with the Very Large Array (VLA), the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the Australia Telescope Compact Array (ATCA), and the Arcminute Microkelvin Imager (AMI). (3 data files).
NASA Astrophysics Data System (ADS)
Thyagarajan, Nithyanandan; Parsons, Aaron R.; DeBoer, David R.; Bowman, Judd D.; Ewall-Wice, Aaron M.; Neben, Abraham R.; Patra, Nipanjana
2016-07-01
Unaccounted for systematics from foregrounds and instruments can severely limit the sensitivity of current experiments from detecting redshifted 21 cm signals from the Epoch of Reionization (EoR). Upcoming experiments are faced with a challenge to deliver more collecting area per antenna element without degrading the data with systematics. This paper and its companions show that dishes are viable for achieving this balance using the Hydrogen Epoch of Reionization Array (HERA) as an example. Here, we specifically identify spectral systematics associated with the antenna power pattern as a significant detriment to all EoR experiments which causes the already bright foreground power to leak well beyond ideal limits and contaminate the otherwise clean EoR signal modes. A primary source of this chromaticity is reflections in the antenna-feed assembly and between structures in neighboring antennas. Using precise foreground simulations taking wide-field effects into account, we provide a generic framework to set cosmologically motivated design specifications on these reflections to prevent further EoR signal degradation. We show that HERA will not be impeded by such spectral systematics and demonstrate that even in a conservative scenario that does not perform removal of foregrounds, HERA will detect the EoR signal in line-of-sight k-modes, {k}\\parallel ≳ 0.2 h Mpc-1, with high significance. Under these conditions, all baselines in a 19-element HERA layout are capable of detecting EoR over a substantial observing window on the sky.
NASA Astrophysics Data System (ADS)
Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.
2018-06-01
We calculate the properties, occurrence rates and detection prospects of individually resolvable `single sources' in the low-frequency gravitational wave (GW) spectrum. Our simulations use the population of galaxies and massive black hole binaries from the Illustris cosmological hydrodynamic simulations, coupled to comprehensive semi-analytic models of the binary merger process. Using mock pulsar timing arrays (PTA) with, for the first time, varying red-noise models, we calculate plausible detection prospects for GW single sources and the stochastic GW background (GWB). Contrary to previous results, we find that single sources are at least as detectable as the GW background. Using mock PTA, we find that these `foreground' sources (also `deterministic'/`continuous') are likely to be detected with ˜20 yr total observing baselines. Detection prospects, and indeed the overall properties of single sources, are only moderately sensitive to binary evolution parameters - namely eccentricity and environmental coupling, which can lead to differences of ˜5 yr in times to detection. Red noise has a stronger effect, roughly doubling the time to detection of the foreground between a white-noise only model (˜10-15 yr) and severe red noise (˜20-30 yr). The effect of red noise on the GWB is even stronger, suggesting that single source detections may be more robust. We find that typical signal-to-noise ratios for the foreground peak near f = 0.1 yr-1, and are much less sensitive to the continued addition of new pulsars to PTA.
NASA Astrophysics Data System (ADS)
Hart, Andrew F.; Cinquini, Luca; Khudikyan, Shakeh E.; Thompson, David R.; Mattmann, Chris A.; Wagstaff, Kiri; Lazio, Joseph; Jones, Dayton
2015-01-01
“Fast radio transients” are defined here as bright millisecond pulses of radio-frequency energy. These short-duration pulses can be produced by known objects such as pulsars or potentially by more exotic objects such as evaporating black holes. The identification and verification of such an event would be of great scientific value. This is one major goal of the Very Long Baseline Array (VLBA) Fast Transient Experiment (V-FASTR), a software-based detection system installed at the VLBA. V-FASTR uses a “commensal” (piggy-back) approach, analyzing all array data continually during routine VLBA observations and identifying candidate fast transient events. Raw data can be stored from a buffer memory, which enables a comprehensive off-line analysis. This is invaluable for validating the astrophysical origin of any detection. Candidates discovered by the automatic system must be reviewed each day by analysts to identify any promising signals that warrant a more in-depth investigation. To support the timely analysis of fast transient detection candidates by V-FASTR scientists, we have developed a metadata-driven, collaborative candidate review framework. The framework consists of a software pipeline for metadata processing composed of both open source software components and project-specific code written expressly to extract and catalog metadata from the incoming V-FASTR data products, and a web-based data portal that facilitates browsing and inspection of the available metadata for candidate events extracted from the VLBA radio data.
Nanoelectronics enabled chronic multimodal neural platform in a mouse ischemic model.
Luan, Lan; Sullender, Colin T; Li, Xue; Zhao, Zhengtuo; Zhu, Hanlin; Wei, Xiaoling; Xie, Chong; Dunn, Andrew K
2018-02-01
Despite significant advancements of optical imaging techniques for mapping hemodynamics in small animal models, it remains challenging to combine imaging with spatially resolved electrical recording of individual neurons especially for longitudinal studies. This is largely due to the strong invasiveness to the living brain from the penetrating electrodes and their limited compatibility with longitudinal imaging. We implant arrays of ultraflexible nanoelectronic threads (NETs) in mice for neural recording both at the brain surface and intracortically, which maintain great tissue compatibility chronically. By mounting a cranial window atop of the NET arrays that allows for chronic optical access, we establish a multimodal platform that combines spatially resolved electrical recording of neural activity and laser speckle contrast imaging (LSCI) of cerebral blood flow (CBF) for longitudinal studies. We induce peri-infarct depolarizations (PIDs) by targeted photothrombosis, and show the ability to detect its occurrence and propagation through spatiotemporal variations in both extracellular potentials and CBF. We also demonstrate chronic tracking of single-unit neural activity and CBF over days after photothrombosis, from which we observe reperfusion and increased firing rates. This multimodal platform enables simultaneous mapping of neural activity and hemodynamic parameters at the microscale for quantitative, longitudinal comparisons with minimal perturbation to the baseline neurophysiology. The ability to spatiotemporally resolve and chronically track CBF and neural electrical activity in the same living brain region has broad applications for studying the interplay between neural and hemodynamic responses in health and in cerebrovascular and neurological pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.; Bailey, J. C.; Carey, L. D.; Goodman, S. J.; Rudlosky, S. D.; Albrecht, R.; Morales, C. A.; Anselmo, E. M.; Neves, J. R.
2013-01-01
A 12 station Lightning Mapping Array (LMA) network was deployed during October 2011in the vicinity of São Paulo, Brazil (SP-LMA) to contribute total lightning measurements to an international field campaign [CHUVA - Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)]. The SP-LMA was operational from November 2011 through March 2012. Sensor spacing was on the order of 15-30 km, with a network diameter on the order of 40-50km. The SP-LMA provides good 3-D lightning mapping out to150 km from the network center, with 2-D coverage considerably farther. In addition to supporting CHUVA science/mission objectives, the SP-LMA is supporting the generation of unique proxy data for the Geostationary Lightning Mapper (GLM) and Advanced Baseline Imager (ABI), on NOAA's Geostationary Operational Environmental Satellite-R (GOES-R: scheduled for a 2015 launch). These proxy data will be used to develop and validate operational algorithms so that they will be ready to use on "day1" following the GOES-R launch. The SP-LMA data also will be intercompared with lightning observations from other deployed lightning networks to advance our understanding of the capabilities/contributions of each of these networks toward GLM proxy and validation activities. This paper addresses the network assessment and analyses for intercomparison studies and GOES-R proxy activities
A comparison of 1D and 1.5D arrays for imaging volumetric flaws in small bore pipework
NASA Astrophysics Data System (ADS)
Barber, T. S.; Wilcox, P. D.; Nixon, A. D.
2015-03-01
1.5D arrays can be seen as a potentially ideal compromise between 1D arrays and 2D matrix arrays in terms of focusing capability, element density, weld coverage and data processing time. This paper presents an initial study of 1D and 1.5D arrays for high frequency (15MHz) imaging of volumetric flaws in small-bore (30-60mm outer diameter) thin-walled (3-8mm) pipework. A combination of 3D modelling and experimental work is used to determine Signal to Noise Ratio (SNR) improvement with a strong relationship between SNR and the longer dimension of element size observed. Similar behavior is demonstrated experimentally rendering a 1mm diameter Flat Bottom Hole (FBH) in Copper-Nickel alloy undetectable using a larger array element. A 3-5dB SNR increase is predicted when using a 1.5D array assuming a spherical reflector and a 2dB increase was observed on experimental trials with a FBH. It is argued that this improvement is likely to be a lower bound estimate due to the specular behavior of a FBH with future trials planned on welded samples with realistic flaws.
Radio-continuum survey of the Coma/A1367 supercluster. IV - 1.4 GHz observations of CGCG galaxies
NASA Astrophysics Data System (ADS)
del Castillo, E.; Gavazzi, G.; Jaffe, W.
1988-05-01
1.4 GHz radio-continuum observations of 148 CGCG galaxies in the Coma supercluster region were obtained with the VLA in C array configuration. Comparison with previous measurements at 0.6 GHz leads to an average spectral index >α< = 0.8. The structures of 29 galaxies in this region determined with high-resolution VLA (A array) observations are presented.
Advanced Sensor Arrays and Packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryter, John Wesley; Romero, Christopher J.; Ramaiyan, Kannan
2016-08-11
Novel sensor packaging elements were designed, fabricated, and tested in order to facilitate the transition of electrochemical mixed-potential sensors toward commercialization. Of the two designs completed, the first is currently undergoing field trials, taking direct measurements within vehicle exhaust streams, while the second is undergoing preliminary laboratory testing. The sensors’ optimal operating conditions, sensitivity to hydrogen, and long-term baseline stability were also investigated. The sensing capabilities of lanthanum chromite (La 0.8Sr 0.2CrO 3) and indium-doped tin oxide (ITO) working electrodes were compared, and the ITO devices were selected for pre-commercial field trials testing at a hydrogen fuel cell vehicle fuelingmore » station in California. Previous data from that fueling station were also analyzed, and the causes of anomalous baseline drift were identified.« less